
1

Mapping and Explaining Syntax Errors with LRgrep

Frédéric Bour & François Pottier

October 23, 2025

2

3

What we have today

A syntactically incorrect OCaml program:

let x = 3;

let y = 4

let z = 5

Today, OCaml produces this syntax error message:

File "foo.ml", line 3, characters 0-3:

3 | let z = x + y

^^^

Error: Syntax error

3

What we have today

A syntactically incorrect OCaml program:

let x = 3;

let y = 4

let z = 5

Today, OCaml produces this syntax error message:

File "foo.ml", line 3, characters 0-3:

3 | let z = x + y

^^^

Error: Syntax error

4

What we want

A syntactically incorrect OCaml program:

let x = 3; (* The trailing semicolon is the real mistake! *)

let y = 4 (* This is mistakenly read as a local declaration. *)

let z = 5 (* An error is detected at the start of this line. *)

What we would perhaps like to see:

File "foo.ml" (3:0-3):

Syntax error.

A local declaration has been read (2:0-9):

let y = 4

The keyword ‘in‘ is now expected.

Suggestion: deleting the semicolon before this declaration (1:9-10)

would allow it to be interpreted as a global declaration.

4

What we want

A syntactically incorrect OCaml program:

let x = 3; (* The trailing semicolon is the real mistake! *)

let y = 4 (* This is mistakenly read as a local declaration. *)

let z = 5 (* An error is detected at the start of this line. *)

What we would perhaps like to see:

File "foo.ml" (3:0-3):

Syntax error.

A local declaration has been read (2:0-9):

let y = 4

The keyword ‘in‘ is now expected.

Suggestion: deleting the semicolon before this declaration (1:9-10)

would allow it to be interpreted as a global declaration.

5

Outline

1 The setting

2 Demo: a toy language

6

The setting

Have:

• Deterministic LR(1) parsing.
• Static non-ambiguity check.

Want:

• A tool that helps visualize the landscape of syntax error situations.
• A way of expressing a declarative and programmable mapping

of syntax error situations to syntax error messages.
• Support for detecting useless and redundant entries in this mapping.
• To separate this mapping from the description of the grammar.
• To tolerate the non-determinism that arises

once the next input symbol is considered unknown.

6

The setting

Have:

• Deterministic LR(1) parsing.
• Static non-ambiguity check.

Want:

• A tool that helps visualize the landscape of syntax error situations.
• A way of expressing a declarative and programmable mapping

of syntax error situations to syntax error messages.
• Support for detecting useless and redundant entries in this mapping.
• To separate this mapping from the description of the grammar.
• To tolerate the non-determinism that arises

once the next input symbol is considered unknown.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input

a list of states
a list of symbols

past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols

past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.

8

LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr] matches all stacks that can be reduced to . . . expr .
• [(︸ ︷︷ ︸

a terminal symbol

expr︸ ︷︷ ︸
a nonterminal symbol

/ expr : (expr •)︸ ︷︷ ︸
an item

]

matches all stacks that can be reduced to . . . (expr
and whose top state contains the item expr : (expr •).

8

LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr] matches all stacks that can be reduced to . . . expr .

• [(︸ ︷︷ ︸
a terminal symbol

expr︸ ︷︷ ︸
a nonterminal symbol

/ expr : (expr •)︸ ︷︷ ︸
an item

]

matches all stacks that can be reduced to . . . (expr
and whose top state contains the item expr : (expr •).

8

LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr] matches all stacks that can be reduced to . . . expr .

• [(︸ ︷︷ ︸
a terminal symbol

expr︸ ︷︷ ︸
a nonterminal symbol

/ expr : (expr •)︸ ︷︷ ︸
an item

]

matches all stacks that can be reduced to . . . (expr
and whose top state contains the item expr : (expr •).

9

Outline

1 The setting

2 Demo: a toy language

10

The toy language

%token <int> INT (* Tokens. *)

%token <string> IDENT

%token PLUS MINUS TIMES DIV EQUAL LPAREN RPAREN SEMI LET IN EOF

%nonassoc IN (* Precedence declarations. *)

%right SEMI

%left PLUS MINUS

%left TIMES DIV

%start <unit> file (* Entry point. *)

%%

file: declaration* EOF {} (* Productions. *)

declaration: LET binding {}

binding: IDENT EQUAL expr {}

expr:

| IDENT | INT

| expr PLUS expr | expr MINUS expr | MINUS expr

| expr TIMES expr | expr DIV expr | expr SEMI expr

| LPAREN expr RPAREN

| LET binding IN expr {}

11

A declaration is now expected

Excerpt of the .lrgrep file / sample incorrect input / error message:

| / . file

{ "A declaration is now expected." }

garbage

File "input01.in" (1:0-7):

Syntax error.

A declaration is now expected.

The pattern /(. file) matches a situation where nothing has been read.

