
Will it Fit? Verifying Heap Space Bounds
of Concurrent Programs under Garbage Collection

ALEXANDRE MOINE
∗
, New York University, USA

ARTHUR CHARGUÉRAUD, Inria & Université de Strasbourg, CNRS, ICube, France

FRANÇOIS POTTIER, Inria, France

We present IrisFit, a Separation Logic with space credits for reasoning about heap space in a concurrent

call-by-value language equipped with tracing garbage collection and shared mutable state.

We point out a fundamental difficulty in the analysis of the worst-case heap space complexity of concurrent

programs in the presence of tracing garbage collection: if garbage collection phases and program steps can be

arbitrarily interleaved, then there exist undesirable scenarios where a root held by a sleeping thread prevents

a possibly large amount of memory from being freed.

To remedy this problem and eliminate such undesirable scenarios, we propose several language features,

namely possibly-blocking memory allocation, polling points, and protected sections. Polling points are meant

to be automatically inserted by the compiler; protected sections are delimited by the programmer and represent

regions where no polling points must be inserted.

The heart of our contribution is IrisFit, a novel program logic that can establish worst-case heap space

complexity bounds and whose reasoning rules can take advantage of the presence of protected sections. IrisFit

is formalized inside the Coq proof assistant, on top of the Iris Separation Logic framework. We prove that IrisFit

offers both a safety guarantee—programs cannot crash and cannot exceed a heap space limit—and a liveness

guarantee—provided enough polling points have been inserted, every memory allocation request is satisfied

in bounded time. We illustrate the use of IrisFit via several case studies, including a version of Treiber’s stack

whose worst-case behavior relies on the presence of protected sections.

CCS Concepts: • Theory of computation→ Program verification; Separation logic; Concurrency; •
Software and its engineering→ Garbage collection.

Additional Key Words and Phrases: program verification, separation logic, concurrency, tracing garbage

collection

ACM Reference Format:
Alexandre Moine, Arthur Charguéraud, and François Pottier. 2018. Will it Fit? Verifying Heap Space Bounds

of Concurrent Programs under Garbage Collection. 1, 1 (January 2018), 71 pages. https://doi.org/XXXXXXX.

XXXXXXX

1 INTRODUCTION
Program Verification. The most common aim of program verification is to establish the safety and

functional correctness of a program, that is, to prove that this program does not crash and computes

a correct result. In the area of deductive program verification [Filliâtre 2011], a program is usually

verified with the help of a program logic, that is, a set of deduction rules whose logical soundness has
been demonstrated once and for all. Separation Logic [Reynolds 2002] and Concurrent Separation

Logic [Brookes and O’Hearn 2016; O’Hearn 2019; Jung et al. 2018b] are examples of program logics

that allow compositional reasoning (that is, reasoning about a program component in isolation)

∗
This work was carried out while this author was affiliated with Inria, Paris, France.

Authors’ addresses: Alexandre Moine, New York University, New York, USA, alexandre.moine@nyu.edu; Arthur Char-

guéraud, Inria & Université de Strasbourg, CNRS, ICube, Strasbourg, France, arthur.chargueraud@inria.fr; François Pottier,

Inria, Paris, France, francois.pottier@inria.fr.

2018. ACM XXXX-XXXX/2018/1-ART

https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: January 2018.

HTTPS://ORCID.ORG/0000-0002-2169-1977
HTTPS://ORCID.ORG/0000-0001-7764-4507
HTTPS://ORCID.ORG/0000-0002-4069-1235
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://orcid.org/0000-0002-2169-1977
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0000-0001-7764-4507
https://orcid.org/0000-0002-4069-1235
https://doi.org/XXXXXXX.XXXXXXX

2 Alexandre Moine, Arthur Charguéraud, and François Pottier

in the presence of challenging features such as dynamic memory allocation, mutable state, and

shared-memory concurrency.

Verification of Resource Bounds. Beyond safety and functional correctness, it may be desirable

to establish bounds on resource consumption, that is, to prove that the resource requirements

of a program (or program component) do not exceed a certain bound. Indeed, a program that

requires an unexpectedly large amount of time may be unresponsive. A program that requires an

unexpectedly large amount of stack space may crash with a stack overflow. A program that requires

an unexpectedly large amount of heap space may exhaust the available memory and make the

system unstable.

Assuming that one is able to tell where in the code the resource of interest is consumed and

produced, and how much of it is consumed or produced, reasoning about resource consumption

can be reduced to reasoning about safety. To do so, one can construct a variant of the program that

is instrumented with a resource meter, that is, a global variable whose value indicates what amount

of the resource remains available. In this instrumented program, one places assertions that cause

a runtime failure if the value of the meter becomes negative. If one can verify that the instrumented

program is safe, then one has effectively established a bound on the resource consumption of the

original program.

The principle of a resource meter has been exploited in many papers, using various frameworks

for establishing safety. For instance, Crary and Weirich [2000] exploit a dependent type system;

Aspinall et al. [2007] exploit a VDM-style program logic; Carbonneaux et al. [2015] exploit a Hoare

logic; He et al. [2009] exploit Separation Logic. The manner in which one reasons about the value

of the meter depends on the chosen framework. In the most straightforward approach, the value of

the meter is explicitly described in the pre- and postcondition of every function. This is the case, for

instance, in He et al.’s work [2009], where two distinct meters are used to measure stack space and

heap space. In a more elaborate approach, which is made possible by Separation Logic, the meter is

not regarded as an integer value but as a bag of credits that can be individually owned. The sum
of all credits in circulation corresponds to the value of the meter. This removes the need to refer

to the absolute value of the meter: instead, the specification of a function may indicate that this

function requires a certain number of credits and produces a certain number of credits.

Verification of Heap Space Bounds, without Garbage Collection. A programming language that

does not have garbage collection usually offers an explicit memory deallocation instruction. Thus,

it is easy to tell where heap space is consumed and produced: an allocation instruction consumes

the amount of space that it receives as an argument; a deallocation instruction recovers the space

occupied by the heap block that is about to be deallocated.

In such a setting, traditional Separation Logic, extended with space credits, can be used to

establish verified heap space bounds. Atkey [2011] presents a Separation Logic with an abstract

resource that is consumed and produced by two distinct primitive operations, akin to space credits

with explicit allocation and deallocation. Hofmann’s work on the typed programming language

LFPL [2000] can be viewed as a precursor of this idea: LFPL has explicit allocation and deallocation,

which consume and produce values of a linear type, written ⋄, whose inhabitants behave very
much like space credits.

Verification of Heap Space Bounds, with Garbage Collection. In the presence of garbage collection,

how does one reason about heap space? In this setting, the programming language does not have

a memory deallocation instruction. Thus, it is not evident at which program points space can be

reclaimed. A tracing garbage collector (GC) can be invoked at arbitrary points in time, and may

deallocate any subset of the unreachable blocks. An unreachable block is a block that is not reachable

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 3

from any root via a path in the heap. Thus, reasoning about heap space in the presence of garbage

collection requires reasoning about roots and unreachability.

Madiot and Pottier [2022] make a first step towards addressing this problem. They extend

Separation Logic with several concepts. To keep track of free space, they use space credits. They

view memory deallocation as a logical operation: it is up to the person who verifies the program

to decide at which points this operation must be used and which memory blocks must be logically
deallocated. This decision is subject to a proof obligation: amemory block can be logically deallocated

only if it is unreachable. Unfortunately, the concept of unreachability is not local: that is, this concept

cannot easily be expressed in terms of traditional Separation Logic assertions. Therefore, Madiot

and Pottier rephrase this proof obligation as follows: a memory block can be logically deallocated

if it has no predecessors and is not a root. To record the predecessors of every memory block, they

use pointed-by assertions [Kassios and Kritikos 2013]. To record which blocks are roots, they focus

their attention on a low-level language, where the stack is explicitly represented in the heap as

a collection of “stack cells”. Then, a block is a root if and only if it is a stack cell.

In previous work [Moine et al. 2023], we scale Madiot and Pottier’s ideas up to a high-level

language, where the stack is implicit. We introduce Stackable assertions to implicitly record which

memory locations are “invisible roots”, that is, which memory locations are roots because they

appear in some indirect caller’s stack frame.

Neither of these papers focuses on concurrency. Madiot and Pottier [2022] technically support

concurrency, but only for a low-level language with stack variables explicitly allocated in the heap,

and without any concurrent example covered. Moine et al. [2023] do not support it. By design, their

Stackable assertion keeps track of a single stack. Extending it with support for multiple stacks is

a priori not straightforward.

Verification of Heap Space Bounds, With Garbage Collection and Concurrency. In the present paper,

we target a high-level programming language equipped with garbage collection and shared-memory

concurrency. In such a setting, multiple threads run concurrently. They share a common heap; each

thread has its own implicit stack.

Our initial aim in this project was to propose a program logic that allows its user to reason about

heap space, and to verify heap space complexity bounds, in a concurrent setting. However, in the

course of this work, we came to realize that, unless some care is taken, concurrent programs can

have bad worst-case heap space complexity—that is, worse complexity than one might naively

imagine. Thus, in addition to our initial aim, which was to let our program logic serve as a tool to

describe the worst-case scenarios, we decided to also propose programming language features that
let the programmer eliminate some of the worst-case scenarios.

In terms of programming language design, our proposed changes and additions are as follows.

First, we impose a limit on the size of the heap. To ensure that this limit is never exceeded, we

make memory allocation a possibly blocking instruction: if a memory allocation instruction would

cause the size of the heap to exceed the limit, then this instruction must wait for enough space

to become available. Second, we introduce polling points. If any thread is waiting for space, then

a polling point blocks the current thread. Polling points are intended to be automatically inserted

by the compiler. By inserting sufficiently many of them, the compiler can ensure that a thread that

is waiting for space cannot be forever starved. Third, to eliminate undesirable scenarios where

a thread reaches a polling point while holding certain roots (which would prevent the garbage

collector from reclaiming certain data structures), we let the programmer delimit protected sections
where polling points must not be inserted. To ensure that a protected section terminates in bounded

time, we forbid blocking instructions (that is, memory allocations and polling points) and function

calls within protected sections. By decorating our implementation of Treiber’s lock-free stack

, Vol. 1, No. 1, Article . Publication date: January 2018.

4 Alexandre Moine, Arthur Charguéraud, and François Pottier

with protected sections, we are able to prove that “pop frees up one list cell worth of heap space”,

as desired (§3.3).

Regarding the heap size limit, we propose two variants of the semantics. Our default semantics

uses a fixed limit, which must be set before the program is executed. Our growing semantics lets

this limit grow at runtime under certain conditions: when no thread is inside a protected section,

if (after garbage collection) there is insufficient space to satisfy a memory allocation request, then

the limit is increased (say, doubled). The default semantics is slightly easier to understand, whereas

the growing semantics is more realistic, as it does not require advance knowledge of a suitable

limit.

We propose a program logic that lets users establish worst-case heap space complexity bounds.

This program logic is independent of which variant of the semantics—default or growing—is chosen.

It is sound, in a certain sense, with respect to each variant. Indeed, under each variant, we are

able to establish a safety property. With respect to the default semantics, we prove: if a program

has been statically verified with a budget of 𝑆 space credits, and if at runtime the heap size limit

is set to 𝑆 , then the program cannot run out of space. With respect to the growing semantics,

we prove: if a program has been statically verified with a budget of 𝑆 space credits, then at runtime

the (growing) heap size limit cannot exceed a bound that is expressed in terms of 𝑆 (say, 2𝑆).

Furthermore, under both semantics, and under the assumption that enough polling points have

been inserted, we establish a liveness property: no thread remains forever blocked. Our program

logic includes reasoning rules that exploit the presence of protected sections to establish improved
heap space complexity bounds: this is illustrated by the example of Treiber’s stack (§3.3, §11.5).

Although our program logic does include reasoning rules for polling points, these rules are not

needed by the end user, who reasons about a source program in which polling points have not yet

been inserted. This source program can be viewed as the description of a family of instrumented

programs, which are obtained from the source program by inserting polling points in arbitrary

places, outside of protected sections. If the source program can be verified (that is, if it abides by

the rules of the program logic) then every instrumented program in this family can also be verified.

Thus, the correctness and worst-case heap space complexity properties that are established by the

user about the source program still apply after polling points are inserted by the compiler.

Contributions. The main contributions of this paper are the following:

• We present LambdaFit (§2, §4), an imperative language with shared-memory concurrency

and tracing garbage collection. The novel aspects of LambdaFit include a heap size limit,

blocking allocations, polling points, and protected sections.

• We introduce IrisFit (§5, §6, §10), a Separation Logic that allows establishing safety, functional
correctness, and worst-case heap space complexity properties of concurrent programs, in the

presence of garbage collection, and allows compositional reasoning.
• We prove the soundness of IrisFit (§8). More specifically, we establish two results. A safety
theorem guarantees that a verified program cannot crash and that its heap size cannot exceed

a certain bound. A liveness theorem guarantees that after enough polling points have been

(automatically) inserted, no thread can be forever blocked by a memory allocation request. In

fact, we prove a slightly stronger liveness statement: at all times, in a bounded number of steps,
the system must reach a configuration where no thread is blocked by a memory allocation

request. We establish this result without formulating a fairness hypothesis. We prove safety

and liveness theorems for both variants of the semantics of LambdaFit, namely the fixed-limit

variant and the growing-limit variant.

• We prove that IrisFit is sound also with respect to an oblivious semantics of LambdaFit, where

there is no heap size limit, a memory allocation instruction is never blocked, and polling

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 5

points have no effect. In such a setting, our safety theorem (§8.4) guarantees that a verified

program cannot crash and that (when every thread is outside of a protected section) its live
heap size cannot exceed a certain bound. There is no need in this setting for a liveness theorem.

This result emphasizes that IrisFit is largely independent of the non-standard features of

LambdaFit.

• We encode closures in LambdaFit and show how to reason about them with IrisFit (§9).

Compared with our previous paper [Moine et al. 2023], we propose an improved treatment

of closures: the Spec predicate, which describes the behavior of a closure, is persistent.

• We verify several case studies (§11), namely: an implementation of “fetch-and-add” as

a CAS loop; a concurrent counter that is encapsulated as a pair of closures; a library for

async/finish parallelism; and Treiber’s lock-free stack [1986]. This gallery of challenging

examples illustrates the expressive power of IrisFit.

All of our results, including the validity of our reasoning rules, our soundness theorems, and

our case studies, are mechanized using the Coq proof assistant and the Iris framework [Jung et al.

2018b]. For details about the soundness proof and additional case studies, we refer the reader to

our mechanization [Moine 2025] and to the first author’s dissertation [Moine 2024].

Because we wish to make the present paper self-contained, we borrow some text from our

previous paper [Moine et al. 2023]. The re-used material amounts to roughly 8 pages in total. The

main re-used passages are the beginning of this introduction, the design and explanation of the

pointed-by-heap assertion (§5.6), the discussion and definition of the closure macros (§2.7, §9.2),

the concept and presentation of triples with souvenir (§10), and part of the discussion of the related

work (§12.3, §12.4, §12.5).

2 OVERVIEW
LambdaFit is a call-by-value language with dynamic memory allocation, mutable state, shared-

memory concurrency, and tracing garbage collection. Its syntax and semantics are standard, save

for a few original aspects.

First, LambdaFit is restricted to closed functions, also known as code pointers. We encode closures

as heap-allocated objects that store code and data (§2.7).

Second, LambdaFit exhibits several non-standard features related with memory management.

First, a memory allocation instruction that would cause the size of the heap to exceed a certain

limit is blocked. Second, LambdaFit’s syntax includes three non-standard instructions, namely

an instruction that represents a polling point and two instructions that mark the beginning and end

of a protected section.

2.1 One Language, Several Semantics
In this paper, we define and use three semantics, or three variants of the semantics, of LambdaFit.

Let us explain why each variant exists and what role it plays in the paper.

(1) The most important semantics is the default semantics. This semantics involves the concept

of a root and has explicit garbage collection steps (§2.2). It imposes a fixed limit 𝑆 on the size

of the heap. This limit is a parameter of the semantics. A “large” memory allocation request,

which would cause this limit to be exceeded, is blocked (§2.3): we say that it is “waiting for

space”. Furthermore, if any thread is waiting for space, then a polling point is blocked (§2.4).

Protected sections (§2.5) serve mainly to delimit areas where polling points must not be

inserted by the compiler. In the semantics, they play a minor role: within a protected section,

polling points, memory allocation instructions, “fork” instructions, and function calls are

forbidden—they cause a crash.

, Vol. 1, No. 1, Article . Publication date: January 2018.

6 Alexandre Moine, Arthur Charguéraud, and François Pottier

This semantics (as well as its variants, discussed next) is non-deterministic. This is due not

only to concurrency but also to the fact that garbage collection can take place at an undetermined

point in time and can deallocate an undetermined number of unreachable blocks. Our soundness

theorems guarantee that, in every possible execution, the heap space usage of a verified program

respects the bound 𝑆 . Thus, the non-determinism that is inherent in the semantics makes our

soundness theorems stronger. If a specific implementation of LambdaFit exhibits fewer behaviors

than permitted by the semantics, then our soundness theorems still hold for this implementation.

A potential criticism that one might formulate about the default semantics is the fact that it

requires setting the heap limit to a suitable value 𝑆 before the program is executed. If the program

has been fully verified using IrisFit, then a suitable value of 𝑆 may be known. However, it is more

realistic to expect that only part of the program has been verified. Furthermore, if the program

receives data from the outside (via the file system or the network) then its space requirement may

depend on the input that it receives. For these reasons, it seems worthwhile to design and discuss

also a variant of the default semantics that is equipped with a growing limit on the size of the heap.

(2) In the growing semantics, as in the default semantics, there is a limit on the size of the heap,

which serves to identify and block “large” memory allocation requests. However, in the

growing semantics, the limit is not fixed. Instead, at runtime, if the current limit is found to

be too low, then the limit is increased. Such an increase can take place only while no thread

is inside a protected section.

A similar strategy for growing the size of the heap is used in real-world runtime systems, such

as the OCaml runtime system [Madhavapeddy and Minsky 2022, §25.4.1] and the Haskell runtime

system [Marlow et al. 2008, §5].

Our discussion of the growing semantics occupies only two sections of the paper (§4.2.10, §8.3).

However, we believe that this discussion plays an essential role in arguing that a practical runtime

system that obeys the design of LambdaFit can be implemented.

Finally, we define an oblivious semantics, which ignores the non-standard features of LambdaFit:

in this semantics, memory allocation is never blocked, and polling points have no effect. This

semantics serves two purposes. First, it enables us to state the core soundness guarantee that is
offered by IrisFit in the absence of the non-standard features of LambdaFit. Second, it plays a key

technical role. The soundness properties of IrisFit with respect to the default and growing semantics

are obtained as corollaries of its core soundness property with respect to the oblivious semantics.

(3) In the oblivious semantics, no instruction is ever blocked. This semantics does not impose a

limit on the size of the heap. Therefore, it does not need and does not have garbage collection:

an unreachable block remains allocated forever. In this semantics, one cannot bound the total

size of the heap (including garbage). Still, under the assumption that every thread is outside a

protected section, one can bound the live heap size, that is, the size of the reachable fragment

of the heap.

Our discussion of the oblivious semantics is limited to two sections of the paper (§4.2.7, §8.4).

We wish to reassure a reader who might be worried about an apparent proliferation of semantics.

First, the three semantics share many auxiliary definitions, so there is limited redundancy. Second,

throughout the paper, we focus on the default semantics. Where one of the other two semantics is

discussed, this is explicitly indicated. Last but not least, we propose just one program logic, IrisFit,

whose reasoning rules (§2.6) are independent of which semantics is considered. For each of the

three semantics, we are able to prove that if a program has been verified using IrisFit then its heap

space usage is bounded in a certain sense (§8).

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 7

2.2 Roots and Garbage Collection
Garbage collection [Jones and Lins 1996] deallocates some or all unreachable memory blocks, where

a block is reachable if there exists a path from some root, through the heap, to this block. In the

oblivious semantics of LambdaFit (§2.1), garbage collection is not explicitly modeled; nevertheless,

one can define the worst-case heap space complexity of a program as the maximum value (over

all possible executions) of its live heap size, where (at a given point in time) the live heap size is
the sum of the sizes of all reachable heap blocks. In the default semantics of LambdaFit (§2.1),

garbage collection is explicitly modeled: a garbage collection step deallocates an arbitrary number

of unreachable heap blocks. In either approach, it is necessary to answer to the question: what is

a root?

How can the intuitive concept of a root be formally defined in the setting of a small-step,

substitution-based operational semantics? Before addressing this question, let us recall a few

fundamental aspects of such a semantics. In an operational semantics, a program state, which

represents the state of a running program, is a syntactic object. Here, because we are interested

in concurrent programs with dynamic memory allocation, a program state includes a thread pool

(a list of threads) and a heap (a finite map of memory locations to memory blocks). In a small-step
semantics, the manner in which the program state evolves over time is described by a reduction

relation, that is, a binary relation on program states. In a substitution-based semantics, within

the thread pool, each running thread is represented as a closed term, that is, a term without free

variables. The reduction rules ensure that, whenever the scope of a variable is entered, a closed

value is substituted for this variable. Thus, a closed term that represents a running thread describes

both the code that this thread is about to execute and the data to which this thread has access.

In particular, a memory location ℓ is a closed value, and a closed term that represents a running

thread can contain memory locations.

In such a setting, what is a root? A simple, commonly agreed-upon answer is: a root is a memory
location ℓ that appears in at least one running thread 𝑡 . By this, we mean that the closed term 𝑡 ,

which represents one of the currently running threads, literally contains one or more occurrences

of the memory location ℓ .

This convention is known as the free variable rule (FVR) [Felleisen and Hieb 1992; Morrisett et al.

1995]. Intuitively, the FVR makes sense because the (computable) set of memory blocks that are

reachable from the locations that the program knows about is a conservative approximation of the

(uncomputable) set of memory blocks that might be accessed in the future by the program. However,

one must keep in mind that the FVR is not a static approximation of the dynamic semantics. Instead,

the FVR is part of the definition of the dynamic semantics. It defines the concept of root, which in

turn is used to define reachability and garbage collection.

The reader may wonder whether real-world programming languages respect the FVR. As far as

we know, many real-world implementations of garbage-collected languages, such as OCaml, SML,

Haskell, Scala, Java, and more, are meant to respect the FVR. Unfortunately, this intention is often

undocumented. A prominent example of a compiler that explicitly respects the FVR is the CakeML

verified compiler. Gómez-Londoño et al. [2020] and Gómez-Londoño and Myreen [2021] prove that

the CakeML compiler respects a cost model that is defined at the level of the intermediate language

DataLang and that includes a form of the FVR.

2.3 Why Block Large Memory Allocation Requests
In the presence of tracing garbage collection, two measures of the size of the heap must be

distinguished, namely the allocated heap size and the live heap size. The allocated heap size,
or simply heap size, is the sum of the sizes of all allocated heap blocks. The live heap size is the sum

, Vol. 1, No. 1, Article . Publication date: January 2018.

8 Alexandre Moine, Arthur Charguéraud, and François Pottier

of the sizes of all reachable heap blocks. In other words, it is the allocated heap size minus the sizes

of the unreachable blocks.

Our main goal in this paper is to bound the heap size
1
in a setting where LambdaFit is equipped

with its default semantics (§2.1).

The default semantics is parameterized by a limit 𝑆 and is designed in such a way that the heap

size always remains less than or equal to 𝑆 . This property, which is stated by Lemma 4.2 (§4.2.9),

is enforced as follows. Let us say that a memory allocation request is large if it would cause the

heap size to exceed 𝑆 , that is, if the sum of the current heap size and the number of requested

words exceeds 𝑆 . Otherwise, let us say that the allocation is small. Then, a large memory allocation

instruction is not allowed to proceed: it is blocked. Once garbage collection takes place and is able

to free enough space in the heap, this memory allocation instruction may become small, therefore

unblocked.

This explains one aspect of the design of the default semantics: by blocking large memory

allocation instructions, we ensure that one kind of undesirable behavior, namely growing the heap
too large, is eliminated a priori. Two kinds of undesirable behavior remain permitted by the default

semantics, namely crashes and deadlocks: a thread can crash or become forever blocked. Under

certain assumptions about the placement of polling points, our program logic statically guarantees

that these undesirable behaviors cannot arise: this is stated by our safety and liveness theorems

(Theorems 8.1 and 8.2).

An alternative point of view is offered by the oblivious semantics of LambdaFit (§2.1). In that

semantics, there is no limit on the size of the heap, and no instruction is ever blocked. Thus,

a different kind of undesirable behavior, namely deadlocks, is eliminated a priori. The undesirable

behaviors that remain possible are crashes and growing the heap too large. With respect to the

oblivious semantics, our program logic provides two guarantees: first, no thread can crash; second,

if the program has been verified under the hypothesis that 𝑆 space credits are initially granted,

then, in every possible execution, provided every thread is currently outside a protected section,

the current live heap size is at most 𝑆 . These guarantees are stated in our core soundness theorem
(Theorem 8.4). We emphasize that 𝑆 is not a parameter of the oblivious semantics; it appears only

in the statement of the core soundness theorem.

The points of view offered by the default semantics and by the oblivious semantics are subtly

different; we believe that it is enlightening to understand them both. Furthermore, there is a technical

connection between them: we first establish the core soundness theorem (Theorem 8.4), then use

this theorem as a stepping stone in the proof of Theorems 8.1 and 8.2.

2.4 Polling Points
The existence of blocking memory allocation instructions endangers liveness: for some programs,

there exist adversarial schedules where a large memory allocation request is forever blocked. This

can happen, for example, if some other threads are always scheduled, so the garbage collector

is never allowed to run. More specifically, imagine that thread 𝐴 is blocked by a large memory

allocation request, while thread 𝐵 is in an infinite loop. Then, the scheduler can choose to always

execute thread 𝐵 and never execute the garbage collector, so thread 𝐴 remains forever blocked.

