
Under consideration for publication in J. Functional Programming 1

Warnings for pattern matching

LUC MARANGET
Inria Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

(e-mail: Luc.Maranget@inria.fr)

Abstract

We examine the ML pattern-matching anomalies of useless clauses and non-exhaustive
matches. We state the definition of these anomalies, building upon pattern matching se-
mantics, and propose a simple algorithm to detect them. We have integrated the algorithm
in the Objective Caml compiler, but we show that the same algorithm is also usable in a
non-strict language such as Haskell. Or-patterns are considered for both strict and non-
strict languages.

1 Introduction

Pattern matching is one of the key features of the ML family of programing lan-
guages. Pattern matching favors reasoning (and programming) on a case by case
basis. This style of reasoning calls for two basic checks: Are all cases considered?
And, is any case subsumed by some others? In pattern matching terms, one wishes
to write exhaustive pattern matching expressions whose clauses all are useful.
ML compilers should normally flag pattern matching expressions that do not com-
ply with those two basic assumptions or, in other words, expressions that exhibit
such anomalies. By doing so, compilers provide an important help to programmers
in detecting errors.

Techniques for compiling pattern matching fall into two classes, depending whether
they target decision tress or backtracking automata. If we compare the two in their
ability to provide diagnostics, the decision tree technique has one advantage: checks
can be carried on the decision trees, since decision trees are complete and include no
dead code. By contrast, backtracking automata cannot be easily analyzed. However,
for reasons beyond the scope of this paper (Le Fessant & Maranget, 2001), some
compiler designers choose the backtracking technique. This is, for instance, the case
of Objective Caml (Leroy et al., 2003) and our initial motivation was to carry out
the pattern matching checks for this compiler. Our initial idea was of course to use
a simplified version of compilation to decision trees. However, it appears that check-
ing pattern matching requires much less work than compiling pattern matching, up
to the point that our final algorithm can be considered as more than just a stripped
down version of compilation to decision trees. Furthermore, studying checks per se,
independently from compilation, finally yields a very general solution: our pattern
matching analyzer gives valid answers for both ML and Haskell, whose semantics
are quite different.

2 Luc Maranget

We divide our study into two parts. In part 1, we define pattern matching anoma-
lies, introduce an algorithm that detects both anomalies, and prove the correctness
of our algorithm with respect to the strict, lazy, and Haskell semantics of pattern
matching. Part 2 describes the implementation of our algorithm. That is, we show
how to refine and adapt our algorithm to the initial, practical, question of providing
precise warnings to users. More specifically, in Section 5 we show how to strengthen
a diagnostic of non-exhaustiveness by supplying examples of non-matching values.
Then, in Section 6, we examine useless pattern detection, an important refinement
of simple useless clause detection. This refinement naturally arises in the presence
of or-patterns, a convenient feature to group clauses with identical actions. Finally,
we analyze the efficiency of our implementation and conclude.

PART ONE

An algorithm for detecting the anomalies

2 Patterns, values, etc.

Most ML values can be defined as ground terms over some signatures. Signatures
are introduced by data type definitions. For instance1:

type mylist = Nil | One of int | Cons of int * mylist

Values of type mylist are built from three constructors Nil (of zero arity, i.e.
constant constructor), One (unary) and Cons (binary). Most of ML values can be
expressed in that setting. Booleans are a two (constant) constructor type, the inte-
ger type is defined as possessing infinitely many (or 231) constant constructors, pairs
are a type with a sole binary constructor (written with the infix operator “,”), etc.

More generally, our values are defined as (ground) terms over the constructor
signatures. We make them explicit as follows:

v ::= (Defined) values
c(v1, v2, . . . , va) a ≥ 0

In examples, we systematically omit () after constants constructors, so as to match
Objective Caml syntax (we write Nil, true, 0, etc.). This simple definition of values
as terms suffices to our purpose of studying pattern matching anomalies in call-by-
value ML. However,

• A proper semantics for pattern matching in a lazy language should define
partial values, which we do in Section 4.

• Although many values, including integers, strings, can be seen as terms built
over known signatures (maybe of infinite size), not all values can be seen
as such. For instance, consider functions or values of a type that exhibits
parametric polymorphism. However, we are not interested in the exact nature
of all the types and values of ML. Instead, we shall rely on the following

1 In this paper, we use Objective Caml syntax

Warnings 3

informal axiom: given any type t, we assume the existence of at least one
value that possesses t as a type.

Strictly speaking, the axiom does not hold, at least in Caml where one can define
a type with no values in it:

type t_empty

Then we can define the following data type and matching:

type t = C of t_empty

let f x = match x with C y -> y

Semantically the above clause C y -> y is useless: no value exists that matches the
pattern C y. But our checker will not flag the clause as such, since it assumes the
existence of a value of type t_empty. Similarily, our checker will flag the following
match as non-exhaustive:

type tt = A | B of t_empty

let g x = match x with A -> true

The non-exhaustiveness diagnostic is wrong, strictly speaking, since there does not
exist a value B(v), where v has type t_empty. As a consequence, the match above
matches all possible values of type tt. We view this issue as a minor one, considering
that the non-empty type axiom holds for the vast majority of types.

Patterns are used to discriminate amongst values. More precisely a pattern de-
scribes a set of values with a common prefix. That is, patterns are terms with
variables and a given pattern p describes its instances σ(p) where σ ranges over
substitutions. However, we wish to stay close to programming practice and define
patterns as follows:

p ::= Patterns
wildcard

c(p1, p2, . . . , pa) constructed pattern a ≥ 0
(p1 | p2) or-pattern

Variables in fact do not appear in our definition of patterns. For our purpose, they
can be replaced by the wildcard symbol “ ”. One can see wildcards as variables
whose exact names are irrelevant. Additionally, our patterns feature “or-patterns”
as offered by modern implementations of the ML language.

Furthermore, it is important to remark that patterns are type correct, that is,
we assume that patterns follow the sorting discipline enforced by some declarations
of data types. In practice, the Objective Caml compiler performs pattern matching
analysis after the typing phase, so that patterns do hold type annotations. In our
formal treatment we avoid making those annotations explicit everywhere, this would
be quite cumbersome and of little explanatory value. However, when appropriate,
we sometime show type annotation as (p : t).

In the usual theory of terms, a term v (of type t) is an instance of a pattern p

(of type t) when the pattern describes the prefix of the term. That is, when there
exists a substitution σ such that σ(p) = v. In the case of linear patterns, where no

4 Luc Maranget

variable appears more than once in a given pattern, the instance relation can be
defined inductively and the exact names of variables are irrelevant.

Definition 1 (Instance relation)
Given any pattern p and a value v such that p and v are of a common type, the
instance relation p ¹ v is defined as follows.

¹ v

(p1 | p2) ¹ v iff p1 ¹ v or p2 ¹ v

c(p1, . . . , pa) ¹ c(v1, . . . , va) iff (p1 · · · pa) ¹ (v1 · · · va)
(p1 · · · pa) ¹ (v1 · · · va) iff pi ¹ vi, for all i ∈ [1 . . . a]

It is important to notice again that pattern matching is defined in a typed context.
In particular ¹ v does not holds for any value v, but only for value v of the
specified type t, which can be made explicit with the notation (: t). Moreover, as
a consequence of our axiom “types are not empty”, any pattern p admits at least
one instance.

In Definition 1 above we used the very convenient notations ~p = (p1 · · · pa) and
~v = (v1 · · · va). Notations ~p and ~v stand for (row) vectors of patterns and values
respectively. Observe that we just defined the instance relation on vectors. We shall
also consider matrices of patterns P = (pi

j), of size m × n where m is P height
(number of rows) and n is P width (number of columns). Boundary cases deserve
a few notations: matrices with no row (m = 0 and n ≥ 0) are written ∅; while
non-empty matrices of empty rows (m > 0 and n = 0) are written

()
. Finally, we

sometime denote row number i of matrix P as ~p i.
We recall the definition of ML pattern matching in this convenient framework of

matrices and vectors.

Definition 2 (ML pattern matching)
Let P be a pattern matrix and ~v = (v1 · · · vn) be a value vector, where n is equal
to the width of P . Row number i in P filters ~v, if and only if the following two
conditions hold.

1. (pi
1 · · · pi

n) ¹ (v1 · · · vn)
2. ∀j < i, (pj

1 · · · pj
n) 6¹ (v1 · · · vn)

We shall also say that ~v matches row number i in P .

In other words, vector ~v matches the first row it is an instance of, starting from
the top of matrix P . Again, typing is implicit: all rows in P and ~v must be of a
common type.

Example 1
Consider the following matrix P of size 5×2, and whose patterns are of type mylist.

P =

Nil

Nil

One(0)

One(0)

Warnings 5

Then, for instance we have:

1. Vector ~v = (Nil Nil) matches the first row of P , since (Nil) ¹ (Nil Nil)
(because p1

1 = Nil ¹ Nil = v1) and p1
2 = ¹ Nil = v2).

2. Vector ~w = (One(0) Nil) matches the second row of P , since we have

(a) (Nil) ¹ (One(0) Nil), that is ~w is an instance of the second row of
matrix P .

(b) (Nil) 6¹ (One(0) Nil) (because p1
1 = Nil 6¹ One(0) = w1), that is, ~w is

not an instance of the first row of matrix P .

3. Vector ~z = (One(1) One(1)) matches the fifth row of matrix P , since we
have:

(a) Vector ~z is an instance if ~p 5 = () (as any value vector of the appropriate
type is).

(b) Additionally, vector ~z is not an instance of any of the first four rows of P .
For instance, 0 6¹ 1 implies One(0) 6¹ One(1), which in turn implies that
vector ~z cannot be an instance of rows number 3 and 4 of matrix P .

As we have already noticed, a pattern can be interpreted as the set of its instances.
Similarly, a matrix can be interpreted as the union of the instances of its rows.

Definition 3 (Instance relation for matrices)
Let P be a pattern matrix with n columns and m rows, and let ~v = (v1 · · · vn) be
a value vector. Vector ~v is an instance of matrix P , written P ¹ ~v, if and only if
there exists an row number i (i ∈ [1 . . .m]) such that:

(pi
1 · · · pi

n) ¹ (v1 · · · vn).

