
Mezzo: an experience report

François Pottier

Inria Paris

Lausanne, October 2016

At the present time I think we are on the verge of discovering at
last what programming languages should really be like. [...]
My dream is that by 1984 we will see a consensus developing
for a really good programming language [...]

Donald E. Knuth, 1974.

1 / 34

What is Mezzo?

A programming language proposal, in the tradition of ML.

Mainly Jonathan Protzenko’s PhD work (2010-2014).

Try it out in your browser:

http://gallium.inria.fr/~protzenk/mezzo-web/

Or install it:

opam install mezzo

Joint work with:
Jonathan Protzenko, Thibaut Balabonski,

Henri Chataing, Armaël Guéneau, Cyprien Mangin.

2 / 34

http://gallium.inria.fr/~protzenk/mezzo-web/

Agenda

Design principles

Illustration (containers; locks)

Thoughts

3 / 34

Premise

The types of OCaml, Haskell, Java, C#, etc.:

• describe the structure of data,
• but say nothing about aliasing or ownership,

• they do not distinguish trees and graphs;
• they do not control who has permission to read or write.

4 / 34

Goals

Could a more ambitious static discipline:

• rule out more programming errors

• and enable new programming idioms,

• while remaining reasonably simple and flexible?

5 / 34

Goal 1 – rule out more programming errors

Classes of errors that we wish to rule out:

• representation exposure
• leaking a pointer to a private, mutable data structure

• concurrent modification
• modifying a data structure while an iterator is active

• violations of object protocols
• writing a write-once reference twice
• writing a file descriptor after closing it

• data races
• accessing a shared data structure without synchronization

6 / 34

Goal 2 – enable new programming idioms

Examples of idioms that we wish to allow:

• delayed initialization
• “null for a while, then non-null forever”
• “mutable for a while, then immutable forever”

• explicit memory re-use
• using a field for different purposes at different times

7 / 34

Design constraint – remain simple and flexible

Examples of design constraints:

• types should have lightweight syntax
• limited, predictable type annotations should be required

• in every function header

• types should not influence the meaning of programs
• type-checking should be easier than program verification

• use dynamic checks where static checking is too difficult

8 / 34

Non-goals

Mezzo is intended to be a high-level programming language.

Examples of non-goals:

• to squeeze the last bit of efficiency out of the machine

• to control data layout (unboxing, sub-word data, etc.)

• to get rid of garbage collection

• to express racy concurrent algorithms

9 / 34

Agenda

Design principles

Illustration (containers; locks)

Thoughts

10 / 34

Key design decisions

We have a limited “complexity budget”. Where do we spend it?

In Mezzo, it is spent mostly on a few key decisions:

• replacing a traditional type system, instead of refining it

• adopting a flow-sensitive discipline

• keeping track of must-alias information

11 / 34

Key design decisions

Details of these key decisions:

• there is no such thing as “the” type of a variable
• at each program point, there are zero, one, or several
permissions to use this variable

• b @ bag int
• l @ lock (b @ bag int)
• l @ locked

• strong updates are permitted
• r @ ref () can become r @ ref int after a write

• permissions can be transferred from caller to callee or back

• permissions are implicit (declared at function entry and exit)

• if x == y is known, then x and y are interchangeable

12 / 34

Down this road, ...

After these bold initial steps, simplicity is favored everywhere.

13 / 34

Design decision – just two kinds of permissions

A type or permission is either duplicable or unique.

• immutable data is duplicable: xs @ list int
• mutable data is uniquely-owned: r @ ref int
• a lock is duplicable: l @ lock (r @ ref int)

No fractional permissions.

No temporary read-only permissions for mutable data.

The system infers which permissions are duplicable.

14 / 34

Design decision – implicit ownership

A type describes layout and ownership at the same time.

• if I (the current thread) have b @ bag int
then I know b is a bag of integers
and I know I have exclusive access to it

No need to annotate types with owners.

No need for “owner polymorphism” – type polymorphism suffices.

15 / 34

Design decision – lightweight syntax for types

A function receives and returns values and permissions.
A function type a -> b can be understood as sugar for

(x: =x | x @ a) -> (y: =y | y @ b)

By convention, received permissions are considered returned as
well, unless marked consumed. The above can also be written:

(x: =x | consumes x @ a) -> (y: =y | x @ a * y @ b)

16 / 34

Design decision – lightweight syntax for types

A function that “changes the type” of its argument can be
described as follows:

(x: =x | consumes x @ a) -> (| x @ b)

or, slightly re-sugared:

(consumes x: a) -> (| x @ b)

A result of type () is returned, with the permission x @ b.

17 / 34

Design decision – no loops

We encourage writing tail-recursive functions instead of loops.

Melding two mutable lists:

val rec append1 [a]
(xs: MCons { head: a; tail: mlist a },
consumes ys: mlist a) : () =
match xs.tail with
| MNil -> xs.tail <- ys
| MCons -> append1 (xs.tail, ys)
end

Look ma, no list segment.

