
EÆ
ient representation of extensible re
ords

Didier R�emy

INRIA-Ro
quen
ourt

�

June 12, 2001

Abstra
t

We des
ribe a way of representing polymorphi
 extensi-

ble re
ords in stati
ally typed programming languages

that optimizes memory allo
ation, a

ess and
reation,

rather than polymorphi
 extension.

Introdu
tion

Type systems for re
ords have been studied extensively

in re
ent years. New operations on re
ords have been

proposed su
h as polymorphi
 extension that builds a

re
ord from an older one without knowing its �elds.

Su
h operations are very powerful, and were not always

provided as primitive
onstru
ts in untyped languages.

In
omparison to the numerous results on the type

theory of re
ords, there has been less interest in their

ompilation. Many languages still have monomorphi

operations on re
ords, e.g. most implementations of

ML [HMT90, Wei89, Ler90℄. Others, that have more

powerful re
ords, use asso
iation list te
hniques, even-

tually improved by
a
hing.

Safe untyped languages require that the presen
e

of �elds is
he
ked before a

ess. The use of asso
ia-

tion lists interleaves dynami

he
king with a

ess to

�elds. In strongly typed languages, the presen
e of

�elds is stati
ally
he
ked. Thus the representation of

re
ords by asso
iation lists performs super
uous run-

time
he
ks, and it seems that
heaper solutions
ould

be found.

We propose a representation of re
ords based on a

simple perfe
t-hash
oding of �elds that allows a

ess

in
onstant time with only a few ma
hine instru
tions

whi
h
an be dropped to a single instru
tion whenever

the set of �elds of the re
ord is stati
ally known. Cre-

ation
an be performed in time proportional to the size

of the re
ord, and allo
ates a ve
tor of size the number

�

Author's address: INRIA, B.P. 105, F-78153 Le Chesnay

Cedex. Email: Didier.Remy�inria.fr

of �elds plus one. Only the polymorphi

reation of

re
ords has to pay more in time and memory.

In se
tion 1, the spe
i�
ity of re
ords as data prod-

u
t stru
tures serves as an introdu
tion to the
ondi-

tions for whi
h our representation will work in pra
ti
e.

The method is des
ribed in detail in se
tion 2 as the

en
oding of partial fun
tions from labels to values with

�nite domains. In se
tion 3 we extend the method to

re
ords with defaults. These are total fun
tions from

labels to values that are
onstant almost everywhere.

As an appli
ation we get safe standard re
ords in an

untyped language. In se
tion 4, we dis
uss how to han-

dle pathologi
al
ases in order to prevent bad behavior.

1 Re
ords and their spe
i�
ity

Re
ords are produ
t data stru
tures. Ea
h pie
e of in-

formation is stored with a key, more
ommonly
alled a

label, that is used to retrieve the information. There is

at most one value asso
iated to a label. By �eld a pair

noted a 7! v of a label a and a value v. Su
h data stru
-

tures are of
ommon use in
omputer s
ien
e. However

our de�nition of re
ords is too vague for
hoosing a good

representation of re
ords. It is ne
essary to know the

average and the maximum size of these stru
tures, to

know whether they are
reated in
rementally, the fre-

quen
y of the di�erent operations and whi
h ones are

privileged. It is obvious that di�erent programs will

give di�erent answers. These questions
an only be an-

swered in general, or the answers that we give below

an also be taken as assumptions for whi
h our repre-

sentation of re
ords will work in pra
ti
e.

Re
ords are provided with three operations. Cre-

ation builds a re
ord with a �nite number of labels to-

gether with values asso
iated to these labels. Extension

takes a re
ord and builds a new one that has all �elds

of the �rst one plus a �nite number of new �elds. A
-

ess takes a re
ord and a label and returns the value

asso
iated to that label. It fails if the label is not in the

domain of the re
ord.

Re
ords have a relatively small number of labels. At

most a
ouple of hundred, on average less than ten. Non

in
remental
reation and a

ess are both very frequent

and are privileged. There are usually many re
ords

with the same domain. Spa
e and time are equally

important.

