
Formal Semantics and Program Logics
for a Fragment of OCaml

REMY SEASSAU, Inria, France
IRENE YOON, Inria, France
JEAN-MARIE MADIOT, Inria, France
FRANÇOIS POTTIER, Inria, France

We present a formal definition of OLang, a nontrivial fragment of OCaml, which includes first-class functions,

ordinary and extensible algebraic data types, pattern matching, references, exceptions, and effect handlers.

We define the dynamic semantics of OLang as a monadic interpreter. This interpreter runs atop a custom

monad where computations are internally represented as trees of operations and equipped with a small-step

semantics. We define two program logics for OLang. A stateless Hoare Logic allows reasoning about so-called

“pure” programs; an Iris-based Separation Logic allows reasoning about arbitrary programs. We present the

construction of the two logics as well as some examples of their use. This paper represents a first step towards

a formal definition of OCaml and a foundational program verification environment for OCaml.
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1 Introduction
A formal (mechanized) definition can be a valuable foundation for a programming language.

A mechanized semantics rules out the inaccuracies that usually appear in informal specifications

(such as reference manuals) and forms a bedrock for verified software. It can be used to test or

verify an interpreter, a compiler, or a static analyzer; to prove the soundness of a type system; and

to prove the soundness of a program logic.

Although writing down a complete formal description of a realistic programming language used

to be a formidable task, we have entered an era where such an achievement is gradually becoming

more commonplace. Several prominent low-level programming languages have been partially or

fully formalized, including C [Norrish 1998; Ellison and Rosu 2012; Krebbers et al. 2014; Krebbers

2015] and its weak memory model [Lahav et al. 2017], JavaScript [Bodin et al. 2014; Gardner et al.

2015], and the intermediate languages WebAssembly [Watt 2021; Watt et al. 2021, 2023], MIR [Jung

et al. 2018a, 2020], and LLVM IR [Zhao et al. 2012; Zakowski et al. 2021].

Among high-level programming languages, few have a formal semantics. The Definition of

Standard ML [Milner et al. 1997] has been mechanized [Lee et al. 2007; Harper and Crary 2014;

MacQueen et al. 2020], and the CakeML verified compiler [Kumar et al. 2014] accepts a fragment of

Standard ML as its source language. Parts of Java have been mechanized [Klein and Nipkow 2006]

and its weak memory model has been studied and formalized [Manson et al. 2005; Lochbihler 2012;

Bender and Palsberg 2019]. However, other prominent high-level programming languages, such as

Haskell, Scala, and OCaml, lack formal definitions. We believe that this lack must be remedied.
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While certain simple and well-understood tools, such as small-step operational semantics [Plotkin

2004; Wright and Felleisen 1994], are expressive enough to describe the semantics of any program-

ming language, these tools require significant skill and effort to put into practice. The search for

new semantic styles that are more elegant, expressive, or modular, therefore making formalization

more manageable, is ongoing [Xia et al. 2020; Charguéraud et al. 2023; Frumin et al. 2024; Vistrup

et al. 2025; Stepanenko et al. 2025]. It is still a challenge to find a semantic framework that is

powerful enough to allow the desired semantics to be expressed and simple enough to allow this

semantics to serve as a useful basis in projects such as the construction of an equational theory,

a program logic, or a verified compiler.

In this paper, we focus on OCaml [Leroy et al. 2024], a descendant of Milner’s ML [1978].

OCaml’s main features include first-class functions, algebraic data types, pattern matching, dynamic

memory allocation, mutable data, modules and functors [Leroy 2000], objects and classes [Rémy and

Vouillon 1998], exceptions, delimited control effects [Sivaramakrishnan et al. 2021], concurrency,

weak shared-memory [Sivaramakrishnan et al. 2020], and more. OCaml is widely used in academia,

both in education and research, and has found a number of key industrial users [Leandersson 2022].

As of today, there are several OCaml compilers, which share a common front-end and dif-

fer in their back-ends. These include the OCaml bytecode and native code compilers [Leroy

et al. 2024], the flambda and flambda2 native code compilers, the OCaml-to-JavaScript com-

pilers js_of_ocaml [Vouillon and Balat 2014] and melange [Monteiro 2025], and the OCaml-

to-WebAssembly compilers wasocaml [Andrès et al. 2023] and wasm_of_ocaml [Vouillon 2023].

Furthermore, the reference interpreter Camlboot [Courant et al. 2022] supports a subset of OCaml

that is large enough to execute the OCaml compiler itself, and the Salto analyzer [Lermusiaux and

Montagu 2024b,a] performs static analysis of OCaml programs. It seems desirable for these diverse

tools to agree on a common formal foundation.

The main contributions of this paper are as follows:

• Using Rocq (ex-Coq), we formalize the abstract syntax and dynamic semantics of OLang,

a fragment of OCaml. This fragment includes first-class functions, ordinary and extensi-

ble algebraic data types, pattern matching, references, exceptions, deep and shallow effect

handlers,
1
and nested modules (not functors). It has unspecified evaluation order.

• We implement a translator of OCaml into OLang. This translator consumes a typed OCaml

AST, which is produced by the OCaml type-checker, and emits the corresponding OLang

AST as a Rocq source file. This translator is simple, and must be trusted.

• We organize the semantics of OLang in two layers. The upper layer is a monadic interpreter;

the lower layer is an original custom monad. The monad’s combinators form the interface

between the two layers. We choose this style because a monadic interpreter is easy to

understand and review. In the lower layer, monadic computations are represented as trees,

equipped with a small-step operational semantics.

• We define two program logics for OLang. A stateless Hoare Logic, Horus, allows reasoning

about a class of so-called pure programs, which cannot diverge or exploit mutable state or

control effects, but do have access to exceptions and non-determinism. A Separation Logic,

Osiris, allows reasoning about arbitrary OLang programs, which may exhibit all kinds of

effects. It is based on Iris [Jung et al. 2018b]. The two logics can interoperate: a Horus proof

about a pure program fragment can be exploited inside an Osiris proof of a larger program.

1
We use OCaml 5.3, which has concrete syntax for deep effect handlers, and offers access to shallow handlers via a library.
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Our work is carried out using Rocq; our results are machine-checked.
2
Each reasoning rule in

Horus and Osiris is a lemma. Furthermore, we prove the soundness of both program logics with

respect to the dynamic semantics.

Although no single feature of OLang is new, its combination of features is fairly complex.

In particular, Osiris is the first program logic that supports OCaml’s combination of exceptions and

effect handlers (§2). In fact, the definition of semantics and program logics for delimited control

effects is still the subject of current research [Stepanenko et al. 2025].

The paper begins with a discussion of our main design choices (§2). Then, we present our formal

semantics, starting with the monadic interpreter (§3), and continuing with the monad (§4, §5).

We move on to a presentation of Horus (§6) and Osiris (§7). The paper ends with discussions of

related work (§8) and future work (§9). Extra material appears in the appendices.

2 Architecture and Design Choices
Untyped semantics. The semantics of OLang is untyped. There is a sum type of all values, val.

Every value carries a tag. This tag is inspected by dynamic checks, whose failure causes a crash.

This approach is standard: in the tradition of Milner [1978] and Wright and Felleisen [1994], some

programs can go wrong (crash), but well-typed programs do not go wrong. It offers two benefits.

First, it lets us assign a meaning to all programs, not just well-typed programs. This allows us to

support some uses of unsafe type casts (§A). Second, it lets us avoid the need to define OCaml’s

type system, which would be a formidable task.

Type-based disambiguation. Our translator of OCaml into OLang is intended to be as simple

as possible. This is important, as it is unverified and must be trusted. Yet, a potential difficulty is

created by the fact that OCaml’s syntax can be ambiguous. For example, two distinct algebraic

data types can have data constructors named A. In OLang’s syntax, this ambiguity does not exist.

To avoid this difficulty and to keep our translator simple, we let the OCaml compiler perform

type-based disambiguation. Our translator consumes a typed OCaml AST, which is produced by the

OCaml type-checker. Thus, the OCaml parser and type-checker are part of our trusted code base.

Hybrid monadic/operational semantics. Our semantics is constructed as a modular composition

of two layers, each of which adopts a distinct semantic style. The top layer is a monadic interpreter.

This style seems easy to understand and review and lends itself well to execution, either inside Rocq

or via extraction. It is denotational in the sense that the interpreter is defined by induction on the

abstract syntax of the program. The bottom layer constructs the monad that the interpreter relies

upon. This monad must support a large collection of effects (Figure 4). There, we do not attempt

to perform a modular construction, where each effect is interpreted independently; we provide

a monolithic construction. We represent a monadic computation as a tree whose nodes include final

outcomes (Ret, Throw, Crash), observable events or system calls (Stop), parallel compositions (Par),
and control effect delimiters (Handle). The behavior of a computation is given by a small-step

reduction relation. This style is operational.
As in previous work on the free monad and its variants [Swierstra 2008; Kiselyov and Ishii 2015;

Xia et al. 2020], the monad has a subtle dual appearance. Inside its implementation, the monad is

just syntax: a computation is a tree. Outside the monadic abstraction, though, the monad’s public

API (Figure 4) offers a shallowly embedded DSL that is very convenient to use.

Unspecified evaluation order. OCaml has unspecified evaluation order: in many constructs, such

as an application of a function to 𝑛 arguments or the construction of a tuple with 𝑛 + 1 fields, the
order in which the 𝑛+1 subexpressions are evaluated is unspecified. It is not necessarily left-to-right
2
Our code and proofs are provided as supplementary material.
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or right-to-left; it can be a seemingly arbitrary permutation. The order that is actually chosen in

practice varies across compilers, and can be difficult for the user to predict.

To account for this feature, our semantics must be non-deterministic: it must permit all of the

permutations that the OCaml manual allows. In fact, we find that, by relaxing our semantics even

further, we are able to simplify its definition. We allow parallel evaluation of the subexpressions.

As an example of the simplicity that this buys us, we are able to view an 𝑛-ary function application

as a nest of binary function applications, while still allowing the 𝑛+1 subexpressions to be evaluated
in an arbitrary order.

This design decision implies that some programs that have only one possible result according

to the OCaml manual can have non-deterministic behavior and several possible results in our

semantics. An example is let r = ref 0 in (incr r, incr r); !r, where both subexpressions

of the pair increment the reference r. Because the two subexpressions incr r run in parallel, both

might read 0 from r and write 1 into r. The final result can be 1 or 2.

With program verification in mind, this over-approximation seems acceptable, for two reasons.

First, adopting a stricter semantics, which involves non-deterministic choices but does not allow

parallel evaluation, would not allow us to offer simpler reasoning rules. To substantiate this claim,

we refer the reader to the treatments of non-interleaved function calls in C by Krebbers [2014]

and by Frumin et al. [2019], which are interesting but complex, as they involve shared resource

invariants. Second, assuming that the user who verifies a program has control over the source code,

it is easy to use an explicit sequence in places where this helps verify the code.

In an application to compiler verification, this over-approximation may be more problematic:

a programmer likely does not expect the above example program to return 1. Perhaps, in an effort

to verify an OCaml compiler, one would prefer to adopt a stricter semantics of OCaml. One would

separately prove that the two semantics are related.

Two program logics. We propose two program logics for OLang. Horus can verify pure programs,

which must terminate and cannot use mutable state or control effects; Osiris can verify arbitrary

programs. Horus is much simpler than Osiris, as it is a stateless Hoare Logic, whereas Osiris is

an Iris-based Separation Logic. We believe that the user will be happy to work with Horus where

possible and that Horus can help offer a gentler learning curve. Furthermore, Horus can verify

termination, whereas Osiris cannot: following most of the Iris literature, Osiris imposes partial

correctness only, because this makes verifying concurrent programs much easier. Finally, Horus has

helped us study certain problems (such as the treatment of pattern matching) in a simpler setting.

Exceptions versus effects. We do not view OCaml’s exception handling mechanism as a special

case of its effect handling mechanism where the handler discards the continuation. Here are three

reasons why. First, in OCaml, discarding a continuation is considered a programming error, because

it can prevent the suspended computation from performing cleanup tasks. The manual says: every
continuation must be eventually either continued or discontinued [Leroy et al. 2024]. In other words,

performing an effect creates a continuation, which must be considered linear, whereas raising

an exception does not. Second, to discontinue a continuation means to resume the suspended

computation with an exception. There is no means of resuming a continuation with an effect. This

creates another asymmetry between exceptions and effects. Finally, we are able to view exceptions

as “pure” and reason about them in Horus. Effects, on the other hand, must be viewed as an “impure”

feature, because continuations are stored in the heap and are mutable (they are one-shot).

Undefined versus undesirable behavior. A crash represents a bad event. Our program logics

rule out crashes: they have precondition false. Thus, a verified program cannot crash. That said,

our current notion of crash conflates two kinds of bad events, namely those that OCaml’s type

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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val := VInt (i : int)
VTuple (𝑣𝑠 : list val)
VData (𝑐 : string) (𝑣𝑠 : list val)
VXData (ℓ : loc) (𝑣𝑠 : list val)
VLoc (ℓ : loc) | VCont (ℓ : loc)
VClo (𝜂 : env) (𝑎 : anonfun)

loc := Z
env := list (var × val)
anonfun := AnonFun (𝑥 : var) (𝑒 : expr)
exn := val
eff := val

Fig. 1. OLang’s type of values

system can rule out, such as the failure of a dynamic tag check, and those that it cannot rule out,

such as the failure of a runtime assertion, a division by zero, or falling off the end of a case

analysis. Bad events of the first kind represent undefined behavior, whereas those of the second kind
represent undesirable behavior. This distinction is useful because a compiler can assume the absence

of undefined behavior, whereas undesirable behavior can occur and must cause the program to

stop in a graceful way. We plan to introduce this distinction in the near future.

Names. We represent variables, record fields, and module fields in OLang as strings. This is

straightforward and keeps our translator simple. A downside of this syntax is that it is not well-

scoped by construction; a program can have unbound variables. It might seem tempting to adopt

a well-scoped representation, based, for example, on de Bruijn indices. That said, in light of the

complexity of OCaml’s module language, it is not entirely clear what form such a representation

would take or in what way we would benefit from it.

3 A Monadic Interpreter
Our semantics takes the form of amonadic interpreter [Liang et al. 1995] for OCaml. This interpreter

is implemented in Rocq, a pure and total programming language. It uses the micro monad to

represent computational effects that cannot be expressed in Rocq. They include divergence, fatal

failure (crashing), non-fatal failure (exceptions), state, parallelism, nondeterminism, and delimited

control. The micro monad offers a fixed collection of primitive effectful operations, or combinators,
which the interpreter exploits.

In this section, we offer a gradual exposition of the interpreter. At the same time, as we go, we

present the combinators that the interpreter needs. For reference, these combinators are listed

in Figure 4; they form the public API of the micro monad. In the next sections (§4, §5), we explain

how the micro monad is defined and equipped with a (small-step, operational) semantics.

3.1 OCaml’s surface syntax
The syntax of OCaml involves several categories, such as expressions, patterns, module expressions,

and structure items. In this paper, we put emphasis on expressions for the sake of brevity. We use

a deep embedding [Gibbons and Wu 2014]: that is, we represent OCaml’s syntax in Rocq via several

inductive types, including expr and pat. The definitions of these types (not shown) closely reflect

the surface syntax of OCaml, so that it is easy to transform OCaml code into (Rocq definitions of)

inhabitants of these types. We provide a straightforward translator for this purpose. In our syntax,

variables are represented as strings.

3.2 Values and environments
The result of interpreting an expression is a value. We represent values in Rocq as an inductive

type val, whose definition appears in Figure 1. Because our interpreter accepts untyped code, this

type represents all kinds of values, including machine integers (VInt), tuples (VTuple), inhabitants

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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of algebraic data types (VData) and extensible algebraic data types (VXData), addresses of heap-
allocated memory blocks (VLoc) and of heap-allocated continuations (VCont), closures (VClo), and
more (not all cases are shown in Figure 1).

