Efficient representation of extensible records

Didier Rémy
INRIA-Rocquencourt*

June 12, 2001

Abstract

We describe a way of representing polymorphic extensi-
ble records in statically typed programming languages
that optimizes memory allocation, access and creation,
rather than polymorphic extension.

Introduction

Type systems for records have been studied extensively
in recent years. New operations on records have been
proposed such as polymorphic extension that builds a
record from an older one without knowing its fields.
Such operations are very powerful, and were not always
provided as primitive constructs in untyped languages.

In comparison to the numerous results on the type
theory of records, there has been less interest in their
compilation. Many languages still have monomorphic
operations on records, e.g. most implementations of
ML [HMT90, Wei89, Ler90]. Others, that have more
powerful records, use association list techniques, even-
tually improved by caching.

Safe untyped languages require that the presence
of fields is checked before access. The use of associa-
tion lists interleaves dynamic checking with access to
fields. In strongly typed languages, the presence of
fields is statically checked. Thus the representation of
records by association lists performs superfluous run-
time checks, and it seems that cheaper solutions could
be found.

We propose a representation of records based on a
simple perfect-hash coding of fields that allows access
in constant time with only a few machine instructions
which can be dropped to a single instruction whenever
the set of fields of the record is statically known. Cre-
ation can be performed in time proportional to the size
of the record, and allocates a vector of size the number

*Author’s address: INRIA, B.P. 105, F-78153 Le Chesnay
Cedex. Email: Didier.Remy@inria.fr

of fields plus one. Only the polymorphic creation of
records has to pay more in time and memory.

In section 1, the specificity of records as data prod-
uct structures serves as an introduction to the condi-
tions for which our representation will work in practice.
The method is described in detail in section 2 as the
encoding of partial functions from labels to values with
finite domains. In section 3 we extend the method to
records with defaults. These are total functions from
labels to values that are constant almost everywhere.
As an application we get safe standard records in an
untyped language. In section 4, we discuss how to han-
dle pathological cases in order to prevent bad behavior.

1 Records and their specificity

Records are product data structures. Each piece of in-
formation is stored with a key, more commonly called a
label, that is used to retrieve the information. There is
at most one value associated to a label. By field a pair
noted a — v of a label a and a value v. Such data struc-
tures are of common use in computer science. However
our definition of records is too vague for choosing a good
representation of records. It is necessary to know the
average and the maximum size of these structures, to
know whether they are created incrementally, the fre-
quency of the different operations and which ones are
privileged. It is obvious that different programs will
give different answers. These questions can only be an-
swered in general, or the answers that we give below
can also be taken as assumptions for which our repre-
sentation of records will work in practice.

Records are provided with three operations. Cre-
ation builds a record with a finite number of labels to-
gether with values associated to these labels. Eztension
takes a record and builds a new one that has all fields
of the first one plus a finite number of new fields. Ac-
cess takes a record and a label and returns the value
associated to that label. It fails if the label is not in the
domain of the record.

Records have a relatively small number of labels. At
most a couple of hundred, on average less than ten. Non
incremental creation and access are both very frequent
and are privileged. There are usually many records
with the same domain. Space and time are equally

important.

The simplest representation of records by associa-
tion lists is good for very small records but it makes ac-
cess to large records too slow. Balance trees would have
better performances for large records but the overhead
has also to be paid for small records; they also require
too much memory. General hashed tables will also have
an overhead that is not acceptable for small records.

2 Extensible records with poly-
morphic access

In this section we consider records as partial functions
from labels to values, with finite domains. The problem
is to find a representation for such functions, such that
under the assumptions of the above section, the oper-
ations on records can be performed efficiently. By per-
forming, we mean evaluating in general. In particular,
this applies to compilation where some of the evaluation
can be done statically.

Standard monomorphic operations on non extensi-
ble records should not be penalized by the introduc-
tion of more powerful records. Although it is always
possible to keep two kinds of records coexisting, the
new records should replace the older, weaker ones. It
should be left to the compiler to recognize that some
record operations are monomorphic and thus can bet-
ter be compiled. Indeed, this will not be possible for all
compilation schema.

