
TIP'02 Preliminary Version

Synta
ti
 Type Soundness for HM(X)

Christian Skalka

1

The Johns Hopkins University

François Pottier

2

INRIA Ro
quen
ourt

Abstra
t

The HM(X) framework is a
onstraint-based type framework with built-in let-

polymorphism. This paper establishes purely synta
ti
 type soundness for the frame-

work, treating an extended version of the language
ontaining state and re
ursive

binding. These results demonstrate that any instan
e of HM(X),
omprising a spe-

ialized
onstraint system and possibly additional fun
tional
onstants and their

types, enjoys synta
ti
 type soundness.

1 Introdu
tion

This paper presents a purely synta
ti
 type soundness result for HM(X), in

the style of Wright and Felleisen [7℄. A soundness result based on a denota-

tional semanti
s was originally presented by Odersky et al. [1℄. Sulzmann [5℄

onje
tured that type safety for HM(X)
an be established in a synta
ti
 way,

but did not provide a proof. Re
ently, Pottier [2℄ used HM(X) as a vehi
le to

illustrate a semi-synta
ti
 proof te
hnique, whi
h does not rely on a denota-

tional semanti
s, yet allows part of the proof to be
arried out by indu
tion

on type derivations, suppressing the need for normalization lemmas.

None of the two existing results mentioned above is adequate in the event

that a purely synta
ti
 result is wished for. Su
h a wish
an arise, for in-

stan
e, out of the desire to build a
ustom type system on top of an instan
e

of HM(X) via a type system fa
tory. We
all type system fa
tory a
onstru
-

tion whi
h, given any type system that satis�es subje
t redu
tion (and perhaps

some additional properties), produ
es a new type system, dedi
ated to a spe-

i�
 purpose, together with its
orre
tness proof. For instan
e, type system

fa
tories whi
h produ
e type-based se
urity analyses are des
ribed in [3,4℄.

1

Email:
es�
s.jhu.edu

2

Email: Fran
ois.Pottier�inria.fr

This is a preliminary version. The �nal version will be published in

Ele
troni
 Notes in Theoreti
al Computer S
ien
e

URL: www.elsevier.nl/lo
ate/ent
s

Skalka, Pottier

x; z 2 ID identi�ers

l 2 Lo
 memory lo
ations

 2 Const
onstants

v ::= x j l j �x z:�x:e j ref j := j (:= l) j ! j
 values

e ::= v j e e j let x = v in e expressions

E ::= [℄ j E e j v E evaluation
ontexts

Fig. 1. Language grammar for HM(X)

This presentation of HM(X) extends previous results by treating a ver-

sion of the
ore language that
ontains state and a primitive re
ursive binding

me
hanism. The addition of state in
reases the expressivity of the program-

ming language. A primitive re
ursive binding me
hanism is a wel
ome
on-

venien
e; previously, it was ne
essary to either de�ne a �xpoint
ombinator,

or introdu
e one as a
onstant, entailing additional proof overhead to obtain

type soundness for an instan
e of the framework.

Our presentation of HM(X) is otherwise identi
al to that of [1,5℄. The main

di�eren
e resides in our axiomatization of the meaning of
onstraints, whi
h

is more dire
t; see se
tion 2.2. Our proof te
hnique is standard, following

Wright and Felleisen [7℄. The
entral results are subje
t redu
tion, progress,

and type safety for the HM(X) framework, stated and proved in se
tion 4.

2 De�nitions

In this se
tion we present the HM(X) framework, that is, the programming

language and its type system.

2.1 The Language

The
ore language is a
all-by-value fun
tional
al
ulus, extended with a re-

ursive binding me
hanism built into fun
tion de�nitions, and me
hanisms for

state. We postulate
ountably in�nite sets of identi�ers, lo
ations, and
on-

stants. The language grammar is de�ned in �gure 1. Note that, following [6℄,

we impose a value restri
tion on let bindings, pre
luding unsafe intera
tion

between imperative features and polymorphism.

The operational semanti
s is de�ned on
on�gurations e=&, where a store

& is a partial mapping from lo
ations to values. We write &[l 7! v℄ to denote

the store whi
h maps l to v and otherwise agrees with &. The empty store

is denoted ?. The one-step redu
tion rules for HM(X) are then de�ned in

�gure 2. We write !

