
Developing an Iris-Based
Program Verification Framework

for OCaml
Research internship proposal, M2

Armaël Guéneau, Inria Saclay, armael.gueneau@inria.fr
François Pottier, Inria Paris, francois.pottier@inria.fr

2023

1 Overview

There exist a large number of approaches for program verification, which vary in the targeted lan-
guage, the expressiveness of the logic, the amount of automation provided to the user, the integration
between the verification tool and the targeted language, and in the trusted computing base of the
approach.

In terms of expressiveness, the Iris Separation Logic framework lies at one end of this spectrum:
it provides a powerful, expressive program logic that can be used to reason about a wide variety
of subtle properties, for languages with higher-order stateful programs, concurrency, weak memory,
distributed nodes communicating over the network, etc. To reason about concrete programs, one
needs to instantiate the Iris framework with a given programming language, whose syntax and
operational semantics must be defined in Coq. One then typically proves language-specific reasoning
rules in Separation Logic, and defines custom tactics that help automate certain language-specific
reasoning steps.

This instantiation work has been done for a number of minimalistic research languages, such as
HeapLang, lambda-rust, Aneris, and more. These “toy” languages are useful for fundational work
and experimentation within Iris, but are ill-suited for verification of programs that can be released
“in the real world”, to be compiled and run as libraries of a mainstream programming language.
For instance, idiomatic OCaml programs make extensive use of algebraic datatypes and pattern
matching, but HeapLang (which is intended to instantiate Iris with an “ML-like” language) only
provides binary pairs and variants. This makes it cumbersome to translate a program from OCaml
to HeapLang or from HeapLang to OCaml, and thus difficult to verify realistic OCaml programs
using Iris.

We propose to address this issue by instantiating Iris with a large enough, realistic subset of a
mainstream programming language, namely OCaml. For a large enough subset of OCaml, we wish
to define its syntax so that it matches the syntax of real-world OCaml programs, and to define its
operational semantics so that it matches what is implemented by the OCaml compiler. We also wish
to develop tooling to easily translate between OCaml source files and their representation in Coq (as
a deep embedding). Making it easy to translate between these two representations would be useful
for actual program verification and would also serve as a testimony that our language definition
inside Coq is close enough to real-world OCaml.

In this internship, we propose to work towards the definition of such a language, which we
dub “OCamlLang”, and towards an instantiation of Iris with this language. OCamlLang should,
ultimately, support features including: algebraic datatypes and pattern matching, records, arrays,
mutually recursive functions, exceptions. The task then is to define the syntax and operational
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semantics of OCamlLang, as well as reasoning rules in Separation Logic. Depending on time, one
could also look at writing tools to translate between OCaml source files and OCamlLang programs,
or automation in Coq to support verification of OCamlLang programs.

2 Roadmap

Broadly speaking, defining a program verification environment based on Iris involves the following
steps:

• (in Coq) define the syntax and operational semantics of OCamlLang;

• (in Coq) define a weakest-precondition modality and prove a set of reasoning rules;

• (in Coq) set up tactics (or other infrastructure) that helps apply these rules in practice;

• (in OCaml) implement a translation of OCaml to OCamlLang;

• (in Coq; optional) set up infrastructure that reflects OCaml’s type discipline in specifications;

• (in Coq) validate the previous steps by verifying a number of small OCaml modules.

Regarding OCamlLang and its operational semantics, a good starting point is the calculus defined
by Arthur Charguéraud as part of CFML2 (Charguéraud, 2022). CakeML Kumar et al. (2014); Tan
et al. (2019), its operational semantics, and its characteristic formula generator (Guéneau et al.,
2017) can also serve as a reference. The tool developed by Léon Gondelman for Aneris (Krogh-
Jespersen et al., 2020) may also be of interest. In addition, the MetaCoq project is developed a
verified extraction procedure whose target language is Malfunction; they have a formal semantics of
Malfunction in Coq. Some questions that we must address include:

• Should we use a (small-step) substitution-based semantics or a (small-step) environment-
based semantics? The former is more common in the Iris literature. The latter may in
principle reduce the cost of propagating substitutions during program verification. Perhaps a
more important question is, which of the two offers the most readable goals?

