
Which Simple Types Have a Unique Inhabitant?

Gabriel Scherer Didier Rémy
Gallium, INRIA Paris-Rocquencourt, France
{gabriel.scherer,didier.remy}@inria.fr

Abstract

We study the question of whether a given type has a unique in-
habitant modulo program equivalence. In the setting of simply-
typed lambda-calculus with sums, equipped with the strong βη-
equivalence, we show that uniqueness is decidable. We present a
saturating focused logic that introduces irreducible cuts on positive
types “as soon as possible”. Backward search in this logic gives an
effective algorithm that returns either zero, one or two distinct in-
habitants for any given type. Preliminary application studies show
that such a feature can be useful in strongly-typed programs, in-
ferring the code of highly-polymorphic library functions, or “glue
code” inside more complex terms.

Categories and Subject Descriptors F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—Type structure

General Terms Languages, Theory

Keywords Unique inhabitants, proof search, simply-typed lambda-
calculus, focusing, canonicity, sums, saturation, code inference

1. Introduction

In this article, we answer an instance of the following question:
“Which types have a unique inhabitant”? In other words, for which
type is there exactly one program of this type? Which logical
statements have exactly one proof term?

To formally consider this question, we need to choose one
specific type system, and one specific notion of equality of pro-
grams – which determines uniqueness. In this article, we work with
the simply-typed λ-calculus with atoms, functions, products and
sums as our type system, and we consider programs modulo βη-
equivalence. We show that unique inhabitation is decidable in this
setting; we provide and prove correct an algorithm to answer it, and
suggest several applications for it. This is only a first step: simply-
typed calculus with sums is, in some sense, the simplest system in
which the question is delicate enough to be interesting. We hope
that our approach can be extended to richer type systems – with
polymorphism, dependent types, and substructural logics.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICFP’15, August 31 – September 2, 2015, Vancouver, British Columbia, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-nnnn-nnnn-n/yy/mm. . . $15.00.
http://dx.doi.org/10.1145/2784731.2784757

For reasons of space, the proofs of the formal results are only
present in the long version of this article (Scherer and Rémy 2015).

1.1 Why Unique?

We see three different sources of justification for studying unique-
ness of inhabitation: practical use of code inference, programming
language design, and understanding of type theory.

In practice, if the context of a not-yet-written code fragment de-
termines a type that is uniquely inhabited, then the programming
system can automatically fill the code. This is a strongly princi-
pal form of code inference: it cannot guess wrong. Some forms of
code completion and synthesis have been proposed (Perelman, Gul-
wani, Ball, and Grossman 2012; Gvero, Kuncak, Kuraj, and Piskac
2013), to be suggested interactively and approved by the program-
mer. Here, the strong restriction of uniqueness would make it suit-
able for a code elaboration pass at compile-time: it is of differ-
ent nature. Of course, a strong restriction also means that it will
be applicable less often. Yet we think it becomes a useful tool
when combined with strongly typed, strongly specified program-
ming disciplines and language designs – we have found in prelimi-
nary work (Scherer 2013) potential use cases in dependently typed
programming. The simply-typed lambda-calculus is very restricted
compared to dependent types, or even the type systems of ML, Sys-
tem F, etc. used in practice in functional programming languages;
but we have already found a few examples of applications (Sec-
tion 6). This shows promises for future work on more expressive
type systems.

For programming language design, we hope that a better un-
derstanding of the question of unicity will let us better understand,
compare and extend other code inference mechanisms, keeping the
question of coherence, or non-ambiguity, central to the system.
Type classes or implicits have traditionally been presented (Wadler
and Blott 1989; Stuckey and Sulzmann 2002; Oliveira, Schrijvers,
Choi, Lee, Yi, and Wadler 2014) as a mechanism for elaboration,
solving a constraint or proof search problem, with coherence or
non-ambiguity results proved as a second step as a property of
the proposed elaboration procedure. Reformulating coherence as a
unique inhabitation property, it is not anymore an operational prop-
erty of the specific search/elaboration procedure used, but a seman-
tic property of the typing environment and instance type in which
search is performed. Non-ambiguity is achieved not by fixing the
search strategy, but by building the right typing environment from
declared instances and potential conflict resolution policies, with a
general, mechanism-agnostic procedure validating that the result-
ing type judgments are uniquely inhabited.

In terms of type theory, unique inhabitation is an occasion
to take inspiration from the vast literature on proof inhabitation
and proof search, keeping relevance in mind: all proofs of the
same statement may be equally valid, but programs at a given
type are distinct in important and interesting ways. We use focus-
ing (Andreoli 1992), a proof search discipline that is more canon-

http://gallium.inria.fr/~scherer/research/unique_inhabitants/

ical (enumerates less duplicates of each proof term) than simply
goal-directed proof search, and its recent extension into (maximal)
multi-focusing (Chaudhuri, Miller, and Saurin 2008).

1.2 Example Use Cases

Most types that occur in a program are, of course, not uniquely
inhabited. Writing a term at a type that happens to be uniquely in-
habited is a rather dull part of the programming activity, as they are
no meaningful choices. While we do not hope unique inhabitants
would cure all instances of boring programming assignment, we
have identified two areas where they may be of practical use:

• inferring the code of highly parametric (strongly specified) aux-
iliary functions

• inferring fragments of glue code in the middle of a more com-
plex (and not uniquely determined) term

For example, if you write down the signature of flip
∀αβγ.(α → β → γ) → (β → α → γ) to document your stan-
dard library, you should not have to write the code itself. The types
involved can be presented equivalently as simple types, replacing
prenex polymorphic variables by uninterpreted atomic types (X, Y,
Z. . .). Our algorithm confirms that (X → Y → Z) → (Y →
X → Z) is uniquely inhabited and returns the expected program –
same for curry and uncurry, const, etc.

In the middle of a term, you may have forgotten whether the
function proceedings excepts a conf as first argument and a
year as second argument, or the other way around. Suppose a
language construct ?! that infers a unique inhabitant at its ex-
pected type (and fails if there are several choices), understand-
ing abstract types (such as year) as uninterpreted atoms. You can
then write (?! proceedings icfp this year), and let the pro-
gramming system infer the unique inhabitant of either (conf →
year → proceedings) → (conf → year → proceedings)
or (conf → year → proceedings) → (year → conf →
proceedings) depending on the actual argument order – it would
also work for conf ∗ year→ proceedings, etc.

1.3 Aside: Parametricity?

Can we deduce unique inhabitation from the free theorem of a
sufficiently parametric type? We worked out some typical exam-
ples, and our conclusion is that this is not the right approach. Al-
though it was possible to derive uniqueness from a type’s paramet-
ric interpretation, proving this implication (from the free theorem
to uniqueness) requires arbitrary reasoning steps, that is, a form of
proof search. If we have to implement proof search mechanically,
we may as well work with convenient syntactic objects, namely
typing judgments and their derivations.

For example, the unary free theorem for the type of composition
∀αβγ.(α→ β)→ (β → γ)→ (α→ γ) tells us that for any sets
of terms Sα, Sβ , Sγ , if f and g are such that, for any a ∈ Sα we
have f a ∈ Sβ , and for any b ∈ Sβ we have g b ∈ Sγ , and
if t is of the type of composition, then for any a ∈ Sα we have
t f g a ∈ Sγ . The reasoning to prove unicity is as follows. Suppose
we are given functions (terms) f and g. For any term a, first define
Sα

def
= {a}. Because we wish f to map elements of Sα to Sβ , define

Sβ
def
= {f a}. Then, because we wish g to map elements of Sβ to

Sγ , define Sγ
def
= {g (f a)}. We have that t f g a is in Sγ , thus

t f g is uniquely determined as λa. g (f a).
This reasoning exactly corresponds to a (forward) proof search

for the type α → γ in the environment α, β, γ, f : α → β, g :
β → γ. We know that we can always start with a λ-abstraction
(formally, arrow-introduction is an invertible rule), so introduce x :

α in the context and look for a term of type γ. This type has no head
constructor, so no introduction rules are available; we shall look for
an elimination (function application or pair projection). The only
elimination we can perform from our context is the application f x,
which gives a β. From this, the only elimination we can perform is
the application g (f x), which gives a γ. This has the expected goal
type: our full term is λx. g (f x). It is uniquely determined, as we
never had a choice during term construction.

1.4 Formal Definition of Equivalence

We recall the syntax of the simply-typed lambda-calculus types
(Figure 1), terms (Figure 2) and neutral terms. The standard typing
judgment ∆ ` t : A is recalled in Figure 3, where ∆ is a
general context mapping term variables to types. The equivalence
relation we consider, namely βη-equivalence, is defined as the least
congruence satisfying the equations of Figure 4. Writing t : A
in an equivalence rule means that the rule only applies when the
subterm t has type A – we only accept equivalences that preserve
well-typedness.