1
By adopting a measure whose definition is a sum of the sizes of the heap blocks that the program creates, we restrict

our attention to a logical notion of heap size, that is, a notion that depends only on the program and on the semantics

of the programming language. One might instead wish to control the physical heap size, that is, how much memory the

runtime system requests from the operating system. This would require knowing which garbage collection technique

is used, whether the garbage collector is able to perform compaction (so as to eliminate fragmentation), and so on. Our

analysis does not require this information and does not bound the physical heap size.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 9

We wish to forbid this scenario and to formally establish a liveness guarantee of the form: always,
eventually, every thread can make progress (Theorem 8.2).

To this end, we equip LambdaFit with polling points. A polling point is a synchronization

instruction, a form of barrier. A thread may proceed past a polling point only if no large memory

allocation request is currently outstanding. In other words, if any thread is currently waiting for

space, then no thread can move past a polling point.

By inserting sufficiently many polling points into a program, one can ensure that every memory

allocation request is eventually satisfied. Indeed, by inserting enough polling points, one can enforce

the following property: as soon as one thread is blocked on a large memory allocation request,

every thread must eventually reach a polling point or a large memory allocation request, where

it, too, becomes blocked. At this point, no thread can make progress, so garbage collection must

take place. Once garbage collection has made enough space available—which our program logic

statically guarantees is possible!—all outstanding memory allocation requests can be satisfied.

In the example scenario that was outlined above, a polling point must be inserted in the infinite

loop of thread 𝐵. Then, this thread must eventually reach a polling point, where it becomes blocked.

The only permitted step is then a garbage collection step, which is expected to free up enough

memory to satisfy thread 𝐴’s large allocation request. Consequently, the two threads become

unblocked.

In principle, polling points could be manually inserted by the programmer, but that would be

tedious. In practice, we expect a compiler to automatically insert polling points where needed.

In §8.2, we prove that a particular polling point insertion strategy, inspired by that of the OCaml 5

compiler, does indeed insert enough polling points to guarantee liveness. We establish this result

without a fairness hypothesis about the scheduler.

2.5 Protected Sections
Polling points are meant to be inserted by the compiler in arbitrary places. However, inserting

a polling point in a badly-chosen place can impact (that is, increase) the worst-case heap space

complexity of a data structure: this is illustrated later on by the example of Treiber’s stack (§3).

To remedy this problem, we equip LambdaFit with protected sections, that is, sections of the code in
which the compiler must not insert polling points. We require protected sections to be “short”, that

is, to terminate in bounded time. Thus, when one thread is blocked by a large memory allocation

request (§2.3), every other thread must eventually exit its protected section (if it is currently within

such a section) and reach a polling point.

Protected sections provide the programmer with a means of controlling where polling points

should not be placed. In comparison with manually placing polling points, this approach is not

only more concise, but also more informative, as it lets the programmer explicitly document the

places where a thread must not be blocked. The intuitive reason why a thread must not be blocked

(in a specific place) is that it must instead be allowed to make progress and release some of its roots,

thereby allowing the garbage collector to reclaim more space.

A protected section is explicitly delimited by two special instructions, enter and exit, which mark

the beginning and end of the section. A single well-balanced construct “protected {𝑡}” would be

insufficiently flexible, because a protected section typically has one entry point and multiple exit

points. This is illustrated by the example of Treiber’s stack (Figure 3).

, Vol. 1, No. 1, Article . Publication date: January 2018.

10 Alexandre Moine, Arthur Charguéraud, and François Pottier

Protected sections are subject to two restrictions. First, they cannot be nested. Second, a protected

sectionmust not contain amemory allocation instruction, a “fork” instruction,
2
a polling point (§2.4),

or a function call.
3
These restrictions ensure that a protected section cannot contain a blocking

instruction and can be exited in a bounded number of steps. The syntax of LambdaFit does not

enforce these restrictions; however, violating them causes a runtime error, and is statically forbidden

by our program logic.

The reader may wonder whether protected sections are ghost code, that is, whether (after polling

points have been inserted) protected sections can be erased. In the default semantics (§2.1), this is

essentially true: provided protected sections are correctly used (that is, enter and exit instructions

are well-balanced, and protected sections do not contain memory allocations, polling points, “fork”

instructions, or function calls), they have no semantic effect. If such correct usage is statically

enforced, then at runtime protected sections can be erased. In the growing semantics (§2.1), however,

protected sections do play a role and cannot be erased. Indeed, the heap size limit can be increased

only when all threads are outside protected sections. Without this restriction, we would not be able

to establish Theorem 8.3, which states that the heap size remains bounded.

Earlier (§1), we have pointed out that a source program describes a family of instrumented

programs, which are obtained from the source program by inserting polling points in arbitrary

places outside of protected sections. By applying IrisFit to just the source program, the user obtains

a heap space bound that holds regardless of where polling points are inserted; in other words, the

user obtains a guarantee about the worst-case heap space complexity of every program in this

family. In terms of space complexity, decorating the source program with protected sections is

always beneficial. Indeed, adding or extending protected sections reduces the family of programs

that the source program represents: this can reduce the worst-case heap space complexity of this

family, and cannot increase it. This phenomenon is illustrated by the example of Treiber’s stack (§3).

On the flip side, in practice, protected sections can have a cost. While they can improve the

worst-case heap space complexity of a program family, they can also increase latency. Indeed, larger
protected sections potentially imply larger gaps between polling points, therefore a longer time

until a thread that is waiting for space can be unblocked. In practice, it seems wise to use as few

protected sections as possible and to keep them as short as possible.

2.6 A Concurrent Separation Logic for Heap Space
This paper presents IrisFit, a concurrent Separation Logic for LambdaFit. IrisFit shares many features

with pre-existing Separation Logics. The behavior of a program fragment is described by a triple,
an assertion whose parameters include a precondition (an assertion that describes the initial state),

the program fragment of interest, and a postcondition (an assertion that describes the final state).

In IrisFit, a triple also includes a thread identifier, as the logic assigns a unique name to each thread.

A rich vocabulary of logical connectives, including points-to assertions, separating conjunction, and
many more, is used to construct assertions, which encode both knowledge of the current state and
permission to update this state in certain ways.

What sets IrisFit apart from traditional Separation Logics? IrisFit borrows ideas from previous

Separation Logics equipped with support for reasoning about heap space in the presence of garbage

collection [Madiot and Pottier 2022; Moine et al. 2023] and scales them up to a concurrent setting.

Space credits keep track of available space and serve as permissions to allocate memory. Furthermore,

2
In our operational semantics, “fork” does not allocate any memory in the heap. We could technically allow “fork” inside a

protected section without breaking any of our results. In the real world, though, “fork” is likely to allocate memory. Because

we forbid memory allocation inside a protected section, it seems natural to disallow “fork” inside protected sections as well.

3
Because loops are encoded as recursive functions, forbidding function calls inside protected sections also forbids loops

inside protected sections.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 11

several kinds of assertions record which memory locations are reachable and in what way they

can be reached. Pointed-by-heap assertions [Madiot and Pottier 2022] keep track of predecessors

of each location in the heap. Pointed-by-thread assertions (new in this paper) keep track of the

threads in which each location is a root. Like previous logics [Madiot and Pottier 2022; Moine et al.

2023], IrisFit features a ghost deallocation rule. Because the programming language does not have

an explicit memory deallocation instruction, it is up to the user of the logic to decide where to

apply this rule. This rule requires proof that the memory block of interest is unreachable. This

proof takes the form of pointed-by-heap and pointed-by-thread assertions, which are consumed;

space credits are produced in their stead. A novelty of this paper is that logical deallocation does
not require or consume the points-to assertion.
A crucial novel aspect of IrisFit is its ability to take advantage of protected sections while

reasoning. Indeed, IrisFit offers a relaxed way of keeping track of roots inside protected sections.

Ordinarily, pointed-by-thread assertions record which locations are roots, and as long as a location is

a root, this location cannot be logically deallocated. Inside a protected section, however, an exception

to this regime is made: the logic keeps track of a set of temporary roots. The user can turn an

ordinary root into a temporary root (and vice-versa). The logic requires that, by the time the

protected section ends, no temporary roots remain. Thus, by that time, every temporary root

must no longer be a root (or must have been turned back into an ordinary root). Crucially, inside

a protected section, the condition under which logical deallocation is permitted is: if a location ℓ
is not an ordinary root in any thread, and if ℓ has no live heap predecessors, then it can be logically
deallocated. In other words, logical deallocation is oblivious to the existence of temporary roots.

4

Finally, perhaps surprisingly, because the points-to assertion survives logical deallocation and

enables read and write access, a temporary root that has already been logically deallocated can still
be accessed before the protected section ends. This pattern appears while verifying lock-free data

structures (§11.5).

This overview of IrisFit may raise two questions about our approach. Why bother with garbage

collection? Assuming that a program has been verified using IrisFit, could one replace the logical

deallocation points identified by the proof with actual calls to free, thereby removing the need for

garbage collection? We answer these two questions separately.

First, garbage collection is a widely used memory management technique. It is used, among

other examples, in Scheme, Java, Scala, Haskell, OCaml, C#, JavaScript, and Go. There are arguably

strong reasons why a programmer might choose a programming language equipped with garbage

collection. These reasons include simplicity (garbage collection enables an elegant, high-level

programming style), safety (garbage collection removes a class of runtime errors, including double-

free and use-after-free errors), and performance (garbage collection allows bulk deallocation, which

in certain circumstances can be more efficient than individual object deallocation). That said,

garbage collection does make space usage analysis more difficult. IrisFit is the first program logic

that allows such an analysis in the presence of challenging features such as mutable state and

concurrency. Moreover, we believe that, in the future, IrisFit is can serve as a logical foundation for

automated space complexity analyses (§13).

Second, although in simpler settings [Madiot and Pottier 2022; Moine et al. 2023] it could make

sense to transform logical deallocation points into physical memory deallocation instructions,

IrisFit is a more advanced logic, where such a transformation can be unsound or impossible. Indeed,

as explained earlier in this section, IrisFit allows for logically deallocating a block in advance
4
Should space become scarce, in the worst-case scenario, the garbage collector will be invoked at a time where every thread

is blocked at a memory allocation instruction or at a polling point. In such a situation, every thread is outside a protected

section, so there are no temporary roots. Thus, the existence of temporary roots inside protected sections has no impact on

the worst-case scenario.

, Vol. 1, No. 1, Article . Publication date: January 2018.

12 Alexandre Moine, Arthur Charguéraud, and François Pottier

inside a protected section, even if this block is still in use within this protected section. In such

a situation, transforming a logical deallocation operation into a physical free instruction would

introduce a use-after-free error. Furthermore, IrisFit allows one thread to logically deallocate

a block whose address is available (at runtime) only to some other thread. This idiom, which we call

logical deallocation by proxy, appears in our analysis of Treiber’s stack (§11.5). In such a situation,

transforming logical deallocation into a free instruction is impossible, because the address of the

object that must be deallocated is not at hand! In conclusion, we remark that, in concurrent code,

placing free instructions in a correct and optimal way is known to be an extremely hard problem,

which IrisFit does not solve. This problem is the raison d’être of safe memory reclamation (SMR)

schemes (§12.6) and one key argument in favor of general-purpose concurrent garbage collectors,

which subsume SMR schemes.

2.7 Closures
To model the space complexity of programs that involve closures [Landin 1964; Appel 1992], we

must somehow reflect the fact that a closure is a heap-allocated object. It has an address, a size, and

may hold pointers to other objects. Thus, a closure has both direct and indirect impacts on space

complexity: it occupies some space; and, by pointing to other objects, it keeps these objects live

(reachable), preventing the GC from reclaiming the space that they occupy.

Thus, we cannot use the standard small-step, substitution-based semantics of the 𝜆-calculus,

where a 𝜆-abstraction is a value that does not have an address or a size. Instead, two approaches

come to mind. One approach is to view a 𝜆-abstraction as a primitive expression (not a value) whose

evaluation causes the allocation of a closure. Another approach is to adopt a restricted calculus

that offers only closed functions (as opposed to 𝜆-abstractions with free variables) and to define
closure construction and closure invocation as macros, or canned sequences of instructions, on top

of this calculus. As shown by Paraskevopoulou and Appel [2019], these two approaches yield the

same space cost model. Furthermore, provided suitable syntax is chosen, the end user does not see

the difference: it is just a matter of presentation in the metatheory.

We choose the second approach, because we find it simpler. In so doing, we follow Gómez-

Londoño et al. [2020], who define the CakeML cost model at the level of DataLang, the language

that serves as the target of closure conversion.

Thus, we equip LambdaFit with closed functions, which we also refer to as code pointers. We write

𝜇ptr 𝑓 . 𝜆®𝑥 . 𝑡 for a (recursive, multi-argument) closed function, and write (𝑣 ®𝑢)ptr for the invocation
of the code pointer 𝑣 with arguments ®𝑢. LambdaFit does not have primitive closures. This allows

us to present a program logic for LambdaFit and to establish the soundness of this logic without

worrying about closures. Once this is done, we define closure construction 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 and closure
invocation (ℓ ®𝑢)clo as macros, and we extend our program logic with high-level reasoning rules for

closures (§9). This allows end users to reason about these macros without expanding them and

without even knowing how they are defined. In summary, LambdaFit can macro-express closures,

and our logic allows reasoning about closures in the same way as if they were primitive constructs.

Our construction of closures as macros is the same as in our previous paper [Moine et al. 2023].

Our treatment of closures in the logic, however, has been generalized to multiple threads and

simplified by describing closures via persistent predicates (§9).

3 WHY TREIBER’S STACK NEEDS PROTECTED SECTIONS
To illustrate how protected sections can lead to tighter space bounds, we use the example of Treiber’s

stack, a lock-free, linearizable stack [Treiber 1986]. We first present a naive implementation of

this data structure without protected sections (§3.1). We point out that this implementation has

unsatisfactory worst-case heap space complexity: there are scenarios where a successful pop

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 13

1 let create () = ref nil

2

3 let rec push s v =

4 let h = !s in

5 let h' = new_cell () in

6 set_data h' v;

7 set_tail h' h;

8 if compare_and_swap s h h'

9 then ()

10 else push s v

11 let rec pop s =

12 let h = !s in

13 if is_nil h

14 then pop s

15 else

16 let h' = tail h in

17 if compare_and_swap s h h'

18 then data h

19 else pop s

Fig. 1. An unsafe-for-space implementation of Treiber’s stack

operation does not allow any memory cell to be freed (§3.2). All memory can eventually be

recovered, but this may require waiting until all threads have completed their interaction with

the stack. This situation is unpleasant: pop cannot be given a simple logical specification of the

form “a successful pop frees up one list cell worth of heap space”. We show that, by annotating the

code with protected sections, one can eliminate these undesirable scenarios and obtain the desired

specification (§3.3). Near the end of this paper (§11.5), we present the details of how we formally

establish this specification in IrisFit.

3.1 Naive Implementation of Treiber’s Stack
Treiber’s stack is implemented as a mutable reference to an immutable linked list, whose head

corresponds to the top of the stack. Pseudo-code is presented in Figure 1.

The function call create() creates a new stack, represented as a fresh reference to an empty

list nil. The nil value takes up no heap space: it is in fact an integer value.

The functions push and pop make crucial use of the atomic compare-and-swap (CAS) instruction.

Each of them is implemented as a “CAS loop”: it prepares an operation and attempts to atomically

commit this operation using a CAS instruction. If the CAS succeeds, the function returns; otherwise,

the loop continues with another attempt. Here, each loop is encoded as a tail-recursive function.

The function push s v inserts a new element v in a stack s. First, s is dereferenced (line 4) so as

to obtain the address h of the head of the linked list. Then, a new list cell h' is allocated (line 5). The

“data” and “tail” fields are initialized with v (line 6) and h (line 7). Then, a CAS instruction attempts

to update the content of s from h to h' (line 8). If this attempt is successful, push returns (line 9);

otherwise, it means that a concurrent push or pop has succeeded. In this case, another attempt is

made (line 10).

The function pop s extracts the top element of the stack s. First, the head h of the linked list

is read (line 12). If the list is empty, pop makes another attempt (line 14), waiting for the stack to

become nonempty. Otherwise, the “tail” field of the cell h is read so as to obtain the address h' of

the next list cell (line 16). Then, a CAS instruction attempts to update the content of s from h to h'

(line 17). If this attempt is successful, pop reads the “data” field of the cell h and returns its value

(line 18); otherwise, it means that a concurrent push or pop has succeeded. In this case, another

attempt is made (line 19).

Treiber’s stack is linearizable [Herlihy and Wing 1990], in the sense that push and pop atomically

take effect at a certain point between the function call and return.

3.2 Space Consumption of Treiber’s Stack without Protected Sections
What is the space consumption of push and pop? Let us write𝑊 for the number of memory words

occupied by one list cell. A successful push operation consumes𝑊 memory words, as it allocates

, Vol. 1, No. 1, Article . Publication date: January 2018.

14 Alexandre Moine, Arthur Charguéraud, and François Pottier

Initial state Problematic state

Fig. 2. Initial and problematic states of the example scenario for Treiber’s stack. A box represents a memory

block, whose location appears at the top left. A circled location is a root.

one single list cell. Symmetrically, one might expect a successful pop operation to free up𝑊 memory

words. Indeed, the list cell that is extracted from the list becomes unused, so one might expect the

garbage collector to be able to reclaim it.

However, this intuition is false: when pop returns, although the list cell that has just been

extracted is indeed unused, it is not necessarily unreachable. Indeed, it might still be a root of other

threads that are still in the process of executing a push or pop operation (which will fail) on this

cell. In such a case, all descendants of this cell remain reachable as well. This issue can lead to bad

worst-case heap space complexity, but this depends on the placement of polling points.

A Potentially Problematic Scenario and a Way Out. Let us examine the problematic scenario in

greater detail. In this scenario, a cell that has been extracted by a successful pop operation remains

reachable by other threads, preventing its immediate reclamation. Figure 2 depicts the initial state

and the problematic state of this scenario. Suppose that the stack s consists of a single list cell

whose address is ℓ . Suppose that thread 𝐴 attempts to push a new value onto s, while thread 𝐵

attempts to pop a value off s. Thread 𝐴 starts making progress while thread 𝐵 is asleep. Thread 𝐴

begins to execute push. At line 4, its local variable h is bound to the address ℓ . At line 5, it allocates

a new list cell at address ℓ ′; its local variable h' is bound to ℓ ′. At line 7, the “tail” field of the new

cell is set to ℓ . Then, suppose thread 𝐴 falls asleep. Thread 𝐵 wakes up and successfully pops one

value off the stack. The reference s now stores the value nil. The cell ℓ has been extracted by pop

and is no longer logically part of the stack. The cell ℓ ′ has not yet been inserted by push and is not

logically part of the stack.

Because the cell ℓ has been extracted by a pop operation that has successfully completed, one

might expect this cell to be now unreachable. However, this is not the case. Thread 𝐴 has fallen

asleep between lines 7 and 8. At this point, the local variables h and h' are still needed in the future:

they occur on line 8. Therefore, the locations ℓ and ℓ ′ are roots in thread 𝐴. Besides, even if ℓ was

not a root, it would still be reachable via the root ℓ ′, since the “tail” field of the cell ℓ ′ contains the
pointer ℓ . This is potentially problematic: a cell that has been extracted by pop is still reachable

after pop has returned. So, at this point, the garbage collector cannot reclaim this cell. Therefore, the
informal claim that “pop frees up𝑊 words of memory” seems compromised. Can it be formalized

in such a way that it is actually true?

To answer this question in a positive way, a tempting first idea is to somehow forbid this

undesirable scenario. For example, forbidding thread 𝐴 from falling asleep at this particular point,

between lines 7 and 8, might come to mind. However, this idea does not seem practical; we do not

wish to impose restrictions on the scheduler.

Instead, we remark that provided thread 𝐴 is allowed to make progress until line 10, there really
is no problem at all. That is, provided no polling point prevents thread 𝐴 from reaching line 10, the
above claim is true, in a certain sense.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 15

1 let create () = ref nil

2

3 let rec push s v =

4 let h' = new_cell () in

5 set_data h' v;

6 enter ; let h = !s in

7 set_tail h' h;

8 if compare_and_swap s h h'

9 then exit

10 else (exit ; push s v)

11 let rec pop s =

12 enter ; let h = !s in

13 if is_nil h

14 then (exit ; pop s)

15 else

16 let h' = tail h in

17 if compare_and_swap s h h'

18 then (let v = data h in exit ; v)

19 else (exit ; pop s)

Fig. 3. A safe-for-space version of Treiber’s stack. Protected section entry and exit points are highlighted.

Indeed, should some other thread (say, thread 𝑍) signal that it needs space, then the scheduler

can choose to immediately invoke the garbage collector, which might or might not free up enough

space; but, what is more interesting, the scheduler can also wake up thread 𝐴 and let it make

progress. Recall the scenario that we are considering: thread 𝐵 has successfully executed pop after

the location ℓ was read from s by thread 𝐴 at line 4. Therefore, the CAS instruction in thread 𝐴

must fail, and thread 𝐴 must reach the second branch of the conditional construct, at line 10. At

this point, the variables h and h' are no longer needed, so the locations ℓ and ℓ ′ are no longer

roots in thread 𝐴. Moreover, ℓ ′ does not appear in the heap at all, and ℓ can be reached only via ℓ ′:
therefore, both ℓ and ℓ ′ are unreachable. Hence, at this point, these cells can be reclaimed. Thus,

they can be reclaimed before the request for space by thread 𝑍 must be satisfied.

In summary, provided no polling point prevents thread 𝐴 from reaching line 10, there is no prob-

lem: the informal claim that “pop frees up𝑊 words of memory”, is true, provided one understands

that it means: “once pop has returned, eventually,𝑊 words of memory will be freed”.

On the other hand, if a polling point was inserted by the compiler in the code of push between

lines 7 and 8, that would be problematic. Assuming that thread 𝑍 is waiting for space, there would

be no way for thread 𝐴 to make progress past this polling point. So, the location ℓ ′ would remain

a root in thread 𝐴, and the garbage collector would be unable to reclaim the cell at address ℓ ′. With

some bad luck, though, perhaps reclaiming this cell is necessary in order to recover enough space

to satisfy the memory allocation request by thread 𝑍 . In such an event, the system would be in

a deadlock. It would be impossible to prove that “once pop has returned, eventually,𝑊 words of

memory will be freed”.

3.3 Space Consumption of Treiber’s Stack with Protected Sections
In the previous section (§3.2), we have argued that the compiler must not insert a polling point

between the point where the address of the head cell is read and a point where this address ceases

to be a root. To forbid this, a protected section can and must be used. The modified pseudo-code

in Figure 3 illustrates one way of doing so. With respect to the original code in Figure 1, two

main changes are made. First, protected sections, delimited by enter and exit instructions, are

inserted into the functions push and pop. Second, the allocation of a new list cell in push must be

anticipated (moved higher up in the code), because memory allocation inside protected sections is

forbidden (§2.5).

The protected sections in Figure 3 are placed in such a way that, outside of these protected

sections, no list cell is a root. Thus, there is no danger of a polling point being inserted at a point

where a list cell is a root.

With respect to this version of the code, we are able to formally prove that “pop frees up𝑊

words of memory”. Technically, the list cell addresses that are read inside protected sections are

, Vol. 1, No. 1, Article . Publication date: January 2018.

16 Alexandre Moine, Arthur Charguéraud, and François Pottier

20 let rec push_aux s v h' =

21 set_data h' v;

22 enter ; let h = !s in

23 set_tail h' h;

24 if compare_and_swap s h h'

25 then exit

26 else (exit ; push_aux s v h')

27

28 let push' = push_aux s v (new_cell ())

Fig. 4. A tempting yet unsafe-for-space optimization

registered in our program logic as temporary roots. This allows these addresses to be logically

deallocated by a successful pop operation. More details about this statement and about its proof

are given later on (§11.5).

An Unsafe-For-Space Optimization. The code for push that we present in Figure 3 may seem naive.

Indeed, a new list cell is allocated at each iteration of the CAS loop (that is, at each recursive call

to push). A tempting optimization is to allocate a list cell outside of the loop and to reuse this cell

at each recursive call. Such an optimization is standard [Herlihy and Shavit 2012, §11.2]. Figure 4

presents a version of push, named push', which incorporates it.

Unfortunately, this optimization re-introduces the space complexity problem that was discussed

earlier (§3.2): it can prevent a concurrent pop operation from freeing up memory. Indeed, push'

does not satisfy the property “outside protected sections, no list cell is a root”, which push satisfies,

and which is sufficient (although not necessary) to achieve good space complexity. The culprit is

the local variable h', which is mentioned on line 26, outside of the protected section. Let us write ℓ

and ℓ ′ for the addresses to which the local variables h and h' are bound. Although the list cell at

address ℓ ′ is not yet part of the data structure, it points to the list cell at address ℓ , which is or has

been part of the data structure. Therefore, via the root ℓ ′, the list cell ℓ and its descendants are

reachable; this is undesirable.

To eliminate this problem, one solution would be to overwrite the pointer from ℓ ′ to ℓ in case the

CAS instruction fails. One could do so by inserting a store operation just before the exit instruction

on line 26. Then, the list cell at address ℓ ′ would still be a root outside of the protected section, but

(because this cell has no successor) this would not cause any other cells to remain reachable. Thus,

the desired heap space complexity would be achieved. However, we fear that, due to the extra store

operation, this code may be more expensive in practice than the original unoptimized code, which

allocates a new cell at each loop iteration. Furthermore, IrisFit, as presented in this paper, cannot

verify this alternative version. Indeed, inside protected sections, IrisFit has a concept of temporary

root, but does not have a concept of temporary heap-to-heap pointer.

Another tentative solution would be to place the entire loop inside a single protected section.

Then, as in the unoptimized code, it would clearly be the case that, outside of a protected section,

no list cell is a root. However, because we want to ensure that protected sections terminate in

bounded time, we have forbidden loops inside protected sections. Even if we did allow provably

terminating loops inside protected sections, that would not help: the loop in push_aux is potentially

non-terminating.

4 SYNTAX AND SEMANTICS OF LAMBDAFIT
In this section, we formally present the syntax of LambdaFit (§4.1) and its small-step reduction

relations (§4.2). These reduction relations define the three semantics of LambdaFit (§2.1).

