
Litmus: Running Tests Against Hardware

Jade Alglave1,3 Luc Maranget1 Susmit Sarkar2 Peter Sewell2

1 INRIA
2 University of Cambridge

3 Oxford University

Abstract. Shared memory multiprocessors typically expose subtle,
poorly understood and poorly specified relaxed-memory semantics to
programmers. To understand them, and to develop formal models to use
in program verification, we find it essential to take an empirical approach,
testing what results parallel programs can actually produce when exe-
cuted on the hardware. We describe a key ingredient of our approach, our
litmus tool, which takes small ‘litmus test’ programs and runs them for
many iterations to find interesting behaviour. It embodies various tech-
niques for making such interesting behaviour appear more frequently.

1 Introduction

Modern shared memory multiprocessors do not actually provide the sequentially
consistent (SC) memory semantics [Lam79] typically assumed in concurrent pro-
gram verification. Instead, they provide a relaxed memory model, arising from
optimisations in multiprocessor hardware, such as store buffering and instruc-
tion reordering (relaxed-memory behaviour can also arise from compiler opti-
misations). For example, in hardware with store buffers, the program below (in
pseudo-code on the left and x86 assembly on the right) can end with 0 in both
r0 and r1 on x86, a result not possible under SC:

Shared: x, y, initially zero
Thread-local: r0, r1
Proc 0 Proc 1
y ← 1 x ← 1
r0 ← x r1 ← y

Finally: is r0 = 0 and r1 = 0 possible?

X86 SB (* Store Buffer test *)

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

The actual relaxed memory model exposed to the programmer by a particu-
lar multiprocessor is often unclear. Many models are described only in informal
prose documentation [int09,pow09], which is often ambiguous, usually incom-
plete [SSS+10,AMSS10], and sometimes unsound (forbidding behaviour that is
observable in reality) [SSS+10]. Meanwhile, researchers have specified various
formal models for relaxed memory, but whether they accurately capture the
subtleties of actual processor implementations is usually left unexamined. In

We acknowledge funding from EPSRC grants EP/F036345, EP/H005633, and
EP/H027351, from ANR project parsec (ANR-06-SETIN-010), and from INRIA
associated team MM.

contrast, we take a firmly empirical approach: testing what current implementa-
tions actually provide, and use the test results to inform the building of models.
This is in the spirit of Collier’s early work on ARCHTEST [Col92], which ex-
plores various violations of SC, but which does not deal with many complexities
of modern processors, and also does not easily support testing new tests.

Much interesting memory model behaviour already shows up in small, but
carefully crafted, concurrent programs operating on shared memory locations,
“litmus tests”. Given a specified initial state, the question for each test is what
final values of registers and memory locations are permitted by actual hardware.
Our litmus tool takes as input a litmus file, as on the right above, and runs
the program within a test harness many times. On one such run of a million
executions, it produced the result below, indicating that the result of interest
occurred 34 times.

Positive: 34, Negative: 999966

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

The observable behaviour of a typical multiprocessor arises from an extremely
complex (and commercially confidential) internal structure, and is highly non-
deterministic, dependent on details of timing and the processors’ internal state.
Black-box testing cannot be guaranteed to produce all permitted results in such
a setting, but with careful design the tool does generate interesting results with
reasonable frequency.

2 High level overview

file.litmus
- litmus -

file.c
gcc -pthread -

file.exe?

utils.c

Our litmus tool takes as input small concurrent programs in x86 or Power
assembly code (file.litmus). It accepts symbolic locations (such as x and y

in our example), and symbolic registers. The tool then translates the program
file.litmus into a C source file, encapsulating the program as inline assembly in
a test harness. The C file is then compiled by gcc into executables which can be
run on the machine to perform checks. The translation process performs some
simple liveness analysis (to properly identify registers read and trashed by inline
assembly), and some macro expansions (macros for lock acquire and release are
translated to packaged assembly code).

The test harness initialises the shared locations, and then spawns threads
(using the POSIX pthread library) to run the various threads within a loop. Each
thread does some mild synchronization to ensure the programs run roughly at
the same time, but with some variability so that interesting behaviour can show
up. In the next section we describe various ways in which the harness can be
adjusted, so that results of interest show up more often.

The entire program consists of about 10,000 lines of Objective Caml, plus
about 1,000 lines of C. The two phases can be separated, allowing translated
C files to be transferred to many machines. It is publicly distributed as a

part of the diy tool suite, available at http://diy.inria.fr, with compan-
ion user documentation. litmus has been run successfully on Linux, Mac OS and
AIX [AMSS10].

3 Test infrastructure and parameters

Users can control various parameters of the tool, which impact efficiency and
outcome variability, sometimes dramatically.

