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The weak memory model



Multicore OCaml

Extension of the OCaml language with multicore programming.

Research project at OCaml Labs (Cambridge), will be merged
eventually.

Strengths:

• brings multicore abilities to a functional, statically typed,
memory-safe programming language;
• (gives the programmer a simpler memory model than that of

C11, hopefully;)
• limited performance drop for sequential code.

Goals of this PhD:

• Build a proof system for Multicore OCaml programs.
• Prove interesting concurrent data structures.
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Sequential consistency

Consider this concurrent program:

x := 0
y := 0

x := 1 y := 1
A := y B := x

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64): 91%, 9%, 0.001%.

The compiler may reorder a write after a read.
(The processor too.)

2



Sequential consistency

Consider this concurrent program:

x := 0
y := 0

x := 1 y := 1
A := y B := x

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64): 91%, 9%, 0.001%.

The compiler may reorder a write after a read.
(The processor too.)

2



Sequential consistency

Consider this concurrent program:

x := 0
y := 0

x := 1 y := 1
A := y B := x

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64): 91%, 9%, 0.001%.

The compiler may reorder a write after a read.
(The processor too.)

2



Sequential consistency

Consider this concurrent program:

x := 0
y := 0

x := 1 y := 1
A := y B := x

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64): 91%, 9%, 0.001%.

The compiler may reorder a write after a read.
(The processor too.)

2



A weaker memory model

Consider this concurrent program:

x := 0
y := 0

x := 1 y := 1
A := y B := x

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1), (0, 0).
Observed (M.OCaml on 2-core x86-64): 91%, 9%, 0.001%, 0.1%.

The compiler may reorder a write after a read.
(The processor too.)
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Weak memory models

Sequential consistency is unrealistic.

We need a weaker memory model, where different threads have
different views of the shared state.

The model should be specific to our language.

Existing works: Java (2000s), C11 (2010s; also Rust).

Candidate model for Multicore OCaml:
Dolan, Sivaramakrishnan, Madhavapeddy.
Bounding Data Races in Space and Time.
PLDI 2018.

Two access modes: non-atomic, atomic.
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An operational model for Multicore OCaml: non-atomics

x := x1 y := y1

A := !y B := !x

Each non-atomic location has a history, i.e. a
map from timestamps to values (timestamps
are per location).

Each thread has its own view of the
non-atomic store, i.e. a map from non-atomic
locations to timestamps.
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An operational model for Multicore OCaml: atomics

Non-atomic locations are useful for updating the state locally, but
they don’t provide synchronization.

Atomic locations allow the message-passing idiom.
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An operational model for Multicore OCaml: atomics

x := x1

a :=at true
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C := !at a
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Each atomic location stores one value,
and one view of the non-atomic store.
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Our program logic



Rules of non-atomic locations

The predicate x 7→ v means that we own the non-atomic location x

and that we have seen its latest value, which is v .

Non-atomic write:

{x 7→ v}
x := v ′

{λ(). x 7→ v ′}

Non-atomic read:

{x 7→ v}
! x

{λv ′. v ′ = v ∗ x 7→ v}
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Impact of the weak memory model on our CSL

Invariants are the mechanism by which threads can share
propositions in a Concurrent Separation Logic such as Iris:

{P ∗ I } e {Q ∗ I } e atomic

I ` {P} e {Q}

The proposition x 7→ v is subjective: its truth depends on the
thread’s view of memory.

It is unsound to share it via an invariant.

Propositions which are true in all threads are called objective:

• “pure” facts, such as v = 5
• ghost state, such as γ ↪→ ◦ 5
• atomic state, such as a 7→at (v ,V)

Only objective propositions can be put in an invariant.
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Rules of atomic locations (simplified)

The predicate a 7→at v means that we own the atomic
location a, which stores the value v .

It is objective.

Atomic write:

{a 7→at v}
a :=at v

′

{λ(). a 7→at v
′}

Atomic read:

{a 7→at v}
!at a

{λv ′. v ′ = v ∗ a 7→at v}

9



Rules of atomic locations (simplified)

The predicate a 7→at v means that we own the atomic
location a, which stores the value v .

It is objective.

