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École Polytechnique and INRIA

Benjamin C. Pierce
University of Pennsylvania

Abstract
There are now a number of bidirectional programming languages,
where every program can be read both as a forward transformation
mapping one data structure to another and as a reverse transfor-
mation mapping an edited output back to a correspondingly edited
input. Besides parsimony—the two related transformations are de-
scribed by just one expression—such languages are attractive be-
cause they promise strong behavioral laws about how the two trans-
formations fit together—e.g., their composition is the identity func-
tion. It has repeatedly been observed, however, that such laws are
actually a bit too strong: in practice, we do not want them “on the
nose,” but only up to some equivalence, allowing inessential de-
tails, such as whitespace, to be modified after a round trip. Some
bidirectional languages loosen their laws in this way, but only for
specific, baked-in equivalences.

In this work, we propose a general theory of quotient lenses—
bidirectional transformations that are well behaved modulo equiv-
alence relations controlled by the programmer. Semantically, quo-
tient lenses are a natural refinement of lenses, which we have stud-
ied in previous work. At the level of syntax, we present a rich set
of constructs for programming with canonizers and for quotient-
ing lenses by canonizers. We track equivalences explicitly, with the
type of every quotient lens specifying the equivalences it respects.

We have implemented quotient lenses as a refinement of the
bidirectional string processing language Boomerang. We present a
number of useful primitive canonizers for strings, and give a simple
extension of Boomerang’s regular-expression-based type system to
statically typecheck quotient lenses. The resulting language is an
expressive tool for transforming real-world, ad-hoc data formats.
We demonstrate the power of our notation by developing an ex-
tended example based on the UniProt genome database format and
illustrate the generality of our approach by showing how uses of
quotienting in other bidirectional languages can be translated into
our notation.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

General Terms Languages, Design, Theory

Keywords Bidirectional languages, lenses, equivalences, canon-
izers, view update problem, bijective languages, regular string
transducers, regular types, Boomerang
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1. Introduction
Most programs compute in a single direction, from input to output.
But it is often useful to take a modified output and “compute back-
wards” to obtain a correspondingly modified input. For example, if
we have a transformation mapping from a simple XML database
format describing classical composers...

<composers>
<composer>

<name>Jean Sibelius</name>
<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>

</composer>
</composers>

... to comma-separated lines of ASCII...

Jean Sibelius, 1865-1956

... we may want to be able to edit the ASCII output (e.g., to cor-
rect the erroneous death date above) and push the change back into
the original XML. The need for such bidirectional transformations
arises in many diverse areas of computing, including data synchro-
nizers (Foster et al. 2007a,b), parsers and pretty printers (Fisher and
Gruber 2005; Eger 2005), marshallers and unmarshallers (Ramsey
2003; Kennedy 2004), structure editors (Hu et al. 2004), graph-
ical user interfaces (Meertens 1998; Evers et al. 2006; Greenberg
and Krishnamurthi 2007), software model transformations (Stevens
2007; Xiong et al. 2007), system configuration management (Lut-
terkort 2007), schema evolution (Miller et al. 2001; Cunha et al.;
Berdaguer et al. 2007), and databases (Bancilhon and Spyratos
1981; Dayal and Bernstein 1982; Bohannon et al. 2006, etc.).

In previous work (Foster et al. 2007b; Bohannon et al. 2006,
2008), we have used the term lens to describe a bidirectional pro-
gram. Formally, a lens l mapping between a set C of “concrete”
structures and a set A of “abstract” ones comprises three functions:

l.get ∈ C −→ A
l.put ∈ A −→ C −→ C

l.create ∈ A −→ C

The get component is the forward transformation, a total function
from C to A. The put component takes an old C and a modified
A and yields a correspondingly modified C. The create component
handles the special case where we want to compute a C from an A
but we have no C to use as the “old value”; create uses defaults to
fill in any information in C that is thrown away by the get function
(such as the nationality of each composer in the example above).
Every lens obeys the following “round-tripping” laws for every
c ∈ C and a ∈ A:

l.put (l.get c) c = c (GETPUT)
l.get (l.put a c) = a (PUTGET)
l.get (l.create a) = a (CREATEGET)

The first law states that the put function must restore all the in-
formation discarded by get when its arguments are an abstract



structure and a concrete structure that generates the very same ab-
stract structure. The second and third laws state that put and create
must propagate all of the information contained in their abstract
arguments to the concrete structure they produce. These laws ex-
press fundamental expectations about how the components of a lens
should work together; they are closely related to classical condi-
tions on correct view update translation developed in the database
community (see Foster et al. 2007b). The set of all lenses mapping
between C and A is written C ⇐⇒ A.

The naive way to build a lens is simply to write three sepa-
rate functions (get, put, and create) in a general-purpose program-
ming language, and check manually that they satisfy the lens laws.
But this is unsatisfactory for all but the simplest lenses: the three
functions will be very redundant, since each of them will em-
body the structure of both C and A—a maintenance nightmare.
A better alternative is to design a bidirectional programming lan-
guage in which every expression can be read both from left to right
(as a get function) and from right to left (as put or create). Be-
sides avoiding redundancy, this approach permits us to carry out
the proofs of the behavioral laws once and for all, by designing a
type system in which—by construction—every well-typed expres-
sion denotes a well-behaved lens. Many such programming lan-
guages have been proposed (Foster et al. 2007b; Bohannon et al.
2006, 2008; Meertens 1998; Kennedy 2004; Benton 2005; Ramsey
2003; Hu et al. 2004; Matsuda et al. 2007; Brabrand et al. 2007;
Kawanaka and Hosoya 2006; Fisher and Gruber 2005; Alimarine
et al. 2005).

Now comes the fly in the ointment. The story we’ve told so far is
appealing... but not perfectly true! Most bidirectional languages for
processing real-world data do not guarantee the behavioral laws we
have given—or rather, they guarantee them only “modulo insignifi-
cant details.” The nature of these details varies from one application
to another; examples include whitespace, artifacts of representing
graph or tree structures such as XML as text (order of XML at-
tributes, etc.), escaping of atomic data (XML PCDATA, vCard and
BibTeX values), ordering of fields in record-structured data (Bib-
TeX fields, XML attributes), breaking of long lines in ASCII for-
mats (RIS bibliographies, UniProtKB genomic data bases), and du-
plicated information (aggregated data, tables of contents).

To illustrate, consider the composers example again. The infor-
mation about each composer could be larger than fits comfortably
on a single line in the ASCII format, especially if the example were
more complex. We might then want to relax the abstract schema so
that a line could be broken (optionally) using a newline followed
by at least one space, so that

Jean Sibelius,
1865-1956

would be accepted as an equivalent, alternate presentation of the
data in the original example. But now we have a problem: the
PUTGET law is only be satisfied when the put function is injective
in its first (A) parameter. But this means that

Jean Sibelius, 1865-1956

and

Jean Sibelius,
1865-1956

must map to different XML trees—the presence or absence of
linebreaks must be reflected in the concrete structure produced by
put. We could construct a lens that does this—e.g., storing the line
break inside the PCDATA string containing the composer name...

<composers>
<composer>

<name>Jean Sibelius
</name>

<years birth="1865" death="1956"/>
<nationality>Finnish</nationality>

</composer>
</composers>

... but this “solution” isn’t especially attractive. For one thing, it
places an unnatural demand on the XML representation (indeed,
possibly an unsatisfiable demand—e.g., if the application that uses
the XML data assumes that the PCDATA does not contain new-
lines). For another, writing the lens so that it handles and propa-
gates linebreaks correctly is going to involve some extra work. And
finally, this fiddly work and warping of the XML format is all for
the purpose of maintaining information that we actually don’t care
about!

A better alternative is to relax the lens laws. There are several
ways to do this.

1. We can be a bit informal, stating the laws in their present form
and explaining that they “essentially hold” for our program, per-
haps supporting this claim by giving some algorithmic descrip-
tion of how inessential details are processed. For many pur-
poses such informality may be perfectly acceptable, and sev-
eral bidirectional languages adopt this strategy. For instance,
biXid (Kawanaka and Hosoya 2006), a language for describing
XML to XML conversions using pairs of intertwined regular
tree grammars, provides no explicit guarantees about the round-
trip behavior of the transformations its programs describe, but
the clear intention is that they should be “morally bijective.”