Test repetition To benefit from parallelism and stress the memory subsystem,
given a test consisting of t threads P0,. . . , Pt−1, we run n = max(1, a/t) identical
test instances concurrently on a machine with a cores. Each of these tests consists
in repeating r times the sequence of creating t threads, collectively running the
litmus test s times, then summing the produced outcomes in an histogram.

Thread assignment We first fork t POSIX threads T0, . . . Tt−1 for executing
P0,. . . , Pt−1. We can control which thread executes which code with the launch
mode: if fixed then Tk executes Pk; if changing (the default) the association
between POSIX and test threads is random. In our experience, the launch mode
has a marginal impact, except when affinity is enabled—see Affinity below.

Accessing memory cells Each thread executes a loop of size s. Loop iteration
number i executes the code of one test thread and saves the final contents of its
observed registers in arrays indexed by i; a memory location x in the .litmus

source corresponds to an array cell. The access to this array cell depends on the
memory mode. In direct mode the array cell is accessed directly as x[i]; hence
cells are accessed sequentially and false sharing effects are likely. In indirect mode
(the default) the array cell is accessed by a shuffled array of pointers, giving a
much greater variability of outcomes. If the (default) preload mode is enabled,
a preliminary loop of size s reads a random subset of the memory locations
accessed by Pk, also leading to a greater outcome variability.

Thread synchronisation The iterations performed by the different threads Tk

may be unsynchronised, synchronised by a pthread-based barrier, or synchro-
nised by busy-wait loops. Absence of synchronisation is of marginal interest
when t exceeds a or when t = 2. Pthread-based barriers are slow and in fact of-
fer poor synchronisation for short code sequences. Busy-waiting synchronisation
is thus the preferred technique and the default.

Affinity Affinity is a scheduler property binding software (POSIX) threads to
given hardware logical processor. The latter may be single cores or, on machines
with hyper-threading (x86) or simultaneous multi threading (SMT, Power) each
core may host several logical processors.

We allocate logical processors test instance by test instance (parameter n)
and then POSIX thread by POSIX thread, scanning the logical processors se-
quence left-to-right by steps of the specified affinity increment. Suppose a logical
processors sequence P = 0, 1, . . . , A− 1 (the default on a machine with A log-
ical processors available) and an increment i: we allocate (modulo A) first the

processor 0, then i, then 2i, etc. If we reach 0 again, we allocate the processor
1 and then increment again. Thereby, all the processors in the sequence will
get allocated to different threads naturally, provided of course that less than A
threads are scheduled to run.

4 The impact of test parameters

Test parameters can have a large impact on the frequency of interesting results.
Our tests are non-deterministic and parallel, and the behaviours of interest arise
from specific microarchitectural actions at specific times. Thus the observed
frequency is quite sensitive to the machine in question and to its operating
system, in addition to the specific test itself.

Let us run the SB test from the introduction with various combinations
of parameters on a lightly loaded Intel Core 2 Duo. There is one interesting
outcome here, and we graph the frequency of that outcome arising per second
below against the logarithm of the iteration size s. Note that only the orders of
magnitude are significant, not the precise numbers, for a test of this nature.

0

2

4

6

8

1 2 3 4 5 6
log10 s (s = iteration size)

Test SB: direct memory mode

Non-SC
outcomes/sec affinity disabled

�

� � � �

�

�
affinity sete

e
e e e

ee

0

5000

10000

15000

20000

1 2 3 4 5 6
log10 s (s = iteration size)

Test SB: indirect memory mode

Non-SC
outcomes/sec affinity disabled

� � � � � �

�
affinity set

e e
e

e

e e

e

We obtain the best results with indirect memory mode and affinity control,
and 104 iterations per thread creation. These settings depend on the character-
istics of the machine and scheduler, and we generally find such combinations of
parameters remain good on the same testbed, even for different tests.

References

[AMSS10] J. Alglave, L. Maranget, S. Sarkar, and P. Sewell. Fences in Weak Memory
Models. In CAV, 2010.

[Col92] W. W. Collier. Reasoning About Parallel Architectures. Prentice-Hall, 1992.
[int09] Intel 64 and IA-32 Architectures Software Developer’s Manual, vol. 3A,

rev. 30, March 2009.
[Lam79] L. Lamport. How to Make a Correct Multiprocess Program Execute Cor-

rectly on a Multiprocessor. IEEE Trans. Comput., 46(7):779–782, 1979.
[pow09] Power ISA Version 2.06. 2009.
[SSS+10] P. Sewell, S.Sarkar, S.Owens, F. Zappa Nardelli, and M. O. Myreen. x86-

TSO: A rigorous and usable programmer’s model for x86 multiprocessors.
Communications of the ACM, 53(7):89–97, July 2010. (Research Highlights).

