
Types for complexity-checking

François Pottier

May 20th, 2010

1 / 57

In this talk

I would like to talk about

• how to use types for “complexity-checking;”

• how to do this in an expressive programming language, such as
ML (with state) or Haskell (with suspensions).

2 / 57

Complexity-checking

What is complexity-checking?

• not automated complexity analysis (which seems to apply to small
functional programs or term rewrite systems);

• not implicit computational complexity (which relates typed
programming languages and complexity classes);

• it consists in exploiting a type discipline to check explicit
complexity claims provided by the programmer.

3 / 57

Complexity-checking: easy or hard?

Complexity-checking is hard in the sense that it demands a lot of
information about the program:

• types in the simplest sense (e.g., “this is a mutable binary tree”);

• aliasing and ownership information (e.g., “at any point in time, only
one pointer to this binary tree is retained”);

• logical properties of data (e.g., “this binary tree is balanced”).

4 / 57

Complexity-checking: easy or hard?

On the other hand, I would like to claim that complexity-checking is
(relatively) easy if one’s starting point is a type system (or proof
system) that keeps track of this information.

The basic idea, following Tarjan [1985], is to extend the system with
time credits.

Time credits do not exist at runtime, but appear in types, and are
used to control the asymptotic run time of the code.

5 / 57

Time credits

The recipe is as follows:

1 Enforce the rule that credits cannot be created or duplicated.

2 Enforce the rule that every elementary computation step consumes
one credit. (In fact, in the absence of loop forms, it is enough for
just function calls to consume one credit.)

3 Allow credits to be passed to and returned by functions.

4 Allow credits to be stored within data, including mutable data.

6 / 57

Time credits—correctness

Rules 1 and 2 ensure that the total number of steps taken by the
program is bounded, up to a constant factor, by the number of
credits that are initially made available to it.

With a reasonable compiler, one step in the operational semantics is
executed in constant time by the machine code version of the program.

Thus, the number of credits that is made available to the program
bounds its worst-case asymptotic time complexity.

7 / 57

Time credits—types are complexity assertions

Allowing credits to serve as function arguments and results (point 3)
is required for expressiveness.

As a consequence of it, the complexity of a function can be read off
its type. Here are some examples:

int ∗ 2$→ int – constant time
∀n, int × int n ∗ n$→ int – linear time in the parameter n
∀nα, list n α ∗ 2n$→ int – linear time in the length of the list

By construction, the system is compositional.

8 / 57

Time credits—amortized complexity

Viewing credits as data (point 4) does not affect the end-to-end
guarantee: the initial number of credits remains a bound on the
program’s worst-case asymptotic time complexity.

It does, however, change the interpretation of types, which must now be
viewed as amortized complexity assertions. Credits can be stored for
later use, retrieved when needed, and this is not visible in the types.

9 / 57

Time credits—amortized complexity

Here is the classic example of a FIFO queue, implemented as a pair of
lists. Elements are enqueued into the front list, and dequeued out of
the back list. Dequeuing may require reversing the elements of the
front list and moving them to the back list, a linear time operation.

The queue offers this abstract interface:

new queue: ∀α, unit→ queue α – constant time
enqueue: ∀α, α × queue α ∗ 1$→ queue α – constant time
dequeue: ∀α, queue α→ option α × queue α – constant time

Internally, the front list stores one credit together with each element:

queue α = list (α ∗ 1$) × list α

In this example, because credits are not duplicable, the type queue
inherits this property. These queues are single-threaded.

10 / 57

Overview of the talk

In the rest of this talk, I propose to:

• give an overview of the type-theoretic machinery that I use;

• return to complexity-checking and sketch an analysis of Haskell’s
suspensions.

11 / 57

Contents

A type-checker’s armory

Affinity

Capabilities

Regions

Other forms of capabilities

When credits explain debits: an analysis of suspensions

Conclusion

Bibliography

12 / 57

A challenge: reasoning about state

Programs without state, are relatively easy to reason about, because
properties of data are stable: any logical property that holds now also
holds into the future.

