
TIP'02 Preliminary Version

Syntati Type Soundness for HM(X)

Christian Skalka

1

The Johns Hopkins University

François Pottier

2

INRIA Roquenourt

Abstrat

The HM(X) framework is a onstraint-based type framework with built-in let-

polymorphism. This paper establishes purely syntati type soundness for the frame-

work, treating an extended version of the language ontaining state and reursive

binding. These results demonstrate that any instane of HM(X), omprising a spe-

ialized onstraint system and possibly additional funtional onstants and their

types, enjoys syntati type soundness.

1 Introdution

This paper presents a purely syntati type soundness result for HM(X), in

the style of Wright and Felleisen [7℄. A soundness result based on a denota-

tional semantis was originally presented by Odersky et al. [1℄. Sulzmann [5℄

onjetured that type safety for HM(X) an be established in a syntati way,

but did not provide a proof. Reently, Pottier [2℄ used HM(X) as a vehile to

illustrate a semi-syntati proof tehnique, whih does not rely on a denota-

tional semantis, yet allows part of the proof to be arried out by indution

on type derivations, suppressing the need for normalization lemmas.

None of the two existing results mentioned above is adequate in the event

that a purely syntati result is wished for. Suh a wish an arise, for in-

stane, out of the desire to build a ustom type system on top of an instane

of HM(X) via a type system fatory. We all type system fatory a onstru-

tion whih, given any type system that satis�es subjet redution (and perhaps

some additional properties), produes a new type system, dediated to a spe-

i� purpose, together with its orretness proof. For instane, type system

fatories whih produe type-based seurity analyses are desribed in [3,4℄.

1

Email: es�s.jhu.edu

2

Email: Franois.Pottier�inria.fr

This is a preliminary version. The �nal version will be published in

Eletroni Notes in Theoretial Computer Siene

URL: www.elsevier.nl/loate/ents

Skalka, Pottier

x; z 2 ID identi�ers

l 2 Lo memory loations

 2 Const onstants

v ::= x j l j �x z:�x:e j ref j := j (:= l) j ! j values

e ::= v j e e j let x = v in e expressions

E ::= [℄ j E e j v E evaluation ontexts

Fig. 1. Language grammar for HM(X)

This presentation of HM(X) extends previous results by treating a ver-

sion of the ore language that ontains state and a primitive reursive binding

mehanism. The addition of state inreases the expressivity of the program-

ming language. A primitive reursive binding mehanism is a welome on-

veniene; previously, it was neessary to either de�ne a �xpoint ombinator,

or introdue one as a onstant, entailing additional proof overhead to obtain

type soundness for an instane of the framework.

Our presentation of HM(X) is otherwise idential to that of [1,5℄. The main

di�erene resides in our axiomatization of the meaning of onstraints, whih

is more diret; see setion 2.2. Our proof tehnique is standard, following

Wright and Felleisen [7℄. The entral results are subjet redution, progress,

and type safety for the HM(X) framework, stated and proved in setion 4.

2 De�nitions

In this setion we present the HM(X) framework, that is, the programming

language and its type system.

2.1 The Language

The ore language is a all-by-value funtional alulus, extended with a re-

ursive binding mehanism built into funtion de�nitions, and mehanisms for

state. We postulate ountably in�nite sets of identi�ers, loations, and on-

stants. The language grammar is de�ned in �gure 1. Note that, following [6℄,

we impose a value restrition on let bindings, preluding unsafe interation

between imperative features and polymorphism.

The operational semantis is de�ned on on�gurations e=&, where a store

& is a partial mapping from loations to values. We write &[l 7! v℄ to denote

the store whih maps l to v and otherwise agrees with &. The empty store

is denoted ?. The one-step redution rules for HM(X) are then de�ned in

�gure 2. We write !

?

to denote the re�exive, transitive losure of !. The

2

Skalka, Pottier

(�x z:�x:e)v=& ! e[v=x℄[�x z:�x:e=z℄=& (�)

let x = v in e=& ! e[v=x℄=& (let)

ref v=& ! l=&[l 7! v℄ l 62 dom(&) (ref)

:= l v=& ! v=&[l 7! v℄ l 2 dom(&) (assign)

! l=& ! &(l)=& (deref)

 v=& ! Æ(; v)=& (Æ)

E[e℄=& ! E[e

0

℄=&

0

where e=& ! e

0

=&

0

(ontext)

Fig. 2. Operational semantis for HM(X)

interpretation of onstants is given by a (possibly partial) funtion Æ whih

maps a pair of a onstant and a losed value to a losed value.

