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What we have today

A syntactically incorrect OCaml program:

let x = 3;

let y = 4

let z = 5

Today, OCaml produces this syntax error message:

File "foo.ml", line 3, characters 0-3:

3 | let z = x + y

^^^

Error: Syntax error
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What we want

A syntactically incorrect OCaml program:

let x = 3; (* The trailing semicolon is the real mistake! *)

let y = 4 (* This is mistakenly read as a local declaration. *)

let z = 5 (* An error is detected at the start of this line. *)

What we would perhaps like to see:

File "foo.ml" (3:0-3):

Syntax error.

A local declaration has been read (2:0-9):

let y = 4

The keyword ‘in‘ is now expected.

Suggestion: deleting the semicolon before this declaration (1:9-10)

would allow it to be interpreted as a global declaration.
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Outline

1 The setting

2 Demo: a toy language
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The setting

Have:

• Deterministic LR(1) parsing.
• Static non-ambiguity check.

Want:

• A tool that helps visualize the landscape of syntax error situations.
• A way of expressing a declarative and programmable mapping

of syntax error situations to syntax error messages.
• Support for detecting useless and redundant entries in this mapping.
• To separate this mapping from the description of the grammar.
• To tolerate the non-determinism that arises

once the next input symbol is considered unknown.



6

The setting

Have:

• Deterministic LR(1) parsing.
• Static non-ambiguity check.

Want:

• A tool that helps visualize the landscape of syntax error situations.
• A way of expressing a declarative and programmable mapping

of syntax error situations to syntax error messages.
• Support for detecting useless and redundant entries in this mapping.
• To separate this mapping from the description of the grammar.
• To tolerate the non-determinism that arises

once the next input symbol is considered unknown.



7

Plan of attack

We wish to write a declarative specification:

error situation { code that produces an error message }

What is an error situation?

What state does an LR parser maintain?

a stack | the remaining input
a list of states

a list of symbols
past input (re-interpreted)

To describe an error situation is to describe a set of stack suffixes.

We need a language for this purpose.
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LRgrep expressions

To describe a set of stacks, we use regexps plus a few ad hoc constructs:

e ::= symbol – terminal or non-terminal
(e e) | (e | e) | e⋆

[e] – matching up to reduction
/item – filtering

Examples:

• [expr ] matches all stacks that can be reduced to . . . expr .
• [ (︸ ︷︷ ︸

a terminal symbol

expr︸ ︷︷ ︸
a nonterminal symbol

/ expr : ( expr • )︸ ︷︷ ︸
an item

]

matches all stacks that can be reduced to . . . ( expr
and whose top state contains the item expr : ( expr • ).
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The toy language

%token <int> INT (* Tokens. *)

%token <string> IDENT

%token PLUS MINUS TIMES DIV EQUAL LPAREN RPAREN SEMI LET IN EOF

%nonassoc IN (* Precedence declarations. *)

%right SEMI

%left PLUS MINUS

%left TIMES DIV

%start <unit> file (* Entry point. *)

%%

file: declaration* EOF {} (* Productions. *)

declaration: LET binding {}

binding: IDENT EQUAL expr {}

expr:

| IDENT | INT

| expr PLUS expr | expr MINUS expr | MINUS expr

| expr TIMES expr | expr DIV expr | expr SEMI expr

| LPAREN expr RPAREN

| LET binding IN expr {}
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A declaration is now expected

Excerpt of the .lrgrep file / sample incorrect input / error message:

| / . file

{ "A declaration is now expected." }

garbage

File "input01.in" (1:0-7):

Syntax error.

A declaration is now expected.

The pattern /(. file) matches a situation where nothing has been read.
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An identifier is now expected

The pattern LET matches a situation where LET is on top of the stack:

| l=LET

{ read (start decl) $positions(l) ^

"An identifier is now expected." }

let

let x = 0

File "input02.in" (2:0-3):

Syntax error.

The start of a declaration has been read (1:0-3):

let

An identifier is now expected.

The capture l= lets us refer to a position or semantic value.
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An equals sign is now expected

A situation where LET followed with IDENT are on top of the stack:

| l=LET; i=IDENT

{ read (start decl) ($startpos(l), $endpos(i)) ^

"An equals sign ‘=‘ is now expected." }

let x + 2 = 2

File "input03.in" (1:6-7):

Syntax error.

