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Abstract

We offer a solution to the type inference problem for an esitem
of Hindley and Milner's type system with generalized algsor
data types. Our approach is in tvstrata The bottom stratum is
a core language that marries tyipéerencein the style of Hindley
and Milner with typecheckingor generalized algebraic data types.
This results in an extremely simple specification, whars con-
structs must carry an explicit type annotation and type emsions
must be made explicit. The top stratum consists of (two wisiaf)
an independerghape inferencalgorithm. This algorithm accepts
a source term that contains some explicit type informatiwapa-
gates this information in a local, predictable way, and poas a
new source term that carries more explicit type informatlonan

be viewed as a preprocessor that helps produce some of the typ

annotations required by the bottom stratum. It is proseandin
the sense that it never inserts annotations that couldadiotrthe
type derivation that the programmer has in mind.

Categories and Subject DescriptorsD.3.3 [Programming Lan-

guage§ Language Constructs and Features—Data types and struc-

tures; Polymorphism; F.3.3.fgics and Meanings of Prografns
Studies of Program Constructs—Type structure

General Terms Languages, Theory

1. Introduction
1.1 Generalized algebraic data types

Generalized algebraic data typase a simple generalization of the
algebraic data types of ML and Haskell. They are stronglyitem
niscent of thenductive typeshat have long existed in the Calculus
of Inductive Constructions [9]. In the programming langesgrea,
Crary, Weirich and Morrisett [3] have exploited one parf@igen-
eralized algebraic data type, known BAsto encode a correspon-
dence between compile-time types and run-time type rept@se
tions. More recently, generalized algebraic data types baen put
to a large variety of uses, under diverse names, by many i@ jtho
among whom Cheney and Hinze [1, 2], & al. [23], Hinze [5],
Sheard [18], Sheard and Pasalic [19], Pottier and Gauthi@; [
and Pottier and Bgis-Gianas [14].

A typical use of generalized algebraic data types is writng
safe evaluator for a simply-typed object language that dus
require values to carry run-time tags. The algebraic dggatyrm
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of abstract syntax trees is given a type parametso that values of
type term « are abstract syntax trees for object-level expressions
of type av. For instance, Peyton Jones, Washburn, and Weirich [11]
defineterm by associating the following data constructors with it:

Lit =2 int — term int
Inc :: term int — term int
IsZ :: term int — term bool
If :: Va.term bool — term o — term o — term «
Pair :: Vaf.term o — term 3 — term (o x (3)
Fst :: YaB.term (a x 3) — term «
Snd :: Vaf.term (o x 3) — term

This definition allows writing an evaluator that does notfpen
any tagging or untagging of object-level values:

p(eval : Yaterm a — o). AL.
caset of

| Liti—i
| Inct — eval t+1
| IsZ t — eval t =0
| If bt e — if eval b then eval t else eval e
| Pair a b— (eval a, eval b)
| Fstt— fst (eval t)
| Snd t — snd (eval t)

This program is well-typed in an extension of Hindley andriéil's
type system with generalized algebraic data types, sudteaype
system MLGI defined i§3. (Throughout the paper, when we refer
to Hindley and Milner’s type system, we really mean its esten
with an explicitly annotated form of polymorphic recursipn

A key mechanism is the introduction, @atse constructs, of type
equations into the typing context. For instance, in theffirahch of
eval, the variable, which has typéerm «, is known to match the
patternLit i, which, according to the declaration 6ift, has type
term int. As a result, the equatian = int must hold within that
branch. This equation is added to the typing context andoéepl
by the typechecker to prove that the outcome of this brahet s,
the integer variablé, has typex, as required bywval’s signature.
Nontrivial equations are also exploited in thec, IsZ, and Pair
cases.

1.2 Type inference

The papers cited above explain at length why generalizezbedic
data types are useful. Here, we take this fact for grantedand
on thetype inferencgroblem. It is well-known that, provided re-
cursive definitions carry an explicit type annotation, tygference
for Hindley and Milner’s type system reduces to first-ordeifiaa-
tion under a mixed prefix, that is, to satisfiability of forraslmade
up of equations between finite trees, conjunction, and exiist
and universal quantification. Now, what happens when géneda
algebraic data types are thrown into the mix?

In short, “things become more difficult.” Indeed, when anaqu
tion such asy = int is available, a type inference system is faced



with choices. For instance, the integer variablean be assigned
type int or type«. Outside of thiscase branch,a andnt cannot
be considered equal, so this choice becomes observable delow
we resolve it without resorting to combinatorial search?ter-
more, how do we know that the equatian= int is available?
That is, how do we determine which equations are availablben
first place? Inferring which equations are introduced atsa con-
struct requires inferring the type of the scrutinee. Thoference
of types and inference of equation systems are interdepénde

1.3 Related work

Simonet and Pottier [20] show that type inference HivIG (X)),

an extension ofIM(X) [7] with generalized algebraic data types,
can be reduced to satisfiability of formulas in the first-ortheory

of equality of finite trees, that is, of formulas made up of &qu
tions between finite trees, conjunction, existential aniarsal
quantification, andmplication Unfortunately, this problem is in-
tractable [22]. Simonet and Pottier suggest relyinggplicit type
annotationsn order to produce formulas in a less expressive, more
tractable theory, but leave that as future work.

Stuckey and Sulzmann [21] also reduce type inference te solv
ing constraints that involve implications. They then depdhcom-
plete constraint solvers. Unfortunately, this approaamseexpen-
sive, because solving can involve combinatorial searath naakes
it hard to understand why a program is accepted or rejectéd. O
course, the stratified type inference system presentedisnptz
per is also incomplete. However, it is modularly decompaséal
a completeconstraint-based type inference systédh) @nd an in-
complete, butocal, shape inference systerf5(57). We believe
that this approach should lead to more predictable behavior

Peyton Jones, Washburn, and Weirich [11] describe a proposa
implemented in version 6.4 of the Glasgow Haskell compiler,
which appears to work well in practice. They also suggest ex-
ploiting programmer-supplied type annotations. They arthat,
in the definition ofeval, it is “clear” that¢ has typeterm «,
which implies that the equatiom = int becomes available in the
Lit branch. It is similarly “clear” that the outcome of this bcan
should have typer. Instead of reasoning with implications, Peyton
Jonest al.apply the substitutiof — int] to the expected type,
so that the expressianis checked against the expected tyipe,
with success.

Although Peyton Jonest al’s system aims at simplicity, its
definition is quite involved. To ensure thaype refinement [...] is
insensitive to the order in which the inference algorithaverses
the tre€’; they distinguishwobbly typeswhich are inferred via first-
order unification, andigid types (our terminology), which are also
inferred, but in a simpler and hopefully mgreedictableway: rigid
types are found in explicit type annotations and propagagpeand
down the tree according to a predetermined set of rules.

Wobbly types are identified by a dedicated type constructor,
written[]. This type constructor has no computational meaning. It
sometimes has to be erased or pushed out of the way: for agstan
is converted tq7m] — at application nodes. lIts
behavior is sometimes surprising: for instance, the aafitio of a
type substitution to a wobbly typgl is defined to beritself. These
and other aspects make it difficult to understand the deemimga
of “wobbliness” and to predict when a type has to be wobbly.

1.4 Our approach

In short, we believe that the ideas behind “wobbly types”ged,
but that they could and should be better presented and agplai
In particular, one should clearly separate two subsystems:

e one that performgraditional type inferencen the style of
Hindley and Milner, and enjoys jrincipal typesproperty, so

that it produces types that are indeédsensitive to the order
in which the inference algorithm traverses the ttemd

¢ one that performfocal type inferencethat is,ad hocpropaga-
tion of explicit type annotations, either in Peyton Joreal’s
bidirectional style, or in other ways.

This separation makes the presentation of the system matalaro
and more compelling. Furthermore, it allows identifyingotes
and issues in the design of the local type inference compdhan
were not explicit in Peyton Jonex al's paper. In particular, we
highlight and discuss soundnesgssue that was not addressed by
Peyton Jonest al.

We first set the stage by introducing a type system that estend
Hindley and Milner’s type system with generalized algeb@ata
types £2 and §3). This type system defines the programs that
we deem sound and would ultimately like to accept. It does not
require any explicit type annotations (except, followirgrsmon
practice, at recursive definitions), because it is not maaatlow
type inference. We refer to it as MLGI (readvi. with generalized
algebraic data types implicit style”).