?

to denote the re�exive, transitive
losure of !. The

2

Skalka, Pottier

(�x z:�x:e)v=& ! e[v=x℄[�x z:�x:e=z℄=& (�)

let x = v in e=& ! e[v=x℄=& (let)

ref v=& ! l=&[l 7! v℄ l 62 dom(&) (ref)

:= l v=& ! v=&[l 7! v℄ l 2 dom(&) (assign)

! l=& ! &(l)=& (deref)

 v=& ! Æ(
; v)=& (Æ)

E[e℄=& ! E[e

0

℄=&

0

where e=& ! e

0

=&

0

(
ontext)

Fig. 2. Operational semanti
s for HM(X)

interpretation of
onstants is given by a (possibly partial) fun
tion Æ whi
h

maps a pair of a
onstant and a
losed value to a
losed value.

2.2 Constraint Systems

Any instan
e of the HM(X) framework is parameterized by a
onstraint sys-

tem. This system must at least
omprise the following language of types and

onstraints, where V is a
ountably in�nite set of type variables:

�; � 2 V type variables

� ::= � j � ! � j � ref j : : : types

C ::= true j � = � j � � � j C ^ C j 9�:C j : : :
onstraints

To interpret
onstraints, we adopt the model-based approa
h des
ribed in

[2℄, whi
h is established via a mapping from types into a universe of partially

ordered monotypes T .

De�nition 2.1 [Model℄ Let (T;�) be a partially ordered set, where t 2 T

is
alled a monotype. Let ! be a fun
tion from T � T into T , where t

1

!

t

2

� t

0

1

! t

0

2

implies t

0

1

� t

1

and t

2

� t

0

2

. Let ref be a fun
tion from T to

T , su
h that t ref � t

0

ref implies t = t

0

. We require t

1

ref � t

2

! t

3

and

t

2

! t

3

� t

1

ref to be false for any t

1

; t

2

; t

3

2 T .

De�nition 2.2 [Interpretation℄ An assignment � is a total mapping from V

to T . An interpretation of a
onstraint system
onsists of an extension of

assignments to arbitrary types, and a
onstraint satisfa
tion relation, denoted

3

Skalka, Pottier

� ` C. The interpretation is standard i� the following
onditions are satis�ed:

�(�

1

! �

2

) = �(�

1

) ! �(�

2

)

�(� ref) = �(�) ref

� ` true

� ` �

1

= �

2

, �(�

1

) = �(�

2

)

� ` �

1

� �

2

, �(�

1

) � �(�

2

)

� ` C

1

^ C

2

, (� ` C

1

) ^ (� ` C

2

)

� ` 9�:C , 9t:�[� 7! t℄ ` C

If � ` C holds, we say that � satis�es or is a solution of C. We write C
 C

0

i� every solution of C is also a solution of C

0

.

We identify
onstraints modulo logi
al equivalen
e, that is, we identify C

and D when C
 D and D
 C hold. A variable � is deemed free in a

onstraint C i� C 6= 9�:C. We write fv(C) for the set of all variables free in

C.

Our presentation di�ers from that of Odersky et al. [1℄ by viewing
on-

straints as formulae interpreted in T , rather than as elements of an abstra
t

ylindri

onstraint system. Our presentation is thus perhaps slightly less gen-

eral, but more
on
ise. Also, we abandon Odersky et al.'s notion of
onstraints

in solved form. Instead, we identify
onstraints modulo logi
al equivalen
e,

whi
h means that we do not
are about their synta
ti
 representation. We

believe that the representation of
onstraints is an important issue when de-

signing a
onstraint solver, but is irrelevant when proving the type system

orre
t.

2.3 The Type System

The HM(X) type system is de�ned as a system of dedu
tion rules, given in

�gure 3, whose
onsequents are judgements of the form C;� ` e : � where C

is a
onstraint, � is a type environment, and � is a type s
heme. These notions

are introdu
ed in the following de�nition:

De�nition 2.3 Type s
hemes are of the form 8��[C℄:� . Abusing notation,

we abbreviate a s
heme 8?[true℄:� as � , and abbreviate 8��[true℄:� as 8��:� .

We identify type s
hemes modulo �-equivalen
e. Type environments � are

sequen
es of bindings of the form x : � and l : � .