Programs that manipulate a heap of mutable objects are much more
difficult to reason about: if a property of an object (or group thereof)
holds now, how do I guarantee that it still holds at a certain point in
the future?

13 / 57

Type-theoretic tools

Type system designers have offered answers that rely on a number of
technical tools:

• affinity ensures the unique ownership of mutable state;

• distinguishing values versus capabilities enables flexible ownership
policies;

• regions help keep track of which capabilities govern which objects,
and can be used to record may-alias information.

In the following, I review these concepts.

(Note: I tend to say “linearity” for “affinity.”)

14 / 57

Affinity

15 / 57

Motivation

How can I soundly make an assertion whose validity depends on the
current state of a mutable object, or group thereof?

For instance, one might wish to assert:

• “this reference holds an integer;”

• “this reference holds an even integer;”

• “this group of objects forms a forest.”

16 / 57

Motivation

The danger is to permit a state change by someone who is not aware
of the assertion, and might break it.

A natural solution is to posit that:

• only the owner of an object can write it;

• only the owner of an object can make an assertion about it;

• an object has at most one owner.

This ensures that, when an object is written, all existing assertions
about it are at hand. They are invalidated, and (if desired) new
assertions about the object are made.

In short, this affine ownership discipline is sound and permits strong
updates.

17 / 57

On the right to read

For simplicity, we posit that only the owner of an object can read it.

Because only the owner can make an assertion about an object, a
read by a non-owner would produce a value whose type and logical
properties are unknown. This would make it useless.

18 / 57

Affine references

What concrete form do these ideas take? For instance, one could
extend a traditional affine type discipline, in the style of Barber’s DILL,
with affine references.

The three primitive operations would be:

ref : τ→ ref τ
! : ref !τ→ !τ × ref !τ

:= : ref τ1 × τ2 → ref τ2

Here, a value of type ref τ is the address of the reference, but it also
represents the ownership of the reference and the assertion that the
reference currently holds a value of type τ.

Reading involves duplication, and is restricted to duplicable types.
Writing involves loss, which is fine in an affine system.
Writing allows strong updates.

19 / 57

Limitations

The affine type system of the previous slide ensures that:

• there is at most one use of certain variables;

• there is at most one pointer to an object;

• there is at most one owner per object.

Here, only the third goal is of interest.

The second restriction is undesirable. It stems from the fact that we
have conflated the pointer to the object and the token of ownership of
the object. Only the latter need be affine!

20 / 57

Capabilities

21 / 57

Motivation

The address of a reference is just a value. It is duplicable.

The token of ownership of a reference is a capability. It is affine.

Like a value, a capability can be passed to a function, returned by a
function, or can be a component of a value. However, capabilities do
not exist at runtime.

By distinguishing values and capabilities, we recognize that reachability
and ownership are separate concepts; we allow multiple pointers to an
object; and we create a flexible ownership transfer mechanism.

22 / 57

Ownership transfer

Here is an example in a concurrent setting.

Imagine that the address of a memory buffer is shared between two
threads. When the first thread is done filling the buffer, it sends a
signal to the second thread, which starts processing it.

We can view the “signal” function as consuming a capability for the
buffer, and the “wait” function as producing a capability for the buffer,
so that, even though no data is transferred, the ownership of the
buffer is transferred when the two threads synchronize.

23 / 57

A type & capability system

My paper with Charguéraud [2008] presents a type & capability
calculus, where every value is duplicable and every capability is affine.

An affine value can be reconstructed, if desired, as a pair of an
unrestricted value and of the capability that governs it.

24 / 57

Type & capability systems versus type & effect systems

Every value is duplicable. In particular, functions are duplicable.

Capabilities, on the other hand, are affine. This implies that a function
closure must not capture a capability.

Thus, a function that wishes to read and/or write some object must
request a capability for this object as an argument, and usually
returns it (otherwise, it is lost).