A,B,C,D ::= types
|X,Y, Z atoms
| P,Q positive types
| N,M negative types

P,Q ::= A+B strict positive
N,M ::= A→ B | A ∗B strict negative
Pat, Qat ::= P,Q | X,Y, Z positive or atom
Nat,Mat ::= N,M | X,Y, Z negative or atom

Figure 1. Types of the simply-typed calculus

t, u, r ::= terms
| x, y, z variables
| λx. t λ-abstraction
| t u application
| (t, u) pair
| πi t projection (i ∈ {1, 2})
| σi t sum injection (i ∈ {1, 2})
| δ(t, x1.u1, x2.u2) sum elimination (case split)

n,m := x, y, z | πi n | n t neutral terms

Figure 2. Terms of the lambda-calculus with sums

∆, x : A ` t : B

∆ ` λx. t : A→ B

∆ ` t : A→ B ∆ ` u : A

∆ ` t u : B

∆ ` t : A ∆ ` u : B

∆ ` (t, u) : A ∗B
∆ ` t : A1 ∗A2

∆ ` πi t : Ai

∆, x : A ` x : A
∆ ` t : Ai

∆ ` σi t : A1 +A2

∆ ` t : A1 +A2

∆, x1 : A1 ` u1 : C ∆, x2 : A2 ` u2 : C

∆ ` δ(t, x1.u1, x2.u2) : C

Figure 3. Typing rules for the simply-typed lambda-calculus

We distinguish positive types, negative types, and atomic types.
The presentation of focusing (subsection 1.6) will justify this dis-
tinction. The equivalence rules of Figure 4 make it apparent that

(λx. t) u→β u[t/x] (t : A→ B) =η λx. t x

πi (t1, t2)→β ti (t : A ∗B) =η (π1 t, π2 t)

δ(σi t, x1.u1, x2.u2)→β ui[t/xi]

∀C[�], C[t : A+B] =η δ(t, x.C[σ1 x], x.C[σ2 x])

Figure 4. βη-equivalence for the simply-typed lambda-calculus

the η-equivalence rule for sums is more difficult to handle than the
other η-rule, as it quantifies on any term contextC[�]. More gener-
ally, systems with only negative, or only positive types have an eas-
ier equational theory than those with mixed polarities. In fact, it is
only at the end of the 20th century (Ghani 1995; Altenkirch, Dybjer,
Hofmann, and Scott 2001; Balat, Di Cosmo, and Fiore 2004; Lind-
ley 2007) that decision procedures for equivalence in the lambda-
calculus with sums were first proposed.

Can we reduce the question of unicity to deciding equivalence?
One would think of enumerating terms at the given type, and
using an equivalence test as a post-processing filter to remove
duplicates: as soon as one has found two distinct terms, the type
can be declared non-uniquely inhabited. Unfortunately, this method
does not give a terminating decision procedure, as naive proof
search may enumerate infinitely many equivalent proofs, taking
infinite time to post-process. We need to integrate canonicity in the
structure of proof search itself.

1.5 Terminology

We distinguish and discuss the following properties:

• provability completeness: A search procedure is complete for
provability if, for any type that is inhabited in the unrestricted
type system, it finds at least one proof term.

• unicity completeness: A search procedure is complete for unic-
ity if it is complete for provability and, if there exists two proofs
distinct as programs in the unrestricted calculus, then the search
finds at least two proofs distinct as programs.

• computational completeness: A search procedure is computa-
tionally complete if, for any proof term t in the unrestricted cal-
culus, there exists a proof in the restricted search space that is
equivalent to t as a program. This implies both previous notions
of completeness.

• canonicity: A search procedure is canonical if it has no dupli-
cates: any two enumerated proofs are distinct as programs. Such
procedures require no filtering of results after the fact. We will
say that a system is more canonical than another if it enumer-
ates less redundant terms, but this does not imply canonicity.

There is a tension between computational completeness and ter-
mination of the corresponding search algorithm: when termination
is obtained by cutting the search space, it may remove some com-
putational behaviors. Canonicity is not a strong requirement: we
could have a terminating, unicity-complete procedure and filter du-
plicates after the fact, but have found no such middle-ground. This
article presents a logic that is both computationally complete and
canonical (Section 3), and can be restricted (Section 4) to obtain a
terminating yet unicity-complete algorithm (Section 5).

1.6 Focusing for a Less Redundant Proof Search

Focusing (Andreoli 1992) is a generic search discipline that can
be used to restrict redundancy among searched proofs; it relies on
the general idea that some proof steps are invertible (the premises

are provable exactly when the conclusion is, hence performing this
step during proof search can never lead you to a dead-end) while
others are not. By imposing an order on the application of invertible
and non-invertible proof steps, focusing restricts the number of
valid proofs, but it remains complete for provability and, in fact,
computationally complete (§1.5).

More precisely, a focused proof system alternates between two
phases of proof search. During the invertible phase, rules recog-
nized as invertible are applied as long as possible – this stops
when no invertible rule can be applied anymore. During the non-
invertible phase, non-invertible rules are applied in the following
way: a formula (in the context or the goal) is chosen as the focus,
and non-invertible rules are applied as long as possible.

For example, consider the judgment x : X + Y ` X + Y . In-
troducing the sum on the right by starting with a σ1 ? or σ2 ? would
be a non-invertible proof step: we are permanently committing to
a choice – which would here lead to a dead-end. On the contrary,
doing a case-split on the variable x is an invertible step: it leaves all
our options open. For non-focused proof search, simply using the
variable x : X + Y as an axiom would be a valid proof term. It is
not a valid focused proof, however, as the case-split on x is a pos-
sible invertible step, and invertible rules must be performed as long
as they are possible. This gives a partial proof term δ(x, y.?, z.?),
with two subgoals y : X ` X + Y and z : X ` X + Y ; for
each of them, no invertible rule can be applied anymore, so one can
only focus on the goal and do an injection. While the non-focused
calculus had two syntactically distinct but equivalent proofs, x and
δ(x, y.σ1 y, z.σ2 z), only the latter is a valid focused proof: re-
dundancy of proof search is reduced.

The interesting steps of a proof are the non-invertible ones. We
call positive the type constructors that are “interesting to intro-
duce”. Conversely, their elimination rule is invertible (sums). We
call negative the type constructors that are “interesting to elimi-
nate”, that is, whose introduction rule is invertible (arrow and prod-
uct). While the mechanics of focusing are logic-agnostic, the po-
larity of constructors depends on the specific inference rules; linear
logic needs to distinguish positive and negative products. Some fo-
cused systems also assign a polarity to atomic types, which allows
to express interesting aspects of the dynamics of proof search (pos-
itive atoms correspond to forward search, and negative atoms to
backward search). In Section 2 we present a simple focused variant
of natural deduction for intuitionistic logic.

1.7 Limitations of Focusing

In absence of sums, focused proof terms correspond exactly to β-
short η-long normal forms. In particular, focused search is canoni-
cal (§1.5). However, in presence of both polarities, focused proofs
are not canonical anymore. They correspond to η-long form for
the strictly weaker eta-rule defined without context quantification
x : A+B =weak-η δ(t, x.σ1 x, y.σ2 y).

This can be seen for example on the judgment z : Z, x : Z →
X + Y ` X + Y , a variant on the previous example where the
sum in the context is “thunked” under a negative datatype. The
expected proof is δ(x z, y1.σ1 y1, y2.σ2 y2), but the focused
discipline will accept infinitely many equivalent proof terms, such
as δ(x z, y1.σ1 y1, y2.δ(x z, y

′
1.σ1 y

′
1, .σ2 y2)). The result of

the application x z can be matched upon again and again without
breaking the focusing discipline.

This limitation can also be understood as a strength of focusing:
despite equalizing more terms, the focusing discipline can still
be used to reason about impure calculi where the eliminations
corresponding to non-invertible proof terms may perform side-
effects, and thus cannot be reordered, duplicated or dropped. As
we work on pure, terminating calculi – indeed, even adding non-

termination as an uncontrolled effect ruins unicity – we need a
stronger equational theory than suggested by focusing alone.

1.8 Our Idea: Saturating Proof Search

Our idea is that instead of only deconstructing the sums that appear
immediately as the top type constructor of a type in context, we
shall deconstruct all the sums that can be reached from the context
by applying eliminations (function application and pair projection).
Each time we introduce a new hypothesis in the context, we satu-
rate it by computing all neutrals of sum type that can be built using
this new hypothesis. At the end of each saturation phase, all the
positives that could be deduced from the context have been decon-
structed, and we can move forward applying non-invertible rules on
the goal. Eliminating negatives until we get a positive and match-
ing in the result corresponds to a cut (which is not reducible, as the
scrutinee is a neutral term), hence our technique can be summarized
as “Cut the positives as soon as you can”.

The idea was inspired by Sam Lindley’s equivalence procedure
for the lambda-calculus with sums, whose rewriting relation can be
understood as moving case-splits down in the derivation tree, until
they get blocked by the introduction of one of the variable appear-
ing in their scrutinee (so moving down again would break scoping)
– this also corresponds to “restriction (A)” in Balat, Di Cosmo, and
Fiore (2004). In our saturating proof search, after introducing a new
formal parameter in the context, we look for all possible new scruti-
nees using this parameter, and case-split on them. Of course, this is
rather inefficient as most proofs will in fact not make use of the re-
sult of those case-splits, but this allows to give a common structure
to all possible proofs of this judgment.

In our example z : Z, x : Z → X + Y ` X + Y , the
saturation discipline requires to cut on x z. But after this sum has
been eliminated, the newly introduced variables y1 : X or y2 : Y
do not allow to deduce new positives – we would need a new Z
for this. Thus, saturation stops and focused search restarts, to find
a unique normal form δ(x z, y1.σ1 y1, y2.σ2 y2). In Section 3 we
show that saturating proof search is computationally complete and
canonical (§1.5).

1.9 Termination

The saturation process described above does not necessarily termi-
nate. For example, consider the type of Church numerals special-
ized to a positiveX+Y , that is,X+Y → (X+Y → X+Y)→
X + Y . Each time we cut on a new sum X + Y , we get new ar-
guments to apply to the function (X + Y → X + Y), giving yet
another sum to cut on.

In the literature on proof search for propositional logic, the
usual termination argument is based on the subformula property:
in a closed, fully cut-eliminated proof, the formulas that appear
in subderivations of subderivations are always subformulas of the
formulas of the main judgment. In particular, in a logic where
judgments are of the form S ` Awhere S is a finite set of formulas,
the number of distinct judgments appearing in subderivations is
finite (there is a finite number of subformulas of the main judgment,
and thus finitely many possible finite sets as contexts). Finally,
in a goal-directed proof search process, we can kill any recursive
subgoals whose judgment already appears in the path from the root
of the proof to the subgoal. There is no point trying to complete a
partial proof Pabove of S ` A as a strict subproof of a partial proof
Pbelow of the same S ` A (itself a subproof of the main judgment):
if there is a closed subproof for Pabove, we can use that subproof
directly for Pbelow, obviating the need for proving Pabove in the first
place. Because the space of judgments is finite, a search process
forbidding such recurring judgments always terminates.

