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1 Overview

With an ephemeral data structure, updates are destructive, meaning that prior versions of the
data structure are lost after an operation. On the contrary, with a persistent data structure, all
prior versions of the data structure remain valid after an update. A transient data structure is
a persistent data structure that may be temporarily accessed in an ephemeral fashion, enabling
performance gains.

In recent work, Arthur Charguéraud and François Pottier developed Sek [4], a transient data
structure for sequences. This data structure offers, at the same time:

• ephemeral sequences, which support in-place updates;

• persistent sequences, which appear to be immutable, even though their implementation can
involve mutable state and copy-on-write techniques;

• constant-time operations for converting between these two variants.

The purpose of this internship is to to formally verify the key ingredients of this transient
data structure in Separation Logic. This work, if successful, would presumably be the first formal
verification of a persistent data structure implemented with optimized imperative code.

2 Key Ideas of the Implementation

To focus on the core of the verification challenge, we propose to consider a simpler data structure,
namely a transient stack data structure. This greatly reduces the size of the code and simplifies
numerous technical details, while preserving the most interesting aspects of the problem, which have
to do with managing the ownership of mutable memory blocks.

A stack is represented as a linked list of chunks, where a chunk is a fixed-capacity array. The
OCaml data types involved in the representation of stacks are given below and explained next.

type ’a chunk =

{ mutable data : ’a array;

mutable size : int;

default : ’a }

type ’a pchunk =

{ support : ’a chunk;

mutable view_size : int;
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version : int }

type ’a pstack =

{ pfront : ’a pchunk;

ptail : ’a pchunk list;

pversion_max : int }

type ’a stack =

{ mutable front : ’a chunk;

mutable tail : ’a pchunk list;

version_owned : int }

• A chunk (type chunk) consists of a fixed capacity array data, and of a size field that indicates
how many elements are currently stored in this array. The unused cells store a default value.
An ephemeral chunk also keeps at hand a default value that is used to overwrite a cell when
it becomes conceptually empty. Chunks serve two purposes: first, they serve as stand-alone
ephemeral chunks, which are pieces of an ephemeral stack; second, they serve as the support
of persistent chunks, which are potentially-shared pieces of persistent stacks.

• A persistent chunk (type pchunk) consists of a “view” on a chunk, that is, a description of a
prefix of a chunk. Thus, a persistent chunk carries a pointer to a chunk, its support, and an
integer view_size, which indicates the size of the prefix of the support that is relevant. Finally,
a persistent chunk carries a version number. This number is used by ephemeral stacks to
keep track of which persistent chunks they own. Indeed, a persistent chunk is either definitely
uniquely owned by a stack, or potentially shared between several stacks.

• A persistent stack (type pstack) essentially consists of a list of persistent chunks. For efficiency
reasons, the front persistent chunk is stored in a separate field, pfront, while the remaining
persistent chunks are stored in a linked list, ptail. A persistent stack also stores an upper
bound pversion_max on the version numbers of its persistent chunks. This upper bound allows
generating a fresh version number in constant time.

• An ephemeral stack (type stack) consists of a front chunk, which can be efficiently updated
in place, and of a linked list tail of persistent chunks. A number of these persistent chunks
may be uniquely owned by the ephemeral stack, in which case they keep the ability to be
updated in place when they come to the front. The remaining persistent chunks are regarded
as potentially shared, therefore cannot be modified; if they must be updated, then they are
copied first (a copy-on-write operation). To keep track of which persistent chunks it owns, an
ephemeral stack stores a version number, version_owned. The persistent chunks whose version
number matches this number are uniquely owned.

A strength of this representation is that one can convert a stack into a persistent stack in time
O(K), where K denotes the capacity of the chunks. K is typically a small constant such as 16 or 32.

An implementation of all operations is given in the appendix.

3 Proof Strategy

The CFML system [5] supports the verification of OCaml programs through interactive proofs in
the Coq proof assistant. To reason about mutable state, CFML leverages Separation Logic, which
extends Hoare Logic with “local reasoning”.

CFML has been used in the past decade to verify numerous data structures (vectors, hash tables,
disjoint set forests, finger trees, etc.) and algorithms (Dijkstra’s shortest paths algorithm, depth-first
search, Eratosthenes’ sieve, incremental cycle detection, etc.).

A central aspect of the internship is to express in CFML both the high-level principles of the
chunk ownership policy and the low-level details of the management of version numbers. The key
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challenges of the proof include arguing that the data structures invariants are preserved by in-place
updates and explaining the owership transfers that take place during the conversion operations.

4 Roadmap

Here is a possible roadmap for this internship.

1. As a warm-up for using CFML: verify the correctness of the data structure, restricted to
its ephemeral interface. Then, verify the correctness of the data structure, restricted to its
persistent interface.

2. As another, independent warm-up for specifying the data structure: specify and test the full
data structure using Monolith [12], a tool for applying fuzz testing to an OCaml library. Doing
so should help understand exactly what each operation is supposed to do, and which invariants
are true.