In VData, the name of the data constructor is a string (see §3.5). In VXData, the name of the

data constructor is a memory location (§C.2). In the future, we want VData and VXData to also

record the identity of the algebraic data type with which this constructor is associated. Indeed, this

seems necessary in order to support unsafe type casts (§A).

In OCaml, exceptions and effects carry a first-class value, which we refer to as the “payload”.

Therefore, we define the types exn and eff as synonyms for val.
Our semantics is environment-based. An environment 𝜂 is a finite map of variables to values:

we represent it as an association list. Because a closure (VClo) contains an environment, the types val
and env are mutually inductive.

3.3 Structure of the monadic interpreter
The interpreter is composed of multiple mutually recursive functions. There is typically one function

for each syntactic category of OCaml along with a number of auxiliary functions. In this paper, we

are mainly interested in the following function, which forms the heart of the monadic interpreter:

eval_expr : env → expr → micro val exn

We write eval as a short-hand for eval_expr . The meta-level expression eval 𝜂 𝑒 evaluates

the OCaml expression 𝑒 under the environment 𝜂. Its type is micro val exn. This means that

it is a monadic computation that can produce a normal result of type val (an OCaml value) or

an abnormal result of type exn (an OCaml exception). It can also exhibit a range of other effectful

behaviors, including crashing, diverging, and more; we discuss these later on. The function eval is
defined by induction on its second argument, 𝑒 , which is an abstract syntax tree.

In the following subsections (§3.4–§3.9), we present fragments of the definition of eval in Rocq

to illustrate how the combinators of the micro monad are used.

3.4 Integer Arithmetic / Return, Bind, Crash
We use the evaluation of OCaml’s integer arithmetic expressions as an illustration of the most basic

combinators of the micro monad, whose full list appears in Figure 4. The computation ret 𝑎 returns

the result 𝑎. The combinator bind constructs the sequential composition of two computations.

As usual, we write 𝑥 ←𝑚1;𝑚2 for bind𝑚1 (𝜆𝑥.𝑚2). The combinator crash can be understood as

a fatal failure or as undefined behavior—in any case, it is a bad event that must be avoided. The

following code fragment (left) shows how integer literals and unary negation are evaluated. It uses

two auxiliary functions val_as_int and as_int (right).
Fixpoint eval 𝜂 e :=

match e with

| EInt i⇒
r e t (VInt (int.repr i))

| EIntNeg e⇒
i← as_int (eval 𝜂 e) ;

r e t (VInt (int.neg i))

| ...

Definition val_as_int (v : val) : micro int exn :=

match v with

| VInt i⇒ r e t i

| _ ⇒ crash
end.

Definition as_int (m : micro val exn) : micro int exn :=

v← m ; val_as_int v.

An integer literal expression EInt 𝑖 carries an unbounded integer 𝑖 , whose type is Z.3 We convert 𝑖

to a machine integer via int .repr , convert it to an integer value via VInt, then return it. An integer

3
In OCaml, machine integers are signed and have a fixed bit width 𝑤. The value of 𝑤 is unspecified. The manual explicitly

states that 𝑤 can be 31, 32, or 63, but does not rule out other values. We assume 𝑤 ≥ 31. In Rocq, we write int for the type

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.



Formal Semantics and Program Logics for a Fragment of OCaml 1:7

negation expression EIntNeg 𝑒 carries a subexpression 𝑒 . We first evaluate 𝑒 via a recursive call

to eval. Then, using as_int, we check that the resulting value is an integer value. If as_int is applied
to an integer value VInt 𝑖 , then it returns the machine integer 𝑖; otherwise, it crashes. This dynamic

check is required because OLang is untyped.

3.5 Algebraic Data Types / Parallel Composition
OCaml supports user-defined algebraic data types, also known as variant types. In the expression

EData 𝑐 𝑒𝑠 , the data constructor 𝑐 is applied to the expressions 𝑒𝑠 . The order of evaluation of these

expressions is unspecified. Similarly, in the construction of a tuple, evaluation order is unspecified.

To model this, we rely on the binary parallel composition combinator par (Figure 4). Here are the
relevant cases in the definition of eval (left):
| EData c es⇒

vs← evals 𝜂 es ;

r e t (VData c vs)

| ETuple es⇒
vs← evals 𝜂 es ;

r e t (VTuple vs)

Fixpoint evals 𝜂 (es : list expr) : micro (list val) exn :=

match es with

| []⇒ r e t []

| e :: es⇒
'(v, vs)← par (eval 𝜂 e) (evals 𝜂 es) ;

r e t (v :: vs) end.

In the auxiliary function evals (right), par is used to evaluate the expression 𝑒 and the remaining

expressions 𝑒𝑠 in parallel. This yields a pair of a value 𝑣 and a list of values 𝑣𝑠 . The computation

par𝑚1𝑚2 lets𝑚1 and𝑚2 run in parallel and produces a pair of their results. It is nondeterministic,

as the effects of𝑚1 and𝑚2 can take place in an arbitrary order and can be interleaved.

3.6 First-Class Functions / Divergence
In OCaml’s surface syntax, all functions are unary, and function application is binary. We represent

a unary function fun x -> e as the expression EAnonFun (AnonFun 𝑥 𝑒). Evaluating it produces
a closure VClo 𝜂 (AnonFun 𝑥 𝑒) where the current environment 𝜂 is captured.

| EAnonFun a⇒
r e t (VClo 𝜂 a)

| EApp e1 e2⇒
'(v1, v2)← par (eval 𝜂 e1) (eval 𝜂 e2) ;

call v1 v2

Definition call v1 v2 : micro val exn :=

match v1 with

| VClo 𝜂 (AnonFun x e)⇒
please_eval ((x, v2) :: 𝜂) e

| _⇒ crash end.

In a function application, par is again used to allow unspecified evaluation order. After evaluating

the function 𝑒1 and the argument 𝑒2, we invoke the auxiliary function call. This function first

checks that 𝑣1 is a closure; then, it executes the function body 𝑒 , in the closure’s environment,

extended with a binding of the formal parameter 𝑥 to the actual argument 𝑣2. For this purpose,

instead of eval, we use the combinator please_eval (Figure 4), whose type is the same as that of eval.
Our host language, Rocq, allows writing terminating functions only; a plain recursive call would

be rejected. please_eval can be understood as a request for a potentially dangerous recursive call

(one that could cause divergence), as opposed to a native recursive call. This idea is due to McBride

[2015], who showed that “general recursive definitions can be represented in the free monad”.

OLang also supports (mutually) recursive functions: the syntax of expressions includes ELetRec,
and the syntax of values includes recursive closures (VCloRec). In the paper, they are omitted.

of signed integers of bit width 𝑤, which lie in the semi-open interval [−2𝑤−1, 2𝑤−1 ) . We write int .repr for the projection
of Z into int. Our Rocq library int, which is borrowed from CompCert, defines the usual operations on machine integers.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2025.
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3.7 State / Alloc, Load, Store
To model OCaml’s mutable references, we rely on three combinators offered by the micro monad,

namely alloc, load, and store (Figure 4). Thus, support for dynamic memory allocation and mutable

state is built into the monad.

3.8 Exceptions / Throw
In OCaml, an exception is raised using the primitive construct “raise e”. Then, it propagates up to

the nearest exception handler, which can either handle it (that is, catch it) or let it propagate further.

An exception handler takes the form “match e with bs”, where the list of branches bs contains

exception-handling branches of the form “exception p -> e”, where p is a pattern.4

We interpret raising an exception by using the combinator throw (Figure 4).

| ERaise e⇒
v← eval 𝜂 e ; throw v

In this code fragment, the value 𝑣 has type val. We have defined the type exn as a synonym

for val, so throw 𝑣 has type micro val exn, as required for this code fragment to be well-typed.

In OCaml, the static type system requires all exceptions to have type exn, a predefined extensible

algebraic data type.
5
This guarantees that exception-raising sites and all exception handlers agree on

a common type. In a dynamic semantics, though, there is no need for such a restriction. Therefore,

in the above code fragment, no dynamic tag check is applied to the value 𝑣 .

3.9 Delimited Control Effects and Handlers / Perform, Handle, Resume, Install
Let us briefly review OCaml’s control effects and effect handlers [Sivaramakrishnan et al. 2021]

before presenting the manner in which our interpreter supports these features.

Overview. The OCaml expression perform e performs an effect. To a certain extent, this is

analogous to raising an exception via raise e: indeed, both constructs interrupt the normal flow

of computation and transfer control to a handler. Yet, from the point of view of the context that

surrounds them, the expressions raise e and perform e behave differently: whereas raise e always

raises an exception, perform e can appear to return a value, to raise an exception, or to never

terminate. The choice between these alternatives is up to the handler. Indeed, an effect handler

receives a continuation k, which can be thought of as “the computation that has been suspended by

perform e”, or “the context that surrounds perform e and awaits its outcome”. If this continuation

is continued then perform e appears to return a value; if it is discontinued then perform e appears

to raise an exception. More precisely, if continue k v is executed then perform e appears to return

the value v; if discontinue k v is executed then perform e appears to raise the exception v. In

either case, we say that the continuation k is resumed.
Effect handlers come in two flavors. A shallow handler monitors a computation until one effect is

performed; it handles this effect, then disappears. A deep handler monitors a computation until this

computation terminates; it successively handles all of the effects that this computation performs. In

OCaml’s surface syntax, a deep effect handler takes the form “match e with bs” where the list of

branches bs contains at least one effect-handling branch effect p, k -> e'. This branch is entered

if the value that was passed to performmatches the pattern p. There is no surface syntax for shallow

handlers; instead, the library Effect.Shallow offers access to shallow handlers via a number of

4
We choose to view the more ancient exception-handling construct “try e1 with p -> e2” as syntactic sugar for

“match e1 with x -> x | exception p -> e2”.
5
Declaring a new exception via “exception E of int” is sugar for “type exn += E of int”.
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| EPerform e⇒
v← eval 𝜂 e ;

perform v

| EMatch e bs⇒
handle (eval 𝜂 e)

(wrap_eval_branches 𝜂 bs)

| EContinue e1 e2⇒
'(l, v)← par (as_cont (eval 𝜂 e1)) (eval 𝜂 e2) ;

resume l (Ret2 v)

| EDiscontinue e1 e2⇒
'(l, v)← par (as_cont (eval 𝜂 e1)) (eval 𝜂 e2) ;

resume l (Throw2 v)

Fig. 2. Interpretation of effect-related constructs (a fragment of the definition of eval 𝜂 𝑒)

Fixpoint eval_branches 𝜂 o bs : micro val exn :=

match bs with

| Branch cp e :: bs⇒
try2 (eval_cpat 𝜂 𝜂 cp o) (fun o⇒
match o with

| Ret2 𝜂' ⇒ eval 𝜂' e

| Throw2 ()⇒ eval_branches 𝜂 o bs

end)

| []⇒
match o with

| Ret3 _ ⇒ crash
| Throw3 v⇒ throw v

| Perform3 v l⇒
try2 (perform v) (fun o⇒ resume l o)

end

end.

Fixpoint wrap_eval_branches 𝜂 bs o :=

o ← wrap_outcome 𝜂 bs o ;

eval_branches 𝜂 o bs.

Fixpoint eval_cpat 𝜂 𝛿 cp o

: micro env unit :=

match cp, o with

| CVal p, Ret3 v⇒
eval_pat 𝜂 𝛿 p v

| CExc p, Throw3 v⇒
eval_pat 𝜂 𝛿 p v

| CEff pe pk, Perform3 e k⇒
𝛿 ← eval_pat 𝜂 𝛿 pe e ;

eval_pat 𝜂 𝛿 pk (VCont k)

| _, _⇒ throw ()

end.

Fig. 3. Case analysis on outcomes

primitive functions. We support both deep and shallow handlers. In this paper, we discuss deep

handlers only, as they are more common and easier to use.

Performing an effect. Our interpretation of perform e appears in Figure 2. It uses the monadic

combinator perform (Figure 4). This combinator is meant to interact with the combinator handle,
which is discussed later on in this section.

The micro monad offers just a bare-bones effect handling facility. A handler that is installed

via handle is shallow: it handles at most one effect, then vanishes. Furthermore, it is catch-all:
it always handles an effect that it observes; it never allows this effect to be propagated up to the next

handler. Thus, in the definition of eval and of its auxiliary functions, we must explicitly implement

(A) the self-replicating behavior of deep handlers and (B) the propagation of an effect from a handler

that is unable to handle this effect up to the next handler.

Resuming a continuation. Our interpretations of continue e1 e2 and discontinue e1 e2 are

shown in Figure 2. Both expect the expression e1 to produce a stored continuation, that is, a value

of the form VCont ℓ , where ℓ is a heap address where a continuation is stored. This dynamic check

is carried out by the auxiliary function as_cont (not shown). Both rely on the combinator resume
(Figure 4), whose arguments are a heap address where a continuation is stored and an outcome

with which to resume this continuation. This outcome has type outcome2 val exn, a sum type that

can represent normal and exceptional results (Figure 4). In continue, the continuation is resumed

with a normal outcome Ret2 𝑣 ; in discontinue, it is resumed with an exceptional outcomeThrow2 𝑣 .
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Inductive outcome2 (𝐴𝐸 : Type) : Type := Ret2 (𝑎 : 𝐴) | Throw2 (𝑒 : 𝐸)
Inductive outcome3 (𝐴𝐸 : Type) : Type := Ret3 (𝑎 : 𝐴) | Throw3 (𝑒 : 𝐸) | Perform3

(𝑣 : eff ) (ℓ : loc)

micro : Type→ Type→ Type

ret : 𝐴→micro 𝐴 𝐸

throw : 𝐸 →micro 𝐴 𝐸

try
2

: micro 𝐵 𝐸′ → (outcome2 𝐵 𝐸′ → micro 𝐴 𝐸) →micro 𝐴 𝐸

bind : micro 𝐵 𝐸 → (𝐵 → micro 𝐴 𝐸) →micro 𝐴 𝐸 — derived from try
2

orelse : micro 𝐴 𝐸′ → micro 𝐴 𝐸 →micro 𝐴 𝐸

crash : micro 𝐴 𝐸

please_eval : env → expr →micro val exn

alloc : val →micro loc exn
load : loc →micro val exn
store : loc → val →micro unit exn

par : micro 𝐴1 𝐸 → micro 𝐴2 𝐸 →micro (𝐴1 ×𝐴2) 𝐸
handle : micro val exn→ (outcome3 val exn→ micro 𝐴 𝐸) →micro 𝐴 𝐸

perform : eff →micro val exn
resume : loc → outcome2 val exn→micro val exn
wrap : loc → env → handler →micro loc exn

Fig. 4. The micro monad: public interface

Handling effects. Our interpretation of “match e with bs” also appears in Figure 2. To interpret

this construct, we interpret the expression e in the scope of an effect handler. To install this handler

and to delimit its scope, we use handle (Figure 4). In short, handle𝑚ℎ runs the computation𝑚

and lets the handler ℎ inspect its outcome, which can be one of three events: normal termination,

exceptional termination, or an effect. The sum type outcome3 (Figure 4) describes these three cases.
In the event where an effect takes place, the outcome Perform

3
𝑣 ℓ carries the effect’s payload

𝑣 : eff and the stored continuation ℓ : loc. Indeed, by convention, when a handler ℎ is invoked, the

continuation has been captured and stored in the heap already; the handler receives its address.

Our handler, 𝜆𝑜.wrap_eval_branches 𝜂 bs 𝑜 , is defined in two lines (Figure 3). First, via the

auxiliary function wrap_outcome, the outcome o is wrapped in a copy of the effect handler

match ... with bs. Then, it is passed on to the function eval_branches, which successively tests

whether each branch in the list bs is able to deal with this outcome. These two steps are discussed

in the next two paragraphs.