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 17

Primitives ⊙ ::= && | || | + | − | × | ÷ | =

Values 𝑣,𝑤 ::= () | 𝑏 ∈ {false, true} | 𝑧 ∈ Z | ℓ ∈ L | 𝜇ptr 𝑓 . 𝜆®𝑥 . 𝑡 where fv(𝑡) ⊆ {𝑓 } ∪ ®𝑥

Terms 𝑡,𝑢 ::= 𝑣 value
𝑥 variable
let𝑥 = 𝑡 in 𝑡 sequencing
if 𝑡 then 𝑡 else 𝑡 conditional
(𝑡 ®𝑢)ptr code pointer invocation
𝑡 ⊙ 𝑡 primitive operation
alloc 𝑡 heap allocation

𝑡 [𝑡] heap load
𝑡 [𝑡]←𝑡 heap store
fork 𝑡 thread creation
CAS 𝑡 [𝑡] 𝑡 𝑡 compare-and-swap
enter entering a protected section
exit exiting a protected section
poll polling point

Contexts 𝐾 ::= let𝑥 = □ in 𝑡 | if □ then 𝑡 else 𝑡 | □ ⊙ 𝑡 | 𝑣 ⊙ □
alloc □ | □[𝑡] | 𝑣 [□] | □[𝑡]←𝑡

𝑣 [□]←𝑡 | 𝑣 [𝑣]←□ | (□ ®𝑢)ptr | (𝑣 (®𝑣 ++ □ ++ ®𝑢))ptr
CAS□[𝑡] 𝑡 𝑡 | CAS 𝑣 [□] 𝑡 𝑡 | CAS 𝑣 [𝑣] □ 𝑡 | CAS 𝑣 [𝑣] 𝑣 □

Fig. 5. LambdaFit: syntax

4.1 Syntax
The syntax of LambdaFit appears in Figure 5. A value 𝑣 is a piece of data that fits in one word

of memory. A value can be the unit value (), a Boolean value 𝑏, an integer value 𝑧, a memory

location ℓ (drawn from an infinite set L), or a code pointer 𝜇ptr 𝑓 . 𝜆®𝑥 . 𝑡 . Such a code pointer is

a closed, recursive, multi-argument function. The side condition fv(𝑡) ⊆ {𝑓 } ∪ ®𝑥 ensures that the

function is closed: that is, the only variables that may appear in the body of the function are 𝑓

(a self-reference, allowing the function to invoke itself) and ®𝑥 (the formal parameters).

The syntax of terms (also known as expressions) includes a number of standard sequential

constructs, such as sequencing, conditionals, code pointer invocations, and primitive operations.

The heap allocation expression alloc 𝑛 allocates a fresh memory block of size 𝑛 and returns its

address. The field at offset 𝑖 in the memory block at address 𝑥 is read by the “load” expression 𝑥 [𝑖]
and written by the “store” expression 𝑥 [𝑖]←𝑦.

Two standard concurrency-related constructs are “fork” and CAS. The expression fork 𝑡 spawns

a new thread whose code is 𝑡 . This is unstructured concurrency: there is no primitive operation

to wait until a thread terminates. This approach contrasts with the less-expressive structured
concurrency, such as fork/join or async/finish [Charles et al. 2005; Lee and Palsberg 2010], where

there is a primitive operation that waits for a thread or a group of threads to terminate. As we

demonstrate later in this paper (§11.4), structured concurrency (async/finish) can be encoded as a

library on top of unstructured concurrency.

The compare-and-swap expression CAS ℓ [i] 𝑣 𝑣 ′ atomically loads a value from block ℓ at offset i,
compares this value with 𝑣 , and, in case they are equal, overwrites this value with 𝑣 ′. Its Boolean
result indicates whether the write took place.

The poll instruction is a polling point (§2.4). The instructions enter and exit mark the beginning

and end of a protected section (§2.5).

4.2 Semantics
We now define the operational semantics of LambdaFit. We begin with our model of memory, that is,

our view of the heap as a collection of memory blocks, and our notion of heap size (§4.2.1). We

define thread pools and configurations (§4.2.2). Then, we introduce a series of reduction relations

, Vol. 1, No. 1, Article . Publication date: January 2018.

18 Alexandre Moine, Arthur Charguéraud, and François Pottier

which, together, form the dynamic semantics of LambdaFit. The head reduction relation (§4.2.3)

describes one elementary step of computation by one thread. The step relation (§4.2.4) allows head

reduction to take place under an evaluation context. It represents one step of computation by one

thread. The garbage collection relation (§4.2.5) describes the effect of the GC on the heap. The action
relation (§4.2.6) combines computation steps and garbage collection steps. Allowing any computa-

tion steps to take place and preventing garbage collection yields the oblivious semantics (§4.2.7).

Restricting the action relation to a subset of enabled actions (§4.2.8), which depends on a heap size

limit 𝑆 , yields the default reduction relation (§4.2.9), which is the main reduction relation of the

default semantics. Allowing for the heap size limit 𝑆 to grow over time yields the growing reduction
relation (§4.2.10).

4.2.1 Memory Blocks, Stores, and Heap Size. A memory block is either a tuple of values, written ®𝑣 ,
or a special deallocated block, written �. A store 𝜎 (or heap) is a finite map of locations to memory

blocks. We write ∅ for the empty store.

Our semantics does not recycle memory locations. When a heap block at address ℓ is reclaimed

by the GC, the store is updated with a mapping of ℓ to �. The address ℓ continues to exist and is

never re-used. Naturally, in an implementation, memory locations would be recycled. However, we

work at a higher level of abstraction. The reasoning rules of our program logic guarantee that a

memory allocation always produces a fresh address. One could in principle prove that our semantics

is equivalent to a lower-level semantics where locations can be recycled once they have become

unreachable. We have not done so.

As our semantics does not recycle memory locations, in particular, a reachable memory location

cannot be recycled. As a result, one important source of ABA problems disappears. In fact, as noted

by Michael [2004b, §2], in the presence of garbage collection, all ABA problems can be avoided

by a skilled and careful programmer. However, a programmer who attempts to manually recycle

memory can still run into ABA problems.

We assume that the space usage (in words) of a block of 𝑛 fields is size(𝑛), where size is a

mathematical function of N to N. If, for instance, every memory block is preceded by a one-word

header, then the function size would be defined by size(𝑛) = 𝑛 + 1. LambdaFit and IrisFit are

independent of the definition of size. For our case studies (§11), we chose size(𝑛) = 𝑛. We write

size(®𝑣) as a shorthand for size(𝑛), where 𝑛 is the length of the list ®𝑣 . By convention, we let size(�)
be 0. This reflects the fact that a deallocated block occupies no space.

We define the size of a store 𝜎 as the sum of the sizes of its blocks. Thus, we do not measure

the physical size of the heap, that is, how much memory has been borrowed from the operating

system. Instead, we measure the total size of the memory blocks that are currently allocated. We

ignore fragmentation.

4.2.2 Thread Pools and Configurations. A thread 𝑡 is just a term. A thread’s status 𝑔 is either In
or Out. The status records whether the thread is currently inside or outside a protected section.

A thread pool 𝜃 is a list of pairs (𝑡, 𝑔) of a thread 𝑡 and its status 𝑔. A thread identifier 𝜋 is an integer

index into a thread pool.

A configuration 𝑐 is a pair (𝜃, 𝜎) of a thread pool 𝜃 and a store 𝜎 . The initial configuration for

a program 𝑡 consists of a thread pool that contains just the thread (𝑡,Out) and the empty store ∅.
We write init (𝑡) for this initial configuration. We define the heap size of a configuration as the size

of its store: size((𝜃, 𝜎)) = size(𝜎).

4.2.3 The Head Reduction Relation. The head reduction relation 𝑡 /𝑔 /𝜎 head−−−→ 𝑡 ′ /𝑔′ /𝜎 ′ / 𝑡? describes
an evolution of the term 𝑡 with status 𝑔 and store 𝜎 to a term 𝑡 ′ with status 𝑔′ and store 𝜎 ′, optionally

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 19

HeadLetVal

let𝑥 = 𝑣 in 𝑡 /𝑔 /𝜎
head−−−−→ [𝑣/𝑥]𝑡 /𝑔 /𝜎 / 𝜀

HeadCall

𝑣 = 𝜇ptr 𝑓 . 𝜆®𝑥 . 𝑡 | ®𝑥 | = | ®𝑤 |

(𝑣 ®𝑤)ptr /Out /𝜎
head−−−−→ [𝑣/𝑓] [®𝑤/®𝑥]𝑡 /Out /𝜎 / 𝜀

HeadIfTrue

if true then 𝑡1 else 𝑡2 /𝑔 /𝜎
head−−−−→ 𝑡1 /𝑔 /𝜎 / 𝜀

HeadIfFalse

if false then 𝑡1 else 𝑡2 /𝑔 /𝜎
head−−−−→ 𝑡2 /𝑔 /𝜎 / 𝜀

HeadEnter

enter /Out /𝜎
head−−−−→ () / In /𝜎 / 𝜀

HeadExit

exit / In /𝜎
head−−−−→ () /Out /𝜎 / 𝜀

HeadPrim

𝑣1 ⊙ 𝑣2
pure−−−→ 𝑣

𝑣1 ⊙ 𝑣2 /𝑔 /𝜎
head−−−−→ 𝑣 /𝑔 /𝜎 / 𝜀

HeadAlloc

ℓ ∉ dom(𝜎) 0 < 𝑛 𝜎′ = [ℓ := ()𝑛]𝜎

alloc 𝑛 /Out /𝜎
head−−−−→ ℓ /Out /𝜎′ / 𝜀

HeadLoad

𝜎 (ℓ) = ®𝑤 0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣

ℓ [i] /𝑔 /𝜎 head−−−−→ 𝑣 /𝑔 /𝜎 / 𝜀

HeadStore

𝜎 (ℓ) = ®𝑤 0 ≤ i < | ®𝑤 | 𝜎′ = [ℓ := [i :=𝑣] ®𝑤]𝜎

ℓ [i]←𝑣 /𝑔 /𝜎
head−−−−→ () /𝑔 /𝜎′ / 𝜀

HeadCASFailure

𝜎 (ℓ) = ®𝑤 0 ≤ i < | ®𝑤 |
®𝑤 (i) ≠ 𝑣

CAS ℓ [i] 𝑣 𝑣 ′ /𝑔 /𝜎 head−−−−→ false /𝑔 /𝜎 / 𝜀

HeadCASSuccess

𝜎 (ℓ) = ®𝑤 0 ≤ i < | ®𝑤 |
®𝑤 (i) = 𝑣 𝜎 ′ = [ℓ := [i :=𝑣 ′] ®𝑤]𝜎

CAS ℓ [i] 𝑣 𝑣 ′ /𝑔 /𝜎 head−−−−→ true /𝑔 /𝜎′ / 𝜀

HeadPoll

poll /Out /𝜎
head−−−−→ () /Out /𝜎 / 𝜀

HeadFork

fork 𝑡 /Out /𝜎
head−−−−→ () /Out /𝜎 / 𝑡

Fig. 6. The head reduction relation

StepHead

𝑡 /𝑔 /𝜎
head−−−→ 𝑡 ′ /𝑔′ /𝜎 ′ / 𝑡?

𝑡 /𝑔 /𝜎
step−−−→ 𝑡 ′ /𝑔′ /𝜎 ′ / 𝑡?

StepCtx

𝑡 /𝑔 /𝜎
step−−−→ 𝑡 ′ /𝑔′ /𝜎 ′ / 𝑡?

𝐾 [𝑡] /𝑔 /𝜎 step−−−→ 𝐾 [𝑡 ′] /𝑔′ /𝜎 ′ / 𝑡?

Fig. 7. The step relation

Edge

𝜎 (ℓ) = ®𝑤 ®𝑤 (𝑖) = ℓ′

ℓ ⇝𝜎 ℓ
′

GC

dom(𝜎′) = dom(𝜎)
∀ℓ . ℓ ∈ dom(𝜎) =⇒{

𝜎′ (ℓ) = 𝜎 (ℓ)
∨ 𝜎′ (ℓ) = � ∧ ¬ (∃𝑟 ∈ 𝑅, 𝑟 ⇝∗𝜎 ℓ)

𝑅 ⊢ 𝜎 gc−−→ 𝜎′

Fig. 8. The garbage collection relation

ActionThread

𝜃 (𝜋) = (𝑡, 𝑔) 𝑡 /𝑔 /𝜎
step−−−→ 𝑡 ′ /𝑔′ /𝜎′ / 𝑡?

𝜃 ′ = [𝜋 := (𝑡 ′, 𝑔′)]𝜃 ++ [(𝑡?,Out)]

(𝜃, 𝜎) action−−−−−→𝜋 (𝜃 ′, 𝜎′)

ActionGC

locs(𝜃) ⊢ 𝜎 gc−−→ 𝜎′ 𝜎 ≠ 𝜎′

(𝜃, 𝜎) action−−−−−→gc (𝜃, 𝜎′)

Fig. 9. The action relation

, Vol. 1, No. 1, Article . Publication date: January 2018.

20 Alexandre Moine, Arthur Charguéraud, and François Pottier

forking off a new thread 𝑡?. The metavariable 𝑡? denotes an optional term: it is either a term 𝑡 or 𝜀,

which means that no thread was forked off.

The head reduction relation describes the reduction of a single isolated instruction. Reduction

under an evaluation context is handled by the step relation introduced shortly afterwards (§4.2.4).

Moreover, the head reduction relation describes how an instruction is executed under the assumption

that this instruction is enabled, that is, not blocked. The definition of enabled instructions, which

describes under what conditions an instruction is blocked, is given later on (§4.2.8).

The head reduction relation is defined by the rules in Figure 6.

HeadLetVal, HeadIfTrue, HeadIfFalse, HeadPrim are standard.

HeadLoad, HeadStore, HeadCASSuccess and HeadCASFailure, which describe memory

accesses, are also standard. These rules require that the memory location ℓ be valid: this is expressed

by the premise 𝜎 (ℓ) = ®𝑤 . Furthermore, they require the integer value 𝑖 to be a valid index into the

memory block at address ℓ : this is expressed by the premise 0 ≤ i < | ®𝑤 |. We write ®𝑤 (𝑖) for the 𝑖-th
value in the sequence ®𝑤 , and [i := 𝑣] ®𝑤 for the sequence obtained by updating the sequence ®𝑤
at index i with the value 𝑣 . We write [ℓ := ®𝑤]𝜎 for the store obtained by updating the store 𝜎 at

address ℓ with the block ®𝑤 . Hence, [ℓ := [i :=𝑣] ®𝑤]𝜎 describes an update of the 𝑖-th field of the block

at location ℓ .

HeadEnter and HeadExit cause the thread to change its status from Out to In and vice-versa.

By design, no reduction rule describes the effect of enter when the thread’s status is In or the effect

of exit when the thread’s status is Out. Such a situation is considered a runtime error: the thread is

stuck.
HeadCall, HeadAlloc, HeadFork, and HeadPoll require the thread’s status to be Out. Thus,

inside a protected section, a function call, a memory allocation request, a “fork” instruction, or

a polling point causes a runtime error. Aside from this, HeadCall and HeadFork are standard.

HeadAlloc allocates a block of 𝑛 fields at a fresh memory location and initializes each field with

a unit value. We write ()𝑛 for a sequence of 𝑛 unit values. HeadPoll indicates that a polling point

is a no-operation: poll acts as a form of barrier (§4.2.8), and is otherwise effectless.

4.2.4 The Step Relation. The step relation has the same shape as the head reduction relation

(§4.2.3). It takes the form 𝑡 /𝑔 /𝜎
step−−−→ 𝑡 ′ /𝑔′ /𝜎 ′ / 𝑡?. It is inductively defined by the rules StepHead

and StepCtx in Figure 7. These rules allow one head reduction step under a stack of evaluation

contexts. An evaluation context 𝐾 is a term with a hole written □ at depth exactly 1. The syntax of

evaluation contexts, presented in Figure 5, dictates a left-to-right, call-by-value evaluation strategy.

We write 𝐾 [𝑡] for the term obtained by filling the hole of the evaluation context 𝐾 with the term 𝑡 .

4.2.5 The Garbage Collection Relation. Several concepts related with garbage collection are defined

in Figure 8. The edge relation ℓ ⇝𝜎 ℓ
′
, defined by the rule Edge, means that the block at location ℓ

contains a pointer to location ℓ ′.5 When this relation holds, we say that ℓ is a predecessor of ℓ ′. The
reachability relation ℓ ⇝∗

𝜎 ℓ
′
is the reflexive-transitive closure of the edge relation.

The garbage collection relation 𝑅 ⊢ 𝜎 gc−→ 𝜎 ′, defined by the rule GC, describes the effect of the GC.
This relation means that a garbage collection phase can transform the store 𝜎 into a store 𝜎 ′, while
respecting the set of roots 𝑅, a set of memory locations. This relation is non-deterministic: the GC

may reclaim any unreachable memory block, but need not reclaim every such block. According to

the first premise of the rule GC, the stores 𝜎 and 𝜎 ′ have the same domain: garbage collection does

not create or destroy any memory locations. According to the second premise, at each memory

5
A value either is a location or contains no location at all. Thus, in Edge, we write just ®𝑤 (𝑖) = ℓ ′ instead of the seemingly

more general condition ℓ ′ ∈ locs (®𝑤 (𝑖)) .

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 21

Oblivious

𝑐
action−−−−−→𝜋 𝑐

′

𝑐
oblivious−−−−−−−→ 𝑐′

Fig. 10. The oblivious reduction relation

IsAllocHead

IsAlloc 𝑛 (alloc 𝑛)

IsAllocCtx

IsAlloc 𝑛 𝑡

IsAlloc 𝑛 (𝐾 [𝑡])

IsPollHead

IsPoll poll

IsPollCtx

IsPoll 𝑡

IsPoll (𝐾 [𝑡])

AllocFits

∀𝑛. IsAlloc 𝑛 𝑡 =⇒ size(𝜎) + 𝑛 ≤ 𝑆
AllocFits𝑆 𝜎 𝑡

EveryAllocFits

∀𝑡 𝑔. (𝑡, 𝑔) ∈ 𝜃 =⇒ AllocFits𝑆 𝜎 𝑡

EveryAllocFits𝑆 (𝜃, 𝜎)

EnabledThread

𝑐 = (𝜃, 𝜎) 𝜃 (𝜋) = (𝑡, 𝑔)
AllocFits𝑆 𝜎 𝑡 IsPoll 𝑡 =⇒ EveryAllocFits𝑆 𝑐

Enabled𝑆 𝑐 𝜋

EnabledGC

Enabled𝑆 𝑐 gc

Fig. 11. Enabled actions (and auxiliary predicates)

location ℓ , either nothing happens (𝜎 ′ (ℓ) = 𝜎 (ℓ)) or a memory block becomes deallocated (𝜎 ′ (ℓ) = �).

The second case is permitted only if ℓ is not reachable from any of the roots in the set 𝑅.

4.2.6 The Action Relation. The relations defined so far describes how a thread makes a step (§4.2.4)

and how the GC makes a step (§4.2.5). We now define a relation that interleaves these two kinds of

steps. It is a labeled transition relation: each step is labeled with an action 𝑎, which is either a thread

identifier 𝜋 or the fixed token “gc”. The action relation 𝑐
action−−−−→𝑎 𝑐

′
relates two configurations 𝑐 and

𝑐′ and is labeled with an action. It is defined by the two rules in Figure 9. ActionThread allows

a step by one thread whose identifier is 𝜋 . This thread evolves from (𝑡, 𝑔) to (𝑡 ′, 𝑔′): the thread
pool is updated accordingly. The heap, which is shared between all threads, evolves from 𝜎 to 𝜎 ′.
A new thread 𝑡? possibly appears: if so, the thread pool is extended with the new entry (𝑡?,Out).
ActionGC describes a garbage collection step. The roots provided to the GC are locs(𝜃), that is,
the locations that occur in the thread pool: this is the FVR (§2.2). The side condition 𝜎 ≠ 𝜎 ′ forbids
stuttering steps, where the GC is invoked but frees no memory. Without this side condition, we

would be unable to establish our liveness theorem (Theorem 8.2), whose statement asserts that at

all times, in a bounded number of steps, the system must reach a configuration where no thread is

blocked by a memory allocation request.

4.2.7 The Oblivious Reduction Relation. The oblivious reduction relation 𝑐
oblivious−−−−−−→ 𝑐′ is defined by

the rule Oblivious in Figure 10. This relation simply allows one action by an arbitrary thread 𝜋 .

Garbage collection steps are not permitted: in this semantics, there is no need for garbage collection.

There is no limit on the size of the heap. This is the oblivious semantics of LambdaFit (§2.1).

4.2.8 Enabled Actions. In the default and growing semantics, two LambdaFit instructions can have

a blocking behavior: a large memory allocation instruction is blocking (§2.3); if a large memory

allocation request is outstanding, then a polling point is blocking (§2.4). To reflect this, we must

define under what conditions an action is enabled (allowed to proceed) or disabled (blocked).

, Vol. 1, No. 1, Article . Publication date: January 2018.

22 Alexandre Moine, Arthur Charguéraud, and François Pottier

EnabledAction

Enabled𝑆 𝑐 𝑎 𝑐
action−−−−−→𝑎 𝑐

′

𝑐
enabled action𝑆−−−−−−−−−−−−→𝑎 𝑐

′

Default

𝑐
enabled action𝑆−−−−−−−−−−−−→𝑎 𝑐

′

𝑐
default𝑆−−−−−−→ 𝑐′

Fig. 12. The default reduction relation

AllOutside

∀𝑡 𝑔. (𝑡, 𝑔) ∈ 𝜃 =⇒ 𝑔 = Out

AllOutside (𝜃, 𝜎)

GrowingStep

𝑐
default𝑆−−−−−−→ 𝑐′

(𝑆, 𝑐) growing−−−−−−→ (𝑆, 𝑐′)

GrowingIncreaseLimit

AllOutside 𝑐 ¬ EveryAllocFits𝑆 fullGC(𝑐)

(𝑆, 𝑐) growing−−−−−−→ (grow(𝑆), 𝑐)

Fig. 13. The growing reduction relation

The distinction between small and large memory allocation requests depends on the heap size

limit 𝑆 (§2.3). Therefore, the notion of enabled action depends on the parameter 𝑆 .

To define enabled actions, a few auxiliary predicates are needed. They appear in Figure 11.

The proposition IsAlloc 𝑛 𝑡 means that the next instruction of the thread 𝑡 is “alloc 𝑛”. In other

words, this thread is now requesting a new memory block of 𝑛 fields. Similarly, the proposition

IsPoll 𝑡 means that the next instruction of the thread 𝑡 is “poll”.

The proposition AllocFits𝑆 𝑡 𝜎 means that, if the next instruction in thread 𝑡 is an allocation

request, then it is a small one: that is, there is currently enough free space in the store 𝜎 to satisfy it.

When this is the case, we say that thread 𝑡 fits. The proposition EveryAllocFits𝑆 𝑐 means that, in

the configuration 𝑐 , every thread fits. These propositions depend on the heap size limit 𝑆 .

The proposition Enabled𝑆 𝑐 𝑎 means that, in the configuration 𝑐 , action 𝑎 is enabled. This

proposition also depends on the heap size limit 𝑆 . It is defined by the rules EnabledThread and

EnabledGC in Figure 11. For a thread 𝜋 to be enabled, it must be the case that (1) thread 𝜋 fits and

(2) if thread 𝜋 is at a polling point then every thread fits. EnabledGC states that garbage collection

is enabled at all times.

The following simple lemma states that if every thread fits then every action is enabled. It is

used in the proof of our liveness theorem (§8.2). In the following, we say that a thread identifier 𝜋

is valid with respect to the configuration (𝜃, 𝜎) if 0 ≤ 𝜋 < |𝜃 | holds.

Lemma 4.1 (All Enabled). If EveryAllocFits𝑆 𝑐 holds, then, for every thread identifier 𝜋 that is
valid with respect to the configuration 𝑐 , Enabled𝑆 𝑐 𝜋 holds.

4.2.9 The Default Reduction Relation. The auxiliary relation 𝑐
enabled action𝑆−−−−−−−−−−−→𝑎 𝑐

′
, which is defined

in Figure 12, is the restriction of the action relation to enabled actions.

The default reduction relation 𝑐
default𝑆−−−−−−→ 𝑐′ is obtained from this auxiliary relation by abstracting

away the action 𝑎. Thus, a step in the default reduction relation corresponds to an enabled action

by some thread or by the GC. This reduction relation is the default semantics of LambdaFit.

By design of this semantics, the size of the heap can never exceed the limit 𝑆 . This is an immediate

consequence of the fact that large memory allocation requests are blocked.

Lemma 4.2 (Heap Size). If size(𝑐) ≤ 𝑆 and 𝑐
default𝑆−−−−−−→ 𝑐′ then size(𝑐′) ≤ 𝑆 .

This simple lemma is not used anywhere; it serves to document the design of the semantics.

4.2.10 The Growing Reduction Relation. The growing semantics (§2.1) is a variation of the default

semantics where the limit on the size of the heap can be automatically adjusted at runtime. In this

semantics, this limit is not fixed: instead, it is part of the current state of the machine. Thus, instead

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 23

of relating two configurations 𝑐 and 𝑐′ (§4.2.2), the growing reduction relation relates two pairs (𝑆, 𝑐)
and (𝑆 ′, 𝑐′), where 𝑆 and 𝑆 ′ represent the value of the heap limit before and after the reduction step.

This relation is defined by the two rules in Figure 13. The rule GrowingStep states that if under
the current heap limit 𝑆 a step is possible then this step can take place and the heap limit is unchanged.

(This can be a computation step or a garbage collection step.) The rule GrowingIncreaseLimit

states that if no thread is currently inside a protected section, and if in spite of the efforts of the

garbage collector the current heap limit blocks a memory allocation request, then the heap limit

can be increased from 𝑆 to grow(𝑆). The requirement that “no thread is inside a protected section”
6

is important: it ensures that the heap limit is increased only when there are no temporary roots.