ML pattern matching can be reformulated with this new definition as: vector ~v

matches row number i in matrix P , if and only if P [1...i) 6¹ ~v and ~p i ¹ ~v, where
matrix P [1...i) is the (i− 1)×n matrix consisting of the rows of P that precede row
number i.

3 The useful clause problem

We express pattern matching anomalies in the matrix framework.

Definition 4 (Exhaustiveness)
Let P be a pattern matrix. Matrix P is exhaustive, if and only if, for all value
vectors ~v of the appropriate type, there exists a row in P that filters ~v in the sense
of Definition 2.

Definition 5 (Useless clause)
Let P be a pattern matrix. Row number i in P is useless, if and only if there does
not exists a value vector ~v that matches row number i in the sense of Definition 2.

Useless clauses are sometimes called redundant. In our opinion, “useless” is more
precise, since it conveys the semantical nature of the concept better.

Example 2

6 Luc Maranget

Let P and Q be the following two pattern matrices.

P =
(

Nil

Nil

)
Q =

Nil

Nil

One()

One()

Cons (,)

Cons(,)

Matrix P is not exhaustive, since, for instance, vector ~v = (One (0) One (0)) does
not match any row of P .

By contrast, matrix Q is exhaustive. Let us consider any value vector ~v of the
appropriate type. Then, v1 and v2 are instances of the patterns Nil, One(), or
Cons(,). That is, we may partition values into nine sets denoted by nine dif-
ferent pattern vectors. It turns out that this partition is precise enough to apply
Definition 2.

If ~v is an instance of. . . then, ~v matches row number. . .
(Nil Nil) (Nil One()) (Nil Cons(,)) 1

(One() Nil) (Cons(,) Nil) 2
(One() One()) (One() Cons(,)) 3

(Cons(,) One()) 4
(Cons(,) Cons(,)) 5

As another consequence, one may observe that row number 6 of matrix Q is useless.

Because we use the ML definition of pattern matching (Definition 2) we claim that
the two definitions above express what is generally understood by “an exhaustive
match” and “an useless clause”, However it is intuitively clear that the two questions
are quite similar, and in fact they can be expressed using the following definition.

Definition 6 (Useful clause)
Let P be a pattern matrix of size m × n and let ~q be a pattern vector of size n.
Vector ~q is useful with respect to matrix P , if and only if

∃~v, P 6¹ ~v ∧ ~q ¹ ~v.

We write U(P, ~q) for the formula above We also note M(P, ~q) the following set of
matching value vectors:

M(P, ~q) = {~v | P 6¹ ~v ∧ ~q ¹ ~v }.
Thus, U(P, ~q) simply means that M(P, ~q) is not empty.

Proposition 1
1. Matrix P is exhaustive, if and only if U(P, (· · ·)) is false.
2. Row number i in matrix P is useless, if and only if U(P [1...i), ~p i) is false.

Proof
Corollary of definitions.

Warnings 7

Our framework of two separate definitions 2 and 3 exposes that, as far as pattern
matching anomalies are concerned, the matching predicate can be simplified. More
precisely, it is important to notice that ~v matches some row in P (Definition 2)
is equivalent to P ¹ ~v (Definition 3). In other words, the order of rows in P is
irrelevant while computing U(P, ~q).

3.1 Solving the useful clause problem

In this section we compute U recursively. We proceed by first defining a recursive
fonction Urec and then showing U = Urec. The definition of Urec owes much to the
traditional compilation of ML pattern matching to decision trees — (Pettersson,
1992) gives a modern presentation of this quite ancient compilation scheme.

Let thus P be a pattern matrix of size m×n and ~q be a pattern vector of size n.
Induction proceeds by decomposing P and ~q along first column.

Base case If there is no column (i.e. n = 0), then the value of Urec(P, ()) depends
upon the number of rows m of matrix P .
1. If P has some rows (i.e. m > 0), we define Urec(

()
, ()) to be false.

2. If m is zero, then we define Urec(∅, ()) to be true. More generally, although
not really necessary, we can define Urec(∅, ~q) to be true for any vector ~q of
any size n.

Base cases are summarized as follows:

Urec(
()

, ()) = False Urec(∅, ~q) = True.

Induction If there are columns (n > 0), then there are three sub-cases depending
upon the nature of pattern q1.
1. Pattern q1 is a constructed pattern, that is q1 = c(r1, . . . , ra). From matrix P ,

we extract the new specialized matrix S(c, P). The new matrix S(c, P) is of
width a + n− 1 and its rows are defined from the rows of P , according to the
first component of these rows.

pi
1 S(c, P)

c(r1, . . . , ra) r1 · · · ra pi
2 · · · pi

n

c′(r1, . . . , ra′) (c′ 6= c) No row

· · · pi
2 · · · pi

n

(r1 | r2) S(c,
(

r1 pi
2· · ·pi

n

r2 pi
2· · ·pi

n

)
)

Notice that a given row ~p i, may induce one, none or several rows in S(c, P).
In the following, we note S(c, ~q) the application of S to a vector, when it
yields a vector.

S(c, (c(r1, . . . , ra) q2 · · · qn)) = (r1 · · · ra q2 · · · qn)
S(c, (q2 · · · qn)) = (· · ·︸ ︷︷ ︸

a times

q2 · · · qn)

8 Luc Maranget

We also consider specialisation of value vectors when relevant, that is when
v1 = c(w1, . . . , wa).
Finally, in the case where q1 is c(r1, . . . , ra), we define:

Urec(P, ~q) = Urec(S(c, P),S(c, ~q)).

2. Pattern q1 is a wildcard. Let Σ = {c1, c2, . . . , cz} be the set of constructors
that appear as root constructors of the patterns of P first column (and also as
root constructors of their arguments when they are or-patterns). The compu-
tation of Urec depends on whether set Σ is a complete signature or not. In the
former case, any instance ~v of ~q necessarily possesses a first component whose
root constructor belongs to Σ. In the latter case, it turns out that it suffices
to examine those constructors that do not belong to Σ. Here, computing Urec

significantly departs from compilation to decision trees, which of course has
to take all constructors into account.

(a) Set Σ constitutes a complete signature. Then we define:

Urec(P, ~q) =
z∨

k=1

Urec(S(ck, P),S(ck, ~q)).

(b) Set Σ is not a complete signature. From P , we extract the new default
matrix D(P) of width n− 1.

pi
1 D(P)

ck(t1, . . . , tak
) No row

pi
2 · · · pi

n

(r1 | r2) D(
(

r1 pi
2 · · · pi

n

r2 pi
2 · · · pi

n

)
)

Matrix D(P) is defined in all situations, whether Σ is a complete signature
or not. However, D(P) is useful for computing Urec only in the latter case.
We define:

Urec(P, (q2 · · · qn)) = Urec(D(P), (q2 · · · qn)).

Observe that when Σ is empty, i.e. when the first column of P is made of
wildcards and of or-patterns thereof, then Σ is not a complete signature.
Thus the definition above also apply.

3. When pattern q1 is an or-pattern (r1 | r2), we define:

Urec(P, ((r1 | r2) q2 · · · qn)) = Urec(P, (r1 q2 · · · qn)) ∨ Urec(P, (r2 q2 · · · qn)).

We now establish a few “key” properties of matrix specialization (1 below) and
of the default matrix (2 to 4 below). Basically, the key property of specialization
expresses that matching by P and S(c, P) are equivalent for value vectors whose
first component admits c as a root constructor; while the key properties of the
default matrix express the equivalence of matching by P and D(P) in more detailled
situations.

Warnings 9

Lemma 1 (Key properties)
For any matrix P , constructor c, and value vector ~v such that v1 = c(w1, . . . , wa)
(all being of the appropriate types), we have:

P 6¹ ~v ⇐⇒ S(c, P) 6¹ S(c,~v). (1)

Additionally, for any value vector ~v, we have:

P 6¹ (v1 v2 · · · vn) =⇒ D(P) 6¹ (v2 · · · vn). (2)

Furthermore, given any matrix P , let Σ be set of the root constructors of P ’s first
column. If Σ is not empty, then for any constructor c not in Σ and any value vector
(w1 · · ·wa v2 · · · vn), we have:

D(P) 6¹ (v2 · · · vn) =⇒ P 6¹ (c(w1, . . . , wa) v2 · · · vn). (3)

If Σ is empty, then, for any value vector ~v, we have instead:

D(P) 6¹ (v2 · · · vn) =⇒ P 6¹ (v1 v2 · · · vn). (4)

Proof
Mechanical application of definitions.

We could of course have formulated the key properties by reversing implications
and by using ¹ in place of 6¹. However, we adopt the negated formulation, to match
Definition 2. Nevertheless, we shall also consider (1) when P has exactly one row.
In that case, for any value vector ~v such that v1 = c(w1, . . . , wa), we write more
directly:

~q ¹ ~v ⇐⇒ S(c, ~q) ¹ S(c,~v).

Proposition 2
For any matrix P and pattern vector ~q of appropriate sizes and types, we have:

U(P, ~q) = Urec(P, ~q).

Proof
Base cases are easy. Let first ~q be the empty pattern vector, written (). The set of
~q instances consists of the unique empty value vector, also written (). If P ’s rows
exist and are empty, then P ’s first row filters the value vector ().

M(
()

, ()) = ∅.

Moreover, if P has no rows, then it cannot filter any value, We have:

M(∅, ~q) = {~v | ~q ¹ ~v }.
And we conclude, since ~q has at least one instance for any ~q.

To prove inductive cases, it suffices to show that U meets the equations that
define Urec.

1. If q1 = c(r1, . . . , ra) for some constructor c, then we need prove:

U(P, ~q) = U(S(c, P),S(c, ~q)).

10 Luc Maranget

However, by (1) applied to both P and ~q, we have the stronger result:

M(P, ~q) = {~v | S(c,~v) ∈M(S(c, P),S(c, ~q))} .

Namely, remember that U(P, ~q) means that the set M(P, ~q) of matching
values is not empty (Definition 6).

2. If q1 is a wildcard, then let Σ = {c1, . . . , cz} be as in the definition of Urec.

(a) If Σ is a complete signature. For any ck in Σ, we define the set Mk:

Mk = M(S(ck, P),S(ck, ~q)).