We cannot directly apply this reasoning, for two reasons.

• Our contexts are mapping from term variables to formulas or,
seen abstractly, multisets of formulas; even if the space of pos-
sible formulas is finite for the same reason as above, the space
of multisets over them is still infinite.

• Erasing such multiset to sets, and cutting according to the non-
recurrence criteria above, breaks unicity completeness (§1.5).
Consider the construction of Church numerals by a judgment
of the form x : X, y : X → X ` X . One proof is just x, and
all other proofs require providing an argument of type X to the
function y, which corresponds to a subgoal that is equal to our
goal; they would be forbidden by the no-recurrence discipline.

We must adapt these techniques to preserve not only provability
completeness, but also unicity completeness (§1.5). Our solution is
to use bounded multisets to represent contexts and collect recursive
subgoals. We store at most M variables for each given formula, for
a suitably chosen M such that if there are two different programs
for a given judgment ∆ ` A, then there are also two different
programs for b∆cM ` A, where b∆cM is the bounded erasure
keeping at most M variables at each formula.

While it seems reasonable that such a M exists, it is not intu-
itively clear what its value is, or whether it is a constant or depends
on the judgment to prove. Could it be that a given goal A is prov-
able in two different ways with four copies of X in the context, but
uniquely inhabited if we only have three X?

In Section 4 we prove that M def
= 2 suffices. In fact, we prove

a stronger result: for any n ∈ N, keeping at most n copies of each
formula in context suffices to find at least n distinct proofs of any
goal, if they exist.

For recursive subgoals as well, we only need to remember at
most 2 copies of each subgoal: if some Pabove appears as the
subgoal of Pbelow and has the same judgment, we look for a closed
proof of Pabove. Because it would also have been a valid proof for
Pbelow, we have found two proofs for Pbelow: the one using Pabove

and its closed proof, and the closed proof directly. Pabove itself
needs not allow new recursive subgoal at the same judgment, so
we can kill any subgoal that has at least two ancestors with the
same judgment while preserving completeness for unicity (§1.5).

1.10 Contributions

We show that the unique inhabitation problem for simply-typed
lambda-calculus for sums is decidable, and propose an effective
algorithm for it. Given a context and a type, it answers that there
are zero, one, or “at least two” inhabitants, and correspondingly
provides zero, one, or two distinct terms at this typing. Our al-
gorithm relies on a novel saturating focused logic for intuition-
istic natural deduction, with strong relations to the idea of maxi-
mal multi-focusing in the proof search literature (Chaudhuri, Miller,
and Saurin 2008), that is both computationally complete (§1.5) and
canonical with respect to βη-equivalence.

We provide an approximation result for program multiplicity of
simply-typed derivations with bounded contexts. We use it to show
that our terminating algorithm is complete for unicity (§1.5), but it
is a general result (on the common, non-focused intuitionistic logic)
that is of independent interest.

Finally, we present preliminary studies of applications for code
inference. While extension to more realistic type systems is left
for future work, simply-typed lambda-calculus with atomic types
already allow to encode some prenex-polymorphic types typically
found in libraries of strongly-typed functional programs.

2. Intuitionistic Focused Natural Deduction

Γ ::= varmap(Nat) negative or atomic context
∆ ::= varmap(A) general context

INV-PAIR
Γ; ∆ `inv t : A Γ; ∆ `inv u : B

Γ; ∆ `inv (t, u) : A ∗B

INV-SUM
Γ; ∆, x : A `inv t : C Γ; ∆, x : B `inv u : C

Γ; ∆, x : A+B `inv δ(x, x.t, x.u) : C

INV-ARR
Γ; ∆, x : A `inv t : B

Γ; ∆ `inv λx. t : A→ B

INV-END
Γ,Γ′ `foc t : Pat

Γ; Γ′ `inv t : Pat

FOC-INTRO
Γ ` t ⇑ P

Γ `foc t : P

FOC-ATOM
Γ ` n ⇓ X

Γ `foc n : X

FOC-ELIM
Γ ` n ⇓ P Γ;x : P `inv t : Qat

Γ `foc let x = n in t : Qat

INTRO-SUM
Γ ` t ⇑ Ai

Γ ` σi t ⇑ A1 +A2

INTRO-END
Γ; ∅ `inv t : Nat

Γ ` t ⇑ Nat

ELIM-PAIR
Γ ` n ⇓ A1 ∗A2

Γ ` πi n ⇓ Ai

ELIM-START
(x : Nat) ∈ Γ

Γ ` x ⇓ Nat

ELIM-ARR
Γ ` n ⇓ A→ B Γ ` u ⇑ A

Γ ` n u ⇓ B

Figure 5. Cut-free focused natural deduction for intuitionistic
logic

In Figure 5 we introduce a focused natural deduction for intu-
itionistic logic, as a typing system for the simply-typed lambda-
calculus – with an explicit let construct. It is relatively stan-
dard, strongly related to the linear intuitionistic calculus of Brock-
Nannestad and Schürmann (2010), or the intuitionistic calculus of
Krishnaswami (2009). We distinguish four judgments: Γ; ∆ `inv
t : A is the invertible judgment, Γ `foc t : Pat the focusing judg-
ment, Γ ` t ⇑ A the non-invertible introduction judgment and
Γ ` n ⇓ A the non-invertible elimination judgment. The sys-
tem is best understood by following the “life cycle” of the proof
search process (forgetting about proof terms for now), which ini-
tially starts with a sequent to prove of the form ∅; ∆ `inv ? : A.

During the invertible phase Γ; ∆ `inv ? : A, invertible rules
are applied as long as possible. We defined negative types as those
whose introduction in the goal is invertible, and positives as those
whose elimination in the context is invertible. Thus, the invertible
phase stops only when all types in the context are negative, and the
goal is positive or atomic: this is enforced by the rule INV-END. The
two contexts correspond to an “old” context Γ, which is negative or
atomic (all positives have been eliminated in a previous invertible
phase), and a “new” context ∆ of any polarity, which is the one
being processed by invertible rule. INV-END only applies when the
new context Γ′ is negative or atomic, and the goal Pat positive or
atomic.

The focusing phase Γ `foc ? : Pat is where choices are made:
a sequence of non-invertible steps will be started, and continue as
long as possible. Those non-invertible steps may be eliminations in
the context (FOC-ELIM), introductions of a strict positive in the goal

(FOC-INTRO), or conclusion of the proof when the goal is atomic
(FOC-ATOM).

In terms of search process, the introduction judgment Γ ` ? ⇑
A should be read from the bottom to the top, and the elimination
judgment Γ ` ? ⇓ A from the top to the bottom. Introductions
correspond to backward reasoning (to prove A1 + A2 it suffices
to prove Ai); they must be applied as long as the goal is positive,
to end on negatives or atoms (INTRO-END) where invertible search
takes over. Eliminations correspond to forward reasoning (from the
hypothesis A1 ∗ A2 we can deduce Ai) started from the context
(ELIM-START); they must also be applied as long as possible, as they
can only end in the rule FOC-ELIM on a strict positive, or in the rule
FOC-ATOM on an atom.

Sequent-Style Left Invertible Rules The left-introduction rule
for sums INV-SUM is sequent-style rather than in the expected nat-
ural deduction style: we only destruct variables found in the con-
text, instead of allowing to destruct arbitrary expressions. We also
shadow the matched variable, as we know we will never need the
sum again.

Let-Binding The proof-term let x = n in t used in the
FOC-ELIM rule is not part of the syntax we gave for the simply-typed
lambda-calculus in Section 1.4. Indeed, focusing re-introduces a re-
stricted cut rule which does not exist in standard natural deduction.
We could write t[n/x] instead, to get a proper λ-term – and indeed
when we speak of focused proof term as λ-term this substitution is
to be understood as implicit. We prefer the let syntax which better
reflects the dynamics of the search it witnesses.

We call letexp(t) the λ-term obtained by performing let-
expansion (in depth) on t, defined by the only non-trivial case:

letexp(let x = n in t)
def
= letexp(t)[letexp(n)/x]

Normality If we explained let x = n in t as syntactic sugar
for (λx. t) n, our proofs term would contain β-redexes. We prefer
to explain them as a notation for the substitution t[n/x], as it is
then apparent that proof term for the focused logic are in β-normal
form. Indeed, x being of strictly positive type, it is necessarily a
sum and is destructed in the immediately following invertible phase
by a rule INV-SUM (which shadows the variable, never to be used
again). As the terms corresponding to non-invertible introductions
Γ ` n ⇓ P are all neutrals, the substitution creates a subterm of
the form δ(n, x.t, x.u) with no new redex.

One can also check that proof terms for judgments that do not
contain sums are in η-long normal form. For example, a subterm
of type A → B is either type-checked by an invertible judgment
Γ; ∆ `inv t : A → B or an elimination judgment Γ ` n ⇓
A → B. In the first case, the invertible judgment is either a sum
elimination (excluded by hypothesis) or a function introduction
λx. u. In the second case, because an elimination phase can only
end on a positive or atomic type, we know that immediately below
is the elimination rule for arrows: it is applied to some argument,
and η-expanding it would create a β-redex.

Fact 1. The focused intuitionistic logic is complete for provability.
It is also computationally complete (§1.5).

2.1 Invertible Commuting Conversions

The invertible commuting conversion (or invertible commutative
cuts) relation (=icc) expresses that, inside a given invertible phase,
the ordering of invertible step does not matter.

δ(t, x.λy1. u1, x.λy2. u2) =icc λy. δ(t, x.u1[y/y1], x.u2[y/y2])

δ(t, x.(u1, u2), x.(r1, r2)) =icc

(δ(t, x.u1, x.r1), δ(t, x.u2, x.r2))

δ(t, x.δ(u, y.r1, y.r
′
1), x.δ(u, y.r2, y.r

′
2)) =icc

δ(u, y.δ(t, x.r1, x.r2), x.δ(t, x.r′1, x.r
′
2))

This equivalence relation is easily decidable. We could do with-
out it. We could force a specific operation order by restricting typ-
ing rules, typically by making ∆ a list to enforce sum-elimination
order, and requiring the goal C of sum-eliminations to be positive
or atomic to enforce an order between sum-eliminations and in-
vertibles utintroductions. We could also provide more expressive
syntactic forms (parallel multi-sums elimination (Altenkirch, Dyb-
jer, Hofmann, and Scott 2001)) and normalize to this more canon-
ical syntax. We prefer to make the non-determinism explicit in the
specification. Our algorithm uses some implementation-defined or-
der for proof search, it never has to compute (=icc)-convertibility.