The simplest representation of re
ords by asso
ia-

tion lists is good for very small re
ords but it makes a
-

ess to large re
ords too slow. Balan
e trees would have

better performan
es for large re
ords but the overhead

has also to be paid for small re
ords; they also require

too mu
h memory. General hashed tables will also have

an overhead that is not a

eptable for small re
ords.

2 Extensible re
ords with poly-

morphi
 a

ess

In this se
tion we
onsider re
ords as partial fun
tions

from labels to values, with �nite domains. The problem

is to �nd a representation for su
h fun
tions, su
h that

under the assumptions of the above se
tion, the oper-

ations on re
ords
an be performed eÆ
iently. By per-

forming, we mean evaluating in general. In parti
ular,

this applies to
ompilation where some of the evaluation

an be done stati
ally.

Standard monomorphi
 operations on non extensi-

ble re
ords should not be penalized by the introdu
-

tion of more powerful re
ords. Although it is always

possible to keep two kinds of re
ords
oexisting, the

new re
ords should repla
e the older, weaker ones. It

should be left to the
ompiler to re
ognize that some

re
ord operations are monomorphi
 and thus
an bet-

ter be
ompiled. Indeed, this will not be possible for all

ompilation s
hema.

A re
ord r is a partial fun
tion from labels to val-

ues with a �nite domain (a

i

7! v

i

)

i21::n

. The simplest

de
omposition of this fun
tion is

Labels

h

* [1; n℄

v

! Values

a

i

> i > v

i

The total fun
tion v stores the
omponents of the

re
ord, while the the partial fun
tion h,
alled the

header, des
ribes how labels are mapped to indi
es.

This de
omposition suggests the representation of r in

a ve
tor R:

�

0 7! H

i 7! v

i

i 2 [1; n℄

where H represents the fun
tion h.

The partial fun
tion h needs to be de�ned at least

on the domain of r and it should better be inje
tive on

the domain of r too. Any su
h fun
tion would work,

sin
e v is then de�ned by

(h j

�

dom (r))

�1

Æ r

up to permutation of indexes with identi
al values.

If all re
ords are
oded su
h that their headers (the

representations may di�er provided they implement the

same fun
tion) only depend on their domains, then

ompilation of operations on re
ords whose set of �elds

is stati
ally known
an be optimized by partially evalu-

ating their header. The a

ess be
ome a single indire
t

read to fet
h the value of the re
ord on that �eld. The

reation is always in that
ase, sin
e it builds a re
ord

with n �elds from nothing. The header
an be
om-

puted stati
ally and shared between all re
ords built

by the same fun
tion. The
ost is redu
ed to allo
at-

ing and �lling n+ 1 �elds of a ve
tor. More generally,

headers
an be shared between all re
ords that have the

same domain by keeping all existing headers in a table.

Polymorphi
 a

ess and polymorphi
 extension

must use the headers. For sake of simpli
ity, we
on-

sider that labels are integers. The parser and the printer

would deal with the isomorphism between integers and

names in a real language.

Finding a good representation of h seems as diÆ-

ult as �nding a good representation of r. There are

two di�eren
es, though. Sin
e the header is shared, we

are allowed a little more
exibility on the size of H .

Also, h is a fun
tion on integers, thus we are allowed to

use arithmeti
 and logi
 operation on integers. There

is no hope of �nding a dire
t representation of h by

arithmeti
 operations, sin
e its domain is
ompletely

arbitrary. At least some mapping between integers has

to be an arbitrary map represented by a ve
tor of inte-

gers for instan
e. A mixed de
omposition of the header

h is:

IN

(mod p)

! [0; p� 1℄

�

* [1; n℄

where (mod p) is inje
tive on the domain of r. Su
h

a de
omposition is always possible, to the pri
e of a

higher p. In pra
ti
e the smallest p that works is on

average twi
e the size of n for a few labels and three to

four times for larger sets of labels. Sin
e the header is

shared, this is very a

eptable.

The interest of this de
omposition of h is that it
an

be
ompiled eÆ
iently and
oded in a ve
tor H :

�

0 7! p

j 7! ��(j � 1) j 2 [1; p℄

The partial fun
tion � must be extended into a total

fun
tion on [1; p℄. We write it �� the un
onstrained ex-

tension of �.