2.2 Constraint Systems

Any instane of the HM(X) framework is parameterized by a onstraint sys-

tem. This system must at least omprise the following language of types and

onstraints, where V is a ountably in�nite set of type variables:

�; � 2 V type variables

� ::= � j � ! � j � ref j : : : types

C ::= true j � = � j � � � j C ^ C j 9�:C j : : : onstraints

To interpret onstraints, we adopt the model-based approah desribed in

[2℄, whih is established via a mapping from types into a universe of partially

ordered monotypes T .

De�nition 2.1 [Model℄ Let (T;�) be a partially ordered set, where t 2 T

is alled a monotype. Let ! be a funtion from T � T into T , where t

1

!

t

2

� t

0

1

! t

0

2

implies t

0

1

� t

1

and t

2

� t

0

2

. Let ref be a funtion from T to

T , suh that t ref � t

0

ref implies t = t

0

. We require t

1

ref � t

2

! t

3

and

t

2

! t

3

� t

1

ref to be false for any t

1

; t

2

; t

3

2 T .

De�nition 2.2 [Interpretation℄ An assignment � is a total mapping from V

to T . An interpretation of a onstraint system onsists of an extension of

assignments to arbitrary types, and a onstraint satisfation relation, denoted

3

Skalka, Pottier

� ` C. The interpretation is standard i� the following onditions are satis�ed:

�(�

1

! �

2

) = �(�

1

) ! �(�

2

)

�(� ref) = �(�) ref

� ` true

� ` �

1

= �

2

, �(�

1

) = �(�

2

)

� ` �

1

� �

2

, �(�

1

) � �(�

2

)

� ` C

1

^ C

2

, (� ` C

1

) ^ (� ` C

2

)

� ` 9�:C , 9t:�[� 7! t℄ ` C

If � ` C holds, we say that � satis�es or is a solution of C. We write C C

0

i� every solution of C is also a solution of C

0

.

We identify onstraints modulo logial equivalene, that is, we identify C

and D when C D and D C hold. A variable � is deemed free in a

onstraint C i� C 6= 9�:C. We write fv(C) for the set of all variables free in

C.

Our presentation di�ers from that of Odersky et al. [1℄ by viewing on-

straints as formulae interpreted in T , rather than as elements of an abstrat

ylindri onstraint system. Our presentation is thus perhaps slightly less gen-

eral, but more onise. Also, we abandon Odersky et al.'s notion of onstraints

in solved form. Instead, we identify onstraints modulo logial equivalene,

whih means that we do not are about their syntati representation. We

believe that the representation of onstraints is an important issue when de-

signing a onstraint solver, but is irrelevant when proving the type system

orret.

2.3 The Type System

The HM(X) type system is de�ned as a system of dedution rules, given in

�gure 3, whose onsequents are judgements of the form C;� ` e : � where C

is a onstraint, � is a type environment, and � is a type sheme. These notions

are introdued in the following de�nition:

De�nition 2.3 Type shemes are of the form 8��[C℄:� . Abusing notation,

we abbreviate a sheme 8?[true℄:� as � , and abbreviate 8��[true℄:� as 8��:� .

We identify type shemes modulo �-equivalene. Type environments � are

sequenes of bindings of the form x : � and l : � .

A type sheme � is onsistent with respet to a onstraint C if C guarantees

that � has at least one instane. This notion, de�ned below, appears as a

tehnial side-ondition in rule Var. This extra side-ondition is our only

4

Skalka, Pottier

Var

�(x) = � C �

C;� ` x : �

Lo

�(l) = �

C;� ` l : � ref

Const

C;� ` : �()

Abs

C; (�; x : � ; z : � ! �

0

) ` e : �

0

C;� ` �x z:�x:e : � ! �

0

App

C;� ` e

1

: �

2

! � C;� ` e

2

: �

2

C;� ` e

1

e

2

: �

Ref

C;� ` ref : 8�:�! � ref

Assign

C;� ` := : 8�:� ref ! �! �

Deref

C;� ` ! : 8�:� ref ! �

Let

C;� ` v : � C; (�; x : �) ` e : �

C;� ` let x = v in e : �

Sub

C;� ` e : � C � � �

0

C;� ` e : �

0

8 Intro

C ^D;� ` v : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` v : 8��[D℄:�

8 Elim

C;� ` v : 8��[D℄:� C [��=��℄D

C;� ` v : [��=��℄�

Fig. 3. The system HM(X)

deviation from the rules given in [1,5℄. Its e�et is to allow some theorems to

be stated without a �onsisteny� requirement on �.