By typing, for any value v1 of the appropriate type, we have q1 ¹ v1, if
and only if there exists a constructor ck in Σ and values w1, . . . , wak

such
that v1 = ck(w1, . . . , wak

). Thus, by property (1), one easily shows:

M(P, ~q) =
z⋃

k=1

{~v | S(ck, ~v) ∈ Mk } .

And we can conclude:

U(P, ~q) =
z∨

k=1

U(S(ck, P),S(c, ~q)).

(b) In all situations, we have (by (2)):

M(P, ~q) ⊆ {~v | (v2 · · · vn) ∈M(D(P), (q2 · · · qn))} .

In the case where Σ is empty, the reverse inclusion holds (by 4). And we
can conclude, by the “type are not empty” axiom.
It is worth noticing that the reverse inclusion does not hold when Σ is non-
empty. Namely, when considering sets of matching values M, we have to
take all possible values into account. Anyway, by the inclusion above, we
have: U(P, ~q) =⇒ U(D(P), (q2 · · · qn)).
Conversely, assume U(D(P), (q2 · · · qn)) = True, and let t be the type of
the first component of tested value vectors. Then, there exists (v2 · · · vn)
such that D(P) 6¹ (v2 · · · vn) and (q2 · · · qn) ¹ (v2 · · · vn). Furthermore, by
the hypothesis “Σ does not hold all the constructors of type t” we know
that there exists some constructor c of type t1×· · ·×ta → t such that c 6∈ Σ.
Thus, by our axiom “types are not empty”, there exist values w1, . . . , wa

of respective types t1, . . . , ta. Then, vector ~v = (c(w1, . . . , wa) v2 · · · vn) is
a witness of the validity of U(P, ~q), by (3) and q1 = ¹ v1.

3. If qi is an or-pattern (r1 | r2), then, by definition of ¹ for or-patterns, we have:

M(P, ((r1 | r2) q2 · · · qn)) = M(P, (r1 q2 · · · qn)) ∪M(P, (r2 q2 · · · qn)).

3.2 Detecting the anomalies

Since we know how to compute U , we can detect pattern matching anomalies. Given
some expression match . . . with p1 -> e1 | p2 -> e2 | . . . | pm -> em, exhaus-

Warnings 11

tiveness is checked by computing:

Urec(

p1

p2

...
pm

 , ()).

Furthermore, the usefulness of clause number i is checked by computing:

Urec(

p1

p2

...
pi−1

 , (pi)).

4 Lazy pattern matching

4.1 Lazy pattern matching in theory

In previous sections we only considered strict ML. In a strict language we can
define ML pattern matching as a predicate operating on terms, which also are the
values of program expressions. In other words, pattern matching apply to completely
evaluated expressions, or normal forms.

Studying pattern matching in a lazy language such as Haskell requires a more
sophisticated semantical setting. Essentially, lazy language manipulate values that
are known partially and, more significant to our study, pattern matching operates
on such incomplete values.

v ::= Partial Values
Ω Undefined value
c(v1, v2, . . . , va) (constructor) head-normal form.

Definition 1 of the instance relation for patterns and values apply unchanged to
lazy values (we have ¹ Ω, value Ω possesses all types). Thus we keep the same
notation ¹, and maintain Definition 3 of the instance relation for matrices.

However we cannot keep Definition 2 of ML pattern matching.

Example 3
Let us consider a simple example2: case e of True -> 1 | -> 2. If the root
symbol of expression e is not a constructor, its partial value is Ω. Then, since
True 6¹ Ω and ¹ Ω, the value of the whole expression is 2. But, if we compute
e further, its value may become True. Then, the value of the whole expression
becomes 1. Something is wrong, since the value of the whole expression changed
from 1 to 2.

More generally, partial values and computation interact. Let us consider some
expression e. If the root symbol of expression e is a constructor c, then expression e

2 In this section, we use Haskell syntax

12 Luc Maranget

is a head-normal form and we express the “current value” of e as c(v1, v2, . . . , va)
— see (Huet & Lévy, 1991) for a more precise treatment in the context of term
rewriting systems. Otherwise, the “current value” of expression e is Ω. Then, we
consider various “current values” along the evaluation of e. As constructors cannot
be reduced, those values are increasing according to the following precision ordering.

Definition 7 (Precision ordering)
Relation ¹Ω is defined on pairs of values (v, w) as follows.

Ω ¹Ω w

c(v1, . . . , va) ¹Ω c(w1, . . . , wa) iff (v1 · · · va)¹Ω(w1 · · ·wa)
(v1 · · · vn) ¹Ω (w1 · · ·wn) iff vi¹Ω wi, for all i ∈ [1 . . . n]

To be of practical use, a predicate P that defines pattern matching must be
monotonic. That is, when P(v) holds, P(w) also holds for all w such that v¹Ω w.
With monotonic predicates, matching decisions do not change during computations.
One should notice that, given any pattern p, the predicate p ¹ v is monotonic in v.
Example 3 shows that the predicate P 6¹ ~v is not monotonic in general.

We thus need a new definition of pattern matching. For the moment, we leave
most of lazy pattern matching unspecified.

Definition 8 (General (lazy) pattern matching)
Let P(P,~v) be a predicate defined over pattern matrices P and value vectors ~v,
where the size n of ~v is equal to the width of P . Row number i in P filters ~v, if and
only if the following condition holds:

P(P [1...i), ~v) ∧ ~p i ¹ ~v.

We call P the disambiguating predicate and now look for sufficient conditions
on P that account for our intuition of pattern matching in a lazy language.

1. Pattern matching is deterministic, in the sense that at most one clause is
matched. Hence, for all P and ~v, we assume:

P(P,~v) =⇒ P 6¹ ~v.

2. Matching the first row of a matrix reduces to the instance relation. Hence,
for all ~v, we assume:

P(∅, ~v) = True.

3. We require predicate P to be monotonic in its value component. That is,
given any matrix P , for all value vectors ~v and ~w, we assume:

P(P,~v) ∧ ~v¹Ω ~w =⇒ P(P, ~w).

The three conditions above are our basic restrictions on P. We further define UP
and MP as U and M (Definition 6) parameterized by P.

Now, given a definition of pattern matching over lazy values, we face the temp-
tation to assume that the computation of U described in Section 3.1 still works
for UP . More precisely, by finding additional sufficient conditions on predicate P
we aim at proving UP = Urec. Thus, we re-examine the proof of Proposition 2 in
the context of lazy pattern matching.

Warnings 13

Base cases follow from basic restrictions.

1. By our first basic restriction and since
() ¹ (), we have P(

()
, ()) = False.

Thus we have UP(
()

, ()) = False.
2. By our second basic restriction, we directly get UP(∅, ~q) = True.

To prove the inductive cases, it suffices to reformulate the key properties of
Lemma 1, replacing P 6¹ ~v by P(P,~v). However, key properties now are rather
assumed than established.

Definition 9 (Key properties)
We say that predicate P meets key properties when the following four proper-
ties hold. For any matrix P , constructor c, and value vector ~v such that v1 =
c(w1, . . . , wa), we have:

P(P,~v) ⇐⇒ P(S(c, P),S(c,~v)). (1)

Additionally, for any value vector ~v, we have:

P(P, (v1 v2 · · · vn)) =⇒ P(D(P), (v2 · · · vn)). (2)

Furthermore, given any matrix P , let Σ be set of the root constructors of P ’s first
column. If Σ is not empty, then for any constructor c not in Σ and any value vector
(w1 · · ·wa v2 · · · vn), we have:

P(D(P), (v2 · · · vn)) =⇒ P(P, (c(w1, . . . , wa) v2 · · · vn)). (3)

If Σ is empty, then, for any value vector ~v, we have instead:

P(D(P), (v2 · · · vn)) =⇒ P(P, (v1 v2 · · · vn)). (4)

It is not obvious that assuming key properties suffices to prove that UP can be
computed as U is, since Ω does not show in the proof of Proposition 2. Indeed,
monotonicity plays some part here.

Proposition 3
We have UP = Urec.

Proof
Base cases follow from basic restrictions; while the proofs of all inductive cases in
Proposition 2, except 2-(a), apply unchanged.

Hence, we assume q1 to be a wildcard and the set Σ to be a complete signature.
We need prove:

UP(P, ((: t) q2 · · · qn)) =
z∨

k=1

UP(S(ck, P),S(ck, ~q)).

By (1), for any constructor ck in Σ and any vector ~v such that v1 = ck(w1, . . . , wak
),

we have: ~v ∈MP(P, ~q) ⇐⇒ S(ck, ~v) ∈MP(S(ck, P),S(ck, ~q)). Hence, a potential
difficulty arises for vectors ~v in MP(P, ~q), when v1 is Ω. Then, by monotonicity of
P (and ¹), the non-empty type axiom, and for any constructor c (in the signature
of type t), there exists (w1 · · ·wa) such that (c(w1, . . . , wa) v2 · · · vn) ∈ MP(P, ~q).
That is (by (1) in the forwards direction), UP(S(ck, P),S(ck, ~q)) holds for all ck

in Σ.

14 Luc Maranget

As an immediate consequence of the proposition above, the useless clause problem
is now solved in the lazy case (see second item in Proposition 1). However, the exact
formulation of exhaustiveness needs a slight change. Reconsider Example 3.

case e of True -> 1 | _ -> 2

By definition of ¹, True ¹ Ω does not hold, hence Ω cannot match first clause.
However, P(

(
True

)
, Ω) does not hold either, by monotonicity. Hence, there is no

row that filters value Ω and Definition 4 would flag this matching as non-exhaustive,
a clear contradiction with our intuition of exhaustiveness. Thus, we now directly
define an exhaustive matrix P from the condition UP(P, (· · ·)) = False. That is,
P is exhaustive, if and only if for all vectors ~v, P(P,~v) does not hold. By this new
definition, the example is exhaustive: for any value v in {Ω, False, True}, we have
≺ v. Thus we have:

P =
(

True
)
¹ v.

Hence, by our first basic restriction, for all v, P(P, v) does not hold.

4.2 Lazy pattern matching, à la Laville

Laville’s definition of lazy pattern matching (Laville, 1991) stems directly from the
need of a monotonic P: if we decide that some term is evaluated enough not to
match a pattern, we want this to remain true when the term is evaluated further.
By definition, matrix P and value ~v are incompatible, written P #~v , when making
~v more precise cannot produce an instance of P . That is, P #~v means

∀~w,~v¹Ω ~w =⇒ P 6¹ ~w.