Note that there are term calculi (Curien and Munch-Maccagnoni
2010) inspired from sequent-calculus, where commuting conver-
sions naturally correspond to computational reductions, which
would form better basis for studying normal forms than λ-terms.
In the present work we wished to keep a term language resembling
functional programs.

3. A Saturating Focused System

In this section, we introduce the novel saturating focused proof
search, again as a term typing system that is both computationally
complete (§1.5) and canonical. It serves as a specification of our
normal forms; our algorithm shall only search for a finite subspace
of saturated proofs, while remaining unicity complete.

Saturated focusing logic is a variant of the previous focused
natural deduction, where the focusing judgment Γ `foc t : Pat is
replaced by a saturating judgment Γ; Γ′ `sat t : Pat. The system is
presented in Figure 6; the rules for non-invertible elimination and
introductions, and the invertible rules, are identical to the previous
ones and have not been repeated.

(rules for Γ ` t ⇑ A and Γ ` n ⇓ A as in Figure 5)
(invertible rules, except INV-END, as in Figure 5)

SINV-END
Γ; Γ′ `sat t : Pat

Γ; Γ′ `sinv t : Pat

SAT-INTRO
Γ ` t ⇑ P

Γ; ∅ `sat t : P

SAT-ATOM
Γ ` n ⇓ X

Γ; ∅ `sat n : X

SAT
(n̄, P̄) ⊆ {(n, P) | (Γ,Γ′ ` n ⇓ P) ∧ n uses Γ′}

Γ,Γ′; x̄ : P̄ `sinv t : Qat ∀x ∈ x̄, t uses x
Γ; Γ′ `sat let x̄ = n̄ in t : Qat

x ∈ ∆

x uses ∆

(∃n ∈ n̄, n uses ∆) ∨ t uses ∆

let x̄ = n̄ in t uses ∆

(t1 uses ∆) ∨ (t2 uses ∆)

δ(x, x.t1, x.t2) uses ∆

(t uses ∆) ∨ (u uses ∆)

t u uses ∆

(other (t uses ∆): simple or-mapping like for t u)

Figure 6. Cut-free saturating focused intuitionistic logic

In this new judgment, the information that a part of the context is
“new”, which is available from the invertible judgment Γ; Γ′ `sinv

t : A, is retained. The “old” context Γ has already been saturated,
and all the positives deducible from it have already been cut – the
result of their destruction is somewhere in the context. In the new
saturation phase, we must cut all new sums, that were not available
before, that is, those that use Γ′ in some way. It would not only be
inefficient to cut old sums again, it would break canonicity (§1.5):
with redundant formal variables in the context our algorithm could
wrongly believe to have found several distinct proofs.

The right-focusing rules SAT-INTRO and SAT-ATOM behave ex-
actly as FOC-INTRO and FOC-ATOM in the previous focused system.
But they can only be used when there is no new context.

When there is a new context to saturate, the judgment must
go through the SAT rule – there is no other way to end the proof.
The left premise of the rule, corresponding to the definition in SAT,
quantifies over all strictly positive neutrals that can be deduced
from the old and new contexts combined (Γ,Γ′), but selects those
that are “new”, in the sense that they use at least one variable com-
ing from the new context fragment Γ′. Then, we simultaneously
cut on all those new neutrals, by adding a fresh variable for each
of them in the general context, and continuing with an invertible
phase: those positives need to be deconstructed for saturation to
start again.

The n uses Γ′ restriction imposes a unique place at which
each cut, each binder may be introduced in the proof term: exactly
as soon as it becomes defineable. This enforces canonicity by elim-
inating redudant proofs that just differ in the place of introduction
of a binder, or bind the same value twice. For example, consider
the context Γ

def
= (x : X, y : X → (Y + Y)), and suppose we

are tryind to find all distinct terms of type Y . During the first sat-
uration phase (∅; Γ `sat ? : Y), we would build the neutral term
y x of type Y + Y ; it passes the test y x uses Γ as it uses both
variables of Γ. Then, the invertible phase Γ; z : Y + Y `sinv ? : Y
decomposes the goal in two subgoals Γ; z : Y `sat ? : Y . Without
the n uses Γ′ restriction, the SAT rule could cut again on y x, with
would lead, after the next invertible phase, to contexts of the form
Γ, z : Y ; z′ : Y . But it is wrong to have two distinct variables of
type Y here, as there should be only one way to build a Y .

The relation n uses Γ′ is defined structurally on proof terms
(or, equivalently, their typing derivations). Basically, a term “uses”
a context if it uses at least one of its variables; for most terms, it is
defined as a big “or” on its subterms. The only subtlety is that the
case-split δ(x, x.t1, x.t2) does not by itself count as a use of the
split variable: to be counted as “used”, either t1 or t2 must use the
shadowing variable x.

Finally, the last condition of the SAT rule (∀x ∈ x̄, t uses x)
restricts the saturated variables listed in the let-binding to be only
those actually used by the term. In terms of proof search, this
restriction is applied after the fact: first, cut all positives, then search
for all possible subproofs, and finally trim each of them, so that
it binds only the positives it uses. This restriction thus does not
influence proof search, but it ensures that there always exist finite
saturating proofs for inhabited types, by allowing proof search
to drop unnecessary bindings instead of saturating them forever.
Consider Church numerals on a sum type, X + Y → (X + Y →
X+Y)→ X+Y , there would be no finite saturating proof without
this restriction, which would break provability completeness.

Theorem 1 (Canonicity of saturating focused logic). If we have
Γ; ∆ `sinv t : A and Γ; ∆ `sinv u : A in saturating focused logic
with t 6=icc u, then t 6=βη u.

Theorem 2 (Computational completeness of saturating focused
logic). If we have ∅; ∆ `inv t : A in the non-saturating focused
logic, then for some u =βη t we have ∅; ∆ `sinv u : A in the
saturating focused logic.

4. Two-Or-More Approximation

A complete presentation of the content of this section, along with
complete proofs, is available as a research report (Scherer 2014).

Our algorithm bounds contexts to at most two formal variables
at each type. To ensure it correctly predicts unicity (it never claims
that there are zero or one programs when two distinct programs
exist), we need to prove that if there exists two distinct saturated
proofs of a goal A in a given context Γ, then there already exist
two distinct proofs of A in the context bΓc2, which drops variables
from Γ so that no formula occurs more than twice.

We formulate this property in a more general way: instead of
talking about the cut-free proofs of the saturating focused logics,
we prove a general result about the set of derivations of a typing
judgment ∆ ` ? : A that have “the same shape”, that is, that erase
to the same derivation of intuitionistic logic b∆c1 ` A, where
b∆c1 is the set of formulas present in ∆, forgetting multiplicity.
This result applies in particular to saturating focused proof terms,
(their let-expansion) seen as programs in the unfocused λ-calculus.

We define an explicit syntax for “shapes” S in Figure 7, which
are in one-to-one correspondence with (variable-less) natural de-
duction proofs. It also define the erasure function btc1 from typed
λ-terms to typed shapes.

S, T := typed shapes
| A,B,C,D axioms
| λA. S λ-abstraction
| S T application
| (S, T) pair
| πi S projection
| σi S sum injection
| δ(S, A.T1, B.T2) sum destruction

bx : Ac1
def
= A bλx : A. tc1

def
= λA. btc1

bt uc1
def
= btc1 buc1 b(t, u)c1

def
= (btc1, buc1)

bπi tc1
def
= πi btc1 bσi tc1

def
= σi btc1

bδ((t : A+B), y.u, z.r)c1
def
= δ(btc1, A.buc1, B.brc1)

Figure 7. Shapes of variable-less natural deduction proofs

The central idea of our approximation result is the use of count-
ing logics, that counts the number of λ-terms of different shapes.
A counting logic is parametrized over a semiring1 K; picking the
semiring of natural numbers precisely corresponds to counting the
number of terms of a given shape, counting in the semiring {(0, 1)}
corresponds to the variable-less logic (which only expresses inhab-
itation), and counting in finite semirings of support {0, 1, . . . ,M}
corresponds to counting proofs with approximative bounded con-
texts of size at most M .

The counting logic, defined in Figure 8, is parametrized over
a semiring (K, 0K , 1K ,+K ,×K). The judgment is of the form
S :: Φ `K A : a, where S is the shape of corresponding logic
derivation, Φ is a context mapping formulas to a multiplicity in K,
A is the type of the goal being proven, and a is the “output count”,
a scalar of K.

Let us write #S the cardinal of a set S and b∆c# for the
“cardinal erasure” of the typing context ∆, defined as #{x | (x :
A) ∈ ∆}. We can express the relation between counts in the
semiring N and cardinality of typed λ-terms of a given shape:

1 A semiring (K, 0K , 1K ,+K ,×K) is defined as a two-operation alge-
braic structure where (0K ,+K) and (1K ,×K) are monoids, (+K) com-
mutes and distributes over (×K) (which may or may not commute), 0K
is a zero/absorbing element for (×K), but (+K) and (×K) need not have
inverses (Z’s addition is invertible so it is a ring, N is only a semiring).