De�nition 2.4 We say that a type sheme � = 8��[D℄:� is onsistent with

respet to a onstraint C, and we write C �, i� C 9��:D. We say that �

is onsistent i� true �.

Let � be a �xed total mapping from the onstants to losed, onsistent

type shemes. � is looked up in rule Const to assoiate a type sheme with a

onstant.

De�nition 2.5 A judgement C;� ` e : � is valid (or holds) i� it is derivable

aording to the rules of �gure 3 and C is satis�able. Then, e is well-typed.

It is straightforward to hek that, if C;� ` e : � is derivable, then C �

holds. This explains why the well-typedness of e an be determined by hek-

ing whether C alone is satis�able; there is no need to inspet � in addition.

For the type system to be safe, the semantis of onstants, given by Æ,

must be orretly approximated by their types, given by �.

De�nition 2.6 [Æ-Typability℄ Let C be satis�able. We require that, for every

5

Skalka, Pottier

onstant and losed value v, if C;� ` : �

1

! �

2

and C;� ` v : �

1

hold, then

Æ(; v) is de�ned and C;� ` Æ(; v) : �

2

holds. We also require C;� ` : � ref

to not hold.

The following de�nition sums up the requirements that bear on every in-

stane of the parameterized type system HM(X).

De�nition 2.7 An instane of HM(X) is de�ned by

�

an extension of the type and onstraint language, together with a standard

interpretation, as spei�ed in de�nitions 2.1 and 2.2;

�

a partiular hoie of the set of onstants Const , together with funtions Æ

and �, meeting the Æ-typability requirement of de�nition 2.6.

As will be proven in setion 4, any suh instane of HM(X) enjoys syntati

type safety.

3 Preliminary results

3.1 Type substitutions

Sulzmann [5℄ gives two equivalent versions of the HM(X) type rules. In the one

shown here, rule 8 Elim allows the universally quanti�ed type variables to be

instantiated using an arbitrary substitution. In the other version, not shown

in this paper, rule 8 Elim requires these variables to be instantiated with the

identity substitution, but a new rule appears (9-Intro) whih allows arbitrary

substitutions to be enoded within a onstraint. The two presentations are

equivalent, that is, they give rise to the same valid judgements. As a result,

it is enough to prove one of them orret.

Here, we adopt the substitution-based version. Aordingly, we must now

demonstrate a series of results related to substitutions.

De�nition 3.1 A substitution ' is a �nite mapping from type variables to

types. A renaming % is a bijetive mapping from a �nite set of type variables

to itself. Substitutions and renamings are extended to total mappings from

types to types, from onstraints to onstraints, and from type shemes to type

shemes, in the natural, apture-avoiding manner.

Lemma 3.2 If C D then '(C) '(D). If C �, then '(C) '(�).

Lemma 3.3 If '

1

is idempotent and dom('

2

) and fv(rng('

1

))[dom('

1

) are

disjoint then '

1

Æ '

2

Æ '

1

= '

1

Æ '

2

.

Lemma 3.4 (Type Instantiation) If there exists a derivation of C;� ` e :

�, then there exists a derivation of '(C); '(�) ` e : '(�) with the same

struture.

Proof. By indution on the input derivation. We give only the key ases and

follow the notations of �gure 3. Note that the struture of the derivation is

6

Skalka, Pottier

preserved by onstrution in the proof.

Cases Var, Sub. By indution hypothesis and by lemma 3.2.

Case 8 Intro. Without loss of generality, we may require ��\ fv(rng(')) =

�� \ dom(') = ?. Indeed, if suh were not the ase, one ould apply the

indution hypothesis to the premise and to a renaming whih maps �� to fresh

variables and does not a�et any other variable free in the premise. Beause

the variables �� do not appear free in the onlusion, the latter would remain

unhanged.