In summary, a function’s side effects are advertised in its type.
Type-and-capability systems subsume type-and-effect systems.

25 / 57

Type & capability systems versus type & effect systems

Type-and-capability systems are more expressive than type-and-effect
systems.

While many functions require a capability and return it, which
corresponds to advertising a side effect, some functions:

• require nothing and produce a capability; this is the case of
memory allocation, lock acquisition, message reception, etc.; or

• consume a capability and return nothing; this is the case of
memory de-allocation, lock release, message emission, etc.

26 / 57

Show us a capability, will you?

What concrete form do these ideas take?

I can’t answer right away, because I am missing one ingredient.

We have separated values and capabilities, but we do need to keep
track of the connection between them. That is, we must be able to
answer the question: which capability governs which object?

What is needed is a means for a capability to refer to an object. This
is usually achieved using either a form of dependency or using regions.

27 / 57

Regions

28 / 57

Basics

A singleton region is a name for a value.

A value v has type [σ] (“at σ”) when v is the unique inhabitant of
the region σ .

This does not reveal anything about the structure of v: is it a pair, a
function, a reference, ...?

This information is carried by the capability that controls the region.

For instance, the capability {σ : ref τ} represents the ownership of the
region σ and carries the assertion that its inhabitant is the address
of a reference cell that currently contains a value of type τ.

29 / 57

Basics

Regions are monotonic in the sense that the set of their inhabitants
can only grow: if v inhabits σ now, then this is true forever.

This is required for soundness: because values are duplicable, once we
have published the information that v has type [σ], there is no way to
revoke it.

On the other hand, because capabilities are affine, the information
carried by the capability can change with time.

30 / 57

Tracked references

The three primitive operations for dealing with references are:

ref : τ→ ∃σ.([σ] ∗ {σ : ref τ})
! : [σ] ∗ {σ : ref τ} → τ ∗ {σ : ref τ}

:= : ([σ] × τ2) ∗ {σ : ref τ1} → unit ∗ {σ : ref τ2}

Here, a value of type [σ] is the address of the reference. A capability
{σ : ref τ} represents the ownership of the reference and the assertion
that the reference currently holds a value of type τ.

Reading involves duplication, and is restricted to duplicable types. Every
value type τ is duplicable.

Writing allows strong updates.

31 / 57

Group regions in one slide

A group region ρ is a name for a set of values.

There is just one capability for a group region, which represents the
ownership of the region and of its inhabitants.

For instance, {ρ : ref int} represents the ownership of a group region
that is populated with integer references. This capability does not
permit strong updates.

32 / 57

Other forms of capabilities

33 / 57

Logical assertions are capabilities

Logical assertions, such as (n′ = n + 1), where n and n′ are type-level
natural integers, can be viewed as capabilities.

These capabilities are duplicable: a purely logical assertion that is true
now is true forever.

A function can require such a capability as an argument, or return
one as a result: thus, we re-discover pre- and post-conditions.

Logical implication is embedded in the type system, which becomes a
proof system. For instance, (n = 2n′) can be turned into (n is even).

Duplicable capabilities can be captured by closures: a function is
allowed to exploit the logical properties that hold at its definition site.

34 / 57

Time credits are capabilities

Time credits can be viewed as capabilities.

Just like the capabilities that govern regions, they are affine: credits
cannot be duplicated.

Just like the capabilities that govern regions, they can be passed to
functions, returned by functions, stored within pairs, stored within
references, etc.

35 / 57

One ad hoc rule

Let us view one credit 1$ as a primitive capability.

The function application rule is modified to consume one credit:

∆ ` v : χ1 → χ2 ∆, Γ ` t : χ1
∆, Γ,1$ ` (v t) : χ2

The form n$, where n could be a variable, can be defined. Its
properties, such as (n1 + n2)$ ≡ n1$ ∗ n2$, can be derived.

36 / 57

Is that it?