Without this assumption, we would not be able to bound the heap limit of verified programs (§8.3).

The function grow is fixed: it is a parameter of the semantics. We make the following assumption:

Assumption 4.2.1. The function grow : N→ N satisfies the following two properties:
• ∀𝑥 . 𝑥 < grow(𝑥)
• ∀𝑥 𝑦. 𝑥 ≤ 𝑦 =⇒ grow(𝑥) ≤ grow(𝑦)

A typical example would be grow(𝑆) = max(2𝑆, 1), which means that when the current limit is

found to be too low, it is doubled (with special care for the case where the current limit is zero).

The default semantics and the growing semantics are close cousins: they are related by the

following two lemmas. Lemma 4.3 states that if an execution under the growing semantics brings

the heap limit up to the value 𝑆 ′, then the same execution is permitted by the default semantics with

a fixed limit of 𝑆 ′. Conversely, Lemma 4.4 states that if an execution under the default semantics is

possible, with a fixed limit of 𝑆 , then the same execution is permitted by the growing semantics,

without a need to increase the limit.

Lemma 4.3 (Growing to Default). (𝑆, 𝑐) growing−−−−−→∗ (𝑆 ′, 𝑐′) implies 𝑐 default𝑆′−−−−−−→∗𝑐′ and 𝑆 ≤ 𝑆 ′.

Lemma 4.4 (Default to Growing). 𝑐
default𝑆−−−−−−→∗𝑐′ implies (𝑆, 𝑐) growing−−−−−→∗ (𝑆, 𝑐′).

Furthermore, in the growing semantics, by design, the size of the heap cannot exceed the current

heap limit:

Lemma 4.5 (Heap Size). If size(𝑐) ≤ 𝑆 and (𝑆, 𝑐) growing−−−−−→∗ (𝑆 ′, 𝑐′) then size(𝑐′) ≤ 𝑆 ′.

Later on (§8.3), we prove that, under the growing semantics, a verified program can be executed

in bounded space.

5 PROGRAM LOGIC: ASSERTIONS
This section offers an overview of the various kinds of assertions that play a role in IrisFit. We

introduce the syntax of each assertion, its intuitive meaning, and the ghost reasoning rules that

help understand this meaning, such as splitting and joining rules. We informally explain the life

cycle of each assertion: where it typically appears, where it is exploited, and where it is consumed.

A presentation of the reasoning rules for terms is deferred to the following section (§6).

We begin with a presentation of triples (§5.1) and ghost updates (§5.2). Then, we briefly present

the standard points-to assertion (§5.3), the novel “sizeof ” assertion (§5.4), and space credits (§5.5).We

then devote our attention to the assertions that record reachability or unreachability information,

namely the pointed-by-heap assertion (§5.6), the novel pointed-by-thread assertion (§5.7), the

novel “inside” and “outside” assertions (§5.8), and deallocation witnesses (§5.9). Finally, we explain

6
The requirement that “no thread is inside a protected section” is expressed by the premise AllOutside 𝑐 . We write fullGC(𝑐)
for the configuration obtained from the configuration 𝑐 by deallocating all unreachable heap blocks. The formal definition

of the function fullGC can be found in our Coq mechanization [Moine 2025].

, Vol. 1, No. 1, Article . Publication date: January 2018.

24 Alexandre Moine, Arthur Charguéraud, and François Pottier

Conseqence

Φ 𝜋 locs (𝑡) Φ′ {Φ′} 𝜋 : 𝑡 {Ψ′} ∀𝑣 . Ψ′ 𝑣 𝜋 locs (𝑣) Ψ 𝑣

{Φ} 𝜋 : 𝑡 {Ψ}

Frame

{Φ} 𝜋 : 𝑡 {Ψ}
{Φ ∗ Φ′} 𝜋 : 𝑡 {𝜆𝑣. Ψ 𝑣 ∗ Φ′}

Fig. 14. Structural reasoning rules

liveness-based cancellable invariants (§5.10), a useful idiom that expresses that a certain invariant

holds as long as a certain location is live.

IrisFit is a variant of the Iris program logic [Jung et al. 2018b, §6–7] and is built on top of the

Iris base logic [Jung et al. 2018b, §5]. We write Φ for assertions, ⌜𝑃⌝ for a pure assertion, Φ ∗ Φ′
for a separating conjunction, and Φ −∗ Φ′ for a separating implication. We express the logical

equivalence of two assertions as Φ ≡ Φ′. A postcondition Ψ is a function of a value to an assertion:

in other words, it is the form 𝜆𝑣.Φ.

5.1 Triples
A triple takes the form {Φ} 𝜋 : 𝑡 {Ψ}. Its intuitive meaning is that if the store satisfies the assertion Φ
then it is safe for thread 𝜋 to execute the term 𝑡 ; furthermore, if and when this computation

terminates and produces a value 𝑣 , then the store satisfies the assertion Ψ 𝑣 .

Even though the default reduction relation (§4.2.9) is parameterized with a heap size limit 𝑆 ,

the meaning of triples is independent of 𝑆 . Indeed, triples are internally defined in terms of the

oblivious reduction relation (§8.4), which does not depend on 𝑆 . Therefore, none of the reasoning

rules mentions 𝑆 . Our program logic is compositional: each program component can be verified in

isolation and without knowledge of 𝑆 .

Formally, a triple is also parameterized by a mask [Jung et al. 2018b, §2.2]. Masks prevent the

user from opening an invariant twice. As our treatment of invariants and masks is standard, we

omit masks everywhere. The interested reader is referred to our mechanization [Moine 2025].

We write {Φ} 𝜋 : 𝑡 {𝜆ℓ.Φ′}, where the metavariable ℓ denotes a memory location, as syntactic

sugar for {Φ} 𝜋 : 𝑡 {𝜆𝑣. ∃ℓ . ⌜𝑣 = ℓ⌝ ∗ Φ′}. We adopt the convention that multi-line assertions are

implicitly joined by a separating conjunction.

5.2 Ghost Updates
Iris features ghost state and ghost updates [Jung et al. 2018b, §5.4]. A ghost update is written Φ ⇛ Φ′.
It is an assertion, which means that (up to an update of the ghost state) the assertion Φ can be

transformed into Φ′.
In IrisFit, it is sometimes necessary for a ghost update to refer to “the identifier of the current

thread” or to “the roots of the current thread”. For this purpose, we introduce a custom ghost
update, written Φ 𝜋 𝑉 Φ′, whose extra parameters are a thread identifier 𝜋 and a set of memory

locations 𝑉 . It is weaker than a standard ghost update: the law (Φ ⇛ Φ′) −∗ (Φ 𝜋 𝑉 Φ′) is valid.
Custom ghost updates are exploited in the Conseqence rule, which appears in Figure 14. This

rule allows strengthening the precondition and weakening the postcondition of a triple. Updating

the precondition requires a custom ghost update where the parameter𝑉 is instantiated with locs(𝑡).
Indeed, this set represents the roots at the point where this update takes place. Updating the

postcondition requires a custom ghost update where𝑉 is instantiated with locs(𝑣), where 𝑣 denotes
the result value of the term 𝑡 . Indeed, these are the roots at the point where that update takes place.

When a custom ghost update is independent of the parameters 𝜋 and𝑉 , we omit them: we write

Φ Φ′ for ∀𝜋 𝑉 . Φ 𝜋 𝑉 Φ′. Examples of custom ghost updates appear in Figures 18, 19, and 20

and are discussed in the following sections.

The Frame rule, also shown in Figure 14, retains its standard form.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 25

ℓ ↦→𝑝 ®𝑤 −∗ ℓ ↦→𝑝 ®𝑤 ∗ sizeof ℓ (size(®𝑤)) SizeOfPointsTo

sizeof ℓ 𝑛 ∗ sizeof ℓ 𝑚 −∗ ⌜𝑛 =𝑚⌝ SizeOfConfront

sizeof ℓ 𝑛 is persistent SizeOfPersist

Fig. 15. Reasoning rules of the “sizeof ” assertion

⌜True⌝ ⇛ ♦0 ZeroSC

♦(𝑛1 + 𝑛2) ≡ ♦𝑛1 ∗ ♦𝑛2 SplitJoinSC

Fig. 16. Reasoning rules for space credits

5.3 Points-to Assertions
IrisFit features standard points-to assertions of the form ℓ ↦→𝑝 ®𝑤 , where 𝑝 is either a fraction in the

semi-open interval (0, 1] or the discarded fraction □ [Vindum and Birkedal 2021]. In the latter case,

the points-to assertion is persistent.

Rules. Points-to assertions can be split and joined in the usual way, and a points-to assertion that

carries a fraction 𝑝 can be permanently transformed into one that carries the discarded fraction □.

We do not show these standard rules.

Life cycle. A points-to assertion appears when a memory block is allocated. It is required (and

possibly updated) when this block is accessed by a load, store, or CAS instruction (§6.2). It is not
required or consumed when this block is logically deallocated (§6.1). This is an original feature of

IrisFit.

5.4 Sizeof Assertions
The assertion sizeof ℓ 𝑛 means that there is or there used to be a block of size 𝑛 at address ℓ . It is

persistent: indeed, once the size of a block has been fixed, it can never be changed.

Rules. Two reasoning rules allow introducing and exploiting “sizeof ” assertions (Figure 15).

SizeOfPointsTo creates a “sizeof ” assertion out of a points-to assertion. SizeOfConfront states

that two “sizeof ” assertions for the same address must agree on the size of the block at this address.

Life cycle. The “sizeof ” assertion is produced by SizeOfPointsTo. It is consulted by the logical

deallocation rules (§6.1, §6.6) to determine the number of space credits that must be produced.

5.5 Space Credits
To reason about free space, we use space credits [Madiot and Pottier 2022; Moine et al. 2023]. The

assertion ♦𝑛 denotes the unique ownership of𝑛 space credits. It can be understood as a permission to

allocate 𝑛 words of memory. At a lower level of understanding, this assertion means that 𝑛 memory

words are currently free or can be freed by the GC once it is given a chance to run. This interpretation
of space credits is the same as in the earlier papers cited above.

Following Moine et al. [2023], space credits are measured using non-negative rational numbers.

Of course, a physical word of memory cannot be split, so the total number of space credits in

existence is a natural number; so are the numbers involved in the reasoning rules for memory

allocation and deallocation. Still, rational numbers appear essential in certain amortized complexity

analyses, as illustrated by the example of chunked stacks [Moine et al. 2023]. Rational credits also

appear in amortized time complexity analyses [Charguéraud and Pottier 2019; Mével et al. 2019].

, Vol. 1, No. 1, Article . Publication date: January 2018.

26 Alexandre Moine, Arthur Charguéraud, and François Pottier

(ℓ ← [𝑞1 𝐿1 ∗ ℓ ← [𝑞2 𝐿2) −∗ ℓ ← [𝑞1+𝑞2 (𝐿1 ⊎ 𝐿2) JoinPBHeap

ℓ ← [𝑞1+𝑞2 (𝐿1 ⊎ 𝐿2) −∗ (ℓ ←[𝑞1 𝐿1 ∗ ℓ ← [𝑞2 𝐿2) if

{
𝑞1 = 0⇒ NoPositive(𝐿1)
𝑞2 = 0⇒ NoPositive(𝐿2)

SplitPBHeap

ℓ ←[𝑞 𝐿 −∗ ℓ ← [𝑞 (𝐿 ⊎ {+ℓ′}) if 𝑞 > 0 CovPBHeap

Fig. 17. Reasoning rules for the pointed-by-heap assertion

Rules. Figure 16 presents two basic reasoning rules about space credits. ZeroSC asserts that zero

credits can be forged out of thin air. SplitJoinSC asserts that space credits can be split and joined.

Life cycle. Space credits are consumed by memory allocation (§6.2) and produced by logical

deallocation (§6.1). Because there is no way of creating space credits out of nothing, a program or

program component is usually verified under the assumption that a number of space credits are

provided. For example, our safety theorem for the default semantics (§8.1) states that if a (complete)

program is verified under the precondition ♦𝑆 , where 𝑆 is the heap size limit, then this program can

be safely executed. When a program component is considered in isolation, it is given a specification

that does not mention 𝑆 . For instance, our specification of Treiber’s stack (Figure 41) states that

push consumes two space credits and that pop produces two space credits.

5.6 Pointed-By-Heap Assertions
Our pointed-by-heap assertions are the “pointed-by” assertions of our earlier paper [Moine et al.

2023]. The longer name “pointed-by-heap” avoids confusion with our novel “pointed-by-thread”

assertions (§5.7). To make this paper self-contained, we recall what form these assertions take,

what they mean, and what purpose they serve.

A pointed-by-heap assertion for the location ℓ ′ keeps track of a multiset 𝐿 of predecessors of ℓ ′

(§4.2.5). It takes the form ℓ ′ ←[𝑞 𝐿, where 𝐿 is a signed multiset of locations and 𝑞 is a possibly-null

fraction, that is, a rational number in the closed interval [0; 1].

Signed multisets. Signed multisets [Hailperin 1986], also known as generalized sets [Whitney 1933;

Blizard 1990] or hybrid sets [Loeb 1992], are a generalization of multisets: they allow an element to

have negative multiplicity. A signed multiset is a total function of elements to Z. The disjoint union
operation⊎ is the pointwise addition of multiplicities. Wewrite +𝑥 for a positive occurrence of 𝑥 and
−𝑥 for a negative occurrence of 𝑥 . For example, {+𝑥 ;+𝑥} ⊎ {−𝑥} is {+𝑥}. We write NoNegative(𝐿)
when no element has negative multiplicity in 𝐿. Symmetrically, we write NoPositive(𝐿) when no

element has positive multiplicity in 𝐿.

Possibly-Null Fractions. In traditional Separation Logics with fractional permissions [Boyland

2003; Bornat et al. 2005], a fraction is a rational number in the semi-open interval (0, 1]. If there
exists a share that carries the fraction 1, then no other shares can separately exist. With possibly-null
fractions, the fraction 0 is allowed, so a full pointed-by-heap assertion ℓ ′ ← [1 𝐿 does not exclude the
existence of a separate pointed-by-heap assertion with fraction zero, say ℓ ′ ← [0 𝐿′.
Nevertheless, we enforce the following null-fraction invariant: in a pointed-by-heap assertion

ℓ ′ ← [𝑞 𝐿, if the fraction 𝑞 is 0, then no location can have positive multiplicity in 𝐿; or, in short, 𝑞 = 0

implies NoPositive(𝐿).
Signed multisets and possibly-null fractions let us use the assertion ℓ ′ ← [0 {−ℓ} as a permission

to remove one occurrence of ℓ from the predecessors of ℓ ′. This lets us formulate the reasoning rule

for store instructions (§6.2) in a simpler way than would otherwise be possible.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 27

ℓ ⇐\𝑝1+𝑝2 (Π1 ∪ Π2) ≡ (ℓ ⇐ \𝑝1 Π1 ∗ ℓ ⇐\𝑝2 Π2) FracPBThread

ℓ ⇐ \𝑝 Π1 −∗ ℓ ⇐ \𝑝 (Π1 ∪ Π2) CovPBThread

⌜ℓ ∉ 𝑉 ⌝ ∗ ℓ ⇐ \𝑝 {𝜋} 𝜋 𝑉 ℓ ⇐ \𝑝 ∅ TrimPBThread

Fig. 18. Reasoning rules for the pointed-by-thread assertion

Over-Approximation of Live Predecessors. We say that a location ℓ is dead if it has been allocated

and logically deallocated already (§5.9, §6.1). We say that it is live if it has been allocated but not

logically deallocated yet.

The true purpose of pointed-by-heap assertions is to keep track of live predecessors. A dead

predecessor is irrelevant: increasing its multiplicity in amultiset of predecessors is sound; decreasing

it is sound, too. As far as live predecessors are concerned, only over-approximation is permitted.

Increasing the multiplicity of a live predecessor is sound; decreasing it is not.

In light of this, and in light of the null-fraction invariant, a full pointed-by-heap assertion ℓ ′ ← [1 𝐿,
where the fraction is 1, guarantees that the multiset 𝐿 contains all live predecessors of the location ℓ ′.
In particular, the assertion ℓ ′ ← [1 ∅ guarantees that ℓ ′ has no live predecessors. Such full knowledge

of the live predecessors is required by the logical deallocation rule (§6.1, §6.6).

Rules. Pointed-by-heap assertions obey the splitting, joining, and weakening rules in Figure 17.

JoinPBHeap joins two pointed-by-heap assertions by adding the fractions 𝑞1 and 𝑞2 and by adding

the signed multisets 𝐿1 and 𝐿2. In the reverse direction, SplitPBHeap splits a pointed-by-heap

assertion. Its side condition ensures that the null-fraction invariant is preserved. CovPBHeap asserts

that a pointed-by-heap assertion (whose fraction is nonzero) is covariant in its multiset: that is,

over-approximating the multiset of predecessors is sound. It is a direct consequence of SplitPBHeap,

instantiated with 𝑞2 ≜ 0 and 𝐿2 ≜ {−ℓ ′}. In the reverse direction, the rule CleanPBHeap, which is

discussed later on (§5.9), allows removing a dead predecessor from a multiset of predecessors.

Life cycle. A full pointed-by-heap assertion for the location ℓ appears when this location is

allocated. Fractional pointed-by-heap assertions are required, updated, and produced by store

instructions. For example, consider a store instruction that updates the field ℓ [i] and overwrites

the value ℓ ′
1
with the value ℓ ′

2
. The reasoning rule for this instruction (§6.2) requires a pointed-by-

heap assertion ℓ ′
2
←[𝑞 ∅, which it transforms into ℓ ′

2
←[𝑞 {+ℓ}. Furthermore, the pointed-by-heap

assertion ℓ ′
1
← [0 {−ℓ} is produced. A full pointed-by-heap assertion for the location ℓ is consumed

when ℓ is logically deallocated.

Notation. We define a generalized pointed-by-heap assertion 𝑣 ← [𝑞 𝐿 whose first argument

is a value, as opposed to a memory location. If 𝑣 is a location ℓ ′, then this assertion is defined

as ℓ ′ ← [𝑞 𝐿. Otherwise, it is defined as ⌜True⌝. Furthermore, we write 𝑣 ←[>0𝑞 𝐿 for the assertion

⌜𝑞 > 0⌝ ∗ 𝑣 ←[𝑞 𝐿. This notation is used in the reasoning rule Store (§6.2), among other places.

5.7 Pointed-By-Thread Assertions
The pointed-by-heap assertions presented in the previous section record which heap blocks contain
pointers to a location ℓ . This information is useful but is not sufficient for our purposes. The logic

must also record which threads have access to ℓ , that is, in which threads ℓ is a root. For this purpose,

we introduce two distinct yet cooperating mechanisms. The first mechanism, presented here, is the

pointed-by-thread assertion. The second mechanism, presented next (§5.8), is the “inside” assertion.
When the fact that ℓ is a root in thread 𝜋 is recorded by a pointed-by-thread assertion, we say that

ℓ is an ordinary root in thread 𝜋 ; when this fact is recorded by an “inside” assertion, we say that ℓ is

a temporary root in thread 𝜋 . The motivation for this distinction has been given earlier (§3, §2.5).

, Vol. 1, No. 1, Article . Publication date: January 2018.

28 Alexandre Moine, Arthur Charguéraud, and François Pottier

inside 𝜋 𝑇 ∗ outside 𝜋 −∗ ⌜False⌝ InsideNotOutside

inside 𝜋 𝑇 ∗ ℓ ⇐\𝑝 {𝜋} inside 𝜋 (𝑇 ∪ {ℓ}) ∗ ℓ ⇐ \𝑝 ∅ AddTemporary

inside 𝜋 𝑇 ∗ ℓ ⇐ \𝑝 ∅ inside 𝜋 (𝑇 \ {ℓ}) ∗ ℓ ⇐ \𝑝 {𝜋} RemTemporary

inside 𝜋 𝑇 𝜋 𝑉 inside 𝜋 (𝑇 ∩𝑉) TrimInside

Fig. 19. Reasoning rules for “inside” and “outside” assertions

A pointed-by-thread assertion takes the form ℓ ⇐ \𝑝 Π, where 𝑝 is a fraction in the semi-open

interval (0; 1] andΠ is a set of thread identifiers. These assertions intuitively generalize the Stackable
assertions of our earlier paper [Moine et al. 2023] to a multi-threaded setting.

A full pointed-by-thread assertion ℓ ⇐ \1 Π, where the fraction is 1, guarantees that Π is the

set of all threads in which ℓ is an ordinary root. Such full knowledge is required by the logical

deallocation rule (§6.1, §6.6).

Rules. Figure 18 presents the splitting, joining, weakening, and trimming rules associated with

the pointed-by-thread assertion. FracPBThread allows splitting and joining pointed-by-thread

assertions. CovPBThread asserts that a pointed-by-thread assertion is covariant in the set Π: that
is, over-approximating Π is sound. TrimPBThread allows trimming a pointed-by-thread assertion,

that is, removing the thread identifier 𝜋 from a pointed-by-thread assertion for the location ℓ ,

provided it is evident that ℓ is no longer a root in thread 𝜋 . This rule is expressed as a custom ghost

update
𝜋 𝑉

. It transforms ℓ ⇐ \𝑝 {𝜋} into ℓ ⇐ \𝑝 ∅, provided ℓ is not a member of the set𝑉 , which

denotes the set of roots of the thread 𝜋 (recall §5.2). The condition ℓ ∉ 𝑉 means indeed that ℓ is not

a root in thread 𝜋 . This condition explains why TrimPBThread must be expressed as a custom

update
𝜋 𝑉

as opposed to a standard update ⇛. Indeed, a standard update has no means of

referring to “the identifier of the current thread” or “the roots of the current thread”.

A curious reader may wonder whether and why TrimPBThread remains sound in combination

with the Bind rule. Indeed, Bind lets the user focus on a subterm, therefore implies that the set 𝑉

is a strict subset of the set of all roots of the current thread. This aspect is explained later on (§6.4).

Life cycle. A full pointed-by-thread assertion ℓ ⇐ \1 {𝜋} appears when a location ℓ is allocated

by a thread 𝜋 . A fractional pointed-by-thread assertion is ordinarily required and updated by

load instructions: when a thread 𝜋 obtains the location ℓ as the result of a load instruction, an

assertion ℓ ⇐\𝑝 ∅ is updated to ℓ ⇐ \𝑝 {𝜋}. If the thread 𝜋 is currently outside a protected section,

such an update is mandatory. If the thread 𝜋 is currently inside a protected section, then it can

be avoided by recording ℓ as a temporary root (§6.3). Once ℓ is no longer a root in any thread,

TrimPBThread can be used to obtain ℓ ⇐ \1 ∅, which is consumed by the logical deallocation of ℓ .

In fact, when reasoning outside of protected sections, TrimPBThread is the only way to trim an

assertion ℓ ⇐\1 Π into ℓ ⇐ \1 ∅.

Notation. We define a generalized pointed-by-thread assertion 𝑣 ⇐ \𝑝 Π, whose first argument is

a value, as opposed to a memory location. If 𝑣 is a location ℓ , then this assertion is defined as ℓ ⇐ \𝑝 Π.
Otherwise, it is defined as ⌜True⌝. Besides, we write an iterated conjunction of pointed-by-thread

assertions under the form𝑀 ⇐ \ Π, where𝑀 is a finite map of memory locations to fractions and

Π is a set of thread identifiers. It is defined by𝑀 ⇐\ Π ≜ ∗(ℓ, 𝑝) ∈𝑀 (ℓ ⇐ \𝑝 Π).

5.8 Inside and Outside Assertions
The assertion outside 𝜋 means that the thread 𝜋 is currently outside a protected section. The

assertion inside 𝜋 𝑇 means that thread 𝜋 is currently inside a protected section and that the set of

its temporary roots (§2.6) is 𝑇 . The set 𝑇 is a set of memory locations.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 29

† ℓ ℓ′ ← [0 {−ℓ} CleanPBHeap

† ℓ ∗ ℓ ←[>0𝑞 𝐿 ⌜False⌝ DeadPBHeap

† ℓ ∗ ℓ ⇐\𝑝 Π ⌜False⌝ DeadPBThread

⌜ℓ ∈ 𝑉 ⌝ ∗ † ℓ ∗ outside 𝜋 𝜋 𝑉 ⌜False⌝ NoDanglingRootOut

⌜ℓ ∈ (𝑉 \𝑇)⌝ ∗ † ℓ ∗ inside 𝜋 𝑇 𝜋 𝑉 ⌜False⌝ NoDanglingRootIn

†ℓ is persistent DeadPersist

Fig. 20. Reasoning rules for deallocation witnesses

Rules. Figure 19 presents a number of reasoning rules related to “inside” and “outside” assertions.
InsideNotOutside states that a thread cannot be both inside and outside a protected section.

AddTemporary converts an ordinary root to a temporary root. The pointed-by-thread assertion

ℓ ⇐ \𝑝 {𝜋} is transformed to ℓ ⇐ \𝑝 ∅; meanwhile, ℓ is added to the set of temporary roots carried

by the “inside” assertion. In the reverse direction, RemTemporary converts a temporary root to

an ordinary root. TrimInside trims the set of temporary roots by removing any locations that are

no longer roots in the current thread. It is analogous to TrimPBThread.

Life cycle. The assertion outside 𝜋 appears when thread 𝜋 is created and is consumed when

this thread terminates. This will be visible in the statement of Theorem 8.1, which describes the

creation and termination of the main thread, and in the reasoning rule for “fork” instructions (§6.2).

The assertion outside 𝜋 is required and preserved by the instructions that must not appear inside

a protected section, namely memory allocations, function calls, “fork” instructions, and polling

points. Entering a protected section transforms outside 𝜋 into inside 𝜋 ∅; exiting a protected section
causes the reverse transformation.

5.9 Deallocation Witnesses
The persistent assertion † ℓ is a deallocation witness for the location ℓ . This assertion guarantees

that ℓ has been logically deallocated, that is, ℓ is dead.

The fact that ℓ is dead implies that ℓ cannot be reached from an ordinary root. However, this

does not imply that ℓ is unreachable: indeed, it could still be reachable via a temporary root.