Definition 10 (Lazy pattern matching (Laville))
Define P(P,~v) = P #~v in the generic definition 8.

The first basic restriction follows by letting ~w be ~v in the definition of P #~v, the
second restriction follows from ∅ 6¹ ~w for all ~w, and monotonicity is a consequence
of the transitivity of ¹Ω.

Incompatibility is the most general P in the following sense: for any predicate P,
any matrix and any value vector ~v, we have.

P(P,~v) =⇒ P #~v

For, if P and ~v are compatible (i.e. not incompatible), then there exists ~w, with
~v¹Ω ~w and P ¹ ~w. Thus, by the first basic restriction, P(P, ~w) does not hold, and,
by the monotonicity of P, P(P,~v) does not hold either.

Incompatibility is easily computed by the following rules.

c(p1, . . . , pa) # c′(v1, . . . , va′) (where c 6= c′)
c(p1, . . . , pa) # c(v1, . . . , va) iff (p1 · · · pa)#(v1 · · · va)

(p1 · · · pn) # (v1 · · · vn) iff there exists i ∈ [1 . . . n], pi # vi

(p1 | p2) # v iff p1 # v and p2 # v

P # ~v iff for all i ∈ [1 . . . n], ~p i #~v

Warnings 15

It is then routine to show that incompatibility meets key properties.
Laville’s definition is quite appealing as a good, implementation independent,

definition of lazy pattern matching. However, there is a slight difficulty: predicate
P #~v is not sequential in the sense of (Kahn & Plotkin, 1978) in ~v for any matrix P .
This means that its compilation on an ordinary, sequential, computer is problem-
atic (Maranget, 1992; Sekar et al., 1992). As a consequence, the Haskell committee
adopted another semantics for pattern matching. Their definition is aware of the
presence of Ω and solves the difficulty by specifying left-to-right testing order.

4.3 Pattern matching in Haskell

By interpreting the Haskell report (Hudak et al., 1998) we can formulate a pattern
matching predicate for this language. Matching can yield three different results:
it may either succeed, fail or diverge. Furthermore, matching of arguments is per-
formed left-to-right. We encode “success”, “failure” and “divergence” by the three
values T, F and ⊥, and define the following H function.

H(, v) = T
H(c(p1, . . . , pa),Ω) = ⊥

H(c(p1, . . . , pa), c′(v1, . . . , va′)) = F (where c 6= c′)
H(c(p1, . . . , pa), c(v1, . . . , va)) = H((p1 · · · pa), (v1 · · · va))
H((p1 p2 · · · pn), (v1 v2 · · · vn)) = H(p1, v1)∧⊥H((p2 · · · pn), (v2 · · · vn))

H((), ()) = T

Where the extended (left-to-right) boolean connectors are defined as follows.

T ∧⊥ x = x

F ∧⊥ x = F
⊥∧⊥ x = ⊥

T ∨⊥ x = T
F ∨⊥ x = x

⊥∨⊥ x = ⊥
We ignore some of Haskell patterns such as irrefutable patterns. We also ignore
or-patterns at the moment. From this definition one easily shows the following two
properties on vectors:

H(~p,~v) = T ⇐⇒ ~p ¹ ~v H(~p,~v) = F =⇒ ~p #~v =⇒ ~p 6¹ ~v.

We then interpret the many program equivalences of section 3.17.3 in the Haskell
report as expressing a downward search for a pattern of which ~v is an instance of:

H(∅, ~v) = F H(P,~v) = H(~p 1, ~v)∨⊥H(P [2...m], ~v).

Informally, H(P,~v) = T means “~v is found to match some row in P in the Haskell
way”, H(P,~v) = F means “no row of P is found to be matched”, and H(P,~v) = ⊥
means “~v is not precise enough to make a clear decision”. We can now formulate
the Haskell way of pattern matching in our setting.

Definition 11 (Haskell pattern matching)
Define P(P,~v) to be H(P,~v) = F in the generic Definition 8.

One easily checks that predicate H(P,~v) = F meets all basic restrictions and

16 Luc Maranget

key properties (decomposing along first columns is instrumental). Hence, save for
or-patterns, algorithm Urec also computes the utility of pattern matching in Haskell.

4.4 Or-patterns in Haskell

As this work is partly dedicated to specific warnings for or-patterns, we wish to
enrich Haskell matching with or-patterns. The H function is extended to consider
or-patterns, sticking to left-to-right bias:

H((p1 | p2), v) = H(p1, v)∨⊥H(p2, v).

Semantical consequences are non-negligible, since the equivalenceH(~p,~v) = T ⇐⇒
~p ¹ ~v does not hold any more, as can be seen by considering H((True |), Ω) = ⊥.

However, the left-to-right implication still holds, and the following definition of
Haskell pattern matching makes sense.

Definition 12 (Haskell matching with or-patterns)
Let P be a pattern matrix and ~v be a value vector. Vector v matches row i in P , if
and only if the following proposition hold:

H(P [1...i), ~v) = F ∧ H(~p i, ~v) = T.

From this definition of matching, we define the utility predicate UH and the set of
matching values MH as we did in Definition 6.

The definition above is not the application of the generic definition 8 to P(P,~v) =
(H(P,~v) = F), because we have written H(~p i, ~v) = T in place of the instance
relation ~p i ¹ ~v . However, those two relations are closely connected.

Lemma 2
Let p be a pattern and v be a value such that H(p, v) = ⊥. There exists value w

such that v¹Ω w and H(p, w) 6= ⊥. Furthermore, if p ¹ v, then H(p, w) = T.

Proof
We first prove the existence of w by induction on p.

• If p = c(p1, . . . , pa), then, by hypothesis H(p, v) = ⊥, we have two sub-cases.

— Value v is c(v1, . . . , va), with H(pi, vi) = ⊥ for i in some (non-empty)
index set I. Applying induction hypothesis to all such i yields values v′i
such that vi¹Ω v′i and H(pi, v

′
i) 6= ⊥. Then, we define w = c(w1, . . . , wa)

where wi = v′i for i ∈ I, and wi = vi otherwise.
— Otherwise, value v is Ω. Let v′ be c(Ω, . . . , Ω). If H(p, v′) is not ⊥, then

we define w = v′. Otherwise, we reason as in the previous case.

• If p = (q1 | q2), we have two sub-cases.

— If H(q1, v) = F and H(q2, v) = ⊥, then (by induction) there exists a
value w such thatH(q2, w) 6= ⊥ and, by definition ofH, we haveH(p, w) =
H(q2, w).

Warnings 17

— If H(q1, v) = ⊥, then (by induction) there exists a value w′, such that
v¹Ω w′ and H(q1, w

′) 6= ⊥ If H(q1, w
′) = T, we define w to be w′ and we

conclude. Otherwise, H(q1, w
′) = F and thus H((q1 | q2), w′) = H(q2, w

′).
Then we conclude, either directly, or by induction in the case where
H(q2, w

′) = ⊥.

Additionally, H(p, w) = T holds under the extra hypothesis p ¹ v, by H(p, w) =
F =⇒ p 6¹ w and by the monotonicity of ¹.

We could have been tempted by the simpler lemma: H(p, v) = ⊥ implies the exis-
tence of w such that v¹Ω w and H(p, v) = T. However, this proposition is false, as
shown by the example p = (true, false) and v = (Ω, true).

In any case, the above lemma is proved and it suffices to relate Haskell matching
to generic lazy matching, and thus to compute the utility of Haskell matching.

Proposition 4
We have UH = Urec.

Proof
We note UH¹ the utility predicate that results from the generic definition, taking
P(P,~v) to be H(p,~v) = F. From generic proposition 3, we have UH¹ = Urec.
(Formally we check that predicate H(P,~v) = F meets key properties even when
some of the patterns in P are or-patterns).

Then we show UH = UH¹. From the implication H(~q,~v) = T =⇒ ~q ¹ ~v , we have
UH(P, ~q) =⇒ UH¹(P, ~q); the converse implication follows from Lemma 2.

It is time to clearly stress on some important consequence of propositions U =
Urec, UP = Urec and UH = Urec: all our utility predicates are in fact equal. This
suggests a quite powerful and elegant“semantical” proof technique, which we im-
mediately demonstrate.

Lemma 3 (Irrelevance of column order)
Let P be a pattern matrix and ~q be a pattern vector. By permuting the same
columns in both P and ~q we get matrix P ′ and vector ~q ′. Then we have UH(P, ~q) =
UH(P ′, ~q ′).

Proof
Consider strict matching. Since predicates P 6¹ ~v and ~q ¹ ~v do not depend on
column order, we have U(P, ~q) = U(P ′, ~q ′). From UH = U , we conclude.

First observe that proving the irrelevance of column order for Haskell matching by
induction on matrix and pattern structure would be quite cumbersome.

Also notice that the lemma above is not obvious, since Haskell matching depends
upon column order in a strong sense. For instance, let P , ~q , P ′ and ~q ′ be as follows.

P =
(
True False

)
~q = (False) P ′ =

(
False True

)
~q ′ = (False).

Matrix P ′ (resp. vector ~q ′) is P (resp. ~q) with columns swapped. The sets of
matching values are as follows.

MH(P, ~q) = { (False Ω), (False True), (False False) }
MH(P ′, ~q′) = { (True False), (False False) }

18 Luc Maranget

Swapping the components of the elements of MH(P, ~q) does not yield MH(P ′, ~q ′),
since (Ω False) does not belong to MH(P ′, ~q ′). However, some of the values of the
MH sets above are related by the permutation. Moreover, the equality UH = U can
be seen as telling us that there is at least one such value.

From now on, we simply write U for any utility predicate, regardless of semantics.
We also write “algorithm U” for Urec.

PART TWO

Implementation

5 Specializing U for exhaustiveness check

Programmers sometimes are quite upset in front of “non-exhaustive match” warn-
ings. An example of a “non-matching value” helps a lot not only in convincing them
that they indeed wrote a non-exhaustive match, but also in correcting their code.

Such an example (or counter-example) is best expressed as a pattern represent-
ing a set of non-matching instances. Then, programmers can add this “counter-
example” at the end of their matching, hoping this will make it exhaustive. Consider
an easy example.

let nilp = function [] -> true

Warning: this pattern-matching is not exhaustive.