2. We can keep the same basic structures but claim weaker laws.
For example, X (Hu et al. 2004) is a general-purpose bidi-
rectional language with a duplication operator. This operator
makes it possible to express many useful transformations—e.g.,
augmenting a document with a table of contents—but because
the duplicated data is not preserved exactly on round-trips,
the PUTGET law does not hold. Instead, X programs satisfy a
“round-trip and a half” variant that is significantly weaker:

c′ = put a c

put (get c′) c′ = c′
(PUTGETPUT)

This law still imposes some constraint on the behavior of lenses,
but opens the door to a wide range of unintended behaviors. For
example, a lens whose put component is a constant function
put a c = c′ is considered well behaved.1

3. We can give a more precise account of the situation—yielding
better principles for programmers to reason about the behav-
ior of their programs—by splitting bidirectional programs into
a “core component” that is a lens in the strict sense plus “can-
onization” phases at the beginning and end that standardize the
representation of whitespace (or whatever) and makes sure the
pure lens part only has to work with a particular representative
of each equivalence class. See Figure 1.
For example, in our earlier language for lenses on trees (Foster
et al. 2007b), the end-to-end transformations on actual strings
(e.g., concrete representations of XML trees in the filesystem)
only obey the lens laws up to the equivalence induced by a
viewer—a pair of functions mapping between strings and trees
(e.g., an XML parser and printer). Similarly, XSugar (Brabrand
et al. 2007), a language for converting between XML and
ASCII, guarantees that its transformations are bijective mod-
ulo a fixed relation on input and output structures that is ob-

1 Later work by the same authors (the journal version of Hu et al. 2004 and
Liu et al. 2007) excludes such examples by annotating data with “edit tags,”
ordering this data according to a “more edited than” relation, and adding a
new law stipulating that a put followed by a get should yield a more edited
abstract structure.
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Figure 1. Architecture with “canonizers at the edges”

tained by canonizing XML, data matching special “unordered”
productions, and certain “ignorable” non-terminals.2

This approach is quite workable as long as the data formats and
canonizers are generic (e.g., XML parsers and printers). How-
ever, for ad-hoc formats, such as textual genome databases,
bibliographies, configuration files, etc., this approach rapidly
becomes impractical because the two directions of the canon-
ization transformation themselves become difficult to write and
maintain. In particular the structure of the data is recapitulated,
redundantly, in the lens and in each direction of the canonizer.
In other words, we wind up back in the situation that lenses
were designed to avoid! In our experience, these difficulties
quickly become unmanageable for many formats of practical
interest.

4. We can develop a more refined account of the whole seman-
tic and syntactic framework allowing us to say, precisely and
truthfully, that the lens laws hold of a given program modulo
a particular equivalence that can be calculated from the pro-
gram, with explicit constructs for defining and applying canon-
izers anywhere in a program, not just at the edges. This is the
goal of this paper.

At the semantic level, the refinement is straightforward, as we
show in Section 2. We enrich the types of lenses with equivalence
relations—instead of C ⇐⇒ A, we write C/∼C ⇐⇒ A/∼A,
where ∼C is an equivalence on C and ∼A is an equivalence on
A, and we relax the lens laws accordingly. We call the structures
inhabiting such types quotient lenses, or q-lenses for short. (When
we need to distinguish them, we use the term basic lenses for the
original, un-quotientied ones we have studied previously.)

The story is much more interesting on the syntactic side. Our
goal is to discover basic principles for bidirectional languages that
treat quotienting explicitly—principles that will be useful in other
domains besides strings, such as bidirectional UML model trans-
formation (Stevens 2007). We therefore begin our investigation of
syntax in Section 3, in a completely generic setting that is indepen-
dent of the particular domain of structures over which the lenses
operate. We propose a general notion of canonizers, structures that
map (bidirectionally!) between a set of structures and a set of nor-
malized representatives; we then develop operations for quotienting
a q-lens by a canonizer; and we show how lenses themselves can be
converted into canonizers. A pleasant corollary of this last observa-
tion is that many of our core primitives can be used both as lenses as
canonizers. Better yet, q-lens composition and quotienting may be

2 The XML canonization component is treated as a distinct “pre-processing”
phase. Canonization of other ignorable data is interleaved with other pro-
cessing; in this respect, XSugar can be regarded as a special case of the
framework we are proposing here. We return to this comparison in more
detail in Section 9.

composed freely with other operations such as concatenation and
union, allowing more compact descriptions in which canonization
is interleaved with other processing, instead of occurring only “at
the edges” as in Figure 1.

It is important to ground this sort of language design in ex-
periments with real-world examples. To support such experiments,
in the later sections of the paper we extend Boomerang, a lan-
guage for writing lenses on strings whose primitives are based on
finite state transductions (Bohannon et al. 2008), with canonizers
and quotient operators. We show how to reinterpret the core string
lens combinators—lenses for copying and deleting data, sequential
composition, and the rational operators union, concatenation, and
Kleene-star—as q-lenses in Section 4, and we prove that the result-
ing structures are well behaved according to the more refined q-lens
behavioral laws.3 Section 5 introduces primitive q-lenses and can-
onizers for strings.

In Section 6, we discuss an unexpected side benefit of our
design: we can use canonizers to simplify overly complex types,
significantly mitigating the difficulties of programming with the
extremely precise regular types that arise in Boomerang.

In Section 7 we consider typechecking algorithms for q-lenses
in Boomerang. The challenge here is choosing a tractable syntactic
presentation for the equivalence relations appearing in types. We
first give a simple, coarse representation, classifying each equiv-
alence relation as either “the identity” or “something other than
the identity.” Surprisingly, this very simple analysis suffices for
all of our examples. We then discuss a more precise technique
where equivalence relations are represented by rational functions;
this technique yields a more flexible type system, but appears pro-
hibitively expensive to implement.

Section 8 demonstrates the utility of our language by describing
some large q-lenses we have built, including a generic library of
lenses for processing XML and an XML-to-ASCII converter for
the UniProt genomic database format (Bairoch et al. 2005).

Finally, to illustrate the generality of our constructions, we show
in Section 9 how a large subset of XSugar and many uses of
quotienting in biXid and X can be translated into our notation.

2. Foundations
We begin our technical development by describing the semantic
space of q-lenses. This part of our account and the fundamental
combinators described in Section 3 are both completely generic: we
make no assumptions about the universes of concrete and abstract
structures. Later we will instantiate these universes to strings and
introduce additional q-lens combinators that work specifically with
strings.

The definition of q-lenses is a straightforward refinement of ba-
sic lenses: we enrich the domain and codomain types with equiv-
alences, loosen the lens laws appropriately, and add a few natural
conditions on how the lens components and equivalence relations
interact. Formally, let C and A be sets of concrete and abstract
structures and let ∼C and ∼A be equivalence relations C and A.
We write C/∼C ⇐⇒ A/∼A for the set of q-lenses between C
(modulo ∼C ) and A (modulo ∼A). A q-lens l in this set has com-
ponents with the same types as a basic lens but it is only required
to obey the lens laws up to ∼C and ∼A:

3 Readers familiar with Boomerang may recall that it is based not on simple
string lenses as we have described them here but on dictionary lenses, which
incorporate extra mechanisms for correctly handling ordered lists of records
identified by keys. The semantics in (Bohannon et al. 2008) also relies on an
equivalence relation for describing “reorderable chunks of data.” The two
equivalence relations are unrelated but compatible: dictionary lenses and q-
lenses can be combined very straightforwardly; details can be found in the
long version of this paper (Foster et al. 2008).



l.put (l.get c) c ∼C c (GETPUT)
l.get(l.put a c) ∼A a (PUTGET)
l.get(l.create a) ∼A a (CREATEGET)

These relaxed laws are just the basic lens laws on the equiva-
lence classes C/∼C and A/∼A (and when ∼C and ∼A are equal-
ity they revert to the basic lens laws precisely). However, while we
want to reason about the behavior of q-lenses as if they worked
on equivalence classes, their component functions actually work
on representatives—i.e., members of the underlying sets of con-
crete and abstract structures: the type of get is C −→ A, not
C/∼C −→ A/∼A. Thus, we need three additional laws stipu-
lating that the functions respect ∼C and ∼A.

c ∼C c′

l.get c ∼A l.get c′
(GETEQUIV)

a ∼A a′ c ∼C c′

l.put a c ∼C l.put a′ c′
(PUTEQUIV)

a ∼A a′

l.create a ∼C l.create a′
(CREATEEQUIV)

These laws ensure that the components of a q-lens treat equivalent
structures equivalently; they play a critical role in (among other
things) the proof that the composition operator defined below pro-
duces a well-formed q-lens.

3. Basic Combinators
Every basic lens can be lifted to a q-lens, with equality as the
equivalence relation on both C and A.

l ∈ C ⇐⇒ A

lift l ∈ C/= ⇐⇒ A/=

The get, put, and create components of lift l are identical to those
of l. This inference rule can be read as a lemma asserting that the
lifted lens is a q-lens at the given type. (We elide the proofs of these
lemmas; the more interesting ones can be found in the full version,
Foster et al. 2008.)