Wrapping a continuation in a handler. In the case where the outcome o is an effect (Perform
3
),

which carries a stored continuation, wrap_outcome wraps this continuation in a copy of the effect

handler match ... with bs. This serves two purposes at once: first, this is needed to obtain the

self-replicating behavior of a deep handler (A); second, this is required in the event that this effect

is not handled by this handler and must be propagated upwards (B). To wrap the continuation in

a handler, wrap_outcome uses the monadic combinator wrap (Figure 4), which returns a new stored

continuation. In the other two cases (Ret3, Throw3), wrap_outcome acts as an identity function.

The definition of wrap_outcome is omitted (§C, Figure 13).

Case analysis on outcomes. The function eval_branches (Figure 3) performs case analysis on

an outcome. Its code can be summed up as follows: try each branch in the list bs until either

a branch applies to this outcome or the end of the list is reached. If a branch applies, execute this

branch. If no branch applies, propagate this outcome.
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A branch takes the form Branch cp 𝑒 , where cp is a computation pattern. The abstract syntax
of computation patterns includes forms that match a normal result (CVal), an exceptional result

(CExc), and an effect (CEff ). The function eval_cpat (Figure 3) determines whether an outcome

matches a computation pattern. It relies on the meta-level expression eval_pat 𝜂 𝛿 𝑝 𝑣 , which

matches the value 𝑣 against the pattern 𝑝 . These functions return an extended environment if

pattern matching succeeds, throw a metal-level exception (throw ()) if pattern matching fails, and

crash if the pattern and the value have incompatible tags: this occurs, for example, if 𝑝 is a tuple

pattern and 𝑣 is an integer value.

When eval_branches runs out of branches, it behaves as follows. If o is a normal outcome

(Ret3), then a crash occurs. Indeed, we want a non-exhaustive case analysis to be considered

an undesirable behavior. If o is an exceptional (Throw3) or effectful (Perform3
) outcome, then it is

propagated. Technically, it is converted back to a monadic computation, whose behavior can then

be observed by the next enclosing handler. An exceptional outcome is converted to a computation

via throw; an effectful outcome is converted via perform. In the latter case, whereas ℓ is a stored

continuation (a memory location), 𝜆𝑜. resume ℓ 𝑜 is a semantic continuation (a function), which

forms a suitable argument for try
2
. Thus, try

2
(perform 𝑣) (𝜆𝑜. resume ℓ 𝑜) performs an effect with

payload 𝑣 and continuation ℓ .

4 The Micro Monad
The micro monad offers an abstract type of computations along with its fundamental combinators,

ret and bind. The remaining combinators (Figure 4) offer access to various computational effects,

including exceptions, crashes, divergence, state, structured parallelism, non-deterministic choice,

and delimited control.

Under the hood, computations are represented as trees, where leaves (Ret) represent results and
internal nodes (Stop) represent observable events, or system calls. This representation is inspired by

a long line of previous work on the free monad [Swierstra 2008, §6], the freer monad [Kiselyov and

Ishii 2015], and interaction trees [Xia et al. 2020]. Stop carries a continuation, a meta-level function.

One can think of this continuation as the computation that remains to be carried out once this

system call has produced a result. One can also think of it as a family of subtrees, indexed with

results. Because it is convenient to also have a variant of Stop that does not carry a continuation,

we write stop 𝑐 𝑣 for Stop 𝑐 𝑣 inject
2
, where inject

2
is the trivial continuation.

6 bind is defined as

a meta-level function on trees.

The constructor Stop carries a code, which can be viewed as the name of a system call, as well as

the argument of this system call. Although in previous work the type of codes is usually a parameter

of the monad, we work with a fixed type of codes, that is, with a specific set of system calls, which

provide support for just the effects that we need.

To express exceptions and crashes, we add two more kinds of leaves,Throw and Crash. To express
structured parallelism, we add a new constructor, Par , which carries two child computations and

a continuation. To express delimited control, we add another constructor, Handle, which carries

a computation and a handler.

In the remainder of this section, we briefly review the definition of the micro monad (§4.1) as

well as the specific system calls that we find necessary (§4.2). Once these definitions are given,

there still remains to assign a meaning, or a behavior, to each system call and to each of our ad hoc

constructors, such as Par and Handle. We do so via a small-step reduction relation (§5).
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Inductivemicro (𝐴 : Type) (𝐸 : Type) : Type :=
| Ret : 𝐴→ micro 𝐴 𝐸

| Throw : 𝐸 → micro 𝐴 𝐸

| Crash : micro 𝐴 𝐸

| Stop : code 𝑋 𝑌 𝐸′ → 𝑋 → (outcome2 𝑌 𝐸′ → micro 𝐴 𝐸) → micro 𝐴 𝐸

| Par : micro 𝐴1 𝐸
′ → micro 𝐴2 𝐸

′ → (outcome2 (𝐴1 ×𝐴2) 𝐸′ → micro 𝐴 𝐸) → micro 𝐴 𝐸

| Handle : micro val exn→ (outcome3 val exn→ micro 𝐴 𝐸) → micro 𝐴 𝐸

Fig. 5. The micro monad: definition

4.1 Definition
An inductive type of computations. Amathematical object of typemicro 𝐴 𝐸 represents an effectful

computation whose eventual outcome is either a result of type𝐴 or an exception of type 𝐸. The fact

that an outcome is a sum type is visible in the type of the most fundamental combinator, try
2

(Figure 4). When two computations are sequentially composed, the second computation must be

prepared to accept the outcome of the first computation, whose type is the sum type outcome2 𝐴 𝐸.

The definition of the typemicro 𝐴 𝐸 appears in Figure 5. It is a variant of the freer monad: that is,

it is an inductive type, whose constructors include Ret and Stop. The three arguments carried by

Stop are a code (the name of the system call), an argument (the argument of the system call), and

a continuation (what to do once the system call produces an outcome). In Stop 𝑐 𝑣 𝑘 , the code 𝑐
determines the types of the argument 𝑣 and of the outcome expected by the continuation 𝑘 . Indeed,

if 𝑐 has type code 𝑋 𝑌 𝐸′ then 𝑣 has type 𝑋 and 𝑘 expects the system call to produce either a result

of type 𝑌 or an exception of type 𝐸′.

Inert computations. Three constructors represent inert computations. In addition to Ret 𝑣 , a trivial
computation whose outcome is the result 𝑣 , we haveThrow 𝑣 , a trivial computation whose outcome

is the exception 𝑣 , and Crash, a trivial computation that represents a fatal runtime failure. Whereas

an exception can be caught and handled, a crash cannot be detected or handled. A crash can also be

thought of as “undefined behavior” (§B). In any case, it is a “bad” event, which one wishes to avoid.

By design, our program logics (§6, §7) ensure that a verified program cannot crash. The combinators

ret, throw, and crash are just synonyms for Ret, Throw, and Crash.

Sequential composition. The sequential composition combinator try
2
is not a constructor: instead,

it is defined by induction on its first argument. In try
2
𝑚𝑘 , the continuation 𝑘 expects an outcome,

that is, either a result or an exception. Crashes are propagated: try
2
(crash) 𝑘 is crash.

The sequential composition combinator bind is obtained as a special case of try
2
. In bind𝑚𝑘 ,

the continuation 𝑘 expects a result. The monadic laws are satisfied: in particular, bind (ret 𝑣) 𝑘 is

𝑘 𝑣 . Exceptions and crashes are propagated: bind (throw 𝑣) 𝑘 is throw 𝑣 and bind (crash) 𝑘 is crash.

Parallel composition. The constructor Par offers structured parallelism, that is, the ability to run

two computations in parallel and to wait for both of them to terminate. It carries two computations

and a continuation, which is meant to be invoked once both computations have produced a result.

The presence of this continuation is exploited in the definition of try
2
. Nevertheless, by thinking in

terms of the combinator par instead of the constructor Par , one can forget about this continuation.

Indeed, par𝑚1𝑚2 is defined as Par𝑚1𝑚2 inject2, where inject2 is the trivial continuation.6

Delimited control. The constructor Handle serves as a delimiter of control effects. It carries

a computation𝑚 and a handler ℎ: in short, the computation Handle 𝑚 ℎ is the computation𝑚

running under the handler ℎ. The combinator handle (Figure 4) is just a synonym for Handle.
6 inject

2
: outcome2 𝐴 𝐸 → micro 𝐴 𝐸 is defined by the equations inject

2
(Ret2 𝑣) = ret 𝑣 and inject

2
(Throw2 𝑣) = throw 𝑣.
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Inductive code : Type→ Type→ Type→ Type :=
| CEval : code (env × expr) val exn
| CAlloc : code val loc exn
| CLoad : code loc val exn
| CStore : code (loc × val) unit exn
| CPerf : code eff val exn
| CResume : code (loc × outcome2 val exn) val exn
| CWrap : code (loc × env × handler) loc exn

Fig. 6. The micro monad: codes, also known as system calls

As indicated by the type of Handle in Figure 5, the handler ℎ is a three-armed continuation:

that is, it expects an outcome of type outcome3 _ _.

We require the computation𝑚 to have type micro val exn, that is, to produce an OCaml value

or an OCaml exception. Accordingly, the handler ℎ expects an outcome of type outcome3 val exn.
This convention guarantees that all continuations have the same type, therefore makes the heap

homogeneous. This is visible in the definition of a memory block (§5).

The definitions of the types outcome3 and micro are not mutually recursive. Indeed, outcome3
is defined first (Figure 4); micro refers to it (Figure 5). The key reason why this is possible is

that the second argument of the constructor Perform
3
is a stored continuation, that is, a memory

location ℓ . If instead it was a continuation (a function) then its codomain would be micro val exn,
so the types outcome3 and micro would be mutually recursive. Furthermore, because outcome3
appears in a negative position in the arguments of the constructor Handle (Figure 5), the definitions
of the types outcome3 and micro would be logically meaningless, and would be rejected by Rocq.

In summary, an indirection through the heap lets us avoid a logical difficulty.

4.2 System Calls
For our purposes, it is acceptable to fix the definition of the type code, that is, to adopt a fixed, finite
set of system calls. This definition appears in Figure 6. We now briefly review each system call,

describe its argument and result types, and explain its intended semantics.

Divergence. The system call CEval is a request to evaluate an OCaml expression. Its argument is

a pair of an environment𝜂 and an expression 𝑒 . It produces a value (or an exception). The combinator

please_eval (Figure 4) is defined by please_eval 𝜂 𝑒 = stop CEval (𝜂, 𝑒).

State. The system calls CAlloc, CLoad, and CStore allocate, read, and write heap cells.

Delimited control. The system call CPerf is a request to perform a delimited control effect. Its

argument is a value 𝑣 . Its intended meaning is the same as that of the OCaml expression perform v.

It can produce a value or an exception; this is determined when the continuation that is captured

by this system call is later continued or discontinued. The combinator perform (Figure 4) is defined

by perform 𝑣 = stop CPerf 𝑣 .
The system call CResume is a request to resume a continuation that has been previously captured

and stored in the heap by perform. Its argument is a pair of a memory location ℓ and an outcome 𝑜 .

Its intended effect is to fetch the continuation at address ℓ and to resume it by applying it to 𝑜 . If 𝑜 has

the form Ret2 𝑣 , then the continuation is continued; if 𝑜 has the formThrow2 𝑣 , then the continuation

is discontinued. The combinator resume (Figure 4) is defined by resume ℓ 𝑜 = stop CResume (ℓ, 𝑜).
The system call CWrap is a request to wrap a previously captured continuation in an effect

handler, yielding a new continuation. Its argument is a triple (𝜂, ℓ, bs), where bs is a handler, a list of
branches. (This type is part of our abstract syntax of OCaml.) Its intended effect is to allocate a new
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Divergence
!CEval (𝜂, 𝑒) 𝑘 /𝜎 −→ try

2
(eval 𝜂 𝑒) 𝑘 /𝜎

State
!CAlloc 𝑣 𝑘 /𝜎 −→ try

2
(ret ℓ) 𝑘 / (ℓ, 𝑣) :: 𝜎 if ℓ ∉ dom(𝜎)

!CLoad ℓ 𝑘 /𝜎 −→ try
2
(ret 𝑣) 𝑘 /𝜎 if lookup 𝜎 ℓ = 𝑣

!CLoad ℓ 𝑘 /𝜎 −→ Crash /𝜎 otherwise

!CStore (ℓ, 𝑣 ′) 𝑘 /𝜎 −→ try
2
(ret ()) 𝑘 / (ℓ, 𝑣 ′) :: 𝜎 if lookup 𝜎 ℓ = 𝑣

!CStore (ℓ, 𝑣 ′) 𝑘 /𝜎 −→ Crash /𝜎 otherwise

Parallelism
Par𝑚1𝑚2 𝑘 /𝜎 −→ Par𝑚′

1
𝑚2 𝑘 /𝜎′ if𝑚1 / 𝜎 −→𝑚′

1
/ 𝜎′

Par𝑚1𝑚2 𝑘 /𝜎 −→ Par𝑚1𝑚
′
2
𝑘 /𝜎′ if𝑚2 / 𝜎 −→𝑚′

2
/ 𝜎′

Par (Ret 𝑣1) (Ret 𝑣2) 𝑘 /𝜎 −→ try
2
(ret (𝑣1, 𝑣2)) 𝑘 /𝜎

Par Crash𝑚2 𝑘 /𝜎 −→ Crash /𝜎
Par𝑚1 Crash𝑘 /𝜎 −→ Crash /𝜎

Par (Throw 𝑣)𝑚2 𝑘 /𝜎 −→ try
2
(throw 𝑣) 𝑘 /𝜎

Par𝑚1 (Throw 𝑣) 𝑘 /𝜎 −→ try
2
(throw 𝑣) 𝑘 /𝜎

Par (!CPerf 𝑣 𝑘)𝑚2 𝑘
′ /𝜎 −→ !CPerf 𝑣 (𝜆𝑜. Par (𝑘 𝑜)𝑚2 𝑘

′) /𝜎
Par𝑚1 (!CPerf 𝑣 𝑘) 𝑘′ /𝜎 −→ !CPerf 𝑣 (𝜆𝑜. Par𝑚1 (𝑘 𝑜) 𝑘′) /𝜎
Delimited control

Handle (Ret 𝑣) ℎ /𝜎 −→ ℎ (Ret3 𝑣) /𝜎
Handle (Throw 𝑣) ℎ /𝜎 −→ ℎ (Throw3 𝑣) /𝜎

Handle (!CPerf 𝑣 𝑘) ℎ /𝜎 −→ ℎ (Perform
3
𝑣 ℓ) / (ℓ, 𝑘) :: 𝜎 if ℓ ∉ dom(𝜎)

Handle Crash ℎ /𝜎 −→ Crash /𝜎
Handle 𝑚 ℎ /𝜎 −→ Handle 𝑚′ ℎ /𝜎′ if𝑚 / 𝜎 −→𝑚′ / 𝜎′

!CResume (ℓ, 𝑜) 𝑘 /𝜎 −→ try
2
(𝑘′ 𝑜) 𝑘 / (ℓ, E) :: 𝜎 if lookup 𝜎 ℓ = 𝑘′

!CResume (ℓ, 𝑜) 𝑘 /𝜎 −→ Crash /𝜎 otherwise

!CWrap (𝜂, ℓ, bs) 𝑘 /𝜎 −→ try
2
(ret ℓ′) 𝑘 / (ℓ′, 𝑘′) :: 𝜎 if ℓ′ ∉ dom(𝜎)

where 𝑘′ = 𝜆𝑜. handle (resume ℓ 𝑜) (wrap_eval_branches 𝜂 bs)

Fig. 7. The micro monad: small-step reduction

continuation which, once invoked, runs the existing continuation ℓ under the closed effect handler

(𝜂, bs). Its result is the address ℓ ′ of the new continuation. After this system call has returned, one

can view ℓ as uniquely owned by ℓ ′. The continuation ℓ must not be directly resumed; instead,

it should be indirectly resumed by resuming the continuation ℓ ′. The combinator wrap is defined

by wrap ℓ 𝜂 bs = stop CWrap (𝜂, ℓ, bs).