A record r is a partial function from labels to val-
ues with a finite domain (a; — v;) ¥, The simplest
decomposition of this function is

v
> Values

Labels f [1,n]

a; | it [

The total function v stores the components of the
record, while the the partial function A, called the
header, describes how labels are mapped to indices.
This decomposition suggests the representation of r in

a vector R:
{0 — H

i—v; €[l n]

where H represents the function h.

The partial function h needs to be defined at least
on the domain of r and it should better be injective on
the domain of 7 too. Any such function would work,
since v is then defined by

(h| dom(r)) *or

up to permutation of indexes with identical values.

If all records are coded such that their headers (the
representations may differ provided they implement the
same function) only depend on their domains, then
compilation of operations on records whose set of fields

is statically known can be optimized by partially evalu-
ating their header. The access become a single indirect
read to fetch the value of the record on that field. The
creation is always in that case, since it builds a record
with n fields from nothing. The header can be com-
puted statically and shared between all records built
by the same function. The cost is reduced to allocat-
ing and filling n + 1 fields of a vector. More generally,
headers can be shared between all records that have the
same domain by keeping all existing headers in a table.

Polymorphic access and polymorphic extension
must use the headers. For sake of simplicity, we con-
sider that labels are integers. The parser and the printer
would deal with the isomorphism between integers and
names in a real language.

Finding a good representation of h seems as diffi-
cult as finding a good representation of r. There are
two differences, though. Since the header is shared, we
are allowed a little more flexibility on the size of H.
Also, h is a function on integers, thus we are allowed to
use arithmetic and logic operation on integers. There
is no hope of finding a direct representation of h by
arithmetic operations, since its domain is completely
arbitrary. At least some mapping between integers has
to be an arbitrary map represented by a vector of inte-
gers for instance. A mixed decomposition of the header
h is:

_mod
RSN B .

where (_mod p) is injective on the domain of r. Such
a decomposition is always possible, to the price of a
higher p. In practice the smallest p that works is on
average twice the size of n for a few labels and three to
four times for larger sets of labels. Since the header is
shared, this is very acceptable.

The interest of this decomposition of A is that it can
be compiled efficiently and coded in a vector H:

O—p
{anU—D J€[1,p]
The partial function n must be extended into a total
function on [1,p]. We write it 77 the unconstrained ex-
tension of 7.

In too cases below, We will also be interested in
two particular extensions of 1 below that we write 7)
and 7. The former 7 is an extension of n with values
of [1,n], thus it makes r a total function. The later 7
extends n outside of [1, n], for instance 0, which provides
a membership test to the domain of n by testing i for
equality to zero.

The domain of r must also be coded in H for poly-
morphic extension. All its labels can be listed at the
end of H.

O—p

l—=n

2+j=n() je0,p—1]
l+p+i—a; i€[l,n]

The access can be optimized whenever the domain of
the record, and consequently the header, are statically
known. Such information is expected to be found by the
typechecker. This cannot always be the case, however.

In order to rely on the types to know the domains
of records, the attendances of fields, given by the types
of records, must correspond exactly to their domains.
This implies that the restriction of a record on a field
modifies its header, since its changes the attendance.
This is one possible semantics for restriction. Another
one is to take the restriction of fields as a retyping func-
tion, that is, a function that evaluates as the identity.
The choice is between an expensive active restriction
that allows access optimizations or a cheap retyping re-
strictions that forbids them.

3 Records with defaults

In this section we consider records as partial functions
from labels to values, constant almost everywhere. The
problem is now to recognize whenever the field does
not belong to the domain of the record (we mean the
explicitly defined values, here), in which case the de-
fault value is returned. The membership test might be
expensive in time or in space.

There is a cheap solution based on the same tech-
nique as above. In fact, we coded records by total func-
tion on labels, and described the domain separately in
order to implement the extension of fields. Thus we
could apply them outside of their domain (but get a
value of unpredictable type).

Let r be a record. Consider the record 7’ equal to
id | dom (r). An arbitrary label a is in the domain of
r if and only if it is equal to 7’.a. The auxiliary record
r" only depends on the domain of r is already be coded
in the header H as the domain of r. Remember that i
is the index in R where the value of label a; is stored.
Thus it is the index where a; is in R’, which is also in
H at position 2 + p + 4, provided ¢ = n(a; mod p).