Here is an example of a non-matching value:

::

The given pattern matching is not exhaustive and all instances of the pattern _::_

(a list cell) are non-matching. Here, one achieves exhaustive match by adding a
clause with pattern _::_.

Examples of non-matching values are easily computed by a slight extension of
algorithm U . Indeed, algorithm U shows that M(P, ~q) is not empty by implicitly
computing a witness of that fact.

The new algorithm I takes a matrix P and an integer n as arguments, since I is
used in a context where the pattern vector ~q of Section 3.1 is a vector of n wildcards.
Algorithm I normally returns a pattern vector ~p of size n such that all the instances
of ~p are non-matching values. Or, if no such vector exists (i.e. if P is exhaustive),
I returns the distinguished constant ⊥.

Base case If n = 0, we define:

I(
()

, 0) = ⊥ I(∅, 0) = ().

More generally, one can observe that I(∅, n) is a vector consisting of n wildcards.
Induction If n > 0, then let Σ be the set of constructors that appear at the root

of the patterns (and of or-pattern alternatives) in the first column of P .

1. We first assume that Σ is a complete signature. Then, we should perform the
recursive calls I(S(ck, P), ak + n− 1), for all ck taken from Σ.

Warnings 19

If all those computations return ⊥, then I(P, n) also is ⊥. Otherwise, if one
of the calls I(S(ck, P), ak +n−1) returns pattern vector (r1 · · · rak

p2 · · · pn),
we can define I(P, n) = (ck(r1, . . . , rak

) p2 · · · pn). Of course, in practice, we
stop performing recursive calls as soon as one such call is discovered. As there
can be others ck′ such that I(S(ck′ , P), ak′ + n− 1) returns a pattern vector,
algorithm I is non-deterministic.

2. If Σ is not a complete signature, we only perform the recursive call I(D(P), n−
1) and we define I(P, n) = ⊥ when the recursive call returns ⊥. Otherwise,
I(D(P), n − 1) returns the vector (p2 · · · pn), and the result of I(P, n) de-
pends on whether Σ is empty or not. If Σ is empty, then we define I(P, n) =
(p2 · · · pn). If Σ is not empty, then we define I(P, n) = (c(, . . . ,) p2 · · · pn),
where c is a constructor from the signature of the ck’s without being a ck. If
the the signature of the ck’s is finite and not too big, one can even use an
or-pattern that includes all the extra constructors.

It should be clear that I(P, n) = ⊥, if and only if P is exhaustive. Otherwise,
I(P, n) is some pattern vector ~p and all the instances of ~p are non-matching values.

A simple example will demonstrate algorithm I at work. Let us check the exhaus-
tiveness of the following matching that acts on values of type mylist (Section 2).

match . . . with One 1 -> · · ·
We thus compute I((One 1) , 1).

I(∅, 0) = () By base-2.
I(

(
One 1

)
, 1) = (Nil|Cons (,)) By induction-2, Σ = { One }

One may think that algorithm I should make an additional effort to provide more
non-matching values, by systematically computing recursive calls on specialized
matrices when possible, and by returning a list of all pattern vectors returned by
recursive calls. We can first observe that it is not possible in general to supply the
users with all non-matching values, since the signature of integers is (potentially)
infinite. Furthermore, we claim that supplying one of the non-matching patterns
is enough. Correcting the source that triggers the warning is a programmer’s job,
and we intentionally limit the task of the compiler to supplying a precise (and not
too costly) warning, justified by a concrete example. In our example, the answer
(Nil|Cons (_,_)) points out the most obvious forgotten pattern. Furthermore, if
the programmers write a clause for the flagged pattern and recompile the corrected
program, then the compiler will flag other non-matching patterns such as One 0.
Hence, the whole information is available to programmers, if they want it.

6 Specializing U for the useless clause problem

At first sight, it seems that plain algorithm U suffices in flagging useless clauses.
Indeed, one hardly sees what additional, concise and useful, information could be
given to programmers, whose expected reaction is to suppress the useless clause
before recompiling. However or-patterns introduce their specific anomaly, which is
related to the useless clause anomaly but does not reduce to it.

20 Luc Maranget

6.1 Useless clause is (almost) enough

Let us assume that we write a function to detect lists of type mylist (Section 2)
whose first element is 1.

let f = function

| One x | Cons (x,_) -> x=1

| Nil | One _ | Cons (_,_) -> false

Intuitively, something is wrong: the last pattern looks too complicated. Indeed, the
following code is more concise and equivalent.

let f = function

| One x | Cons (x,_) -> x=1

| Nil -> false

Unfortunately, algorithm U silently accepts the first, “bad”, code. A good compiler
should suggest that we might replace this bad code by the second, “good”, code.

In fact, algorithm U already does such a suggestion in the case of the following,
“bad”, code, where the or-pattern is expanded.

let f = function

| One x | Cons (x,_) -> x=1

| Nil -> false

| One _ -> false

| Cons (_,_) -> false

Here, the compiler can tell us that the last two clauses are useless and we normally
react by deleting them.

The discussion shows what is wrong with our example.

let f = function

| One x | Cons (x,_) -> x=1

| Nil | One _ | Cons (_,_) -> false

Clause Nil | One _ | Cons (_,_) -> false is useful because of pattern Nil.
However, patterns One _ and Cons (_,_) are useless, since they can be deleted
without altering f behavior. Moreover, a more positive definition of useless patterns
is easily built upon the standard notion of useless clause by expanding or-patterns.

On the practical side, the Objective Caml compiler will here flag two useless
patterns (and no useless clause):

let f = function

| One x | Cons (x,_) -> x=1

| Nil | One _ | Cons (_,_) -> false

Warning: this pattern is unused.

Warning: this pattern is unused.

Warnings 21

6.2 Expansion of or-patterns

Because there can be many or-patterns, it is our interest to consider the expansion of
exactly one or-pattern amongst many, so as to avoid producing code of exponential
size. Consider function f below.

let f = function

| (1|2), (3|4), (5|6), . . ., (2k − 1|2k) -> true

| _ -> false

To check the arguments of or-pattern (2k − 1|2k), one expansion suffices.

let f = function

| (1|2), (3|4), (5|6), . . ., 2k − 1 -> true

| (1|2), (3|4), (5|6), . . ., 2k -> true

| _ -> false

And we can safely assert that patterns 2k − 1 and 2k are useful by using known
algorithm U , which does not exhibit exponential behavior here, provided that we
compute disjunctions sequentially.

Expansion considers that, in or-pattern (p1 | p2), the left alternative p1 has a
higher priority than the right alternative p2. This left-to-right bias allows a clear
decision in the following boundary examples.

let f1 = function (1|_) -> true

and f2 = function (_|1) -> true

and f3 = function (1|1) -> true

and f4 = function (_|_) -> true

Expansion shows in what sense the right alternative of or-patterns is useful for f1
and useless in the remaining cases.

let f1 = function 1 -> true | _ -> true

and f2 = function _ -> true | 1 -> true

and f3 = function 1 -> true | 1 -> true

and f4 = function _ -> true | _ -> true

It may seem that giving good diagnostics forces us into reconsidering the defini-
tion of matching, which does not specify any order for trying to match or-pattern
arguments (except for Haskell matching). In fact, for strict and Laville’s matching,
we still can avoid specifying such an order: those definitions of pattern matching
rely on what row is matched and not on how it is matched. However, in prac-
tice, for the sake of consistency between diagnostics and produced code (because of
variables in or-patterns, execution can indeed reveal the matched alternative), the
pattern matching compiler must take left-to-right order into account. This is easily
done by the (strict) compiler of (Le Fessant & Maranget, 2001), which performs the
expansion during pattern matching compilation, as by any compiler that features
or-patterns by performing expansion before pattern matching compilation such as
the SML/NJ compiler (Appel & MacQueen, 1991).

22 Luc Maranget

In the next section we describe a refinement of our algorithm U . This refinement
aims at finding useless patterns and relies on the expansion of or-patterns. As a
preliminary, we first note that expansion does not alter the output of algorithm U .

Lemma 4 (Utility of expansion)
For all three definitions of pattern matching, we have:

U(P, ((r1 | r2) q2 · · · qn)) = U(P, (r1 q2 · · · qn)) ∨ U(P@(r1 q2 · · · qn), (r2 q2 · · · qn)).

Where P@~p means matrix P with row ~p added at the bottom.

Proof
For Haskell matching, the equality follows from definitions — H((r1 | r2), v1) = T,
if and only if H(r1, v1) = T or H(r1, v1) = F ∧H(r2, v1) = T.

6.3 Rules for finding useless patterns

It is certainly easier to first consider finding useless sub-patterns in the case of one
or-pattern. Let P be a pattern matrix and let ~q be a pattern vector, with q1 being
the or-pattern (r1 | r2). We wish to make a distinction between four possibilities, r1

and r2 are both useful, r1 alone is useless, r2 alone is useless, and both r1 and r2

are useless (and thus row ~q is useless). More concretely we design a new function
U ′(P, ~q) that returns a set of useless patterns (more exactly a set of useless pattern
positions), that is, ∅ in the first case, {r1} in the second case, {r2} in the third case,
and the distinguished set > in the fourth case.

From P and ~q we define two expanded matchings

P ′ = P, ~q ′ = (r1 q2 · · · qn) and P ′′ = P@~q ′, ~q ′′ = (r2 q2 · · · qn).

Where P@~q ′ means adding row ~q ′ to the bottom of matrix P . Then, we use U to
compute the utility of both expansions and we write Er1 and Er2 for the results of
these computations, logically encoding True by ∅ and False by > (E sets are sets
of useless patterns). Then we combine Er1 and Er2 into Eq1 by the rules given in
the left table of Figure 1.

Fig. 1. Rules for combining the utility of or-pattern arguments

Er1 Er2 E(r1 | r2)

∅ ∅ ∅
> > >
∅ > {r2}
> ∅ {r1}

Er1 Er2 E(r1 | r2)

∅ {r′′, . . .} {r′′, . . .}
{r′, . . .} ∅ {r′, . . .}
> {r′′, . . .} {r1, r

′′, . . .}
{r′, . . .} > {r′, . . . , r2}
{r′, . . .} {r′′, . . .} {r′, . . . , r′′ . . .}

If r1 and r2 are themselves or-patterns, we would like to compute the utility
of their arguments. To do so, U ′ is called recursively. As a consequence, results

Warnings 23

other than ∅ and > are possible, when r1 or r2 are partially useless. We combine
those new results as described in the second table of figure 1. Those extra rules
complete the definition of pattern utility by expansion. As an example of such
nested expansions, assume q1 = ((r1 | r2) |(r3 | r4)), the utility of r4 is computed on
the expansion consisting of matrixP@((r1 | r2) q2 · · · qn)@(r3 q2 · · · qn) and vector
(r4 q2 · · · qn).