(Φ,Ψ)
def
= A 7→ (Φ(A) +K Ψ(A))

(A : 1)
def
=

{
A 7→ 1K
B 6= A 7→ 0K

COUNT-AXIOM
A :: Φ `K A : Φ(A)

COUNT-INTRO-ARR
S :: Φ, A : 1 `K B : a

λA. S :: Φ `K A→ B : a

COUNT-ELIM-ARR
S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1 × a2

COUNT-INTRO-PAIR
S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1, S2) :: Φ `K A ∗B : a1 × a2

COUNT-ELIM-PAIR
S :: Φ `K A1 ∗A2 : a

πi S :: Φ `K Ai : a

COUNT-INTRO-SUM
S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a

COUNT-ELIM-SUM
S :: Φ `K A+B : a1

T1 :: Φ, A : 1 `K C : a2 T2 :: Φ, B : 1 `K C : a3

δ(S, A.T1, B.T2) :: Φ `K C : a1 × a2 × a3

Figure 8. Counting logic over (K, 0K , 1K ,+K ,×K)

Lemma 1. For any environment ∆, shape S and type A, the
following counting judgment is derivable:

S :: b∆c# `N A : #{t | ∆ ` t : A ∧ btc1 = S}

Note that the counting logic does not have a convincing dynamic
semantics – the dynamic semantics of variable-less shapes them-
selves have been studied in Dowek and Jiang (2011). We only use
it as a reasoning tool to count programs.

If φ : K → K′ map the scalars of one semiring to another,
and Φ is a counting context in K, we write bΦcφ its erasure in K′

defined by bΦcφ(A)
def
= φ(Φ(A)). We can then formulate the main

result on counting logics:

Theorem 3 (Morphism of derivations). If φ : K → K′ is
a semiring morphism and S :: Φ `K A : a is derivable, then
S :: bΦcφ `K′ A : φ(a) is also derivable.

To conclude, we only need to remark that the derivation count
is uniquely determined by the multiplicity context.

Lemma 2 (Determinism). If we have both S :: Φ `K A : a and
S :: Φ `K A : b then a =K b.

Corollary 1 (Counting approximation). If φ is a semiring mor-
phism and bΦcφ = bΨcφ then S :: Φ `K A : a and S :: Ψ `K
A : b imply φ(a) = φ(b).

Approximating arbitrary contexts into zero, one or “two-or-
more” variables corresponds to the semiring 2̄ of support {0, 1, 2},
with commutative semiring operations fully determined by 1+1 =
2, 2 + a = 2, and 2× 2 = 2. Then, the function n 7→ min(2, n) is
a semiring morphism from N to 2̄, and the corollary above tells us
that number of derivations of the judgments ∆ ` A and b∆c2 ` A
project to the same value in {0, 1, 2}. This results extend to any n,
as {0, 1, . . . , n} can be similarly given a semiring structure.

5. Search Algorithm

The saturating focused logic corresponds to a computationally
complete presentation of the structure of canonical proofs we are
interested in. From this presentation it is extremely easy to derive
a terminating search algorithm complete for unicity – we moved
from a whiteboard description of the saturating rules to a work-
ing implementation of the algorithm usable on actual examples in
exactly one day of work. The implementation (Scherer and Rémy
2015) is around 700 lines of readable OCaml code.

The central idea to cut the search space while remaining com-
plete for unicity is the two-or-more approximation: there is no need
to store more than two formal variables of each type, as it suffices to
find at least two distinct proofs if they exist – this was proved in the
Section 4. We use a plurality monad Plur, defined in set-theoretic
terms as Plur(S)

def
= 1 + S + S × S, representing zero, one or “at

least two” distinct elements of the set S. Each typing judgment is
reformulated into a search function which takes as input the con-
text(s) of the judgment and its goal, and returns a plurality of proof
terms – we search not for one proof term, but for (a bounded set
of) all proof terms. Reversing the usual mapping from variables to
types, the contexts map types to pluralities of formal variables.

In the search algorithm, the SINV-END rule does merely pass
its new context Γ′ to the saturation rules, but it also trims it by
applying the two-or-more rule: if the old context Γ already has
two variables of a given formula Nat, drop all variables for Nat

from Γ′; if it already has one variable, retain at most one variable
in Γ′. This corresponds to an eager application of the variable-use
restriction of the SAT rule: we have decided to search only for terms
that will not use those extraneous variables, hence they are never
useful during saturation and we may as well drop them now. This
trimming is sound, because it corresponds to an application of the
SAT rule that would bind the empty set. Proving that it is complete
for unicity is the topic of Section 4.

To effectively implement the saturation rules, a useful tool is a
selection function (called select oblis in our prototype) which
takes a selection predicate on positive or atomic formulas Pat, and
selects (a plurality of) each negative formula Nat from the context
that might be the starting point of an elimination judgment of the
form Γ ` n ⇓ Pat, for a Pat accepted by the selection predicate. For
example, if we want to proveX and there is a formula Y → Z ∗X ,
this formula will be selected – although we don’t know yet if we
will be able to prove Y . For each such Pat, it returns a proof
obligation, that is either a valid derivation of Γ ` n ⇓ Pat, or
a request, giving some formula A and expecting a derivation of
Γ ` ? ⇑ A before returning another proof obligation.

The rule SAT-ATOM (Γ; ∅ `sat ? : X) uses this selection function
to select all negatives that could potentially be eliminated into
a X , and feeding (pluralities of) answers to the returned proof
obligations (by recursively searching for introduction judgments)
to obtain (pluralities of) elimination proofs of X .

The rule SAT uses the selection function to find the negatives
that could be eliminated in any strictly positive formula and tries
to fullfill (pluralities of) proof obligations. This returns a binding
context (with a plurality of neutrals for each positive formula),
which is filtered a posteriori to keep only the “new” bindings –
that use the new context. The new binding are all added to the
search environment, and saturating search is called recursively. It
returns a plurality of proof terms; each of them results in a proof
derivation (where the saturating set is trimmed to retain only the
bindings useful to that particular proof term).

Finally, to ensure termination while remaining complete for
unicity, we do not search for proofs where a given subgoal occurs
strictly more than twice along a given search path. This is easily
implemented by threading an extra “memory” argument through

each recursive call, which counts the number of identical subgoals
below a recursive call and kills the search (by returning the “zero”
element of the plurality monad) at two. Note that this does not
correspond to memoization in the usual sense, as information is
only propagated along a recursive search branch, and never shared
between several branches.

This fully describes the algorithm, which is easily derived from
the logic. It is effective, and our implementation answers instantly
on all the (small) types of polymorphic functions we tried. But it is
not designed for efficiency, and in particular saturation duplicates a
lot of work (re-computing old values before throwing them away).

In the long version of this article (Scherer and Rémy 2015),
we give a presentation of the algorithm as a system of inference
rules that is terminating and deterministic. Using the two-or-more
counting approximation result (Corollary 1) of the next section, we
can prove the correctness of this presentation.

Theorem 4. Our unicity-deciding algorithm is terminating and
complete for unicity.

The search space restrictions described above are those neces-
sary for termination. Many extra optimizations are possible, that
can be adapted from the proof search literature – with some care to
avoid losing completness for unicity. For example, there is no need
to cut on a positive if its atoms do not appear in negative positions
(nested to the left of an odd number of times) in the rest of the goal.
We did not develop such optimizations, except for two low-hanging
fruits we describe below.

Eager Redundancy Elimination Whenever we consider select-
ing a proof obligation to prove a strict positive during the saturation
phase, we can look at the negatives that will be obtained by cutting
it. If all those atoms are already present at least twice in the context,
this positive is redundant and there is no need to cut on it. Dually,
before starting a saturation phase, we can look at whether it is al-
ready possible to get two distinct neutral proofs of the goal from
the current context. In this case it is not necessary to saturate at all.

This optimization is interesting because it significantly reduces
the redundancy implied by only filtering of old terms after com-
puting all of them. Indeed, we intuitively expect that most types
present in the context are in fact present twice (being unique tends
to be the exception rather than the rule in programming situations),
and thus would not need to be saturated again. Redundancy of sat-
uration still happens, but only on the “frontier formulas” that are
present exactly once.

Subsumption by Memoization One of the techniques necessary
to make the inverse method (McLaughlin and Pfenning 2008) com-
petitive is subsumption: when a new judgment is derived by for-
ward search, it is added to the set of known results if it is not sub-
sumed by a more general judgment (same goal, smaller context)
already known.

In our setting, being careful not to break computational com-
pleteness, this rule becomes the following. We use (monotonic)
mutable state to grow a memoization table of each proved subgoal,
indexed by the right-hand-side formula. Before proving a new sub-
goal, we look for all already-computed subgoals of the same right-
hand-side formula. If one exists with exactly the same context, we
return its result. But we also return eagerly if there exists a larger
context (for inclusion) that returned zero result, or a smaller context
that returned two-or-more results.

Interestingly, we found out that this optimization becomes un-
sound in presence of the empty type 0 (which are not yet part of the
theory, but are present as an experiment in our implementation). Its
equational theory tells us that in an inconsistent cotnext (0 is prov-
able), all proofs are equal. Thus a type may have two inhabitants in

a given context, but a larger context that is inconsistent (allows to
prove 0) will have a unique inhabitant, breaking monotonicity.

6. Evaluation

In this section, we give some practical examples of code inference
scenarios that our current algorithm can solve, and some that it
cannot – because the simply-typed theory is too restrictive.

The key to our application is to translate a type using prenex-
polymorphism into a simple type using atoms in stead of type vari-
ables – this is semantically correct given that bound type variables
in System F are handled exactly as simply-typed atoms. The ap-
proach, of course, is only a very first step and quickly shows it
limits. For example, we cannot work with polymorphic types in the
environment (ML programs typically do this, for example when
typing a parametrized module, or type-checking under a type-class
constraint with polymorphic methods), or first-class polymorphism
in function arguments. We also do not handle higher-kinded types
– even pure constructors.