5 Small-step semantics for the Micro monad
We now equip micro monad with a small-step operational semantics. This gives meaning to system

calls (Stop) and to the monad’s ad hoc constructors (Par , Handle).
The reduction rules act on configurations𝑚 / 𝜎 , that is, pairs of a computation𝑚 and a heap 𝜎 .

A heap, or store, is a finite map of memory locations to memory blocks. The heap serves a dual

purpose: it stores mutable memory cells (also known as references) and first-class continuations.

Therefore, we define a memory block to be a value 𝑣 , a continuation 𝑘 , or the special mark E, which
denotes a continuation that has been “shot” already.

In the previous sentence, 𝑘 has type outcome2 val exn→ micro val exn. Thus, all continuations
have the same type. Furthermore, a continuation is represented as a meta-level function. This is

a natural consequence of the structure of the micro monad. The continuation that is carried by
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the constructor Stop is a meta-level function. It is captured and stored in the heap when a control

effect is performed.

A reduction step takes the form𝑚 / 𝜎 −→𝑚′ / 𝜎 ′. The reduction relation is inductively defined

by the rules in Figure 7. We write ! as a short-hand for Stop.

Divergence. The first reduction rule states that the system call CEval with argument (𝜂, 𝑒) and
continuation 𝑘 reduces in one step to the computation eval 𝜂 𝑒 followed with 𝑘 . To better see this,

recall that try
2
is the sequential composition operation of the monad. In particular, if 𝑘 is the trivial

continuation inject
2
then this rule states that please_eval 𝜂 𝑒 reduces to eval 𝜂 𝑒 .

State. The system calls CAlloc, CLoad, and CStore implement the usual reduction semantics of

mutable references. CAlloc 𝑣 picks an unused memory location ℓ , initializes it with the value 𝑣 ,

and returns ℓ . It cannot fail. CLoad ℓ reads the value stored at location ℓ , if this location has been

allocated and stores a value; otherwise, it crashes. CStore (ℓ, 𝑣 ′) overwrites the value at location ℓ

with 𝑣 ′, if this location has been allocated and stores a value; otherwise, it crashes.

Parallelism. A parallel composition Par𝑚1𝑚2 𝑘 allows the computations𝑚1 and𝑚2 to run in

parallel. This is expressed by the first two rules in this group, which interleave the reduction steps

of𝑚1 and𝑚2 in a non-deterministic manner.

The next rule, when specialized to the case where 𝑘 is the trivial continuation (inject
2
), states that

par (ret 𝑣1) (ret 𝑣2) reduces to ret (𝑣1, 𝑣2). That is, if both𝑚1 and𝑚2 reach a result then par𝑚1𝑚2

returns a pair of these results. This is fork/join parallelism: once both sides have finished, the con-

tinuation proceeds.

The remaining six rules in this group define the behavior of a parallel composition in the situation

where one side crashes, raises an exception, or performs a control effect.

A crash on either side is propagated: the parallel composition reduces to just Crash.
An exception on either side is also propagated. Writing try

2
(throw 𝑣) 𝑘 is the natural way of

expressing that the exception 𝑣 is propagated into the continuation 𝑘 . When 𝑘 is inject
2
, one finds

that par (throw 𝑣)𝑚2 reduces to throw 𝑣 .

When a control effect !CPerf 𝑣 takes place under a parallel composition, the parallel composition

itself is captured, as it forms one frame of the evaluation context. In the term Par (!CPerf 𝑣 𝑘)𝑚2 𝑘
′
,

the continuation 𝑘 represents an evaluation context that has been captured already, and the parallel

composition Par · 𝑚2 𝑘
′
forms one more frame, which has not yet been captured. This term

reduces to a new term where the control effect !CPerf 𝑣 appears at the root and where the captured
evaluation context 𝜆𝑜. Par (𝑘 𝑜)𝑚2 𝑘

′
is the composition of the original captured context 𝑘 with

this extra frame. This style of letting a control effect capture its evaluation context, one frame at

a time, in a small-step operational semantics, is standard [Pretnar 2015, Fig. 4]. What is unusual

and original here is that control effects and (non-deterministic) parallel composition interact.

Delimited control. The last group of rules in Figure 7 concerns Handle, which serves as a delimiter

of control effects, and the system calls CResume and CWrap, which operate on stored continuations.

In Handle 𝑚 ℎ, the computation𝑚 is monitored by the handler ℎ, a meta-level function whose

argument has type outcome3 val exn. The first three reduction rules describe the three kinds of

outcomes that the handler can observe. If the computation produces a result Ret 𝑣 then the handler

is applied to the outcome Ret3 𝑣 . If it produces an exception Throw 𝑣 then the handler is applied

to Throw3 𝑣 . If it performs an effect !CPerf 𝑣 𝑘 then the continuation 𝑘 is captured: 𝑘 is written

in the heap at a fresh address ℓ , and the handler is applied to Perform
3
𝑣 ℓ . Thus, the handler receives

access to the value 𝑣 that was passed as an argument to CPerf and to the stored continuation ℓ .

The next two rules state that a crash under a handler reduces to a crash and that reduction under

Handle · ℎ is permitted.
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The first reduction rule for CResume, when specialized to the case where 𝑘 is the trivial con-

tinuation, states that if a continuation 𝑘 ′ is stored at address ℓ then resume ℓ 𝑜 / 𝜎 reduces to

𝑘 ′ 𝑜 / (ℓ, E) :: 𝜎 . In words, resume ℓ 𝑜 resumes the continuation that is stored at address ℓ by

applying it to the outcome 𝑜 and marks this continuation as shot. The next reduction rule states

that attempting to resume a continuation that has already been shot causes a crash. Indeed, OCaml

only supports one-shot continuations.

The last reduction rule, when specialized to the case where 𝑘 is the trivial continuation, states

that wrap ℓ 𝜂 bs / 𝜎 reduces to ret ℓ ′ / (ℓ ′, 𝑘 ′) :: 𝜎 , where 𝑘 ′ can be described as the stored

continuation ℓ , wrapped in a copy of the closed handler (𝜂, bs).

Basic properties. By design of this semantics, the terms Par𝑚1𝑚2 and Handle 𝑚 ℎ are never

stuck; that is, they are always reducible. The same is true of a system call ! 𝑐 𝑣 𝑘 except in the case

where 𝑐 is CPerf : indeed, a control effect cannot be reduced unless it occurs under Par or Handle.
In summary, there are four kinds of irreducible terms, namely ret 𝑣 , throw 𝑣 , crash, and !CPerf 𝑣 𝑘 .
The last form represents an unhandled effect.

Our reduction semantics is compatible with evaluation contexts: that is, 𝑚 / 𝜎 −→ 𝑚′ / 𝜎 ′
implies try

2
𝑚𝑘 / 𝜎 −→ try

2
𝑚′ 𝑘 / 𝜎 ′. Such a property is often part of the definition of a small-step

operational semantics: in our case, it is a lemma.

6 Horus
We say that a computation is “pure” if it does not involve divergence, state, or delimited control.

Pure computations are commonplace in OCaml. It is possible to reason about their behavior using

a stateless Hoare logic, which is significantly simpler than Separation Logic. We believe that this

can be beneficial for the end user. Therefore, in this section, we present Horus, a total program

logic for pure program fragments.

Making Horus a total logic, where divergence is forbidden, is a design choice. We could have

made it a partial logic, where divergence is allowed. This would remove the obligation of proving

that every recursive function definition is well-founded. We believe that requiring termination

makes the logic more practically useful.

6.1 Pure Reduction
To clarify what we mean by “pure” computation, we introduce a pure reduction relation,𝑚 −→p 𝑚

′
.

In this paper, its definition is omitted. It is identical to the relation −→ (§5), with two differences.

First, it relates computations (𝑚) rather than configurations (𝑚 / 𝜎): thus, it does not involve the
heap. Second, in this relation, a system call that needs access to the heap (CAlloc, CLoad, CStore,
CPerf , CResume, CWrap) reduces to Crash. This reduction relation is not terminating, deterministic

or confluent; these properties are not needed. The constructs Par and Handle are supported, and
behave normally, if their children are pure.

The pure reduction relation serves as a foundation for the lower layer of Horus, a stateless Hoare

logic for pure micro computations (§6.2). This layer involves a single judgment, pure. On top of it,

we construct the upper layer of Horus, a stateless Hoare logic for OCaml programs (§6.3). This layer

involves several judgments: there is one judgment per syntactic category, including expressions,

patterns, and so on. Furthermore, we introduce a specific assertion for function specifications (§6.4).

6.2 Micro Layer
The pure judgment, pure 𝑚 𝜑 𝜓 , states that𝑚 : micro 𝐴 𝐸 is a pure and terminating computation

that must return either a value that satisfies the normal postcondition 𝜑 : 𝐴→ Prop or an exception

that satisfies the exceptional postcondition 𝜓 : 𝐸 → Prop. It is inductively defined in terms of
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pure-ret

𝜑 𝑎

pure (ret 𝑎) 𝜑 𝜓

pure-throw

𝜓 𝑒

pure (throw 𝑒) 𝜑 𝜓

pure-bind

pure 𝑚 (𝜆𝑎. pure (𝑘 𝑎) 𝜑 𝜓 ) 𝜓
pure (bind𝑚𝑘) 𝜑 𝜓

pure-please-eval

pure (eval 𝜂 𝑒) 𝜑 𝜓

pure (please_eval 𝜂 𝑒) 𝜑 𝜓

pure-conseq

pure 𝑚 𝜑 𝜓

∀𝑎. 𝜑 𝑎 ⇒ 𝜑 ′ 𝑎
∀𝑒. 𝜓 𝑒 ⇒ 𝜓 ′ 𝑒

pure 𝑚 𝜑′ 𝜓 ′

pure-try2

pure 𝑚 (𝜆𝑎. pure (𝑘 (Ret2 𝑎)) 𝜑 𝜓 )
(𝜆𝑒. pure (𝑘 (Throw2 𝑒)) 𝜑 𝜓 )
pure (try

2
𝑚𝑘) 𝜑 𝜓

pure-par

pure 𝑚1 𝜑1 𝜓 pure 𝑚2 𝜑2 𝜓

∀𝑎1𝑎2 . 𝜑1 𝑎1 ∧ 𝜑2 𝑎2 ⇒ 𝜑 (𝑎1, 𝑎2)
pure (par𝑚1𝑚2) 𝜑 𝜓

pure-handle

pure 𝑚 (𝜆𝑎. pure (ℎ (Ret3 𝑎)) 𝜑 𝜓 ) (𝜆𝑒. pure (ℎ (Throw3 𝑎)) 𝜑 𝜓 )
pure (handle𝑚ℎ) 𝜑 𝜓

pure-intersection

∀𝑥 : 𝑋 . pure 𝑚 (𝜑 𝑥) 𝜓
pure 𝑚 (𝜆𝑎.∀𝑥 : 𝑋 . 𝜑 𝑥 𝑎) 𝜓

Fig. 8. Horus rules for micro computations (pure)

the pure reduction relation via the following three rules, which can be read as follows: either the

computation is finished and the corresponding postcondition holds; or the computation is able to

make a step and, after every possible step, pure holds again.

𝜑 𝑎

pure (ret 𝑎) 𝜑 𝜓

𝜓 𝑒

pure (throw 𝑒) 𝜑 𝜓

∃𝑚′ . 𝑚 −→p 𝑚
′ ∀𝑚′ . 𝑚 −→p 𝑚

′ ⇒ pure 𝑚′ 𝜑 𝜓

pure 𝑚 𝜑 𝜓

The soundness of Horus with respect to the semantics (§5) is an immediate consequence of this

definition: if pure 𝑚 𝜑 ⊥ holds then executing𝑚 in an arbitrary heap 𝜎 cannot diverge, cannot

crash, and cannot result in an unhandled exception or effect; it must reach a result ret 𝑎 such that

𝜑 𝑎 holds and leave the heap 𝜎 unchanged.

With respect to this definition, we establish the validity of a number of reasoning rules (Figure 8).

There is one rule for each combinator of the micro monad (Figure 4), excluding those that cannot

be used in a pure computation. For example, pure-bind can be read as follows: to establish that

the sequence bind𝑚𝑘 is pure and satisfies the postconditions 𝜑 and 𝜓 , one must prove that

(1)𝑚 is pure, (2) if𝑚 produces a normal result 𝑎 then 𝑘 𝑎 is pure and satisfies 𝜑 and 𝜓 , (3) if𝑚

produces an exceptional result then this result satisfies𝜓 .

pure-handle is useful even in a pure setting (where delimited control effects cannot be used)

because we use handle to interpret all match constructs. pure-conseq is the consequence rule.

pure-intersection is the intersection rule, where 𝑋 is a non-empty type. It pushes a universal

quantification into the postcondition. All of the rules in Figure 8 are reversible. For example, out of

a judgment about par𝑚1𝑚2, one can extract judgments about𝑚1 and𝑚2.

The pure judgment satisfies a few additional deduction rules. For example, out of a postcondition,

one can extract information: that is, pure 𝑚 𝜑 𝜓 implies (∃𝑎. 𝜑 𝑎) ∨ (∃𝑒. 𝜓 𝑒). Furthermore, the

following two rules are valid, where ⊥ stands for 𝜆_. False:

pure 𝑚1 (𝜆𝑎1. pure 𝑚2 (𝜆𝑎2 . 𝜑1 𝑎1 ∧ 𝜑2 𝑎2) ⊥) ⊥
pure 𝑚1 𝜑1 ⊥ ∧ pure 𝑚2 𝜑2 ⊥

pure 𝑚1 (𝜆𝑎1. pure 𝑚2 (𝜆𝑎2 . 𝜑 𝑎1 𝑎2) 𝜓 ) ⊥
pure 𝑚2 (𝜆𝑎2. pure 𝑚1 (𝜆𝑎1 . 𝜑 𝑎1 𝑎2) ⊥) 𝜓

These rules help sequentialize subgoals. This can be convenient when reasoning about expressions

with multiple subexpressions. For example, this can help avoid the creation of Rocq metavariables.

6.3 OLang Layer
Although OLang is an untyped language, we give a typed view of its values in Horus. That is, instead

of working with postconditions whose argument type is val, we want the user of the logic to write
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EInt

𝜑 𝑖

expr 𝜂 (EInt 𝑖) 𝜑 𝜓

EAdd

expr 𝜂 𝑒1 𝜑1 𝜓 expr 𝜂 𝑒2 𝜑2 𝜓

∀𝑖1 𝑖2 . 𝜑1 𝑖1 ⇒ 𝜑2 𝑖2 ⇒ 𝜑 (𝑖1 + 𝑖2)
expr 𝜂 (EAdd 𝑒1 𝑒2) 𝜑 𝜓

EIf

expr 𝜂 𝑒 (𝜆𝑏. expr 𝜂 (if 𝑏 then 𝑒1 else 𝑒2) 𝜑 𝜓 ) 𝜓
expr 𝜂 (EIfThenElse 𝑒 𝑒1 𝑒2) 𝜑 𝜓

ERaise

expr 𝜂 𝑒 𝜓 𝜓

expr 𝜂 (ERaise 𝑒) 𝜑 𝜓

ESeq

expr 𝜂 𝑒1 (𝜆_. expr 𝜂 𝑒2 𝜑 𝜓 ) 𝜓
expr 𝜂 (ESeq 𝑒1 𝑒2) 𝜑 𝜓

ELet

bindings 𝜂 bs (𝜆𝛿. expr (𝛿 ++ 𝜂) 𝑒 𝜑 𝜓 ) 𝜓
expr 𝜂 (ELet bs 𝑒) 𝜑 𝜓

EMatch

expr 𝜂 𝑒 (𝜆𝑎. branches 𝜂 (Ret3 #𝑎) bs 𝜑 𝜓 )
(𝜆𝑣 . branches 𝜂 (Throw3 𝑣) bs 𝜑 𝜓 )
expr 𝜂 (EMatch 𝑒 bs) 𝜑 𝜓

BranchesCons

cpat 𝜂 𝜂 cp 𝑜 (𝜆𝜂′ . expr 𝜂′ 𝑒 𝜑 𝜓 ) 𝜁
𝜁 ⇒ branches 𝜂 𝑜 bs 𝜑 𝜓

branches 𝜂 𝑜 (Branch cp 𝑒 :: bs) 𝜑 𝜓

BranchesNil

𝑜 = Throw3 𝑣 𝜓 𝑣

branches 𝜂 𝑜 [] 𝜑 𝜓

Fig. 9. Selected Horus rules for OLang expressions (expr) and case analyses (branches)

postconditions in Rocq with an argument type of their choosing, such as unit, int, bool, etc. For this
purpose, we define a type class Encode 𝐴 whose single method is encode : 𝐴→ val. We write # as a

short-hand for encode. It is a mapping of mathematical objects of type 𝐴 into OLang values. It need

not be injective. We define several commonly useful instances of this class. For example, the Rocq

types Z and unit are instances of this class: #5 is VInt (int .repr 5), and #() is VUnit. This allows
us to hide the tags VInt and VUnit from the user’s view. In fact, we want the user to be entirely

unaware of the manner in which typed OLang values are encoded as inhabitants of the type val,
and to view val as an abstract type.