If several components of ~q are or-patterns, we perform several independent ex-
pansions. For instance, let us assume that both q1 and q2 are or-patterns, we first
proceed as described above, yielding one result Eq1 . Then, we expand P and ~q along
their second column. Such an expansion can be defined easily as the composition
of swapping the first two columns of P and ~q and of the expansion introduced at
the beginning of this section. This process yields another result Eq2 .

We now need to combine the two results Eq1 and Eq2 . Let us first consider the
case when neither Eq1 nor Eq2 is >. Then, those two results are (possibly empty)
sets of useless patterns which we combine by set union, yielding the new result
Eq1 ∪ Eq2 . Let us now consider the case when Eq1 is >. We assume, as we show
later, that U ′ is a conservative extension of U . That is U ′(P, ~q) = >, if and only
if U(P, ~q) = False. Hence, Eq1 is > implies U(P, ~q) is False — i.e. ~q is useless
w.r.t. P . However, swapping two columns in P (and ~q) does not change U result
(Lemma 3). Thus we also have Eq2 = >. Conversely, if Eq2 is >, then Eq1 necessarily
is >. Overall, whether expansion is performed along first or second column does
not matter and the value of U ′(P, ~q) should be >. As a conclusion, we can define
the combination of the utility of two disjoint or-patterns to be Eq1 ∪Eq2 , provided
we adopt the extra definition > ∪> = >.

6.4 Computation of useless patterns

We now give a precise description of algorithm U ′, as implemented in the Objective
Caml compiler. The key idea is to use specialization (S(c, P) of Section 3.1) as a
tool to discover or-patterns, before performing expansions as we did in the previous
section. In practice, it is convenient to partition the columns of matrices and vectors
into three subparts. We note those separations with “•”. That is, U ′ takes such
“dotted” matrices and vectors as arguments, written P •Q •R and ~p •~q •~r. Dotted
matrices and vectors stand for triples of matrices and vectors. Later in this section,
component ~q will holds patterns that cannot contain or-patterns (i.e. wildcards),
while all the components of ~r will be or-patterns.

Dotted matrices and vectors define matchings in the ordinary sense, provided
we erase the dots. More precisely we concatenate the subparts column-wise, writ-
ten “&”, and consider U(P &Q & R, ~p& ~q &~r). This new notation emphasizes the
distinction between column-wise (or vertical) concatenation and row-wise (or hori-
zontal) concatenation, which we write “@”.

Figure 2 defines some useful operations on dotted matrices. It is assumed that
sub-matrix P has n columns (n > 0). Informally, the first phase of algorithm U ′
destructures the patterns of ~p (using S from figure 2), looking for or-patterns. When
or-patterns are found, the corresponding columns are transferred to the R subpart

24 Luc Maranget

Fig. 2. Operations on dotted matrices

(a) Specialization by constructor c

row in P •Q •R row(s) in S(c, P •Q •R)

c(t1, . . . , ta) · · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z t1· · ·ta pi

2· · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z

· · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z · · · pi

2· · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z

c′(t1, . . . , ta′)· · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z no row

(t1 | t2) · · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z S

(
c,

(
t1· · ·pi

n•qi
1· · ·qi

k•ri
1· · ·ri

z

t2· · ·pi
n•qi

1· · ·qi
k•ri

1· · ·ri
z

))

(b) Right shifts

row in P •Q •R

pi
1· · ·pi

n•qi
1· · ·qi

k•ri
1· · ·ri

z

∣∣∣∣∣∣∣∣∣∣

row in ⇒1(P •Q •R)

pi
2· · ·pi

n•pi
1 qi

1· · ·qi
k•ri

1· · ·ri
z

row in ⇒2(P •Q •R)

pi
2· · ·pi

n•qi
1· · ·qi

k•pi
1 ri

1· · ·ri
z

(using ⇒2), ready for the expansion phase. Other columns are transferred to the
Q subpart (using ⇒1).

To compute the utility of clause number i in match . . . with p1 -> e1 | p2 ->

e2 | . . . | pm -> em, we perform the initial call

U ′(

p1

p2

...
pi−1

 • • , (pi) • •).

The typical call U ′(P •Q •R, ~p • ~q • ~r) yields four situations. First three situations
are the “search for or-patterns” phase and apply when P has columns.

1. If p1 is a constructed pattern c(t1, . . . , ta), we define:

U ′(P •Q •R, (c(t1, . . . , ta) p2 · · · pn) • ~q • ~r) =
U ′(S(c, P •Q •R), (t1 · · · ta p2 · · · pn) • ~q • ~r).

2. If p1 is a wildcard, we transfer P ’s first column into Q:

U ′(P •Q •R, (p2 · · · pn) • ~q • ~r) = U ′(⇒1(P •Q •R),⇒1(~p • ~q • ~q)).

3. If p1 is an or-pattern, we transfer P ’s first column into R:

U ′(P •Q •R, ((t1 | t2) p2 · · · pn) • ~q • ~r) = U ′(⇒2(P •Q •R),⇒2(~p • ~q • ~q)).

4. If P has no columns, there are two sub-cases depending on whether there are
columns in R or not.

(a) If there were no or-patterns inside initial ~p (~r = ()), we simply call U .

U ′(•Q • , • ~q •)= ∅ if U(Q, ~q) = True
U ′(•Q • , • ~q •)=> if U(Q, ~q) = False

Warnings 25

(b) Otherwise R and ~r possess z columns (z > 0) and all the components of
~r are or-patterns. For a given column index j in ~r, we write ~r \ j for the
vector build from ~r by suppressing component rj . Similarly we write R \ j

for matrix R with column j erased. Finally [R]j is the matrix R reduced
to its column j. By hypothesis rj is an or-pattern (t1 | t2) and we perform
the following two recursive calls.

Et1 =U ′([R]j • (R \ j)& Q • , (t1) • (~r \ j) & ~q •)
Et2 =U ′([R]j@(t1) • ((R \ j)& Q)@((~r \ j)& ~q) • , (t2) • (~r \ j) & ~q •)

This formulas may be a bit complicated, they simply express the expansion
of pattern rj in a general setting (see the beginning of Section 6.3 for
the particular case of exactly one or-pattern). One should notice that
columns j′ of R and ~r with j′ 6= j get transfered to subpart Q and will not
be expanded by further calls to U ′. That is, expansion of one or-pattern
is performed exactly once.
Then, we combine Et1 and Et2 by the rules of Figure 1, yielding Erj .
Finally, we define:

U ′(•Q •R, • ~q • ~r) =
z⋃

j=1

Erj .

We now prove that the new algorithm U ′ is a conservative extension of the original
algorithm U .

Proposition 5
Let P be a pattern matrix and ~q be a pattern vector. Then, U ′(P • • , ~p • •) = >
is equivalent to U(P, ~p) = False.

Proof
We prove the following stronger property.

U ′(P •Q •R, ~p • ~q • ~r) = > ⇐⇒ U(P & Q& R, ~p& ~q &~r) = False

Proof is by induction on the definition of U ′. Most cases are obvious, case 4-(a) is
the base case, inductive cases 2. and 3. follow from Lemma 3 on the irrelevance of
column order, while inductive case 1. is like inductive case 1. in Proposition 2.

Case 4-(b) (P is empty, R is not empty) is the most interesting. We first consider
one expansion. In order to simplify notations a bit, we define S = Q &R and
~s = ~q &~r. Furthermore, we express the expansion of rj = (t1 | t2) as follows.

Et1 = U ′(P ′ •Q′ • , (t1) • ~q ′ •), Et2 = U ′(P ′′ •Q′′ • , (t2) • ~q ′ •)

Where it should be clear that P ′′ is P ′@(t1) and Q′′ is Q′@~q ′. We further define
S′ to be P ′& Q′ and S′′ to be P ′′& Q′′. Notice that S′′ is S′ with the row (t1)& ~q ′

added. Let also ~s ′ be the vector (t1 | t2)& ~q ′. Matrix S′ and vector ~s ′ are the images
of S and ~s by the same permutation of columns. By lemmas 3 and 4, we have:

U(S,~s) = U(S′, ~s ′) = U(S′, (t1) & ~q ′) ∨ U(S′′, (t2) & ~q ′).

26 Luc Maranget

By induction, we have the following two equivalences.

Et1 = > ⇐⇒ U(S′, (t1)& ~q ′) = False Et2 = > ⇐⇒ U(S′′, (t2)& ~q ′) = False

Then, since E(t1 | t2) = >, if and only if Et1 = > and Et2 = >, we have:

Erj
= > ⇐⇒ U(S,~s) = False.

And we can conclude, since U ′(•Q •R, • ~q • ~r) = Er1 ∪ · · · ∪ Erz
.

One can make the computation of U ′ slightly more efficient by the following two
techniques:

• At inductive step 2, if all patterns in the first column of P are wildcards, we
delete this column in place of transferring it into Q. This will avoid repeated
deletion by U .

• At inductive step 4-(b), if Er1 is >, we can immediately return >.

7 Performance

7.1 Elements of complexity analysis

Given some pattern matching expression of m patterns, algorithm I (Section 5) is
called once and U ′ (previous section) is called m times with matrix arguments of 0,
. . . , m − 1 rows. We can roughly assimilate I with U . As regards U ′, after a first,
linear phase, U is called once, if they are no or-patterns, or as many times as there
are or-pattern alternatives. Disregarding or-patterns and (unreasonably) assuming
that U is linear in its input size, we expect a quadratic behavior in the size of the
pattern matrices, which we define as the sum of the sizes of its patterns, and will
assimilate to source file size in experiments. Namely, for a matrix of size S with
m rows, we perform m + 1 calls of U on arguments of size at most S, where m is,
at worst, of the same order magnitude as S.