A type s
heme � is
onsistent with respe
t to a
onstraint C if C guarantees

that � has at least one instan
e. This notion, de�ned below, appears as a

te
hni
al side-
ondition in rule Var. This extra side-
ondition is our only

4

Skalka, Pottier

Var

�(x) = � C
 �

C;� ` x : �

Lo

�(l) = �

C;� ` l : � ref

Const

C;� `
 : �(
)

Abs

C; (�; x : � ; z : � ! �

0

) ` e : �

0

C;� ` �x z:�x:e : � ! �

0

App

C;� ` e

1

: �

2

! � C;� ` e

2

: �

2

C;� ` e

1

e

2

: �

Ref

C;� ` ref : 8�:�! � ref

Assign

C;� ` := : 8�:� ref ! �! �

Deref

C;� ` ! : 8�:� ref ! �

Let

C;� ` v : � C; (�; x : �) ` e : �

C;� ` let x = v in e : �

Sub

C;� ` e : � C
 � � �

0

C;� ` e : �

0

8 Intro

C ^D;� ` v : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` v : 8��[D℄:�

8 Elim

C;� ` v : 8��[D℄:� C
 [��=��℄D

C;� ` v : [��=��℄�

Fig. 3. The system HM(X)

deviation from the rules given in [1,5℄. Its e�e
t is to allow some theorems to

be stated without a �
onsisten
y� requirement on �.

De�nition 2.4 We say that a type s
heme � = 8��[D℄:� is
onsistent with

respe
t to a
onstraint C, and we write C
 �, i� C
 9��:D. We say that �

is
onsistent i� true
 �.

Let � be a �xed total mapping from the
onstants to
losed,
onsistent

type s
hemes. � is looked up in rule Const to asso
iate a type s
heme with a

onstant.

De�nition 2.5 A judgement C;� ` e : � is valid (or holds) i� it is derivable

a

ording to the rules of �gure 3 and C is satis�able. Then, e is well-typed.

It is straightforward to
he
k that, if C;� ` e : � is derivable, then C
 �

holds. This explains why the well-typedness of e
an be determined by
he
k-

ing whether C alone is satis�able; there is no need to inspe
t � in addition.

For the type system to be safe, the semanti
s of
onstants, given by Æ,

must be
orre
tly approximated by their types, given by �.

De�nition 2.6 [Æ-Typability℄ Let C be satis�able. We require that, for every

5

Skalka, Pottier

onstant
 and
losed value v, if C;� `
 : �

1

! �

2

and C;� ` v : �

1

hold, then

Æ(
; v) is de�ned and C;� ` Æ(
; v) : �

2

holds. We also require C;� `
 : � ref

to not hold.

The following de�nition sums up the requirements that bear on every in-

stan
e of the parameterized type system HM(X).

De�nition 2.7 An instan
e of HM(X) is de�ned by

�

an extension of the type and
onstraint language, together with a standard

interpretation, as spe
i�ed in de�nitions 2.1 and 2.2;

�

a parti
ular
hoi
e of the set of
onstants Const , together with fun
tions Æ

and �, meeting the Æ-typability requirement of de�nition 2.6.

As will be proven in se
tion 4, any su
h instan
e of HM(X) enjoys synta
ti

type safety.

3 Preliminary results

3.1 Type substitutions

Sulzmann [5℄ gives two equivalent versions of the HM(X) type rules. In the one

shown here, rule 8 Elim allows the universally quanti�ed type variables to be

instantiated using an arbitrary substitution. In the other version, not shown

in this paper, rule 8 Elim requires these variables to be instantiated with the

identity substitution, but a new rule appears (9-Intro) whi
h allows arbitrary

substitutions to be en
oded within a
onstraint. The two presentations are

equivalent, that is, they give rise to the same valid judgements. As a result,

it is enough to prove one of them
orre
t.

Here, we adopt the substitution-based version. A

ordingly, we must now

demonstrate a series of results related to substitutions.

De�nition 3.1 A substitution ' is a �nite mapping from type variables to

types. A renaming % is a bije
tive mapping from a �nite set of type variables

to itself. Substitutions and renamings are extended to total mappings from

types to types, from
onstraints to
onstraints, and from type s
hemes to type

s
hemes, in the natural,
apture-avoiding manner.

Lemma 3.2 If C
 D then '(C)
 '(D). If C
 �, then '(C)
 '(�).

Lemma 3.3 If '

1

is idempotent and dom('

2

) and fv(rng('

1

))[dom('

1

) are

disjoint then '

1

Æ '

2

Æ '

1

= '

1

Æ '

2

.

Lemma 3.4 (Type Instantiation) If there exists a derivation of C;� ` e :

�, then there exists a derivation of '(C); '(�) ` e : '(�) with the same

stru
ture.

Proof. By indu
tion on the input derivation. We give only the key
ases and

follow the notations of �gure 3. Note that the stru
ture of the derivation is

6

Skalka, Pottier

preserved by
onstru
tion in the proof.

Cases Var, Sub. By indu
tion hypothesis and by lemma 3.2.