Reflecting this discussion, we define a judgment pure
#
that takes an implicit parameter of

type Encode 𝐴 and where the postcondition 𝜑 has type 𝐴→ Prop. Then, based on pure
#
and eval,

we define a judgment expr for pure OLang expressions, as well as similar judgments (not shown)

for each of OLang’s syntactic categories.

pure
#
𝑚 𝜑 𝜓 := pure 𝑚 (𝜆𝑣. ∃𝑎. 𝑣 = #𝑎 ∧ 𝜑 𝑎) 𝜓

expr 𝜂 𝑒 𝜑 𝜓 := pure
#
(eval_expr 𝜂 𝑒) 𝜑 𝜓

With respect to this definition of expr , we establish the validity of a number of reasoning rules,

some of which are shown in Figure 9. In every expr judgment, the domain of the postcondition is

implicit: for example, in EAdd, the postconditions 𝜑1 and 𝜑2 have argument type Z; the variables 𝑖1
and 𝑖2 have type Z as well, as they are operands of +. Our reasoning rules for integer addition,

subtraction, negation, and multiplication do not require the user to prove the absence of integer
overflow. Our reasoning rules for division and comparison do have such a requirement.

The sequential composition rule ESeq ignores the value produced by 𝑒1. The more general

sequential composition construct ELet bs 𝑒 can bind any number of variables, so ELet is more

complex; it relies on the auxiliary judgment bindings (not shown) (§E.4) to extend the environment

with new bindings. It is instructive to examine two special cases of ELet, shown below, where the

list bs contains only one binding. In ELet1Var a variable𝑥 is bound to the result of a subexpression 𝑒1.
In ELet1Pat a pattern 𝑝 is used to deconstruct the result of 𝑒1.

ELet1Var

expr 𝜂 𝑒1 (𝜆𝑎. expr ((𝑥, #𝑎) :: 𝜂) 𝑒2 𝜑 𝜓 ) 𝜓
expr 𝜂 (ELet [Binding (PVar 𝑥) 𝑒1] 𝑒2) 𝜑 𝜓

ELet1Pat

expr 𝜂 𝑒1 (𝜆𝑎. pat 𝜂 𝜂 𝑝 #𝑎 (𝜆𝜂′ . expr 𝜂′ 𝑒2 𝜑 𝜓 ) ⊥) 𝜓
expr 𝜂 (ELet [Binding 𝑝 𝑒1] 𝑒2) 𝜑 𝜓

In ELet1Var, 𝑒2 is examined under the environment (𝑥, #𝑎) :: 𝜂, which extends 𝜂 with a binding of

the variable 𝑥 to the value #𝑎 returned by 𝑒1. In ELet1Pat, 𝑒2 is examined under an environment 𝜂′
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that is obtained as the result of matching the value #𝑎 against the pattern 𝑝 in environment 𝜂. This

is expressed by the judgment pat, a Hoare-style judgment about pattern matching, which we define

in terms of pure and eval_pat, as follows:

pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 := pure (eval_pat 𝜂 𝛿 𝑝 𝑣) 𝜑 (𝜆(). 𝜁 )

The judgment pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 states that, starting with lookup-only environment 𝜂 and extend-

only environment 𝛿 , matching the value 𝑣 against the pattern 𝑝 cannot crash, must terminate, and

either produces an environment that satisfies 𝜑 or fails by throwing (), in which case 𝜁 holds.

In the premise of ELet1Pat, the use of ⊥ as an exceptional postcondition of the pat judgment

indicates that pattern matching is not allowed to fail; it must be exhaustive.

With respect to this definition of pat, we establish the validity of a number of reasoning rules

(not shown) (§E.3). These rules support deeply nested patterns. An end user need not be aware of

these rules: since the pattern is always statically known, our tactics are able to automatically apply

these rules in such a way that the remaining subgoal is an expr judgment, requesting the user to

verify a branch, under the assumption that this branch has been entered, and that the previous

branches could not be entered.

Coming back to Figure 9, the rule EMatch deals with the OCaml expression “match e with bs”

where each branch in the list bs is composed of a computation pattern cp (§3.9) and a body 𝑒 .

In order to reason about these auxiliary syntactic categories (branches and patterns), we define

specialized Hoare-style judgments using pure:

branches 𝜂 𝑜 bs 𝜑 𝜓 := pure
#
(eval_branches 𝜂 𝑜 bs) 𝜑 𝜓

cpat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 := pure (eval_cpat 𝜂 𝛿 cp 𝑣) 𝜑 (𝜆(). 𝜁 )

EMatch states that one must first reason about the scrutinee (that is, the expression 𝑒), which

produces either a normal result #𝑎 or an exceptional result 𝑣 ; then, we reason about the application

of the handler bs to this outcome via the judgment branches.
The rules BranchesCons and BranchesNil allow reasoning about each branch in turn. In the

second premise of BranchesCons, the implication 𝜁 ⇒ · · · allows each branch to be verified

under the assumption that the previous branches did not match. When bs is the empty list and 𝑜 is

a normal outcome (Ret3 𝑣), this premise must be proved by contradiction: the user must check that

𝜁 contains a contradiction. When bs is the empty list and 𝑜 is an exceptional outcome (Throw3 𝑣),

it can be proved by applying BranchesNil.

An end user normally does not encounter the judgments branches or cpat: indeed, we provide
tactics that automatically apply BranchesCons, compute exceptional postconditions, and attempt

to extract contradictions out of them, so the only remaining subgoals are expr judgments.

6.4 Function Specifications
To a merge function on sorted lists of integers, we wish to give a specification of this form:

Pmerge := 𝜆 l1 l2 𝑚. sorted l1 ∧ sorted l2 ⇒ pure
#
𝑚 (𝜆l. sorted l ∧ permutation l (l1 ++ l2)) ⊥

Here, l1 and l2 are two Rocq lists, whose type is list Z. The variable𝑚, whose type is micro val exn,
serves as an abstract name for the function application. This specification requires the lists l1 and l2
to be sorted (a precondition) and guarantees that the function call produces a sorted list l that is
a permutation of l1 ++ l2 (a postcondition).
OLang’s functions are unary (§3.6), so, by “𝑛-ary function”, we mean 𝑛 nested 𝜆-abstractions.

Indeed, in OCaml, this “curried” style is the most popular style, as opposed to the “uncurried” style

where an 𝑛-ary function expects an 𝑛-tuple as an argument.
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Spec-EAnonFun

∀(®𝑎 : ®𝜏). P ®𝑎 (eval (( ®𝑥, #®𝑎) :: 𝜂) 𝑒)
expr 𝜂 (EAnonFun (AnonFun ®𝑥 𝑒)) (𝜆𝑐. Spec ®𝜏 𝑐 P) 𝜓

Spec-EApp

expr 𝜂 𝑒 (𝜆𝑐. Spec ®𝜏 𝑐 P) 𝜓
expr 𝜂 𝑒1 𝜑1 𝜓 · · · expr 𝜂 𝑒𝑛 𝜑𝑛 𝜓

∀®𝑎. 𝜑1 𝑎1 ⇒ · · · ⇒ 𝜑𝑛 𝑎𝑛 ⇒ ∀𝑚. P ®𝑎 𝑚 ⇒ pure
#
𝑚 𝜑 𝜓

expr 𝜂 (EApp 𝑒 𝑒1 · · · 𝑒𝑛) 𝜑 𝜓

Spec-ELetRec

wf 𝑅

∀𝑐 ®𝑎. Spec ®𝜏 𝑐 (𝜆®𝑎′𝑚. 𝑅 ®𝑎′ ®𝑎 ⇒ P ®𝑎′ 𝑚) ⇒ P ®𝑎 (eval (( ®𝑥, #®𝑎) :: (𝑓 , 𝑐) :: 𝜂) 𝑒𝑓 )
∀𝑐. Spec ®𝜏 𝑐 P ⇒ expr ((𝑓 , 𝑐) :: 𝜂) 𝑒 𝜑 𝜓

expr 𝜂 (ELetRec [RecBinding 𝑓 (AnonFun ®𝑥 𝑒𝑓 )] 𝑒) 𝜑 𝜓

Fig. 10. Selected Horus rules for OLang expressions (expr): 𝑛-ary function calls and function definitions

To reason about curried 𝑛-ary functions and give them specifications that take the natural

form shown above, we introduce the proposition Spec ®𝜏 𝑐 P , which means “𝑐 is a function with

domain ®𝜏 and specification P .” In this proposition, ®𝜏 is a non-empty list of the Rocq types of the

function’s parameters (these types must be instances of Encode), 𝑐 is a value (which represents

the function—𝑐 is for “closure”), and P describes the behavior of the function. The specification

itself has type P : ®𝜏 → micro val exn→ Prop. Its parameters are the function’s parameters and

a monadic computation, which represents an application of the function to its actual arguments.

This style of specification is inspired by Moine et al. [2023], who use a similar style in a partial

correctness setting. Internally, we define Spec ®𝜏 𝑐 P by induction on the list ®𝜏 , as follows:
∀(𝑎 : 𝐴). P 𝑎 (call 𝑐 #𝑎)

Spec [𝐴] 𝑐 P
∀(𝑎 : 𝐴). pure

#
(call 𝑐 #𝑎) (𝜆𝑐′ . Spec ®𝜏 𝑐′ (P 𝑎)) ⊥
Spec (𝐴 :: ®𝜏) 𝑐 P

In the base case (left), the function has one parameter of type 𝐴. In this case, for every argument

𝑎 : 𝐴, the function call call 𝑐 #𝑎 must satisfy the specification P 𝑎. (call was introduced in §3.6.)

In the inductive case (right), the first parameter has type 𝐴, and there are more parameters. In that

case, the function call call 𝑐 #𝑎 must return a closure 𝑐′ which itself satisfies Spec ®𝜏 𝑐′ (P 𝑎).
The rules in Figure 10 form the public API of the abstract predicate Spec. (Spec also enjoys a conse-

quence rule, whichwe omit.) Spec-EAnonFun lets one prove that the expression EAnonFun (· · · ), an
𝑛-ary function, produces a value 𝑐 (a closure) that satisfies the specification P . We writeAnonFun ®𝑥 𝑒

as a short-hand for the nested 𝜆 abstractions. The rule’s single premise requires the user to prove

that the function’s body 𝑒 abides by the specification P . This proof is carried out under an environ-

ment where each formal parameter 𝑥 ∈ ®𝑥 is bound the corresponding actual parameter #𝑎 ∈ #®𝑎.
This takes place under a universal quantification over ®𝑎, as the actual parameters are unknown.

Spec-ELetRec governs the definition of one recursive function with an arbitrary number of

formal parameters ®𝑥 . Its first premise requires the user to exhibit a well-founded relation 𝑅, which

applies to all parameters at once and has type 𝑅 : ®𝜏 → ®𝜏 → Prop. Its second premise requires

the user to prove that the function body 𝑒𝑓 satisfies a specification P , under the assumption that

recursive calls (with strictly smaller arguments) obey the specification P . The third premise allows

the user to assume that the function (represented by the closure 𝑐) satisfies P while verifying the

right-hand side of the let rec construct.

Spec-EApp allows reasoning about 𝑛 nested function applications as a single 𝑛-ary application.

The first premise asks that the function 𝑒 satisfy an 𝑛-ary specification P . The following 𝑛 premises

require the subexpressions 𝑒𝑖 to be verified. In the last premise, their results are named 𝑎𝑖 . There,

the user must prove ∀𝑚. P ®𝑎 𝑚 ⇒ pure
#
𝑚 𝜑 𝜓 . To better understand this proof obligation,
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impure-ret

𝜑 𝑎

⟨Ψ⟩ impure (ret 𝑎) 𝜑 𝜓

impure-throw

𝜓 𝑒

⟨Ψ⟩ impure (throw 𝑒) 𝜑 𝜓

impure-bind

⟨Ψ⟩ impure 𝑚 (𝜆𝑎. ⟨Ψ⟩ impure 𝑘 𝑎 𝜑 𝜓 ) 𝜓
⟨Ψ⟩ impure (bind𝑚𝑘) 𝜑 𝜓

impure-conseq

⟨Ψ⟩ impure 𝑚 𝜑 𝜓

∀𝑎. 𝜑 𝑎 −∗ 𝜑 ′ 𝑎
∀𝑒. 𝜓 𝑒 −∗ 𝜓 ′ 𝑒

⟨Ψ⟩ impure 𝑚 𝜑′ 𝜓 ′

impure-par

⟨Ψ⟩ impure 𝑚1 𝜑1 𝜓

⟨Ψ⟩ impure 𝑚2 𝜑2 𝜓

∀𝑎1𝑎2 . 𝜑1 𝑎1 −∗ 𝜑2 𝑎2 −∗ 𝜑 (𝑎1, 𝑎2)
⟨Ψ⟩ impure (par𝑚1𝑚2) 𝜑 𝜓

impure-handle

⟨Ψ⟩ impure 𝑚 𝜑 𝜓

shallow -handler ⟨Ψ⟩ {𝜑 | 𝜓 } ℎ ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′}
⟨Ψ′⟩ impure (handle𝑚ℎ) 𝜑 ′ 𝜓 ′

impure-pure

pure 𝑚 𝜑 𝜓

⟨Ψ⟩ impure 𝑚 (𝜆𝑎.⌜𝜑 𝑎⌝) (𝜆𝑒.⌜𝜓 𝑒⌝)

impure-perform

Ψ allows perform 𝑣 {𝜑 | 𝜓 }
⟨Ψ⟩ impure (perform 𝑣) 𝜑 𝜓

impure-resume

ℓ ↦→ 𝑘 ⊲ ⟨Ψ⟩ impure (𝑘 𝑜) 𝜑 𝜓

⟨Ψ⟩ impure (resume ℓ 𝑜) 𝜑 𝜓

Fig. 11. Selected Osiris rules for micro computations (impure)

consider how it is instantiated at a call site of merge. Then, P is Pmerge , and the list ®𝑥 consists of the

variables l1 and l2. The proof obligation takes the form:

∀𝑚. Pmerge l1 l2 𝑚 ⇒ pure
#
𝑚 𝜑 𝜓

where l1 and l2 represent the actual arguments at this call site. Unfolding the definition of Pmerge
reveals a judgment “pure

#
𝑚 . . . ” on the left-hand side of the implication. Thus, after proving that

the precondition sorted l1 ∧ sorted l2 holds, one can apply pure-conseq to eliminate the judgments

“pure
#
𝑚 . . . ” on both sides of the implication. This yields a goal of the form:

∀l. sorted l ∧ permutation l (l1 ++ l2) ⇒ 𝜑 l

In this goal, the variable l stands for the result of the function call. The user is allowed to assume

that the postcondition of merge holds: that is, the list l is sorted and is a permutation of l1 ++ l2.
She must then prove that the property that is eventually desired, 𝜑 l, follows from these facts.