• How should we deal with OCaml’s unspecified evaluation order? The let/and construct
can be given a non-deterministic semantics and a “parallel” reasoning rule that is sound with
respect to this semantics. The other constructs whose evaluation order is unspecified (appli-
cations, tuples, and so on) could be either dealt with in the same way as let/and or reduced to
let/and constructs, either via a preliminary translation step, or at runtime (during reduction).

• Should we have just one calculus and one semantics, or possibly one calculus and multiple
semantics, or possibly multiple calculi? The desire to desugar certain constructs may be a
motivation for distinguishing several calculi. As an example, the constructs whose evaluation
order is unspecified could be desugared in terms of let/and. As another motivation, the question
whether immutable objects (tuples, records, sums) should be regarded as values or as heap
blocks might be answered both ways by offering two semantics.

• How should we model names, including names of variables, record fields, data constructors?

• What is the best way of modeling OCaml’s tuples, records (withmutable fields), and sums?

• What is needed to support deep pattern matching in an elegant and practical way?

• What is the best way of modeling OCaml’s arrays, whose length field is immutable?

• What is the best way of modeling mutually recursive first-class functions? What is the
best way of dealing with (curried) functions of several arguments and with partial applications?
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• How should we model OCaml’smodules and functors? How do we model toplevel definitions
that have a side effect? Perhaps the most natural approach is to view modules and functors
simply as records and functions. In that case, how can we set up our specifications and proofs
so as to be able to reason about one definition at a time?

• Can we model OCaml’s polymorphic comparison operators?

• Can we deal with exceptions and delimited control effects? de Vilhena’s work (de Vilhena
and Pottier, 2021, 2022) can serve as a source of inspiration.

The features that we do not intend to support (at first) include concurrency (especially weak memory
concurrency) and GADTs.

Regarding our instantiation of Iris for OCamlLang, the following questions may arise:

• What form should our points-to assertions take? Should we allow just per-block or also
per-field ownership? Regarding arrays, should we allow just whole-array ownership or also
ownership of array slices?

• Must every assertion be affine, or can we distinguish between affine and linear assertions?
Examples of linear objects in OCaml include continuations and system resources (such as
network sockets and file descriptors).

• Can we instantiate diaframe (Mulder et al., 2022) for OCamlLang?

Regarding the tool that translates OCaml to OCamlLang, the following questions may arise:

• Should the tool duplicate part of OCaml’s front-end? Should it share code with the CFML
tool? Can it rely on Frédéric Bour’s library (ongoing work) which offers access to OCaml’s
abstract syntax trees?

• How might the tool be thoroughly tested so as to ensure semantic preservation?

3 Prerequisites

A solid programming background, including fluency in OCaml, is highly desirable. Familiarity
with the operational semantics of programming languages (MPRI 2.4) and with Hoare logic and
Separation Logic (MPRI 2.36.1) is essential. Familiarity with Coq or with another proof assistant
(MPRI 2.7.1 and 2.7.2) is essential.

4 Practical details

This internship will be jointly supervised by Armaël Guéneau (Inria Saclay) and François Pottier
(Inria Paris). It will take place at Inria Paris from March 2023 to August 2023 approximately. Our
colleague Arthur Charguéraud (Inria Strasbourg) will provide expert advice.

5 Reading list

To learn about Separation Logic for sequential programs, we suggest reading the educational pearl
by Charguéraud (2020), as well as the associated course material (Charguéraud, 2021). Learning
about the logical foundations of Iris (Jung et al., 2018) is necessary. For broader information on
Separation Logic and its many variants, the surveys by O’Hearn (2019) and by Brookes and O’Hearn
(2016) are recommended.
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