Case 8 Intro. Without loss of generality, we may require ��\ fv(rng(')) =

�� \ dom(') = ?. Indeed, if su
h were not the
ase, one
ould apply the

indu
tion hypothesis to the premise and to a renaming whi
h maps �� to fresh

variables and does not a�e
t any other variable free in the premise. Be
ause

the variables �� do not appear free in the
on
lusion, the latter would remain

un
hanged.

Now, let us apply the indu
tion hypothesis to the premise and '. This

yields '(C) ^ '(D); '(�) ` e : '(�). From �� \ fv(C;�) = ? and the above

requirement, we dedu
e ��\ fv('(C); '(�)) = ?. Thus, we may apply 8 Intro,

whi
h yields '(C)^9��:'(D); '(�) ` e : 8��['(D)℄:'(�). Again, thanks to the

above requirement, this is '(C ^ 9��:D); '(�) ` e : '(8��[D℄:�).

Case 8 Elim. Every substitution is the
omposition of an idempotent sub-

stitution and a renaming. Thus, we
onsider two sub-
ases.

First, let us assume that ' is idempotent. By the indu
tion hypothesis,

we have '(C); '(�) ` e : '(8��[D℄:�). Without loss of generality, we may

assume that �� \ fv(rng(')) = ? and �� \ dom(') = ?. (This follows from

the fa
t that we identify type s
hemes modulo �-equivalen
e.) This yields

'(C); '(�) ` e : 8��['(D)℄:'(�) and (by lemma 3.3) ' Æ [��=��℄ Æ ' = ' Æ [��=��℄.

Now, lemma 3.2 yields '(C)
 '([��=��℄D), that is, '(C)
 ' Æ [��=��℄('(D)).

Therefore, by 8 Elim, we obtain '(C); '(�) ` e : ' Æ [��=��℄('(�)), that is,

'(C); '(�) ` e : '([��=��℄�).

Se
ond, let us assume that ' is a renaming %. By applying the indu
tion

hypothesis to the premise, we obtain %C; %� ` e : %(8��[D℄:�), whi
h
an be

written %C; %� ` e : 8(%��)[%D℄:%� . Furthermore, lemma 3.2 yields %C

%[��=��℄D, that is, %C
 [%��=%��℄%D. Then, 8 Elim, applied to the substitution

[%��=%��℄, yields %C; %� ` e : [%��=%��℄%� , that is, %C; %� ` e : %[��=��℄� . 2

3.2 Normalization

In this se
tion we de�ne a normalized form for HM(X) type derivations. This

normalization provides for a mu
h easier analysis of type derivations in the

subje
t redu
tion proof.

Lemma 3.5 If dom(') � �� then '(C)
 9��:C.

Lemma 3.6 Any two
onse
utive instan
es of 8 Intro and 8 Elim may be

suppressed.

Proof. Suppose the following sequen
e appears in a derivation:

C ^D;� ` e : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` e : 8��[D℄:�

(8 Intro)

C ^ 9��:D
 [��=��℄D

C ^ 9��:D;� ` e : [��=��℄�

(8 Elim)

7

Skalka, Pottier

From C ^9��:D
 [��=��℄D, we may dedu
e C ^9��:D
 C ^ [��=��℄D. However,

by lemma 3.5, we have [��=��℄D
 9��:D, so C ^ 9��:D and C ^ [��=��℄D are

equivalent. Furthermore,
onsidering �� \ fv(C) = ?, we have C ^ [��=��℄D =

[��=��℄(C ^D). Similarly, �� \ fv(�) = ? implies [��=��℄� = �. Now, lemma 3.4,

applied to the upper left judgement, yields [��=��℄(C ^D); [��=��℄� ` e : [��=��℄� ,

whi
h, a

ording to the above arguments, is C ^ 9��:D;� ` e : [��=��℄� . The

derivation of this judgement has the same stru
ture as that of the upper left

judgement, so these instan
es of 8 Intro and 8 Elim have e�e
tively been

suppressed. 2

Lemma 3.7 (Normalization) If C;� ` e : � holds, then it must follow by

Sub from a judgement J su
h that

(i) if e is let x = v in e

0

then J follows by Let;

(ii) if e is �x z:�x:e

0

then J follows by Abs;

(iii) if e is e

1

e

2

then J follows by App;

(iv) if e is l then J follows by Lo
;

(v) if e is x then J follows by Var and 8 Elim;

(vi) if e is
 then J follows by Const and 8 Elim;

(vii) if e is ref then J follows by Ref and 8 Elim;

(viii) if e is ! then J follows by Deref and 8 Elim;

(ix) if e is := then J follows by Assign and 8 Elim.