Here, we do not claim to perform a thorough complexity analysis. Rather, we
intend to define a reachable target for the running time of a practical implementa-
tion. As a matter of fact, even when or-patterns are not considered, the useful clause
problem is NP-complete (Sekar et al., 1992). It is thus no surprise that algorithm U
can exhibit exponential time behavior in the size of its arguments P and ~q. This
exponential behavior originates from inductive step 2-(a) (Section 3.1): the rows of
matrix P whose first pattern are wildcards get copied into all specialized matrices
S(ck, P), and recursive calls on all these matrices may be performed. The most un-
favorable situation is as follows: U(P, ~q) is false; all patterns in ~q are wildcards; and
the patterns in P contain mostly wildcards and a few different constructor patterns
such that constructors collected column-wise are complete signatures. And indeed,
one can construct a series of matchings that confirms the exponential time behavior
of a straightforward implementation of algorithm U . Besides, randomly generated
matrices also confirm that the exponential time behavior can occur. Such prob-
lematic random matrices test vectors of booleans and many of their patterns are
wildcards.

Warnings 27

7.2 Safeguards

Input to the Objective Caml compiler a priori is neither nasty nor random, it
consists of programs written by human beings attempting to solve specific problems,
not to break the compiler. If such reasonable input triggers exponential behavior,
then the compilation of useful programs may perhaps become unfeasible.

We now search for means that may prevent U from reacting exponentially to
reasonable input. We call such a mean a safeguard. An exhaustive match is a poten-
tially unfavorable situation, since we here compute U(P, (· · ·)) = False. Hence,
we examine how human beings write exhaustive matches. An easy and frequent
way to ensure exhaustiveness is to complete a matching with a wildcard pattern.
Hence, we could first scan matrices searching for rows of wildcards, and announce
exhaustive match as soon as we discover one. However, this process would not be
very general. Let us rather consider strict pattern matching and remark that for
any defined value we have ¹ v. That is, for any pattern p and defined value v, we
have p ¹ v =⇒ ¹ v (or 6¹ v =⇒ p 6¹ v). Hence, if some row of some matrix P

is made of wildcards, then that row contains all the non-matching potential of the
whole matrix P .

Wildcards can also appear inside patterns, as in the following example.

match v with (1,2) -> 1 | (1,_) -> 2

Then, for any defined value v, we have (1,2) ¹ v =⇒ (1,) ¹ v (or (1,) 6¹
v =⇒ (1,2) 6¹ v). Thus, before we compute exhaustiveness, we can delete pattern
(1,2) from the matching, because its presence does not add non-matching values
to those values that do not match the remaining pattern (1,).

We now consider the general case.

Definition 13
Let ~p and ~q be two pattern vectors. By definition, ~p subsumes ~q when, for all defined
value vectors ~v, we have: ~q ¹ ~v =⇒ ~p ¹ ~v.

Lemma 5
Let P be a pattern matrix. We further assume that there exist two rows of P , ~p i

and ~p j , such that ~p i subsumes ~p j . And we write P ′ for P without row ~p j . Then,
for any pattern vector ~q we have: U(P, ~q) = U(P ′, ~q).

Proof
By definition of 6¹ we have:

P 6¹ ~v ⇐⇒ P ′ 6¹ ~v ∧ ~p j 6¹ ~v.

Furthermore, by definition of P ′ 6¹ ~v and by hypothesis “row ~p i subsumes ~p j”, we
have:

P ′ 6¹ v =⇒ ~p i 6¹ ~v =⇒ ~p j 6¹ ~v

Finally, for any defined value ~v we have: P ′ 6¹ ~v ⇐⇒ P 6¹ ~v.

Example 4

28 Luc Maranget

Let us consider the following matrix P .

P =
(

(,)

(,)

)

Because the constructor of pairs “,” is alone in its signature, pattern (,) sub-
sumes pattern . Namely, any (defined) value v that possesses the type t1 × t2 of a
pair can be written v = (v1, v2) and is thus an instance of (,)3. As a consequence,
erasing any of the two rows of P does not matter and we have:

U(P, ~q) = U(
(

(,)
)
, ~q) = U(

(
(,)

)
, ~q)

It turns out that we can decide the relation “~p subsumes ~q” by using predicate U .

Lemma 6
Let ~p and ~q be two pattern vectors. Then ~p subsumes ~q, if and only if U(~p, ~q) does
not hold.

Proof
The property is obvious by considering the strict semantics of pattern matching.

U(~p, ~q) = False ⇐⇒ (∀~v, ~p ¹ ~v ∨ ~q 6¹ ~v) ⇐⇒ (∀~v, ~q ¹ ~v =⇒ ~p ¹ ~v)

Notice that ∀~v here means “for all defined values”.

By Lemma 5 and previous Lemma 6 we now have a mean to delete rows from
matrix P before we compute U . And this mean is valid for all our semantics of
pattern matching. More precisely, we have:

U(~p i, ~p j) = False =⇒ U(P, ~q) = U(P ′, ~q).

Where P ′ is P without row number j.
In practice, before computing U(P, ~q), our first safeguard consists in deleting

any row of P that is subsumed by another row of P . In the worst case, (when
no row is subsumed) this requires computing U(~p i, ~p j) for all pairs of (distinct)
rows in P . However, in the absence of or-patterns, computing U(~p i, ~p j) cannot be
exponential — since bad case 2-(a) may only occur here for constructor signatures
of size one, which, in that particular case, yields exactly one recursive call. We can
thus approximate the cost of our first safeguard as a quadratic number of “ordinary”
pattern operations whose cost is roughly linear in the size of input patterns (still
disregarding or-patterns). As a conclusion, if this first safeguard saves us from
exponential computations, it is worth its price.

We now design a second, less expensive, safeguard. Two patterns are said to
be incompatible when they have no instance in common. Thus, before computing
U(P, ~q) we can delete some row ~p i from P , provided ~p i and ~q are incompatible
(consider strict matching). It turns out that incompatibility of patterns can be
computed as an ”ordinary” pattern operation by using the rules for computing the
incompatibility of pattern and value (see Section 4.2). Thus, we can attempt to

3 It is worth noticing that all instances of no longer are instances of (,) when partial values
are considered. Namely, the undefined value Ω is not an instance of (,).

Warnings 29

simplify matrix P with m rows for the price of m ordinary patterns operations. Un-
fortunately, this process does not help while checking exhaustiveness, since (· · ·)
is compatible with any pattern vector. Furthermore, the first phase of comput-
ing U ′(P, ~q) for checking utility in fact gets rid of rows that are incompatible with
checked row ~q (at step 1.). However, the price of this second safeguard is low and
it may be a good idea to perform it before performing the first safeguard. As a
result, we may reduce the size of input to the first safeguard. Of course, this makes
sense because the first safeguard performs a quadratic number of ordinary pattern
operations while the second safeguard performs a linear number of ordinary pat-
tern operations. In fact, example I of the following section exhibits S3 behavior
without the second safeguard, whereas, with second safeguard enabled, it exhibits
quasi-quadratic behavior.

7.3 Measures

We performed some measures of the machine time taken by our implementation,
which is integrated in the Objective Caml compiler. We measure compilation time
both with and without pattern-matching diagnostics enabled. Then, a simple sub-
traction yields the time taken by the detection of anomalies.

Measures apply to series of pattern-matching expressions of identical structure
and increasing size. Three of our series T, S and V, may drive compilation of
pattern matching to decision trees into producing code of exponential size. We
selected those because algorithm U is similar to compilation of pattern matching
to decision trees. The fourth series, I, is the matching of n constant constructors.
We selected series I because of a real example that triggered excessive compilation
times while we were implementing algorithm U . All series are defined precisely in
appendix A. In Figure 3, the X-axis shows the size of matchings squared, (expressed
as source file size squared), while the Y-axis shows user machine time on a Linux
1Ghz PC. We perform measures both with and without the safeguards described
in the previous section (those are named “opt” and “std”).

Experiments S and V demonstrate that algorithm U is more resistant to exponen-
tial behavior than simple compilation to decision trees. Namely, exponential behav-
ior of compilation to decision trees have been reported for those examples (Sestoft,
1996; Maranget, 1992). Observe that algorithm U does not exhibit exponential
running time even without safeguards (written “std” in Figure 3).

However, algorithm U is not immune from exponential behavior, as demonstrated
by experiment T. In that particular case, safeguards prove efficient and we decided
to retain them in our implementation for that reason. Adopting safeguards incurs
some penalty, since safeguards significantly degrade performance in experiment S.
However, it should be noticed that it requires a 161 × 320 matrix to reach one
minute of analysis time in experiment S (with safeguards), whereas it takes only a
42× 21 matrix to reach a similar time in experiment T (without safeguards).

Finally the plots of figure 3 suggest that the running time of pattern matching
analysis with safeguards is approximatively quadratic in input size, at least for our

30 Luc Maranget

Fig. 3. Effect of safeguards in four experiments. User CPU time (in seconds) as a
function of file size squared (in kilobytes squared)

0

10

20

30

40

50

60

70

0 5000 10000 15000

Experiment I

opt

33
3

3
3

3

3

3

3

3
3

std

×××
× ×

×
×

×

×

××

0

10

20

30

40

50

60

70

0 2500 5000 7500 10000

Experiment S

opt

3333
33

3
3

3

3

3

3

3
3

std

×××××××× × × × × ×

×

0

10

20

30

40

50

60

0 500000 1000000 1500000

Experiment V

opt

3333333
33 3 3 3 3 3

3

std

××××
××
×
×
×
×

×
×

×

×
×

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

Experiment T

opt

3 3 3 3 3 3 3 3

3

std

× × × × ×
×

×

××

examples and on the studied domain. However, notice that experiment I suggests
a slightly more than quadratic running time.

We also estimate the time taken by our algorithm relatively to total compila-
tion time of ordinary programs. To do so, we measure the running time of the
compilation of some programs, with pattern matching analysis disabled (no), with
pattern matching analysis enabled but without safeguards (std), and with safe-
guards (opt). We made some effort not to measure irrelevant operations such as
linking and the application of external tools. We made ten measures in each experi-
ment and we computed geometric means. The compiled programs are the Objective
Caml compiler itself (ocamlc), the hevea LATEX to html translator and another
compiler (zyva). All those programs use pattern matching significantly and are of

Warnings 31

respectable size.

no std opt

ocamlc 13.63 13.92 14.02
hevea 7.84 8.01 8.05
zyva 4.61 4.70 4.74

Those results show that the price of pattern-matching analysis remains quite low
in practice. One might even conclude that safeguards are not very useful when it
comes to compiling “actual” programs. Still, we adopt safeguards because they are
designed to avoid exponential behavior in some specific situations, which do not
show up in the above examples. Our choice follows the general philosophy behind
preferring backtracking automata to decision trees: avoid exponential behaviors as
much as possible.