6.1 Inferring Polymorphic Library Functions

The Haskell standard library contains a fair number of polymorphic
functions with unique types. The following examples have been
checked to be uniquely defined by their types:

fst : ∀αβ. α ∗ β → α
curry : ∀αβγ. (α ∗ β → γ)→ α→ β → γ

uncurry : ∀αβγ. (α→ β → γ)→ α ∗ β → γ

either : ∀αβγ.(α→ γ)→ (β → γ)→ α+ β → γ

When the API gets more complicated, both types and terms
become harder to read and uniqueness of inhabitation gets much
less obvious. Consider the following operators chosen arbitrarily in
the lens (Kmett 2012) library.
(<.) :: Indexable i p => (Indexed i s t -> r)

-> ((a -> b) -> s -> t) -> p a b -> r
(<.>) :: Indexable (i, j) p => (Indexed i s t -> r)

-> (Indexed j a b -> s -> t) -> p a b -> r
(%@~) :: AnIndexedSetter i s t a b

-> (i -> a -> b) -> s -> t
non :: Eq a => a -> Iso’ (Maybe a) a

The type and type-class definitions involved in this library
usually contain first-class polymorphism, but the documenta-
tion (Kmett 2013) provides equivalent “simple types” to help
user understanding. We translated the definitions of Indexed,
Indexable and Iso using those simple types. We can then check
that the first three operators are unique inhabitants; non is not.

6.2 Inferring Module Implementations or Type-Class
Instances

The Arrow type-class is defined as follows:
class Arrow (a : * -> * -> *) where
arr :: (b -> c) -> a b c
first :: a b c -> a (b, d) (c, d)
second :: a b c -> a (d, b) (d, c)
(***) :: a b c -> a b’ c’ -> a (b, b’) (c, c’)
(&&&) :: a b c -> a b c’ -> a b (c, c’)

It is self-evident that the arrow type (→) is an instance of
this class, and no code should have to be written to justify this:
our prototype is able to infer that all those required methods are
uniquely determined when the type constructor a is instantiated

with an arrow type. This also extends to subsequent type-classes,
such as ArrowChoice.

As most of the difficulty in inferring unique inhabitants lies in
sums, we study the “exception monad”, that is, for a fixed type X ,
the functor α 7→ X + α. Our implementation determines that its
Functor and Monad instances are uniquely determined, but that its
Applicative instance is not.

This is in fact a general result on applicative functors for types
that are also monads: there are two distinct ways to prove that a
monad is also an applicative functor.
ap :: Monad m => m (a -> b) -> m a -> m b
ap mf ma = do ap mf ma = do

f <- mf a <- ma
a <- ma f <- mf
return (f a) return (f a)

Note that the type of bind for the exception monad, namely
∀αβ. X + α → (α → X + β) → X + β, has a sum type
thunked under a negative type. It is one typical example of type
which cannot be proved unique by the focusing discipline alone,
which is correctly recognized unique by our algorithm.

6.3 Non-Applications

Here are two related ideas we wanted to try, but that do not fit in
the simply-typed lambda-calculus; the uniqueness algorithm must
be extended to richer type systems to handle such applications.

We can check that specific instances of a given type-class are
canonically defined, but it would be nice to show as well that
some of the operators defined on any instance are uniquely defined
from the type-class methods – although one would expect this to
often fail in practice if the uniqueness checker doesn’t understand
the equational laws required of valid instances. Unfortunately, this
would require uniqueness check with polymorphic types in context
(for the polymorphic methods).

Another idea is to verify the coherence property of a set of de-
clared instances by translating instance declarations into terms, and
checking uniqueness of the required instance types. In particular,
one can model the inheritance of one class upon another using a
pair type (Comp α as a pair of a value of type Eq α and Comp-
specific methods); and the system can then check that when an in-
stance of Eq X and Comp X are declared, building Eq X directly
or projecting it from CompX correspond to βη-equivalent elabora-
tion witnesses. Unfortunately, all but the most simplistic examples
require parametrized types and polymorphic values in the environ-
ment to be faithfully modelled.

6.4 On Impure Host Programs

The type system in which program search is performed does not
need to exactly coincide with the ambiant type system of the host
programming language, for which the code-inference feature is
proposed – forcing the same type-system would kill any use from
a language with non-termination as an effect. Besides doing term
search in a pure, terminating fragment of the host language, one
could also refine search with type annotations in a richer type
system, eg. using dependent types or substructural logic – as long
as the found inhabitants can be erased back to host types.

However, this raises the delicate question of, among the unique
βη-equivalence class of programs, which candidate to select to be
actually injected into the host language. For example, the ordering
or repetition of function calls can be observed in a host language
passing impure function as arguments, and η-expansion of func-
tions can delay effects. Even in a pure language, η-expanding sums
and products may make the code less efficient by re-allocating data.
There is a design space here that we have not explored.

https://github.com/ekmett/lens
https://github.com/ekmett/lens/wiki/Types
https://github.com/ekmett/lens/wiki/Types

7. Related and Future Work

7.1 Related Work

Previous Work on Unique Inhabitation The problem of unique
inhabitation for the simply-typed lambda-calculus (without sums)
has been formulated by Mints (1981), with early results by Babaev
and Soloviev (1982), and later results by Aoto and Ono (1994);
Aoto (1999) and Broda and Damas (2005).

These works have obtained several different sufficient condi-
tions for a given type to be uniquely inhabited. While these can-
not be used as an algorithm to decide unique inhabitation for any
type, it reveals fascinating connections between unique inhabitation
and proof or term structures. Some sufficient criterions are formu-
lated on the types/formulas themselves, other on terms (a type is
uniquely inhabited if it is inhabited by a term of a given structure).

A simple criterion on types given in Aoto and Ono (1994) is that
“negatively non-duplicated formulas”, that is formulas where each
atom occurs at most once in negative position (nested to the left of
an odd number of arrows), have at most one inhabitant. This was
extended by Broda and Damas (2005) to a notion of “deterministic”
formulas, defined using a specialized representation for simply-
typed proofs named “proof trees”.

Aoto (1999) proposed a criterion based on terms: a type is
uniquely inhabited if it “provable without non-prime contraction”,
that is if it has at least one inhabitant (not necessarily cut-free)
whose only variables with multiple uses are of atomic type. Re-
cently, Bourreau and Salvati (2011) used game semantics to give an
alternative presentation of Aoto’s results, and a syntactic character-
ization of all inhabitants of negatively non-duplicated formulas.

Those sufficient conditions suggest deep relations between
the static and dynamics semantics of restricted fragments of the
lambda-calculus – it is not a coincidence that contraction at non-
atomic type is also problematic in definitions of proof equivalence
coming from categorial logic (Dosen 2003). However, they give
little in the way of a decision procedure for all types – conversely,
our decision procedure does not by itself reveal the structure of the
types for which it finds unicity.

An indirectly related work is the work on retractions in simple
types (A is a retract of B if B can be surjectively mapped into
A by a λ-term). Indeed, in a type system with a unit type 1, a
given type A is uniquely inhabited if and only if it is a retract of 1.
Stirling (2013) proposes an algorithm, inspired by dialogue games,
for deciding retraction in the lambda-calculus with arrows and
products; but we do not know if this algorithm could be generalized
to handle sums. If we remove sums, focusing already provides an
algorithm for unique inhabitation.

Counting Inhabitants Broda and Damas (2005) remark that nor-
mal inhabitants of simple types can be described by a context-free
structure. This suggests, as done in Zaoinc (1995), counting terms
by solving a set of polynomial equations. Further references to such
“grammatical” approaches to lambda-term enumeration and count-
ing can be found in Dowek and Jiang (2011).

Of particular interest to us was the recent work of Wells and
Yakobowski (2004). It is similar to our work both in terms of
expected application (program fragment synthesis) and methods,
as it uses (a variant of) the focused calculus LJT (Herbelin 1993)
to perform proof search. It has sums (disjunctions), but because
it only relies on focusing for canonicity it only implements the
weak notion of η-equivalence for sums: as explained in Section 1.7,
it counts an infinite number of inhabitants in presence of a sum
thunked under a negative. Their technique to ensure termination of
enumeration is very elegant. Over the graph of all possible proof
steps in the type system (using multisets as contexts: an infinite

search space), they superimpose the graph of all possible non-
cyclic proof steps in the logic (using sets as contexts: a finite search
space). Termination is obtained, in some sense, by traversing the
two in lockstep. We took inspiration from this idea to obtain our
termination technique: our bounded multisets can be seen as a
generalization of their use of set-contexts.

Non-Classical Theorem Proving and More Canonical Systems
Automated theorem proving has motivated fundamental research
on more canonical representations of proofs: by reducing the num-
ber of redundant representations that are equivalent as programs,
one can reduce the search space – although that does not necessar-
ily improve speed, if the finer representation requires more book-
keeping. Most of this work was done first for (first-order) classi-
cal logic; efforts porting them to other logics (linear, intuitionistic,
modal) were of particular interest, as it often reveals the general
idea behind particular techniques, and is sometimes an occasion to
reformulate them in terms closer to type theory.

An important brand of work studies connection-based, or
matrix-based, proof methods. They have been adapted to non-
classical logic as soon as Wallen (1987). It is possible to present
connection-based search “uniformly” for many distinct logics (Ot-
ten and Kreitz 1996), changing only one logic-specific check to
be performed a posteriori on connections (axiom rules) of proof
candidates. In intuitionistic setting, that would be a comparison
on indices of Kripke Worlds; it is strongly related to labeled log-
ics (Galmiche and Méry 2013). On the other hand, matrix-based
methods rely on guessing the number of duplications of a formula
(contractions) that will be used in a particular proof, and we do
not know whether that can be eventually extended to second-order
polymorphism – by picking a presentation closer to the original
logic, namely focused proofs, we hope for an easier extension.

Some contraction-free calculi have been developed with auto-
mated theorem proving for intuitionistic logic in mind. A presen-
tation is given in Dyckhoff (1992) – the idea itself appeared as
early as Vorob’ev (1958). The idea is that sums and (positive) prod-
ucts do not need to be deconstructed twice, and thus need not be
contracted on the left. For functions, it is actually sufficient for
provability to implicitly duplicate the arrow in the argument case
of its elimination form (A → B may have to be used again to
build the argument A), and to forget it after the result of appli-
cation (B) is obtained. More advanced systems typically do case-
distinctions on the argument type A to refine this idea, see Dyck-
hoff (2013) for a recent survey. Unfortunately, such techniques to
reduce the search space break computational completeness: they
completely remove some programmatic behaviors. Consider the
type Stream(A,B)

def
= A ∗ (A → A ∗B) of infinite streams

of state A and elements B: with this restriction, the next-element
function can be applied at most once, hence Stream(X,Y) → Y
is uniquely inhabited in those contraction-free calculi. (With focus-
ing, only negatives are contracted, and only when picking a focus.)

