Towards a separation logic for
Multicore OCaml

Glen Mével, Jacques-Henri Jourdan, Francois Pottier

May 25, 2020
PPS seminar, Paris

CNRS & Inria, Paris, France

The weak memory model

Multicore OCaml

Extension of the OCaml language with multicore programming.
Research project at OCaml Labs (Cambridge), will be merged
eventually.

Strengths:

e brings multicore abilities to a functional, statically typed,
memory-safe programming language;

e (gives the programmer a simpler memory model than that of
C11, hopefully;)

e limited performance drop for sequential code.

Goals of this PhD:

e Build a proof system for Multicore OCaml programs.

e Prove interesting concurrent data structures.

Sequential consistency

Consider this concurrent program:

&
i

X
A :=y | B:

]
i

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64). 91%, 9%, 0001%

Sequential consistency

Consider this concurrent program:

y o
X = =1
A = = X

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64). 91%, 9%, 0001%

Sequential consistency

Consider this concurrent program:

y o
X = =1
A = = X

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64). 91%, 9%, 0001%

Sequential consistency

Consider this concurrent program:

y o
x := 1 =1
A := B := x

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1).
Observed (M.OCaml on 2-core x86-64). 91%, 9%, 0001%

A weaker memory model

Consider this concurrent program:

oo
< = <
o
S

X
A

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1), (0, 0).
Observed (M.OCaml on 2-core x86-64). 91%, 9%, 0001%, 01%

A weaker memory model

Consider this concurrent program:

X
A =1y

i
L<
R
S

Possible outcomes (A, B): (0, 1), (1, 0), (1, 1), (0, 0).
Observed (M.OCaml on 2-core x86-64). 91%, 9%, 0001%, 01%

The compiler may reorder a write after a read.

(The processor too.)

Weak memory models

Sequential consistency is unrealistic.

We need a weaker memory model, where different threads have
different views of the shared state.

The model should be specific to our language.
Existing works: Java (2000s), C11 (2010s; also Rust).

Candidate model for Multicore OCaml:
Dolan, Sivaramakrishnan, Madhavapeddy.

Bounding Data Races in Space and Time.
PLDI 2018.

Two access modes: non-atomic, atomic.

An operational model for Multicore OCaml: non-atomics

X1

»
I

Y1

«
i

An operational model for Multicore OCaml: non-atomics

X1

»
I

y
B

Y1
I'x

A :=ly

Each non-atomic location has a history, i.e. a
map from timestamps to values (timestamps
are per location).

An operational model for Multicore OCaml: non-atomics

X1

»
I

y
B

Y1
I'x

A :=ly

Each non-atomic location has a history, i.e. a

thread B thread A map from timestamps to values (timestamps
are per location).
X X
g . .
Y W Each thread has its own view of the
l/ non-atomic store, i.e. a map from non-atomic
p

locations to timestamps.

An operational model for Multicore OCaml: non-atomics

Y1

«
i

non-atomic write

thread B‘ threlad A

e Timestamp must be fresh.
X: Xp X1

1 e Timestamp must be newer than
y-) current thread's view.

e Current thread’s view is updated.

An operational model for Multicore OCaml: non-atomics
X = X1 y =7
A :=1y || B :=Ix

non-atomic write

thread B\ threlad A

e Timestamp must be fresh.
X: Xp X1

e Timestamp must be newer than
y- 0 X current thread's view.

/ \

e Current thread’s view is updated.

An operational model for Multicore OCaml: non-atomics
X = X1 =N
A = 1y8®_ B := Ix

thread B thread A non-atomic read
X Q0 & e Returns any value at least as
. recent as current thread’s view.
y: 00 N
/ \ e Current thread's view is unchanged.

An operational model for Multicore OCaml: non-atomics

X =] X].) }7 =] yl
A = 1y43B := Ix
thread B thread A non-atomic read
X O @ e Returns any value at least as
. recent as current thread’s view.
Yo W xn
/ \ e Current thread's view is unchanged.

An operational model for Multicore OCaml: atomics

Non-atomic locations are useful for updating the state locally, but
they don't provide synchronization.

Atomic locations allow the message-passing idiom.