In too
ases below, We will also be interested in

two parti
ular extensions of � below that we write �̂

and ��. The former �̂ is an extension of � with values

of [1; n℄, thus it makes r a total fun
tion. The later ��

extends � outside of [1; n℄, for instan
e 0, whi
h provides

a membership test to the domain of � by testing �� for

equality to zero.

The domain of r must also be
oded in H for poly-

morphi
 extension. All its labels
an be listed at the

end of H .

8

>

<

>

:

0 7! p

1 7! n

2 + j 7! ��(j) j 2 [0; p� 1℄

1 + p+ i 7! a

i

i 2 [1; n℄

The a

ess
an be optimized whenever the domain of

the re
ord, and
onsequently the header, are stati
ally

known. Su
h information is expe
ted to be found by the

type
he
ker. This
annot always be the
ase, however.

In order to rely on the types to know the domains

of re
ords, the attendan
es of �elds, given by the types

of re
ords, must
orrespond exa
tly to their domains.

This implies that the restri
tion of a re
ord on a �eld

modi�es its header, sin
e its
hanges the attendan
e.

This is one possible semanti
s for restri
tion. Another

one is to take the restri
tion of �elds as a retyping fun
-

tion, that is, a fun
tion that evaluates as the identity.

The
hoi
e is between an expensive a
tive restri
tion

that allows a

ess optimizations or a
heap retyping re-

stri
tions that forbids them.

3 Re
ords with defaults

In this se
tion we
onsider re
ords as partial fun
tions

from labels to values,
onstant almost everywhere. The

problem is now to re
ognize whenever the �eld does

not belong to the domain of the re
ord (we mean the

expli
itly de�ned values, here), in whi
h
ase the de-

fault value is returned. The membership test might be

expensive in time or in spa
e.

There is a
heap solution based on the same te
h-

nique as above. In fa
t, we
oded re
ords by total fun
-

tion on labels, and des
ribed the domain separately in

order to implement the extension of �elds. Thus we

ould apply them outside of their domain (but get a

value of unpredi
table type).

Let r be a re
ord. Consider the re
ord r

0

equal to

id j

�

dom (r). An arbitrary label a is in the domain of

r if and only if it is equal to r

0

:a. The auxiliary re
ord

r

0

only depends on the domain of r is already be
oded

in the header H as the domain of r. Remember that i

is the index in R where the value of label a

i

is stored.

Thus it is the index where a

i

is in R

0

, whi
h is also in

H at position 2 + p+ i, provided i = �(a

i

mod p).

We simply shift the indi
es in R to pla
e the default

value at position 1:

8

<

:

0 7! H

1 7! d

1 + i 7! v

i

i 2 [1; n℄

We
ompute the appli
ation of r to the label a as fol-

lows. First
ompute the index i asso
iated to a, that

is H:(amod (H:0)). If H:(2 + p+ i) is equal to a, then

the label belongs to the domain of r and the result is

R:(1 + i) otherwise it is the default R:(1).

One must be
areful to use the �̂ extension of �.

The �� extension is still possible, but the above mem-

bership test must be pre
eded by a membership test to

the domain of �, and in
ase of failure the default value

should also be used.

In fa
t, the en
oding of re
ords with defaults
an

be easily adapted to implement safe
lassi
al re
ords in

n 3 5 8 11 23 30 40 60 100 200

p

ave

4 9 18 30 86 132 207 400 902 2565

p

max

11 18 29 48 148 206 298 576 1195 3053

Figure 1: Average header size

an untyped language: a dynami
 type error is raised

when the membership test fails instead of returning the

default.

4 About eÆ
ien
y

This se
tion does not
onsider the
ase of re
ords with

defaults for sake of simpli
ity, but it
an be adapted

very easily to them.

The previous representation of re
ords is very at-

tra
tive sin
e it implements linear time a

ess, uses

very little memory, keeps the same performan
e on

monomorphi
 re
ords as if all re
ords were monomor-

phi
. However we must
he
k the following points.