Focusing was introduced for linear logic (Andreoli 1992), but
is adaptable to many other logics. For a reference on focusing for
intuitionistic logic, see Liang and Miller (2007). To easily elaborate
programs as lambda-terms, we use a natural deduction presentation
(instead of the more common sequent-calculus presentation) of
focused logic, closely inspired by the work of Brock-Nannestad
and Schürmann (2010) on intuitionistic linear logic.

Some of the most promising work on automated theorem prov-
ing for intuitionistic logic comes from applying the so-called “In-
verse Method” (see Degtyarev and Voronkov (2001) for a classi-
cal presentation) to focused logics. The inverse method was ported
to linear logic in Chaudhuri and Pfenning (2005), and turned into
an efficient implementation of proof search for intuitionistic logic
in McLaughlin and Pfenning (2008). It is a “forward” method: to

prove a given judgment, start with the instances of axiom rules
for all atoms in the judgment, then build all possible valid proofs
until the desired judgment is reached – the subformula property,
bounding the search space, ensures completeness for propositional
logic. Focusing allows important optimization of the method, no-
tably through the idea of “synthetic connectives”: invertible or non-
invertible phases have to be applied all in one go, and thus form
macro-steps that speed up saturation.

In comparison, our own search process alternates forward and
backward-search. At a large scale we do a backward-directed proof
search, but each non-invertible phase performs saturation, that is a
complete forward-search for positives. Note that the search space
of those saturation phases is not the subformula space of the main
judgment to prove, but the (smaller) subformula space of the cur-
rent subgoal’s context. When saturation is complete, backward
goal-directed search restarts, and the invertible phase may grow the
context, incrementally widening the search space. (The forward-
directed aspects of our system could be made richer by adding
positive products and positively-biased atoms; this is not our main
point of interest here. Our coarse choice has the good property that,
in absence of sum types in the main judgment, our algorithm im-
mediately degrades to simple, standard focused backward search.)

Lollimon (López, Pfenning, Polakow, and Watkins 2005) mixes
backward search for negatives and forward search for positives.
The logic allows but does not enforce saturation; it is only in the
implementation that (provability) saturation is used, and they found
it useful for their applications – modelling concurrent systems.

Finally, an important result for canonical proof structures
is maximal multi-focusing (Miller and Saurin 2007; Chaudhuri,
Miller, and Saurin 2008). Multi-focusing refines focusing by intro-
ducing the ability to focus on several formulas at once, in parallel,
and suggests that, among formulas equivalent modulo valid permu-
tations of inference rules, the “more parallel” one are more canoni-
cal. Indeed, maximal multi-focused proofs turn out to be equivalent
to existing more-canonical proof structures such as linear proof
nets (Chaudhuri, Miller, and Saurin 2008) and classical expansion
proofs (Chaudhuri, Hetzl, and Miller 2012).

Saturating focused proofs are almost maximal muli-focused
proofs according to the definition of Chaudhuri, Miller, and Saurin
(2008). The difference is that multi-focusing allow to focus on both
variables in the context and the goal in the same time, while our
right-focusing rule SAT-INTRO can only be applied sequentially after
SAT (which does multi-left-focusing). To recover the exact structure
of maximal multi-focusing, one would need to allow SAT to also
focus on the right, and use it only when the right choices do not
depend on the outcome on saturation of the left (the foci of the
same set must be independent), that is when none of the bound
variables are used (typically to saturate further) before the start of
the next invertible phase. This is a rather artificial restriction from
a backward-search perspective. Maximal multi-focusing is more
elegant, declarative in this respect, but is less suited to proof search.

Equivalence of Terms in Presence of Sums Ghani (1995)
first proved the decidability of equivalence of lambda-terms with
sums, using sophisticated rewriting techniques. The two works that
followed (Altenkirch, Dybjer, Hofmann, and Scott 2001; Balat,
Di Cosmo, and Fiore 2004) used normalization-by-evaluation in-
stead. Finally, Lindley (2007) was inspired by Balat, Di Cosmo,
and Fiore (2004) to re-explain equivalence through rewriting. Our
idea of “cutting sums as early as possible” was inspired from Lind-
ley (2007), but in retrospect it could be seen in the “restriction
(A)” in the normal forms of Balat, Di Cosmo, and Fiore (2004), or
directly in the “maximal conversions” of Ghani (1995).

Note that the existence of unknown atoms is an important aspect
of our calculus. Without them (starting only from base types 0 and

1), all types would be finitely inhabited. This observation is the
basis of the promising unpublished work of Ahmad, Licata, and
Harper (2010), also strongly relying on (higher-order) focusing.
Finiteness hypotheses also play an important role in Ilik (2014),
where they are used to reason on type isomorphisms in presence of
sums. Our own work does not handle 1 or 0; the latter at least is a
notorious source of difficulties for equivalence, but is also seldom
necessary in practical programming applications.

Elaboration of Implicits Probably the most visible and the
most elegant uses of typed-directed code inference for functional
languages are type-classes (Wadler and Blott 1989) and implic-
its (Oliveira, Moors, and Odersky 2010). Type classes elaboration
is traditionally presented as a satisfiability problem (or constraint
solving problem (Stuckey and Sulzmann 2002)) that happens to
have operational consequences. Implicits recast the feature as elab-
oration of a programming term, which is closer to our methodology.
Type-classes traditionally try (to various degrees of success) to en-
sure coherence, namely that a given elaboration goal always give
the same dynamic semantics wherever it happens in the program
– often by making instance declarations a toplevel-only construct.
Implicits allow a more modular construction of the elaboration
environment, but have to resort to priorities to preserve determin-
ism (Oliveira, Schrijvers, Choi, Lee, Yi, and Wadler 2014).

We propose to reformulate the question of determinism or am-
biguity by presenting elaboration as a typing problem, and proving
that the elaborated problems intrinsically have unique inhabitants.
This point of view does not by itself solve the difficult questions
of which are the good policies to avoid ambiguity, but it provides
a more declarative setting to expose a given strategy; for example,
priority to the more recently introduced implicit would translate to
an explicit weakening construct, removing older candidates at in-
troduction time, or a restricted variable lookup semantics.

(The global coherence issue is elegantly solved, independently
of our work, by using a dependent type system where the values
that semantically depend on specific elaboration choices (eg., a
balanced tree ordered with respect to some specific order) have a
type that syntactically depends on the elaboration witness. This
approach meshes very well with our view, especially in systems
with explicit equality proofs between terms, where features that
grow the implicit environment could require proofs from the user
that unicity is preserved.)

Smart Completion and Program Synthesis Type-directed pro-
gram synthesis has seen sophisticated work in the recent years, no-
tably Perelman, Gulwani, Ball, and Grossman (2012), Gvero, Kun-
cak, Kuraj, and Piskac (2013). Type information is used to fill miss-
ing holes in partial expressions given by the users, typically among
the many choices proposed by a large software library. Many poten-
tial completions are proposed interactively to the user and ordered
by various ranking heuristics.

Our uniqueness criterion is much more rigid: restrictive (it has
far less potential applications) and principled (there are no heuris-
tics or subjective preferences at play). Complementary, it aims for
application in richer type systems, and in programming constructs
(implicits, etc.) rather than tooling with interactive feedback.

Synthesis of glue code interfacing whole modules has been pre-
sented as a type-directed search, using type isomorphisms (Aponte
and Cosmo 1996) or inhabitation search in combinatory logics with
intersection types (Düdder et al. 2014).

We were very interested in the recent Osera and Zdancewic
(2015), which generates code from both expected type and in-
put/output examples. The works are complementary: they have in-
teresting proposals for data-structures and algorithm to make term
search efficient, while we bring a deeper connection to proof-

theoretic methods. They independently discovered the idea that sat-
uration must use the “new” context, in their work it plays the role of
an algorithmic improvement they call “relevant term generation”.

7.2 Future Work

We hope to be able to extend the uniqueness algorithm to more
powerful type systems, such as System F polymorphism or depen-
dent types. Decidability, of course, is not to be expected: decid-
ing uniqueness is at least as hard as deciding inhabitation, and this
quickly becomes undecidable for more powerful systems. Yet, we
hope that the current saturation approach can be extended to give
an effective semi-decision procedures. We will detail below two ex-
tensions that we have started looking at, unit and empty types, and
parametric polymorphism; and two extensions we have not consid-
ered yet, substructural logics and equational reasoning.

Unit and Empty Types As an experiment, we have added a non-
formalized support for the unit type 1 and the empty type 0 to our
implementation. The unit types poses no difficulties, but we were
more surprised to notice that they empty type seems also simple to
handle – although we have not proved anything about it for now.
We add it as a positive, with the following left-introduction rule
(and no right-introduction rule):

SINV-EMPTY

Γ; ∆, x : 0 `sinv absurd(x) : A

Our saturation algorithm then naturally gives the expected equiva-
lence rule in presence of 0, which is that all programs in a inconsis-
tent context (0 is provable) are equal (A0 = 1): saturation will try
to “cut all 0”, and thus detect any inconsistency; if one or several
proofs of 0 are found, the following invertible phase will always use
the SINV-EMPTY rule, and find absurd() as the unique derivation.
For example, while the bind function for the A-translation monad
B 7→ (B → A) → A is not unique for arbitrary formulas A,
our extended prototype finds a unique bind for the non-delimited
continuation monad B 7→ B → 0→ 0.