Then §4), we introduce a type system that restricts MLGI by
requiring explicit type annotations wherever generaliakgtbraic
data types are involved. More specifically, type equaticans loe
introducedinto the typing context, at aase construct, only if
the scrutinee carries an explicit type annotation. Furtioee, type
equations can bexploitedonly via explicittype coercionsWe re-
fer to this type system as MLGX (readVIL with generalized alge-
braic data types inxlicit style”). The benefit of these restrictions
is that MLGX enjoys traditional type inference in the styfaHind-
ley and Milner: that is, type inference for MLGX can be reddite
first-order unification under a mixed prefix.

Programming directly in MLGX would be quite painful, be-
cause of the many explicit type annotations that MLGX regglir
To alleviate this burden, we next desitptal type inferenceal-
gorithms that accept a program that contains some expjipé t
annotations, propagates this information in a predictalalg, and
produces a new program that carries more type annotatideser
algorithms can be viewed as preprocessors that help preduce
of the type annotations required by MLGX.

Our local type inference algorithms propagateapes(§s).
Roughly speaking, shapes are types that contain holes.e\aml|
pears where a wobbly type would appear in Peyton Jehes's
proposal. This formalizes the intuition that the types itiesthe
wobbly boxes” should be invisible to the local type inferemom-
ponent. Our shapes have pleasant algebraic propertieseana s
particularly well-suited for expressirigcompletéknowledge about
types in (variants of) Hindley and Milner’s type system.

We present two local type inference (gnape inferengealgo-
rithms. The former §6) closely follows Peyton Jone al’s bidi-
rectional propagation technique. The lattgr)(enhances the for-
mer by performing checking and inferensienultaneouslyand by
supportingiteratedshape inference. These features lead, in partic-
ular, to a more accurate and les$ hoctreatment of application.

2. Preliminary definitions

Algebraic data type constructorsWe assume that a number of
algebraic data type constructors, writtenare given. Every alge-
braic data type constructaeris parameterized ovewo groups of
type parameters: that is, applicationssoére of the forme 71 72,
where7; and7, are vectors of types. We refer to parameters in the
first group asordinary and to parameters in the second group as
generalizedWhen the second group is emptyis said to be aor-
dinary algebraic data type; when it is nonemptys ageneralized
algebraic data type. For instance, the algebraic data typstaic-



Types 7=
Type variable Q@
Function type |7 —71
Algebraic data type leTT
Type schemes o ::=Va.r
Simple type annotations 0 ::= 3y.7
Polymorphic type annotations ¢ ::= 35.0
Type coercions  k ::= 33.(1 > 7)
Terms t:=
Variable x
Function | Az : 0).t
Function application tt
Local definition letx = tint
Fixpoint w(x ).t
Data constructor application Kt...t
Case analysis casetof ¢
Type variable introduction Va.t
Type annotation (t:0)
Type coercion (t: k)
Clauses c:=p.t
Patterns p =K 3

Equation systems FE ::
Constraints  C' ::
Equations and conjunction
Existential quantification
Universal quantification

true|T=7|CAC
| 37.C
| Va.C

Figure 1. Types, terms, constraints

coercion3y.(m1 > 72) binds#¥ within a pair of types(r; > 2).
The instance relation8 < 7, ¢ < o, andk =< (11 > 72) are
defined accordingly.

When possible, we follow the informal convention that the
metavariablesy and 3 represent “rigid” (universally bound) type
variables, while the metavariabferepresents “flexible” (existen-
tially bound) type variables. However, some type varialgks/
both roles in different contexts, so this convention doesahvays
make sense.

Terms In every\-abstraction, the bound variahlecarries a sim-
ple type annotatiofl. The unannotated abstractiam.t can be de-
fined as syntactic sugar for(z : 3v.v).t, since every type is an
instance of the uninformative annotatidy.~. Similarly, in every
fixpoint, the bound variable carries a polymorphic type annota-
tion ¢, so as to avoid the difficulties associated with polymorphic
recursion in the absence of any annotation [4]. Wh&d.~, the
type ofz is inferred, but must be monomorphic.

Every case construct involves a vector of clausesA clauseis
a pair of apatternof the formK § z and of a termt, whereg and
Z are bound withirt. For simplicity, we deal with shallow patterns
only. The length of3 must match the number of type variables
introduced byK'.

In the construcva.t, the type variables are bound withir.
They are interpreted as universally bound, which means t#that
should be well-typed under every instantiation of these tyari-
ables. In practice, one should also introduce the dual oartst
Ja.t, where the type variables are existentially bound, so that
must be well-typed under some instantiation of them. Instéa
this paper, we build existential quantifiers into type aatiohsf
and¢ and type coercions. This simplifies our presentation, be-

tor term of §1 has one generalized type parameter and no ordinary cause every type variable that appears free inside a typeation

type parameters.

Distinguishing these two groups of type parameters allosvs u
to deal with ordinary and generalized algebraic data typea i
uniform way, instead of making them two separate notionss Th
eliminates some redundancy in our presentation. Furthesntios
approach provides us with some extra expressiveness: & sing
algebraic data type can have both ordinary type parametéish
are inferred via constraint-based type inference, as imldjnand
Milner’s type system, and generalized type parameterswinave
to be explicitly provided by the user or inferred by a locahgé
inference algorithm.

As we will see, legacy programs, which involve ordinary alge
braic data types only, do not require any explicit type aations.

Data constructors We assume that every algebraic data type con-
structore comes with a number of data constructors, writi€én
Every data constructoK is assigned a closed type scheme by a
declaration of the form

K::V&B.ﬁ X...XTp = EQT,

wherea# andftv(7) C . (Since the type scheme is closed,
we also havetv(ry,...,7,) C @B3.) Here and elsewhere, 3,
and#y stand for vectors of distinct type variables. The lengthhef t
vector/ is the number of type variabléstroduced byK . We write

K < o wheno is an instance of the type scheme assigneH to

Types A number of syntactic categories that are used throughout
the paper are defined in Figure 1.t¢per is a type variabley,

a function typer; — 72, or an application of an algebraic data
type constructoe to vectors of type parametefs and7.. A type
schemeva.r binds a vecto of type variables within a type.
Every type of the fornja — 7] is aninstanceof the type scheme
Va.r. We writec < 7 whenr is an instance of. Similarly, a
simple type annotatiofiy. bindsy within a typer; apolymorphic
type annotationdy.c binds 4 within a type schemer; and a

or type coercion can be assumed toriggd, that is, to be univer-
sally quantified somewhere up in the term.

Equation systems and constraintsAn equation systent’ is a
(possibly empty) conjunction of type equations. Equatigsteams
are used in typing judgments to keep track of the type equsitio
introduced atase constructsConstraintsencode unification prob-
lems, where “unification” means first-order unification unde
mixed prefix. Constraints are used to express type inferprate
lems. Satisfiability entailment andequivalenceof constraints are
defined via a standard interpretation in the Herbrand usé;ehat
is, in the finite tree model. We writ€; I C> when C; en-
tails C2. We also define” |- 35.(m1 > 72) as syntactic sugar for
C I+ V7.(m1 = 72). Intuitively, C' I+ « means that, according to
the constrainC, all instances of the coercionare valid. This is
further explained ir§3.

3. Anideal type system

MLGl is an extension of Hindley and Milner’s type system watk
plicit type annotations and generalized algebraic datestyipis the
“ideal” type system that we are interested in. MLGI is expres,

but type inference for it is not easy: in particular, it do@s have
principal types. As a result, we later develop type systernsre/
some type annotations are mandatory, and prove them sodhd wi
respect to MLGI.

Presentation MLGI'’s typing judgments are of the forn, T" +
t : o, whereF is an equation systenh, assigns type schemes to
variables; is a term, andr is a type scheme. The type system is
defined in Figure 2.