7 Osiris
Wenow present Osiris, a Separation Logic for OLang. Osiris allows reasoning about OLang programs

that exhibit all kinds of effects (§3), including divergence, state, and control effects, which Horus

forbids. Osiris is based on Iris [Jung et al. 2018b] and borrows ideas from Hazel [de Vilhena and

Pottier 2021], a variant of Iris that supports effect handlers.

7.1 Micro Layer
The lower layer of Osiris is a Separation Logic for monadic computations in the micro monad.

Its main judgment, ⟨Ψ⟩ impure 𝑚 𝜑 𝜓 , means that the computation𝑚 : micro 𝐴 𝐸 cannot crash

and that if it terminates then it must produce either a normal result that satisfies 𝜑 : 𝐴→ iProp or

an exceptional result that satisfies𝜓 : 𝐸 → iProp. (iProp is the type of Iris assertions.) Furthermore,

along the way, this computation may perform a sequence of zero, one or more control effects in

accordance with the protocol Ψ : eff → (outcome2 val exn→ iProp) → iProp.
A protocol [de Vilhena and Pottier 2021] describes the effects that a computation is allowed to

perform and the responses that the enclosing effect handlers are allowed to provide. Our definition

of protocols is the same as de Vilhena and Pottier’s, except that we change the type of a response

from val to outcome2 val exn, because, by continuing or discontinuing a continuation, a handler

can respond with a normal result or with an exceptional result. If 𝑋 → iProp is read informally as

“a set of 𝑋 ’s” then the type of protocols can be understood as “a set of pairs of an effect and a set of
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responses”. Thus, a protocol describes which effects are permitted, and for each permitted effect,

which responses are permitted.

Following de Vilhena and Pottier [2021], we write Ψ allows perform 𝑣 {𝜑 | 𝜓 } to mean that the

protocol Ψ allows the request 𝑣 and guarantees that the response will satisfy 𝜑 or𝜓 . The definition

of this predicate, which we omit, fits in one line, but it helps to think of it abstractly.

The definition of impure, which we also omit (§F, Figure 15), is very similar to that of de Vilhena

and Pottier’s ewp [2021]. A selection of the deduction rules for this judgment appear in Figure 11.

In each rule, the premises are separated, and the horizontal bar is a magic wand. These rules are not

meant to be surprising in any way: they are essentially a paraphrase of our small-step reduction

rules (Figure 7) in the style of an Iris-based Separation Logic.

The rules impure-ret, impure-throw, impure-bind, and impure-par are analogous to pure-ret,

pure-throw, pure-bind, and pure-par. The rule impure-par is in fact the parallel composition

rule of Separation Logic [O’Hearn 2007]. Therefore, to verify a parallel composition, one must split

the current resource and separately verify each side.

The consequence rule, impure-conseq, is also known as the frame rule. A reader who is not

familiar with this formulation is referred to the rule wp-mono in Iris [Jung et al. 2018b, §6.2].

The absence of a persistence modality in the second and third premises of impure-conseq makes it

a true frame rule, and reflects the fact that a computation terminates at most once—which is true in

our setting because there are no multi-shot continuations.

impure-pure states that a Horus judgment implies a similar Osiris judgment. In other words,

a pure computation can be viewed as an impure computation. The protocol Ψ in the conclusion is

arbitrary, so the empty protocol ⊥ could be used: a pure computation performs no control effects.

This rule establishes a bridge between Horus and Osiris. Thanks to it, inside an Osiris proof, Horus

can be used to reason about pure computations. In particular, since pattern matching is pure, we

are able to re-use Horus’s support for pattern matching (§E.3) within Osiris proofs.

impure-perform states that performing an effect 𝑣 , and expecting its outcome to satisfy the

postconditions 𝜑 and 𝜓 , is permitted if and only if the protocol says so. impure-resume and

impure-wrap (omitted) paraphrase the reduction rules for resume and wrap in Figure 7. The “later”

modality ⊲ that appears in the second premise of these rules reflects the fact that one step of

reduction has been made; this is standard in Iris [Jung et al. 2018b, §6.2].

The rules for heap access (alloc, load, store), are standard, and are also paraphrases of the small-

step semantics; we omit them (§F, Figure 16).

impure-handle reflects the fact that installing a handler via handle changes the description of

a computation from Ψ, 𝜑,𝜓 to Ψ′, 𝜑 ′,𝜓 ′. It is modeled after a similar rule in Hazel [de Vilhena and

Pottier 2021]. The complexity of this rule is delegated to the auxiliary judgment shallow -handler ,
whose definition and deduction rules are omitted (§F, Figure 18). The name and definition of this

judgment reflect the fact that handle installs a shallow handler, which handles at most one effect,

then vanishes.

7.2 OLang Layer
As we did in Horus (§6.3), in order to let the user entertain a typed view of values, we introduce

an auxiliary judgment impure
#
that takes an implicit parameter of type Encode 𝐴 and where the

postcondition 𝜑 has type 𝐴→ iProp. Then, we define a judgment impure about OLang expressions.

⟨Ψ⟩ impure
#
𝑚 𝜑 𝜓 := ⟨Ψ⟩ impure 𝑚 (𝜆𝑣. ∃𝑎. ⌜𝑣 = #𝑎⌝ ∗ 𝜑 𝑎) 𝜓

⟨Ψ⟩ expr 𝜂 𝑒 𝜑 𝜓 := ⟨Ψ⟩ impure
#
(eval_expr 𝜂 𝑒) 𝜑 𝜓

In this paper, the Horus judgment expr and the Osiris judgment expr are visually distinguished

by the fact that the latter begins with an extra parameter ⟨Ψ⟩.
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impure-EPerform

⟨Ψ⟩ expr 𝜂 𝑒 𝜑′ 𝜓
∀𝑣 . 𝜑′ (𝑣) −∗ Ψ allows perform 𝑣 {𝜑 | 𝜓 }

⟨Ψ⟩ expr 𝜂 (EPerform 𝑒) 𝜑 𝜓

impure-EContinue

⟨Ψ⟩ expr 𝜂 𝑒1 𝜑1 𝜓 ⟨Ψ⟩ expr 𝜂 𝑒2 𝜑2 𝜓

∀ℓ, 𝑣 . 𝜑1 (ℓ) −∗ 𝜑2 (𝑣) −∗
∃𝑘. ℓ ↦→ 𝑘 ∗ ⊲ ⟨Ψ⟩ impure (𝑘 (Ret2 𝑣)) 𝜑 𝜓

⟨Ψ⟩ expr 𝜂 (EContinue 𝑒1 𝑒2) 𝜑 𝜓

impure-EMatch

⟨Ψ⟩ expr 𝜂 𝑒 𝜑 𝜓 olang -deep-handler 𝜂 ⟨Ψ⟩ {𝜑 | 𝜓 } bs ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′}
⟨Ψ′⟩ expr 𝜂 (EMatch 𝑒 bs) 𝜑 ′ 𝜓 ′

Fig. 12. Selected Osiris rules for OLang expressions (expr)

Some deduction rules for the Osiris judgment expr appear in Figure 12. The three rules shown

correspond to the OCaml expressions “perform e”, “continue e1 e2”, and “match e with bs”. In

impure-EContinue, a points-to assertion ℓ ↦→ 𝑘 betrays the fact that a continuation is a heap-

allocated object. This is an unnecessary detail; in the future, we plan to hide it by defining an

abstract predicate isCont for first-class continuations. impure-EMatch relies on the auxiliary

judgement olang-deep-handler to express the fact that the closed handler (𝜂, bs) changes the
description of the program’s behavior from Ψ, 𝜑,𝜓 to Ψ′, 𝜑 ′,𝜓 ′. Our definition of this judgement

(omitted) (§F, Figure 18) is obtained by composing de Vilhena and Pottier’s deep-handler judgement

[2021] with the function eval_branches (§3.9), which transforms the syntactic handler (𝜂, bs) into
a semantic handler (a function of a three-armed outcome to a computation).

7.3 Soundness
We state the soundness of Osiris first at the level of the micro monad, then at the level of OLang.

This property is known as “adequacy” in the Iris literature. In short, if a computation or program

has been verified in Osiris under an empty protocol and an empty exceptional postcondition then

it can diverge or return a value but cannot crash or terminate abruptly.

Theorem 7.1. Let𝑚 be a computation. If ⊢ ⟨⊥⟩ impure 𝑚 𝜑 ⊥ holds then executing𝑚 in an empty
heap cannot crash and cannot terminate with an unhandled effect or an unhandled exception.

Corollary 7.2. Let 𝑒 be an OLang expression. If ⊢ ⟨⊥⟩ expr 𝜂 𝑒 𝜑 ⊥ holds then evaluating 𝑒 in
environment 𝜂 and in an empty heap cannot crash and cannot terminate with an unhandled effect or
an unhandled exception.

8 Related Work
Formalizations of realistic ML-family languages. The semantics and type system of Standard ML

have been the subject of early mechanization attempts [Syme 1993; VanInwegen and Gunter 1993],

and later fully formalized [Lee et al. 2007; Harper and Crary 2014]. The semantics and type system

of a subset of OCaml, which is also a subset of OLang, are formalized by Owens [2008]. He defines

a small-step operational semantics and a deterministic executable interpreter, and proves that

they agree. He chooses a fully specified evaluation order (right-to-left), because this makes testing

easier. The CakeML compiler, whose source language is a large subset of Standard ML, is fully

mechanized and verified [Kumar et al. 2014; Tan et al. 2019; Myreen 2021]. The semantics of CakeML

is expressed as in “functional big-step” style [Owens et al. 2016]. Like ours, this interpreter takes

the form of a recursive eval function. However, it is not monadic: it uses an explicit fuel parameter,

explicit store passing, and explicit case analyses on outcomes. It is deterministic; external non-

determinism is simulated by taking a stream of events as an extra parameter.
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Program logics for ML-family languages. CFML [Charguéraud 2010, 2011, 2020] is a mechanized

Separation Logic for an untyped subset of OCaml, which does not have exceptions or control effects.

It uses characteristic formulae, which can be viewed as a syntax-directed presentation of Separation

Logic. A similar mechanized Separation Logic has been defined for CakeML [Guéneau et al. 2017],

and has been extended to enable reasoning about the input-output behavior of non-terminating

programs [Pohjola et al. 2019]. A large part of Iris [Jung et al. 2018b], a powerful Separation Logic, is

language-independent. Nevertheless, Iris is often used in conjunction with HeapLang, an untyped

𝜆-calculus extended with mutable state and unstructured concurrency. Many verified algorithms

and data structures in the Iris literature have been first translated from a realistic language into

HeapLang, often through a manual transcription. We automate the translation of OCaml to OLang,

so using Iris (Osiris) to verify OCaml code becomes easier. Compared to HeapLang, OLang adds

exceptions, control effects, and unspecified evaluation order, but does not yet support concurrency.

Our treatment of delimited control effects is based de Vilhena and Pottier’s work [2021]. They

emphasize that forbidding multi-shot continuations allows the frame rule to remain everywhere

valid. van Rooij and Krebbers [2025] extend their work to a calculus that offers both one-shot

and multi-shot continuations and propose a variant of Separation Logic where the frame rule is

applicable only in areas where no multi-shot effects take place.

Semantics and logics for other realistic languages. There have been several efforts to mechanize C

[Norrish 1998; Ellison and Rosu 2012; Krebbers et al. 2014; Krebbers 2015]. The CompCert verified

compiler uses CompCert C, a variant of C, as its source language [Leroy 2006, 2009, 2024]. The

separation-logic-based verification frameworks for C include unverified systems such as VeriFast

[Jacobs and Piessens 2008] and CN [Pulte et al. 2023] and verified systems such as VST [Appel 2011;

Cao et al. 2018], Refined C [Sammler et al. 2021], and Iris/CompCert C [Mansky and Du 2024].

WebAssembly has been fully mechanized using small-step operational semantics [Watt 2021] and

in several other styles, including a big-step semantics [Watt et al. 2019] and a monadic interpreter

[Watt et al. 2023]. Its small-step semantics has been extended with delimited control effects [Phipps-

Costin et al. 2023]. Several Separation Logics for WebAssembly have been proposed [Watt et al.

2019; Rao et al. 2023].

Goose [Chajed et al. 2020] translates a subset of Go into a custom monad embedded in Rocq.

This monad appears somewhat similar in spirit to ours. Unfortunately, the paper shows just the

syntax of the monad; its semantics is not defined. Goose has been used to verify several realistic

Go programs [Chajed et al. 2019, 2021].

Computation trees and modular semantics. The freer monad [Kiselyov and Ishii 2015] offers

a representation of computations as finite trees. Its constructors correspond to our Ret and Stop (§4):
thus, our monad is a custom extension of the freer monad. Interaction trees (ITrees) [Xia et al.

2020], a co-inductive variant of the freer monad, represent computations as possibly infinite trees,

thereby offering native support for divergence. We prefer to work with finite trees and encode

general recursion via the system call CEval.
The freer monad and the ITree monad are parameterized with an event signature, that is, a set

of “events”, or “system calls”. They do not assign any semantics to events: this is done by defining

an “event handler”, that is, a monad morphism into some other monad—possibly an instance of

the freer monad or ITree monad with a different event signature. A complex event handler can

be constructed in several layers, that is, as the composition of several event handlers [Yoon et al.

2022]. This technique has been demonstrated in the Vellvm project [Zakowski et al. 2021] with

a modular construction of the semantics of LLVM IR.

In contrast with most of the Iris literature so far, which is based on small-step operational

semantics, Vistrup et al. [2025] define a generic Iris-based Separation Logic for ITrees. The logic’s
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main judgment, wpi, is defined by guarded recursion over trees. It is parameterized with an event

signature and with a “logical event handler” that provides a specification for each event.
7
Vistrup et

al. construct both event handlers and logical event handlers in a compositional way, as a combination

of basic components that describe individual effects, including crashing, nondeterministic choice,

state, and concurrency. Each component comes with an adequacy theorem that relates its event

handler and its logical event handler; these adequacy theorems are then composed. We do not

attempt to achieve this kind of modularity: we define the micro monad in a monolithic way. We do

achieve a different kind of modularity, in our semantics and in our program logics, by distinguishing

two layers, the micro layer and the OLang layer. Finally, although our computation trees (§4) are in

some ways similar to ITrees, the main judgment of our logic, impure, is not defined by recursion

over trees, like Vistrup et al.’s wpi; instead, following a more traditional approach, it is defined in

terms of the small-step reduction relation that we have defined for our trees.

A limitation of ITrees is that they cannot describe computations or events whose arguments

or results are computations. A naive attempt to extend ITrees with such a capability leads to

an ill-formed type, whose definition involves a negative occurrence of itself. This makes it difficult

to model languages that involve first-class functions or first-class continuations. We avoid this

problem via an indirection through syntax: in our inductive type of values (val), a first-class function
is represented by its environment and its code (VClo), and a first-class continuation is represented

by its address (VCont). Instead of following this path, Frumin et al. [2024] introduce Guarded

Interaction Trees (GITrees), whose definition relies on guarded recursion instead of co-induction,

therefore tolerates negative self-references. Using GITrees, they give a denotational semantics to

a calculus equipped with first-class functions, and Stepanenko et al. [2025] give a semantics to

calculi equipped with several forms of control effects. Both papers define an Iris-based judgment

wp for GITrees. Like our judgment impure, and unlike Vistrup et al.’s wpi, this judgment appears

to be defined in terms of a reduction relation on trees.

The ITree literature places emphasis on using the equational theory of ITrees to justify program

transformations. With this motivation in mind, Chappe et al. [2023] develop Choice Trees, an

extension of ITrees with non-determinism, which also enjoys a rich equational theory. In contrast,

we currently have no tools to compare two monadic computations. To address this need, in the

future, we would like to develop relational Separation Logics for the micro monad and for OLang.