First, that the size of the header does not get too large.

Se
ondly, that the polymorphi
 extension does not have

too bad performan
e, even though it is not privileged.

Last, that pathologi
al
ases
an be handled.

The
omputation of the integer p is at the heart of

every question. The problem is given a set of integers

D, �nd a small integer p su
h that (modn) is inje
tive

on D. The integer p does not need to be minimal, even

if
omputed at
ompile time, sin
e a larger header might

make polymorphi
 extension more eÆ
ient. However,

the minimal p gives a lower bound on the size of the

header. For instan
e if D is randomly
hosen, and the

set of labels is large enough in
omparison to the size n

of D, the probability that p disambiguates n integers is

p!

(p� b)! p

n

The formula that gives the average smallest p in fun
-

tion of n is simple, but �gure 1 gives an experimental

result on the average p

ave

and the largest p

max

for on

a hundred runs per
olumn.

For small re
ords, 10

4

runs did not give very di�er-

ent maximal p. The dispersion of p is shown by �gure 2

The �gures show that under 30 labels, the size of D

does not ex
eeds, in average, four times the number of

�elds, and ex
eeds very rarely twi
e the average. For

large re
ords (above 50 �elds) the header be
omes very

large. It is
lear that another solution must be applied

for large re
ords. Even if one wished to push this limit

to a hundred labels, there is always a rank that
an

be rea
hed in pra
ti
e (even if it is pathologi
al) for

another representation should be used.

10

20

30

40

50

20050 100 400

Figure 2: Dispersion of the header size

Sin
e, we
annot avoid a mixed representation, if

we want to handle large size re
ords in order to rep-

resent them with reasonable size headers, we use tags

to distinguish between the two representations. For in-

stan
e, negative integers
an be used as tags for an

alternate representations. There are many possibilities

for the alternate representations, and sin
e these are

pathologi
al
ases, in the sense that they do not meet

the requirement that we set in se
tion 1, we do not
are

mu
h about the eÆ
ien
y of the alternate representa-

tion. We propose, two possible solutions that �t well

with the regular representation.

The �rst solution is whenever a and b are equal to j

modulo p to assign �(j) with an integer �q su
h that q

is in [2; p℄ and modulo q distinguishes a and b and with

values that are not in the image of �.

The se
ond solution repla
es perfe
t hashing by

hashing with linear probing ([Sed88℄, Chapter 16). The

header is H is

8

>

>

>

<

>

>

>

:

0 7! p

1 7! n

2 + j 7! ��(j) j 2 [0; p� 1℄

1 + p+ i 7! a

i

i 2 [1; n℄

2 + n+ p+ j 7! a

�(j)

j 2 [0; p� 1℄

for labels that do not
on
i
t. When 2+n+p+(a

i

modp)

is already o

upied, the label a

i

is pla
ed at the smallest

free position after, say j, and �(j) is �lled with i.

The �rst method still gives a

ess in linear time,

but headers are more diÆ
ult to
ompute. The may be

mu
h faster on average, but require larger headers. In

both
ases there is a lot of freedom on how to
hose p,

a

ording to how many
on
i
ts are a

epted. Letting

p be about 3 times the size of r may avoid sear
hing

for optima while limiting the number of
lashes. The

�rst method is more
exible, sin
e a
on
i
t for one

label does not need to double the size of the header or

re
ompute another header: it simply uses the holes of

the a
tual header. Then, it
an also be used even for

average size re
ords in some
ases in order to
ompile

more eÆ
ient extension.

The eÆ
ien
y of polymorphi
 extension has not

been
onsidered yet, sin
e it was not a privileged op-

eration. It has to dynami
ally
ompute a new header,

whi
h may be very expensive | and at least propor-

tional to the size of the re
ord it extends. The time for

omputing the header now be
omes important. There

are di�erent
ases (we ex
lude large size re
ords, that

should be represented otherwise):

� There is no need to
ompute a new p,

� The average
ase for
omputing a new p,

� The worse
ases for
omputing a new p.