Proof. The judgement C;� ` e : � must be the
onsequen
e of a syntax-

dire
ted rule, possibly followed by a sequen
e of instan
es of Sub, 8 Elim and

8 Intro.

By
onstru
tion, 8 Intro
annot be followed by itself or by Sub. Lemma 3.6

shows that 8 Intro need never be followed by 8 Elim. Lastly, given the form

of the judgement at hand, 8 Intro
annot be the last rule in the derivation.

It follows that 8 Intro need not appear at all in the sequen
e.

By
onstru
tion, 8 Elim
annot follow itself or Sub, so the sequen
e must

onsist of at most one instan
e of 8 Elim, followed by a number of instan
es of

Sub. By re�exivity and transitivity of entailment, the latter may be expanded

or redu
ed to a single instan
e of Sub.

To
on
lude, noti
e that 8 Elim
annot follow Lo
, Let, Abs or App. 2

3.3 Value Substitution

In this se
tion, we establish a
lassi
 substitution lemma, whi
h will be at the

heart of the �- and let-redu
tion
ases in the subje
t redu
tion proof. We

begin with a weakening lemma, whi
h shows that a valid judgement remains

valid under a stronger
onstraint.

Lemma 3.8 (Weakening) C;� ` e : � and C

0

 C imply C

0

;� ` e : �.

8

Skalka, Pottier

Proof. By indu
tion on the input derivation. We give only the key
ases and

follow the notations of �gure 3.

Cases Var, Sub and 8 Elim follow by transitivity of entailment.

Case 8 Intro. We have a dedu
tion of the form

C ^D;� ` e : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` e : 8��[D℄:�

Without loss of generality, we may assume �� \ fv(C

0

) = ?; if this were not

the
ase, we
ould apply lemma 3.4 to the �rst premise to make it so. Now,

learly C

0

^C ^D
 C ^D, so the indu
tion hypothesis yields C

0

^C ^D;� `

e : � . Furthermore, we have �� \ fv(C

0

^ C;�) = ?, therefore 8 Intro yields

C

0

^C^9��:D;� ` e : 8��[D℄:� . Lastly, by assumption, we have C

0

 C^9��:D,

so C

0

= C

0

^ C ^ 9��:D, therefore C

0

;� ` e : 8��[D℄:� holds. 2

Lemma 3.9 (Substitution) If C;�; x : �

0

` e : � and C;� ` v : �

0

then

C;� ` e[v=x℄ : �.

Proof. By indu
tion on the derivation of C;�; x : �

0

` e : �. We give only

the key
ases.

Case 8 Intro. In this
ase � = 8��[D℄:� , C = C

0

^ 9��:D and we have a

dedu
tion of the form:

C

0

^D;�; x : �

0

` e : � �� \ fv(C

0

;�; x : �

0

) = ?

C

0

^ 9��:D;�; x : �

0

` e : 8��[D℄:�

By assumption we have that C

0

^9��:D;� ` v : �

0

holds, and
learly C

0

^D

C

0

^ 9��:D, therefore by lemma 3.8 we have C

0

^ D;� ` v : �

0

. Then, by

the indu
tion hypothesis, C

0

^ D;� ` e[v=x℄ : � holds. The result follows by

8 Intro.

Case Var. Suppose that e = x

0

6= x. Then e[v=x℄ = e and �(x

0

) = (�; x :

�

0

)(x

0

), so the lemma holds by Var. Suppose on the other hand that e = x;

then e[v=x℄ = v, so the lemma holds by assumption.

Case Let. In this
ase e = let x

0

= v

0

in e

0

, � = � and we have a dedu
tion

of the following form:

C;�; x : �

0

` v

0

: �

00

C;�; x : �

0

; x

0

: �

00

` e

0

: �

C;�; x : �

0

` let x

0

= v

0

in e

0

: �

By the indu
tion hypothesis we have C;� ` v

0

[v=x℄ : �

00

; and supposing that

x 6= x

0

it is the
ase that �; x : �

0

; x

0

: �

00

= �; x

0

: �

00

; x : �

0

, hen
e we have

also C;�; x

0

: �

00

` e

0

[v=x℄ : � by the indu
tion hypothesis, so that C;� `

let x

0

= v

0

[v=x℄ in e

0

[v=x℄ : � by Let, hen
e C;� ` (let x

0

= v

0

in e

0

)[v=x℄ : � by

de�nition. On the other hand, if x = x

0

then �; x : �

0

; x

0

: �

00

= �; x

0

: �

00

,

so that C;�; x

0

: �

00

` e

0

: � by assumption, and sin
e C;� ` v

0

[v=x℄ : �

00

by the pre
eding, the judgement C;� ` let x

0

= v

0

[v=x℄ in e

0

: � holds by Let,

therefore C;� ` (let x

0

= v

0

in e

0

)[v=x℄ : � by de�nition.