Now, let us apply the indution hypothesis to the premise and '. This

yields '(C) ^ '(D); '(�) ` e : '(�). From �� \ fv(C;�) = ? and the above

requirement, we dedue ��\ fv('(C); '(�)) = ?. Thus, we may apply 8 Intro,

whih yields '(C)^9��:'(D); '(�) ` e : 8��['(D)℄:'(�). Again, thanks to the

above requirement, this is '(C ^ 9��:D); '(�) ` e : '(8��[D℄:�).

Case 8 Elim. Every substitution is the omposition of an idempotent sub-

stitution and a renaming. Thus, we onsider two sub-ases.

First, let us assume that ' is idempotent. By the indution hypothesis,

we have '(C); '(�) ` e : '(8��[D℄:�). Without loss of generality, we may

assume that �� \ fv(rng(')) = ? and �� \ dom(') = ?. (This follows from

the fat that we identify type shemes modulo �-equivalene.) This yields

'(C); '(�) ` e : 8��['(D)℄:'(�) and (by lemma 3.3) ' Æ [��=��℄ Æ ' = ' Æ [��=��℄.

Now, lemma 3.2 yields '(C) '([��=��℄D), that is, '(C) ' Æ [��=��℄('(D)).

Therefore, by 8 Elim, we obtain '(C); '(�) ` e : ' Æ [��=��℄('(�)), that is,

'(C); '(�) ` e : '([��=��℄�).

Seond, let us assume that ' is a renaming %. By applying the indution

hypothesis to the premise, we obtain %C; %� ` e : %(8��[D℄:�), whih an be

written %C; %� ` e : 8(%��)[%D℄:%� . Furthermore, lemma 3.2 yields %C

%[��=��℄D, that is, %C [%��=%��℄%D. Then, 8 Elim, applied to the substitution

[%��=%��℄, yields %C; %� ` e : [%��=%��℄%� , that is, %C; %� ` e : %[��=��℄� . 2

3.2 Normalization

In this setion we de�ne a normalized form for HM(X) type derivations. This

normalization provides for a muh easier analysis of type derivations in the

subjet redution proof.

Lemma 3.5 If dom(') � �� then '(C) 9��:C.

Lemma 3.6 Any two onseutive instanes of 8 Intro and 8 Elim may be

suppressed.

Proof. Suppose the following sequene appears in a derivation:

C ^D;� ` e : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` e : 8��[D℄:�

(8 Intro)

C ^ 9��:D [��=��℄D

C ^ 9��:D;� ` e : [��=��℄�

(8 Elim)

7

Skalka, Pottier

From C ^9��:D [��=��℄D, we may dedue C ^9��:D C ^ [��=��℄D. However,

by lemma 3.5, we have [��=��℄D 9��:D, so C ^ 9��:D and C ^ [��=��℄D are

equivalent. Furthermore, onsidering �� \ fv(C) = ?, we have C ^ [��=��℄D =

[��=��℄(C ^D). Similarly, �� \ fv(�) = ? implies [��=��℄� = �. Now, lemma 3.4,

applied to the upper left judgement, yields [��=��℄(C ^D); [��=��℄� ` e : [��=��℄� ,

whih, aording to the above arguments, is C ^ 9��:D;� ` e : [��=��℄� . The

derivation of this judgement has the same struture as that of the upper left

judgement, so these instanes of 8 Intro and 8 Elim have e�etively been

suppressed. 2

Lemma 3.7 (Normalization) If C;� ` e : � holds, then it must follow by

Sub from a judgement J suh that

(i) if e is let x = v in e

0

then J follows by Let;

(ii) if e is �x z:�x:e

0

then J follows by Abs;

(iii) if e is e

1

e

2

then J follows by App;

(iv) if e is l then J follows by Lo;

(v) if e is x then J follows by Var and 8 Elim;

(vi) if e is then J follows by Const and 8 Elim;

(vii) if e is ref then J follows by Ref and 8 Elim;

(viii) if e is ! then J follows by Deref and 8 Elim;

(ix) if e is := then J follows by Assign and 8 Elim.