The presence of generalized algebraic data types in thadaeg
requires keeping track of the equations that have been\dised
at case constructs. This is the role af. This equation system
is augmented by rule IQUSE and is exploited by rules @wv
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VAR LAM ETkFti:im— 7 LET
(x:0)el ETyz:m)bFt:m 0= ETkty:m ETkHti:0 ET;z:o)kFta:T
ETrz:0o ETEXNz:0)t:11 — 72 ETkFtita:m E,Tklete = tyinta: 7
CsTR CASE
Fix K1 X...XTh €T T2 ETHt:m
E,(Tiz:o)kFt:o c=<0o Vi E,I'Ht;:7 Vi E\TFci:m— 7
ETFulx:¢)t:0o ETHFKti ...ty :eT1 T2 E,T'Fcasetofci...cn: T2
FORALL ANNOT COERCE
ETkHt:T attftv(E,T) ETkHt:T 0= ETkHt:n k=X (11 > T2) ElFk
E,T'+-Va.t:Va.r ETkH(t:0):7 ETkF({t:kK): T
CoNv GEN INST
ETHt:7 ElF7m =7 ETkHt: T a# ftv(E,T,t) ETkFt:o oc=T
ETFt:m ET'Ft:Var ETkFt:T
CLAUSE B
piem b (B, E,T) EANE I Ft:m PaT - B
B#ftv(E, T, 12) KIVBm X...XTp —enT B# ftv(T1, T2)
ETkpt:eni T2 — T2 Kﬁxl...zn:67"17"2|—(B,7’-2:7",(x1:Tl;...;:rn:Tn))

Figure 2. ML with generalized algebraic data typedimplicit style (MLGI)

and @ERCE which perform implicit and explicit type coercions,
respectively.

Conv allows replacing a type; with another typer» at any
time, providedE I+ 7 72 holds, that is, provided guaran-
tees that this conversion is valid. This rule is not syntaraied.
CoOERCESserves the same purpose, but is syntax-directed: the spe
cial construct(t : x) is interpreted as an explicit request for a co-
ercion. In the simplest case, is of the form (71 > 7). In that
case, the second premise vanishes, and the third premisenbsc
E |- 71 = 12, S0 COERCEand GNV have identical premises. In
the general case, the structurerefandr is only partially speci-
fied by the programmer, that is,is of the form35.({ > 73). This
is interpreted as a request to convert betwegand 7, for some
value of the “flexible” type variables. To ensure soundnessl)
such coercions should be valid, which is whylF « is defined in
that case a& |- V4.7 = 73.

Explicit type coercions really are of no use in MLGI, since
implicit coercions are also allowed. They become esseittial
MLGX (§4), where @NV is suppressed.

Rule QLAUSE is invoked by rule @sE to typecheck a clause
of the formp.t. The patterrp binds variables and type variables
within the termt, and also introduces new equations. To reflect
this, CLAUSE's first premise confrontg with the typer; of the
scrutinee, giving rise to new type variabl@s equationst’, and
variable bindingsl’, which are used in the second premise to
typecheck the term. ~

Rule AT confronts a patter& 3 x1 . .. x,, with the type of the
scrutinee. Obviously, this type must be of the farm, 7>, where
¢ is the algebraic data type constructor tliatis associated with.
The rule is simple but subtle: the main point is that ordinang
generalized type parameters are dealt with in differentsvagt
the type scheme associated withbe of the form

K uVaf.*X...x*x —cart

(Note that we choose the type variabfeéshat appear in this type
scheme to be the same as the type variablethat appear in
the pattern. Furthermore, here and elsewhere in the papay e
occurrence of stands for a distinct anonymous metavariable. We

exploit this convention to avoid assigning explicit nantesttities
that we are not interested in.)APs first premise is somewhat
different:

K<VBT X ...X Ty R T
That is, we take an instance of the type scheme associatbd wit
"K by substituting the actual ordinary type parametargor the
formal ordinary type parameters. (This leaves the generalized
type parameters unaffected, since their free type variables form
a subset of3.) This substitution determines the types..., 7.
We are now ready to reachPs conclusion: the body of the clause
guarded by this pattern should be typechecked in the scofieof
rigid type variabless, under the assumption that the equations
7> = 7 hold, and under the assumption that everyhas typer;.
The equations, = 7 are obtained by confronting the generalized
type parameters found in the scrutinee’s type, namglwith those
found in the definition ofK’, namelyr.

Soundness A closed term, oprogram is well-typed if it admits

a type under an empty equation system and in the empty environ
ment. Programs can be given a call-by-name or call-by-va&ie
mantics using operational or denotational techniques;dkfines
what it means for a program to “go wrong.”

Claim 3.1 (Soundness for MLGI) Well-typed MLGI programs do
not go wrong. o

4. Atype system with explicit annotations

We now define a type system, known as MLGX, where the diffi-
culties associated with generalized algebraic data tyesveided
thanks to mandatory type annotations. The idea is simpist, Fie
forbid implicit type conversions, so the only way of expiog E is
now via explicit coercions. Second, we require evearse scrutinee

to carry a type annotation, so that it becomes easy to detetfi

In short, MLGX could be described as a type system that nwarrie
traditionaltype inferencéor Hindley and Milner’s type system and
type checkindor generalized algebraic data types.

Presentation MLGX is defined in Figure 3. Most of the rules are
shared with MLGI and are not repeated.



X-CASE
ETHE(({t:0):7
Vi E,T'F (pi:0)t;:11 — T2
E,T'Fcase(t:0)of pi.t1...pntn : T2

X-CLAUSE B
pren b (B,ET) EANE T Ft:n
B# ftv(E, T, 12) F# ttv(E, T, t,12)
ETF(p:3yexT)t:efix— T

All of the rules that define MLGI, except@\v, CASE, and G AUSE, repeated here.

Figure 3. ML with generalized algebraic data types ipécit style (MLGX)

As announced earlier, implicit type conversions are disedid
in MLGX. That s, rule @®NvV is suppressed, so thabDERCEmMust
be used instead. We maintain the invariant thatequation system
is rigid, that is, all of the type variables that appear wittfiincan
be interpreted as universally bound. As a result, in termiyé
inference, ©ERCES last premiseF I x, now meangheck that
E implies the validity ofk, rather tharsolve for the flexible type
variables withinE' so thatE implies the validity of<. This is the
key idea that drives the design of MLGX.

Rule Cask is suppressed and replaced with Xa€E. In the
new rule, the termt must carry an explicit type annotatiéh The
first premise passe on to ANNOT, thus checking that the type
ascribed ta is indeed an instance 6f The second premise passes
0 on to X-CLAUSE, where it is exploited to determine which new
equations arise inside the clause.

We define the unannotatedse constructcasetof ¢; ...c, as
syntactic sugar foease (¢ : 39192.€ 1 J2) of ci...cn, Where
the appropriate type constructois determined by examining the
patterns that guard the clauses . . ¢,,. Thanks to this convention,
legacy programs that do not exploit generalized algebwttie types
need not be annotated at all: that is, MLGX is a conservative
extension of ML.

Rule Q_.ausE is suppressed and replaced with XAT'Se. The
key change is in the first premise. InLA&USE, the generalized
type parameters;, found in the type of the scrutineare used to
determine which new equations appear. In terms of typeenfas,
this is problematic, since the typés are initially unknown and
have to be inferred. For this reason, in X-AUSE, these types are
disregarded—which we emphasize by writingnstead of7 in
the rule’s conclusion. Instead, the generalized type petarsrs,
found in the explicit type annotatipare used to determine which
new equations appear. In terms of type inference, this isl-gam
guessing is involved.

The typesr;, contain occurrences of the type variabiesAs a
result, so does the equation systéh These type variables stand
for yet unknown types, so they must be considered abstraehwh
typechecking, that s, in the second premise. This is guaranteed by
the last side condition. Thus, the invariant that the equagystem
is rigid is maintained in the second premise.

Determining which new equations arise by relying on a pdgsib
incomplete type annotation, as in MLGX, instead of on thealct
type of the scrutinee, as in MLGI, entails a loss of inforroatiBe-
causer; is a possibly strict instance &fy.75, the new equations
obtained by relying o, are implied by, but possibly weaker than,
those obtained by relying of. As a result, the equations available
in an MLGX type derivation are in general weaker than thosélav
able in an analogous MLGI type derivation. Still, when thgeyan-
notations are sufficiently specific, that is, whe# ftv(73) holds,
then the vectors, and7; coincide, so the equations available in
MLGX are identical to those available in MLGI.

Soundness and completenesét is straightforward to show that
every well-typed MLGX program is a well-typed MLGI program.
In combination with Claim 3.1, this implies that MLGX is salin
that is, well-typed MLGX programs do not go wrong.

Theorem 4.1 (Soundness for MLGX)If E,T" + ¢t : o holds in
MLGX, then it holds in MLGI as well. S

Itis also clear that every well-typed MLGI program can benad
into a well-typed MLGX program by adding enough type annota-
tions. In short, it is sufficient to replace every implicipgy conver-
sion with an explicit type coercion, to add an explicit typmae-
tation to everycase expression over a generalized algebraic data
type, and to explicitly bind the type variables that appewside
these new annotations.