9

Skalka, Pottier

Case Abs. In this
ase e = �x z:�x

0

:e

0

, � = �

1

! �

2

and we have a dedu
tion

of the following form:

C;�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

` e

0

: �

2

C;�; x : �

0

` �x z:�x

0

:e

0

: �

1

! �

2

Supposing that x 6= x

0

and x 6= z it is the
ase that

�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

= �; x

0

: �

1

; z : �

1

! �

2

; x : �

0

hen
e we have C;�; x

0

: �

1

; z : �

1

! �

2

` e

0

[v=x℄ : �

2

by the indu
tion hy-

pothesis, so C;� ` �x z:�x

0

:(e

0

[v=x℄) : �

1

! �

2

by Abs, therefore C;� `

(�x z:�x

0

:e

0

)[v=x℄ : �

1

! �

2

by de�nition. On the other hand, supposing that

x = x

0

it is the
ase that

�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

= �; x

0

: �

1

; z : �

1

! �

2

and sin
e C; (�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

) ` e

0

: �

2

by assumption therefore

C; (�; x

0

: �

1

; z : �

1

! �

2

) ` e

0

: �

2

, so C;� ` �x z:�x

0

:e

0

: �

1

! �

2

by Abs,

thus C;� ` (�x z:�x

0

:e

0

)[v=x℄ : �

1

! �

2

by de�nition. The
ase in whi
h x = z

follows similarly. 2

Lemma 3.10 (Substitution for fun
tions) Let �

0

= (�; x : �

0

; z : �

0

!

�). If C;�

0

` e : � and C;� ` v : �

0

, then C;� ` e[v=x℄[�x z:�x:e=z℄ : � .

Proof. By Abs and two
onse
utive appli
ations of lemma 3.9. 2

4 Central Results

In this se
tion we demonstrate the type soundness results for HM(X), spe
if-

i
ally subje
t redu
tion, progress and type safety.

De�nition 4.1 In order to properly state subje
t redu
tion, type judgements

are extended to
on�gurations:

Config

C;� ` e : �

8l 2 dom(�) C;� ` &(l) : �(l)

C;� ` e=& : �

A
on�guration e=& is well-typed if there exists a judgement C;� ` e=& : �

dedu
ible by Config, with C satis�able; su
h a judgement is valid.

Theorem 4.2 (Subje
t Redu
tion) Let C be satis�able. If C;� ` e

1

=&

1

: �

is derivable and e

1

=&

1

! e

2

=&

2

, then, for some �

0

whi
h extends � with bindings

for new memory lo
ations, C;�

0

` e

2

=&

2

: � is derivable.

Proof. By indu
tion on the de�nition of the redu
tion relation (see �gure 2).

10

Skalka, Pottier

A

ording to lemma 3.7, the derivation of C;� ` e

1

: � ends with an

instan
e of Sub, whi
h we will disregard, without loss of generality. (Indeed,

we then have C;� ` e

1

: �

0

and C
 �

0

� � ; on
e we have proven C;� ` e

2

: �

0

,

applying Sub again shall yield C;� ` e

2

: � , as desired.)

For redu
tion
ases whi
h do not a�e
t the store, it is su�
ient to prove

that C;� ` e

2

: � is derivable to demonstrate the result.

Case (Æ). Then, e

1

is
 v and e

2

is Æ(
; v). By lemma 3.7 we have a

sub-derivation of the following form:

C;� `
 : �

1

! � C;� ` v : �

1

C;� `
 v : �

Then, a

ording to de�nition 2.6, C;� ` Æ(
; v) : � holds.

Case (�). Then, e

1

is (�x z:�x:e) v and e

2

is e[v=x℄[�x z:�x:e=z℄. By

lemma 3.7 we have a sub-derivation of the following form:

C;�; x : �

0

1

; z : �

0

1

! �

0

` e : �

0

C;� ` �x z:�x:e : �

0

1

! �

0

C
 �

0

1

! �

0

� �

1

! �

C;� ` �x z:�x:e : �

1

! � C;� ` v : �

1

C;� ` (�x z:�x:e) v : �

Now, C
 �

0

1

! �

0

� �

1

! � implies C
 �

1

� �

0

1

and C
 �

0

� � . Therefore

C;� ` v : �

0

1

by assumption and Sub; and sin
e C; (�; x : �

0

1

; z : �

0

1

! �

0

) ` e : �

0

by assumption, therefore C;� ` e[v=x℄[�x z:�x:e=z℄ : �

0

by lemma 3.10. By

Sub, C;� ` e[v=x℄[�x z:�x:e=z℄ : � follows.