Polymorphism Naively adding parametric polymorphism to the
system would suggest the following rules:

SINV-POLY
Γ; ∆, α `sinv t : A

Γ; ∆ `sinv t : ∀α.A

SELIM-POLY
Γ ` n ⇓ ∀α. A Γ ` B

Γ ` n ⇓ A[B/α]

The invertible introduction rule is trivially added to our algorithm.
It generalizes our treatment of atomic types by supporting a bit
more than purely prenex polymorphism, as it supports all quanti-
fiers in so-called “positive positions” (to the left of an even num-
ber of arrows), such as 1 → (∀α. α → α) or ((∀β. β → β) →
X) → X . However, saturating the elimination rule SELIM-POLY

would a priori require instantiating the polymorphic type with in-
finitely many instances (there is no clear subformula property any-
more). Even naive (and probably incomplete) strategies such as
instantiating with all closed formulas of the context lead to non-
termination, as for example instantiating the variable α of closed
type 1 → ∀α. α with the closed type itself leads to an infinite
regress of deduced types of the form 1→ 1→ 1→

Another approach would be to provide a left-introduction rule
for polymorphism, based on the idea, loosely inspired by higher-
order focusing (Zeilberger 2008), that destructing a value is in-
specting all possible ways to construct it. For example, performing
proof search determines that any possible closed proof of the term
∀α. (X → Y → α) must have two subgoals, one of type X and
another of type Y ; and that there are two ways to build a closed
proof of ∀α. (X → α) → (Y → α), using either a subgoal of

type X or of type Y . How far into the traditional territory of para-
metricity can we go using canonical syntactic proof search only?

Substructural Logics Instead of moving to more polymorphic
type systems, one could move to substructural logics. We could
expect to refine a type annotation using, for example, linear arrows,
to get a unique inhabitant. We observed, however, that linearity
is often disappointing in getting “unique enough” types. Take the
polymorphic type of mapping on lists, for example: ∀αβ. (α →
β) → (List α → List β). Its inhabitants are the expected map
composed with any function that can reorder, duplicate or drop
elements from a list. Changing the two inner arrows to be linear
gives us the set of functions that may only reorder the mapped
elements: still not unique. An idea to get a unique type is to request
a mapping from (α ≤ β) to (List α ≤ List β), where the
subtyping relation (≤) is seen as a substructural arrow type.

(Dependent types also allow to capture List.map, as the unique
inhabitant of the dependent induction principle on lists is unique.)

Equational Reasoning We have only considered pure, strongly
terminating programs so far. One could hope to find monadic types
that uniquely defined transformations of impure programs (e.g.
(α → β) → M α → M β). Unfortunately, this approach would not
work by simply adding the unit and bind of the monad as formal
parameters to the context, because many programs that are only
equal up to the monadic laws would be returned by the system. It
could be interesting to enrich the search process to also normalize
by the monadic laws. In the more general case, can the search
process be extended to additional rewrite systems?

7.3 Conclusion

We have presented an algorithm that decides whether a given type
of the simply-typed lambda-calculus with sums has a unique inhab-
itant modulo βη-equivalence; starting from standard focused proof
search, the new ingredient is saturation which egarly cuts any posi-
tive that can be derived from the current context by a focused elim-
ination. Termination is obtained through a context approximation
result, remembering one or “two-or-more” variables of each type.

This is a foundational approach to questions of code inference,
yet preliminary studies suggest that there are already a few potential
applications, to be improved with future support for richer systems.

Of course, guessing a program from its type is not necessarily
beneficial if the type is as long to write (or harder to read) than
the program itself. We see code and type inference as mutually-
beneficial features, allowing the programmer to express intent in
part through the term language, in part through the type language,
playing on which has developped the more expressive definitions
or abstractions for the task at hand.

Acknowledgments

We are grateful to Adrien Guatto and anonymous reviewers for
their helpful feedback.

References

Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct
equality with focusing. Online draft, 2010.

Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott.
Normalization by evaluation for typed lambda calculus with coproducts.
In LICS, 2001.

Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear
Logic. Journal of Logic and Computation, 1992.

http://www.cs.cmu.edu/~adahmad/coproduct_equality.pdf

Takahito Aoto. Uniqueness of normal proofs in implicational intuitionistic
logic. Journal of Logic, Language and Information, 1999.

Takahito Aoto and Hiroakira Ono. Non-Uniqueness of Normal Proofs
for Minimal Formulas in Implication-Conjunction Fragment of BCK.
Bulletin of the Section of Logic, 1994.

Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for
module signatures. In PLILP, 1996.

Ali Babaev and Sergei Soloviev. A coherence theorem for canonical mor-
phisms in cartesian closed categories. Journal of Soviet Mathematics,
1982.

Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Extensional normal-
isation and type-directed partial evaluation for typed lambda calculus
with sums. In POPL, 2004.

Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of
type inhabitance in the simply-typed λ-calculus. In TLCA, 2011.

Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction.
In LPAR-17, 2010.

Sabine Broda and Luı́s Damas. On long normal inhabitants of a type. J.
Log. Comput., 2005.

Kaustuv Chaudhuri and Frank Pfenning. Focusing the inverse method for
linear logic. In CSL, 2005.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent
proofs via multi-focusing. In IFIP TCS, 2008.

Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A Systematic Approach
to Canonicity in the Classical Sequent Calculus. In CSL, 2012.

Pierre-Louis Curien and Guillaume Munch-Maccagnoni. The duality of
computation under focus. In IFIP TCS, 2010.

Anatoli Degtyarev and Andrei Voronkov. Introduction to the inverse
method. In Handbook of Automated Reasoning. 2001.

Kosta Dosen. Identity of proofs based on normalization and generality.
Bulletin of Symbolic Logic, 2003.

Gilles Dowek and Ying Jiang. On the expressive power of schemes. Inf.
Comput., 2011.

Boris Düdder, Moritz Martens, and Jakob Rehof. Staged composition
synthesis. In ESOP, 2014.

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J.
Symb. Log., 1992.

Roy Dyckhoff. Intuitionistic decision procedures since gentzen, 2013. Talk
notes.

Didier Galmiche and Daniel Méry. A connection-based characterization of
bi-intuitionistic validity. J. Autom. Reasoning, 2013.

Neil Ghani. Beta-eta equality for coproducts. In TLCA, 1995.
Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete

completion using types and weights. In PLDI, 2013.
Hugo Herbelin. A lambda-calculus structure isomorphic to gentzen-style

sequent calculus structure. In CSL, 1993.
Danko Ilik. Axioms and decidability for type isomorphism in the presence

of sums. CoRR, 2014. URL http://arxiv.org/abs/1401.2567.
Edward Kmett. Lens, 2012. URL https://github.com/ekmett/lens.

Edward Kmett. Lens wiki – types, 2013. URL https://github.com/
ekmett/lens/wiki/Types.

Neelakantan R. Krishnaswami. Focusing on pattern matching. In POPL,
2009.

Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic
logic. CoRR, 2007. URL http://arxiv.org/abs/0708.2252.

Sam Lindley. Extensional rewriting with sums. In TLCA, 2007.

Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic
concurrent linear logic programming. In PPDP, 2005.

Sean McLaughlin and Frank Pfenning. Imogen: Focusing the polarized
inverse method for intuitionistic propositional logic. In LPAR, 2008.

Dale Miller and Alexis Saurin. From proofs to focused proofs: A modular
proof of focalization in linear logic. In CSL, 2007.

Grigori Mints. Closed categories and the theory of proofs. Journal of Soviet
Mathematics, 1981.

Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes
as objects and implicits. In OOPSLA, 2010.

Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee,
Kwangkeun Yi, and Philip Wadler. The implicit calculus: A new foun-
dation for generic programming. 2014.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed
program synthesis. In PLDI, 2015.

Jens Otten and Christoph Kreitz. A uniform proof procedure for classical
and non-classical logics. In KI Advances in Artificial Intelligence, 1996.

Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-
directed completion of partial expressions. In PLDI, 2012.

Gabriel Scherer. Mining opportunities for unique inhabitants in dependent
programs, 2013.

Gabriel Scherer. 2-or-more approximation for intuitionistic logic. 2014.

Gabriel Scherer and Didier Rémy, 2015. URL http://gallium.inria.
fr/~scherer/research/unique_inhabitants/.

Colin Stirling. Proof systems for retracts in simply typed lambda calculus.
In Automata, Languages, and Programming - ICALP, 2013.

Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP,
2002.

Nikolay Vorob’ev. A new algorithm of derivability in a constructive calcu-
lus of statements. In Problems of the constructive direction in mathe-
matics, 1958.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad-hoc. In POPL, 1989.

Lincoln A. Wallen. Automated proof search in non-classical logics: Effi-
cient matrix proof methods for modal and intuitionistic logic, 1987.

Joe B. Wells and Boris Yakobowski. Graph-based proof counting and enu-
meration with applications for program fragment synthesis. In LOPSTR,
2004.

Marek Zaoinc. Fixpoint technique for counting terms in typed lambda-
calculus. Technical report, State University of New York, 1995.

Noam Zeilberger. Focusing and higher-order abstract syntax. In POPL,
2008.

http://apt13.unibe.ch/slides/Dyckhoff.pdf
http://arxiv.org/abs/1401.2567
https://github.com/ekmett/lens
https://github.com/ekmett/lens/wiki/Types
https://github.com/ekmett/lens/wiki/Types
http://arxiv.org/abs/0708.2252
http://gallium.inria.fr/~scherer/research/unique_inhabitants/
http://gallium.inria.fr/~scherer/research/unique_inhabitants/

	Introduction
	Why unique?
	Example use cases
	Aside: Parametricity?
	Formal definition of equivalence
	Terminology
	Focusing for a less redundant proof search
	Limitations of focusing
	Our idea: saturating proof search
	Termination
	Contributions

	Intuitionistic focused natural deduction
	Invertible commuting conversions

	A saturating focused system
	Two-or-more approximation
	Search algorithm
	Evaluation
	Inferring polymorphic library functions
	Inferring module implementations or type-class instances
	Non-applications
	On impure host programs

	Related and Future Work
	Related work
	Future work
	Conclusion