Tool demonstration

1 Introduction

The demonstration will show litmus at work. The tool litmus runs litmus tests
on actual hardware. Litmus tests are small programs designed to highlight the
features of a given model in a quick glance and concrete manner.

Outline of the planned demonstration We shall first introduce our running ex-
ample, a classical litmus test designed to illustrate store buffering. Then we shall
begin the demonstration itself, running litmus on our demonstration machine,
and on a remote Power 6 machine. These runs will illustrate the basic structure
and usage of the tool (Sec. 3). In particular, we shall demonstrate how tests
can be compiled on one machine to C source files, and executed on another. A
C source file generated by litmus includes the code for the test proper, as inline
assembly, within a test harness. The test harness runs the test numerous times
and is partly under user control. We shall then show a slightly simplified ver-
sion of the C source produced from the running example. The focus will be on
basic, user-accessible, controls on the test harness (Sec. 4). We shall pursue the
demonstration by introducing and demonstrating more advanced controls: how
memory is accessed (either sequentially or randomly), number of identical tests
run concurrently, and limited OS scheduler control (Sec. 5–7).

Our presentation will be by examples, running litmus to demonstrate effects
and showing C code to describe the test harness. However, we shall also show
some pictures, which we include as figures in this document. If the time slot
allocated for tool demonstration permits, we might conclude by performing ad-
ditional experiments on the Power 6 machine. We would then test variations of
some classical litmus tests, such as Independent Reads of Independent Writes,
focussing on the conclusions that can be drawn from the experiments, more than
on the experiments themselves.

2 Litmus tests

Roughly, litmus tests come in two flavours “Allowed” and “Forbidden”. In the
former case, one expects some behaviour to show up, while in the second case
one expects some behaviour not to show up. Consider for instance the two tests
of Fig. 1. In such litmus tests descriptions, x, y are shared locations (i.e. cells of
shared memory); while r0, r1 are private locations (i.e. registers). By convention,
all locations initially hold the value 0, unless otherwise specified. The text of the
multi-thread program is followed by the specification of a certain final state for
some selected locations, which outcome is declared allowed or forbidden. The
test SB illustrates an effect frequently observed on modern parallel machines,
due to buffering stores.

During the demonstration we shall focus on experiments themselves. How-
ever, to assert the significance of litmus testing, we shall briefly comment the
two tests of Fig. 1. The occurrence of outcome “r0=0; r1=0” may be surprising
if one assumes the simplest memory model of all: sequential consistency (SC).

SB

P0 P1

(a) y← 1 (c) x← 1

(b) r0← x (d) r1← y

Allowed: r0=0; r1=0

SB+FENCE

P0 P1

(a) y← 1 (c) x← 1

fence fence

(b) r0← x (d) r1← y

Forbidden: r0=0; r1=0

Fig. 1. Two simple litmus tests.

Sequential consistency assumes (1) that memory accesses performed by the con-
current program results from interleaving the accesses performed by each thread;
and (2) that writes to memory are visible to all threads instantaneously. As a
consequence, assuming SC, SB starts by issuing a write to either x or y and at
least one of r0 or r1 will hold the value 1 at the end of test. However, test SB
succeeds on all machines we tested, thereby demonstrating that these machines
do not follow the sequential consistency memory model. Those machines provide
specialised “fence” instruction, whose purpose may (documentation is often un-
clear) be to restore sequential consistency, when fence instructions are inserted
between memory accesses. The test SB+FENCE, of the Forbidden category,
is designed to check the effectiveness of fence in that situation. Notice that the
occurrence of outcome “r0=0; r1=0” in SB may result from the presence of store
buffers that delay the observation of the writes performed by some core by other
cores, and that fences may be implemented (naively) by flushing store buffers.

3 Tool usage

The tool litmus inputs litmus tests written in the target system assembly lan-
guage. For instance, here are SB and SB+FENCE for x86:

X86 SB (* Store Buffer test *)

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MOV EAX,[x] | MOV EAX,[y] ;

exists (0:EAX=0 /\ 1:EAX=0)

X86 SBFENCE

{ x=0; y=0; }

P0 | P1 ;

MOV [y],$1 | MOV [x],$1 ;

MFENCE | MFENCE ;

MOV EAX,[x] | MOV EAX,[y] ;

~exists (0:EAX=0 /\ 1:EAX=0)

Writing litmus tests in assembly language is a natural choice while testing ma-
chines. Namely, assembly is the right language to express what is actually exe-
cuted, still providing a decent level of abstraction. Additionally, compiler inter-
ference is reduced to almost nothing. We shall run the two tests on the presen-
tation machine, conti, an Intel Core 2 Duo:

con% litmus -mach conti x86/@all | less

In the command above, the option -mach conti configures litmus appropriately
for conti. The argument x86/@all is a file that lists the tests we want to run:

con% cat x86/@all

SB.litmus

SB+FENCE.litmus

We shall then describe the output of litmus, going into detail for SB. First,
the source of the test is reminded, so as to facilitate visual check of test output.
Then, we show actual assembly code:

Generated assembler

_litmus_P1_0_: movl $1,(%edx)

_litmus_P1_1_: movl (%ecx),%eax

_litmus_P0_0_: movl $1,(%ecx)

_litmus_P0_1_: movl (%edx),%eax

With respect to input assembly code, one notices syntactical changes and the
replacement of symbolic addresses x and y by registers. We argue that those
changes are innocuous, in the sense that the results we get apply to the source
of the test. Then, the result of the experiment follows:

Test SB Allowed

Histogram (4 states)

60246 :>0:EAX=0; 1:EAX=0;

471786:>0:EAX=1; 1:EAX=0;

467953:>0:EAX=0; 1:EAX=1;

15 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 60246, Negative: 939754

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 3.65

The core information is the list of outcomes with occurrence counts, which list
comes first above. The targeted outcome occurred 60246 times (out of 106 out-
comes), as highlighted by the “Witnesses” section. One may also notice the
presence of all of the 4 possible outcomes. Additional information is provided at
the end of output: a hash-code of the test (used for consistency checks during
automated analysis of results) and the (wall-clock) time spent by the test.

We shall show the results of SB+FENCE more rapidly, observing the out-
come 0:EAX=0; 1:EAX=0; not to show up:

Test SB+FENCE Forbidden

Histogram (3 states)

499721:>0:EAX=1; 1:EAX=0;

499952:>0:EAX=0; 1:EAX=1;

327 :>0:EAX=1; 1:EAX=1;

Ok

We shall seize the opportunity to introduce the idea behind our method for
tuning testing conditions:

– We perform the tests SB and SB+FENCE in the same conditions.

– The interesting outcome 0:EAX=0; 1:EAX=0; shows up easily for SB and
does not show up for SB+FENCE.

– The easier we get the outcome when it is allowed, the more significant is its
absence when it is forbidden.

We shall then run similar tests for Power. To that end, we shall need an Inter-
net connection. We shall then log on abducens, a 4 cores, 2-ways simultaneous
multi-threading (SMT) Power 6 machine. Should the connection be unavailable,
we shall present slides. Our intention is:

– to illustrate the cross-compilation feature of litmus;

– to demonstrate that litmus targets the Power architecture.

Cross-compilation exposes the high-level structure of the tool: litmus proper
translates its input litmus test(s) in assembly into C source file(s), which are
then compiled by gcc — see Fig 2.

file.litmus
- litmus -

file.c
gcc -pthread -

file.exe?

utils.c

Fig. 2. High-level overview of litmus.

In practice, we shall consider three tests, SB, SB+LWSYNC and
SB+SYNC, compile them on conti:

con% ls ppc

@all SB.litmus SB+LWSYNC.litmus SB+SYNC.litmus

con% litmus -mach abducens -o ppc.tar ppc/@all

con% scp ppc.tar abducens-i.cl.cam.ac.uk:ppc

In cross-compilation mode (enabled by the option -o ppc.tar), litmus output is
an archive that contains C source files for the tests. Such C source files contain
the tests proper as inline assembly, plus a test harness.

On abducens we shall unpack the archive and compile the three tests, using
the Makefile included in the archive:

[maranget@abducens ppc]$ tar xmf ppc.tar && make

gcc -Wall -std=gnu99 -O -pthread -O2 -c outs.c

gcc -Wall -std=gnu99 -O -pthread -O2 -c utils.c

gcc -Wall -std=gnu99 -O -pthread -o SB.exe outs.o utils.o SB.c

gcc -Wall -std=gnu99 -O -pthread -o SB+LWSYNC.exe outs.o utils.o SB+LWSYNC.c

gcc -Wall -std=gnu99 -O -pthread -o SB+SYNC.exe outs.o utils.o SB+SYNC.c

...

One may notice that part of the test harness is provided by the additional
C source files utils.c and outs.c. The test is run by the means of a dedicated
shell script

[maranget@abducens ppc]$ sh run.sh |less

...

We shall observe that the targeted outcome shows up for SB and
SB+LWSYNC while it does not for SB+SYNC. Fig. 3 shows a screenshot
of the cross-compilation demonstration.