Theorem 4.2 (Completeness with assistance for MLGX) De-
fine equivalence up to annotatignsritten =, as the reflexive and
congruence closure of the following axioms:
t=t  a#ftv(t) t=t =t
t =Va.t t=(t':0) t=({t:k)
If E,T F t: o holds in MLGI, then there exists a temhsuch that
t =t holds andE,T" -t : ¢ holds in MLGX. o

!

~+

Example Here is theeval example o1, augmented with enough
explicit type annotations to make it a well-typed MLGX term:

uleval : Va.term a — o). Yo At.
case (¢ : term «) of

| Lit i — (i : (int > «))
| Inct — (eval t +1: (int > «))
| IsZ t — (eval t =0 : (bool > «))
| If bt e — if eval b then eval ¢ else eval e
| Pair B1 B2 a b — ((eval a, eval b) : (B1 X B2 > «))
| Fst B2t — fst (eval t)
| Snd 81t — snd (eval t)

The first change is the explicit introduction of the type sateq,
on the first line. This is required in order to allow referent®ex in
the type annotations that follow. In a surface language,cangd
add sugar and adopt the convention that the first occurreince o
binds « not only in the typeterm o — «, but also in the term
that follows. Glasgow Haskell, for instance, allows this.fact,
this turns out to be helpful for local type inference, so wedduce
this convention (and writg* instead ofu) in §6 and§7.

The case scrutineet now carries the explicit type annotation
term «, so as to allow X-@se and X-Q.AUSE to determine
which type equations arise within each clause.

In the Lit clause, the variablehas typeint, which we want to
convert toa, so an explicit type coercion is required. Analogous
coercions appear in thewc, IsZ, and Pair clauses. In thePair
clause is known to be equal to a product type x ..

Type inference for MLGX Type inference for MLGX is analo-
gous to type inference for an extension of Hindley and Miker
type system with explicit type annotations. There existeadard
reduction of the latter to solving constraints, that is, tetforder
unification under a mixed prefix [15]. It can be presented asrest
formation, written(-)) and known asonstraint generationthat
maps a candidate judgemeitI” - ¢ : 7 to a constraint. In short,
T" andr can be thought of as an “expected typing” for the térm
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VAYANE AT, = 7,121 115 ...
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Figure 4. Constraint generation for MLGX (excerpt)

and the constrainfE,I" - ¢ : 7)) expresses the requirements that
the type variables ifitv(I", ¢, 7) must meet for this typing to be-
come valid. Note that can be a type variable, so we do infer types
for terms, even though an “expected type” has to be proviadéus
formulation.

We do not repeat the standard reduction of type inference to

constraint solving. Instead, we show how it is extended tecthe
new constructs in MLGX. This requires four constraint geien
rules (Figure 4). For clarity, the side conditions that liegjall type
variables to be chosen “sufficiently fresh” are omitted.

Rule G-GERCcEfirst checks thafy entails the validity of the
coercion3y.(71 > 72). This check is easy to implement: provided
~# ftv(E) holds, it is equivalent to computing a most general
unifier of £ and checking that it is also a unifier ef = .

If the check fails, constraint generation fails as well.hé tcheck
succeeds, then constraint generation proceeds. Thettermow
expected to have type, but the type that is made visible to the
outside ist2. The constraint that is produced is identical to what
would be obtained by applying a function of tyge.m, — 7 tot.

G-CASE is simple. The type annotatiaghis transmitted down
both sides. The flexible type variabjestands for the unknown type
of the scrutinee.

G-CLAUSE paraphrases X-QWSE. The type scheme assigned
to K is looked up. The constraint first binds the ordinary type pa-
rametersy existentially they are inferred. Then comes a conjunc-
tion. The conjuncB7;.(t" = € a,) determines appropriate val-
ues fora by equating the scrutinee’s expected typavith e & 75.
The type variables’ do not occur elsewhere: they serve only to
discard the generalized type parameters. In the secondreting
is augmented with the equatiof$ = 7, obtained by confronting
the type annotation with the type scheme assigned tdhe type
variables that occur within these equations are (a subjetf
These type variables armiversallyquantified up front, maintain-
ing the invariant that the equation system is rigid. Thergpénvi-

ronmentT is extended with appropriate bindings, and a constraint

that requires the clause bodyo have typer is produced.

It is worth noting that the expected typéof the scrutinee does
not influence the new equations that arise. As in MLGX, these a
determined solely by exploiting the informatie found in the
explicit type annotation.

The constraint generation rules can be proven sound and com-

plete with respect to the specification of MLGX. The extragiro
cases that must be added to the standard proof are straigattb

Theorem 4.3 (Type inference for MLGX) Let ¢ be a type substi-
tution whose domain is disjoint wittv(Z, t). Then,¢ is a unifier
of (E,I' - ¢ : r)ifand only if E,¢(T") F ¢t : ¢(7) holds in
MLGX. o

This means, in particular, that MLGX has principal type sche
mes, like Hindley and Milner’s type system.

Comparison with wobbly types The flexible type variables in our
type annotations (and in our shapes, $&eplay exactly the same
role as wobbly types in Peyton Jonetsal’s proposal [11]. They
write: “when performing match-unificatiofthat is, when deter-
mining which new equations arise, in this paper’s termigg|p
we make no use of information inside wobbly typ&s.our pre-
sentation, this goes without saying: flexible type varialdee type
variables—that is, they stand for unknown types—so of aothrgy
carry no information!

Peyton Jonest al. further write: “This simple intuition is sur-
prisingly tricky to formalis€.Indeed, their formalization requires
excising the wobbly types, performing unification, andmseirting
the excised types back into the result. Technically, thimlves
computing, composing, and restricting type substitutietricky
business. Here, no such tricks are necessary, becausexhated
information simply isn’t there in the first place. In other nas,
in MLGX, the building of equation system, which are used to
validate coercions, igntirely separatdrom the production (and
later solving) of constraint§’, which are used to perform tradi-
tional type inference in the style of Hindley and Milner. IayRon
Jonest al’s presentation, the two are mixed, at least in appearance.
(They are also mixed with a form of local type inference, viahize
discuss later on.)

There is in fact a slight difference between the flexible type
variables in our type annotations and Peyton Jated.’s wobbly
types: a type variable hadentity, whereas a “wobbly box” doesn't.
For instance, the type annotatign.term (v x 7) has two holes,
but the two have the same identify This annotation is more pre-
cise thardyivz.term (y1 x 72), which appears to correspond to
term ([71] x [T2]) in Peyton Jonest al.s formalization. We conjec-
ture that, in the Glasgow Haskell implementation, wobblyésalo
have an identity—indeed, Peyton Jomsl. write: “wobbly types
[...] simply arethe flexible meta variables that the inference engine
already use$.Our formalization may well be more faithful with
respect to such an implementation.

Because we work with explicit equation systems, as opposed
to most general unifiers, the fact that most general unifiersiat
unique is not a problem so far. It will become one (and reqaire
arbitrary choice) ir§5.2.

Towards stratified type inference The strength of MLGX lies
in its simplicity and in the fact that it enjoys type inferenand
principal types in the style of Hindley and Milner. Its desigvhich
marries type inference for the core language with type dhedor
generalized algebraic data types, appears to be robubg ense
that no variations have come to mind so far.

Unfortunately, from a user's standpoint, MLGX is not very
expressive. In thewal example, it requires a lot of explicit type
information. One might say that MLGX does not attempt to do
type inferencefor generalized algebraic data types; it only does
type inferencen their presence

In the case ofwal, it should not be very hard to guess which
explicit type annotations must be added to the program. mas
ture given at the: binder specifies thatval has typeterm o — «,
so it is “clear” that the variabléshould have typéerm « and that
every branch of thease construct should have type. The for-
mer remark allows inserting the type annotat{on term «). The
latter, applied to thd it branch and combined with the fact that
“clearly” has typeint, allows inserting the coerciofint > «). It



1 = v
(’_yl 7'1) — (’?2.7'2) = Y1Y2.T1 — T2
F1# ttv(12), Y2 # ftv(T1)
D(L) = L
D(F.11 — %) = .7
C(L) = L
C(yx — T2) = .71

Figure 5. Basic operations on shapes

is similarly “clear” which coercions should be added to tlikeo
branches. Isn't it a shame for a type inference system to bblan
to take advantage of information that is so “clearly” appaie the
program?