Lifting basic lenses gives us q-lenses with equivalences that are
finer than we may want. We need a mechanism for loosening up a
q-lens, making it work on a larger domain and/or codomain with
coarser equivalences. To this end, we introduce two new operators:
lquot, which coarsens the domain by adding a canonizer on the left
of a q-lens, and rquot, which coarsens the codomain by adding a
canonizer on the right. Let us consider lquot first.

Suppose l is a q-lens from B/∼B to A/∼A, where∼B is a rel-
atively fine equivalence (e.g., B could be some set of “canonical
strings” with no extraneous whitespace and∼B could be equality).
We want to construct a new q-lens whose domain is some larger
set C (e.g., the same set of strings with more whitespace in vari-
ous places) with a relatively coarse equivalence ∼C (relating pairs
of strings that differ only in whitespace). To get back and forth
between C and B, we need two functions: one (called canonize)
from C to B, which maps each element to its “canonical repre-
sentative” (e.g., by throwing away extra whitespace) and another
(choose) from B to C that maps each canonical representative to
some element in its inverse image under canonize (for example, the
identity function, or perhaps a pretty printer that adds whitespace
according to some layout convention). The canonize and choose
functions together are called a canonizer; see Figure 2.

Clearly, a canonizer is a bit like a lens (minus the put compo-
nent); the difference is that we impose a weaker law. Formally, let
C and B be sets and ∼B an equivalence relation on B.4 A canon-

4 We name the equivalence on B explicitly because, when we put the
canonizer together with a q-lens using lquot, the equivalences on B need

B / ~BC / ~C

canonize

              

       

choose

       

A / ~A

original q-lens

quotiented q-lens

canonizer

Figure 2. Adding a canonizer to a q-lens (on the left)

izer q from C to B/∼B comprises two functions

q.canonize ∈ C −→ B
q.choose ∈ B −→ C

such that, for every b ∈ B:
q.canonize (q.choose b) ∼B b (RECANONIZE)

That is, canonize is a left inverse of choose modulo ∼B . The set
of all canonizers from C to B/∼B is written C B/∼B .

Now lquot takes as arguments a canonizer q and a q-lens l and
yields a new q-lens where l is coarsened on the left using q.

q ∈ C B/∼B l ∈ B/∼B ⇐⇒ A/∼A

c ∼C c′ iff q.canonize c ∼B q.canonize c′

lquot q l ∈ C/∼C ⇐⇒ A/∼A

get c = l.get (q.canonize c)
put a c = q.choose (l.put a (q.canonize c))
create a = q.choose (l.create a)

The concrete argument to the get function is first canonized to
an element of B using q.canonize and then mapped to an A by
l.get. Similarly, the abstract argument to the create function is first
mapped to a B using l.create, which is then transformed to a C
using q.choose . The equivalence ∼C is the relation induced by
q.canonize and ∼B—i.e., two elements of C are equivalent if
q.canonize maps them to equivalent elements of B.

The rquot operator is symmetric; it quotients l ∈ C/∼C ⇐⇒
B/∼B on the right, using a canonizer from A to B/∼B . One
interesting difference is that its canonizer argument is applied in
the opposite direction, compared to lquot—i.e., if we think of a
canonizer as a weak form of lens, then lquot is essentially just lens
composition, while rquot is a sort of “head to head” composition
that would not make sense with lenses.

l ∈ C/∼C ⇐⇒ B/∼B q ∈ A B/∼B

a ∼A a′ iff q.canonize a ∼B q.canonize a′

rquot l q ∈ C/∼C ⇐⇒ A/∼A

get c = q.choose (l.get c)
put a c = l.put (q.canonize a) c
create a = l.create (q.canonize a)

The lquot and rquot operators allow us to quotient a q-lens re-
peatedly on either side, which has the effect of composing canoniz-
ers. We do this often in q-lens programming—stacking up several
canonizers, each of which canonizes a distinct aspect of the con-
crete or abstract structures. In composing canonizers like this, the

to match. We do not need to mention the equivalence on C because it is
going to be calculated later (by the typing rule for lquot).



following rule, which allows the equivalence relation component of
a canonizer’s type to be coarsened, is often useful:

q ∈ A B/∼B ∼B refines ∼B′

q ∈ A B/∼B′

The next combinator gives us a different kind of composition—
of q-lenses themselves.

l ∈ C/∼C ⇐⇒ B/∼B k ∈ B/∼B ⇐⇒ A/∼A

l ; k ∈ C/∼C ⇐⇒ A/∼A

get c = k.get (l.get c)
put a c = l.put (k.put a (l.get c)) c
create a = l.create (k.create a)

The typing rule demands that the intermediate type B have the
same equivalence relation ∼B on both sides. To see what goes
wrong if this condition is dropped, consider

l1 = id ∈ {a}/= ⇐⇒ {a}/=
l2 = id ∈ {a, b}/= ⇐⇒ {a, b}/=

where id is the identity lens (whose get and create components are
identity functions and whose put component is the identity on its
abstract argument) and q ∈ {a, b} {a}/= defined by

q.canonize x = a
q.choose a = a.

If we now take l = (rquot l1 q); l2 (where the equivalence
on the right is strictly coarser than the one on the left), then the
CREATEGET law fails:

l.get (l.create b) = l.get a
= l2.get (q.choose (l1.get a)) = a 6= b

Conversely, if we take l = l2; (lquot q l1), (where the right
equivalence is strictly finer than the left), then the GETPUT law
fails, since a = l.get b but

l.put a b = l2.put ((lquot q l1).put a (l2.get b)) b
= l2.put (q.choose (l1.put a (q.canonize (l2.get b)))) b
= l2.put a b = a 6= b.

This requirement raises an interesting implementation issue: to
statically type the composition operator, we must be able to check
whether two equivalence relations are identical; see Section 7.

So far, we have seen how to lift basic lenses to q-lenses, how
to coarsen the equivalence relations in their types using canonizers,
and how to compose them. We have not, however, discussed where
canonizers themselves come from. Of course, we can always define
canonizers as primitives—this is essentially the approach used in
previous “canonizers at the edges”-style proposals, where the set
of parsers and pretty printers is fixed. But we can do better: we
can build a canonizer out of the get and create components of an
arbitrary lens—indeed, of an arbitrary q-lens!

l ∈ C/∼C ⇐⇒ B/∼B

canonizer l ∈ C B/∼B

canonize c = l.get c
choose b = l.create b

Building canonizers from lenses gives us a pleasantly parsi-
monious design, allowing us to define canonizers using what-
ever generic or domain-specific primitives are already available on
lenses (e.g., in our implementation, primitives for copying, dele-
tion, etc., as well as the rational operators—concatenation, itera-
tion, union, etc.—described in Section 4). A composition operator

on canonizers can also be derived from the quotienting operators
(on the identity lens). We use all these features when writing q-
lenses in practice.

Of course, it is also useful to design primitive canonizers de
novo. The canonizer law imposes fewer restrictions than the lens
laws, giving us enormous latitude for writing specific canonizing
transformations that would not be legal as lenses. Several useful
canonizer primitives are discussed in Section 5.

4. Rational Operators
Having presented the semantic space of q-lenses and several
generic combinators, we now turn our attention to q-lenses for
the specific domain of strings. The next several q-lenses are di-
rect generalizations of corresponding basic string lens operators
(Bohannon et al. 2008).

First, a little notation. Let Σ be a fixed alphabet (e.g., ASCII). A
language is a subset of Σ∗. Metavariables u, v, w range over strings
in Σ∗, and ε denotes the empty string. The concatenation of two
strings u and v is written u·v; concatenation is lifted to languages
L1 and L2 by L1·L2 = {u·v | u ∈ L1 and v ∈ L2}. The iteration
of L is written L∗; i.e., L∗ =

S∞
n=0 Ln, where Ln is the n-fold

concatenation of L.
Some of the definitions below require that, for every string be-

longing to the concatenation of two given languages, there must be
a unique way of splitting that string into two substrings belonging
to the concatenated languages. We say that two languages L1 and
L2 are unambiguously concatenable, written L1·!L2, when, for ev-
ery u1, v1 in L1 and u2, v2 in L2, if u1·u2 = v1·v2 then u1 = v1

and u2 = v2. Similarly, a language L is unambiguously iterable,
written L!∗, when, for every u1, . . . , um ∈ L and v1, . . . , vn ∈ L,
if u1· · · · ·um = v1· · · · ·vn then m = n and ui = vi for ev-
ery i. It is decidable whether two regular languages L1 and L2 are
unambiguously concatenable and whether a single language L is
unambiguously iterable; see Bohannon et al. (2008).

