
Polymorphic Typed Defunctionalization
François Pottier and Nadji Gauthier, INRIA

Outline

1. Closure conversion and defunctionalization

2. Prior art

3. Our approach

4. Closing remarks



Closure conversion

Closure conversion turns a program that makes use of arbitrary functions into a
program where only closed functions (code pointers) are allowed.

λ-abstractions in the source program are encoded as pairs of a code pointer and
an environment (closures).

Jλx.eK = (λ({x̄}, x).JeK, {x̄}) where x̄ is fv(λx.e)

Je1 e2K = let (code, env) = Je1K in code (env , Je2K)
It is known that closure conversion preserves types, provided function types are
suitably encoded [Minamide, Morrisett, and Harper, POPL’96]:

Jτ1 → τ2K = ∃α.((α× Jτ1K→ Jτ2K)× α)

Closure conversion and defunctionalization 2



A close cousin: defunctionalization

Defunctionalization [Reynolds, 1972] encodes λ-abstractions as pairs of a tag and
an environment, that is, as applications of a data constructor to an environment:

Jλmx.eK = m {x̄} where x̄ is fv(λx.e)

Function application is encoded as a call to a globally defined function apply ...

Je1 e2K = apply Je1K Je2K
... which performs case analysis over m and branches to the appropriate code:

letrec apply = λf .λarg .case f of

| m {x̄} 7→ let x = arg in JeK (* one such clause for every tag m *)

Closure conversion and defunctionalization 3



Does defunctionalization preserve types?

Imagine the source program contains the functions λsuccx.x + 1 and λnotx.notx,
whose types are int → int and bool → bool . Then, the body of apply contains
the following clauses:

| succ 7→ letx = arg in x + 1

| not 7→ letx = arg in notx

In (say) System F, these clauses make incompatible assumptions about arg , and
produce results of incompatible types: thus, apply is ill-typed.

Closure conversion and defunctionalization 4



Prior art: specializing apply

One solution is to split apply into a family of functions, indexed by types:

letrec apply int→int = λf .λarg .case f of

| succ 7→ letx = arg inx + 1

and applybool→bool = λf .λarg .case f of

| not 7→ letx = arg in notx

Here, the data constructors succ and not may be declared as follows:

succ : Arrow int→int

not : Arrowbool→bool

where Arrow int→int and Arrowbool→bool are distinct algebraic data types.

Prior art 5



Shortcoming: no polymorphism

In this approach, we have

Je1 e2K = applyτ1→τ2
Je1K Je2K where e1 has type τ1 → τ2

Jτ1 → τ2K = Arrowτ1→τ2

The trouble is, these definitions only make sense when τ1 → τ2 has no free type
variables. There is no sensible way of translating

Λα1.Λα2.λf : α1 → α2.λx : α1.(f x).

As a result, this approach is applicable in a simply-typed setting only (and, via
monomorphization, in the setting of ML).

Prior art 6



Our approach

In order to translate (f x) where f has type α1 → α2, we must have

apply : ∀α1α2.Jα1 → α2K→ Jα1K→ Jα2K.

If, furthermore, the type encoding is uniform, then the above implies

apply Jτ1K Jτ2K : Jτ1 → τ2K→ Jτ1K→ Jτ2K

for all τ1 and τ2, so this one apply function is in fact suitable for translating
arbitrary applications.

Our approach 7



A uniform type encoding

Let Arrow be a binary algebraic data type constructor, and let

JαK = α

Jτ1 → τ2K = Arrow Jτ1K Jτ2K
This yields a uniform type encoding.

Since λsuccx.x + 1 and λnotx.not x have types int → int and bool → bool , their
encodings must have types Arrow int int and Arrow bool bool , respectively. So,
we declare:

succ : Arrow int int

not : Arrow bool bool

Arrow is a guarded algebraic data type [Xi, Chen, and Chen, POPL’03].

Our approach 8



Does defunctionalization preserve types? (reconsidered)

The body of apply , enriched with type annotations, is now:

letrec apply : ∀α1α2.Arrow α1 α2 → α1 → α2 =

Λα1.Λα2.λf : Arrow α1 α2.λarg : α1.

case f of

| succ 7→ (* f is succ, so Arrow α1 α2 = Arrow int int holds *)

letx = arg inx + 1 : α2

| not 7→ (* f is not , so Arrow α1 α2 = Arrow bool bool holds *)

letx = arg in not x : α2

Case analysis over a guarded algebraic data type yields extra type information.

Defunctionalization is now type-preserving.

Our approach 9



Specialization

One may define versions of apply that are specialized with respect to the types
of the parameter and of the result:

applyτ1→τ2
: ∀ᾱ.Jτ1 → τ2K→ Jτ1K→ Jτ2K where ᾱ is ftv(τ1 → τ2),

or with respect to the number of arguments that are simultaneously available:

applyn : ∀α1 . . . αnαn+1.Jα1 → . . . → αn → αn+1K→ α1 → . . . → αn → αn+1,

or both.

Branches that lead to an inconsistent typing assumption may be pruned—for
instance, apply int→int need not check for the tag not. This allows dispatch to be
made more efficient based on type information available at the call site.

Closing remarks 10



Closing remarks

• When viewed as a transformation from System F, extended with guarded
algebraic data types, into itself, defunctionalization is type-preserving.

• Defunctionalization per se is not type-directed, so its correctness may be
established using a generic (untyped) simulation argument.

• Interesting type-directed optimizations are possible.

• This illustrates the usefulness of guarded algebraic data types as a
programming language feature. (Defunctionalization turns Danvy’s [1998]
clever sprintf encoding back to direct style!)

Closing remarks 11