In the average
ase,
omputing a new header means

that 3 di�erent p's must be probed per extension, sin
e

headers are in average 3 times the size of n. The opti-

misti
 unit
ost U is the one of a loop that
ontains at

least one ve
tor write and one modulo instru
tion. The

ost for a probe is pU , sin
e the failure is probable to

happen at the end. Thus the average
ost for
reating

a new header is 3pU plus two other pU for �lling the

header.

However, a re
ord with a very
ompa
t header may

be extended with a label that will make the header get

loser to its average size. Then about nU probes may

be needed, making the
ost for the new header in
rease

to pnU .

On the other hand, it is very probable that the ex-

tended header already exists or is trivial. If the label

a of the extended �eld is taken at random, there is a

probability of (p�n)=p that the n+1 �elds will still be

disambiguated by p. In that
ase, the
ost for
reating

a new header is the same as
opying the old one plus

modifying a few �elds pU .

The
reation of a new header may be avoided most

of the time sin
e it is very probable that it has already

be
reated. This requires that all existing headers are

stored in a di
tionary. This will save both spa
e and

time. The keys in the di
tionary are the domains of

headers that
an be kept ordered in H , so that equal-

ity tests are not too expensive, and the whole
ost of

sear
hing would be lower than the minimal
ost of ex-

tension.

A
tive restri
tion of �elds
an be implementing

along the same ideas. The header is looked up in the

table. If it does not exist, then the new header need

not be the smallest one, provided that it is of reason-

able size. This avoids the expensive
ost of �nding the

smallest integer modulo whi
h all elements of the do-

main as distinguished.

5 Other
ompilation s
hemas

There are three di�erent ideas in the above representa-

tion of re
ords

1. The value of �elds and the position of �elds are

represented separately. The header that des
ribes

the later is shared between all re
ords having the

same set of �elds, two re
ords with the same do-

main always have the same �elds at the same po-

sition.

2. The header
an be represented by a modulo fol-

lowed by a proje
tion.

3. Di�erent representation of the headers
an live

together.

The �rst point is
ru
ial in our representation. Any rep-

resentation of re
ords that does not originally respe
t

this point
an still be used to implement headers, then

values
an be stored in ve
tors as above. Sharing of

headers will save the large amount of spa
e required by

asso
iation lists or balan
ed trees.

The representation of the header itself is not im-

portant. We des
ribed one possibility that is very
on-

venient for small and medium size re
ords. But many

other representations are possible. We
hoose to repre-

sent the header as a stru
ture that is interpreted both

by extension and a

ess. It
ould also be a
losure for

the a

ess part, together with a des
ription of the do-

main that is needed for the extension. This is the tag

vs
losure duality.

If the extension and the restri
tion of �elds are

themselves
losed with the header, re
ords
ould really

be viewed as obje
ts with two methods for a

ess and

extension.

Con
lusion

We have presented a way of representing re
ords with

or without defaults that allows eÆ
ient a

ess and
re-

ation. Only the more powerful features su
h as poly-

morphi
 extension, or true restri
tion of �elds have to

pay a higher pri
e.

Our representation of re
ord with defaults
an be

used to implement safe a

ess in an untyped language.

An orthogonal appli
ation
ould be the representa-

tion of feature terms that are very related to re
ords.

Thanks

These ideas originate in dis
ussions with Xavier Leroy.

They have been mentioned for the �rst time in [Ler90℄

and tested in the untyped version of Zin
, the an
estor

of Caml-Light.

Referen
es

[HMT90℄ Robert Harper, Robin Milner, and Mads

Tofte. The de�nition of Standard ML. The

MIT Press, 1990.

[Ler90℄ Xavier Leroy. The ZINC experiment: an e
o-

nomi
al implementation of the ML language.

Te
hni
al Report 117, INRIA-Ro
quen
ourt,

BP 105, F-78 153 Le Chesnay Cedex, 1990.

[Sed88℄ Robert Sedgewi
k. Algorithms. Computer

S
ien
e. Addison-Wesley, se
ond edition edi-

tion, 1988.

[Wei89℄ Pierre Weis. The CAML Referen
e Manual.

INRIA-Ro
quen
ourt, BP 105, F-78 153 Le

Chesnay Cedex, 1989.