The assertion † ℓ can be read as a permission to remove ℓ from the multiset of predecessors

carried by a pointed-by-heap assertion. Indeed, the purpose of pointed-by-heap assertions is to

keep track of live predecessors (§5.6).

A non-persistent deallocation witness 𝑥 ̸↦→ appears in Incorrectness Separation Logic [Raad

et al. 2020]. In RustBelt [Jung et al. 2018a], the fact that a lifetime 𝜅 has ended is expressed by

a persistent assertion, known as a dead token, written [†𝜅]. Persistent deallocation witnesses appear

in Madiot and Pottier’s work [2022] and in our earlier paper [Moine et al. 2023]. These two papers

do not have protected sections, therefore have no distinction between ordinary and temporary

roots. There, a dead location is unreachable.

Rules. Figure 20 presents reasoning rules for deallocation witnesses. CleanPBHeap requires

a deallocation witness for ℓ and produces the assertion ℓ ′ ← [0 {−ℓ}, a permission to remove ℓ

from the predecessors of an arbitrary location ℓ ′. DeadPBHeap and DeadPBThread reflect the

fact that logical deallocation consumes full pointed-by-heap and pointed-by-thread assertions.

Therefore, the assertions † ℓ and ℓ ←[𝑞 𝐿 cannot coexist, except in the special case where 𝑞 is

zero, and the assertions † ℓ and ℓ ⇐ \𝑝 Π cannot coexist. However, in contrast with our earlier

work [Madiot and Pottier 2022; Moine et al. 2023], our deallocation witness is compatible with the

points-to assertion. Indeed, our logical deallocation rule does not consume the points-to assertion.

, Vol. 1, No. 1, Article . Publication date: January 2018.

30 Alexandre Moine, Arthur Charguéraud, and François Pottier

NoDanglingRootOut and NoDanglingRootIn both state that it is impossible for a dead location

to be an ordinary root. A dead location can, however, be a temporary root: indeed, our logical

deallocation rule allows deallocating a temporary root (§6.1).

5.10 Liveness-Based Cancellable Invariants
An Iris invariant [Jung et al. 2018b, §2.2] is written in the form Φ .

7
It is a persistent assertion,

whose meaning is that the assertion Φ in the rectangular box holds at all times. The assertion Φ
itself is usually not persistent. An invariant can be temporarily accessed so as to gain access to the

assertion Φ.
A cancellable invariant [Jung et al. 2018b, §7.1.3] is an invariant that comes with a teardown

mechanism, allowing the user to recover ownership of the assertion Φ once the invariant is canceled.

This is a one-shot mechanism: once a cancellable invariant is torn down, it cannot be restored.

Naturally, accessing a cancellable invariant requires proving that this invariant has not been torn

down already. This is done by presenting a fractional access permission.

In IrisFit, a form of liveness-based cancellable invariants (LCIs, for short) naturally arises. An LCI is
tied to amemory location ℓ , and remains in force as long as this location is live.When the location ℓ is

logically deallocated, all LCIs associated with ℓ are implicitly torn down. Therefore, to access an LCI

associated with the location ℓ , one must prove that this location is still live: that is, one must prove

that † ℓ implies ⌜False⌝. This can be done using any of the rules DeadPBHeap, DeadPBThread,

NoDanglingRootOut, and NoDanglingRootIn in Figure 20. When the location ℓ is logically

deallocated, the assertion Φ can be recovered at the same time. We have used LCIs to reason about

closures (§9.5) and about Treiber’s stack (§11.5).

The implementation of LCIs is simple. A liveness-based cancellable invariant tied to the location ℓ ,

whose content is the assertion Φ, is just † ℓ ∨ Φ , that is, a plain Iris invariant whose content

is the disjunction † ℓ ∨ Φ. By proving that † ℓ is contradictory, the user excludes the left-hand

disjunct, therefore obtains access to Φ. In particular, when one is about to logically deallocate ℓ ,

the assertion ℓ ⇐ \ ∅ is at hand, so † ℓ is excluded. One can therefore open the invariant, extract Φ,
deallocate ℓ , and close the invariant by supplying † ℓ , keeping Φ. (This is a somewhat unusual

variation on the “golden idol” technique [Kaiser et al. 2017], with the persistent assertion † ℓ in the

role of the “bag of sand”.)

6 PROGRAM LOGIC: REASONING RULES
In this section, we present the reasoning rules of IrisFit. Because most of our design is guided

by the desire for a flexible logical deallocation rule, we begin with a presentation of this rule, in

the simplified case where a single memory location is deallocated (§6.1). Then, we present the

reasoning rules for terms (§6.2), devoting special attention to protected sections (§6.3) and to the

Bind rule, whose form is non-standard (§6.4). The standard statement of the Bind rule can be

recovered when the user enters a restricted mode where certain rules are disabled (§6.5). Finally,

we present the general form of the logical deallocation rule, which can deallocate cycles (§6.6).

6.1 Logical Deallocation
As in the previous papers by Madiot and Pottier [2022] and Moine et al. [2023], a key aspect of IrisFit

is to provide a logical deallocation rule. This rule produces space credits: by logically deallocating

a memory block, the user recovers the space credits that were consumed when this block was

7
Formally, an invariant also carries a namespace, a technicality that prevents the user from accessing the invariant twice

and obtaining two copies of Φ at the same time. For simplicity, we hide namespaces in this paper.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 31

allocated. It can be applied to a memory location ℓ as soon as one is able to prove that this memory

location is eligible for collection during the next garbage collection phase.
As in the previous work cited above, if ℓ is unreachable then it can be logically deallocated.

Furthermore, what is new in this paper, if ℓ is reachable only via temporary roots (that is, via roots
that will disappear by the time all protected sections are exited), then it can also be logically

deallocated.

This reasoning rule may seem surprising, as it involves a form of anticipation: it exploits the fact

that ℓ will be eligible for collection once all protected sections have been exited, yet it produces space
credits immediately, at the point where the rule is applied. The intuitive reason why this is sound

is related with the following property: “once a large allocation request is outstanding, eventually,

either this allocation request becomes unblocked or every thread is outside of a protected section”.
8

Hence, only in the ideal situation where every thread is outside of a protected section, must one

prove that a large allocation request can be satisfied. In such a situation, there are no temporary

roots; every location that has been logically deallocated is effectively unreachable.

In §6.6, we present the general form of the logical deallocation rule, which can deallocate multiple

memory locations at once, even if they form a cycle. Here, we present FreeOne, a simplified rule

that is also useful in practice and that deallocates a single location ℓ :

sizeof ℓ 𝑛 ∗ ℓ ←[1 ∅ ∗ ℓ ⇐\1 ∅ ♦size(𝑛) ∗ † ℓ FreeOne

Because logical deallocation is a ghost operation, FreeOne is expressed as a ghost update.

It consumes three assertions: the “sizeof ” assertion sizeof ℓ 𝑛, the pointed-by-heap assertion ℓ ← [1 ∅,
and the pointed-by-thread assertion ℓ ⇐\1 ∅. The assertion sizeof ℓ 𝑛 indicates that the memory

block at address ℓ has size 𝑛. The assertion ℓ ←[1 ∅ guarantees that ℓ has no predecessor in the

heap, that is, no memory block contains the pointer ℓ . The assertion ℓ ⇐ \1 ∅ guarantees that ℓ is not
an ordinary root of any thread: that is, if ℓ is a root at all in a thread 𝜋 , then it must be a temporary

root for this thread (§2.6, §5.8). Together, the last two assertions imply that ℓ will be eligible for

collection in the next garbage collection phase.

On the right-hand side of the ghost update, FreeOne produces two assertions, namely the

recovered space credits ♦𝑛 and the deallocation witness † ℓ . As noted earlier (§5.9), the latter

assertion is a permission to remove ℓ from the predecessor multisets of other locations. Thus, by

iterated application of FreeOne, acyclic chains of unreachable blocks can be logically deallocated.

FreeOne can be applied to a reachable location if this location is a temporary root inside

a protected section. Our logic thereby allows such a location to be read or written post mortem,

after it has been logically deallocated. This is made possible by the fact that the points-to assertion

survives logical deallocation. This pattern appears, for example, in the verification of Treiber’s

stack (§11.5).

Contrary to the logical deallocation rule presented by Moine et al. [2023], our rule does not

consume or even mention a points-to assertion for the location ℓ . Indeed, the points-to assertion is

not needed to guarantee that the location is unreachable, nor is it needed to prevent a location from

being deallocated twice. The size of the deallocated block is obtained in this paper from the “sizeof ”
assertion, whereas in the previous paper this assertion did not exist, so the size was obtained from

a points-to assertion.

, Vol. 1, No. 1, Article . Publication date: January 2018.

32 Alexandre Moine, Arthur Charguéraud, and François Pottier

IfTrue

{Φ} 𝜋 : 𝑡1 {Ψ}
{Φ} 𝜋 : if true then 𝑡1 else 𝑡2 {Ψ}

IfFalse

{Φ} 𝜋 : 𝑡2 {Ψ}
{Φ} 𝜋 : if false then 𝑡1 else 𝑡2 {Ψ}

LetVal

{Φ} 𝜋 : [𝑣/𝑥]𝑡 {Ψ}
{Φ} 𝜋 : let𝑥 = 𝑣 in 𝑡 {Ψ}

Prim

𝑣1 ⊙ 𝑣2
pure−−−→ 𝑤

{⌜True⌝} 𝜋 : 𝑣1 ⊙ 𝑣2 {𝜆𝑣. ⌜𝑣 = 𝑤⌝}

CallPtr

𝑣 = 𝜇ptr 𝑓 . 𝜆®𝑥 . 𝑡 | ®𝑥 | = | ®𝑤 |
{outside 𝜋 ∗ Φ} 𝜋 : [𝑣/𝑓] [®𝑤/®𝑥]𝑡 {Ψ}
{outside 𝜋 ∗ Φ} 𝜋 : (𝑣 ®𝑤)ptr {Ψ}

Val

{⌜True⌝} 𝜋 : 𝑣 {𝜆𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝}

Poll

{outside 𝜋} 𝜋 : poll {𝜆(). outside 𝜋}

Alloc

0 < 𝑛{
♦𝑛

outside 𝜋

}
𝜋 : alloc size(𝑛)


𝜆ℓ.

ℓ ↦→1 ()𝑛
ℓ ← [1 ∅
ℓ ⇐ \1 {𝜋}
outside 𝜋


Load

0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣{
ℓ ↦→𝑝 ®𝑤
𝑣 ⇐ \𝑝′ ∅

}
𝜋 : ℓ [i]

𝜆𝑣
′ .

⌜𝑣 ′ = 𝑣⌝
ℓ ↦→𝑝 ®𝑤
𝑣 ⇐\𝑝′ {𝜋}



Store

0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣
ℓ ↦→1 ®𝑤
𝑣 ′ ← [>0𝑞 ∅

 𝜋 : ℓ [i]←𝑣 ′
𝜆().

ℓ ↦→1 [i :=𝑣 ′] ®𝑤
𝑣 ′ ←[>0𝑞 {+ℓ}
𝑣 ←[0 {−ℓ}


CASSuccess

0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣{
ℓ ↦→1 ®𝑤
𝑣 ′ ← [>0𝑞 ∅

}
𝜋 : CAS ℓ [i] 𝑣 𝑣 ′


𝜆𝑏.

⌜𝑏 = true⌝
ℓ ↦→1 [i :=𝑣 ′] ®𝑤
𝑣 ′ ← [>0𝑞 {+ℓ}
𝑣 ← [0 {−ℓ}



CASFailure

0 ≤ i < | ®𝑤 | ®𝑤 (i) ≠ 𝑣{
ℓ ↦→𝑝 ®𝑤

}
𝜋 : CAS ℓ [i] 𝑣 𝑣 ′

{
𝜆𝑏.

⌜𝑏 = false⌝
ℓ ↦→𝑝 ®𝑤

}

Fork

dom(𝑀) = locs(𝑡)
(∀𝜋 ′ . {outside 𝜋 ′ ∗ 𝑀 ⇐ \ {𝜋 ′} ∗ Φ} 𝜋 ′ : 𝑡 {𝜆(). outside 𝜋 ′})
{outside 𝜋 ∗ 𝑀 ⇐ \ {𝜋} ∗ Φ} 𝜋 : fork 𝑡 {𝜆(). outside 𝜋}

Fig. 21. Syntax-directed reasoning rules, without protected-section-specific rules and without Bind

Enter

{outside 𝜋} 𝜋 : enter {𝜆(). inside 𝜋 ∅}
Exit

{inside 𝜋 ∅} 𝜋 : exit {𝜆(). outside 𝜋}

LoadInside

0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣{
ℓ ↦→𝑝 ®𝑤
inside 𝜋 𝑇

}
𝜋 : ℓ [i]

{
𝜆𝑣 ′ .

⌜𝑣 ′ = 𝑣⌝ ∗ ℓ ↦→𝑝 ®𝑤
inside 𝜋 (locs(𝑣) ∪𝑇)

} StoreDead

0 ≤ i < | ®𝑤 |{
ℓ ↦→1 ®𝑤
† ℓ

}
𝜋 : ℓ [i]←𝑣 ′

{
𝜆(). ℓ ↦→1 [i :=𝑣 ′] ®𝑤

}
CASSuccessDead

0 ≤ i < | ®𝑤 | ®𝑤 (i) = 𝑣{
ℓ ↦→1 ®𝑤
† ℓ

}
𝜋 : CAS ℓ [i] 𝑣 𝑣 ′

{
𝜆𝑏.

⌜𝑏 = true⌝
ℓ ↦→1 [i :=𝑣 ′] ®𝑤

}
Fig. 22. Reasoning rules: protected-section-specific rules

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 33

6.2 Reasoning Rules for Terms
Figure 21 presents most of the reasoning rules that concern instructions, except for the rules that are

specific to protected sections, which are presented later on (§6.3). The reasoning rule Bind, which

allows reasoning under an evaluation context, is presented after that (§6.4). In every rule, the thread

identifier 𝜋 represents the current thread, that is, the thread about which one is reasoning (§5.1).

IfTrue, IfFalse, LetVal, Prim and Val are standard rules.

CallPtr governs calls to (recursive, closed) functions, also known in this paper as code pointers.

Its only unusual aspect is the presence of the assertion outside 𝜋 , which ensures that the current

thread is currently outside a protected section. The presence of this assertion forbids function calls

inside protected sections.

Similarly, Poll forbids polling points inside a protected section. Outside of this aspect, a polling

point is a no-operation.

Alloc exhibits three differences with the allocation rule of Separation Logic. First, it requires and

consumes size(𝑛) space credits, so as to pay for the space occupied by the new block. Second, the

presence of the assertion outside 𝜋 forbids allocation inside a protected section. Third, in addition to

a points-to assertion for the new block, allocation produces pointed-by-heap and pointed-by-thread

assertions. These assertions indicate that there is initially no pointer from the heap to the new

block, and that this new block is a root for the current thread (and only for this thread).

As in standard Separation Logic, Load requires a (fractional) points-to assertion for the memory

location ℓ that is accessed. Furthermore, it requires a pointed-by-thread assertion 𝑣 ⇐ \𝑝 ∅ for the
value 𝑣 that is read from memory. This assertion is updated to 𝑣 ⇐ \𝑝 {𝜋}, reflecting the fact that
the value 𝑣 becomes a root for the current thread.

As in standard Separation Logic, Store requires a full points-to assertion ℓ ↦→1 ®𝑣 and produces

an updated assertion ℓ ↦→1 [i :=𝑣 ′]®𝑣 . Furthermore, it performs bookkeeping of predecessor multisets,

so as to reflect the fact that the value 𝑣 that was stored in the field ℓ [𝑖] is overwrittenwith the value 𝑣 ′.
First, to reflect the creation of an edge from ℓ to the value 𝑣 ′, an assertion of the form 𝑣 ′ ← [𝑞 ∅ is
changed to 𝑣 ′ ← [𝑞 {+ℓ}. Here, because ℓ has positive multiplicity in {+ℓ}, the null-fraction invariant

requires that 𝑞 be positive; it cannot be 0. Second, to reflect the deletion of an edge from ℓ to the

value 𝑣 , the assertion 𝑣 ← [0 {−ℓ} appears in the postcondition. As explained earlier (§5.6), this

assertion is a permission to remove one occurrence of ℓ from a multiset of predecessors of 𝑣 .

CASSuccess is similar to Store, but returns the Boolean value true rather than the unit value.

Because a failed CAS does not modify the heap or create a new root, CASFailure is standard.

Fork reasons about the operation of spawning a new thread whose code is the term 𝑡 . This

operation must take place outside a protected section. Its impact on roots is as follows. Suppose,

for a moment, that fork 𝑡 is the last instruction in the parent thread. Then, the locations that occur

in the term 𝑡 cease to be roots of the parent thread 𝜋 and become roots of the child thread 𝜋 ′.
The reasoning rule reflects this intuition by updating a group of pointed-by-thread assertions.

The iterated pointed-by-thread assertion 𝑀 ⇐ \ {𝜋} is taken away from the parent thread, and

the updated assertion 𝑀 ⇐ \ {𝜋 ′} is transmitted to the child thread. 𝑀 is a map of locations to

fractions, whose domain is the set locs(𝑡). This is a form of trimming, similar in effect to the

rules TrimPBThread and TrimInside.

If fork 𝑡 is not the last instruction in the parent thread, then the user must use the reasoning

rules Bind and Fork in combination. The interaction between the Bind rule and the “trimming”

rules is discussed later on (§6.4, §6.5).

8
This property itself holds, under the assumption that enough polling points have been inserted, because as soon as one

thread is waiting for space, every thread must eventually reach a large memory allocation instruction or a polling point,

where it becomes blocked; and, at this point, this thread must be outside of a protected section.

, Vol. 1, No. 1, Article . Publication date: January 2018.

34 Alexandre Moine, Arthur Charguéraud, and François Pottier

Still looking at Fork, an arbitrary assertion Φ is transmitted from the parent thread to the

child thread. The assertion outside 𝜋 ′ is made available in the child thread, reflecting the fact that

a new thread initially runs outside a protected section. The child thread 𝑡 must be verified with

the nontrivial postcondition outside 𝜋 ′, thereby disallowing a thread to terminate while inside

a protected section.

In our Coqmechanization, the postconditions of many reasoning rules contain a later credit [Spies
et al. 2022]. Later credits play a role in eliminating the “later” modality. They are orthogonal to

the main concern of this paper, namely the analysis of space complexity, so we hide them in the

presentation of our reasoning rules. We do explain how later credits are used in our case study of

the async-finish library (§11.4).

6.3 Reasoning about Protected Sections
Within a protected section, the reasoning rules presented in the previous section (§6.2) can still

be used, except for CallPtr, Alloc, and Poll, which require the assertion outside 𝜋 . In addition,

a number of reasoning rules, shown in Figure 22, specifically concern protected sections.

Enter allows entering a protected section. This rule transforms the assertion outside 𝜋 into the

assertion inside 𝜋 ∅, thereby witnessing that the current thread is now inside a protected section

and has no temporary roots.

Conversely, Exit allows exiting a protected section. By consuming the assertion inside 𝜋 ∅, this
rule requires the user to prove that the current thread has no remaining temporary roots.

LoadInside allows reading a value 𝑣 from a location ℓ in the heap. The locations that appear in

the value 𝑣 become temporary roots of the current thread: the assertion inside 𝜋 𝑇 is updated to

inside 𝜋 (𝑇 ∪ locs(𝑣)). In contrast with Load, no pointed-by-thread assertion is required or updated.

In fact, the location ℓ or some locations in the set locs(𝑣) might be logically deallocated already.

StoreDead allows writing a logically deallocated block. The rule requires and updates a points-to

assertion. A deallocation witness † ℓ is also required. Compared with Store, no pointed-by-heap

assertion is required or updated. Indeed, there is no need to do so. Pointed-by-heap assertions

keep track of which blocks are reachable via ordinary roots; but, because the block at address ℓ is

logically deallocated, it is not reachable via ordinary roots. This is reminiscent of CleanPBHeap.

Although StoreDead does not require an “inside” assertion, it can be used only inside a protected
section. Indeed, the rule applies to a store instruction ℓ [i]←𝑣 ′, where the address ℓ occurs. This
means that ℓ is a root, yet ℓ is also logically deallocated. This is possible only if the current thread

is currently inside a protected section. Indeed, outside a protected section, a logically deallocated

location cannot be a root: the rule NoDanglingRootOut says so (§5.9).

CASSuccessDead is analogous to StoreDead. It concerns a successful CAS instruction on

a logically deallocated location. Because a failed CAS does not write anything, the rule CASFailure

can be applied to a logically deallocated location without change.

6.4 Reasoning under Evaluation Contexts
A proof in Separation Logic is traditionally carried out under an unknown context. That is, one

reasons about a term 𝑡 without knowing in what evaluation context 𝐾 this term is placed. There

are specific points in the proof where this unknown context grows and shrinks. As an archetypical

example, consider the sequencing construct let𝑥 = 𝑡1 in 𝑡2. To reason about this construct, one first

focuses on the term 𝑡1, thereby temporarily forgetting the frame let𝑥 = □ in 𝑡2, which is pushed

onto the unknown context. After the verification of 𝑡1 is completed, this focusing step is reversed:

the frame let𝑥 = □ in 𝑡2 is popped and one continues with the verification of 𝑡2. These focusing

and defocusing steps are described by the “Bind” rule [Jung et al. 2018b, §6.2].

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 35

In our setting, however, a complication arises. An evaluation context contains memory locations.

When one applies the Bind rule, so as to temporarily forget about this evaluation context, one

must still somehow record that these locations are roots. We use pointed-by-thread assertions for

this purpose.

Suppose we wish to decompose the sequence let𝑥 = 𝑡1 in 𝑡2 into a subterm 𝑡1 and an evaluation

context let𝑥 = □ in 𝑡2. For simplicity, let us further assume that locs(𝑡2) is a singleton set {ℓ}. This
implies that, while 𝑡1 is being executed, the location ℓ is a root. In this specific case, our Bind rule

takes the following form:

Particular Case of Bind

locs(𝑡2) = {ℓ} {Φ} 𝜋 : 𝑡1 {Ψ′} ∀𝑣 . { ℓ ⇐ \𝑝 {𝜋} ∗ Ψ′ 𝑣} 𝜋 : [𝑣/𝑥]𝑡2 {Ψ}

{ ℓ ⇐ \𝑝 {𝜋} ∗ Φ} 𝜋 : let𝑥 = 𝑡1 in 𝑡2 {Ψ}

What is unusual, compared with the standard Bind rule of Separation Logic, is that the fractional

pointed-by-thread assertion ℓ ⇐ \𝑝 {𝜋} is required in the beginning, taken away from the user while

focusing on the term 𝑡1, and given back to the user once she is done reasoning about 𝑡1 and ready

to reason about 𝑡2. In other words, this assertion is forcibly framed out while reasoning about 𝑡1.

The assertion ℓ ⇐ \𝑝 {𝜋} records that ℓ is a root in thread 𝜋 . By taking it away from the user and

by giving it back once she is done reasoning about 𝑡1, we ensure that the information that “ℓ is

a root in thread 𝜋” is carried up to this point and cannot be prematurely destroyed.

What could go wrong if we did not do this? Then, the user would be allowed to keep the full
pointed-by-thread assertion ℓ ⇐ \1 {𝜋} while reasoning about 𝑡1. Technically, the user would do so

by instantiating Φ with ℓ ⇐ \1 {𝜋} in the Bind rule. Then, the user would focus on establishing the

first premise, {ℓ ⇐ \1 {𝜋}} 𝜋 : 𝑡1 {Ψ′}. Now suppose ℓ ∉ locs(𝑡1), that is, ℓ does not occur in 𝑡1. Then,
the user could apply TrimPBThread to transform the assertion ℓ ⇐\1 {𝜋} into ℓ ⇐ \1 ∅. Oops! The
assertion ℓ ⇐ \1 ∅ means that ℓ is not a root. Yet ℓ really is still a root, as it occurs in the evaluation

context that has been abstracted away, namely let𝑥 = □ in 𝑡2.

Besides TrimPBThread, two reasoning rules, namely Fork and TrimInside, involve a form of

“trimming” of sets of thread identifiers. The soundness of these rules relies on the fact that Bind

forcibly frames out fractional pointed-by-thread assertions.

The general form of our Bind rule, shown in Figure 23, extends this idea to an arbitrary evaluation

context 𝐾 , in which an arbitrary number of locations may occur. Then, for every location in locs(𝐾),
a fractional pointed-by-thread assertion is forcibly framed out.

Bind

dom(𝑀) = locs(𝐾) {Φ} 𝜋 : 𝑡 {Ψ′} ∀𝑣 . {𝑀 ⇐ \ {𝜋} ∗ Ψ′ 𝑣} 𝜋 : 𝐾 [𝑣] {Ψ}
{𝑀 ⇐ \ {𝜋} ∗ Φ} 𝜋 : 𝐾 [𝑡] {Ψ}

Fig. 23. Reasoning rules: the Bind rule

6.5 Locally Trading Trimming for a Simpler and More Powerful Bind Rule
Forcing pointed-by-thread assertions to be framed out at each application of Bind is cumbersome,

and can be restrictive, as there are situations where no pointed-by-thread assertion is at hand.

(An example appears later on in this section.) Fortunately, such forced framing is unnecessary if

the user promises not to exploit any of the trimming rules TrimPBThread, Fork and TrimInside.

Thus, we introduce a mode that the user may choose to enter at any time, in which the trimming

rules are disabled and, in exchange, a simpler, more powerful Bind rule is made available.

, Vol. 1, No. 1, Article . Publication date: January 2018.