Equipped with this type & capability system, extended with logical
assertions and time credits, are we ready to go off and check the
complexity of interesting programs?

• in principle, yes, I claim so;

• but there remains to implement and show that this is usable!
this is by no means trivial;

• furthermore, in some situations, more weaponry is needed.

In the rest of the talk, I wish to concentrate on the last point.

37 / 57

Contents

A type-checker’s armory

Affinity

Capabilities

Regions

Other forms of capabilities

When credits explain debits: an analysis of suspensions

Conclusion

Bibliography

38 / 57

An apparent limitation of Tarjan’s approach

As pointed out by Tarjan, credits must not be duplicated. For this
reason, Tarjan’s amortized data structures are single-threaded.

In the type & capability system, any data structure that contains
credits must be governed by an affine capability.

For instance, we could offer the following interface to an imperative
version of the FIFO queue shown earlier: back

new queue: ∀α, unit→ ∃σ.([σ] ∗ {σ : queue α})
enqueue: ∀ασ, α × [σ] ∗ {σ : queue α} ∗ 1$→ unit ∗ {σ : queue α}
dequeue: ∀ασ, [σ] ∗ {σ : queue α} → option α ∗ {σ : queue α}

39 / 57

Okasaki’s approach

Yet, Okasaki [1999] pointed out that, in a purely functional language
with lazy evaluation, it is possible to design a variety of data
structures that are persistent, shared, and nevertheless enjoy
interesting amortized complexity bounds.

40 / 57

Danielsson’s view

Okasaki suggested reasoning in terms of debits, which can be safely
duplicated, instead of credits, which must not be duplicated.

His approach was recently explained by Danielsson [2008] in terms of
a type system for complexity-checking.

Danielsson’s system is extremely simple. It involves neither affinity nor
regions: there is no control of ownership or aliasing.

41 / 57

Danielsson’s view

Danielsson introduces a primitive type of thunks.

thunk n α is the type of a suspended computation whose result has
type α and whose (amortized) cost is at most n.

Because n represents a cost (a debit, in Okasaki’s terms), as opposed
to a credit, it is sound to duplicate (a pointer to) a thunk.

Every attempt to force the thunk will then appear to cost n, even
though in reality, thanks to memoization, only the first attempt has
non-zero cost.

42 / 57

Danielsson’s view

Technically, thunks are equipped with the following operations:

return: ∀α, α→ thunk 0 α
bind: ∀mnαβ, thunk m α→ (α→ thunk n β)→ thunk (m + n) β
tick: ∀nα, thunk n α→ thunk (n + 1) α
pay: ∀mnα, thunk n α→ thunk m (thunk (n − m) α)

return and bind construct suspended computations.
tick consumes one credit; it should be used at every function call.
pay allows paying ahead of time so as to decrease the cost of a
thunk. Its soundness depends upon memoization!

Internally, thunk n α is just α: this is a phantom type.

43 / 57

Danielsson’s view, revisited

I would like to recast Danielsson’s system in terms of a strict
language, where thunks are built and forced explicitly.

In the type & capability system, equipped with time credits, thunks
should offer the following operations:

mk: ∀nα, (unit ∗ n$→ α)→ thunk n α
pay: ∀npα, thunk n α ∗ p$→ thunk (n − p) α

force: ∀α, thunk 0 α→ α

Can we implement this as a library? This would allow explaining debits
in terms of credits.

44 / 57

In need of more machinery

In the type & capability system presented so far, I (informally) claim
that the answer is negative.

There are two important reasons why this is so...

45 / 57

In need of more machinery: problem one

Recall the types of the functions that construct and evaluate thunks:

mk: ∀nα, (unit ∗ n$→ α)→ thunk n α
force: ∀α, thunk 0 α→ α

These functions accept a value and return a value: they do not require
or produce any capabilities. In other words, these functions claim to
have no side effect. Yet, we know that they must have an effect: mk
allocates a reference, which force reads and writes.