Proof. The judgement C;� ` e : � must be the onsequene of a syntax-

direted rule, possibly followed by a sequene of instanes of Sub, 8 Elim and

8 Intro.

By onstrution, 8 Intro annot be followed by itself or by Sub. Lemma 3.6

shows that 8 Intro need never be followed by 8 Elim. Lastly, given the form

of the judgement at hand, 8 Intro annot be the last rule in the derivation.

It follows that 8 Intro need not appear at all in the sequene.

By onstrution, 8 Elim annot follow itself or Sub, so the sequene must

onsist of at most one instane of 8 Elim, followed by a number of instanes of

Sub. By re�exivity and transitivity of entailment, the latter may be expanded

or redued to a single instane of Sub.

To onlude, notie that 8 Elim annot follow Lo, Let, Abs or App. 2

3.3 Value Substitution

In this setion, we establish a lassi substitution lemma, whih will be at the

heart of the �- and let-redution ases in the subjet redution proof. We

begin with a weakening lemma, whih shows that a valid judgement remains

valid under a stronger onstraint.

Lemma 3.8 (Weakening) C;� ` e : � and C

0

 C imply C

0

;� ` e : �.

8

Skalka, Pottier

Proof. By indution on the input derivation. We give only the key ases and

follow the notations of �gure 3.

Cases Var, Sub and 8 Elim follow by transitivity of entailment.

Case 8 Intro. We have a dedution of the form

C ^D;� ` e : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` e : 8��[D℄:�

Without loss of generality, we may assume �� \ fv(C

0

) = ?; if this were not

the ase, we ould apply lemma 3.4 to the �rst premise to make it so. Now,

learly C

0

^C ^D C ^D, so the indution hypothesis yields C

0

^C ^D;� `

e : � . Furthermore, we have �� \ fv(C

0

^ C;�) = ?, therefore 8 Intro yields

C

0

^C^9��:D;� ` e : 8��[D℄:� . Lastly, by assumption, we have C

0

 C^9��:D,

so C

0

= C

0

^ C ^ 9��:D, therefore C

0

;� ` e : 8��[D℄:� holds. 2

Lemma 3.9 (Substitution) If C;�; x : �

0

` e : � and C;� ` v : �

0

then

C;� ` e[v=x℄ : �.

Proof. By indution on the derivation of C;�; x : �

0

` e : �. We give only

the key ases.

Case 8 Intro. In this ase � = 8��[D℄:� , C = C

0

^ 9��:D and we have a

dedution of the form:

C

0

^D;�; x : �

0

` e : � �� \ fv(C

0

;�; x : �

0

) = ?

C

0

^ 9��:D;�; x : �

0

` e : 8��[D℄:�

By assumption we have that C

0

^9��:D;� ` v : �

0

holds, and learly C

0

^D

C

0

^ 9��:D, therefore by lemma 3.8 we have C

0

^ D;� ` v : �

0

. Then, by

the indution hypothesis, C

0

^ D;� ` e[v=x℄ : � holds. The result follows by

8 Intro.

Case Var. Suppose that e = x

0

6= x. Then e[v=x℄ = e and �(x

0

) = (�; x :

�

0

)(x

0

), so the lemma holds by Var. Suppose on the other hand that e = x;

then e[v=x℄ = v, so the lemma holds by assumption.

Case Let. In this ase e = let x

0

= v

0

in e

0

, � = � and we have a dedution

of the following form:

C;�; x : �

0

` v

0

: �

00

C;�; x : �

0

; x

0

: �

00

` e

0

: �

C;�; x : �

0

` let x

0

= v

0

in e

0

: �

By the indution hypothesis we have C;� ` v

0

[v=x℄ : �

00

; and supposing that

x 6= x

0

it is the ase that �; x : �

0

; x

0

: �

00

= �; x

0

: �

00

; x : �

0

, hene we have

also C;�; x

0

: �

00

` e

0

[v=x℄ : � by the indution hypothesis, so that C;� `

let x

0

= v

0

[v=x℄ in e

0

[v=x℄ : � by Let, hene C;� ` (let x

0

= v

0

in e

0

)[v=x℄ : � by

de�nition. On the other hand, if x = x

0

then �; x : �

0

; x

0

: �

00

= �; x

0

: �

00

,

so that C;�; x

0

: �

00

` e

0

: � by assumption, and sine C;� ` v

0

[v=x℄ : �

00

by the preeding, the judgement C;� ` let x

0

= v

0

[v=x℄ in e

0

: � holds by Let,

therefore C;� ` (let x

0

= v

0

in e

0

)[v=x℄ : � by de�nition.

