Polymorphic Typed Defunctionalization

Francois Pottier and Nadji Gauthier, INRIA

Outline
1. Closure conversion and defunctionalization
2. Prior art
3. Our approach

4. Closing remarks



Closure conversion

Closure conversion turns a program that makes use of arbitrary functions into a

program where only closed functions (code pointers) are allowed.

A-abstractions in the source program are encoded as pairs of a code pointer and

an environment (closures).
Nz.e] = (A({z}, x).[e],{x}) where T is fv(Az.e)
le1es] = let(code, env) = [e1]in code (env, [es])

It is known that closure conversion preserves types, provided function types are
suitably encoded [Minamide, Morrisett, and Harper, POPL’96]:

[11 — 1] = Jda.((a x [11] — [r=]) x @)

Closure conversion and defunctionalization 2



A close cousin: defunctionalization

Defunctionalization [Reynolds, 1972] encodes A-abstractions as pairs of a tag and

an environment, that is, as applications of a data constructor to an environment:
[N"x.e] = m{z} where Z is fv(A\x.e)
Function application is encoded as a call to a globally defined function apply...
lerea] = apply|ei] [ez2]
. which performs case analysis over m and branches to the appropriate code:

letrec apply = \f.\arg.case f of

| m{z} — letx = argin[e] (* one such clause for every tag m *)

Closure conversion and defunctionalization 3



Does defunctionalization preserve types?

Imagine the source program contains the functions A\$“““z.z + 1 and A"°*z.not z,
whose types are int — int and bool — bool. Then, the body of apply contains

the following clauses:

| succ +— letx =arginz +1

| not +— letx = arginnotx

In (say) System F, these clauses make incompatible assumptions about arg, and

produce results of incompatible types: thus, apply is ill-typed.

Closure conversion and defunctionalization 4



Prior art: specializing apply

One solution is to split apply into a family of functions, indexed by types:

letrec apply,,.. ..., = Af.\arg.case f of
| succ — letx = arginz + 1
and applyy,o1— boo; = Af -Aarg.case f of

| not — letx = arginnotx

Here, the data constructors succ and not may be declared as follows:

succ : Arrowini— int

not : Arrowpeei—bool

where Arrow;ni—ine and Arrowpooi—poo; are distinct algebraic data types.

Prior art



Shortcoming: no polymorphism

In this approach, we have

[[61 62]] — applyﬁem [[61]] [[62]] where ey has type 71 — 7

1 — 1] = Arrow, .,

The trouble is, these definitions only make sense when 71 — 75 has no free type
variables. There is no sensible way of translating

Aoy Aas Af a7 — as e ap.(f ).

As a result, this approach is applicable in a simply-typed setting only (and, via
monomorphization, in the setting of ML).

Prior art



Our approach

In order to translate (f x) where f has type a; — ag, we must have
apply : Vaias.[ag — as] — [a1] — [az].
If, furthermore, the type encoding is uniform, then the above implies

apply [m1] [2] : [71 — 72] — [11] — [72]

for all 71 and 75, so this one apply function is in fact suitable for translating

arbitrary applications.

Our approach



A uniform type encoding

Let Arrow be a binary algebraic data type constructor, and let

[o] = «

71 — 1] = Arrow|[m] [m]

This yields a uniform type encoding.

Since A\5““z.x + 1 and \"°’z.not x have types int — int and bool — bool, their
encodings must have types Arrow int int and Arrow bool bool, respectively. So,
we declare:

succ . Arrow int int

not : Arrow bool bool

Arrow is a guarded algebraic data type [Xi, Chen, and Chen, POPL’03].

Our approach



Does defunctionalization preserve types? (reconsidered)

The body of apply, enriched with type annotations, is now:

letrec apply : Vaqas. Arrow ap g — v — g =
Aaq . Aas Af : Arrow o ag. Narg @ o
case f of
| succ — (* f is succ, so Arrow ay as = Arrow int int holds *)
letx = arginx + 1 : as
| not — (* f is not, so Arrow a1 as = Arrow bool bool holds *)

letx = arginnotx : as

Case analysis over a guarded algebraic data type yields extra type information.

Defunctionalization is now type-preserving.

Our approach



Specialization

One may define versions of apply that are specialized with respect to the types
of the parameter and of the result:

apply,. _.,, :Va. |1 — o] — [11] — [m2] where a is ftv(m — ),
or with respect to the number of arguments that are simultaneously available:
apply, :Vaq...anapi1.Jar — ... = ap — api1] a1 — .0 — @y — apa,

or both.

Branches that lead to an inconsistent typing assumption may be pruned—ifor
instance, apply,,, .., need not check for the tag not. This allows dispatch to be

made more efficient based on type information available at the call site.

Closing remarks 10



Closing remarks

e When viewed as a transformation from System F, extended with guarded

algebraic data types, into itself, defunctionalization is type-preserving.

e Defunctionalization per se is not type-directed, so its correctness may be
established using a generic (untyped) simulation argument.

e Interesting type-directed optimizations are possible.

e This illustrates the usefulness of guarded algebraic data types as a
programming language feature. (Defunctionalization turns Danvy’s [1998]
clever sprintf encoding back to direct style!)

Closing remarks 11