Some of the primitives are parameterized on regular expressions

R ::= u | R·R | R|R | R∗

where u ranges over arbitrary strings (including ε). The notation
[[E]] denotes the language described by E ∈ R. The function
rep(E) picks an arbitrary representative of [[E]].

Our first string q-lens combinators are based on the rational
operators union, concatenation, and iteration (Kleene star). The
functional components of these combinators are identical to the
basic lens versions defined in Bohannon et al. (2008), but the typing
rules are different, since they define equivalence relations on the
concrete and abstract domains.

We start by lifting concatenation to equivalence relations over
unambiguously concatenable sets. Let R1 and R2 be regular lan-
guages with R1·!R2, and let ∼1 and ∼2 be equivalence relations
on R1 and R2. The equivalence relation ∼1·∼2 is defined as r1 ·
r2 (∼1·∼2) r′1 · r′2 iff r1 ∼1 r′1 and r2 ∼2 r′2. The concatenation
operator for q-lenses now builds concatenations of equivalences in
the obvious way.

C1·!C2 A1·!A2

l1 ∈ C1/∼C1 ⇐⇒ A1/∼A1

l2 ∈ C2/∼C2 ⇐⇒ A2/∼A2

∼C = ∼C1 ·∼C2 ∼A = ∼A1 ·∼A2

l1·l2 ∈ C1·C2/∼C ⇐⇒ A1·A2/∼A

get (c1·c2) = (l1.get c1)·(l2.get c2)
put (a1·a2) (c1·c2) = (l1.put a1 c1)·(l2.put a2 c2)
create (a1·a2) = (l1.create a1)·(l2.create a2)



Concatenation raises an interesting side point. Suppose that we
have two canonizers, q1 and q2, and two q-lenses, l1 and l2, that
we want to—in some order—concatenate and quotient on the left.
There are two ways we could do this: we could quotient l1 and l2
first using q1 and q2, and combine the results by concatenating the
q-lenses just defined, or we could concatenate the q-lenses l1 and
l2 and the canonizers q1 and q2 and then quotient the results. Both
are possible in our system and, when both are well-typed,5 yield
equivalent q-lenses. The definition of concatenation (and the other
rational operators) on canonizers is straightforward; see the long
version for an explicit definition.

For Kleene star, we start by lifting iteration to equivalence
relations. Let R1 be a regular language with R1

!∗, and let∼1 be an
equivalence relation on R1. The equivalence relation ∼∗1 is defined
as r1 · · ·rm ∼∗1 r′1 · · ·r′n iff n = m and ∀i ∈ {1...m}. ri ∼1 r′i.
Using this definition, the generalization of Kleene star to q-lenses
is straightforward.

l ∈ C/∼C ⇐⇒ A/∼A C !∗ A!∗

l∗ ∈ C∗/∼∗C ⇐⇒ A∗/∼∗A

get (c1 ···cn) = (l.get c1)···(l.get cn)
put (a1 ···an) (c1 ···cm) = c′1 ···c′n

where c′i =


l.put ai ci i ∈ {1, ..., min(m, n)}
l.create ai i ∈ {m + 1, ..., n}

create (a1 ···an) = (l.create a1)···(l.create an)

The q-lens version of union is more interesting.

l1 ∈ C1/∼C1 ⇐⇒ A1/∼A1

l2 ∈ C2/∼C2 ⇐⇒ A2/∼A2

C1 ∩ C2 = ∅
a ∼A a′ ∧ a ∈ A1 ∩A2 implies a∼A1a′ ∧ a∼A2a′

∼C = ∼C1 ∪ ∼C2 ∼A = ∼A1 ∪ ∼A2

l1 | l2 ∈ C1 ∪ C2/∼C ⇐⇒ A1 ∪A2/∼A

get c =

(
l1.get c if c ∈ C1

l2.get c if c ∈ C2

put a c =

8>>><>>>:
l1.put a c if c ∈ C1 ∧ a ∈ A1

l2.put a c if c ∈ C2 ∧ a ∈ A2

l1.create a if c ∈ C2 ∧ a ∈ A1 \A2

l2.create a if c ∈ C1 ∧ a ∈ A2 \A1

create a =

(
l1.create a if a ∈ A1

l2.create a if a ∈ A2 \A1

The relations ∼C and ∼A are formed by taking the the union of
the corresponding relations from l1 and l2; the side conditions in
the typing rule ensure that these are equivalence relations. The side
condition on ∼A is also essential for ensuring the q-lens laws.
It stipulates that ∼A1 and ∼A2 may only relate elements of the
intersection A1 ∩ A2 to other elements in A1 ∩ A2 and that ∼A1

and ∼A2 must agree in the intersection. To see why this is needed,
suppose we have a in A1 ∩A2 and a′ ∈ A2 \A1 with a∼Aa′, and
let c ∈ C1 with get c = a. Then put a′ c = l2.create a′ c. Since
dom(l1.put) ∩ dom(l2.create) = ∅, the result cannot be related to
c by ∼C—i.e., GETPUT fails.

The final combinator in this section, permute , is like concate-
nation, but reorders of the abstract string it constructs according

5 Quotienting the lenses first is a little more flexible, since the concatenation
of the original q-lenses need not be typeable.

to a fixed permutation σ. As an example, let σ be the permuta-
tion that maps 1 to 2, 2 to 3, and 3 to 1. The get component of
permute σ (copy a) (copy b) (copy c) maps abc to cab.

σ ∈ Perms({1, ..., n}) i1 , σ−1(1) ... in , σ−1(n)
C1·!C2 ... Cn−1·!Cn Ai1 ·!Ai2 ... Ain−1 ·!Ain

∀i ∈ {1, ..., n}. li ∈ Ci/∼Ci ⇐⇒ Ai/∼Ai

C , C1·...·Cn A , Ai1 ·...·Ain

∼C , ∼C1 ·...·∼Cn ∼A , ∼Ai1
·...·∼Ain

permute σ l1 ... ln ∈ C/∼C ⇐⇒ A/∼A

get (c1·...·cn) = (li1 .get cin)·...·(lin .get cin)
put (ai1 ·...·ain) (c1·...·cn) = (l1.put a1 c1)·...·(ln.put an cn)
create (ai1 ·...·ain) = (l1.create a1)·...·(ln.create an)

The permute lens is used in many of our examples, including the
lenses for genomic data described in Section 8 and in the translation
from XSugar programs to q-lenses in Section 9.

5. Primitives
Now we define some primitive q-lenses and canonizers. As back-
ground, we recall two lenses defined in Bohannon et al. (2008):

E ∈ R
copy E ∈ [[E]] ⇐⇒ [[E]]

get c = c
put a c = a
create a = a

E ∈ R u ∈ Σ∗ v ∈ [[E]]

const E u v ∈ [[E]] ⇐⇒ {u}

get c = u
put a c = c
create a = v

The first, copy E, behaves like the identity on [[E]] in both direc-
tions. The second, const E u v, maps every string belonging to [[E]]
to a constant u in the get direction and restores the concrete string
in the put direction. The argument v is a default for create. Some
other useful lenses are now expressible as derived forms:

E ↔ u , const E u (rep(E))

del E , E ↔ ε

ins u , ε ↔ u

E ↔ u is like const but automatically chooses an element of E
for create; del E deletes a concrete string belonging to E in the get
direction and restores it in the put direction; ins u inserts a fixed
string u in the get direction and removes it in the other direction.
Each of these basic lenses can be converted to a q-lens using lift. To
avoid clutter, we assume from now on that copy, const, etc. denote
the lifted q-lens versions.

Now let us explore some q-lens variants of these basic lenses.
The get component of del deletes a string and the put component
restores it. In most situations, this is the behavior we want. How-
ever, if the deleted data is “ignorable”—e.g., whitespace—then we
may prefer to have a put component that produces a canonical de-
fault e ∈ [[E]] instead of restoring the original. This transformation
cannot be a basic lens because it violates GETPUT, but it is easy to
define as a q-lens using left quotient:

qdel E e , lquot (canonizer (const E e e)) (del e)

Operationally, the get function works by canonizing the input string
to e, and then deleting it. The put restores e and passes it to
the canonizer’s choose component (i.e., the create component of
const), which also produces e. The type of qdel E e, which is
[[E]]/Tot([[E]]) ⇐⇒ {ε}/=, records the fact that every string in
[[E]] is treated equivalently. (Tot([[E]]) is the total relation on [[E]].)

Next we define a q-lens for inserting information into the ab-
stract string. The q-lens qins e E behaves like ins e in the get direc-
tion, but its put component accepts the set [[E]] (where e ∈ [[E]]).