12

An identifier is now expected

The pattern LET matches a situation where LET is on top of the stack:

| l=LET

{ read (start decl) $positions(l) ^

"An identifier is now expected." }

let

let x = 0

File "input02.in" (2:0-3):

Syntax error.

The start of a declaration has been read (1:0-3):

let

An identifier is now expected.

The capture l= lets us refer to a position or semantic value.

13

An equals sign is now expected

A situation where LET followed with IDENT are on top of the stack:

| l=LET; i=IDENT

{ read (start decl) ($startpos(l), $endpos(i)) ^

"An equals sign ‘=‘ is now expected." }

let x + 2 = 2

File "input03.in" (1:6-7):

Syntax error.

The start of a declaration has been read (1:0-5):

let x

An equals sign ‘=‘ is now expected.

I like to explain what has been understood and what is expected next.

What has been read is described abstractly and shown concretely.

14

An expression is now expected

A situation where LET, IDENT, EQUAL have been read:

| l=LET; IDENT; e=EQUAL

{ read (start decl) ($startpos(l), $endpos(e)) ^

"An expression is now expected." }

let x =)

let z = 0

File "input04.in" (1:8-9):

Syntax error.

The start of a declaration has been read (1:0-7):

let x =

An expression is now expected.

I do not list all the ways in which an expression might begin.

15

An expression is now expected

Situations where an expression is expected, in a different context:

| e=expr; o=PLUS | e=expr; o=MINUS

| e=expr; o=DIV | e=expr; o=TIMES | e=expr; o=SEMI

{ read (expr ++ binop) ($startpos(e), $endpos(o)) ^

"An expression is now expected." }

let a =

let x = 1+2- in

0

File "input05.in" (2:15-17):

Syntax error.

An expression and a binary operator have been read (2:10-14):

1+2-

An expression is now expected.

16

An expression is now expected

Yet another situation where an expression is expected:

| l=LPAREN / _* . expr _*
{ read lparen $positions(l) ^

"An expression is now expected." }

let x = 1+(+)

File "input06.in" (1:11-12):

Syntax error.

An opening parenthesis has been read (1:10-11):

(

An expression is now expected.

I do not merge all of the situations where an expression is expected
because I want to show and explain what has been recently read.

17

Another declaration is now expected

A situation where the recent input can be understood as a declaration:

| d=[declaration]

{ read decl $positions(d) ^

"If this declaration is complete, then" ^/^

"another declaration is now expected." }

let x = 1+2)3

let y = 0

File "input07.in" (1:11-12):

Syntax error.

A declaration has been read (1:0-11):

let x = 1+2

If this declaration is complete, then

another declaration is now expected.

18

The keyword in is now expected

LET, followed with what can be understood as a binding, has been read:

| l=LET; b=[binding]

{ read ldecl ($startpos(l), $endpos(b)) ^

"The keyword ‘in‘ is now expected." }

let x = 1+2-

let y = 0

File "input08.in" (3:0-0):

Syntax error.

A local declaration has been read (2:0-9):

let y = 0

The keyword ‘in‘ is now expected.

19

The cherry on the cake

A special case of the previous situation, with more left context:

| [declaration]; s=SEMI; l=LET; b=[binding]

{ read ldecl ($startpos(l), $endpos(b)) ^

"The keyword ‘in‘ is now expected." ^/^

sprintf "Suggestion: [...]" (* An extra suggestion. *) }

let x = 3; (* The trailing semicolon is the real mistake! *)

let y = 4 (* This is mistakenly read as a local declaration. *)

let z = 5 (* An error is detected at the start of this line. *)

File "test11.in" (3:0-3):

Syntax error.

A local declaration has been read (2:0-9):

let y = 4

The keyword ‘in‘ is now expected.

Suggestion: deleting the semicolon before this declaration (1:9-10)

would allow it to be interpreted as a global declaration.

20

A closing parenthesis is now expected

LPAR, followed with what can be viewed as an expression, has been read:

| l=LPAREN; e=[expr]

{ read (lparen ++ expr) ($startpos(l), $endpos(e)) ^

"If this expression is complete," ^/^

"a closing parenthesis is now expected." }

let x = (1+2

let y = 0

File "input09.in" (2:0-3):

Syntax error.

An opening parenthesis and an expression have been read (1:8-12):

(1+2

If this expression is complete,

a closing parenthesis is now expected.

“If this expression is complete” could be removed. White lies are fine.

21

Conclusion

LRgrep is available, though not yet officially released.

This demo is available online.

LRgrep is still being

• improved by Frédéric so as to better scale,
• applied to OxCaml’s grammar:

• 147 terminal symbols, 265 nonterminal symbols,
• 1485 productions,
• 3675 states.

https://github.com/let-def/lrgrep
https://github.com/fpottier/lrgrep-example/
https://oxcaml.org/

	The setting
	Demo: a toy language