4 Test harness and parameters

In this part of the demonstration we shall describe our testing techniques. As an
introduction we shall first show Fig. 4 that summarises test program structure:
we perform r times the sequence of spawning (POSIX) threads that run the test
within a loop of size s. Each (POSIX) thread does some mild synchronisation
to ensure that the code of test threads run at the same pace. We shall illustrate
our techniques by an example C program. This program is a simplified version
of SB.c, which we get by compiling SB.litmus for x86, by:

con% litmus -mach conti -mem direct -o conti/direct/a.tar x86/SB.litmus

con% cd conti/direct

con% tar xmf a.tar

Size parameters

Fig. 5 depicts (slightly simplified) code for the threads P0 and P1. We shall first
point out that the code of P0 and P1 appears as inline assembly and as the body
of a loop executed size_of_test times (defined as parameter “s”). Moreover,
loop iterations are synchronised by the means of specific busy-wait lock-free code
given as an inline function (a tamed C-macro) synchro.

We shall focus on the assembly code for P0, which is a direct translation of
the input code: store value 1 into location x, and then read the contents of loca-
tion y into register eax. Notice that locations are abstracted out (notation [..]

of gcc inline assembly templates). During loop iteration number i the shared lo-
cations x and y are in fact the array cells x[i] and y[i]; while the final contents
of the register eax is saved into the array cell r0[i]. The connection between

Fig. 3. Cross-compilation, compilation in ’xterm’, execution in ’abducens’

P0P0 P1

Join

r

ss
synchro

Spawn

Fig. 4. Graphical representation of test program structure.

the abstract shared locations ([x] and [y]) and the corresponding array cells
(x[i] and y[i]) is implemented by the output declaration of the template (e.g.
[x] "=m" (x[i])). As to the abstract register [eax], [eax] "=&r" (r0[i])

ensures that its final value will get saved into r0[i]. Notice that the actual reg-
ister is not necessarily “eax” as gcc performs the allocation of abstract registers.

We shall then detail how synchronisation of loop iterations is achieved. We
here use another array of size s, barrier, whose cells initially hold 0. At
loop iteration number i, one of the threads writes the value 1 into the flag
cell barrier[i], while the other thread loops until it reads a non-zero value
in barrier[i]. Observe that the thread that writes changes at every iteration.

Figure 6 shows a simplified test harness. The code starts by allocating all
arrays (x, . . . , barrier). Notice that dynamic allocation of memory permits the
setting of parameter s with the dedicated command line option -s of SB.exe.
The test is then run nruns (parameter r) times. More precisely, one iteration
first initialises the involved arrays, shared locations being initialised as specified
by the input file (here 0); while the copies of register final values (i.e. the arrays
r0 and r1) are initialised to the sentinel value −1. Then, the test is run and
outcomes counts are collected in the matrix out. Once r iterations are completed
the matrix out is printed.

Notice that the litmus test is run r×s times, i.e. r×s outcomes are produced
and counted. Moreover, for a litmus test involving t threads, t×r POSIX threads
are created.

User control on the size parameters

Parameters s and r can be given as command line options to litmus (-s s -r r)
or in configuration files:

con% cat ~/lib/litmus/conti.cfg

inline static void synchro(int id, int i, int volatile *b) {
i f ((i % 2) == id) {
*b = 1 ;

} else {
while (*b == 0) ;

}
}

static void *P0(void *unused) {
for (int i = size_of_test-1 ; i >= 0 ; i--) {
synchro(0,i,&barrier[i]);
asm volatile (

"movl $1,%[y]\n\t"
"movl %[x],%[eax]\n\t"
:[x] "=m" (x[i]),[y] "=m" (y[i]),[eax] "=&r" (r0[i])
:
:"cc","memory"

);
}
return NULL ;

}

static void *P1(void *unused) {
for (int i = size_of_test-1 ; i >= 0 ; i--) {
synchro(1,i,&barrier[i]);
asm volatile (

"movl $1,%[x]\n\t"
"movl %[y],%[eax]\n\t"
:[x] "=m" (x[i]),[y] "=m" (y[i]),[eax] "=&r" (r1[i])
:
:"cc","memory"

);
}
return NULL ;

}

Fig. 5. Code for P0 and P1 of test SB.

/* Allocate */
x = alloc(size_of_test) ; y = alloc(size_of_test) ;
r0 = alloc(size_of_test) ; r1 = alloc(size_of_test) ;
barrier = alloc(size_of_test) ;

int out[2][2] ; /* Count of outcomes, as count[r0][r1] */
out[0][0] = out[0][1] = out[1][0] = out [1][1] = 0 ;

for (int i = 0 ; i < nruns ; i++) {
/* Initialise */
for (int k = 0 ; k < size_of_test ; k++) {
x[k] = y[k] = 0 ; /* Init */
r0[k] = r1[k] = -1 ; /* Safety */
barrier[k] = 0 ;

}

/* Run test */
pthread_t th0, th1;
pthread_create(&th0, NULL, P0, NULL) ;
pthread_create(&th1, NULL, P1, NULL) ;
pthread_join(th0,NULL) ;
pthread_join(th1,NULL) ;

/* Count outcomes */
for (int k = 0 ; k < size_of_test ; k++) {
assert (r0[k] >= 0 && r1[k] >= 0) ; /* Safety */
out[r0[k]][r1[k]]++ ;

}
}

/* Print results */
. . .