We often use qins in examples to insert canonical whitespace in the
forward direction while accepting arbitrary whitespace in the other
direction. Its definition is straightforward using right quotient:

qins e E , rquot (ins e) (canonizer (const E e e))

Again, the type of qins e E, namely {ε}/= ⇐⇒ [[E]]/Tot([[E]]),
records the fact that the equivalence relation on the abstract domain
is the total relation.

Q-lens versions of const and E ↔ u are similar:

qconst u E D v , lquot (canonizer (const E u u))
(rquot (u ↔ v)

(canonizer (const D v v)))

E ↔ D , qconst (rep(E)) E D (rep(D))

The q-lens qconst accepts any E in the get direction and maps it
to v; in the put direction, it accepts any D and maps it to u. Its
type is [[E]]/Tot([[E]]) ⇐⇒ [[D]]/Tot([[D]]). The q-lens E ↔ D
has the same type; it maps between E and D, producing arbitrary
representatives in each direction.

The next primitive duplicates data. Duplication operators in the
context of bidirectional languages have been extensively studied
by Hu et al. (2004) and Liu et al. (2007) in settings with different
laws. Our own previous lens languages have not supported dupli-
cation operators because their semantics is incompatible with the
strict versions of the lens laws (and the types used in those lan-
guages, as we discuss in Section 6). In the more relaxed semantic
space of q-lenses, however, duplication causes no problems.

l ∈ C/∼C ⇐⇒ A1/∼A1 f ∈ C → A2

A1·!A2 ∼A = ∼A1 ·Tot(A2)

dup1 l f ∈ C/∼C ⇐⇒ A1·A2/∼A

get c = (l.get c)·(f c)
put (a1·a2) c = (l.put a1 c)
create (a1·a2) = (l.create a1)

The q-lens dup1 is parameterized on a q-lens l and a function f
having the same domain as l (f is typically the get component of a
q-lens; in Boomerang, the built-in function get extracts a q-lens’s
get component). The get function of dup1 supplies one copy of the
concrete string c to l’s get component, sends a second copy to f ,
and concatenates the results. The put and create components dis-
card the portion of the abstract string generated by f and invoke
the corresponding component of l on the remainder of the abstract
string. For example, if e and e′ belong to [[E]], then the get com-
ponent of dup1 (copy E) ((copy E).get) maps e to e·e, and the
create component maps e·e′ to e. The typing rule records the fact
that dup1 ignores the part of the abstract string generated by f . The
symmetric operator dup2 f l discards the first copy instead of the
second in the put/create direction.

In both of these q-lenses, the handling of duplicated data is quite
simple. (In particular, unlike the duplication operators proposed
and extensively studied by Hu et al. (2004), put and create do
not make any attempt to merge changes to the duplicated data in
the abstract string.) Nevertheless, they suffice for many practical
examples. For example, when f is an aggregation operator such as
count count,6 discarding the aggregate valued while retaining the
other copy often makes sense (see Section 8).

So much for primitive q-lenses; for the rest of this section,
let us consider some primitive canonizers. The first is a generic
combinator that builds a canonizer from a function mapping a set
of structures onto a “normalized” subset of itself.

6 In Boomerang, the function count R takes a string u belonging to R∗ and
returns the number of substrings belonging to R that u can be split into.

f ∈ C → C0 C0 ⊆ C ∀c ∈ C0. f c = c

normalize f ∈ C C0/=

canonize c = f c
choose c = c

The canonize component is the given function f , and the choose
component is the identity function. The side conditions on f and
C0 ⊂ C ensure that RECANONIZE holds.

Using normalize, we can build a canonizer to put substrings
of a larger string in sorted order. To lighten the presentation, we
describe the binary version; the generalization to an n-ary sort is
straightforward. Let C1 and C2 be regular languages that can be
unambiguously concatenated in either order and such that C1·C2∩
C2·C1 = ∅. Let f C1 C2 be the function that takes a string
c1·c2 ∈ C1·C2 or c2·c1 ∈ C2·C1 and produces c1·c2 in either
case. It is easy to check that this function satisfies the side condition
in the typing rule for normalize with C0 = C1·C2, since already
sorted strings map to themselves. The canonizer sort C1 C2 is
defined as normalize (f C1 C2). It has the canonizer type

(C1·C2 ∪ C2·C1) C1·C2/=.

(We consider a variant of the sorting primitive in Section 6.)
It is occasionally necessary to introduce special primitives to

meet the requirements of particular applications. The next primitive
canonizer, columnize, is one such. It was designed specifically for
processing the UniProt format described in Section 8, wrapping
long lines of text by replacing spaces with newlines so that they
do not spill over into the margin. However, it is easy to imagine
columnize being handy in other situations—for processing textual
documents or other kinds of string data presented in fixed-width
formats.

(Σ∗·nl·Σ∗) ∩ C0 = ∅
C = [(s ∪ nl)/s]C0

columnize C0 s nl ∈ C C0/=

canonize : replace nl with s globally
choose : replace s with nl as needed to wrap long lines

It takes as arguments a set of strings C0, a “space” string s, and
a “newline” string nl. Its canonize component replaces every oc-
currence of the newline string with space; the choose component
wraps long lines by replacing some of their spaces with newlines.
The typing rule for columnize requires that nl not appear in strings
in C0 and assigns to the entire canonizer the type C C0/=,
where C is obtained by widening C0 so that nl may appear any-
where that s may.

6. Loosening Lens Types with Canonizers
We were originally motivated to study q-lenses by the need to
work “modulo insignificant details” when writing lenses to trans-
form real-world data formats. However, as we began using our lan-
guage to build larger examples, we discovered a significant—and
completely unexpected—additional benefit: q-lenses allow us to
assign many bidirectional transformations coarser types than the
strict lens laws permit, easing some serious tractability concerns
that arise in languages with extremely precise type systems.

The need for precise types stems from a fundamental choice
in our design: the put component of every lens is a total function.
Totality is attractive to users of lenses, because it guarantees that
any valid abstract structure can be put back with any valid concrete
structure—i.e., the lens can handle an arbitrary edit to the abstract



view, as long as it stays within the specified type.7 However, for
exactly the same reason, totality makes it difficult to design lens
primitives—the put function must do something reasonable with
every pair of valid abstract and concrete structures, and the only
way that a lens can avoid having to handle certain structures is by
excluding them from its type. Thus, in practice, a lens language
with a sufficiently rich set of primitives has to be equipped with a
correspondingly rich set of types.

Working in a language with very precise types has many advan-
tages. For example, Boomerang’s type checker, which is based on
regular languages, uncovered a subtle source of ambiguity in the
UniProt ASCII format. But it also imposes burdens—both on pro-
grammers, who must write programs to satisfy a very picky type
checker, and on implementations, where mechanizing these precise
analyses often requires expensive algorithms. Fortunately, the in-
creased flexibility of q-lenses and canonizers can be exploited to
loosen types and alleviate these burdens. We give three examples.

The first example involves the columnize transformation, which
was defined as a primitive canonizer in Section 5. The mappings
between long lines of text and blocks of well-wrapped lines form a
bijection and so trivially satisfy the lens laws. Thus, we could also
define columnize as a basic lens. However, the type of this lens,
which describes the set of minimally-split, well-wrapped blocks
(i.e., sequences of lines that must be broken exactly at the margin
column, or ones that must be broken at the column just before the
margin because the next two characters are not spaces, or lines
that must be broken at the second-to-last column..., and so on) is
horribly complicated and cumbersome—both for programmers and
in implementations. We could loosen the type to match the one we
gave to the columnize canonizer—i.e., to arbitrary blocks of text,
including blocks containing “extra” newlines—but changing the
type in this way also requires changing the put function in order to
avoid violating the GETPUT law. In particular, if we take a concrete
block of text containing some extra newlines, map it to an abstract
line by get, and immediately map it back to a concrete block by put,
then the strict version of GETPUT stipulates that all of the extra
newlines must be restored exactly. Thus, the put function cannot
ignore its concrete argument and insert the minimal number of
newlines needed to avoid spilling over into the margin; it must also
examine the concrete string and restore any extra newlines from
it. Formulating columnize as a canonizer rather than a lens, avoids
both of these complications. By exploiting the additional flexibility
permitted by the canonizer law, we obtain a primitive whose type
and behavior are both simple.