We simply shift the indices in R to place the default
value at position 1:

0—H
1—d
1+imwv i€[l,n]

We compute the application of r to the label a as fol-
lows. First compute the index ¢ associated to a, that
is H.(a mod (H.0)). If H.(2 + p +) is equal to a, then
the label belongs to the domain of r and the result is
R.(1 4 i) otherwise it is the default R.(1).

One must be careful to use the i extension of 7.
The 7 extension is still possible, but the above mem-
bership test must be preceded by a membership test to
the domain of 1, and in case of failure the default value
should also be used.

In fact, the encoding of records with defaults can
be easily adapted to implement safe classical records in

n 315|8|11| 23| 30| 40 | 60 | 100 | 200

Dave || 4|9 [18]|30] 86 [132]|207|400| 902 | 2565

Pmae || 11]18]29]48(148|206 | 298|576 | 1195|3053

Figure 1: Average header size

an untyped language: a dynamic type error is raised
when the membership test fails instead of returning the
default.

4 About efficiency

This section does not consider the case of records with
defaults for sake of simplicity, but it can be adapted
very easily to them.

The previous representation of records is very at-
tractive since it implements linear time access, uses
very little memory, keeps the same performance on
monomorphic records as if all records were monomor-
phic. However we must check the following points.
First, that the size of the header does not get too large.
Secondly, that the polymorphic extension does not have
too bad performance, even though it is not privileged.
Last, that pathological cases can be handled.

The computation of the integer p is at the heart of
every question. The problem is given a set of integers
D, find a small integer p such that (_ modn) is injective
on D. The integer p does not need to be minimal, even
if computed at compile time, since a larger header might
make polymorphic extension more efficient. However,
the minimal p gives a lower bound on the size of the
header. For instance if D is randomly chosen, and the
set of labels is large enough in comparison to the size n
of D, the probability that p disambiguates n integers is

p!
(p—b)!p"

The formula that gives the average smallest p in func-
tion of n is simple, but figure 1 gives an experimental
result on the average puye and the largest p,,q. for on
a hundred runs per column.

For small records, 10* runs did not give very differ-
ent maximal p. The dispersion of p is shown by figure 2

The figures show that under 30 labels, the size of D
does not exceeds, in average, four times the number of
fields, and exceeds very rarely twice the average. For
large records (above 50 fields) the header becomes very
large. It is clear that another solution must be applied
for large records. Even if one wished to push this limit
to a hundred labels, there is always a rank that can
be reached in practice (even if it is pathological) for
another representation should be used.

90
40
30
204
10

20 100 200 400

Figure 2: Dispersion of the header size

Since, we cannot avoid a mixed representation, if
we want to handle large size records in order to rep-
resent them with reasonable size headers, we use tags
to distinguish between the two representations. For in-
stance, negative integers can be used as tags for an
alternate representations. There are many possibilities
for the alternate representations, and since these are
pathological cases, in the sense that they do not meet
the requirement that we set in section 1, we do not care
much about the efficiency of the alternate representa-
tion. We propose, two possible solutions that fit well
with the regular representation.

The first solution is whenever a and b are equal to j
modulo p to assign 1(j) with an integer —¢ such that ¢
is in [2, p] and modulo ¢ distinguishes a and b and with
values that are not in the image of 7.

The second solution replaces perfect hashing by
hashing with linear probing ([Sed88], Chapter 16). The
header is H is

O—p

1l—>n

247 = n(j) j€[0,p—1]
l+p+i—a; i€[l,n]

24+n+p+jrrayg J€E0,p—1]

for labels that do not conflict. When 24+n+p+(a;modp)
is already occupied, the label a; is placed at the smallest
free position after, say j, and n(j) is filled with i.

The first method still gives access in linear time,
but headers are more difficult to compute. The may be
much faster on average, but require larger headers. In
both cases there is a lot of freedom on how to chose p,
according to how many conflicts are accepted. Letting
p be about 3 times the size of r may avoid searching
for optima while limiting the number of clashes. The
first method is more flexible, since a conflict for one
label does not need to double the size of the header or
recompute another header: it simply uses the holes of
the actual header. Then, it can also be used even for
average size records in some cases in order to compile
more efficient extension.