9

Skalka, Pottier

Case Abs. In this ase e = �x z:�x

0

:e

0

, � = �

1

! �

2

and we have a dedution

of the following form:

C;�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

` e

0

: �

2

C;�; x : �

0

` �x z:�x

0

:e

0

: �

1

! �

2

Supposing that x 6= x

0

and x 6= z it is the ase that

�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

= �; x

0

: �

1

; z : �

1

! �

2

; x : �

0

hene we have C;�; x

0

: �

1

; z : �

1

! �

2

` e

0

[v=x℄ : �

2

by the indution hy-

pothesis, so C;� ` �x z:�x

0

:(e

0

[v=x℄) : �

1

! �

2

by Abs, therefore C;� `

(�x z:�x

0

:e

0

)[v=x℄ : �

1

! �

2

by de�nition. On the other hand, supposing that

x = x

0

it is the ase that

�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

= �; x

0

: �

1

; z : �

1

! �

2

and sine C; (�; x : �

0

; x

0

: �

1

; z : �

1

! �

2

) ` e

0

: �

2

by assumption therefore

C; (�; x

0

: �

1

; z : �

1

! �

2

) ` e

0

: �

2

, so C;� ` �x z:�x

0

:e

0

: �

1

! �

2

by Abs,

thus C;� ` (�x z:�x

0

:e

0

)[v=x℄ : �

1

! �

2

by de�nition. The ase in whih x = z

follows similarly. 2

Lemma 3.10 (Substitution for funtions) Let �

0

= (�; x : �

0

; z : �

0

!

�). If C;�

0

` e : � and C;� ` v : �

0

, then C;� ` e[v=x℄[�x z:�x:e=z℄ : � .

Proof. By Abs and two onseutive appliations of lemma 3.9. 2

4 Central Results

In this setion we demonstrate the type soundness results for HM(X), speif-

ially subjet redution, progress and type safety.

De�nition 4.1 In order to properly state subjet redution, type judgements

are extended to on�gurations:

Config

C;� ` e : �

8l 2 dom(�) C;� ` &(l) : �(l)

C;� ` e=& : �

A on�guration e=& is well-typed if there exists a judgement C;� ` e=& : �

deduible by Config, with C satis�able; suh a judgement is valid.

Theorem 4.2 (Subjet Redution) Let C be satis�able. If C;� ` e

1

=&

1

: �

is derivable and e

1

=&

1

! e

2

=&

2

, then, for some �

0

whih extends � with bindings

for new memory loations, C;�

0

` e

2

=&

2

: � is derivable.

Proof. By indution on the de�nition of the redution relation (see �gure 2).

10

Skalka, Pottier

Aording to lemma 3.7, the derivation of C;� ` e

1

: � ends with an

instane of Sub, whih we will disregard, without loss of generality. (Indeed,

we then have C;� ` e

1

: �

0

and C �

0

� � ; one we have proven C;� ` e

2

: �

0

,

applying Sub again shall yield C;� ` e

2

: � , as desired.)

For redution ases whih do not a�et the store, it is su�ient to prove

that C;� ` e

2

: � is derivable to demonstrate the result.

Case (Æ). Then, e

1

is v and e

2

is Æ(; v). By lemma 3.7 we have a

sub-derivation of the following form:

C;� ` : �

1

! � C;� ` v : �

1

C;� ` v : �

Then, aording to de�nition 2.6, C;� ` Æ(; v) : � holds.

Case (�). Then, e

1

is (�x z:�x:e) v and e

2

is e[v=x℄[�x z:�x:e=z℄. By

lemma 3.7 we have a sub-derivation of the following form:

C;�; x : �

0

1

; z : �

0

1

! �

0

` e : �

0

C;� ` �x z:�x:e : �

0

1

! �

0

C �

0

1

! �

0

� �

1

! �

C;� ` �x z:�x:e : �

1

! � C;� ` v : �

1

C;� ` (�x z:�x:e) v : �

Now, C �

0

1

! �

0

� �

1

! � implies C �

1

� �

0

1

and C �

0

� � . Therefore

C;� ` v : �

0

1

by assumption and Sub; and sine C; (�; x : �

0

1

; z : �

0

1

! �

0

) ` e : �

0

by assumption, therefore C;� ` e[v=x℄[�x z:�x:e=z℄ : �

0

by lemma 3.10. By

Sub, C;� ` e[v=x℄[�x z:�x:e=z℄ : � follows.