The start of a declaration has been read (1:0-5):

let x

An equals sign ‘=‘ is now expected.

I like to explain what has been understood and what is expected next.

What has been read is described abstractly and shown concretely.
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An expression is now expected

A situation where LET, IDENT, EQUAL have been read:

| l=LET; IDENT; e=EQUAL

{ read (start decl) ($startpos(l), $endpos(e)) ^

"An expression is now expected." }

let x = )

let z = 0

File "input04.in" (1:8-9):

Syntax error.

The start of a declaration has been read (1:0-7):

let x =

An expression is now expected.

I do not list all the ways in which an expression might begin.
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An expression is now expected

Situations where an expression is expected, in a different context:

| e=expr; o=PLUS | e=expr; o=MINUS

| e=expr; o=DIV | e=expr; o=TIMES | e=expr; o=SEMI

{ read (expr ++ binop) ($startpos(e), $endpos(o)) ^

"An expression is now expected." }

let a =

let x = 1+2- in

0

File "input05.in" (2:15-17):

Syntax error.

An expression and a binary operator have been read (2:10-14):

1+2-

An expression is now expected.



16

An expression is now expected

Yet another situation where an expression is expected:

| l=LPAREN / _* . expr _*
{ read lparen $positions(l) ^

"An expression is now expected." }

let x = 1+(+)

File "input06.in" (1:11-12):

Syntax error.

An opening parenthesis has been read (1:10-11):

(

An expression is now expected.

I do not merge all of the situations where an expression is expected
because I want to show and explain what has been recently read.



17

Another declaration is now expected

A situation where the recent input can be understood as a declaration:

| d=[declaration]

{ read decl $positions(d) ^

"If this declaration is complete, then" ^/^

"another declaration is now expected." }

let x = 1+2)3

let y = 0

File "input07.in" (1:11-12):

Syntax error.

A declaration has been read (1:0-11):

let x = 1+2

If this declaration is complete, then

another declaration is now expected.
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The keyword in is now expected

LET, followed with what can be understood as a binding, has been read:

| l=LET; b=[binding]

{ read ldecl ($startpos(l), $endpos(b)) ^

"The keyword ‘in‘ is now expected." }

let x = 1+2-

let y = 0

File "input08.in" (3:0-0):

Syntax error.

A local declaration has been read (2:0-9):

let y = 0

The keyword ‘in‘ is now expected.
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The cherry on the cake

A special case of the previous situation, with more left context:

| [declaration]; s=SEMI; l=LET; b=[binding]

{ read ldecl ($startpos(l), $endpos(b)) ^

"The keyword ‘in‘ is now expected." ^/^

sprintf "Suggestion: [...]" (* An extra suggestion. *) }

let x = 3; (* The trailing semicolon is the real mistake! *)

let y = 4 (* This is mistakenly read as a local declaration. *)

let z = 5 (* An error is detected at the start of this line. *)

File "test11.in" (3:0-3):

Syntax error.

A local declaration has been read (2:0-9):

let y = 4

The keyword ‘in‘ is now expected.

Suggestion: deleting the semicolon before this declaration (1:9-10)

would allow it to be interpreted as a global declaration.
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A closing parenthesis is now expected

LPAR, followed with what can be viewed as an expression, has been read:

| l=LPAREN; e=[expr]

{ read (lparen ++ expr) ($startpos(l), $endpos(e)) ^

"If this expression is complete," ^/^

"a closing parenthesis is now expected." }

let x = (1+2

let y = 0

File "input09.in" (2:0-3):

Syntax error.

An opening parenthesis and an expression have been read (1:8-12):

(1+2

If this expression is complete,

a closing parenthesis is now expected.

“If this expression is complete” could be removed. White lies are fine.
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Conclusion

LRgrep is available, though not yet officially released.

This demo is available online.

LRgrep is still being

• improved by Frédéric so as to better scale,
• applied to OxCaml’s grammar:

• 147 terminal symbols, 265 nonterminal symbols,
• 1485 productions,
• 3675 states.

https://github.com/let-def/lrgrep
https://github.com/fpottier/lrgrep-example/
https://oxcaml.org/
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