Put another way: because thunk n α is a duplicable type, a thunk does
not have a unique owner. Yet, its implementation involves a reference,
and every reference must have a unique owner.

46 / 57

In need of more machinery: solution one

A solution is to extend the type & capability system with a new rule,
which allows a capability to be available within a certain boundary and
hidden outside of it.

Such a capability becomes an invariant that holds whenever the
boundary is crossed.

See [Pottier, 2008].

47 / 57

In need of more machinery: problem two

Recall the type of the function that pays for a thunk:

pay: ∀npα, thunk n α ∗ p$→ thunk (n − p) α

The idea is that credits are accumulated in the thunk, whose apparent
cost decreases.

This mechanism is sound only because the number of credits that
remain to be paid can only decrease with time, and because the
parameter n in “thunk n α” is an upper approximation of this number.
Yet, nothing in the type system allows expressing or exploiting these
properties.

48 / 57

In need of more machinery: solution two

A solution is to extend the type & capability system with fates:
(ghost) memory locations whose value must evolve monotonically with
time.

Updating a fate involves a proof obligation: the update must be
monotonic.

In return, confronting the current state of a fate with an observation
of a previous state yields new information: these two states must be
in the ordering relation.

See [Pilkiewicz and Pottier, 2009].

49 / 57

Bottom line

In short, the type & capability system, extended with time credits,
hidden state, and monotonic state, allows implementing thunks as a
library, with the desired interface.

50 / 57

Contents

A type-checker’s armory

Affinity

Capabilities

Regions

Other forms of capabilities

When credits explain debits: an analysis of suspensions

Conclusion

Bibliography

51 / 57

What’s the point?

I have encoded a very simple and elegant system – Danielsson’s –
into a significantly more complex, lower-level system – a type &
capability calculus.

I view this as a testimony of the expressiveness of the latter.

52 / 57

Where now?

I believe that type-based complexity-checking is an interesting direction.

The general-purpose layer of the system still requires much work:

• prove the entire system sound;

• design a palatable surface language;

• implement the system, in connection with a theorem prover.

Some complexity-specific aspects also deserve investigation:

• study the “big O” notation.

53 / 57

Related work

Several authors have proposed type disciplines that include time or
space credits. They are not surveyed in these slides;
see [Pilkiewicz and Pottier, 2009].

54 / 57

Contents

A type-checker’s armory

Affinity

Capabilities

Regions

Other forms of capabilities

When credits explain debits: an analysis of suspensions

Conclusion

Bibliography

55 / 57

Bibliography I

(Most titles are clickable links to online versions.)

Charguéraud, A. and Pottier, F. 2008.
Functional translation of a calculus of capabilities.
In ACM International Conference on Functional Programming (ICFP).
213–224.

Danielsson, N. A. 2008.
Lightweight semiformal time complexity analysis for purely
functional data structures.
In ACM Symposium on Principles of Programming Languages (POPL).

Okasaki, C. 1999.
Purely Functional Data Structures.
Cambridge University Press.

56 / 57

http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://www.cs.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://www.cs.chalmers.se/~nad/publications/danielsson-popl2008.pdf
http://www.cambridge.org/us/catalogue/catalogue.asp?isbn=0521663504

[II

Bibliography]Bibliography

Pilkiewicz, A. and Pottier, F. 2009.
The essence of monotonic state.
Manuscript.

Pottier, F. 2008.
Hiding local state in direct style: a higher-order anti-frame rule.
In IEEE Symposium on Logic in Computer Science (LICS). 331–340.

Tarjan, R. E. 1985.
Amortized computational complexity.
SIAM Journal on Algebraic and Discrete Methods 6, 2, 306–318.

57 / 57

http://gallium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity-2009.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://dx.doi.org/10.1137/0606031

	A type-checker's armory
	Affinity
	Capabilities
	Regions
	Other forms of capabilities

	When credits explain debits: an analysis of suspensions
	Conclusion
	Bibliography