36 Alexandre Moine, Arthur Charguéraud, and François Pottier

SwitchMode

{Φ} é/𝜋 : 𝑡 {Ψ}
{Φ} 𝑚/𝜋 : 𝑡 {Ψ}

BindNoTrim

{Φ} é/𝜋 : 𝑡 {Ψ′} ∀𝑣 . {Ψ′ 𝑣} 𝑚/𝜋 : 𝐾 [𝑣] {Ψ}
{Φ} 𝑚/𝜋 : 𝐾 [𝑡] {Ψ}

Fig. 24. Reasoning rules: additional mode-specific rules

We parameterize IrisFit triples with a mode 𝑚, which is either the normal mode or the

“no trim” mode é. Thus, in general, our triples have the form {Φ} 𝑚/𝜋 : 𝑡 {Ψ}, and our custom ghost

update has the form Φ 𝜋 𝑉
𝑚 Φ′. All of the reasoning rules presented so far are polymorphic in the

mode, except for the trimming rules TrimPBThread, Fork, and TrimInside, which are disabled

in “no trim” mode. For example, TrimPBThread is written (⌜ℓ ∉ 𝑉 ⌝ ∗ ℓ ⇐ \𝑝 {𝜋}) 𝜋 𝑉 ℓ ⇐ \𝑝 ∅,
which prevents its use when in the “no trim” mode é. The public specification of a function is

always stated in the normal mode. The “no trim” mode is intended for local use, inside the body of

a function. It is an adaptation of Moine et al.’s “NoFree” mode [2023].

Figure 24 presents two new reasoning rules, SwitchMode and BindNoTrim, which allow

entering “no trim” mode and taking advantage of it.

When read from bottom to top, SwitchMode lets the user locally enter “no trim” mode, whenever

she so wishes, in a subproof. When read from to top to bottom, this rule asserts that if a triple holds

in “no trim” mode then it also holds in normal mode. Indeed, every reasoning rule that is available

in “no trim” mode is available in normal mode as well.

BindNoTrim is the standard Bind rule of Separation Logic, but imposes a switch to “no trim”

mode é in its left-hand premise. Thus, unlike our Bind rule, it does not force pointed-by-thread
assertions to be framed out. Because of this, it must disable the trimming rules while the user

reasons about the subterm 𝑡 .

We remark that, inside a protected section, one can switch to “no trim” mode without loss of

expressive power. Indeed, there, the trimming rules are never needed. Fork is forbidden inside

protected sections; the effect of TrimPBThread can be simulated by AddTemporary; and all uses

of TrimInside can be postponed until the protected section is about to be exited.

At a high level, BindNoTrim is needed for reasoning about code that, within a protected section,

reads or writes in a location after it has been logically deallocated. Indeed, in this case, Bind can

be too restrictive. To illustrate this case, consider the following code, where we assume that the

location 𝑟 is not accessible via the heap and is not known to any thread other than the current

thread:

enter ; (let𝑥 = 𝑡 in𝑥 + 𝑟 [0]) ; exit
Just after entering the protected section, the user may wish to logically deallocate 𝑟 , in order to

recover the corresponding space credits without waiting for the end of the protected section. In this

case, just after entering the protected section, she would use AddTemporary to obtain a pointed-by-

thread assertion 𝑟 ⇐ \ ∅, then use FreeOne to logically deallocate 𝑟 . FreeOne consumes this pointed-

by-thread assertion but preserves the points-to assertion for 𝑟 , which the load instruction 𝑟 [0]
needs. Thereafter, the user may wish to decompose the let construct. Yet, the Bind rule cannot be

used, as it would require a (fractional) pointed-by-thread assertion for 𝑟 , which no longer exists,

because the fraction 1 was consumed by FreeOne. Fortunately, BindNoTrim is applicable.

6.6 Logical Deallocation of Cycles
Figure 25 presents our rules for deallocating an unreachable heap fragment, as opposed to a single

location. This fragment may contain an arbitrary number of heap blocks, which may point to each

other in arbitrary ways. In particular, these pointers may form one or more cycles.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 37

⌜True⌝ −∗ ∅,0 ∅ CloudEmpty

𝑃 ,𝑛
𝐷 ∗ sizeof ℓ 𝑚

ℓ ⇐\1 ∅ ∗ ℓ ←[1 𝐿 ∗ ⌜NoNegative(𝐿)⌝ −∗ (𝑃 ∪ 𝐿) ,(𝑛+𝑚) (𝐷 ∪ {ℓ}) CloudAdd

⌜𝑃 ⊆ 𝐷⌝ ∗ 𝑃 ,𝑛
𝐷 ♦𝑛 ∗ ∗

ℓ∈𝐷
† ℓ CloudFree

Fig. 25. Reasoning rules: logical deallocation

These rules make use of the “cloud” assertion 𝑃 ,𝑛
𝐷 , whose parameters 𝑃 (for “predecessors”)

and𝐷 (for “domain”) are sets of locations, and whose parameter 𝑛 is a natural integer. This assertion

means that the memory blocks at locations 𝐷 have total size 𝑛, that the locations 𝐷 are not roots in

any thread, and that these locations can be reached only via the locations 𝑃 . We refer to 𝑃 also as

the entry points of the cloud.
If 𝑃 ⊆ 𝐷 holds, then the locations in the set 𝐷 are reachable only via 𝐷 itself. In other words, the

set 𝐷 is closed under predecessors. This means that the locations in the set 𝐷 are in fact unreachable,
and can safely be logically deallocated. This explains the side condition 𝑃 ⊆ 𝐷 in the logical

deallocation rule CloudFree. We do not require 𝑃 ⊆ 𝐷 to hold at all times: while constructing

large “cloud” assertions out of smaller “cloud” assertions, one must allow the sets 𝑃 and 𝐷 to be

unrelated.

Figure 25 presents two cloud construction rules as well as the logical deallocation rule, which

consumes a cloud.

Out of nothing, CloudEmpty creates an empty cloud ∅,0 ∅.
CloudAdd adds the memory block at location ℓ to an existing cloud 𝑃 ,𝑛

𝐷 . This consumes the

full pointed-by-thread assertion ℓ ⇐ \1 ∅, which guarantees that ℓ is not a root in any thread, and

the full pointed-by-heap assertion ℓ ← [1 𝐿, which guarantees that 𝐿 contains all of the predecessors

of the location ℓ in the heap. A “sizeof ” assertion determines the size𝑚 of the memory block at

address ℓ . CloudAdd produces an extended cloud, where 𝐿 is added to the cloud’s entry points,

𝑚 is added to the cloud’s size, and ℓ is added to the cloud’s domain.

CloudFree logically deallocates a cloud that is closed under predecessors, that is, a cloud such

that 𝑃 ⊆ 𝐷 holds. The “cloud” assertion is consumed. In exchange for it, the rule produces 𝑛 space

credits, where 𝑛 is the size of the cloud. Furthermore, it produces a deallocation witness for every

location in the cloud.

The rule FreeOne that was presented earlier (§6.1) is easily derived from the rules in Figure 25.

7 INTERLUDE: VERIFYING A SMALL EXAMPLE
Before diving into the soundness statements of IrisFit, extensions of IrisFit, and case studies, let us

showcase how one proves a small program, with concurrency, but without protected sections.

Demo Program. The program, named demo, appears in Figure 26. Following standard practice,

we write 𝑡1 ; 𝑡2 as sugar for let𝑥 = 𝑡1 in 𝑡2 where 𝑥 ∉ fv(𝑡2). The demo program proceeds as follows.

First, two blocks of size 1 are allocated. Their addresses, say ℓ𝑥 and ℓ𝑦 , are bound to the variables 𝑥

and 𝑦. Then, the address ℓ𝑦 is stored inside the block at address ℓ𝑥 . Next, a new thread is forked.

This new thread executes the store instruction ℓ𝑥 [0]← ℓ𝑥 : that is, it writes the address ℓ𝑥 into the

block at address ℓ𝑥 , creating a cyclic pointer from this block to itself. Meanwhile, the main thread

launches an active waiting loop, which runs until it observes that ℓ𝑥 points to itself—that is, until it

observes the effect of the store instruction executed by the child thread. This loop is implemented

by means of the auxiliary function wait.

, Vol. 1, No. 1, Article . Publication date: January 2018.

38 Alexandre Moine, Arthur Charguéraud, and François Pottier

demo ≜ 𝜇ptr . 𝜆[] .
let𝑥 = alloc 1 in

let𝑦 = alloc 1 in

𝑥 [0]←𝑦 ;

fork (𝑥 [0]←𝑥) ;
(wait [𝑥])ptr

wait ≜ 𝜇ptr 𝑓 . 𝜆[𝑥] .
if 𝑥 [0] = 𝑥
then ()
else (𝑓 [𝑥])ptr

Fig. 26. The demo function and its auxiliary function wait

Specification. Our goal is to establish that executing demo requires two words of memory and

that these two words are recovered once demo terminates. In IrisFit, this specification is expressed

by this triple:

{outside 𝜋 ∗ ♦2} 𝜋 : (demo [])ptr {𝜆() . outside 𝜋 ∗ ♦2}.
The challenge is to prove that, by the time the main thread completes, the blocks ℓ𝑥 and ℓ𝑦 can be

logically deallocated. To this end, we must argue that, upon completion of the main thread, the

blocks ℓ𝑥 and ℓ𝑦 are not pointed by any other heap block and that they are no longer roots in any

thread. We begin by presenting the high-level arguments.

Intuition for the Proof. Let us focus in turn on the addresses ℓ𝑥 and ℓ𝑦 . For each of these locations,

let us examine in turn which heap blocks point to it and in which threads it is a root.

As soon as the child thread executes the instruction ℓ𝑥 [0]← ℓ𝑥 , the location ℓ𝑥 becomes stored

in the heap. However, it is stored in the block ℓ𝑥 itself, and nowhere else. The block ℓ𝑥 is never

pointed to by another heap block.

The location ℓ𝑥 ceases to be a root for the main thread when the test ℓ𝑥 [0] = ℓ𝑥 in wait succeeds.

Indeed, the call to wait is the last instruction of the function demo, and the “then” branch in the

function wait contains the trivial instruction (), which does not mention ℓ𝑥 . Furthermore, by means

of the invariant that is described further on, one can prove that the success of the test ℓ𝑥 [0] = ℓ𝑥
guarantees that the child thread has executed its store instruction. Therefore, when the main thread

completes, ℓ𝑥 is no longer a root for the child thread. Thus, at that point, ℓ𝑥 is no longer a root at all.

The location ℓ𝑦 is initially stored in the block ℓ𝑥 . However, as soon as the child thread executes

its store instruction, which overwrites ℓ𝑦 with ℓ𝑥 , the location ℓ𝑦 ceases to appear in the heap.

Furthermore, as explained earlier, the main thread does not complete until the child thread has

executed this store instruction. Therefore, when the main thread completes, the address ℓ𝑦 is no

longer stored in the heap.

The location ℓ𝑦 is not mentioned in the child thread, and is not read from the heap by this thread,

hence ℓ𝑦 is never a root for the child thread. Furthermore, clearly, once the main thread completes,

ℓ𝑦 is no longer a root for the main thread.
9

As mentioned above, we exploit an Iris invariant to transfer knowledge between the child thread

and the main thread. An invariant can be thought of as a description of the states of a state machine,

which governs how threads interact and what resources they exchange. The transitions of this state

machine are not mentioned in the invariant: they are implicit. In a proof, an invariant is typically

9
A look at the code suggests that the variable 𝑦 ceases to be a root immediately after the instruction 𝑥 [0]←𝑦 is executed.

Indeed, beyond this point in the code, the variable 𝑦 does not occur. However, this remark is irrelevant. The truly relevant

question is not which variables are roots, but which memory locations are roots. Here, as long as the waiting loop runs, the

location ℓ𝑦 may be a root for the main thread, because the instruction ℓ𝑥 [0] in the function wait can read ℓ𝑦 from the heap

and return ℓ𝑦 . Thus, ℓ𝑦 definitively ceases to be a root for the main thread only once the instruction ℓ𝑥 [0] has returned ℓ𝑥 .

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 39

opened, analyzed so as determine which state (or states) may be current, then closed in the same

state or in a new state.

The invariant involved in reasoning about demo is the following:

𝐼 ≜
ℓ𝑥 ↦→1 [ℓ𝑦]

∨ ℓ𝑥 ↦→1 [ℓ𝑥] ∗ ℓ𝑥 ← [1 {+ℓ𝑥 } ∗ ℓ𝑥 ⇐\ 1
2

∅ ∗ ℓ𝑦 ← [1 ∅
∨ † ℓ𝑦

The first disjunct of the invariant 𝐼 represents the initial state, in which the block at address ℓ𝑥
contains a pointer to the block at address ℓ𝑦 . The second disjunct represents the intermediate state

in which the child thread has terminated and given up its resources, but the main thread has not yet

observed that ℓ𝑥 now points to itself. The third disjunct † ℓ𝑦 corresponds to the final state, which is

reached at the point where the block ℓ𝑦 can be logically deallocated. (The presence of a disjunct of

the form † ℓ𝑦 makes 𝐼 an example of a liveness-based cancellable invariant, in the sense of §5.10.)

Formal Arguments Involved in the Proof. Let us begin by reasoning on the instructions from demo.

First, we apply the rule CallPtr and enter the function body. Then, we face two allocations of

blocks of size 1. We apply SplitJoinSC to the assertion ♦2 to obtain ♦1 ∗ ♦1. To be more precise, the

first allocation that we face lies under a let binding. To enter the left-hand side of this let binding,

we use BindNoTrim. Then, we apply Alloc: we lose one space credit, we name the resulting

location ℓ𝑥 , and we obtain the assertions ℓ𝑥 ↦→1 [()] and ℓ𝑥 ⇐ \1 {𝜋} and ℓ𝑥 ← [1 ∅. We then use

LetVal to substitute ℓ𝑥 for 𝑥 in the remaining term. We repeat the exact same three steps to reason

about the second allocation and name its result ℓ𝑦 . We apply the rule SizeOfPointsTo to obtain

sizeof ℓ𝑦 1. We deduce from the two points-to assertions that ℓ𝑥 and ℓ𝑦 are distinct. Because ℓ𝑦 is

never read or written, we throw away its points-to assertion. At this point, we hold the permissions

sizeof ℓ𝑦 1 and ℓ𝑦 ⇐ \1 {𝜋} and ℓ𝑦 ← [1 ∅.
The term that remains to reason about is:

ℓ𝑥 [0]← ℓ𝑦 ; fork (ℓ𝑥 [0]← ℓ𝑥) ; (wait [ℓ𝑥])ptr .

We apply the rule BindNoTrim to focus on the store instruction ℓ𝑥 [0]← ℓ𝑦 . For this instruction,

we apply the rule Store, thereby trading the assertion ℓ𝑥 ↦→1 [()] ∗ ℓ𝑦 ←[1 ∅ for the assertion
ℓ𝑥 ↦→1 [ℓ𝑦] ∗ ℓ𝑦 ← [1 {+ℓ𝑥 }.
We now reach the fork instruction. We initialize the aforementioned invariant 𝐼 by entering

the initial state, that is, by providing the assertion ℓ𝑥 ↦→1 [ℓ𝑦]. At this stage, we need to split the

assertion ℓ𝑥 ⇐ \1 {𝜋} in two halves, because we will need one half to witness a root held by the

context, and one half to transmit to the child thread. Concretely, we apply FracPBThread to this

assertion and obtain ℓ𝑥 ⇐ \ 1
2

{𝜋} ∗ ℓ𝑥 ⇐ \ 1
2

{𝜋}. To focus on the fork instruction, we apply the rule

Bind. (We cannot exploit BindNoTrim because Fork involves trimming.) Applying Bind requires

us to temporarily give up the fractional pointed-by-thread permission ℓ𝑥 ⇐ \ 1
2

{𝜋}.
We next apply the rule Fork. Thereafter, we focus on the child thread, whose code is ℓ𝑥 [0]← ℓ𝑥 .

We name the new thread identifier 𝜋 ′. To the child thread, we transmit the invariant 𝐼 as well as

the assertions ℓ𝑥 ←[1 ∅ and ℓ𝑦 ← [1 {+ℓ𝑥 }. The application of Fork updates the assertion ℓ𝑥 ⇐ \ 1
2

{𝜋}
into ℓ𝑥 ⇐ \ 1

2

{𝜋 ′}, which is transmitted to the child thread.

To reason about the store instruction ℓ𝑥 [0]← ℓ𝑥 , we first open the invariant 𝐼 . We eliminate the

third disjunct † ℓ𝑦 by using DeadPBHeap. We also eliminate the second disjunct (· · · ∗ ℓ𝑦 ← [1 ∅) by
using JoinPBHeap together with fractional reasoning about the pointed-by-heap assertion for ℓ𝑦
(a fraction cannot exceed 1). Only the first disjunct remains: so, we acquire the assertion ℓ𝑥 ↦→1 [ℓ𝑦].
Then, we can apply the rule Store, trading ℓ𝑥 ↦→1 [ℓ𝑦] ∗ ℓ𝑥 ← [1 ∅ for ℓ𝑥 ↦→1 [ℓ𝑥] ∗ ℓ𝑥 ← [1
{+ℓ𝑥 } ∗ ℓ𝑦 ← [0 {−ℓ𝑥 }. We use JoinPBHeap to transform ℓ𝑦 ← [1 {+ℓ𝑥 } ∗ ℓ𝑦 ← [0 {−ℓ𝑥 } into ℓ𝑦 ← [1 ∅.

, Vol. 1, No. 1, Article . Publication date: January 2018.

40 Alexandre Moine, Arthur Charguéraud, and François Pottier

A store instruction returns the unit value (), so, after the store takes place, we use Conseqence

and TrimPBThread to update the assertion ℓ𝑥 ⇐ \ 1
2

{𝜋 ′} into ℓ𝑥 ⇐\ 1
2

∅, witnessing that ℓ𝑥 is not

a root of the child thread any more. We then close the invariant 𝐼 by giving up all of the assertions

at hand, forming the second disjunct of 𝐼 .

We now turn our attention back to the main thread, whose sole remaining instruction is:

(wait [ℓ𝑥])ptr. We exploit the fact that ℓ𝑦 is not a root for this term, together with the rules

Conseqence and TrimPBThread, to obtain ℓ𝑦 ⇐ \1 ∅. At this point, there remains to prove the

following triple, which corresponds to a specification of the auxiliary function wait.

{outside 𝜋 ∗ 𝐼 ∗ sizeof ℓ𝑦 1 ∗ ℓ𝑦 ⇐ \1 ∅ ∗ ℓ𝑥 ⇐ \ 1
2

{𝜋}} 𝜋 : (wait [ℓ𝑥])ptr {𝜆(). outside 𝜋 ∗ ♦2}

We establish this triple using Löb induction [Jung et al. 2018b]. We use CallPtr and enter the

function body. We face the term: if ℓ𝑥 [0] = ℓ𝑥 then () else (𝑓 [ℓ𝑥])ptr. We first use BindNoTrim to

focus on the condition of the if statement, ℓ𝑥 [0] = ℓ𝑥 , and use BindNoTrim again to focus on the

load ℓ𝑥 [0].
By making use of the information stored in the invariant, we will now prove that this load must

return ℓ𝑥 or ℓ𝑦 . We open the invariant 𝐼 and perform a case analysis on 𝐼 , giving rise to three cases.

In each of the first two cases, we explain how to close the invariant; the third case, we rule out.

(1) In the first case, we have ℓ𝑥 ↦→1 [ℓ𝑦]. We apply Load, which updates the assertion ℓ𝑦 ⇐ \1 ∅
into ℓ𝑦 ⇐ \1 {𝜋}, and close the invariant in the same state as it was just opened.

(2) In the second case, we have ℓ𝑥 ↦→1 ℓ𝑥 ∗ ℓ𝑥 ← [1 {+ℓ𝑥 } ∗ ℓ𝑥 ⇐ \ 1
2

∅ ∗ ℓ𝑦 ←[1 ∅. This case involves
logical deallocation. First, we use Conseqence and FreeOne to logically deallocate ℓ𝑦 . We

obtain one space credit and a deallocation witness † ℓ𝑦 . Then, we apply Load, which updates

the assertion ℓ𝑥 ⇐ \1 ∅ into ℓ𝑥 ⇐\1 {𝜋}. We close the invariant using the third disjunct, that is,

by providing † ℓ𝑦 .
(3) In the third case, we have † ℓ𝑦 . This case is eliminated by using DeadPBThread. Indeed, we

hold the pointed-by-thread assertion ℓ𝑦 ⇐\1 ∅ therefore ℓ𝑦 cannot be deallocated.

Let ℓ𝑧 be the result of the load ℓ𝑥 [0]. If we went through case (1) above, then we have ℓ𝑧 = ℓ𝑦 .

If we went through case (2), then we have ℓ𝑧 = ℓ𝑥 . We apply the rule Prim to reason about the test

that compares ℓ𝑧 with ℓ𝑥 . Let us show, in each of the two cases, how to conclude the proof.

(1) Case ℓ𝑧 = ℓ𝑦 . Because ℓ𝑦 and ℓ𝑥 are distinct addresses, the test must evaluate to false. We

apply IfFalse and enter the second branch of the conditional: we now face the recursive

call (𝑓 [ℓ𝑥])ptr. Using Conseqence and TrimPBThread, we trim the pointed-by-thread

assertion for ℓ𝑦 , changing the assertion ℓ𝑦 ⇐ \1 {𝜋} back into ℓ𝑦 ⇐ \1 ∅. We conclude by

applying the induction hypothesis.

(2) Case ℓ𝑧 = ℓ𝑥 . This time, the test must evaluate to true. We apply IfTrue and enter the first

branch of the conditional. There remains to establish the following triple:
outside 𝜋 ∗ ♦1
ℓ𝑥 ↦→1 [ℓ𝑥]

ℓ𝑥 ⇐ \ 1
2

{𝜋} ∗ ℓ𝑥 ⇐ \ 1
2

∅
ℓ𝑥 ← [1 {+ℓ𝑥 }

 𝜋 : ()
{
𝜆(). outside 𝜋 ∗ ♦2

}
Using FracPBThread, we obtain ℓ𝑥 ⇐\1 {𝜋}. Next, using Conseqence and TrimPBThread,

we obtain ℓ𝑥 ⇐ \1 ∅. In order to logically deallocate the single-cell cycle ℓ𝑥 , we use the

cloud rules presented in §6.6 to construct the cloud assertion {ℓ𝑥 } ,1 {ℓ𝑥 }. Then, using
Conseqence and CloudFree, we obtain one space credit. Finally, using SplitJoinSC, we

join the two space credits. We conclude using Val.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 41

NotStuckVal

𝜃 (𝜋) = (𝑣,Out)
NotStuck𝑆 (𝜃, 𝜎) 𝜋

NotStuckStep

𝑐
enabled action𝑆−−−−−−−−−−−−→𝜋 𝑐

′

NotStuck𝑆 𝑐 𝜋

Safe

∀𝜋. Enabled𝑆 𝑐 𝜋
=⇒ NotStuck𝑆 𝑐 𝜋

Safe𝑆 𝑐

Fig. 27. Predicates used in the statement of the safety theorem

8 SAFETY AND LIVENESS
In this section, we state several theorems about programs that have been verified using IrisFit.

In short, we wish to establish three properties, namely safety (no thread can crash), liveness
(no thread can be blocked forever), and bounded space consumption (the size of the heap cannot

exceed a certain bound). We first state these properties about the default semantics (§4.2.9), then

discuss the growing semantics (§4.2.10) and the oblivious semantics (§4.2.7).

The safety theorem (§8.1) guarantees that no thread crashes. More precisely, it states that

if a thread is enabled (§4.2.8) then this thread is not stuck: either it has reached a value or it can

make a step.

The liveness theorem (§8.2) guarantees that no thread can be blocked forever. More precisely,

under the assumption that there is a polling point in front of every function call, we prove that

every thread is eventually enabled. Furthermore, we prove that inserting a polling point in front

of every function call preserves safety. Thus, after a source program without polling points has

been verified with IrisFit, one can let a compiler automatically insert polling points, and obtain

both safety and liveness for this instrumented program.

In the default semantics of LambdaFit, by design, the size of the heap cannot exceed the limit 𝑆

(Lemma 4.2). Therefore, the bounded space consumption property comes for free.

With respect to the growing semantics, we are able to establish similar results. In this semantics,

the heap size limit can grow at runtime, so the statement of the bounded space consumption property
must be slightly relaxed (§8.3).

All of our results about the default and growing semantics follow from a single core soundness
theorem stated with respect to the oblivious semantics (§8.4). This theorem spells out the guarantee

that is offered by IrisFit when a LambdaFit program is executed with blocking instructions ignored

and garbage collection disabled.

All of our results are mechanized using the Coq proof assistant. For more details about our proofs,

the reader is referred to our mechanization [Moine 2025] and to the first author’s dissertation

[Moine 2024].

8.1 Safety
A concurrent Separation Logic typically comes with a safety guarantee, formulated in the form:

“no thread can crash”. A more precise statement is: “always, every thread is not stuck”. In other words,

in every reachable configuration of the system, every thread either has terminated or is able to

make a reduction step. A thread that has not reached a value and is unable to make a step is stuck:
by convention, this is considered an undesirable situation, akin to a crash.

In our setting, however, this statement must be amended, because LambdaFit has blocking

instructions. A blocking instruction is sometimes disabled (§4.2.8), therefore unable to make a step;

yet, this situation is not considered a crash.

Our amended safety guarantee is qualified as follows: “always, every enabled thread is not stuck”.

A thread that is not enabled is considered blocked: this is a normal situation.

, Vol. 1, No. 1, Article . Publication date: January 2018.

42 Alexandre Moine, Arthur Charguéraud, and François Pottier

HoldsNow

𝑃 𝑐

AfterAtMost (−→) 𝑛 𝑃 𝑐

HoldsAfter

∃𝑐′ . 𝑐 −→ 𝑐′

∀𝑐′ . 𝑐 −→ 𝑐′ =⇒ AfterAtMost (−→) 𝑛 𝑃 𝑐′

AfterAtMost (−→) (𝑛 + 1) 𝑃 𝑐

Always

∀𝑐′ . 𝑐 −→∗ 𝑐′ =⇒ 𝑃 𝑐′

Always (−→) 𝑃 𝑐

Eventually

AfterAtMost (−→) 𝑛 𝑃 𝑐
Eventually (−→) 𝑃 𝑐

Fig. 28. Temporal logic predicates

Figure 27 defines a few auxiliary predicates that appear in the statement of the safety theorem.