An operational model for Multicore OCaml: atomics

X 1= X1 REPEAT
a =5t true C := 14 a
UNTIL C = true
B := Ix
thread A
X :)
J

a: false

An operational model for Multicore OCaml: atomics

X = x REPEAT
a =5t true C := 14 a
UNTIL C = true
B := Ix
atomic a
thread B read A
. ‘x Each atomic location stores one value,
' I’? and one view of the non-atomic store.
a: false

An operational model for Multicore OCaml: atomics

X 1= X1 REPEAT
a =5t true C := 14 a
UNTIL C = true
B := Ix
atomic a
read A
X :)
)

a: false

An operational model for Multicore OCaml: atomics

X 1= X1 REPEAT
a =5t true C := 14 a
UNTIL C = true
B := Ix
atomic a
thread A
X XO X1
J J

a: false

An operational model for Multicore OCaml: atomics

X 1= xg REPEAT
a =4 tru C := 14 a
UNTIL C = true
B := Ix
atomic a
thread B read A - -
‘ atomic write
X: Xp Xq Merges the writer's view into the
” atomic location’s view.

a: true

An operational model for Multicore OCaml: atomics

X 1= xg REPEAT
a =5t true C := 14 a
UNTIL C = true
B := Ix
atomic a
thread B read A =
‘ atomic read
X : Xp0 Xy Merges the atomic location's
I” view into the reader's view.
a: true

An operational model for Multicore OCaml: atomics

X 1= X1 REPEAT
a =5t true C := 14 a
NTIL C = true
= Ix

atomic a

read A
X : X0 X1
)

a: true

Our program logic

Rules of non-atomic locations

The predicate x — v means that we own the non-atomic location x
and that we have seen its latest value, which is v.
Non-atomic write:
{x—v}
x =V
M) x= '}
Non-atomic read:
{x—v}
I x

WV =v* x—v}

Impact of the weak memory model on our CSL

Invariants are the mechanism by which threads can share
propositions in a Concurrent Separation Logic such as Iris:
{Px1}e{Q = I} e atomic

F{Pre{Q}

The proposition x — v is subjective: its truth depends on the

thread's view of memory.

It is unsound to share it via an invariant.

Propositions which are true in all threads are called objective:
e “pure” facts, suchas v =5

e ghost state, such as v < 05
e atomic state, such as a4 (v, V)

Only objective propositions can be put in an invariant.

Rules of atomic locations (simplified)

The predicate a >t v means that we own the atomic
location a, which stores the value v.
It is objective.
Atomic write:
{ar—at v}
g5 = W
{A). arsar V'}
Atomic read:
{a—at v}
lita

WV =v * arsa v}

Rules of atomic locations (simplified)

The predicate a >t v means that we own the atomic

location a, which stores the value v.
It is objective.

Atomic write:

{a+ar v} views
] , Views are ordered by inclusion.
a =t V
/
{A0- a—a v} The predicate 1V means “the
Atomic read: current thread's view includes V".

{a —at V}

!at a

WV =v * arsa v}

Rules of atomic locations

The predicate a ¢ (v, V) means that we own the atomic
location a, which stores the value v and a view (at least) V.

It is objective.

Atomic write:

{arsat (v, V) x TV} views

Views are ordered by inclusion.

0 /
a =t V

/ /
{A0- a=a (V,V)] The predicate 1V means “the
Atomic read: current thread's view includes V".
{a —at (V7 V)}

!ata

WV =v x ara (v,V) x TV}

Rules of atomic locations

The predicate a ¢ (v, V) means that we own the atomic
location a, which stores the value v and a view (at least) V.

It is objective.

Atomic write:

{arsat (v, V) x TV} views

Views are ordered by inclusion.

0 /
a =t V

/ /
A0 amae (VY LUY) 1V} The predicate TV means “the

Atomic read: current thread's view includes V".
{a —at (V7 V)}

!ata

WV =v x ara (v,V) x TV}

Propositions are monotonic

Subjective propositions are monotonic w.r.t. the thread's view.

One reason: the frame rule:

{ar—atv x P}
a ‘=t V/

{N). arsar v/ % P}

10

Propositions are monotonic

Subjective propositions are monotonic w.r.t. the thread's view.

One reason: the frame rule:

{a>at v x P this holds at the thread’s current view}
a ‘=t V/

{A(). arat v/ x P this holds at the thread's now extended view}

10

The message passing idiom

The objective proposition “P at V" is the subjective proposition P
seen at a fixed view V.

P < 3V. (1V) * (PatV)

(=) If P holds now, then it holds at the current view.
(<) If P holds at some earlier view, then it holds now.