9 Future Work
We have formalized the abstract syntax and dynamic semantics of a substantial fragment of OCaml.

Our semantic style is a modular combination of a monadic interpreter and a custom monad, whose

definition is original and relies on a small-step operational semantics. We have constructed two

program logics, Horus and Osiris, whose soundness we have machine-checked.

We have tested our semantics by executing a small number of examples. Much more work is

needed to ensure that our semantics is consistent with existing implementations of OCaml. We have

tested the expressiveness and usability of our program logics by verifying a few small programs.

Using Horus, we have verified a merge sort and some operations on splay trees. Using Osiris, we

have verified de Vilhena and Pottier’s short but challenging “control inversion” example [2021, §5].

Much more work is needed to assess and improve the usability of our program logics.

In the future, we wish to enlarge OLang, so as to make progress towards a complete formal

definition of the dynamic semantics of OCaml, and so as to be able to offer Horus and Osiris as

practical tools for the interactive verification of OCaml programs. Among the features of OCaml

7
This seems technically similar to the manner in which de Vilhena and Pottier’s judgment ewp [2021] is parameterized with

a protocol, which provides a specification for each control effect that the program might perform.
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that we do not yet support, concurrency (the ability of spawning new threads via fork) and weak

memory seem most important and perhaps challenging. We believe that these features cannot

be modeled using Par ; instead, we plan to introduce a separate notion of thread. Concurrency is

a well-understood feature of Iris [Jung et al. 2018b], and there exists a variant of Iris that accounts

for OCaml’s weak memory model [Mével et al. 2020]; we hope to rely on these works. Appendix §9

lists more features of OCaml that we wish to support.

In the long term, we would like to widen the scope of our program logics so as to verify liveness

properties of possibly non-terminating, effectful, concurrent programs; time and space complexity

properties; or security properties. Furthermore, we are interested in defining relational program

logics and in connecting our formal semantics of OLang with a verified compilation toolchain such

as CakeML [Kumar et al. 2014] or a future verified OCaml compiler.
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A Supporting More Features of OCaml
Records. OCaml’s record types can mix immutable and mutable fields. We currently support

only immutable records, which are viewed as values—they do not have an address. Extending our

semantics and our program logics with support for mutable records should be straightforward.

In Osiris, it should be possible to offer either just a points-to assertion for the whole record or

a points-to assertion for each field independently. In the latter case, a points-to assertion for

an immutable field can be persistent.

Pattern matching on mutable data. We currently allow pattern matching on immutable data

only. This simplifies our semantics and lets us view pattern matching as a “pure” operation (§6).

Although OCaml does allow pattern matching on mutable data, this feature has a few inherent

pitfalls [Scherer et al. 2024]. In the near future, we do not intend to support it.

Recursive values. OCaml’s let rec construct can be used not only to define recursive functions,

but also to construct cyclic data structures. For example, let rec xs = 0 :: xs constructs an

infinite immutable list. We do not and cannot support this feature. Our type of values, val, is an
inductive type, and we very much want it to remain so. The existence of infinite immutable lists is

arguably a dubious feature of OCaml: indeed, it implies that the function List.length does not

always terminate. We prefer to forbid infinite lists and to let user prove that List.length terminates.

OCaml’s let rec construct also allows constructing cyclic mutable data structures. This is

typically used, for example, to allocate a doubly-linked list cell that points to itself. We do not

currently support this feature, but might support it in the future.

Modules. Our semantics has preliminary support for OCaml’s module language, including (nested)

structures, open, and include. A module value is represented as a dictionary, that is, a finite map of

field names to values. This semantics is fairly straightforward because both variable names and field

names are represented as strings. The operation of annotating a module𝑀 with a module type 𝑇 ,

which is known as signature ascription, is not yet supported. This operation must produce a new

module𝑀 ′, which is obtained from 𝑀 by removing all fields whose existence is not advertised by

the module type𝑇 . To do so, it is necessary to first “resolve” the module type𝑇 , that is, to convert it

to a signature, a finite map of field names to types. This resolution step can and must take place

during the translation of OCaml to OLang: indeed, during this phase, the OCaml type-checker can

be queried. Because functor application involves an implicit signature ascription, it, too, requires

a signature resolution step.

Unsafe type casts. As an experimental feature, which must be explicitly enabled by the user,

our system supports certain uses of OCaml’s unsafe type cast operation, Obj.magic. Our approach

is simple: during the translation of OCaml to OLang, Obj.magic is erased. In other words, in our

semantics, a type cast is invisible, and has no effect. Thus, no reasoning rules for Obj.magic are

needed, and none are provided. In this approach, the way in which we define the type of values, val,
plays a crucial role. Suppose that an integer value, say VInt 1, is cast from type int to type int ref .
The result of such a cast is still the value VInt 1. If this value is passed as an argument to an

operation that expects a memory location, such as the dereferencing operation !, then (in our

semantics) the program crashes, because ! expects the tag VLoc, whereas this value carries the
tag VInt. On the other hand, if this value goes through a second type cast, from type int ref back to

type int, and is then subjected to an operation that expects an integer value, such as addition, then

all goes well. In summary, our semantics allows distinguishing between “good” and “bad” uses of

Obj.magic: a type cast is “good” if and only if (in our semantics) it does not cause a crash.
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Is this approach “sound”? A semantics is just a definition, so, per se, it cannot be “sound” or

“unsound”. The true question is, do the real-world implementations of OCaml obey this semantics?

In other words, are the real-world OCaml interpreters and compilers correct with respect to this

semantics? Answering such a question is not easy. It seems to us that a fundamental property,

deterministic memory layout, should play a key role. This property relates our definition of the

type val with thememory layout used by a real-world implementation of OCaml. It can be informally

stated as follows: for every value 𝑣 : val, there must exist at most one way of laying out the value 𝑣 in
memory. In other words, it must be possible, just by looking at the value 𝑣 , to predict how this value

is represented in memory; no extra information, such as the type of this value, must be required.

This said, it seems difficult to give a formal statement of this property, to prove that it actually

holds,
8
or to clarify what role it might play in a proof of correctness of an interpreter or compiler.

We leave these questions to future work.

Primitive types and operations. OCaml’s primitive types include int, char, string, float, 'a array,

and several more. Our support for these primitive types and operations is currently very limited.

Extending it should not be difficult in principle, but will require substantial effort.

Polymorphic primitive operations. OCaml offers several few built-in polymorphic operations, in-

cluding structural equality =, physical equality ==, structural comparison compare, and marshalling

and demarshalling. These operations have a few inherent pitfalls and can be misused. For example,

structural equality, applied to a closure, fails at runtime. Furthermore, structural equality violates

type abstraction: it can report that two “set” data structures differ even though they represent

the same mathematical set. To avoid these problems, our semantics currently supports only cer-

tain uses of these operations. We currently allow physical equality to be applied only to memory

locations (VLoc). We currently allow structural equality to be applied only to integer values (VInt)
and tuples (VTuple). One might wish to generalize it to a larger subclass of values, including data

constructors, but we are worried that this would be unsound.

Labeled and optional parameters. OCaml allows function parameters to carry a label. At a function

application site, labeled arguments can be provided out of order. Furthermore, OCaml allows

a function parameter to be marked optional. At a function application site, optional arguments

can be omitted. The details of these features are complex; we currently do not support them. As

part of the the Salto analyzer [Lermusiaux and Montagu 2024b], Lermusiaux and Montagu have

implemented a transformation that eliminates labeled and optional parameters. In the future, we

may take advantage of their work.

B Design Choices
This section contains additional material about our design choices (§2).

Environment-based semantics. In a substitution-based semantics, certain reduction steps involve

replacing variables with values. This style is popular in the literature on type systems [Wright and

Felleisen 1994] and program logics [Jung et al. 2018b, §6.1]. In an environment-based semantics,

instead, an explicit map of variables to values is maintained: it is extended when a variable is bound

8
In fact, as of today, we know of a few reasons why this property does not hold. For example, we model the OCaml value A,
which is an application of a data constructor named A to 0 arguments, as VData “A” [ ]. However, if the program defines two

algebraic data types type foo = A | B and type bar = B | A, then the OCaml compiler can represent the constructor A
either as the integer 0 or as the integer 1, depending on the type at which this constructor is viewed. This is a problem:

a type cast from type foo to type bar behaves differently in our semantics and in the real world. To fix this problem,

we plan to use a more precise model where the OCaml value A is modeled in our semantics either as VData “foo.A” [ ] or as
VData “bar.A” [ ], depending on its construction site.
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Definition wrap_outcome 𝜂 bs o :=

match o with

| Perform3 e k⇒
k ← i n s t a l l true k 𝜂 bs ;

r e t (Perform3 e k)

| _⇒
r e t o

end.

Fig. 13. The auxiliary function wrap_outcome

and looked up when a variable is referenced. Our interpreter is parameterized with an environment,

because this is the most natural most efficient thing to do. Thus, our semantics is environment-based.

In our program logics, we naturally use the same style. In every judgment, the environment

and the code are distinct parameters. In Rocq, with some engineering effort, each of these two

components can be displayed in a natural and lightweight manner. Via the set tactic, the structure

of the environment (an association list whose domain is statically known) can be made part of the

assumptions, instead of appearing in the goal. Because the code is never subject to a substitution,

it is always a fragment of the source code that the user knows. The user can think of it as a program
point, and it can be displayed as a textual fragment of concrete syntax.

Micro-level versus OCaml-level reasoning. We name our monadmicro because it offers an interme-

diate language, or “microcode”, into which OCaml code is expanded. Indeed, our interpreter can be

used as a compiler: by applying the interpreter to an OCaml AST and by letting Rocq perform

partial evaluation, one obtains a micro AST. This is the first Futamura projection [1999a; 1999b].

Taking this idea seriously, one might wish to expand OCaml code into micro code and let the user

perform program verification at the micro level (Figures 8 and 11). Thus, one would save the work

of building a program logic for OCaml. We did experiment with this idea, but were unable to make

it work to our satisfaction. To avoid an explosion in the size of the goal, one must carefully control

the manner in which the application of the interpreter to the OCaml AST is reduced. Unfortunately,

Rocq does not seem to offer sufficient control on its reduction strategy. Perhaps we could learn

from successful approaches to partial evaluation in Rocq [Gross 2021; Gross et al. 2024]; perhaps

other proof assistants, such as F*, would be better suited to this approach [Ho et al. 2023].

Chasing mistakes in the semantics. Is our semantics “correct”, and in what sense? Two questions

arise. (A) Is it consistent with the ideal notion of OCaml that we have in mind? (B) Is it consistent

with real-world implementations of OCaml? Our program logics, whose soundness with respect to

the semantics has been verified, offer reasoning rules that correspond to our expectations. This

suggests that the answer to question A is positive. Concerning question B, we do not yet have

an answer. Large-scale testing seems necessary, but has not yet been carried out. Our interpreter

can in principle be executed. Indeed, it can be extracted from Rocq to OCaml; there, it can be

linked with a native (trusted) OCaml implementation of the micro monad. However, the fact that

our semantics is non-deterministic creates an efficiency problem. We envision augmenting our

interpreter with a heuristic oracle that selects one execution strategy among the many strategies

that our semantics allows.

C A Monadic Interpreter
This section contains additional material about the monadic interpreter (§3).
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C.1 Loops/Divergence
OCaml’s while loops do not necessarily terminate. Yet, our host language, Rocq, allows writing

terminating functions only. In particular, in the definition of eval 𝜂 𝑒 , Rocq checks that every

recursive call takes the form eval 𝜂′ 𝑒′ where 𝑒′ is a strict subterm of 𝑒 . This creates a difficulty

in the interpretation of while loops: indeed, a naive definition of eval 𝜂 (EWhile 𝑒 body) seems to

require a recursive call of the form eval 𝜂 (EWhile 𝑒 body). Our approach is to use the please_eval
combinator. We use it in the interpretation of while loops:

| EWhile e body⇒
b← as_bool (eval 𝜂 e) ;

if (b : bool) then
_← eval 𝜂 body ;

please_eval 𝜂 (EWhile e body)

else

r e t VUnit

The dynamic check as_bool is analogous to as_int (§3.4). It checks that the value produced by

the expression 𝑒 is a Boolean value and extracts a Rocq Boolean 𝑏 out of it. If 𝑏 is true then we

evaluate the loop body, discard its result, and evaluate the whole loop again, using please_eval.
Otherwise we return the unit value VUnit.

C.2 Extensible Algebraic Data Types
OCaml has primitive support for extensible algebraic data types. An extensible algebraic data type

grows at runtime: it initially has no constructors, but can be dynamically extended with new

constructors. In OCaml’s surface syntax, an extensible algebraic data type is created by type t = ..

and is extended with a new constructor by type t += A of int. Such a constructor declaration is

in fact a memory allocation instruction in disguise: indeed, its effect is to allocate a fresh memory

location ℓ and to bind the name A to the value VLoc ℓ . Thus, the address ℓ , a dynamic name, is

heap-allocated at runtime, whereas A, a static name, is treated like a variable: we bind A to VLoc ℓ
by extending the environment, in the same way as we bind a variable to a value. This is done by

the auxiliary function type_extension (right):

| EXData x es⇒
l← as_loc (lookup 𝜂 x) ;

vs← evals 𝜂 es ;

r e t (VXData l vs)

Definition type_extension 𝜂 (x : var) :=

l← a l l o c VUnit ;

r e t ((x, VLoc l) :: 𝜂).

In eval (left), to interpret an application of the data constructor 𝑥 , we look up the name 𝑥

in the environment, check that it is bound to a memory location ℓ , and use ℓ to identify this

data constructor in the value VXData ℓ 𝑣𝑠 .

In OCaml’s surface syntax, by looking at a data constructor application A 3 in isolation, one cannot

tell whether this expression constructs an ordinary algebraic data type (EData) or an extensible one

(EXData). We rely on the OCaml type-checker to disambiguate this for us: our translator expects

a typed abstract syntax tree as its input.

Runtime Assertions / Non-Deterministic Choice. When assertion checking is enabled, OCaml’s

runtime assertion construct assert e evaluates the expression e and checks that the result is

a Boolean value 𝑏. If 𝑏 is true, it returns a unit value; otherwise, it causes a failure, which we

consider fatal. When assertion checking is disabled, the instruction assert e has no effect: it is

erased. Assertion checking is enabled or disabled, at the level of a compilation unit, via compiler

flags. Because we want our semantics (and program logics) to be independent of which compiler

flags are used, we adopt a nondeterministic model in which each assertion independently may be
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either executed or erased. We achieve this thanks to the monadic combinator choose : micro 𝐴 𝐸 →
micro 𝐴 𝐸 → micro 𝐴 𝐸 (currently not shown in Figure 4). The computation choose𝑚1𝑚2 picks

one of𝑚1 and𝑚2 in a non-deterministic way and executes it.

| EAssert e⇒
choose
( r e t VUnit) (* ignore runtime assertion *)

(b← as_bool (eval 𝜂 e) ; if b then r e t VUnit else crash) (* execute runtime assertion *)

| EAssertFalse⇒
crash

The construct assert false is treated in a special way by the OCaml compiler and by us. It is

never erased and always fails.

D The Micro Monad
This section contains additional material about the micro monad (§4).

Even thoughmicro is an inductive type, it is able to represent potentially divergent computations.

There is no paradox or contradiction. As far as Rocq is concerned, every computation can be

converted to a normal form, whose head constructor can be Ret,Throw, Crash (which mean that

the computation is finished) or Stop (which means that the computation is paused at a system call),

among other other possibilities. A “divergent” computation is a computation out of which there

exists an infinite sequence of reduction steps, according to the small-step reduction relation that

we define in the next section (§5).