Our answer is to design a separate transformation thatwdiszo
the explicit type information in the original program, pemates it,
and exploits it to produce a transformed program that coataore
explicit type annotations and coercions. The transfornrediam
can then be passed on to MLGX's type inference algorithm. We
refer to this two-stage approachstsatified type inference

Contrary to what one might think, propagating explicit type
information is not easy—if it were, we would have built thémfure
into MLGX in the first place. Many design choices soon arisel a
most designs are incomplete, that is, reject programs tkatadid
in MLGI. From this remark, we draw two conclusions:

e it is worth separatingthe robust, well-understood back-end
(MLGX) from the moread hocfront-end.

e because its design &l hog the front-end should b&mpleand
predictable

Ad hocmethods of type inference have been studied, for instance,
by Pierce and Turner [12], who introdutecal type inference as
a means of achieving simplicity and predictability. Theyiteur
“missing annotations [should be] recovered using only imfar
tion from adjacent nodes in the syntax tree, without lorggatice
constraints such as unification variable®ther, more recent type
inference systems, such as Peyton Jaies.s approach to intro-
ducing arbitrary-rank predicate polymorphism into Hakkl], or
Peyton Jonest al’s “wobbly types” proposal [11], also use forms
of local type inference.

In the following, we design two such local type inference-sys
tems. The first design§6) closely follows Peyton Jonest al’s
“wobbly types” proposal, with a few changes and improvermgnt
and explains how “wobbly types” are recast in terms of dteati
type inference. The second desi@ii){addresses improves in accu-
racy over the previous one. Neither is definitive: many mangld
be imagined.

Because the program produced by the front-end is submdted t
MLGX, the local type inference algorithm has no obligatidne
jecting invalid programs, or of fully determining the typtawvery
expression. Instead, it is perfectly fine for it to manipeliaicom-
plete (that is,approximaté type information, and to produce new
type annotations and coercions only where enough infoomasi
available. For this reason, both of our designs are basetiapes
that is, approximate type schemes. Shapes, introduced(§®xt
can shareigid type variables, but cannot shdtexible (“unifica-
tion”) variables. This is why shape-based algorithms can be ddem
“local.”

5. Shapes
Shapesre defined by

where the type variablegare bound within the type. We refer to
the type variables asflexible A flexible type variable represents
a type that is either unknown (so the shape — ~ would ade-
quately describe a value of type, sayt — int) or a polymorphic
type variable (so the shapey — ~ also describes the polymor-
phic identity function, whose type schemevis.y — ~). Shapes
are not necessarily closed. Their free type variables aeepreted
asrigid—that is, they are type variables that have been explicitly
universally quantified by the programmer. For instance stiepe
~v.a X v describes a pair whose first component has typahere
the rigid type variablex was introduced by the programmer, and
whose second component has unknown type.

Shapes bear close resemblance to simple type annotatiens. W
often implicitly convert the simple type annotati@w.r into the
shapey.7. We also convert polymorphic type annotatiahsVa.
into shapes, but that is done explicitly.

Figure 5 introduces a few basic operations on shapesbdtie
tomshapey.~ is written_L. This shape carries no information what-
soever. Out of two arbitrary shapesandss, one can build dunc-
tion shapes; — s». Conversely, out of an arbitrary shapeone
can attempt to extradomainandcodomairshaped(s) andC(s).
These operations are defined ifs the bottom shape or a function
shape, and undefined otherwise.

5.1 Ordering shapes

Shapes are equipped with a standard instantiation ordetéfiped
by the single axiom

o # ftV(’_Y1.T1)
F1.11 =X Y2.[71 — T

Example 5.1 We have(yi.a X v1) < (2. X (o — 7¥2)). o

This confers a rich structure to the set of shapes [6, ch&fter

Theorem 5.2 (Huet) Shapes form a well-founded lower semi-lat-
tice, whose least element.s o

This result implies that any finite set of shapes that admitspgper
bound must in fact admit a least upper bound. The least upper
bound of two shapes; ands- is writtens; LI s2, when it exists,

and can be computed via first-order unification.

Example 5.3Recall thatint — L stands fory.int — ~. Then, it
is easy to check thdty.y — v) U (int — L)isint — int. o

Shapes do not share flexible type variables, so that no “long-
distance” unification takes place during shape infererfis:was
announced as the key property that makes inference “loat,”
the least upper bound operation over shap@ssinvolve unifica-
tion. This is important: a local type inference algorithrattdid not
involve anykind of unification would be quite imprecise.

The definition of the ordering can be generalized so as to make
it relative to an equation systef. The original definition is recov-
ered whenZ is true.

Definition 5.4 We write £ I s; =< s3 if and only if there exists
a shapes such thats; < sand E I+ s so hold. We write
EIF s; =sswhenE I s; < soandE IF s < s1 hold. o

Example 5.5Let s1 bevyi.a x y1 andsz bevysz.int x (o — 72).
Then,s1 = s2 does not hold, because the rigid type variable
cannot be instantiated t@¢, buta = int I+ s1 < so does. S

5.2 Normalization

Shapes that are syntactically incompatible (that is, dohaot a
common upper bound) should sometimes be viewed as commatibl
For instance, leEf consist of the equatioan = 31 — (B2. If some
expression is found to have both shapend shape .3, — ~, then



a sensible shape inference algorithm should not fail, noulshit
conclude that this expression has shapénstead, the two shapes
should be successfully combined, yieldigg — 32, as opposed
to «, because the latter isiore informative it exposes the fact
that the expression can only evaluate to a function. (If teain
operatorD(-) is later applied tg3, — B2, it will successfully yield
(1, whereas applyin@®(-) to o would fail.)

To extract as much information as possible out of a shape,
we normalizeit with respect toE. When E contains an equation
a = 7, wherer is not a type variable, then normalization rewrites
aintor.

The definition of normalization is simple, but introduces eam
sure of arbitrariness into the system: indeed, whierelates two
type variablesy and3, a choice has to be made between rewriting
« to [ or vice versa. This choice influences how the program is
transformed by the front-end, which means that it also hasnan
pact on the type error messages produced by the back-endXVILG
when the transformed program doesn’t typecheck.

In the following, we assume thdf is satisfiable. Because we
interpret constraints in a finite tree model, this implieatth' is
acyclic. This hypothesis guarantees that normalizatisrdedined
below, terminates. It is in fact possible to deal with cy@guation
systems, and doing so is indeed necessary when the typensyste
features equirecursive types. We omit this discussion.

Definition 5.6 Let < be a fixed, arbitrarily chosen total ordering
overftv(E). Then, the rewriting relatior~ ¢ on types is generated
by the axioms:

a ~g o if EIFa=da" anda’ < «
a ~vp ETIT2 fEIFa=cT1 T
a ~p m—1 fElFa=17—m

This relation is confluent and terminating. We writ¢ z for the
normal form of the type. We writes | g for 4.(7 | g ) whens is
~.7 and¥ # ftv(E) holds. The notation® | z ands |  are defined
similarly. o

In Peyton Jone®t al's proposal [11], normalization is per-
formed by picking an (arbitrary) most general unifieof £ and
applying it to the type that should be normalized. This stltsin
process stops at “wobbly boxes,” that ig([7]) is defined as$zl.
Here, this corresponds to the fact that normalization doéaffect
flexible type variables.

5.3 Pruning

One problem still hasn’t been discussed: can we guaranéhi
front-end issound that is, that the type annotations and coercions
inserted by the front-end arrect with respect to the program-
mer’s intent?

Assume the original program is well-typed in MLGI (although
perhaps not in MLGX, by lack of explicit type information).eN
certainly cannot expect the transformed program to alwaysddl-
typed in MLGX, because that would amount to requiring thefro
end to performcompletetype inference for MLGI. However, we
should be able to guarantee that the transformed programsds a
well-typed in MLGI. Indeed, if that is not the case, then trens-
formation is counter-productive: it inserts annotatiohattbreak
the program! We claim that, when in doubt, one should insert n
annotations at all, rather than insert incorrect ones.