}

Fig. 6. Simplified test harness.

size_of_test = 5000

number_of_run = 200

...

Hence, by default -mach conti defines s = 5, 000 and r = 200. Those define the
default values of the same controls of .exe files.

con% ./SB.exe -v -v

n=1, r=200, s=5000

Test SB Allowed

Histogram (2 states)

500000:>0:EAX=1; 1:EAX=0;

500000:>0:EAX=0; 1:EAX=1;

No

Witnesses

Positive: 0, Negative: 1000000

Condition exists (0:EAX=0 /\ 1:EAX=0) is NOT validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 4.23

There are 1 million (5, 000×200) outcomes. Specifying the -v option twice com-
mands the repetitive display of iteration numbers as Run i of 200, illustrating
our point on default values more clearly. We notice that the interesting outcome
“0:EAX=0; 1:EAX=0;” does not show up.

Setting s = 100 produces the interesting outcome:

con% ./SB.exe -s 100 -r 100

Test SB Allowed

Histogram (3 states)

28 :>0:EAX=0; 1:EAX=0;

5000 :>0:EAX=1; 1:EAX=0;

4972 :>0:EAX=0; 1:EAX=1;

Ok

Witnesses

Positive: 28, Negative: 9972

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 0.35

However, observing the interesting outcome looks a difficult task:

con% ./SB.exe -s 50 -r 200

Test SB Allowed

Histogram (2 states)

5000 :>0:EAX=1; 1:EAX=0;

5000 :>0:EAX=0; 1:EAX=1;

No

Witnesses

Positive: 0, Negative: 10000

Condition exists (0:EAX=0 /\ 1:EAX=0) is NOT validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 2.12

con% ./SB.exe -s 200 -r 50

Test SB Allowed

Histogram (2 states)

5000 :>0:EAX=1; 1:EAX=0;

5000 :>0:EAX=0; 1:EAX=1;

No

Witnesses

Positive: 0, Negative: 10000

Condition exists (0:EAX=0 /\ 1:EAX=0) is NOT validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 0.33

Additional, more advanced, controls over the test harness permits getting the
interesting outcome more steadily. We examine those now.

5 Memory mode

The previous tests were run under direct memory mode, i.e. the arrays of shared
locations are accessed sequentially. As a consequence, the pattern of memory
accesses is rather regular and the memory subsystem is exercised in too regular
a fashion. In indirect memory mode, accesses to memory are more random: array
cells are accessed through shuffled arrays of pointers. Here is simplified code for
P0 of test SB compiled in indirect memory mode:

static void *P0(void *unused) {
for (int i = size_of_test-1 ; i >= 0 ; i--) {
synchro(0,i,&barrier[i]);
asm volatile (

. . .
:[x] "=m" (*xp[i]),[y] "=m" (*yp[i]),[eax] "=&r" (r0[i])

// In direct mode, we had:
// :[x] "=m" (x[i]),[y] "=m" (y[i]),[eax] "=&r" (r0[i])

. . .
);

}
return NULL ;

}

In the code above, xp is the array of pointers to array x. Observe that the
only change w.r.t. direct memory mode resides in the output declaration of the

assembly template. Changes to the test harness code are more important. In
particular, pointer arrays are shuffled at every iteration of the outer loop (of
size r), at the initialisation stage.

By contrast with size parameters, memory mode is fixed at compile time and
cannot be changed later:

con% litmus -mach conti -mem indirect -o conti/indirect/a.tar x86/@all

con% cd conti/indirect

con% tar xmf a.tar && make

...

We can now run SB.exe with default values for s and r.

con% ./SB.exe

Test SB Allowed

Histogram (4 states)

59920 :>0:EAX=0; 1:EAX=0;

471803:>0:EAX=1; 1:EAX=0;

468258:>0:EAX=0; 1:EAX=1;

19 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 59920, Negative: 940080

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 3.47

We shall then present a more thorough comparison of the two memory modes
for test SB on conti. We compare efficiency e defined as the number of occur-
rences of the interesting outcome “0:EAX=0; 1:EAX=1” produced per second, for
various sizes s. Fig. 7 gives orders of magnitude of efficiency e as a function of
size s for three experiments in indirect mode (I) and in direct mode (D). For

e\s 101 102 103 104 105 106

I 2 · 101 4 · 102 9 · 103 5 · 104 6 · 100 1 · 103

D 2 · 100 7 · 101 1 · 100 1 · 100

I 2 · 101 4 · 102 1 · 104 1 · 105 4 · 100 7 · 102

D 2 · 100 8 · 102 4 · 100

I 3 · 101 7 · 102 1 · 104 1 · 105 8 · 101 7 · 102

D 1 · 100 8 · 102 2 · 100

Fig. 7. Comparison of indirect and direct memory mode for test SB.