3. Specify the data structure operations and invariants in the presence of both ephemeral and
persistent instances. This requires explaining which pieces of data are uniquely owned, and
which pieces are shared.

4. Verify the correctness of the implementation with respect this specification. This includes the
verification of the ephemeral operations, of the persistent operations, and of the conversion
operations.

5. Write and publish a research paper describing the work.

5 Extensions

There are several immediate directions for extending this work.

1. Generalize the chunks from a stack interface to a double-ended queue interface, and generalize
the data structure from a list of chunks to a tree of chunks. This would result in a data
structure that is much closer to what is actually found in Sek.

2. Generalize the specification and proofs to establish asymptotic time complexity bounds. Doing
so can be achieved by leveraging the extension of CFML with “time credits” [6, 7].

3. Investigate how the proof could be ported to Iris [8], a very powerful evolution of Separation
Logic. Exploiting Iris could lead to more concise specifications.

6 Prerequisites

Familiarity with the operational semantics of programming languages (MPRI 2.4), with Hoare logic
and Separation Logic (MPRI 2.36.1), and with proof assistants (MPRI 2.7.1 and 2.7.2) is essential.
A solid programming background, including fluency in OCaml, is also highly desirable.

7 Practical details

This internship will be co-supervised by Arthur Charguéraud and by François Pottier. It will take
place from March 2021 to August 2021 approximately. It can take place either in Paris or in
Strasbourg. Regardless of which physical location is chosen, regular video meetings with both
advisors will be scheduled.
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8 Reading list

To learn about Separation Logic for sequential programs, and about the foundations of CFML2,
an obvious step is to read Charguéraud’s educational pearl [3], as well as the associated all-in-Coq
course material [2].

Learning about the logical foundations of Iris [8] is recommended.
Mehnert et al.’s paper on the verification of a snapshottable data structure [10] may be relevant.

Krishna et al.’s approach to local reasoning about the global properties of a graph [9] should also
be interesting.

For broader information on Separation Logic and its many variants, the surveys by O’Hearn [11]
and by Brookes and O’Hearn [1] are recommended.
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A Implementation

(* Auxiliary functions. *)

let empty_chunk d =

{ data = Array.make capacity d; size = 0; default = d }

let empty_pchunk d =

{ support = empty_chunk d; view_size = 0; version = 0 }

let chunk_of_pchunk p =

let d = p.support.default in

let t = Array.init capacity (fun i ->

if i < p.view_size then p.support.data.(i) else d

) in

{ data = t; size = p.view_size; default = d }

let chunk_push c x =

c.data.(c.size) <- x;

c.size <- c.size + 1

(* Conversion functions. *)

let persistent_to_ephemeral s =

{ front = chunk_of_pchunk s.pfront; tail = s.ptail; version_owned = s.pversion_max + 1 }

let ephemeral_to_persistent s =

let p = { support = s.front; view_size = s.front.size; version = s.version_owned } in

{ pfront = p; ptail = s.tail; pversion_max = s.version_owned }

(* Ephemeral operations. *)

let empty d =

{ front = empty_chunk d; tail = []; version_owned = 0 }

let push s x =

if s.front.size = capacity then begin

let p = { support = s.front;

view_size = capacity;

version = s.version_owned } in

s.tail <- p :: s.tail;

s.front <- empty_chunk s.front.default;

end;

chunk_push s.front x

let pop s =

let n = s.front.size in

if n = 0 then raise Not_found;

let n’ = n - 1 in

s.front.size <- n’;

let x = s.front.data.(n’) in

s.front.data.(n’) <- s.front.default;

if n’ = 0 then begin

match s.tail with
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| [] -> ()

| p::ps ->

s.tail <- ps;

s.front <- if p.version = s.version_owned

then p.support

else chunk_of_pchunk p

end;

x

(* Persistent operations. *)

let pempty d =

{ pfront = empty_pchunk d; ptail = []; pversion_max = 0 }

let ppush s x =

if s.pfront.view_size = capacity then begin

let c = empty_chunk s.pfront.support.default in

chunk_push c x;

let p = { support = c; view_size = 1; version = 0 } in

{ s with pfront = p; ptail = s.pfront :: s.ptail }

end else begin

let p = s.pfront in

let n = p.view_size in

if n = p.support.size then begin

chunk_push p.support x;

let p’ = { p with view_size = n+1 } in

{ s with pfront = p’ }

end else begin

let c = chunk_of_pchunk p in

chunk_push c x;

let p’ = { support = c; view_size = n+1; version = 0 } in

{ s with pfront = p’ }

end

end

let ppop s =

let n = s.pfront.view_size in

if n = 0 then raise Not_found;

let n’ = n - 1 in

let x = s.pfront.support.data.(n’) in

let p’ = { s.pfront with view_size = n’ } in

let s’ =

if n’ > 0 then

{ s with pfront = p’ }

else

match s.ptail with

| [] -> { s with pfront = p’ }

| p::ps -> { s with pfront = p; ptail = ps }

in

s’, x
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