Achieving soundness requires some care. Imagine that thee eq
tion a« = [ is made available within ease branch. Imagine further
that this branch has type In MLGI, it is also true that this branch
has types. As a result, it is fine to reason with shapes that are cor-
rect only “up toE.” A shapes implicitly denotes the set of types
such that® I+ s < 7 holds. However, outside of the branch, the
equationa = [ is no longer available, so doesmake a differ-

ence whether the branch is deemed to have shapes. That is,
interpreting shapes “up td"” requires extra care wherk shrinks
An arbitrary choice between and3 could produce a transformed
program that is ill-typed in MLGI. Instead, one must abantioa
unreliable piece of information and report that the brarehs$hape
L, which certainly is a sound approximation. We refer to this-p
cess apruning

Definition 5.7 The denotation of underE is the set of all types
such thatE I s < 7 holds. The shape obtained by prunisigvith
respect toE and E’, written s | g_g-, is the least upper bound of
the shapes such thats < s’ holds and the denotation afunder
E contains that ok’ underk A E’. o

Pruning is performed at the boundary between an equation
systemE and a richer equation systefh\ E’. A shapes’ is given.
The denotation of’ underE is always a subset of its denotation
underE A E'. If we are unlucky, it is a strict subset, which means
that the denotation of’ silently changes when we move from
E A E’ back toE. Prunings’ consists in discarding information
in order to avoid this phenomenon, that is, in determiniregrtiost
precise shapesuch that < s’ holds and the denotation efunder
E contains that of’ underE A E’.

Example 5.8 Let E betrue andE’ bea = (31 x B2. Then, pruning
the shapa’ = ~v.a — ~ with respect ta? andE’ yields the shape
s = y172.71 — 72. Indeed, the denotation &f underE A E’
contains all types of the forrf3; x 82) — 7, which its denotation
underE’ does not contain, so the sub-tecrmust be pruned. The
denotation ofs underE does contain all such types.

Of course, pruning cannot guarantee soundness unless we hav
exact knowledge of the current equation system. Indeedhimpyu
with respect to an under-approximation bBfand £’ might lead
to keeping sub-terms that would be discarded when prunitig wi
respect toE and E’. In other words, pruning with respect to
under-approximations of the equation systems is just ad ge®mo
pruning at all: it is unsound! As a result, & and§7, we insist
on determining the current equation system with preciskom.
opposite decision is made by Peyton Joekal.[11]. We compare
the two alternatives ig6.

6. The shape inference systei/ob

The shape toolbox developed§B provides the building blocks to
develop a local type inference (shape inferengealgorithm that
can be placed in front of MLGX in a stratified type inference-sy
tem. In fact, it is easy to think ahanysuch algorithms that differ
in how information is propagated through the abstract sytrize.
Here, in§6, we describe one such algorithm, which we &&ltih
Itis intended to emulate Peyton Joretsal’s “wobbly types” pro-
posal [11], with a few differences. Next, §7, we describe another,
more accurate algorithm. Both algorithms have linear cexipt
under the hypothesis that all shapesnd equation systenis have
bounded size.

Following Peyton Jonest al, Wobis bidirectionat it operates
either ininference moder in checking modeAn inference mode
judgement takes the forn,I" - ¢ f s ~» t'. Its inputs are
the equation syster, the environment’, which maps variables
to shapes, and the term Its outputs are the inferred shape
and the transformed termd. A checking mode judgement takes
the formE,I' - t || s ~ t'. It is analogous to an inference
mode judgement, except the expected shaigenow an input. The
definition of the judgments appears in Figure 6.

An invariant is that, in either mode, the shape normalized
with respect toE. As explained in§5.2, normalizing shapes is
required in order to avoid “silly” unification errors. Wherewvrite
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Figure 6. The shape inference systeffob

s1 U s2, we ensure tha¢; ands, are both normalized. When we
write D(s) or C(s), we ensure that is normalized. The shapes that
appear i arenot necessarily normalized.

In general, the transformed terhis identical tot, except (i) all
explicit type annotations are normalized, (ii) new type @ations
are added taase scrutinees, and (iii) type coercions are inserted at
uses of variables and around somaee clauses. Normalizing type
annotations can be viewed as a heuristic that attempts tedse
the likelihood that the transformed term is well-typed in GIX.

We suppress the constryetz : 35.Va.7).¢ and replace it with
the new construgt* (z : 35.Va.7).t, which is identical, except the
type variablesy are considered bound not only i but also int.

In other words, the new construct can be viewed as syntaagiars
for pu(z : 3y.Ya.7).Va.t. This is exploited in the formulation of
the rules Fx -t and Ax-{.

We disallow explicit type coercions isourceterms, because
they are redundant with type annotations. Indeed:fo( 1 > 72)
to be a valid coercionE I+ V4.71 = 72 must hold, which implies
that normalizingr; and, produces the same result. BecaWgab
normalizes all programmer-supplied types, a type coeriidhe
source term would degenerate to a simple type annotatiohein t
transformed term.

Presentation Rule VAR-1{} looks up the shapeassociated with:

in the environment. It produces the inferred shape , thus satis-
fying the invariant that the inferred shape is normalizethwespect
to E. This normalization step corresponds to a type convershen:
type ofz, an instance of, is turned into an instance ef, z . This
must be reflected in the transformed term by inserting ani@kpl
type coercion, so that the MLGX back-end knows what is goimg o
The rule produces the tertw | s), where(t | 7.7) is defined
as syntactic sugar foit : 33.(7 > 7|z )), providedy # ftv(FE)



holds. That is, for some value of the flexible type variabjeso
be inferred by MLGX, the type is being converted te | ; . Rule
VAR-|} is analogous. The expected shapés ignored.

Rule Lam-1} extracts the explicit type annotatighthat dec-
oratesz, and replaces it witld | z in the transformed term. Ac-
cordingly, the shape environmehtis extended with the binding
x : 0]g, and the function’s inferred shapefyr — s if t's
inferred shape is. Rule Lam-|} is analogous, but combines the
expected shapewith the information contained in the type anno-
tation. For instance, if is v.y — ~ andd is int, then the combi-
nation yieldss’ = int — int, so that the binding: : int is added
to the environment and arnds checked with expected shapé.

Following Peyton Jonest al, both APp-{} and APpP-|} infer the
function’s shape and use this informationdeeckthe argument’s
shape. In Apr-|}, the argument’s shape is combined with the
shapel — s, reflecting the fact that the application’s result shape
is known. As noted by Peyton Jonesal. [11, Section 4.6], these
rules are not very “smart:” the shape inferred idr z, whereid
has shape.y — ~ andz has shapént, is L. Indeed, becauseis
examined in checking mode, the information thatas shapént
is discarded. The algorithm {Y is designed specifically to address
this deficiency.

Rule LET-{ is straightforward. The metavariabfestands for
one of1{ and ||. No generalization in the style of Hindley and
Milner takes place, because there is nothing to generahizeonly
free type variables in a shape are rigid type variables.

Rule Fx-1r exploits the type annotation carried by th& con-
struct to examing in checking mode. The subtlety is that the
polymorphic type annotatiofy.Va.r is turned into two different
shapes. The shape inferred for the entire construct is ¢ihmal-
ized form of)ya.7, a shape where the type variabtesire bound.
This shape is also ascribed:tan the environment, so thatcan be
used at several different types within its own definition wéwer,
the shape that is expected iofs more precise: it is (the normal-
ized form of)5.7, a shape where the type variablesre exposed.
This makes sense only thanks to our convention thabinds &
within t—in other words, the type variables are rigid withint.
Fix-|} is analogous, but combines the type annotation with the ex-
pected shape.

Applications of data constructors could be treated likecfun
tion applications. Instead, in SIR-{}, we adopt a different ap-
proach, which is reminiscent of Peyton Jorssal’s “smart ap-
plication” rule APPN[11, Section 4.6]. The arguments are exam-
ined in inference mode, rather than in checking mode, yigldi
shapess, . . ., sn. The data constructor’s type scheme, viewed as
a shapss, is then unified with the shapg x ... x s, — L. This
yields an appropriate instance gfwhose codomain is the desired
inferred shape. For instance, assuming that.e has type scheme
Ya.a — option a andx has shapeént, this rule allows inferring
that Some x has shapeption int. Rule CSTR-|} is analogous to
APpP-|}. The shape operatdp;(-) extracts the-th component of
the domain of its argument: its definition is analogous ta tifa
D().

Rules Q\se-f} and CAse-|} are straightforward. The termis
always examined in inference mode, yielding a shép&his shape
is passed down to IQUSE-f} or CLAUSE-|}, where it is exploited
to determine which new equations arise.