The second example of a transformation whose type can be
simplified using canonizers is sort. As with columnize, it is possible
to define a basic lens version of sort. To sort C1...Ck, we form the
union of lenses that recognize the concatenations of permutations
of the Cis, and apply the appropriate permutation to put them in
sorted order. This lens has the behavior we want, but its type on
the concrete side is the set of all concatenations of permutations of
Cis—a type whose size grows as the factorial of k! As the number
of languages being sorted increases, the size of this type rapidly
becomes impractical. Fortunately, this combinatorial blowup can
be avoided by widening the concrete type to (C1 | ... | Cn)∗. This
type overapproximates the set of strings that we actually want to
sort, but has an enormously more compact representation—one that
grows linearly with k. Of course, having widened the type in this
way, we also need to extend the canonizer’s functional components
to handle this larger set of strings. In particular, we must extend
canonize to handle the case where several or no substrings belong
to a given Ri. A reasonable choice, which works well for many

7 In the terminology of Hegner (1990), the abstract structures are “closed
views.”

examples including sorting XML attributes and BibTeX fields, is to
simply discard any extras and fill in any missing ones with defaults.

The final example involves the duplication operator. Consider
the simple instance dup1 (copy E) ((copy E).get) whose get
function maps strings e ∈ [[E]] to e·e (assume the concatenation
of E with itself is unambiguous). There is a pure basic lens with
this behavior, but but in order to satisfy PUTGET, the domain
of its put component must be restricted to abstract strings where
the two copies of e are equal. (If it were defined on e·e′ with
e different from e′, then no matter what concrete string e′′ it
produced, the get function would produce a string e′′·e′′, violating
PUTGET.) Thus, as a basic lens, the type of dup1 must include an
equality constraint in its abstract component: [[E]] ⇐⇒ {e·e′ ∈
[[E]]·[[E]] | e = e′}. Unfortunately, this type is not regular and
cannot be expressed in Boomerang’s type system. Since we were
not prepared to deal with these equality constraints in our type
system, we were forced to exclude dup1 as a primitive in earlier
versions of Boomerang. However, if we take dup1 as a q-lens,
we can assign it a more flexible type with no equality constraint:
[[E]]/= ⇐⇒ [[E]]·[[E]]/=·Tot([[E]]). Executing a round-trip via
put and get on an abstract string e·e′ with e different from e′ is
no problem. Although the result, e·e′, and original string e·e are
different, they are related by =·Tot([[E]]). Hence, the PUTGET law
is satisfied.

7. Typechecking
The typing rules for some of the q-lens combinators—including left
and right quotienting, sequential composition, and union—place
constraints on the equivalence relation components in the types of
the q-lenses they combine. For example, to check that an instance
of sequential composition l ;k is well formed, we need to verify that
l’s abstract equivalence relation and k’s concrete one are identical.
In this section, we describe two different approaches to implement-
ing these rules. The first uses a coarse analysis, simply classifying
equivalences according to whether they are or are not the equality
relation. Surprisingly, this very simple analysis captures our most
common programming idioms and turns out to be sufficient for all
of the applications we have built. The second approach is much
more refined: it represents equivalence relations by rational func-
tions that induce them. This works, in principle, for a large class of
equivalence relations including most of our canonizers (except for
those that do reordering). However, it appears too expensive to be
useful in practice.

The first type system is based on two simple observations: first,
that most q-lenses originate as lifted basic lenses, and therefore
have types whose equivalence relations are both equality; and sec-
ond, that equality is preserved by many of our combinators includ-
ing all of the rational operators, permute, sequential composition,
and even (on the non-quotiented side) the left and right quotient op-
erators. These observations suggest a coarse classification of equiv-
alence relations into two sorts:

τ ::= Identity | Any

We can now restrict the typing rules for our combinators to only al-
low sequential composition, quotienting, and union of types whose
equivalence relation type is Identity . Although this restriction
seems draconian (it disallows many q-lenses that are valid accord-
ing to the typing rules presented in earlier sections), it turns out
to be surprisingly successful in practice—we have not needed any-
thing more to write many thousands of lines of demo applications.
The reasons for this are twofold. First, is that it allows two q-lenses
to be composed, whenever the uses of lquot are all in the lens on
the left and the uses of rquot on the right, a very common case.
And second, it allows arbitrary q-lenses (with any equivalences) to
be concatenated as long as the result is not further composed, quo-



tiented, or unioned—another very natural idiom. This is the type-
checking algorithm currently implemented in Boomerang.

We can (at least in theory) go further by replacing the Identity
sort with a tag carrying an arbitrary rational function f (i.e., a
function computable by a finite state transducer):

τ ::= Rational of f | Any

Equivalence relations induced by rational functions are a large class
that includes nearly all of the equivalence relations that can be
formed using our combinators—everything except q-lenses con-
structed from canonizers based on sort and permute. Moreover, we
can decide equivalence for these relations.

7.1 Definition: Let f ∈ A −→ B be a rational function. Denote
by ∼f the relation {(x, y) ∈ A×A | f(x) = f(y)}.

7.2 Lemma: Let f ∈ A −→ B and g ∈ A −→ C be rational
and surjective functions. Define a rational relation h ⊆ C × B as
(f ◦ g−1). Then (∼g ⊆ ∼f ) iff h is functional.

7.3 Corollary: Let f and g be rational functions. It is decidable
whether ∼f = ∼g .

Proof: Recall that rational relations are closed under composition
and inverse. Observe that ∼f = ∼g iff both f ◦ g−1 and g ◦
f−1 are functional. Since these are both rational relations, the
result follows using the decidability of functionality for rational
relations (Blattner 1977). �

The condition mentioned in union can also be decided using an
elementary construction on rational functions. Thus, this finer sys-
tem gives decidable type checking for a much larger set of q-lenses.
Unfortunately, the constructions involved seem quite expensive to
implement.

We are currently investigating the decidability of extensions
capable of handling our full set of canonizers, including those that
permute and sort data.

8. Experience: Q-lenses for Genomic Data
In this section we describe our experiences using Boomerang to
implement a q-lens that maps between XML and ASCII versions
of the UniProtKB/Swiss-Prot protein sequence database. We de-
scribed a preliminary version of this lens in previous work (Bohan-
non et al. 2008), but while that lens handled the essential data in
each format, it did not handle the full complexity of either. On the
XML side, it only handled databases in a certain canonical form—
e.g., with attributes in a particular order. On the ASCII side, it did
not conform to the UniProt conventions for wrapping long lines,
and it did not handle duplicated or aggregated data. We initially
considered implementing custom canonizers (in OCaml) for the
ASCII format, but this turned out to be quite complicated due to
the slightly different formatting details used to represent lines for
various kinds of data. Re-engineering this program as a q-lens was a
big improvement. Our new version, about 4200 lines of Boomerang
code, handles both formats fully, using just the canonizer and q-
lens primitives described above. In this section we sketch some
highlights from this development, focusing on interesting uses of
canonizers. Along the way, we describe our generic XML library,
which encapsulates many details related to processing and trans-
forming XML trees bidirectionally.

Let’s start with a very simple lens that gives a taste of program-
ming with q-lenses in Boomerang, focusing on the canonization of
XML trees. In the XML presentation of UniProt databases, patent
citations are represented as XML elements with three attributes:

<citation type="patent" date="1990-09-20"
number="WO9010703"/>

In ASCII, they appear as RL lines:

RL Patent number WO9010703, 20-SEP-1990.

The bidirectional between these formats is essentially bijective—
the patent number can be copied verbatim from the attribute to the
line, and the date just needs to be transformed from YYYY-MM-DD
to DD-MMM-YYYY—but, because the formatting of the element may
include extra whitespace and the attributes may appear in any order,
building a lens that maps between all valid representations of patent
citations in XML and ASCII formats is more complicated than it
might first seem.

A bad choice (the only choice available with just basic lenses)
would be to treat the whitespace and the order of attributes as data
that should be explicitly discarded by the get function and restored
by the put. This complicates the lens, since it then has to explicitly
manage all this irrelevant data. Slightly better would be to write
a canonizer that standardizes the representation of the XML tree
and compose this with a lens that operates on the canonized data
to produce the ASCII form. But we can do even better by mixing
together the functions of this canonizer and lens in a single q-
lens. (The code uses some library and auxiliary functions that are
described later.)

let patent_xml : lens =
ins "RL " .
Xml.attr3_elt_no_kids NL2 "citation"

"type" ("patent" <-> "Patent number" . space)
"number" (escaped_pcdata . comma . space)
"date" date .

dot

This lens transforms concrete XML to abstract ASCII in a single
pass. The first line inserts the RL tag and spaces into the ASCII
format. The second line is a library function from the Xml mod-
ule that encapsulates details related to the processing of XML ele-
ments. The first argument, a string NL2, is a constant representing
the second level of indentation. It is passed as an argument to an
qdel instance that constructs the leading whitespace for the XML
element in the reverse direction. The second argument, citation,
is the name of the element. The remaining arguments are the names
of the attributes and the lenses used for processing their corre-
sponding values. These are given in canonical order. Internally,
the attr3_elt_no_kids function sorts the attributes to put them
into this order. The space, comma, and dot lenses insert the in-
dicated characters; escaped_pcdata handles unescaping of PC-
DATA; date performs the bijective transformation on dates illus-
trated above.