Case (let). Then, e

1

is let x = v in e and e

2

is e[v=x℄. By lemma 3.7 we

have a sub-derivation of the following form:

C;�; x : � ` e : � C;� ` v : �

C;� ` let x = v in e : �

By lemma 3.9, we obtain C;� ` e[v=x℄ : � .

Case (deref). Then, e

1

is ! l and e

2

is &

1

(l). By lemma 3.7, we have a

sub-derivation of the following form:

C;� ` ! : �

0

ref ! �

0

C �

0

ref ! �

0

� �

1

ref ! �

C;� ` ! : �

1

ref ! �

�(l) = �

00

C;� ` l : �

00

ref C �

00

ref � �

1

ref

C;� ` l : �

1

ref

C;� ` ! l : �

By Config, C;� ` &(l) : �

00

is derivable. and by properties of � we have

C �

1

� � and C �

00

� �

1

. Thus, by transitivity of � we have C �

00

� � ,

so C;� ` &(l) : � an be derived by Sub.

11

Skalka, Pottier

Case (ref). The redution is ref v=&

1

! l=&

1

[l 7! v℄, where l 62 dom(&

1

).

By lemma 3.7 we have a sub-derivation of the following form:

C;� ` ref : �

0

! �

0

ref C �

0

! �

0

ref � �

2

! �

C;� ` ref : �

2

! � C;� ` v : �

2

C;� ` ref v : �

These imply C �

2

� �

0

and C �

0

ref � � . De�ne �

0

as (�; l : �

0

). By

Lo and Sub, C;�

0

` l : � holds. Furthermore, sine C;� ` v : �

2

holds and

sine v is &

2

(l), Sub yields C;� ` &

2

(l) : �

0

. Beause l is fresh, this implies

C;�

0

` &

2

(l) : �

0

. Lastly, l's freshness and Config yield C;�

0

` l=&

2

: � .

Case (assign). The redution is := l v=&

1

! v=&

1

[l 7! v℄, where l 2 dom(&

1

).

By lemma 3.7, we have a sub-derivation of the following form:

C;� ` := : �

0

ref ! �

0

! �

0

C �

0

ref ! �

0

! �

0

� �

1

! �

2

! �

3

C;� ` := : �

1

! �

2

! �

3

�(l) = �

00

C;� ` l : �

00

ref

C �

00

ref � �

1

C;� ` l : �

1

C;� ` := l : �

2

! �

3

C �

2

! �

3

� �

0

2

! �

C;� ` := l : �

0

2

! � C;� ` v : �

0

2

C;� ` := l v : �

From these, we dedue C �

0

2

� �

2

and C �

2

� �

0

. Furthermore, we �nd

C �

00

ref � �

1

� �

0

ref, whih implies C �

0

� �

00

. As a result, by Sub,

C;� ` v : �

00

holds, i.e. C;� ` &

2

(l) : �

00

in this ase is derivable. Furthermore,

we �nd C �

0

� �

3

and C �

3

� � , hene C;� ` v : � is derivable by Sub.

The result follows by Config.

Case E[e

1

℄=&

1

! E[e

2

℄=&

2

, where e

1

=&

1

! e

2

=&

2

. This ase follows by

the indution hypothesis and a simple �replaement� lemma, analogous to

that found in [7℄, exept newly reated memory loations must be taken into

aount. 2

To demonstrate progress, rather than de�ning a lass of faulty expres-

sions that approximates the lass of stuk expressions, and proving a uniform

evaluation result as in e.g. [7℄, we adopt the more diret method of [2℄ and

demonstrate the following:

Lemma 4.3 (Progress) If a losed on�guration e=& is well-typed and irre-

duible, then e is a value.