In FORALL-1}, the rigid type variables: can occur free in the
shapes, so they are abstracted away in the inferred shape
In FORALL-{}, the expected shapemay involve quantified type
variablesy, but we cannot guess how to match these up witko
all we can do is passdown unchanged.

Rules QG AuUse-} and Q. AUSE-| are rather similar to X-
CLAUSE in Figure 3. We do, however, introduce an important re-
striction. The new side conditioh# ftv(72) requires the (inferred)

shape of the scrutinee to bdly explicitabout the generalized type
parameters: they cannot be (or contain) flexible type viatatAs
explained ing4, this ensures that we have full knowledgeFfIf
this condition is not met, the program is rejected.

The first premise in CAUSE-{} and Q.AUSE-|} confronts the
patternp with the scrutinee’s shape to obtain new rigid type vari-
ables3, new equations®’, and a newtype environmentl’. The
flexible type variableg can occur free i, so we abstract them
away, pointwise, to produceshapeenvironmenty.I".

The second premise inLGUSE-1 and Q. AUSE-|} examines the
sub-term¢. The two rules exhibit subtly different formulations.

In CLAUSE-|}, the expected shapels normalized with respect
to £ A E’, so as to maintain the invariant that the expected shape is
normalized with respect to the current equation systemnAsles
VAR-f} and \AR-{}, this hormalization step corresponds to a type
conversion: on the outside, the type of this branch appeabet
an instance ok, but on the inside, it is an instance &f z . 5.
Again, this is reflected in the transformed term by insertamg
explicit type coercion(t g 7.7) is defined as syntactic sugar
for (¢t : 35.(7 | > 7)), providedy # ftv(F) holds.

In CLAUSE-{}, no coercion is inserted: because no expected
shape is initially available, no normalization takes pldostead,
t's inferred shape is prunedto produce an inferred shapé g -
for the clause. The need for pruning was discussed eaglie8)

In short, returnings would be unsound: it might represent a com-
mitment to one of several shapes that are equivalent witlergso
E A E’ butnotwith respect taF.

The (pruned) shapes returned by CAUSE-1} for each branch
are unified in @QsEe-1}, yielding LI;s;. Because these shapes are
pruned, unification cannot fail unless the program is ifegl in
MLGI.

The main differences between Peyton Joeésl’s original
type system andlVobare (i) our use of unification, implicit in the
least upper bound operator over shapes, which makes thétlaigo
more accurate (unification was also present in Peyton Jetrads
APPN); and (ii) our insistence on full knowledge of the equations
that arise atase constructs and our use of pruning.

Every well-typed MLGI program can be turned into a program
that is well-typed with respect to the combination \&@bb and
MLGX by adding enough type annotations. We omit a formal
statement.

Example Consider again thewval example of§1, whereyp is
replaced withu*. Let us attack this term in inference modexH
switches to checking mode for the sub-tekm. . ., with expected
shapeterm a — «. LAM-|} determines that has shapeerm «
and checks thease construct against shape CASE-|} looks up
the environment and infers thahas shapeéerm «, which allows
inserting the annotatioft : term «) in the transformed term.
Every branch is then examined by 8JSE-|}, with knowledge that
the scrutinee has shaperm « and that the branch has expected
shapec. In the Lit branch, for instance, the equation = int
becomes available, so the expected shapse normalized toint
upon entry, and the coerciofi : (int > «)) is inserted. The
variables is then successfully checked against shape The type
variable o, which appears in the newly inserted annotations and
coercions, is bound by the* construct, so no neWa binder needs
be inserted. RulesAR-{} and VAR-{} sometimes insert redundant
coercions, such gsnt > int), which can easily be optimized away,
if desired.

This explains how thecval example of§l is automatically
transformed into the annotated versioréf Then, the transformed
program is successfully submitted to MLGX type inference.

Soundness We now give a formal soundness statement\ih
The statement assumes that a derivatiofoF - ¢ : o in MLGI



is given. Naturally, in practice, this derivation is not kwra it only
exists in the programmer’s mind! Here, it is used as an oraote
assertion that a shapeis a sound approximation afs “true”
type is encoded by the statemeht IF s < o. The assertion
that the annotations and coercions inserted by the algorére
sound is encoded by the statement that the transformed testith
has types in MLGI. (This does not imply that’ is well-typed
in MLGX.) Thus, Item 1 of Theorem 6.1 can be redfd\Wob is
invoked in inference mode and supplied with sound assunmtio
then it produces a sound shape and inserts sound annotadiths

coercionsltem 2 makes a similar statement about checking mode.

Theorem 6.1 (Soundnesshet E,T' - ¢ : ¢ hold in MLGI. Let
E IF TV < T hold. Then,

1. fE, IV F t{ s~ t holds inWob, thenE I s < o holds
andE, T -t : o holds in MLGI.

2. BT t | s ~ t' holds inWob, E I s < ¢ holds, ands
is normalized w.rtE, thenE,I' - t' : o holds in MLGI. ¢

int. Furthermoreg + x must be coerced fronnt back toa, so as
to satisfy the programmer-supplied annotation, which iregLthe
anonymous function’s return type to be

However,Wobis unable to insert any coercion. The term con-
tains a double application ef.ap. Wobattacks the outermost ap-
plication in checking mode with expected typet «. By App-J},
this requires firsinferring a shape for the innermost application
map (Az....), thencheckingthe argument. Thus, APP-1} is ap-
plied to the innermost application. The shape inferredriap is
Y172.(71 — 2) — list v1 — list 2. This leads to checking that
Az.... has shape;v2.v1 — ~2. This imprecise shape does not
provide any information about the type ofor about the anony-
mous function’s return type. As a consequend®pis unable to
insert any coercion into the function.

In this example, the “right” thing to do at the outermost appl
cation is to first examiné in inferencemode, yielding the shape
list o, and to exploit this information to examine the innermost ap
plication incheckingmode with expected shapat a — list a.
The “right” thing to do at the innermost application is to exae

The reader might wonder why we refer to this property as ., in inferencemode, since its type is known, and to exploit this

“soundness.” It states that the inferred shapeise generathan
any actual type, whereas it is customary to say that a typeante
algorithm is “sound” when the inferred type lisss generathan
some actual type. Our shape inference algorithms are iatetal
compute an under-approximation of the program’s types redse

a standard type inference algorithm is required to compuate a
over-approximation (or, if the type system has principaety,

to compute a principal type). This explains why we reverse th
standard terminology—referring to our shape inferencerétyms

as “complete but unsound” would seem bizarre.

information to examine\z. ... in checkingmode, with expected
shapen — «. This shows that committing to either left-to-right or
right-to-left propagation is a bad idea. o

To avoid such a commitment, we suggest dealing with applica-
tion (and, in general, with binary constructs) irsgmmetricvay.
This becomes possible if shape inference is broken up into tw
passes. The idea is, roughly speaking, as follows. Duringsa fi
pass, both function and argument are examinedfarencemode.
During a second pass, both are examinedhackingmode. The

Soundness comes at a price. It rests upon pruning, which de-shape inferred for the function during the first pass is useihd

mands exact knowledge of the current equation system. &ditol
requiring, in Q. AUSE-{ and Q.AUSE-|}, that the (inferred) shape
of thecase scrutinee be fully explicit about the generalized type pa-
rameters. If one gave up soundness, one could design merallib
versions of these rules where the shape of the scrutindevgeal to
be incomplete, giving rise to a weaker equation system witiné
clause. This route is followed by Peyton Jomtsl. [11], whose
“wobbly unification” algorithm ‘may do less type refinement than
would be justified in an explicitly-typed progrdn@n the one hand,
because Peyton Jonesal.s system is able to work with an under-
approximation of the current equation system, it sometiacespts

a program that we reject. On the other hand, because it doe®no
any pruning, it sometimes infers unsound shapes.

7. The shape inference systeribis

Although Wob successfully turns thewval example of§l into a
well-typed MLGX term, it suffers from a shortcoming in ite#at-
ment of application. As noted i§6, it infers the function’s shape
and uses this information to examine the argumenthecking
mode. Our rule GTR-f} and Peyton Jonex al's APPN[11] make
an opposite choice and examine the argumentsferencemode.
In fact, either choice iad hoc Ideally, shape information should
be allowed to flow from function to argumeand vice versaWe
now describe a shape inference system that subsWobsnd is
designed to allow propagation both ways. It is callbis, which
loosely stands foiterated bidirectional symmetric

Example 7.1 The following term illustratesNobs shortcoming.
We assume that the data construdidras typety int, so that the
equationn = int is available inside thease construct.

w*(double : Va.ty oo — list o — list o) At.AL.
map (Ax.casetof I — x +x) 1

Three explicit coercions are necessary to turn this intolatyeed
MLGX term. At both occurrences of, o must be converted to

the second pass to predict the argument’s expected typejiead
versa. This allows information to propagate both ways.