The reader may feel that the architecture of our semantics is recursive in a strange way. On

the one hand, the function eval produces a result of type micro val exn. So, the micro monad must

exist before the function eval can be defined. On the other hand, the combinator please_eval is part
of the public API of themicro monad, and the corresponding code, CEval, is part of the definition of

themicromonad. So, as we define themicromonad, wemust be already aware of the future existence
of the function eval. Also, the types env, expr , val and exn, which appear in the type of CEval, must

exist before themicromonad is defined. Fortunately, no mutual recursion is required. The definitions

of the types val and exn do not refer to micro. The definition of micro does not refer to eval.
The connection between the code CEval and the function eval is established a posteriori by the small-

step operational semantics (§5). Our semantics includes other examples of this phenomenon: for

instance, the right-hand side of the reduction rule for the system call CWrap refers to the function

eval_branches (Figure 7).

System calls that raise exceptions. In every line in Figure 6, the parameter 𝐸 is instantiated with

exn, the type of OCaml exceptions. Indeed, the system calls CEval, CPerf , and CResume can produce

an exception. CEval evaluates an OCaml expression: this can produce an exception. CPerf performs

a control effect and captures a continuation: if this continuation is later discontinued then this

system call appears to produce an exception. CResume resumes a captured continuation: in other

words, it resumes the evaluation of an OCaml expression. This can produce an exception. The

remaining system calls, namely CAlloc, CLoad, CStore, and CWrap, cannot produce exceptions.
Assigning them the type exn is a convenient over-approximation.
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E Horus
E.1 Micro-level rules
Rule pure-choose is used for assert.

pure-choose

pure 𝑚1 𝜑 𝜓 pure 𝑚2 𝜑 𝜓

pure (choose𝑚1𝑚2) 𝜑 𝜓

E.2 Judgments
We have a judgment for each syntactic category:

pure
#
𝑚 𝜑 𝜓 := pure 𝑚 (𝜆𝑣. ∃𝑎. 𝑣 = #𝑎 ∧ 𝜑 𝑎) 𝜓

expr 𝜂 𝑒 𝜑 𝜓 := pure
#
(eval_expr 𝜂 𝑒) 𝜑 𝜓

branches 𝜂 𝑜 bs 𝜑 𝜓 := pure
#
(eval_branches 𝜂 𝑜 bs) 𝜑 𝜓

bindings 𝜂 bs 𝜑 𝜓 := pure (eval_bindings 𝜂 bs) 𝜑 𝜓

pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 := pure (eval_pat 𝜂 𝛿 𝑝 𝑣) 𝜑 (𝜆(). 𝜁 )
cpat 𝜂 𝛿 cp 𝑜 𝜑 𝜁 := pure (eval_cpat 𝜂 𝛿 cp 𝑜) 𝜑 (𝜆(). 𝜁 )
pats 𝜂 𝛿 𝑝𝑠 𝑣𝑠 𝜑 𝜁 := pure (eval_pats 𝜂 𝛿 𝑝𝑠 𝑣𝑠) 𝜑 (𝜆(). 𝜁 )

We have not given the definition of eval_bindings, in fact even the definition of bindings is not
needed for the purpose of the program logic. What is important is that bindings is introduced when
applying ELet, and that it can be established using BindingsNil and BindingsCons.

E.3 Pattern matching
We introduce the pat judgment for reasoning over pattern matching. The judgment pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁

states that, in the environment 𝜂, matching the pattern 𝑝 against the value 𝑣 is safe, and either results

in extending the environment 𝛿 into one that satisfies 𝜑 , or fails by throwing a non-fatal meta-level

exception (throw ()) and guaranteeing 𝜁 . It is defined over the auxiliary function eval_pat, which
syntactically matches patterns against values.

pat 𝜂 𝛿 𝑝 𝑣 𝜑 𝜁 := pure (eval_pat 𝜂 𝛿 𝑝 𝑣) 𝜑 (𝜆(). 𝜁 )

We similarly define the judgments cpat and pats (over eval_cpat and eval_pats). We omit the

definition of eval_pat, and instead give syntactic reasoning rules over pat in Figure 14.

As an appetizer, consider the rules for matching a wildcard pattern pat-PAny, or a value pattern

pat-PVar. Because these matches always succeed, the failure postcondition 𝜁 can be anything (in

particular, it can be false). The difference between the two rules is whether or not any bindings get

added to the environment.

An or-pattern fails only if both sub-patterns fail, so its failure postcondition is a conjunction
in pat-POr. In the second premise of pat-POr, we can assume the failure condition of the first

premise since in OCaml the second branch of an or-pattern is considered only if the first fails.

Matching on n-ary tuples and on variant values requires matching on their components, which

is the role of the judgment pats in the hypotheses of pat-PTuple and pat-P(X)Data. For pats
judgments the success postcondition is the composition of all corresponding pat judgments; the

failure postcondition is the corresponding disjunction, since a mismatch for any of the argument is

a mismatch for the compound (pats-nil, pats-cons).
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pat-PAny

𝜑 𝛿

pat 𝜂 𝛿 PAny 𝑣 𝜑 𝜁

pat-PVar

𝜑 ((𝑥, 𝑣) :: 𝛿)
pat 𝜂 𝛿 (PVar 𝑥) 𝑣 𝜑 𝜁

pat-PAlias

pat 𝜂 𝛿 𝑝 𝑣 (𝜆𝛿. 𝜑 ((𝑥, 𝑣) :: 𝛿)) 𝜁
pat 𝜂 𝛿 (PAlias 𝑝 𝑥) 𝑣 𝜑 𝜁

pat-POr

pat 𝜂 𝛿 𝑝1 𝑣 𝜑 𝜁1 (𝜁1 ⇒ pat 𝜂 𝛿 𝑝2 𝑣 𝜑 𝜁2)
pat 𝜂 𝛿 (POr 𝑝1 𝑝2) 𝑣 𝜑 (𝜁1 ∧ 𝜁2)

pat-PTuple

pats 𝜂 𝛿 𝑝𝑠 𝑣𝑠 𝜑 𝜁

pat 𝜂 𝛿 (PTuple 𝑝𝑠) (VTuple 𝑣𝑠) 𝜑 𝜁

pat-PData

𝑐 = 𝑐′ ⇒ pats 𝜂 𝛿 𝑝𝑠 𝑣𝑠 𝜑 𝜁

pat 𝜂 𝛿 (PData 𝑐 𝑝𝑠) (VData 𝑐′ 𝑣𝑠) 𝜑 (𝜁 ∨ 𝑐 ≠ 𝑐′)

pat-PXData

lookup 𝜂 𝑥 = VLoc ℓ′ (ℓ = ℓ′ ⇒ pats 𝜂 𝛿 𝑝𝑠 𝑣𝑠 𝜑 𝜁 )
pat 𝜂 𝛿 (PXData 𝑥 𝑝𝑠) (VXData ℓ 𝑣𝑠) 𝜑 (𝜁 ∨ ℓ ≠ ℓ′)

Fig. 14. Syntactic rules for pat

pats-nil

𝜑 𝜂

pats 𝜂 𝛿 [] [] 𝜑 𝜁

pats-cons

pat 𝜂 𝛿 𝑝 𝑣 (𝜆𝛿. pats 𝜂 𝛿 𝑝𝑠 𝑣𝑠 𝜑 𝜁2) 𝜁1
pats 𝜂 𝛿 (𝑝 :: 𝑝𝑠) (𝑣 :: 𝑣𝑠) 𝜑 (𝜁1 ∨ 𝜁2)

An operational reading of pat’s reasoning rules. In proofs, we expect the occurrence of the pattern

𝑝 to be concrete, while often the value 𝑣 will be abstract. When matching a single pattern 𝑝 and a

value 𝑣 , the repeated application of the pat rules has the effect of translating the pattern matching

operation into a positive formula which has to be proven, and a negative formula. The positive

formula accumulates a sequence of quantifiers and equations that describe what is learned when

pattern matching succeeds. The negative formula describes what is learned when pattern matching

fails. For example, consider the following derived rule for matching on a list’s (::) constructor.

∀ℎ 𝑡 . 𝑣 = ℎ :: 𝑡 ⇒ pat 𝜂 𝛿 𝑝 ℎ (𝜆𝛿 ′ . pat 𝜂 𝛿 ′ 𝑝𝑠 𝑡 𝜑 (𝜓2 𝑡)) (𝜓1 ℎ)
pat 𝜂 𝛿 (PData :: [𝑝, 𝑝𝑠]) 𝑣 𝜑 (𝑣 = [] ∨ ∃ℎ 𝑡 . 𝑙 = ℎ :: 𝑡 ∧ (𝜓1 ℎ ∨𝜓2 𝑡))

The premise of the rule becomes the positive formula, where we universally quantify over the

head and tail of the list. The negative formula is found in the failure postcondition of the conclusion

of the rule. In this case the negative formula reads as “the pattern fails if the list is empty, or if the

list is a cons and either the head fails to match or the tail fails to match”. We can derive such rules

for any variant type, and automate the application of the syntactic rules over pat, making it so the

user never has to reason over the pat and associated judgments directly. The user only has to prove

the instantiate positive formula, and gets to use the negative formula in the following branches of

a pattern match.

E.4 Support for expressions
Missing from the main text is the rule for assertions EAssert that does not show any trace of their

nondeterministic semantics, and the rules for bindings, the auxiliary judgment used for rule ELet.
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EAssert

expr 𝜂 𝑒 (𝜆𝑏. 𝑏 = true) 𝜓
expr 𝜂 (EAssert 𝑒) (𝜆_. True) 𝜓

BindingsNil

𝜑 []
bindings 𝜂 [] 𝜑 𝜓

BindingsCons

expr 𝜂 𝑒 (pat 𝜂 [] 𝑝 #𝑎 𝜑1 ⊥) 𝜓
bindings 𝜂 bs 𝜑2 𝜓

∀𝛿 𝜂′ . 𝜑1 𝛿 ⇒ 𝜑2 𝜂
′ ⇒ 𝜑 (𝛿 ++ 𝜂′)

bindings 𝜂 (Binding 𝑝 𝑒 :: bs) 𝜑 𝜓

F Osiris

(IMP1) ⟨Ψ⟩ impure (ret 𝑣) 𝜑 𝜓 ≜ E |⇛E 𝜑 (𝑣)

(IMP2) ⟨Ψ⟩ impure (throw 𝑒) 𝜑 𝜓 ≜ E |⇛E 𝜓 (𝑒)

(IMP3) ⟨Ψ⟩ impure (crash) 𝜑 𝜓 ≜ ⊥

(IMP4) ⟨Ψ⟩ impure (Stop CPerf 𝑣 𝑘) 𝜑 𝜓 ≜ E |⇛E Ψ allows do 𝑣 {𝑤. ⊲ ⟨Ψ⟩ impure (𝑘 𝑤) 𝜑 𝜓 }

(IMP5) ⟨Ψ⟩ impure 𝑒 𝜑 𝜓 ≜ ∀𝜎.S(𝜎)E |≡∗∅
∀𝜎′, 𝑒′ . 𝑒 / 𝜎 −→ 𝑒′ / 𝜎′ ∅ |≡∗∅ ⊲ ∅ |⇛E S(𝜎′) ∗ ⟨Ψ⟩ impure 𝑒′ 𝜑 𝜓 }
(e not an outcome nor an effect)

Fig. 15. Definition of ⟨Ψ⟩ impure 𝑒 𝜑 𝜓

impure-alloc

∀ℓ, ℓ ↦→ 𝑣 −∗ 𝜑 (ℓ)
⟨Ψ⟩ impure (alloc 𝑣) 𝜑 𝜓

impure-store

ℓ ↦→ 𝑣

⊲(ℓ ↦→ 𝑣 ′ −∗ 𝜑 (()))
⟨Ψ⟩ impure (store (ℓ, 𝑣 ′)) 𝜑 𝜓

impure-load

ℓ ↦→ 𝑣

⊲(ℓ ↦→ 𝑣 −∗ 𝜑 (𝑣))
⟨Ψ⟩ impure (load ℓ) 𝜑 𝜓

impure-ERef

⟨Ψ⟩ expr 𝜂 𝑒 𝜑′ 𝜓
∀𝑣 . 𝜑′ (𝑣) −∗ ∀ℓ . ℓ ↦→ 𝑣 −∗ 𝜑 (ℓ)
⟨Ψ⟩ expr 𝜂 (ERef 𝑒) 𝜑 𝜓

impure-ELoad

⟨Ψ⟩ expr 𝜂 𝑒 𝜑′ 𝜓
∀ℓ . 𝜑 ′ (ℓ) −∗ ∃𝑞, 𝑣 . ℓ ↦→𝑞 𝑣 ∗ ⊲(ℓ ↦→𝑞 𝑣 −∗ 𝜑 (𝑣))

⟨Ψ⟩ expr 𝜂 (ELoad 𝑒) 𝜑 𝜓

impure-EStore

⟨Ψ⟩ expr 𝜂 𝑒1 𝜑1 𝜓

⟨Ψ⟩ expr 𝜂 𝑒2 𝜑2 𝜓

∀ℓ1, 𝑣2 . 𝜑1 (ℓ1) ∗ 𝜑2 (𝑣2) −∗ ∃𝑣1 . ℓ1 ↦→ 𝑣1 ∗ ⊲(ℓ1 ↦→ 𝑣2 −∗ 𝜑 (()))
⟨Ψ⟩ expr 𝜂 (EStore 𝑒1 𝑒2) 𝜑 𝜓

Fig. 16. Osiris memory-related rules

impure-wrap

𝑘′ = 𝜆𝑜. handle (resume ℓ 𝑜) (wrap_eval_branches 𝜂 bs)
∀ℓ′ . ℓ′ ↦→ 𝑘′ −∗ ⊲ 𝜑 ℓ′

⟨Ψ⟩ impure (wrap ℓ 𝜂 bs) 𝜑 𝜓

Fig. 17. Osiris micro-layer reasoning rule for wrap
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shallow -handler ⟨Ψ⟩ {𝜑 | 𝜓 } ℎ ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′} ≜
(∀𝑜. 𝜑 𝑜 −∗ ⊲⟨Ψ′⟩ impure (ℎ 𝑜) 𝜑 ′ 𝜓 ′) ∧
(∀𝑣, 𝑘. Ψ allows do 𝑣 {

𝜆𝑜. ∀Ψ′′, 𝜑′′,𝜓 ′′ .
⊲ ⟨Ψ′′⟩ impure (resume 𝑘 𝑜) 𝜑 ′′ 𝜓 ′′

} −∗
⊲ ⟨Ψ′⟩ impure (ℎ (Perform

3
𝑣 𝑘)) 𝜑 ′ 𝜓 ′)

olang -deep-handler 𝜂 ⟨Ψ⟩ {𝜑 | 𝜓 } bs ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′} ≜
deep-handler ⟨Ψ⟩ {𝜑 | 𝜓 } (𝜆𝑜, eval_branches 𝜂 𝑜 bs) ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′}

deep-handler ⟨Ψ⟩ {𝜑 | 𝜓 } ℎ ⟨Ψ′⟩ {𝜑 ′ | 𝜓 ′} ≜
(∀𝑜. 𝜑 𝑜 −∗ ⊲⟨Ψ′⟩ impure (ℎ 𝑜) 𝜑 ′ 𝜓 ′) ∧
(∀𝑣, 𝑘. Ψ allows do 𝑣 {

𝜆𝑜. ∀Ψ′′, 𝜑′′,𝜓 ′′ .
⊲ deep-handler ⟨Ψ⟩ {𝜑 | 𝜓 } ℎ ⟨Ψ′′⟩ {𝜑 ′′ | 𝜓 ′′} −∗
⟨Ψ′′⟩ impure (resume 𝑘 𝑜) 𝜑 ′′ 𝜓 ′′

} −∗
⊲ ⟨Ψ′⟩ impure (ℎ (Perform

3
𝑣 𝑘)) 𝜑 ′ 𝜓 ′)

Fig. 18. Definition of the olang -deep-handler and shallow -handler predicate
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