The efficiency of polymorphic extension has not
been considered yet, since it was not a privileged op-
eration. It has to dynamically compute a new header,

which may be very expensive — and at least propor-
tional to the size of the record it extends. The time for
computing the header now becomes important. There
are different cases (we exclude large size records, that
should be represented otherwise):

e There is no need to compute a new p,
e The average case for computing a new p,
e The worse cases for computing a new p.

In the average case, computing a new header means
that 3 different p’s must be probed per extension, since
headers are in average 3 times the size of n. The opti-
mistic unit cost U is the one of a loop that contains at
least one vector write and one modulo instruction. The
cost for a probe is pU, since the failure is probable to
happen at the end. Thus the average cost for creating
a new header is 3pU plus two other pU for filling the
header.

However, a record with a very compact header may
be extended with a label that will make the header get
closer to its average size. Then about nU probes may
be needed, making the cost for the new header increase
to pnU.

On the other hand, it is very probable that the ex-
tended header already exists or is trivial. If the label
a of the extended field is taken at random, there is a
probability of (p—n)/p that the n+1 fields will still be
disambiguated by p. In that case, the cost for creating
a new header is the same as copying the old one plus
modifying a few fields pU.

The creation of a new header may be avoided most
of the time since it is very probable that it has already
be created. This requires that all existing headers are
stored in a dictionary. This will save both space and
time. The keys in the dictionary are the domains of
headers that can be kept ordered in H, so that equal-
ity tests are not too expensive, and the whole cost of
searching would be lower than the minimal cost of ex-
tension.

Active restriction of fields can be implementing
along the same ideas. The header is looked up in the
table. If it does not exist, then the new header need
not be the smallest one, provided that it is of reason-
able size. This avoids the expensive cost of finding the
smallest integer modulo which all elements of the do-
main as distinguished.

5 Other compilation schemas

There are three different ideas in the above representa-
tion of records

1. The value of fields and the position of fields are
represented separately. The header that describes
the later is shared between all records having the

same set of fields, two records with the same do-
main always have the same fields at the same po-
sition.

2. The header can be represented by a modulo fol-
lowed by a projection.

3. Different representation of the headers can live
together.

The first point is crucial in our representation. Any rep-
resentation of records that does not originally respect
this point can still be used to implement headers, then
values can be stored in vectors as above. Sharing of
headers will save the large amount of space required by
association lists or balanced trees.

The representation of the header itself is not im-
portant. We described one possibility that is very con-
venient for small and medium size records. But many
other representations are possible. We choose to repre-
sent the header as a structure that is interpreted both
by extension and access. It could also be a closure for
the access part, together with a description of the do-
main that is needed for the extension. This is the tag
vs closure duality.

If the extension and the restriction of fields are
themselves closed with the header, records could really
be viewed as objects with two methods for access and
extension.

Conclusion

We have presented a way of representing records with
or without defaults that allows efficient access and cre-
ation. Only the more powerful features such as poly-
morphic extension, or true restriction of fields have to
pay a higher price.

Our representation of record with defaults can be
used to implement safe access in an untyped language.

An orthogonal application could be the representa-
tion of feature terms that are very related to records.

Thanks

These ideas originate in discussions with Xavier Leroy.
They have been mentioned for the first time in [Ler90]
and tested in the untyped version of Zinc, the ancestor
of Caml-Light.

References

[HMT90] Robert Harper, Robin Milner, and Mads
Tofte. The definition of Standard ML. The
MIT Press, 1990.

[Ler90] Xavier Leroy. The ZINC experiment: an eco-

nomical implementation of the ML language.

[Sed88]

[Weig9]

Technical Report 117, INRIA-Rocquencourt,
BP 105, F-78 153 Le Chesnay Cedex, 1990.

Robert Sedgewick. Algorithms. Computer
Science. Addison-Wesley, second edition edi-
tion, 1988.

Pierre Weis. The CAML Reference Manual.
INRIA-Rocquencourt, BP 105, F-78 153 Le
Chesnay Cedex, 1989.