Atomic write:

{a 7→at v}
a :=at v

′

{λ(). a 7→at v
′}

Atomic read:

{a 7→at v}
!at a

{λv ′. v ′ = v ∗ a 7→at v}

views
Views are ordered by inclusion.

The predicate ↑ V means “the

current thread’s view includes V”.

9



Rules of atomic locations
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Propositions are monotonic

Subjective propositions are monotonic w.r.t. the thread’s view.

One reason: the frame rule:

{a 7→at v ∗ P}
a :=at v

′

{λ(). a 7→at v
′ ∗ P}
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Propositions are monotonic

Subjective propositions are monotonic w.r.t. the thread’s view.

One reason: the frame rule:

{a 7→at v ∗ P this holds at the thread’s current view}
a :=at v

′

{λ(). a 7→at v
′ ∗ P this holds at the thread’s now extended view}
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The message passing idiom

The objective proposition “P at V ” is the subjective proposition P

seen at a fixed view V.

P ⇐⇒ ∃V. (↑ V) ∗ (P at V)

(⇒) If P holds now, then it holds at the current view.
(⇐) If P holds at some earlier view, then it holds now.
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Example: spin lock

A spin lock implements a lock using an atomic boolean variable.

let rec acquire lk =
if CAS lk false true
then ()
else acquire lk

let release lk =
lk :={at} false

The invariant in the sequentially consistent model is:

lockInv lk P ,

lk 7→at true ∨ (

∃V.

lk 7→at false ∗ P)
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Example: ticket lock

A ticket lock implements a lock using two atomic integer variables.

The invariant in the sequentially consistent model is:

lockInv turn next γ P ,

∃t, n.

turn 7→at t

∗ next 7→at n

∗ (ticket γ t ∨ (locked γ ∗ P))

∗ γ ↪→ (• . . .)
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Example: Dekker’s mutual exclusion

Dekker’s algorithm solves the mutual exclusion problem using three
atomic variables.

The invariant and representation predicate in the SC model are:

DekkerInv turn flag0 flag1 γ P ,

∃t, f0, f1, c0, c1.(
∀i ∈ {0, 1}. flagi 7→at fi ∗ γi ↪→ • ci

)
∗ ((¬c0 ∧ ¬c1) −∗ P)
∗ . . .

isDekker i γ ,

∃V.

γi ↪→ ◦ false
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Model of the logic in Iris

Propositions are predicates on views:

vProp , view −→ iProp

↑ V0 , λV. V0 v V
P ∗ Q , λV. P V ∗ Q V
P −∗ Q , λV .

∀V w V1.

P V −∗ Q V

We equip a language-with-view with an operational semantics:

exprWithView , expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e ϕ , λV .

∀V w V1.

WP 〈e,V〉
(
λ〈v ,V ′〉. ϕ v V ′

)
where ϕ : val→ vProp

15



Model of the logic in Iris

Propositions are monotonic predicates on views:

vProp , view mon−→ iProp

↑ V0 , λV. V0 v V
P ∗ Q , λV. P V ∗ Q V
P −∗ Q , λV1. ∀V w V1. P V −∗ Q V

We equip a language-with-view with an operational semantics:

exprWithView , expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e ϕ , λV1. ∀V w V1. WP 〈e,V〉
(
λ〈v ,V ′〉. ϕ v V ′

)
where ϕ : val→ vProp

15



Model of the logic in Iris

Propositions are monotonic predicates on views:

vProp , view mon−→ iProp

↑ V0 , λV. V0 v V
P ∗ Q , λV. P V ∗ Q V
P −∗ Q , λV1. ∀V w V1. P V −∗ Q V

We equip a language-with-view with an operational semantics:

exprWithView , expr × view

Iris builds a WP calculus for exprWithView in iProp.

We derive a WP calculus for expr in vProp and prove adequacy:

WP e ϕ , λV1. ∀V w V1. WP 〈e,V〉
(
λ〈v ,V ′〉. ϕ v V ′

)
where ϕ : val→ vProp

15



Future work

Plans for the future:

• Prove more elaborate shared data structures
• e.g. bounded queues with a circular buffer

• Data races on non-atomics:
• How to allow them?
• What are they useful for?
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