a given setting of parameter s, parameter r was chosen so as to get a running
time of less than 10 seconds. We observe:

1. In direct mode, the interesting outcome sometimes does not show up, while
it always does in indirect mode.

2. For all values of size s, efficiency is better in indirect mode.

From these experiment we have a first idea of decent default values for pa-
rameters on conti: indirect memory mode, 5, 000 for parameter s, 200 for pa-
rameter r. Similar experiments performed on other x86 machines confirm the
superiority of indirect mode over direct memory mode. On Power indirect mode
also yields better efficiency for test SB, but the difference is less striking.

6 Using all processors

Given a machine that features a cores, running one instance of a litmus test that
involves t hardware threads is an obvious waste of resource when a exceeds twice
the value of t and that the machine is otherwise idle. We ran into the issue on a
high-end computer on which we were obliged to reserve (and pay for) 16 cores at
a time to run our experiments. We solved the issue by running several instances
of the litmus test concurrently, as depicted by Fig. 8. We define the number of
test instances run concurrently as parameter n. Notice that outcome counts from
the n test instances are summed internally, so that the format of test output is
insensitive to parameter n.

We routinely compile and run several tests together. All tests in a given
series need not involve the same number of threads t. Hence, parameter n
usually derives from another parameter a, the number of available cores, as
n = ba/tc. Namely, parameter a is constant for a given machine and is set in
configuration files:

con% cat ~/lib/litmus/conti.cfg

size_of_test = 5000

number_of_run = 200

avail = 2

con% cat ~/lib/litmus/saumur.cfg

size_of_test = 5000

number_of_run = 200

avail = 8

...

Where saumur is a 2 processors × 2 cores × 2-ways hyper-threaded Intel Xeon
machine.

For some tests and on some machines, using all processors yields a super-
linear increase of efficiency. This is the case for SB on saumur. If the Internet
connection is available, we shall demonstrate the effect:

Spawn

P0P0 P1

Join

r

ss
synchro

Spawn

P0P0 P1

Join

r

ss
synchro

Spawn

P0P0 P1

Join

r

ss
synchro

Spawn

Join

Fig. 8. Running n instances of a litmus test.

sau% ./SB.exe -n 1

Test SB Allowed

Histogram (4 states)

124 :>0:EAX=0; 1:EAX=0;

499923:>0:EAX=1; 1:EAX=0;

499938:>0:EAX=0; 1:EAX=1;

15 :>0:EAX=1; 1:EAX=1;

...

Time SB 1.54

sau% ./SB.exe -n 4

Test SB Allowed

Histogram (4 states)

4593 :>0:EAX=0; 1:EAX=0;

1997117:>0:EAX=1; 1:EAX=0;

1998121:>0:EAX=0; 1:EAX=1;

169 :>0:EAX=1; 1:EAX=1;

...

Time SB 1.70

We observe that for the price of a small increment in running time, using the 8
(logical) cores available results in multiplying interesting outcomes by almost 40,
whereas the total number of outcomes only increases by a factor of 4. This
desirable effect may be due to increased stress on the scheduler and on the
memory sub-system. We also observed it on high-end Power machines.

7 Affinity

Linux and AIX offer the possibility to bind a given software, POSIX, thread on a
given logical processor. In other words, the POSIX thread will be forced to run on
the specified logical processor. In the simplest situation, logical processors and
cores coincide. For instance, conti features two cores, known to the OS as logical
processors 0 and 1. However, due to hyper-threading (x86) or simultaneous multi-
threading (SMT, Power) a given core can host several logical processors. For
instance, saumur features 4 cores and 8 logical processors, as depicted by Fig. 9.

CoreCore CoreCore

Proc

0 4 2 6

Core

Proc

Core CoreCore

1 5 3 7

Fig. 9. Numbering of logical processors on saumur

The litmus tool provides users with two parameters for affinity control, the
logical processor sequence P and the affinity increment i. Those two parameters
can be set both at compile and execution time, as command line options. By de-
fault, affinity control is disabled (since some OS’s do not offer the feature). Users
enable affinity control by specifying a value for the affinity increment. Then, the
default logical processor sequence is inferred by .exe files, as 0, 1, . . . A−1 where
A is the number of logical processors available.