The list segment “behind us” is “framed out”.

18 / 34

Design decision – a static/dynamic tradeoff

Adoption & abandon lets one permission rule a group of objects.

• adding an object to the group is statically type-checked

• taking an object out of the group requires
proof of membership in the group,

• which is verified at runtime,

• therefore can fail

This keeps the type system simple and flexible.

It is however fragile, and mis-uses could be difficult to debug.

19 / 34

Agenda

Design principles

Illustration (containers; locks)

Thoughts

20 / 34

A typical container API

Here is a typical API for a “container” data structure:

abstract bag a
val new: [a] () -> bag a
val insert: [a] (bag a, consumes a) -> ()
val extract: [a] bag a -> option a

Notes:

• The type bag a is unique.

• The type a can be duplicable or unique.

• insert transfers the ownership of the element to the bag;
extract transfers it back to the caller.

21 / 34

A typical container API

Here is a typical API for a “container” data structure:

abstract bag a
val new: [a] () -> bag a
val insert: [a] (bag a, consumes a) -> ()
val extract: [a] bag a -> option a

Notes:

• let b = new() in ... produces a permission b @ bag a,
separate from any prior permissions; thus, a “new” bag.

• insert and extract request and return b @ bag a,
which tells that they (may) have an effect on the bag.

• No null pointer, no exceptions. We use options instead.

22 / 34

A pitfall

Because mutable data is uniquely-owned, “borrowing”
(reading an element from a container, without removing it)
is restricted to duplicable elements:

val find:
[a]
duplicable a =>
(a -> bool) -> list a -> option a

This affects user-defined containers, arrays, regions, etc.

23 / 34

The lock API

The lock API is borrowed from concurrent separation logic.

A lock protects a fixed permission p – its invariant.
A lock can be shared between threads:

abstract lock (p: perm)
fact duplicable (lock p)

A unique token l @ locked serves as proof that the lock is held:

abstract locked

This serves to prevent double release errors.

24 / 34

The lock API

The invariant p is fixed when a lock is created.

It is transferred to the lock.

val new: [p: perm] (| consumes p) -> lock p

Acquiring the lock produces p. Releasing it consumes p. The data
protected by the lock can be accessed only in a critical section.

val acquire: [p: perm]
(l: lock p) -> (| p * l @ locked)

val release: [p: perm]
(l: lock p | consumes (p * l @ locked)) -> ()

25 / 34

A typical use of the lock API

The lock API introduces “hidden state” into the language.

val hide : [a, b, s : perm] (
f : (a | s) -> b (* "f" has side effect "s" *)

| consumes s (* the call "hide f" claims "s" *)
) -> (a -> b) (* and yields a function *)

(* which advertises no side effect *)

26 / 34

A typical use of the lock API

Here is how this is implemented:

val hide [a, b, s : perm] (
f : (a | s) -> b

| consumes s
) : (a -> b)
=
(* Allocate a new lock. *)
let l : lock s = new () in
(* Wrap "f" in a critical section. *)
fun (x : a) : b =
acquire l; let y = f x in release l; y

27 / 34

Agenda

Design principles

Illustration (containers; locks)

Thoughts

28 / 34

In retrospect – did we get carried away?

The type system is “simple” and has beautiful metatheory (in Coq).

The early examples that we did by hand were very helpful but gave
us a false feeling that type inference would be easy, which it is not:

• first-class universal and existential types, as in System F

• intersection types

• rich subtyping

• must perform frame inference, abduction, join

Type errors are very difficult to explain, debug, fix.

Safe interoperability with OCaml is a problem.

29 / 34

Type inference problems – example 1

The system can express effect polymorphism.

val iter: [a, post: perm, p: perm] (
consumes it: iterator a post,
f: (a | p) -> bool

| p) -> (bool | post)

At a call site, must infer how to instantiate p.

30 / 34

Type inference problems – example 2

The system can express one-shot functions.

• {p : perm} ((| consumes p) -> () | p)
• no need for multiple ad hoc function types

Must infer where to “pack” and how to instantiate p.

31 / 34

Type inference problems – example 3

The system can express intersection types.

• f @ t1 -> u1 * f @ t2 -> u2
• this actually arises in our iterator library

• unexpected

At a call site, must infer which view of f to use.

32 / 34

Type inference problems – example 4

The system can decompose / recompose a view of memory.

• x @ ref int is interconvertible with
{y : term} (x @ ref (=y) * y @ int)

Must infer where and how to recompose.

33 / 34

Conclusion

We got early peer pressure to formalize the metatheory.

• this helped us better understand and simplify Mezzo

• but took manpower away from implementation and evaluation

Designing a new type theory, as opposed to refining ML:

• seemed more radical, therefore appealing
• perhaps a mistake?

• separating type- and permission-checking might be easier
• and would permit interoperability with OCaml

34 / 34

	Agenda
	Design principles
	Illustration (containers; locks)
	Thoughts