The next fragment demonstrates quotienting on the abstract
ASCII side. In XML, taxonomic lineages of source organisms are
represented like this:

<lineage>
<taxon>Eukaryota</taxon>
<taxon>Lobosea</taxon>
<taxon>Euamoebida</taxon>
<taxon>Amoebidae</taxon>
<taxon>Amoeba</taxon>

</lineage>

In ASCII, these are flattened onto lines tagged with OC:

OC Eukaryota; Lobosea; Euamoebida; Amoebidae; Amoeba.

The code that converts between these formats is:

let oc_taxon : lens =
Xml.pcdata_elt NL3 "taxon" esc_pcdata in

let oc_xml : lens =
ins "OC " .
Xml.elt NL2 "lineage"



(iter_with_sep oc_taxon (semi . space)) .
dot

The first lens, oc_taxon, processes a single taxon element using a
library function pcdata_elt that extracts encapsulated PCDATA
from an element. As in the previous example, the NL3 argument
is a constant representing canonical whitespace. The second lens,
oc_xml, processes a lineage element. It inserts the OC tag into the
ASCII line and then processes the children of the lineage element
using a generic library function iter_with_sep that iterates its
first argument using Kleene-star, and inserts its second argument
between iterations. The dot lens terminates the line.

The lineage for amoeba is compact enough to fit onto a single
OC line, but most lineages are not:

OC Eukaryota; Metazoa; Chordata; Craniata; Vertebrata;
OC Euteleostomi; Mammalia; Eutheria; Euarchontoglires;
OC Primates; Haplorrhini; Catarrhini; Hominidae; Homo.

The q-lens that maps between single-line OC strings produced by
oc_xml and the final line-wrapped format:

let oc_q : canonizer =
columnize (atype oc_xml) " " "\nOC "

let oc_line : lens = rquot oc_xml oc_q

(The atype primitive extracts the abstract part of the type of a q-
lens; ctype, used below, extracts the concrete part.)

Lastly, let us look at two instances where data is duplicated. In a
few places in the UniProt database, there is data that is represented
just once on the XML side but several times on the ASCII side.
For example, the count of the number of amino acids in the actual
protein sequence for an entry is listed as an attribute in XML

<sequence length="262" ...>

but appears twice in ASCII, in the ID line...

ID GRAA_HUMAN Reviewed; 262 AA.

...and again in the SQ line:

SQ SEQUENCE 262 AA; 28969 MW;

Using dup2, we can write a lens that copies the data from the XML
attribute and onto both lines in the ASCII format. The backwards
direction of dup2 discards the copy on the ID line, a reasonable
policy for this application.

Another place where duplication is needed is when data is
aggregated. The ASCII format of the information about alternative
splicings of the gene is

CC -!- ALTERNATIVE PRODUCTS:
CC Event=Alternative initiation; Named isoforms=2;
CC Name=Long; Synonyms=Cell surface;
CC IsoId=P08037-1; Sequence=Displayed;
CC Name=Short; Synonyms=Golgi complex;
CC IsoId=P08037-2; Sequence=VSP_018801;

where the Named isoforms field in the second line is the count
of the number of Name blocks that follow below. The Boomerang
code that generates these lines uses dup2 and count to generate the
appropriate integer in the get direction; in the reverse direction, it
simply discards the integer generated by count.

9. Related Work
The idea of bidirectional transformations that work up to an equiva-
lence relation is quite general. In this section, we exploit the frame-
work of quotient lenses to illuminate some previously proposed
systems—XSugar (Brabrand et al. 2007), biXid (Kawanaka and
Hosoya 2006), and X/Inv (Hu et al. 2004). The comparison with
XSugar is the most interesting, and we carry it out in detail, show-

ing how a core fragment of XSugar can be translated into our nota-
tion. The others are discussed more briefly.

9.1 XSugar
XSugar is a language for writing conversions between XML and
ASCII formats. Conversions are specified using pairs of intertwined
grammars, in which the nonterminal names are shared and the
right-hand side of each production specifies both a string and an
XML representation (separated by =). For instance, our composers
example from the introduction would be written as follows:

db : [comps cs] = <composers> [comps cs] </>
comps : [comp c] [comps cs] = [comp c] [comps cs]

: =
comp : [Name n] "," [Birth b] "-" [Death d] =

<composer>
<name> [Name n] </>
<years birth=[Birth b] death=[Death d]/>
<nationality> [Nationality] </> </>

(The pattern “: = ” used in the third line indicates that the list
of composers can be empty in both formats.) XSugar programs
transform strings by parsing them according to one grammar and
pretty printing the resulting parse tree using the other grammar as
a template. Additionally, on the XML side, the representation of
trees is standardized using a generic canonizer.

Well-formed XSugar programs are guaranteed to be bijective
modulo an equivalence relation that captures XML normalization,
replacement of items mentioned on just one side of the grammar
with defaults, and reordering of order-insensitive data. Since every
bijection is a lens (semantically), every XSugar program is trivially
a q-lens. However, it is not immediately clear that there should be
a connection between XSugar and q-lenses at the level of syntax,
since XSugar programs are specified using variables and recursion,
while q-lenses in our notation are written using “point-free” com-
binators and no recursion.

To make the connection, we describe how to compile a core
subset of XSugar into Boomerang. First, we identify a syntactic
restriction on XSugar grammars that ensures regularity. Second,
we compile the individual patterns used in XSugar grammars to
lenses. Third, we apply a standard rewriting technique on grammars
to eliminate recursion. And finally, we quotient the resulting lens by
a canonizer that standardizes the representation of XML trees.

XSugar productions are given by the following grammar

p ::= r : q1 : ... : qk

q ::= α∗ = β∗

α ::= "s" | [R] | [r z]
β ::= α | <t(n=α)∗>β∗</>

where productions p contain a non-terminal r and a set of pat-
terns q1 to qk, each of the form α∗ = β∗. The αs describe the
ASCII format and the βs describe the XML format. The sym-
bols used in patterns include literals "s", unnamed regular expres-
sions [R], non-terminals binding variables [r z], and XML ele-
ments <t n1=α1...nk=αk>β

∗</>. (The full XSugar language also
includes several extensions, including XML namespaces, prece-
dence declarations, and unordered productions. We discuss un-
ordered productions below and ignore the others.) Well-formed
XSugar programs satisfy two syntactic properties: every variable
(i.e., z in [r z]) occurring in a pattern is used exactly once on each
side of the pattern, and productions are unambiguous. (Ambiguity
of context-free languages is undecidable, but the XSugar system
employs a conservative algorithm that is said to perform well in
practice.)



The first step in our compilation imposes an additional syntac-
tic restriction on grammars to ensure regularity.8 Recall that a lan-
guage is regular iff it can be defined by a right-linear grammar.
However, requiring that every non-terminal appear in the right-
most position is clunky and needlessly restrictive; we can use a
slightly less draconian restriction in which productions are sorted
into mutually recursive groups of rules. Within each group, recur-
sion must be right-linear, but references to non-terminals defined
in earlier (in the order of the topological sort) recursion groups
may be used freely. It turns out that, since XSugar patterns are
linear in their variables, imposing right-linearity separately on the
ASCII and XML portions of patterns ensures a kind of joint right-
recursion: every pattern has one of two forms

α1...αk =β1...βl or
α1...αk [ri z] =β1...βl [ri z],

where each non-terminal except for the final, optional [ri z] refers
to a rule defined in a preceding recursion group. This restriction
rules out many XSugar programs—in particular, it obviously can-
not handle XML with recursive schemas—but still captures a large
class of useful transformations, including most of the demos in the
XSugar distribution.