Case (let). Then, e

1

is let x = v in e and e

2

is e[v=x℄. By lemma 3.7 we

have a sub-derivation of the following form:

C;�; x : � ` e : � C;� ` v : �

C;� ` let x = v in e : �

By lemma 3.9, we obtain C;� ` e[v=x℄ : � .

Case (deref). Then, e

1

is ! l and e

2

is &

1

(l). By lemma 3.7, we have a

sub-derivation of the following form:

C;� ` ! : �

0

ref ! �

0

C
 �

0

ref ! �

0

� �

1

ref ! �

C;� ` ! : �

1

ref ! �

�(l) = �

00

C;� ` l : �

00

ref C
 �

00

ref � �

1

ref

C;� ` l : �

1

ref

C;� ` ! l : �

By Config, C;� ` &(l) : �

00

is derivable. and by properties of � we have

C
 �

1

� � and C
 �

00

� �

1

. Thus, by transitivity of � we have C
 �

00

� � ,

so C;� ` &(l) : �
an be derived by Sub.

11

Skalka, Pottier

Case (ref). The redu
tion is ref v=&

1

! l=&

1

[l 7! v℄, where l 62 dom(&

1

).

By lemma 3.7 we have a sub-derivation of the following form:

C;� ` ref : �

0

! �

0

ref C
 �

0

! �

0

ref � �

2

! �

C;� ` ref : �

2

! � C;� ` v : �

2

C;� ` ref v : �

These imply C
 �

2

� �

0

and C
 �

0

ref � � . De�ne �

0

as (�; l : �

0

). By

Lo
 and Sub, C;�

0

` l : � holds. Furthermore, sin
e C;� ` v : �

2

holds and

sin
e v is &

2

(l), Sub yields C;� ` &

2

(l) : �

0

. Be
ause l is fresh, this implies

C;�

0

` &

2

(l) : �

0

. Lastly, l's freshness and Config yield C;�

0

` l=&

2

: � .

Case (assign). The redu
tion is := l v=&

1

! v=&

1

[l 7! v℄, where l 2 dom(&

1

).

By lemma 3.7, we have a sub-derivation of the following form:

C;� ` := : �

0

ref ! �

0

! �

0

C
 �

0

ref ! �

0

! �

0

� �

1

! �

2

! �

3

C;� ` := : �

1

! �

2

! �

3

�(l) = �

00

C;� ` l : �

00

ref

C
 �

00

ref � �

1

C;� ` l : �

1

C;� ` := l : �

2

! �

3

C
 �

2

! �

3

� �

0

2

! �

C;� ` := l : �

0

2

! � C;� ` v : �

0

2

C;� ` := l v : �

From these, we dedu
e C
 �

0

2

� �

2

and C
 �

2

� �

0

. Furthermore, we �nd

C
 �

00

ref � �

1

� �

0

ref, whi
h implies C
 �

0

� �

00

. As a result, by Sub,

C;� ` v : �

00

holds, i.e. C;� ` &

2

(l) : �

00

in this
ase is derivable. Furthermore,

we �nd C
 �

0

� �

3

and C
 �

3

� � , hen
e C;� ` v : � is derivable by Sub.

The result follows by Config.

Case E[e

1

℄=&

1

! E[e

2

℄=&

2

, where e

1

=&

1

! e

2

=&

2

. This
ase follows by

the indu
tion hypothesis and a simple �repla
ement� lemma, analogous to

that found in [7℄, ex
ept newly
reated memory lo
ations must be taken into

a

ount. 2

To demonstrate progress, rather than de�ning a
lass of faulty expres-

sions that approximates the
lass of stu
k expressions, and proving a uniform

evaluation result as in e.g. [7℄, we adopt the more dire
t method of [2℄ and

demonstrate the following:

Lemma 4.3 (Progress) If a
losed
on�guration e=& is well-typed and irre-

du
ible, then e is a value.