Proof. Suppose on the ontrary that e=& is well-typed and irreduible, but e

is not a value. Then e is of the form E[f ℄, with f also well-typed as a preedent

of a valid instane of Config, where one of the following ases holds:

12

Skalka, Pottier

(i) f is of the form v and Æ(; v) is unde�ned. Now, if v is well-typed,

then by lemma 3.7 there exists a judgement that follows by App with valid

preedents C;� ` : �

1

! �

2

and C;� ` v : �

1

. But then by de�nition

2.6 it must be the ase that Æ(; v) is de�ned, whih is a ontradition.

(ii) f is of the form l v. By lemma 3.7 there exists a judgement that follows

by App with valid preedent C;� ` l : �

1

! �

2

. By lemma 3.7, this

judgement must follow from Lo and Sub, so we have C �

0

ref � �

1

!

�

2

, whih is a ontradition.

(iii) f is of the form := v or ! v where v is not a memory loation. In either

ase, by appliations of lemma 3.7, we have C;� ` v : � ref. Aording

to de�nition 2.6, v annot be a onstant. One heks that all other value

forms must have funtional type, that is, we must have C �

1

! �

2

�

� ref, again a ontradition.

(iv) f is of the form := l v or := l and l 62 dom(&). f is well-typed, so l 2

dom(�); then, Config requires &(l) to be de�ned, a ontradition.

2

We may now state and prove progress and type safety. In order to do so,

we make the usual de�nitions:

De�nition 4.4 If e=?!

?

e

0

=&

0

, where e

0

=&

0

is irreduible but e

0

is not a value,

then e is said to go wrong.

Theorem 4.5 (Type Safety) If e is losed and well-typed, then e does not

go wrong.

Proof. Suppose that e=? redues to e

0

=&

0

and the latter is irreduible. Sine

e is well-typed, there exists a derivable judgement C;� ` e=? : � with C

satis�able. Then, by repeated appliation of theorem 4.2, we have C;�

0

`

e

0

=&

0

: � , for some �

0

. Then, by lemma 4.3, e

0

is a value. 2

5 Conlusion

In this paper we have provided syntati type soundness results for HM(X),

inluding subjet redution, progress, and type safety. We have treated a

version of the ore language that ontains features for manipulation of state,

and a reursive binding mehanism. We have learly spei�ed the requirements

that an instane of HM(X) must meet.

Referenes

[1℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferene with

onstrained types. Theory and Pratie of Objet Systems, 5(1):35�55, 1999.

URL: http://www.s.mu.oz.au/~sulzmann/publiations/tapos.ps.

13

Skalka, Pottier

[2℄ François Pottier. A semi-syntati soundness proof for HM(X). Researh Report

4150, INRIA, Marh 2001. URL: ftp://ftp.inria.fr/INRIA/publiation/RR/

RR-4150.ps.gz.

[3℄ François Pottier and Sylvain Conhon. Information �ow inferene for free.

In Proeedings of the the 5th ACM SIGPLAN International Conferene

on Funtional Programming (ICFP'00), pages 46�57, Montréal, Canada,

September 2000. ACM Press. URL: http://pauilla.inria.fr/~fpottier/

publis/fpottier-onhon-ifp00.ps.gz.

[4℄ François Pottier, Christian Skalka, and Sott Smith. A systemati approah

to stati aess ontrol. In David Sands, editor, Proeedings of the 10th

European Symposium on Programming (ESOP'01), volume 2028 of Leture Notes

in Computer Siene, pages 30�45. Springer Verlag, April 2001. URL: http:

//pauilla.inria.fr/~fpottier/publis/fpottier-skalka-smith-esop01.ps.gz.

[5℄ Martin Sulzmann. A general framework for Hindley/Milner type systems with

onstraints. PhD thesis, Yale University, Department of Computer Siene, May

2000. URL: http://www.s.mu.oz.au/~sulzmann/publiations/diss.ps.gz.

[6℄ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symboli

Computation, 8(4):343�356, Deember 1995. URL: http://www.s.rie.edu/CS/

PLT/Publiations/las95-w.ps.gz.

[7℄ Andrew K. Wright and Matthias Felleisen. A syntati approah to type

soundness. Information and Computation, 115(1):38�94, November 1994. URL:

http://www.s.rie.edu/CS/PLT/Publiations/i94-wf.ps.gz.

14