Next, we compile patterns to lenses. There are two cases. For
non-recursive patterns, we construct a lens that maps between the
XML and ASCII patterns using permute . For example, the comp
rule in the example compiles to the lens

permute [1;2;3;4;5;6;7]
[("<composer><name>" <-> ""); (copy Name);
("</><years birth=" <-> ","); (copy Birth);
(" death=" <-> "-"); (copy Death);
(("/><nationality> . Nationality . "</></>") <-> "")]

where Name, Birth, and Death are bound to the appropriate regu-
lar expressions and [1;2;3;4;5;6;7] represents the identity per-
mutation. Note that since both sides of a pattern may contain regu-
lar expressions, it is essential that the <-> be a q-lens (the basic lens
variant of <-> only allows a string on the abstract side.) For recur-
sive patterns, we compile the prefix of the pattern in the same way,
but associate it with the final non-terminal in the right-most posi-
tion. The result, after compiling each pattern, is a grammar in which
the terminal symbols are lenses and any recursive non-terminals
are right-recursive. For example, the comps rule compiles to the
following:

comps : (permute [1] [comp]) comps
: permute []

(The second lens, a 0-ary permutation, is equivalent to copy ε.)
The final step in the construction is to replace right-recursion

by iteration. This transformation is standard (see the long version
of the paper for details). For the composers example, it produces
the following lenses (after replacing trivial permutations with con-
catenations):

let comp : lens =
("<composer><name>" <-> """) . (copy Name) .
("</><years birth=" <-> ",") . (copy Birth) .
(" death=" <-> "-") . (copy Death) .
("/><nationality>" . Nationality . "</></>" <-> """)

8 This is essential—while full XSugar can be used to describe context-free
languages, the types of string lenses are always regular, so without this
restriction we would be trying to compile a context-free formalism into a
regular one, which is clearly not possible! Note that we are not claiming that
our q-lens syntax subsumes all of the functionality of XSugar, but rather
illustrating the generality of our account of bidirectional programming
modulo equivalences by drawing a connection with a completely different
style of syntax for bidirectional programs.

let comps : lens = comp* . copy ""

let db : lens =
(del "<composers>" <-> "") . comps . ("</>" <-> "")

One additional restriction of the translation should be mentioned.
The typing rules for q-lenses check unambiguity locally—every
concatenation and iteration—and demand that unions be disjoint.
Our compilation only produces well-typed lenses for grammars that
are “locally unambiguous” and “locally disjoint” in this sense.

The lenses produced by this compilation expect XML trees in
a canonical form. To finish the job, we need to build a canonizer
that standardizes the representation of input trees. We can do this
with an analogous compilation that only uses the XML side of the
grammar. For example, a canonizer for comp is

del WS . copy "<composer>" . del WS .
copy "<name>" . copy Name . "</name>" <-> "</>" .
del WS . copy "<years" . del WS .
sort2
(ins " " . copy ("birth=\"" . Birth . "\"") .

del WS)
(ins " " . copy ("death=\"" . Death . "\"") .

del WS) .
copy "/>" . del WS .
copy "<nationality>" . copy Nationality .
"</nationality>" <-> "</>"

where we have elided the coercions from q-lenses to canonizers,
and where WS indicates whitespace. The final q-lens is built by
quotienting the compiled lens by this canonizer.

XSugar also supports productions where patterns are tagged as
unordered. These result in transformations that canonize order. We
believe that an extension to unordered patterns is feasible using
additional sort primitives in the compiled canonizer, but we leave
this extension as future work.

9.2 biXid
The biXid language (Kawanaka and Hosoya 2006) specifies bidi-
rectional conversions between pairs of XML documents. As in
XSugar, biXid transformations are specified using pairs of gram-
mars, but biXid grammars may be ambiguous and may contain
non-linear variable bindings. These features are central to biXid’s
design. They are used critically, for example, in transformations
such as the following, which converts between different represen-
tations of browser bookmark files.

relation contents_reorder =
(var nb | var nf)* <-> (var xb)*, (var xf)*

where bookmark(nb, xb), folder(nf,xf)

One transformation, read from right to left, parses a sequences of
bookmarks (nb) or folders (nf), interleaved in any order, converts
them to the other format using using bookmark and folder trans-
formations, and constructs a sequence in which the bookmarks (xb)
appear before the folders (xf). The other transformation, read from
left to right, parses a sequence consisting of bookmarks followed by
folders, converts each of these to the first format, and then produces
a sequence where bookmarks and folders may be freely interleaved
(in fact, the biXid implementation does preserve the order of parsed
items—i.e., the constructed sequence has bookmarks followed by
folders—but this behavior is not forced by the semantics.) Ambi-
guity is also used in biXid to generate data that only appears on one
side (analogous to XSugar’s “unnamed” items [R]) and to handle
data that may be represented in multiple ways—e.g., string values
that can be placed either in an attribute or as PCDATA in a nested
element.

In principle, we could identify a syntactically restricted subset
of biXid, and compile it to Boomerang like we did for XSugar.



However, since the computation models are so different—in partic-
ular, ambiguity is fundamental to biXid—the restrictions needed
to make this work would be heavy and would likely render the
comparison uninteresting. Instead, we discuss informally how each
of the idioms requiring ambiguity, as identified by the designers
of biXid, can be implemented instead using q-lenses and canoniz-
ers. Ambiguity arising from “freedom of ordering”, as in the book-
marks transformation, can be handled using a q-lens that canonizes
the order of the interleaved pattern using sort. Ambiguity due to
unused data can be handled using combinators like qins, qdel and
E ↔ D. Finally, ambiguity due to multiple representations of data
can be handled by canonizing the various representations; for each
of the examples discussed in the biXid paper, these canonizers are
simple and local transformations.

9.3 Languages with Duplication
Bidirectional languages capable of duplicating data in the get di-
rection, either by explicit combinators or implicitly by non-linear
uses of variables, have been the focus of recent work by the Pro-
grammable Structured Documents group at Tokyo.

In early work, Mu et al. (2004) designed an injective language
called Inv with a primitive duplication combinator and demon-
strated that it satisfies variants of the basic lens laws—our GETPUT
and the more relaxed PUTGETPUT law that we showed in the in-
troduction. A key aspect of their approach is that transformations
manipulate tagged values that carry edit annotations. The idea is
that, using these annotations, the put direction of the duplication
operator can check if a copied value has been modified (by look-
ing for edit tags in the data), and, if so, incorporate these changes
in its result. The semantics of other primitives in Inv are general-
ized to propagate tagged values. In particular, using a synchroniza-
tion primitive for list values, they demonstrate that it is possible to
achieve a sophisticated backwards semantics for several intricate
operations on lists, even in the presence of duplication. Inv was
later used as the foundation for a high-level bidirectional language
for tree transformations, called X, and a structured document edi-
tor (Hu et al. 2004; Mu et al. 2006).

A second line of work from the same group investigates bidirec-
tional languages with variable binding. Languages that allow un-
restricted occurrences of variables implicitly support duplication,
since data can be copied by programs that use a variable several
times. The goal of this work is to develop a bidirectional semantics
for XQuery (Liu et al. 2007). As in the earlier work, they propose
relaxed variants of the lens laws and develop a semantics based on
sophisticated propagation of annotated values.

One possible connection between their work and q-lenses is an
informal condition proposed in the journal version of Hu et al.
(2004). This is formulated in terms of an ordering on edited val-
ues that captures when one value is “more edited” than another.
They propose strengthening the laws to require that composing
put and get produce an abstract structure that is more edited in
this sense, calling this property update preservation. We hope to
investigate the relationship between our q-lens PUTGET law and
their PUTGETPUT plus update preservation. (The comparison may
prove difficult to make, however, because our framework is “state
based”—the put function only sees the state of the data structure
resulting from some set of edits, not the edits themselves—while
theirs assumes an “operation-based” world in which the locations
and effects of edit operations are explicitly indicated in the data.)

10. Conclusion
Q-lenses generalize basic lenses by allowing their forward and
backward transformations to treat certain data as “ignorable.” This
extension, while modest at the semantic level, turns out have
an elegant syntactic story based on canonizers and quotienting

operators—a story that is both parsimonious (the same core primi-
tives are used as lenses and as canonizers) and compositional (un-
like previous approaches, where canonization is kept at the edges of
transformations, our canonizers can be arbitrarily interleaved with
the processing of data). Moreover, the additional flexibility offered
by q-lenses make it possible to define many useful primitives such
as duplication and sorting.

Our experience suggests that canonizers and q-lenses are essen-
tial for handling the details of real-world ad hoc data formats. Al-
though many of these details appear minor at first sight, attempting
to sidestep them makes the transformations we write essentially
useless. Quotient lenses are the critical piece of technology that
makes it possible to build precisely the bidirectional transforma-
tions we want. Thus, q-lenses and canonizers fill a much-needed
gap between theory and practice of bidirectional languages.

Naturally, there are still many interesting issues left to be inves-
tigated. On the theoretical side, we would like to understand better
how to characterize the set of programs for which the simple, coarse
type analysis described in Section 7 is sufficient, and whether this
simple analysis can be refined to admit more programs without go-
ing as far as the very expensive analysis in terms of rational func-
tions. On the engineering side, we are working on scaling up the
Boomerang implementation to handle large datasets such as full-
size (1Gb) UniProt databases. In particular, we believe it would be
useful to have an algebraic theory of program equivalence for q-
lenses as a basis for an optimizing compiler.
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