Proof. Suppose on the
ontrary that e=& is well-typed and irredu
ible, but e

is not a value. Then e is of the form E[f ℄, with f also well-typed as a pre
edent

of a valid instan
e of Config, where one of the following
ases holds:

12

Skalka, Pottier

(i) f is of the form
 v and Æ(
; v) is unde�ned. Now, if
 v is well-typed,

then by lemma 3.7 there exists a judgement that follows by App with valid

pre
edents C;� `
 : �

1

! �

2

and C;� ` v : �

1

. But then by de�nition

2.6 it must be the
ase that Æ(
; v) is de�ned, whi
h is a
ontradi
tion.

(ii) f is of the form l v. By lemma 3.7 there exists a judgement that follows

by App with valid pre
edent C;� ` l : �

1

! �

2

. By lemma 3.7, this

judgement must follow from Lo
 and Sub, so we have C
 �

0

ref � �

1

!

�

2

, whi
h is a
ontradi
tion.

(iii) f is of the form := v or ! v where v is not a memory lo
ation. In either

ase, by appli
ations of lemma 3.7, we have C;� ` v : � ref. A

ording

to de�nition 2.6, v
annot be a
onstant. One
he
ks that all other value

forms must have fun
tional type, that is, we must have C
 �

1

! �

2

�

� ref, again a
ontradi
tion.

(iv) f is of the form := l v or := l and l 62 dom(&). f is well-typed, so l 2

dom(�); then, Config requires &(l) to be de�ned, a
ontradi
tion.

2

We may now state and prove progress and type safety. In order to do so,

we make the usual de�nitions:

De�nition 4.4 If e=?!

?

e

0

=&

0

, where e

0

=&

0

is irredu
ible but e

0

is not a value,

then e is said to go wrong.

Theorem 4.5 (Type Safety) If e is
losed and well-typed, then e does not

go wrong.

Proof. Suppose that e=? redu
es to e

0

=&

0

and the latter is irredu
ible. Sin
e

e is well-typed, there exists a derivable judgement C;� ` e=? : � with C

satis�able. Then, by repeated appli
ation of theorem 4.2, we have C;�

0

`

e

0

=&

0

: � , for some �

0

. Then, by lemma 4.3, e

0

is a value. 2

5 Con
lusion

In this paper we have provided synta
ti
 type soundness results for HM(X),

in
luding subje
t redu
tion, progress, and type safety. We have treated a

version of the
ore language that
ontains features for manipulation of state,

and a re
ursive binding me
hanism. We have
learly spe
i�ed the requirements

that an instan
e of HM(X) must meet.

Referen
es

[1℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferen
e with

onstrained types. Theory and Pra
ti
e of Obje
t Systems, 5(1):35�55, 1999.

URL: http://www.
s.mu.oz.au/~sulzmann/publi
ations/tapos.ps.

13

Skalka, Pottier

[2℄ François Pottier. A semi-synta
ti
 soundness proof for HM(X). Resear
h Report

4150, INRIA, Mar
h 2001. URL: ftp://ftp.inria.fr/INRIA/publi
ation/RR/

RR-4150.ps.gz.

[3℄ François Pottier and Sylvain Con
hon. Information �ow inferen
e for free.

In Pro
eedings of the the 5th ACM SIGPLAN International Conferen
e

on Fun
tional Programming (ICFP'00), pages 46�57, Montréal, Canada,

September 2000. ACM Press. URL: http://pauilla
.inria.fr/~fpottier/

publis/fpottier-
on
hon-i
fp00.ps.gz.

[4℄ François Pottier, Christian Skalka, and S
ott Smith. A systemati
 approa
h

to stati
 a

ess
ontrol. In David Sands, editor, Pro
eedings of the 10th

European Symposium on Programming (ESOP'01), volume 2028 of Le
ture Notes

in Computer S
ien
e, pages 30�45. Springer Verlag, April 2001. URL: http:

//pauilla
.inria.fr/~fpottier/publis/fpottier-skalka-smith-esop01.ps.gz.

[5℄ Martin Sulzmann. A general framework for Hindley/Milner type systems with

onstraints. PhD thesis, Yale University, Department of Computer S
ien
e, May

2000. URL: http://www.
s.mu.oz.au/~sulzmann/publi
ations/diss.ps.gz.

[6℄ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symboli

Computation, 8(4):343�356, De
ember 1995. URL: http://www.
s.ri
e.edu/CS/

PLT/Publi
ations/las
95-w.ps.gz.

[7℄ Andrew K. Wright and Matthias Felleisen. A synta
ti
 approa
h to type

soundness. Information and Computation, 115(1):38�94, November 1994. URL:

http://www.
s.ri
e.edu/CS/PLT/Publi
ations/i
94-wf.ps.gz.

14