The proposition NotStuck𝑆 𝑐 𝜋 means that, in the configuration 𝑐 , the thread identified by 𝜋 is not

stuck. It is defined by two rules. NotStuckVal states that if a thread has reached a value and is

outside a protected section, then it is not stuck. (Terminating inside a protected section is forbidden.)

NotStuckStep states that if a thread can take a step, then it is not stuck. The proposition Safe𝑆 𝑐 ,

defined by the rule Safe, means that no enabled thread in the configuration 𝑐 is stuck.

The proposition Always (−→) 𝑃 𝑐 , which is defined by the rule Always in Figure 28, means

that every configuration that is reachable from the configuration 𝑐 via the reduction relation −→
satisfies the predicate 𝑃 .

The safety theorem (Theorem 8.1) can be read as follows. Suppose that the program 𝑡 has been

verified using IrisFit, with an arbitrary identifier 𝜋 for the main thread, under the precondition

♦𝑆 ∗ outside 𝜋 and the postcondition outside 𝜋 . The precondition provides 𝑆 space credits and

guarantees that the main thread initially runs outside a protected section. The postcondition forbids

termination inside a protected section. Then, the initial configuration init (𝑡) (§4.2.2) is always safe:
that is, beginning in this configuration, running the program under the default semantics with

heap limit 𝑆 cannot reach a configuration where a thread is stuck.

Theorem 8.1 (Safety). Assume that the following triple holds:

∀𝜋. {♦𝑆 ∗ outside 𝜋} 𝜋 : 𝑡 {𝜆 . outside 𝜋}

Then Always (default𝑆−−−−−−→) Safe𝑆 (init (𝑡)) holds.

Although this theorem mentions 𝑆 , the meaning of a triple is independent of 𝑆 . Therefore,

the reasoning rules are independent of 𝑆 as well. One can verify a program component without

mentioning 𝑆 and without knowing its value. A concrete value of 𝑆 must be chosen and fixed only

when Theorem 8.1 is applied to a complete (closed) program.

8.2 Liveness
The safety theorem guarantees that no thread can crash, but allows a thread to become blocked.

Therefore, a liveness guarantee is also desirable: one would like to be assured that always, every
thread is eventually enabled. In other words, there is no execution scenario where, past a certain

point, a thread remains forever blocked (i.e., is never enabled).

In fact, we are able to offer a stronger guarantee: we prove that always, eventually, every allocation
fits. In other words, in every execution scenario, infinitely often, the system reaches a point where

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 43

no allocation request is blocked due to a lack of memory. This property is indeed stronger, because

it guarantees that, at that point, all threads are simultaneously enabled.
10

However, our liveness guarantee is subject to a condition: the program must contain enough
polling points. To see why this is necessary, imagine a program where thread 𝐴 is blocked on

a large allocation request and thread 𝐵 is running in an infinite loop, without allocating memory

or encountering a polling point. Then, there exists a scenario where thread 𝐵 runs forever, the

garbage collector is never invoked, and thread 𝐴 never becomes enabled. Thus, the desired liveness

property does not hold. However, suppose that a polling point is inserted in the loop: thread 𝐵 is

not allowed to proceed past this polling point. Then, in every scenario, a garbage collection step

eventually takes place, at which time both thread 𝐴 and thread 𝐵 become unblocked.

How can one tell whether a program has enough polling points? Or how can one tell where

polling points must be inserted so that the program has enough polling points? We propose a simple

approach, which is to insert a polling point in front of every function call.11 This ensures that every
thread must reach a polling point in a bounded number of steps. Up to an administrative side

condition,
12
we prove that this polling point insertion strategy preserves safety and ensures liveness.

We refer to this polling point insertion strategy as addpp. Thus, if 𝑡 is a term, then addpp(𝑡) is the
term obtained by inserting a polling point in front of every function call in the term 𝑡 .

Figure 28 introduces several auxiliary predicates that appear in the statement of the liveness

theorem. The proposition AfterAtMost (−→) 𝑛 𝑃 𝑐 means that, out of the configuration 𝑐 , every ex-

ecution path via the reduction relation −→ reaches, in at most 𝑛 steps, a configuration that satisfies 𝑃 .
This proposition is inductively defined by the rules HoldsNow and HoldsAfter. HoldsAfter

guarantees not only that the predicate continues to hold after every possible step, but also that

there exists such a step. The proposition Eventually (−→) 𝑃 𝑐 , defined by the rule Eventually,

means that in a bounded number of steps, out of the configuration 𝑐 , every execution path reaches

a configuration that satisfies 𝑃 . It is defined via an existential quantification over 𝑛.13

The following theorem combines a safety guarantee and a liveness guarantee. It states that if the

program 𝑡 has been verified using IrisFit, under the exact same conditions as in Theorem 8.1, then

the program addpp(𝑡), in which enough polling points have been inserted, is safe and live.

Theorem 8.2 (Combined Safety and Liveness after Polling Point Insertion). Let 𝑡 be
a term in administrative normal form. Assume that the following triple holds:

∀𝜋. {♦𝑆 ∗ outside 𝜋} 𝜋 : 𝑡 {𝜆 . outside 𝜋}
10
By Lemma 4.1, the property always, eventually, every allocation fits implies that always, eventually, all threads are enabled

at the same time; which, in turn, implies that always, every thread is eventually enabled.
11
LambdaFit does not have loops: instead, loops must be simulated via tail-recursive functions. Thus, inserting a polling

point in front of every function call effectively implies inserting a polling point inside every loop as well. Incidentally,

because function calls are forbidden inside protected sections, a polling point is never inserted into a protected section,

satisfying our restriction that polling points in protected sections are forbidden. Our polling point insertion strategy is

loosely inspired by the (undocumented) polling point insertion strategy of the OCaml compiler. The OCaml compiler

inserts a polling point at the beginning of every function (except possibly small leaf functions), inside every loop, and views

memory allocation instructions as polling points.

12
Prior to inserting polling points, we require the program to be in administrative normal form (ANF). That is, in every

function call, we require the function itself and the actual arguments to be variables or values, as opposed to arbitrary

expressions. This guarantees that the polling point that is inserted in front of the function call is executed after the actual
arguments have been computed and just before the function is invoked.

13
We propose a strong definition of Eventually, whose quantifier prefix is of the form ∃∀: “there exists 𝑛 such that every

execution path reaches in at most 𝑛 steps a point where 𝑃 is satisfied.” A weaker definition would involve a quantifier prefix

of the form ∀∃: “every execution path eventually reaches a point where 𝑃 is satisfied.” This alternative definition is strictly

weaker, because an infinitely branching tree where each branch is finite does not necessarily have finite depth [Bertot and

Castéran 2004]. Our reduction relations have infinite non-determinism because memory allocation picks an arbitrary fresh

address.

, Vol. 1, No. 1, Article . Publication date: January 2018.

44 Alexandre Moine, Arthur Charguéraud, and François Pottier

EveryAllocFits𝑆 𝑐

EveryAllocFitsPair (𝑆, 𝑐)
Safe𝑆 𝑐

SafePair (𝑆, 𝑐)
𝑆 ≤ 𝑆 ′

LimitIsAtMost 𝑆 ′ (𝑆, 𝑐)

Fig. 29. Predicates used in the statements of soundness for the growing semantics

Let 𝑡 ′ stand for the term addpp(𝑡). Then, the following propositions hold:
(1) Always (default𝑆−−−−−−→) Safe𝑆 (init (𝑡 ′))
(2) Always (default𝑆−−−−−−→) (Eventually (default𝑆−−−−−−→) EveryAllocFits𝑆) (init (𝑡 ′)).
This statement reflects how we envision the practical use of IrisFit. We expect the user to verify

a program 𝑡 in which polling points have not yet been inserted. Thus, the user need not know

where polling points will be placed. The uninstrumented verified program 𝑡 enjoys safety but not

necessarily liveness. Nevertheless, the theorem guarantees that, once enough polling points have

been inserted, the program enjoys both safety and liveness.

Although Theorem 8.2 makes use of polling points and fixes a specific polling point insertion strat-

egy to ensure liveness, namely addpp, we do support other approaches. Our mechanization [Moine

2025] includes a more general liveness theorem that splits the burden into (1) proving that always,

at least one thread or the GC can take a step, and (2) proving that always, eventually, the program

crashes or every allocation fits. Regarding addpp, under the assumption that the original program 𝑡

has been verified, we prove that both properties hold for the transformed program addpp(𝑡). The
more general liveness theorem and the proof that it implies Theorem 8.2 are presented in the first

author’s dissertation [Moine 2024, §7.5.2].

8.3 Safety and Liveness for the Growing Semantics
For the growing semantics, we establish the following theorem, whose general structure is the same

as that of Theorem 8.2. It uses several auxiliary predicates whose definitions appear in Figure 29.

Theorem 8.3 (Combined Safety and Liveness after Polling Point Insertion). Let 𝑡 be
a term in administrative normal form. Assume that the following triple holds:

∀𝜋. {♦𝑆 ∗ outside 𝜋} 𝜋 : 𝑡 {𝜆 . outside 𝜋}
Let 𝑡 ′ stand for the term addpp(𝑡). Let 𝜌 stand for the initial state (0, init (𝑡 ′)), where the heap limit
is 0, the heap is empty, and the program 𝑡 ′ is ready to run. Then, the following propositions hold:

(1) Always (growing−−−−−→) SafePair 𝜌
(2) Always (growing−−−−−→) (Eventually (growing−−−−−→) EveryAllocFitsPair) 𝜌
(3) Always (growing−−−−−→) (LimitIsAtMost (grow(𝑆))) 𝜌 .
This theorem states that if the program 𝑡 has been verified under the precondition ♦𝑆 then the

program addpp(𝑡), in which polling points have been inserted, is safe (no thread can crash—item 1),

is live (always, eventually, all threads are enabled—item 2), and never needs more than grow(𝑆)
words of memory (item 3). Indeed, item 3 is a bounded space consumption property: it states that,

always, the current heap limit is at most grow(𝑆). By Lemma 4.5, this implies that the size of the

heap, too, is at most grow(𝑆).
In summary, even though the current heap limit is automatically increased when the runtime

system finds that the current limit is too low, if one has (statically) verified (using IrisFit) that the

program needs at most 𝑆 words of memory, then (at runtime) the heap size is bounded by grow(𝑆).
If one sets for example grow(𝑆) = max(2𝑆, 1), as suggested earlier (§4.2.10), then one finds that the

heap size is 𝑂 (𝑆).

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 45

NotStuckObliviousVal

𝜃 (𝜋) = (𝑣,Out)
NotStuckOblivious (𝜃, 𝜎) 𝜋

NotStuckObliviousStep

𝑐
action−−−−−→𝜋 𝑐

′

NotStuckOblivious 𝑐 𝜋

Fig. 30. Predicates used in the statement of the Core Soundness theorem

Our motivation for proposing the growing semantics is that it does not require a suitable value

of the limit to be known before execution begins. Indeed, imagine that the program 𝑡 has not been
fully verified. Then, one does not know what value 𝑆 is large enough to guarantee that the triple

∀𝜋. {♦𝑆 ∗ outside 𝜋} 𝜋 : 𝑡 {𝜆 . outside 𝜋} holds. Nevertheless, under the optimistic assumption that

such a value 𝑆 exists, one can be assured that running the program under the growing semantics

will not require more than grow(𝑆) words of memory.

8.4 Core Soundness
A provocative yet fundamental remark is that IrisFit has nothing to do with garbage collection.

Indeed, its deallocation rule is purely logical. More generally, its reasoning rules are independent of

when garbage collection takes place, or whether it takes place at all. In reality, IrisFit is concerned

with the live heap size of a program, that is, the sum of the sizes of the reachable blocks.

Our earlier results, namely Theorems 8.1, 8.2, and 8.3, follow from a core soundness result, which
is expressed with respect to the oblivious semantics, a semantics in which no garbage collection

takes place and no instructions are blocking (§2.1, §2.3, §4.2.7).

In this setting, we must redefine what it means for a thread to be not stuck. The proposition
NotStuckOblivious 𝑐 𝜋 , defined in Figure 30, serves this purpose. A thread is not stuck if either it

has reached a value outside a protected section or it can make a step.

Let us write livesize(𝑅, 𝜎) for the total size of the fragment of the store 𝜎 that is reachable from

the set of roots 𝑅. Let us write livesize(𝑐) for the live heap size of the configuration 𝑐 . It is defined

by livesize((𝜃, 𝜎)) = livesize(locs(𝜃), 𝜎).
Our core soundness theorem states that always (with respect to the oblivious semantics), the

following two properties hold. First, no thread is stuck. Furthermore, if every thread is currently

outside a protected section, then the live heap size is at most 𝑆 , where 𝑆 is the number of space

credits that was granted when the program was statically verified.

Theorem 8.4 (Core Soundness). Assume that the following triple holds:

∀𝜋. {♦𝑆 ∗ outside 𝜋} 𝜋 : 𝑡 {𝜆 . outside 𝜋}
Then, for every configuration 𝑐 such that init (𝑡) oblivious−−−−−−→∗ 𝑐 ,
(1) for every identifier 𝜋 of a thread in 𝑐 , the property NotStuckOblivious 𝑐 𝜋 holds;
(2) AllOutside 𝑐 implies livesize(𝑐) ≤ 𝑆 .

This statement may seem surprisingly weak, as it offers no guarantee about livesize(𝑐) at a time

where AllOutside 𝑐 does not hold, that is, at a time where at least one thread is inside a protected

section. Moreover, this statement offers just a safety guarantee; it offers no liveness guarantee.

Nevertheless, this core soundness theorem is sufficiently strong to derive Theorems 8.1, 8.2, and 8.3,

which express the purpose of our logic in a different manner.

Our internal definition of IrisFit triples [Moine 2025] is relative to the oblivious semantics. The

proof of Theorem 8.4, as well as the proofs of our reasoning rules, involve the oblivious semantics

only. Thus, in many of our proofs, there is no need for us to reason about garbage collection or

about the distinction between enabled and disabled reduction steps.

, Vol. 1, No. 1, Article . Publication date: January 2018.

46 Alexandre Moine, Arthur Charguéraud, and François Pottier

9 CLOSURES
As explained earlier (§2.7), LambdaFit does not have primitive closures. Instead, we define closure
construction 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 and closure invocation (ℓ ®𝑢)clo as macros, which expand to sequences of

primitive LambdaFit instructions. These macros implement flat closures [Appel 1992, Chapter 10].
That is, a closure is represented as a record whose fields store a code pointer (at offset 0) and a series

of values (at offset 1 and beyond). The implementation of these macros (§9.2) is the same as in our

earlier paper [Moine et al. 2023]. Our reasoning rules for closure construction, invocation, and

deallocation are improved versions of the rules presented in our earlier paper [Moine et al. 2023].

In particular, they involve pending substitutions (§9.3). The main improvement is that the assertions

that describe closures are now persistent. From an end user’s point of view, this makes closures

much easier to work with. Internally, this is made possible by using liveness-based cancellable
invariants (§5.9).
Our reasoning rules for closures are abstract and do not reveal how closures are implemented.

They reveal only how much space a closure occupies and which pointers it keeps live. A user can

apply these rules without knowing how closures are internally represented.

Our construction of the reasoning rules for closures is in two layers. First, we introduce a low-

level assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ , which asserts that, at location ℓ in the heap, one finds a closure that

behaves like the function 𝜇𝑓 .𝜆®𝑥 . 𝑡 under the environment 𝐸. Crucially, in this assertion, the term

𝜇𝑓 .𝜆®𝑥 . 𝑡 can have free variables, whose values are given by 𝐸. This assertion does not reveal how a

closure is represented in memory, but does reveal its code. We give an overview of this low-level

API (§9.4), then describe some details of its implementation (§9.5). Second, we define a high-level

assertion Spec 𝑛 𝐸 𝑃 ℓ , which describes the behavior of a closure in a more abstract way. It asserts

that, at location ℓ , one finds a closure that corresponds to a 𝑛-ary function, whose behavior is

described by the predicate 𝑃 , and whose environment is 𝐸. The exact type and meaning of 𝑃 are

explained later on; roughly speaking, it is a Hoare triple. Although the environment 𝐸 does not

participate in the description of the behavior of the closure, it remains needed in order to reason

about the pointers that it contains and about the size of the closure block. We give an overview

of this high-level API (§9.6), then describe its implementation (§9.7). Only the high-level layer is

exposed to the end user; the low-level layer remains internal.

9.1 Environments
We write fvclo(𝑓 , ®𝑥, 𝑡) for a list of the free variables of the function 𝜇𝑓 .𝜆®𝑥 . 𝑡 , that is, for a list of the
variables in the set fv(𝑡) \ {𝑓 , ®𝑥}. The order in which the variables occur in this list does not matter,

but is fixed: this is reflected in the fact that fvclo is a function of 𝑓 , ®𝑥 , and 𝑡 .
An environment 𝐸 is a list of pairs (𝑣, 𝑞) of a value 𝑣 and a nonzero fraction 𝑞. This fraction is used

in a pointed-by-heap assertion, as follows: we write 𝐸 ←[𝐿 for the conjunction∗(𝑣, 𝑞) ∈𝐸 𝑣 ← [𝑞 𝐿.
The assertion 𝐸 ← [𝐿 can be understood as a collective fractional pointed-by-heap assertion that

covers every memory location that occurs in the environment 𝐸.

The length and order of the list 𝐸 are intended tomatch the length and order of the list fvclo(𝑓 , ®𝑥, 𝑡).
An environment 𝐸 is not a runtime object: it is a mathematical object that we use as a parameter of

the predicates Closure and Spec.

9.2 Closure Implementation
The definitions of the closure macros 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 and of (ℓ ®𝑣)clo appear in Figure 31. Both macros

generate LambdaFit syntax: that is, the result of their expansion is a LambdaFit expression.

The code produced by the macro 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 allocates a block of size 𝑛 + 1, stores a code pointer
in the first field, stores the values currently bound to the variables 𝑦0, . . . , 𝑦𝑛−1 in the remaining

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 47

Closure construction:
𝜇
clo
𝑓 . 𝜆®𝑥 . 𝑡 ≜

let 𝑓 = alloc (𝑛 + 1) in
𝑓 [0]←codeclo(𝑓 , ®𝑥, 𝑡);
𝑓 [𝑖 + 1]←𝑦𝑖 ; # for each 𝑖 in [0, 𝑛)
𝑓

Closure invocation:
(𝑣 ®𝑤)

clo
≜

(𝑣 [0] (𝑣 :: ®𝑤))ptr

Closure code pointer:
codeclo(𝑓 , ®𝑥, 𝑡) ≜
𝜇ptr_. 𝜆(𝑓 :: ®𝑥) .
let𝑦𝑖 = 𝑓 [𝑖 + 1] in # for each 𝑖 in [0, 𝑛)
𝑡

Side condition:
fvclo(𝑓 , ®𝑥, 𝑡) = [𝑦0; . . . ;𝑦𝑛−1]

Fig. 31. Closures: macros for closure construction and invocation

fields, and returns the address of this block. The variables 𝑦0, . . . , 𝑦𝑛−1 are the free variables of the
function 𝜇𝑓 .𝜆®𝑥 . 𝑡 , that is, fvclo(𝑓 , ®𝑥, 𝑡).

The code pointer is produced by the auxiliary macro codeclo(𝑓 , ®𝑥, 𝑡). It is a closed function whose

parameters are 𝑓 (the closure itself) followed with ®𝑥 . This function loads the values stored in the

closure and binds them to the variables 𝑦0, . . . , 𝑦𝑛−1 before executing the body 𝑡 .

The code produced by the closure invocation macro (𝑣 ®𝑣)clo first fetches the code pointer that is
stored in the first field of the closure, then invokes this code pointer, passing it the closure 𝑣 itself

as well as the actual arguments ®𝑣 .

9.3 Pending Substitutions
Our specifications of closure construction (§9.4, §9.6) involve pending substitutions. A pending

substitution, written [®𝑣/®𝑦] (𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡), is the application of the substitution [®𝑣/®𝑦] to the closure

construction macro 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 . In this substitution, we may assume that the variables ®𝑦 are the

free variables of the function 𝜇𝑓 .𝜆®𝑥 . 𝑡 . Any other variables can be removed from the domain of the

substitution, as they do not impact the closure. The reason why we must be prepared to reason

about a pending substitution is that the premise of LetVal gives rise to substitutions which (after

being propagated down) become blocked in front of the opaque macro 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 . The values ®𝑣
that appear in this substitution are the values “captured” by the closure, that is, the values that are

stored in the closure when it is constructed.

To illustrate these rules, let us take the example of a generator of integers:

let 𝑟 = alloc 1 in 𝑟 [0]←0; (𝜇clo . 𝜆 . let𝑥 = 𝑟 [0] in 𝑟 [0]← (𝑥 + 1); 𝑥)

This code allocates a reference 𝑟 , initializes it to 0, then allocates a closure that loads the content

of 𝑟 , names it 𝑥 , increments 𝑟 , and returns 𝑥 . This closure captures the free variable 𝑟 .

Now, let us briefly describe which reasoning rules must be applied in order to verify this code,

and how the code that appears in the goal evolves as the proof progresses. After applying Bind

and Alloc to reason about the memory allocation instruction, the term looks as follows, where we

have named ℓ the memory location produced by the instruction alloc 1:

let 𝑟 = ℓ in 𝑟 [0]←0; (𝜇clo . 𝜆 . let𝑥 = 𝑟 [0] in 𝑟 [0]← (𝑥 + 1); 𝑥) .

Applying LetVal gives rise to the substitution [ℓ/𝑟], which is applied to the right-hand side of the

let binding. Thus, after applying Bind and Store to reason about the store instruction, the term

that appears in the goal is:

[ℓ/𝑟] (𝜇clo . 𝜆 . let𝑥 = 𝑟 [0] in 𝑟 [0]← (𝑥 + 1); 𝑥)

, Vol. 1, No. 1, Article . Publication date: January 2018.

48 Alexandre Moine, Arthur Charguéraud, and François Pottier

MkClo

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑣 ®𝑞 |®𝑣 | = | ®𝑦 | 𝑓 ∉ ®𝑥{
♦(size(1 + |𝐸 |)) ∗ outside 𝜋

𝐸 ← [∅

}
𝜋 : [®𝑣/®𝑦] (𝜇

clo
𝑓 . 𝜆®𝑥 . 𝑡)

{
𝜆ℓ.

outside 𝜋 ∗ Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ
ℓ ⇐ \ {𝜋} ∗ ℓ ← [∅

}
CallClo

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑣 ®𝑞 | ®𝑥 | = | ®𝑤 |
locs(®𝑣) = dom(𝑀) {outside 𝜋 ∗ 𝑀 ⇐ \ {𝜋} ∗ Φ} 𝜋 : [®𝑣/®𝑦] [ℓ/𝑓] [®𝑤/®𝑥]𝑡 {Ψ}

{Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ ∗ outside 𝜋 ∗ 𝑀 ⇐\ {𝜋} ∗ Φ} 𝜋 : (ℓ ®𝑤)
clo
{Ψ}

Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ ∗ ℓ ← [∅ ∗ ℓ ⇐ \ ∅ ♦(size(1 + |𝐸 |)) ∗ † ℓ ∗ 𝐸 ← [∅ CloFree

Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ is persistent CloPersist

Fig. 32. Closures: low-level API

As explained above, the macro 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 is opaque, so a substitution cannot be pushed into it.

This explains why our reasoning rules for closure construction must allow reasoning about a term

of the form [®𝑣/®𝑦] (𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡).

9.4 Low-Level Closure API
Our low-level reasoning rules for closures, shown in Figure 32, involve the predicate Closure, which
describes the layout of a closure in memory. Its definition is given in the next section (§9.5).

The rule MkClo specifies a closure construction operation with a pending substitution. In the

second premise of MkClo, an environment 𝐸 is built by pairing up the values ®𝑣 with nonzero

fractions ®𝑞. Then, according to the precondition in MkClo, closure construction consumes 𝐸 ← [∅.
In other words, for each memory location that occurs in 𝐸, it consumes a fractional pointed-by-heap

assertion. This records the fact that there exists a pointer from the closure to each such memory

location.

According to the precondition in MkClo, closure construction consumes size(1 + |𝐸 |) space
credits, reflecting the space needed to store a code pointer and the values ®𝑣 in a flat closure.

Because closure construction involves an allocation, MkClo requires the thread 𝜋 to be outside

a protected section.

According to the postcondition in MkClo, closure construction produces a memory location ℓ .

Pointed-by-heap and pointed-by-thread assertions for this memory location are produced, indicating

that this memory location is fresh. Furthermore, the assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ , which guarantees

that there is a well-formed closure at address ℓ , is also produced. In this paper, in contrast with our

earlier work [Moine et al. 2023], this assertion is persistent [Jung et al. 2018b, §2.3]. This means

that the knowledge that there is a closure at address ℓ can be shared without any restriction. The

pointed-by-heap and pointed-by-thread assertions ℓ ⇐ \ {𝜋} ∗ ℓ ← [∅ are not persistent. Indeed,
these assertions allow deallocating the closure, and our program logic ensures that every object is

deallocated at most once.

The rule CallClo closely resembles the rule CallPtr for primitive function calls (Figure 21).

One difference is that CallClo requires the assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ , which describes the closure.

Another difference is that, whereas a primitive function 𝜇ptr 𝑓 . 𝜆®𝑥 . 𝑡 must be closed, a general

function can have a nonempty list of free variables ®𝑦, an alias for fvclo(𝑓 , ®𝑥, 𝑡). In the last premise

of CallClo, which requires reasoning about the function’s body, the variables ®𝑦 are replaced with

the values ®𝑣 captured at closure construction time, which are recorded in the environment 𝐸.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 49

Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ ≜ ⌜𝑓 ∉ ®𝑥 ∧ |𝐸 | = |fvclo(𝑓 , ®𝑥, 𝑡) |⌝ ∗
ℓ ↦→□ (codeclo(𝑓 , ®𝑥, 𝑡) :: map fst 𝐸) ∗

† ℓ ∨ 𝐸 ←[{+ℓ}

Fig. 33. Definition of the predicate Closure

The precondition of CallClo requires a pointed-by-thread assertion 𝑀 ⇐\ {𝜋}, where the

domain of the map 𝑀 includes all of the locations that appear in ®𝑣 , that is, all of the locations
that appear in the closure’s environment. This assertion is not consumed: it appears again in the

precondition of the triple that forms the last premise of CallClo. In other words, it is transmitted

from the caller to the callee. The presence of this assertion is imposed to us by the fact that, when

the closure is invoked, these values are read from memory: the load instructions that appear in

the definition of codeclo(𝑓 , ®𝑥, 𝑡) in Figure 31 require pointed-by-thread assertions for the values

that are read. If desired, the pointed-by-thread assertion𝑀 ⇐ \ {𝜋} can be transmitted back from

the callee to the caller via a suitable instantiation of the postcondition Ψ. Alternatively, it may be

consumed by the callee to justify a logical deallocation operation.