8 Conclusion

To the best of our knowledge, there is no literature on the analysis of pattern match-
ing. the works closest to ours are (Sekar et al., 1992; Maranget, 1992), which give
some algorithms for computing directions (also called indices). Those algorithms
are in fact very similar to our algorithm U . Indeed, our present work can be seen as
a thorough exploration of how to apply the initial algorithm to pattern matching
diagnostics, while directions are confined to the compilation of Laville’s semantics.

Works on the compilation of pattern matching to decision trees sometimes re-
call that this compilation technique yields “non-exhaustive match” and “useless
clause” warnings as by-products — see for instance (Baudinet & MacQueen, 1985;
Aitken, 1992; Sestoft, 1996). However there are good reasons to adopt backtracking
automata: a potentially exponential behavior is avoided, and, in practice, output
code size is somehow reduced. In our opinion, designers that wish to adopt back-
tracking automata should not be prevented to do so by the question of pattern
matching diagnostics. Hence, we consider diagnostics directly. As a consequence,
our algorithm for producing diagnostics is not only independent from any compila-
tion strategy, but is also proved correct with respect to several semantics.

We now examine how a few compilers perform pattern matching diagnostics. The
SML/NJ compiler (Appel & MacQueen, 1991) compiles pattern matching by follow-
ing the decision tree approach, thereby naturally producing diagnostics. However,
it flags “useless patterns” as “useless clauses”, which can confuse programmers. It
should be noticed that for the sake of precise warnings for “useless patterns” (i.e.
useless arguments in or-patterns), we defined some partial expansion of or-patterns,
whereas compilation calls for a complete expansion. From our understanding of its
code and architecture, the SML/NJ compiler performs such a complete expansion
before the compilation of pattern matching, and then ignores the existence of or-
patterns. Additionally, the SML/NJ takes exponential time (and produce code of
exponential size) in experiments V and S.

The Glasgow Haskell compiler ghc (Peyton Jones et al., 1993) also carries out
pattern matching checks. Surprisingly, by default, the “useless clause” diagnostic

32 Luc Maranget

is enabled, while the “non-exhaustive match” diagnostic is disabled. As ghc com-
piles pattern matching to backtracking automata (Wadler, 1987; Augustsson, 1985),
the source of the compiler contains specific code for producing pattern matching
diagnostics. This code apparently proceeds exactly along the lines of compilation
to decision trees. Of course, no tree is produced, instead the analyzer computes
the leaves of the tree. This approach results in producing several examples of non-
matching values in the case of non-exhaustive matches. Unfortunately, it also results
in exponential running times and excessive memory consumption in examples T,
V and S.

Those comparisons demonstrate that our algorithm, though inspired by compi-
lation to decision trees, is more efficient. Such efficiency stems from several causes.
First, our algorithm does not build any tree data-structure of potentially exponen-
tial size. More significantly, the compilation scheme can be seen as the search of all
matching values, while, our algorithm only searches for one matching value. The
benefits of this approach are numerous: the search is stopped as soon as one match-
ing value is found; in some important and frequent case (inductive step 2-(b) in
Section 3.1) our algorithm performs one recursive call, where compilation performs
two or more; and finally, some simplification on the input patterns that we perform
are inappropriate to compilation.

In our opinion, pattern matching analysis has been somehow neglected. For
instance, although the Definition of Standard ML (Harper et al., 1991) requires
compliant implementation to flag “redundant” and “non-exhaustive” matches, the
Haskell Report (Hudak et al., 1998) does not mention any similar requirement.
It can certainly be considered that such a question is of minor importance in the
context of a language definition. But we believe that providing warnings against
statically checkable, common, programming errors is an important feature of any
mature compiler. And of course, we also believe useless clauses and non-exhaustive
matches to be such errors.

Finally, our approach of studying pattern matching anomalies on the semantical
level results in more adequate and precise warnings, tailored to various program-
ming situations. Additionally, our technique is applicable to both ML and Haskell;
and the cost of our implementation seems to be under control.

Acknowledgements

I thank Jean-Jacques Lévy and James Leifer for their comments. I also thank
Jacques Garrigue, whose work on the typing of polymorphic variant (Garrigue,
2004) makes use of exhaustiveness information. Jacques’ comments on my code
and ideas encouraged me to write this paper.

References

Aitken, W. (1992). SML/NJ Match Compiler Notes. http://www.smlnj.org/

compiler-notes/matchcomp.ps.

Warnings 33

Appel, A. W., & MacQueen, D. B. (1991). Standard ML of New Jersey. International Sym-
posium on Programming Language Implementation and Logic Programming. Springer-
Verlag. Lecture Notes in Computer Science 583.

Augustsson, L. (1985). Compiling Pattern Matching. Functional Programming Languages
and Computer Architecture. Springer-Verlag. Lecture Notes in Computer Science 201.

Baudinet, M., & MacQueen, D. B. (1985). Tree Pattern Matching for ML. http://www.

smlnj.org/compiler-notes/85-note-baudinet.ps.

Garrigue, J. (2004). Typing Deep Pattern-Matching in Presence of Polymorphic Variants.
JSSST Workshop on Programming and Programming Languages.

Harper, R. W., Milner, R., & Tofte, M. (1991). The Definition of Standard ML. The
MIT Press.

Hudak, P., Peyton Jones, S. L., & et al. (1998). Haskell 98, A Non-Strict, Purely Func-
tionnal Language. http://www.haskell.org/onlinereport/.

Huet, G., & Lévy, J.-J. (1991). Call by Need Computations in Non-Ambiguous Linear
Term Rewriting Systems. Lassez, J.-L., & Plotkin, G. D (eds), Computational Logic,
Essays in Honor of Alan Robinson. The MIT Press.

Kahn, G., & Plotkin, G. D. (1978). Domaines concrets. Tech. rept. 336. IRIA Laboria.
(In French).

Laville, A. (1991). Comparison of Priority Rules in Pattern Matching and Term Rewriting.
Journal of Symbolic Computations, 11(4), 321–348.

Le Fessant, F., & Maranget, L. (2001). Optimizing Pattern Matching. International
Conference on Functional Programming. ACM press.

Leroy, X., Doligez, D., & et al. (2003). The Objective Caml Language (version 3.07).
http://caml.inria.fr.

Maranget, L. (1992). Compiling Lazy Pattern Matching. Lisp and Functional Program-
ming. ACM press.

Pettersson, M. (1992). A Term Pattern-Match Compiler Inspired by Finite Automata
Theory. Workshop on Compiler Construction. Springer-Verlag. Lecture Notes in Com-
puter Science 641.

Peyton Jones, S. L., Hall, C. V., Hammond, K., Partain, W., & Wadler, P. (1993). The
Glasgow Haskell Compiler: a Technical Overview. UK Joint Framework for Information
Technology (JFIT) Technical Conference. http://www.haskell.org/ghc/.

Sekar, R.C., Ramesh, R., & Ramakrishnan, I. V. (1992). Adaptive Pattern Matching.
International Colloquium on Automata Languages and Programming. Springer-Verlag.
Lecture Notes in Computer Science 623.

Sestoft, P. (1996). ML Pattern Match Compilation and Partial Evaluation. Dagstuhl Sem-
inar on Partial Evaluation. Springer-Verlag. Lecture Notes in Computer Science 1110.

Wadler, Philip. (1987). Efficient Compilation of Pattern Matching. Chap. 6 of: Peyton
Jones, S. L., The Implementation of Functional Programming Languages. Prentice-Hall.

A Series of examples

Series I This series is simple matching by n constant constructors: For a given
integer n:

type t = A0 | A1 | · · · | An−1

let f = function

| A0 -> 0

34 Luc Maranget

| A1 -> 1

· · ·
| An−1 -> n− 1

Series S This series, taken from (Sestoft, 1996), is a variation of matching by a
diagonal matrix. For a given integer n, Sn is a (n + 1) × 2n matrix P with, for
all i in [1 . . . n]:

si
2i = si

2i−1 = A, si
j = otherwise.

And:

sn+1
2k+1 = A, sn+1

2k = B.

For instance, here is S4:

type t = A | B

let f = function

| A,A,_,_,_,_,_,_ -> 1

| _,_,A,A,_,_,_,_ -> 2

| _,_,_,_,A,A,_,_ -> 3

| _,_,_,_,_,_,A,A -> 4

| A,B,A,B,A,B,A,B -> 5

Series V This series is taken from (Sekar et al., 1992; Maranget, 1992). It is best
defined inductively. We first define Bn as a matrix whose only non-wildcard
patterns are the diagonal.

bi
i = B, bi

j = otherwise

Then, Vn is the (n + 1)× n(n+1)
2 matrix defined as follows.

V1 =
(

A

B

)
, Vn =

A A...A ...

Bn Vn−1

For instance, here is V3:

type t = A | B

let f = function

| A,A,A,_,_,_ -> 1

| B,_,_,A,A,_ -> 2

| _,B,_,B,_,A -> 3

| _,_,B,_,B,B -> 4

This series is a real challenge to pattern matching compilers, especially to those
that target decision trees: whatever column is selected, compilation will produce
code of exponential size.

Series T This series is made of triangular matrices. Tn is the 2n×n matrix defined
as follows.

t2k+1
j = (when j < 2k + 1), t2k+1

j = A (otherwise)
t2k
j = (when j < 2k), t2k

j = B (otherwise)

Warnings 35

For instance, here is T4:

type t = A | B

let f = function

| A,A,A,A -> 1

| B,B,B,B -> 1

| _,A,A,A -> 2

| _,B,B,B -> 2

| _,_,A,A -> 3

| _,_,B,B -> 3

| _,_,_,A -> 4

| _,_,_,B -> 4

This series yields exponential behavior of naive compilation (along first column)
to decisions trees.