A given litmus test involves t threads, written P0, P1, . . . Pt−1 in its source.
Those will run as t software threads, written T0, T1, . . . , Tt−1. It is worth noticing
that the correspondence between test threads and POSIX threads changes at
every iteration of the outer loop (the loop of size r). The distinction between
test thread Pi and POSIX thread Tj becomes significant when affinity control
is activated, as logical processors are allocated to POSIX threads, not to test
threads.

First consider the simple example of the demonstration machine conti (a = 2
cores available, thus P = 0, 1) and of test SB (t = 2 threads). We first compile
the test enabling affinity control by specifying i = 1:

con% litmus -mach conti -i 1 -o conti/affinity/a.tar x86/@all

con% cd conti/affinity && tar xmf a.tar && make

...

The executable SB.exe runs one instance of the litmus test SB that involves
two threads. Those two threads will be forced to run on the logical processors 0
and 1:

con% ./SB.exe -v

n=1, r=200, s=5000, i=1, p=’0,1’

Test SB Allowed

Histogram (4 states)

2343 :>0:EAX=0; 1:EAX=0;

499920:>0:EAX=1; 1:EAX=0;

497722:>0:EAX=0; 1:EAX=1;

15 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 2343, Negative: 997657

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 0.20

Option -v shows the value of parameters. For comparison, we disable affinity
control and run the same test:

con% ./SB.exe -i 0

Test SB Allowed

Histogram (4 states)

2519 :>0:EAX=0; 1:EAX=0;

499905:>0:EAX=1; 1:EAX=0;

497552:>0:EAX=0; 1:EAX=1;

24 :>0:EAX=1; 1:EAX=1;

Ok

Witnesses

Positive: 2519, Negative: 997481

Condition exists (0:EAX=0 /\ 1:EAX=0) is validated

Hash=7dbd6b8e6dd4abc2ef3d48b0376fb2e3

Time SB 1.91

We observe a speedup of about 10 and no significant change as regards outcome
counts1. We probably witness a scheduler effect similar to raising the priority of
the test.

The subtleties of controlling affinity by the means of a single parameter i
are better illustrated on a machine more complex than conti. We thus turn
to saumur (2 procs × 2 cores × 2-ways hyper-threading = 8 logical processors).
Roughly, logical processors are allocated to POSIX threads, test instance by test
instance, by steps of the specified increment i.

We illustrate the details of the process with an example. Let P =
0, 1, 2, 3, 4, 5, 6, 7 be the default logical processor sequence on saumur. As SB
involves two threads (t = 2), SB.exe runs n = 4 instances of the test. Setting
i = 6 illustrates all the aspects of our allocation procedure. The first test instance
gets the logical processors {0, 6}. Then, the next logical processor is 6 + 6 = 12,
which we reduce modulo 8, yielding 4. The next logical processor is 4 + 6 = 10,
i.e 2 after reduction modulo 8. As a result, the second instance gets the logical
processors {4, 2}. Then, the next logical processor is 2 + 6 = 8, i.e. 0. However,
the logical processor 0 being already allocated, we allocate the logical proces-
sor 0 + 1 = 1 and the third instance gets the logical processors {1, 7}. Finally,
the last instance gets the remaining two logical processors {5, 3} naturally, as 5
is 7 + 6 modulo 8 and 3 is 7 + 2× 6 modulo 8.

In practice, the following table gives the allocation of logical processors for
four settings of interest for i.

i Allocation Test threads run on. . . (cf. Fig 9)

0 Leave scheduler alone

1 {0, 1}, {2, 3}, {4, 5}, {6, 7} Different processors

2 {0, 2}, {4, 6}, {1, 3}, {5, 7} Different cores

4 {0, 4}, {1, 5}, {2, 6}, {3, 7} Same cores

A few runs of SB.exe with default size parameters on saumur will then demon-
strate that affinity control impacts test output beyond running times.

sau% ./SB.exe -i 0

...

Positive: 3596, Negative: 3996404

...

Time SB 1.70

sau% ./SB.exe -i 1

...

Positive: 24533, Negative: 3975467

...

Time SB 1.28

sau% ./SB.exe -i 2

1 In fact, the counts of interesting outcomes vary in the same way for the two settings:
from about 100 to about 5, 000.

...

Positive: 23350, Negative: 3976650

...

Time SB 0.86

sau% ./SB.exe -i 4

...

Positive: 2171, Negative: 3997829

...

Time SB 0.36

We observe increasing speedups in running times as the test threads get closer
one to the other. We also observe that interesting outcomes counts are 10 times
higher when test threads run on distinct physical cores (i = 1, i = 2), than when
test threads run on the same physical core (i = 4). We here witness an effect
related to machine topology.

This effect sometimes makes the difference between observing and not ob-
serving a given outcome, as we found for many tests on Power machines.