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ P}

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ar>at (false, @) * P}

a :=5¢ true

{a+at (true, V) x P}

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ar>at (false, @) * P}
{ar>,t (false, &) x PatV x 1TV}

a :=5¢ true

{aat (true, V) x P}

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ar>at (false, @) * P}
{ar>,t (false, &) x PatV x 1TV}
a :=5¢ true

{aat (true,V) x PatV}

{aat (true, V) x P}

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ar>at (false, @) * P}
{ar>,t (false, &) x PatV x 1TV}
a :=5¢ true

{aat (true,V) x PatV}

/ C =14 a

This proposition is objective:

{aat (true, V) x P}

it can be put in an invariant.

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ar>at (false, @) * P}

{ar>,t (false, &) x PatV x 1TV}

a :=5¢ true

{aat (true,V) x PatV} ~i
/ V 3 {2, (true, V) * PatV}

C:= 14 a

This proposition is objective:

{aat (true, V) x P}

it can be put in an invariant.

11

The message passing idiom

P <= 3V. (1V) * (PatV)

{ar>at (false, @) * P}
{ar>,t (false, &) x PatV x 1TV}
a :=5¢ true
{aat (true,V) x PatV} ~i
V 3 {2, (true, V) * PatV}

/ C =14 a
{a+at (true, V) x PatV x TV}
{a—at (true, V) x P}

This proposition is objective:

it can be put in an invariant.

11

Example: spin lock

A spin lock implements a lock using an atomic boolean variable.

let rec acquire 1lk = let release 1lk =
if CAS 1k false true 1k :={at} false
then ()

else acquire 1k

The invariant in the sequentially consistent model is:

locklnv 1k P £
1k >, true V (1k 5, false x P)

12

Example: spin lock

A spin lock implements a lock using an atomic boolean variable.

let rec acquire 1lk = let release 1lk =
if CAS 1k false true 1k :={at} false
then ()

else acquire 1k

The invariant in the weak model is:

locklnv 1k P £
1k —a true V (3V. lk =, (false, V) x Pat))

12

Example: ticket lock

A ticket lock implements a lock using two atomic integer variables.

The invariant in the sequentially consistent model is:

locklnv turn next v P =
dt, n.
turn >, t
* next —ra N
* (ticket v t V (locked v * P))

kv (o...)

13

Example: ticket lock

A ticket lock implements a lock using two atomic integer variables.

The invariant in the weak model is:

locklnv turn next v P £
dt, n, V.
turn — 4 (t, V)
* next g N
* (ticket v t V (locked v * PatV))

kv (o...)

13

Example: Dekker's mutual exclusion

Dekker's algorithm solves the mutual exclusion problem using three
atomic variables.

The invariant and representation predicate in the SC model are:

Dekkerlnv turn flag, flag; v P =
dt, fo, f1, co, 1.
(Vi € {0,1}. flag; st f; * 7 <> o)
* ((—co A —ey) = P)
isDekker i v £

vi < ofalse

14

Example: Dekker's mutual exclusion

Dekker's algorithm solves the mutual exclusion problem using three
atomic variables.

The invariant and representation predicate in the weak model are:

Dekkerlnv turn flag, flag; v P =
3t, fo, f1, co, c1, Vo, V1.
(Vi € {0,1}. flag; st (£, Vi) * 7i > oci % 7 < o V)
* ((—co A —ey) = Pat (Vo UML)
isDekker i v £
dV.y; < ofalse * 7. <oV * TV

14

Model of the logic in Iris

Propositions are predicates on views:
vProp £ view — iProp
Vo2 AV VTV
Px QEXNV.PYV xQV
P+xQ=XV. PY%QV

15

Model of the logic in Iris

Propositions are monotonic predicates on views:
vProp £ view =2 iProp
Vo2 AV VTV
Px QEXNV.PYV xQV
PxQEXNV.YWIVL.PV—=%QV

15

Model of the logic in Iris

Propositions are monotonic predicates on views:
vProp £ view =2 iProp
Vo2 AV VTV
Px QEXNV.PYV xQV
PxQEXNV.YWIVL.PV—=%QV
We equip a language-with-view with an operational semantics:
exprWithView £ expr x view
Iris builds a WP calculus for exprWithView in iProp.
We derive a WP calculus for expr in vProp and prove adequacy:
WP e ¢ £ \V1. YV I V1. WP (e,V) (Mv, V). ¢ v V)

where ¢ : val — vProp
15

Plans for the future:

e Prove more elaborate shared data structures
e e.g. bounded queues with a circular buffer
e Data races on non-atomics:

e How to allow them?
e What are they useful for?

16

	The weak memory model
	Our program logic