Another, independent idea is to abandon the distinctiowdet
inference and checking modes altogether. Indeed, whenfén-in
ence mode, why refuse to take advantage of the informatien of
fered by an expected shape? Conversely, when in checking,mod
why refuse to produce an inferred shape which potentiallyicco
be more precise than the initially expected shape? Our arisuee
perform both checking and inference at once. Judgemeritssn
take the form&, ' - ¢ |} s 1) s ~» t’, where the inferred shapé,
an output parameter, is always at least as precise as thetedpe
shapes, an input parameter—that is, < s’ holds. Both are nor-
malized with respect td. In short,lbis is bidirectional, likeWoh
but runsin both modes simultaneouslyhis is reminiscent o€ol-
ored local type inferenci3].

Our rough initial statement that the first pass runs in infeee
mode, while the second pass runs in checking mode, can now be
made more precise. Both passes are in fact identical—thtiieyg
are defined by the exact same set of rules—and both simulialyeo
perform shape checking and inference. The first pass aesdta
immediate sub-terms of all application nodes with theieinéd
shapes. The second pass then exploits these annotationfetto i
more accurate shapes.

Thus, Ibis really consists of a single pass than cantbeated
as many times as desired. In practice, iterating at leasetisire-
quired for information to be propagated from function touargnt,
and vice versa, at application nodes. Furthermore, weJsetteat
iterating twice is sufficient in order to obtain acceptabilegsion,
so we do not advocate iterating until a fixpoint is reachedn®o
so would allow accepting more programs, but would perhaps co
promise the algorithm’s perceived simplicity and predidtgy. It
would also break its linear complexity bound.

Presentation The rules that defindbis are shown in Figure 7.
Rule I-App expects the functiom; and the argument, to carry
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Figure 7. The shape inference systehis

explicit type annotations; andsa. If, in fact, there is no such an-
notation, thenL is used. In practice, there typically is no annotation
before the first pass. The inferred shapesnds), are recorded as
type annotations, to be exploited during the next passeifettis
one.

By assumption, there are no coercions in the source terne. Rul

inference and checking simultaneously. Whabattacks the in-
nermost application in inference mode, it forgets abouettpected
shapel — list «.) However, the term has been annotated with in-
formation that can now be exploited by the second pass.

In the second pass, at the outermost application, the fumisti
inferred shapey.list v — list o is combined with the argument’s

|I-CoERCESstates that each pass erases the coercions inserted duringnferred shapéist «. This leads to examining the innermost ap-
the previous pass. Indeed, since each new pass has befper sha plication with expected shapést o — list «. At the innermost

information than the previous pass, it is able to produceemor
accurate coercions.

We omit a detailed explanation of the other rules. In most
cases, the inference and checking variants of every rigotifare
superimposed to produce a rule that does checking and muere
simultaneously.

Example 7.2 Consider thelouble example again:

w* (double : Va.ty o — list o — list o) ALl
map (Ax.casetof I — x +x) 1

The first pass of algorithntbis attacks the outermost application
with expected shapést «. First, it examines the left-hand side,
that is, the innermost application, with expected shape list a.
This leads to examiningnap with expected shapg — 1 —
list .. Rule I-VAR combines this withnap’s known shape, yield-
ing the inferred shape.(y — «) — list v — list a. The sub-
termmap is annotated with this shape. Then, the anonymous func-
tion is entered, with expected shape, — «. Thecase construct
is examined with expected shapewhich leads I-CAUSE to in-
serting a coercion afnt back toa around the clause. The outcome
of the first pass is the term

w*(double : Yoty a — list o« — list o). At.AL
((map : v.(y — a) — list v — list a)
(Az.casetof I — (z+x:int > a)) 1 vy — @)
2 y.list v — list a)
(I: list @)
Here, lbis did only marginally better thaioh only one coercion
was inserted. (The improvement is dudlis’s ability to perform

application, this information allows determining thatp is being
used at typ€a — «) — list « — list «, which leads to exam-
ining the anonymous functiokz. . . . with expected shape — «.
Ibis's second pass is now able to determine thdtas shapev,
which allows I-\AR to insert coercions from to int at both uses
of z. The term produced by the second pass is:

w*(double : Va.ty a — list o — list o) L.
((map : (@ — ) — list o — list )
((\z.casetof
I— ((x:aviint)+ (z:ap>int):
fa— )
s list o — list a)
(1: list o)
It is well-typed in MLGX, which means that this definition of
double is accepted by the stratified type inference system that
combinedbis and MLGX. o

int > «))

Statements Just like Woh Ibis enjoys a soundness theorem,
which we do not state here. Similarly, every well-typed MLGI
program can be turned into a program that is well-typed wéth r
spect to the combination dihis and MLGX by adding enough type
annotations. The two theorems below state that the firsttiter of

Ibis alone yields shape information that is more precise than tha
offered byWoh and that each further iteration dfis refines this
information.

Theorem 7.3 (bis subsumesiNob) If E,T - t { s ~» ¢’ holds in
Wob, then there exist a shapéand a termt” such thate, I" - ¢ |}
1L s’ ~ t" holds inlbisands < 5. o



Theorem 7.4 (lteration) E,I' =t L s~ t'andE, '+t |}
Lps ~t"implys < s’ o

Theorem 7.4 critically relies on the fact that we have fulbbut
edge ofFE at every program point as soon as tingt iteration termi-
nates. We cannot allow to grow from one pass to the next because
pruning is non-monotonic if’: possessing more equations means
pruning more aggressively, hence inferring less preciapesh

8. Conclusion

Summary We have introducedtratified type inferencewhich
separates traditional type inference in the style of Hindied Mil-
ner from local propagation of explicit type information,daifius-
trated this idea in the case of type inference for geneclatge-
braic data types. An analogous idea is developed by Rénjyij17
the case of type inference for arbitrary-rank predicatigg/mor-
phism.

Our bottom stratum, MLGX, extends Hindley and Milner’s type
system in a minimal way so as to accommodate generalized alge
braic data types. Our top stradpbandlbis, are defined using a
common toolbox of operations @hapeswhich seem particularly
well-suited for expressingpproximateknowledge about types.

We improve upon Simonet and Pottier’s work [20] by uniformly
dealing with ordinary and generalized algebraic data tyjpgs
accepting arbitrary “lexically scoped” type annotatioasd by
avoiding implication constraints entirely. We improve ang@eyton
Joneset al’s [11] by offering a more modular presentation and by
performing more accurate shape inference.

A prototype implementation of our proposal, written by the
second author, is available and can be used online [16]. |Assozde
implementation within the Objective Caml compiler is pladn

Future work  One might wish to allow some information to flow
back from the constraint-based type inference system tettape
inference algorithm. One way of doing so is to process progra
one top-levelet definition at a time, running shape inference and
constraint-based type inference in succession over edititide,
and turning the inferred type scheme into a shape that isnfied i
the shape inference algorithm before examining the nextitiefi.

No ad hocchoices about the order in which sub-expressions are
processed are required (as would be if one tried to do thikeat t
level of locallet definitions). This idea can significantly improve
the precision of shape inference.

One could further enhance our shape inference algoritbis),

For instancelpis’s judgements mention both an expected shape and
an inferred shape. For symmetry, one could also use bgikiea
environmentan input parameter) andraquested environme@n
output parameter). That would help deal wigh constructs in a
more precise way. Second, it should sometimes be possibiéeto

the shape of aase construct byreconciling the shapes of the
various branches, even when these are incompatible. Nabk/es
examining the equation systems available within each tramcl
performing a form of anti-unification.

Our systematic use of normalization, which follows Peyton
Joneset al, is not always satisfactory. Assume that the equation
a = int is available. When one writds: : ), the shape inference
system&Vobandlbis behave exactly as if one had writtén: int).
Some valuable information is discarded: perhaps the pnogrer
really intended to tell the system thatis being used at type,
not int. This behavior makes the meaning of a type annotation
dependent upof'. As a result, moving a type annotation into or out
of a case construct can change its meaning! Yet, it is not entirely
clear how to avoid this shortcoming without sacrificing aeay.
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