Together, the rules MkClo and CallClo express the correctness of our closure construction

and invocation macros. They guarantee that a closure at address ℓ constructed by [®𝑣/®𝑦] 𝜇clo 𝑓 . 𝜆®𝑥 . 𝑡 ,
when invoked with actual arguments ®𝑤 , behaves like the term [®𝑣/®𝑦] [ℓ/𝑓] [®𝑤/®𝑥]𝑡 . This is the
operational behavior that is expected of a closure.

CloFree logically deallocates a closure. It resembles FreeOne, but, instead of a “sizeof ” assertion,
requires the abstract assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ . Like FreeOne, it produces space credits and a deal-

location witness for the closure. Furthermore, CloFree lets the user recover the pointed-by-heap

assertion 𝐸 ← [∅, thereby undoing the effect of MkClo.

9.5 Low-Level Closure API: Implementation Details
Figure 33 presents the internal definition of the assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ . It records two pure facts:

the name 𝑓 is disjoint from the parameters ®𝑥 and the length of the environment 𝐸 matches the

number of free variables of the closure.

Then, a points-to assertion states that the location ℓ points to a block of size 1 + |𝐸 |, whose
first field contains the code of the closure, codeclo(𝑓 , ®𝑥, 𝑡), and whose remaining fields contain the

values recorded in the environment 𝐸. Because this points-to assertion carries a discarded fraction □

[Vindum and Birkedal 2021], it is a persistent points-to assertion. This reflects the fact that the

closure is immutable.

The last component in this definition is a liveness-based cancellable invariant (§5.10): a persistent

assertion that we can tear down and regain full ownership when we deallocate ℓ .

Because every assertion involved in its definition is persistent, the assertion Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ is
itself persistent.

The liveness-based cancellable invariant contains the pointed-by-heap assertion 𝐸 ← [{+ℓ},
which means that every memory location in 𝐸 is pointed to by the closure. In the proof of the

reasoning rule CloFree, we tear down the liveness-based cancellable invariant, and gain back the

assertion 𝐸 ← [{+ℓ}. Because ℓ is now dead, we use the CleanPBHeap rule to change 𝐸 ← [{+ℓ}
into 𝐸 ← [∅. This explains how, in the proof of CloFree, we are able to produce the assertion

𝐸 ← [∅.

, Vol. 1, No. 1, Article . Publication date: January 2018.

50 Alexandre Moine, Arthur Charguéraud, and François Pottier

MkSpec

®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) 𝐸 = zip ®𝑣 ®𝑞 |®𝑣 | = | ®𝑦 | 𝑓 ∉ ®𝑥 𝑛 = | ®𝑥 |
∀ ®𝑤. □

(
Spec 𝑛 𝐸 𝑃 ℓ −∗ 𝑃 ℓ ®𝑤 ([®𝑣/®𝑦] [ℓ/𝑓] [®𝑤/®𝑥]𝑡)

){
♦(size(1 + |𝐸 |)) ∗ outside 𝜋

𝐸 ← [∅

}
𝜋 : [®𝑣/®𝑦] (𝜇

clo
𝑓 . 𝜆®𝑥 . 𝑡)

{
𝜆ℓ.

outside 𝜋 ∗ Spec 𝑛 𝐸 𝑃 ℓ
ℓ ⇐ \ {𝜋} ∗ ℓ ← [∅

}
CallSpec

𝐸 = zip ®𝑣 ®𝑞 dom(𝑀) = locs(®𝑣) | ®𝑤 | = 𝑛
(∀𝑢. 𝑃 ℓ ®𝑤 𝑢 −∗ {outside 𝜋 ∗ 𝑀 ⇐\ {𝜋} ∗ Φ} 𝜋 : 𝑢 {Ψ})

{Spec 𝑛 𝐸 𝑃 ℓ ∗ outside 𝜋 ∗ 𝑀 ⇐ \ {𝜋} ∗ Φ} 𝜋 : (ℓ ®𝑤)
clo
{Ψ}

�
(
∀®𝑤 𝑡 . 𝑃1 ℓ ®𝑤 𝑡 −∗ 𝑃2 ℓ ®𝑤 𝑡

)
∗ Spec 𝑛 𝐸 𝑃1 ℓ −∗ Spec 𝑛 𝐸 𝑃2 ℓ SpecWeak

Spec 𝑛 𝐸 𝑃 ℓ ∗ ℓ ← [∅ ∗ ℓ ⇐ \ ∅ ♦(size(1 + |𝐸 |)) ∗ † ℓ ∗ 𝐸 ← [∅ SpecFree

Spec 𝑛 𝐸 𝑃 ℓ is persistent SpecPersist

Fig. 34. Closures: high-level API

9.6 High-Level Closure API
The user of a program logic is ultimately interested in the specification of a function, not in the

details of its implementation. Yet, the predicate Closure 𝐸 𝑓 ®𝑥 𝑡 ℓ reveals the code of the closure.
As a result, a user naturally wishes to hide this information via an existential quantification over

this code. This pattern is common enough and technical enough that we offer a higher-level API

where this existential quantification is built in. To this end, we introduce the assertion Spec 𝑛 𝐸 𝑃 ℓ
(defined further on in §9.7), where 𝑛 is the arity of the function, 𝐸 is the environment of the closure,

𝑃 describes the behavior of the closure, and ℓ is the location of the closure in memory.

Like the Closure predicate (§9.4, §9.5), and unlike the Spec predicate presented in our previous

paper [Moine et al. 2023], the predicate Spec is persistent. This enables a better separation of

concerns between the persistent assertion Spec 𝑛 𝐸 𝑃 ℓ , which views the closure as an eternal service

provider, and the affine assertion ℓ ⇐\ {𝜋} ∗ ℓ ← [∅, which views it as an object in memory, allowing

it to participate in the object graph and (eventually) to be logically deallocated.

Figure 34 presents the reasoning rules associated with the Spec predicate. Let us first examine

the rule CallSpec. In many ways, this rule is the same as the low-level rule CallClo. The main

difference is that, to prove that the call (ℓ ®𝑤)clo admits the postcondition Ψ, the user must prove the

entailment∀𝑢. 𝑃 ℓ ®𝑤 𝑢 −∗ {outside 𝜋 ∗𝑀 ⇐\ {𝜋}∗Φ} 𝜋 : 𝑢 {Ψ}. Intuitively,𝑢 denotes the instantiated

function body that was visible in CallClo; however, this function body is now abstracted away by

the universal quantification over 𝑢. The predicate 𝑃 represents the specification of the function,

Spec 𝑛 𝐸 𝑃 ℓ ≜
∃ 𝑓 ®𝑥 𝑡 𝑃 ′ .

⌜ | ®𝑥 | = 𝑛⌝ ∗ Closure 𝐸 𝑓 ®𝑥 𝑡 ∗
let ®𝑣 = map fst 𝐸 in

let ®𝑦 = fvclo(𝑓 , ®𝑥, 𝑡) in
let body ®𝑤 = [®𝑣/®𝑦] [ℓ/𝑓] [®𝑤/®𝑥]𝑡 in
⊲ □(∀ ®𝑤. Spec 𝑛 𝐸 𝑃 ′ ℓ −∗ 𝑃 ′ ℓ ®𝑤 (body ®𝑤)) ∗
⊲ □(∀ ®𝑤 𝑢. 𝑃 ′ ℓ ®𝑤 𝑢 −∗ 𝑃 ℓ ®𝑤 𝑢)

Fig. 35. Definition of the predicate Spec

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 51

and is typically instantiated with a triple. For example, in the specification of a closure of arity 1

whose effect is to increment a reference 𝑟 that it receives as an argument, 𝑃 takes the form:

𝜆ℓ ®𝑤 𝑢. ∀𝑟 𝑛. ⌜ ®𝑤 = [𝑟]⌝ −∗ {𝑟 ↦→ [𝑛]} 𝜋 : 𝑢 {𝜆() . 𝑟 ↦→ [𝑛 + 1]}. In short, the user must prove that

the specification needed by the caller follows from the specification 𝑃 .

Let us now consider the rule MkSpec. It is again quite similar to the low-level rule MkClo. The

premise on the second line ensures that 𝑃 is a valid description of the behavior of the function

body, whose concrete form [®𝑣/®𝑦] [®𝑤/®𝑥]𝑡 is visible. In comparison with the low-level API (§9.4), the

work of reasoning about the function body is shifted from the closure invocation site to the closure

construction site. Moreover, while establishing 𝑃 ℓ ®𝑤 ([®𝑣/®𝑦] [ℓ/𝑓] [®𝑤/®𝑥]𝑡), the user is allowed to

assume Spec 𝑛 𝐸 𝑃 ℓ : this allows verifying recursive calls.
The rule SpecWeak is a consequence rule: it allows weakening the assertion Spec 𝑛 𝐸 𝑃1 ℓ

into Spec 𝑛 𝐸 𝑃2 ℓ , under the hypothesis that 𝑃1 is stronger than 𝑃2. This hypothesis is expressed
as �

(
∀®𝑤 𝑡 . 𝑃1 ℓ ®𝑤 𝑡 −∗ 𝑃2 ℓ ®𝑤 𝑡

)
, where � is the persistence modality [Jung et al. 2018b, §5.3].

This modality requires the proof of the implication

(
∀®𝑤 𝑡 . 𝑃1 ℓ ®𝑤 𝑡 −∗ 𝑃2 ℓ ®𝑤 𝑡

)
to depend only on

persistent resources.

The rule SpecFree is similar to the rule CloFree.

9.7 High-Level Closure API: Implementation Details
Figure 35 presents the definition of the assertion Spec 𝑛 𝐸 𝑃 ℓ . This is a guarded recursive definition:

Spec appears (under a “later” modality) in its own definition. The definition is existentially quantified

over the code of the closure, represented by 𝑓 , ®𝑥 , and 𝑡 . It is also existentially quantified over

a predicate 𝑃 ′ that is required to be stronger than 𝑃 . This lets us establish SpecWeak.

10 TRIPLES WITH SOUVENIR
In this section, we propose triples with souvenir [Moine et al. 2023], a syntactic sugar that allows

for simpler reasoning rules—in particular, a simpler Bind rule—while reasoning about code that

lies outside a protected section. We first present the reasoning rules of triples with souvenir (§10.1),

then cover how they are defined (§10.2).

10.1 Those Who Cannot Remember the Past Are Condemned to Repeat It
IrisFit, as presented until this point, can be cumbersome to use, for two unrelated reasons.

One reason is that the user must give up pointed-by-thread assertions at each application of

Bind, even in the common case where such a fraction has been framed already at a previous

application of Bind, which encloses the current application. This obligation to split off and give up

pointed-by-thread assertions becomes especially heavy when a variable 𝑥 denotes a location and

has a long live range, that is, when this location remains a root throughout a long sequence of

instructions. In such a situation, at each point in the sequence, the user is required to split off and

give up a fractional pointed-by-thread assertion for 𝑥 .14

A second reason is that, typically, the large majority of instructions are placed outside protected

sections. Yet, the user must provide the assertion outside 𝜋 at each application of the outside rules
Alloc, CallPtr, Fork, Poll, MkSpec, and CallSpec. This is not difficult, but the presence of this

assertion creates visual clutter in pre- and postconditions.

To alleviate both problems at once, we follow Moine et al. [2023] and introduce triples with
souvenir. A triple with souvenir takes the form [𝑅] {Φ} 𝜋 : 𝑡 {Ψ}, where 𝑅 is a set of locations

for which the user has already given up a pointed-by-thread assertion. Recording this souvenir

14
The problem is partly mitigated by the “no trim” mode é (§6.5). However, this mode is designed for very local use, and

cannot be exploited if trimming is needed.

, Vol. 1, No. 1, Article . Publication date: January 2018.

52 Alexandre Moine, Arthur Charguéraud, and François Pottier

BindWithSouvenir

dom(𝑀) = locs(𝐾) \ 𝑅 [𝑅 ∪ locs(𝐾)] {Φ} 𝜋 : 𝑡 {Ψ′} ∀𝑣 . [𝑅] {𝑀 ⇐ \ {𝜋} ∗ Ψ′ 𝑣} 𝜋 : 𝐾 [𝑣] {Ψ}
[𝑅] {𝑀 ⇐ \ {𝜋} ∗ Φ} 𝜋 : 𝐾 [𝑡] {Ψ}

AddSouvenir

[{ℓ} ∪ 𝑅] {Φ} 𝜋 : 𝑡 {Ψ}
[𝑅] {ℓ ⇐ \𝑝 {𝜋} ∗ Φ} 𝜋 : 𝑡 {𝜆𝑣. ℓ ⇐ \𝑝 {𝜋} ∗ Ψ 𝑣}

ForgetSouvenir

𝑅′ ⊆ 𝑅 [𝑅′] {Φ} 𝜋 : 𝑡 {Ψ}
[𝑅] {Φ} 𝜋 : 𝑡 {Ψ}

EmptySouvenir

[∅] {Φ} 𝜋 : 𝑡 {Ψ} ≡ {Φ ∗ outside 𝜋} 𝜋 : 𝑡 {𝜆𝑣 . Ψ 𝑣 ∗ outside 𝜋}

Fig. 36. Key reasoning rules for triples with souvenir

(or remembrance) relieves the user from the obligation of giving up another pointed-by-thread

assertion at future applications of the Bind rule. Furthermore, a triple with souvenir implicitly

carries an outside 𝜋 assertion: this allows for more concise statements of the “outside rules”.

For each reasoning rule in Figure 21, we provide a new rule (not shown) that operates on triples

with souvenir and that is polymorphic in 𝑅. This is done simply by inserting [𝑅] in front every

triple that appears in the rule. We do not provide new reasoning rules for protected sections, as

triples with souvenir are applicable only outside protected sections.

The new reasoning rules that make use of souvenirs appear in Figure 36. BindWithSouvenir is

what we aimed for: it is our motivation for introducing triples with souvenir. It closely resembles

Bind, but does not require the user to give up pointed-by-thread assertions for the locations that

are already part of the souvenir 𝑅. The first premise requires the domain of𝑀 (a map of locations to

nonzero fractions) to cover all roots of the evaluation context 𝐾 , except those that are already in the

souvenir 𝑅. In other words, if a location already appears in 𝑅 then there is no need to again split off and
give up a pointed-by-thread assertion for this location. Furthermore, BindWithSouvenir augments

the current souvenir by changing 𝑅 to 𝑅 ∪ locs(𝐾) in its second premise. Thus, nested applications

of this rule do not require repeatedly and redundantly giving up pointed-by-thread assertions.

The rule AddSouvenir extends the current souvenir with a location ℓ . This requires framing out

(temporarily giving up) a pointed-by-thread assertion for ℓ . The rule ForgetSouvenir shrinks the

current souvenir. The rule EmptySouvenir shows that a triple with an empty souvenir is equivalent

to a triple without souvenir and with an “outside” assertion in its pre- and postcondition.

By exploiting triples with souvenir, each of the “outside rules” (Alloc, CallPtr, Fork, Poll,

MkSpec and CallSpec), can be given a more concise statement. For example, the reasoning rule

Poll can be more concisely formulated as PollWithSouvenir:

Poll

{outside 𝜋} 𝜋 : poll {𝜆(). outside 𝜋}
PollWithSouvenir

[𝑅]{⌜True⌝} 𝜋 : poll {𝜆() . ⌜True⌝}

[𝑅] {Φ} 𝜋 : 𝑡 {Ψ} ≜
∀𝑀. 𝑅 = dom(𝑀) =⇒

{Φ ∗ outside 𝜋 ∗ 𝑀 ⇐ \ {𝜋}} 𝜋 : 𝑡 {𝜆𝑣. Ψ 𝑣 ∗ outside 𝜋 ∗ 𝑀 ⇐ \ {𝜋}}

Fig. 37. Definition of triples with souvenir

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 53

10.2 Internals of Souvenirs
The definition of triples with souvenir appears in Figure 37. A triple with souvenir [𝑅] {Φ} 𝜋 : 𝑡 {Ψ}
is expressed as an ordinary triple where the assertions outside 𝜋 and 𝑀 ⇐\ {𝜋} are framed out.

That is, these assertions appear in the pre- and postcondition, so they are required and preserved,

but they are not made available to a user who views a triple with souvenir as an abstract assertion.

The domain of the map𝑀 is the set 𝑅: this ensures that, for every location in this set, a fractional

pointed-by-thread assertion is indeed framed out.

A triple with souvenir describes a piece of code whose execution begins and ends outside

a protected section: it cannot be used to describe a code fragment that lies inside a protected

section. To establish a triple with souvenir about a whole protected section, the user must unfold

the definition of triples with souvenir and drop down to the level of standard triples. Then, all of

the reasoning rules for standard triples are applicable.

In our mechanization [Moine 2025], we use a more general triple that allows both “no trim”

mode (§6.5) without a souvenir and normal mode with a souvenir. This general triple always frames

out an “outside” assertion. In our case studies, this is the triple that we use most of the time.

11 CASE STUDIES
We now showcase the expressiveness of IrisFit via a series of representative case studies. We first

present logically atomic triples [da Rocha Pinto et al. 2014; Jung et al. 2015], a standard way of

specifying operations on concurrent data structures. We begin our case studies with an encoding

of the fetch-and-add operation in LambdaFit, which makes use of protected sections (§11.2). Then,

we present an implementation of a concurrent counter object, implemented as a pair of closures

that share an internal reference (§11.3). We continue with a library for async/finish parallelism,

which exploits our implementation of fetch-and-add (§11.4). We conclude this section by presenting

our version of Treiber’s stack (§11.5), which exploits protected sections, along the lines sketched

earlier (§3). For each case study, we present the code, the specification, and some insights into

the proof. For establishing concrete heap bounds, we pose in this section that a block of 𝑛 fields

is represented by 𝑛 memory words, that is, we pose size(𝑛) = 𝑛. Another practical choice such
as size(𝑛) = 𝑛 + 1 would only affect the constant values that appear behind diamond symbols in

specifications.

Our mechanization [Moine 2025] contains additional case studies that we do not cover here.

They include sequential examples (a sequential algorithm written in continuation-passing style;

a sequential singly-linked circular list; three distinct implementations of sequential stacks) and

concurrent examples (a spin lock; Michael and Scott’s lock-free queue, with protected sections).

11.1 Atomic triples
Our specifications for fetch-and-add (§11.2) and for Treiber’s stack (§11.5) involve logically atomic
triples, also known simply as atomic triples [da Rocha Pinto et al. 2014; Jung et al. 2015]. In our

work, an atomic triple takes the form:

[𝑅]
〈

Φ𝑝𝑟𝑖𝑣𝑎𝑡𝑒

∀®𝑥 . Φ𝑝𝑢𝑏𝑙𝑖𝑐

〉
𝜋 : 𝑡

〈
𝜆𝑣. Φ′𝑝𝑟𝑖𝑣𝑎𝑡𝑒

Φ′𝑝𝑢𝑏𝑙𝑖𝑐

〉
The parameter 𝑅 between square brackets is a souvenir (§10). We construct our atomic triples on

top of our triples with souvenir (§10) in the same way that atomic triples are usually constructed

on top of ordinary triples. Intuitively, an atomic triple that carries a souvenir [𝑅] is an atomic

triple whose private pre- and postconditions are extended with a pointed-by-thread assertion

, Vol. 1, No. 1, Article . Publication date: January 2018.

54 Alexandre Moine, Arthur Charguéraud, and François Pottier

faa ≜ 𝜇ptr 𝑓 . 𝜆[𝑙, i, 𝑛] .
let𝑚 = 𝑙 [i] in
enter ; if CAS 𝑙 [i]𝑚 (𝑚 + 𝑛)
then (exit ; 𝑚)
else (exit ; (𝑓 [𝑙, i, 𝑛])ptr)

FAA

[∅]
〈

ℓ ⇐ \𝑝 {𝜋}
∀®𝑣 𝑚. ⌜®𝑣 (i) =𝑚⌝ ∗ ℓ ↦→ ®𝑣

〉
𝜋 : (faa [ℓ, i, 𝑛])ptr

〈
𝜆𝑚′ . ⌜𝑚′ =𝑚⌝
ℓ ↦→ ([i := (𝑚 + 𝑛)]®𝑣) ∗ ℓ ⇐ \𝑝 ∅

〉
Fig. 38. Code and specification of fetch-and-add

that covers 𝑅 (that is, a pointed-by-thread assertion𝑀 ⇐ \ {𝜋} where 𝑅 = dom(𝑀)) and with the

assertion outside 𝜋 .
The private precondition Φ𝑝𝑟𝑖𝑣𝑎𝑡𝑒 and the private postcondition 𝜆𝑣. Φ′𝑝𝑟𝑖𝑣𝑎𝑡𝑒 play the same role

as the precondition and postcondition of a standard triple. The private precondition is given up by

thread 𝜋 when the execution of the term 𝑡 begins; the private postcondition is gained by thread 𝜋

when the execution of the term 𝑡 ends. They are private in the sense that they are invisible to other

threads.

The characteristic feature of atomic triples is the presence of a public precondition Φ𝑝𝑢𝑏𝑙𝑖𝑐 and

of a public postcondition Φ′𝑝𝑢𝑏𝑙𝑖𝑐 . An atomic triple guarantees that the public precondition Φ𝑝𝑢𝑏𝑙𝑖𝑐

continuously holds until a certain point in time, the linearization point [Herlihy and Wing 1990],

where it is atomically transformed into the public postcondition Φ′𝑝𝑢𝑏𝑙𝑖𝑐 [Birkedal et al. 2021].

Technically, an atomic triple involves a quantification over a list of variables ®𝑥 , whose scope isΦ𝑝𝑢𝑏𝑙𝑖𝑐 ,

Φ′𝑝𝑟𝑖𝑣𝑎𝑡𝑒 , and Φ′𝑝𝑢𝑏𝑙𝑖𝑐 . The existentially quantified public precondition ∃®𝑥 . Φ𝑝𝑢𝑏𝑙𝑖𝑐 continuously

holds until the linearization point is reached. There, a specific instantiation of the variables ®𝑥
becomes fixed. For this specific choice of ®𝑥 , the public precondition is transformed into the public

postcondition Φ′𝑝𝑢𝑏𝑙𝑖𝑐 , and the value 𝑣 that is eventually returned satisfies Φ′𝑝𝑟𝑖𝑣𝑎𝑡𝑒 .

11.2 Fetch-and-Add
The “fetch-and-add” (FAA) operation atomically increments the content of an integer reference,

and returns the previous content of the reference. Although this operation is commonly provided

in hardware, implementing it in LambdaFit is a fairly instructive exercise. Indeed, this code and its

proof offer a typical example of the use of protected sections.

Code. In our setting, FAA takes three parameters: an address 𝑙 , an offset i, and the desired

increment 𝑛, an integer value. We encode FAA as a tail-recursive function whose body contains

a CAS instruction enclosed in a protected section. The code is shown in Figure 38. The recursive

function is named 𝑓 ; its parameters are 𝑙 , i and 𝑛. Initially, the content of the memory at address 𝑙

and offset i is loaded into the variable𝑚. Then, a protected section is entered, and a CAS instruction

attempts to update the content of the memory from𝑚 to𝑚 + 𝑛. In case of success, the protected

section is exited and the value𝑚 is returned. In case of failure, the protected section is also exited,

and a recursive call is performed, so as to try again.

Thanks to the protected section, as soon as the CAS instruction succeeds, the memory location 𝑙

can be made a temporary root, as opposed to an ordinary root. Indeed, as soon as CAS succeeds, it

is known that the first branch of the conditional construct will be taken, so the protected section

will be exited via the first exit instruction, where 𝑙 is no longer a root.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 55

Without a protected section, at the program point that follows CAS and precedes the separation

of the two branches, 𝑙 would still be considered a root (that is to say, an ordinary root), because

it occurs inside the “else” branch, and according to the FVR (§2.2), every location that occurs in

the code that lies ahead is a root.

Specification. Our specification of FAA appears in Figure 38. The private precondition consumes

a pointed-by-thread assertion for the location ℓ , carrying some fraction 𝑝 and the current thread

identifier 𝜋 . The public precondition requires that ℓ point to a block ®𝑣 and that the value stored at

offset i in this block be𝑚. The public postcondition asserts that FAA atomically updates𝑚 into

𝑚 + 𝑛. Crucially, it also produces an updated pointed-by-thread assertion for ℓ , carrying the same

fraction 𝑝 and an empty set of thread identifiers. This means that as soon as the linearization point

is reached, one can consider that ℓ is not a root in thread 𝜋 . This turns out to be crucial while

reasoning about our async/finish library (§11.4). The private postcondition asserts that the result of

FAA is𝑚.

Proof insights. Here is how we use the reasoning rules of protected sections (Figure 22) while

verifying that FAA obeys its specification. Upon entering the protected section, we use Enter and

transform the assertion outside 𝜋 into the assertion inside 𝜋 ∅. Then, we face the CAS instruction, a
possible linearization point. We open the public precondition,

15
and gain the points-to assertion

for ℓ . By case analysis on the value that is currently stored at address 𝑙 and offset i, we consider the
case where CAS succeeds and the case where it fails. Let us focus on the case where it succeeds.

We use CASSuccess, which updates the points-to assertion, and effectively execute the linearization

point. At this point, the atomic triple requires us to prove that the public postcondition holds.

Using AddTemporary, we make ℓ a temporary root: this changes the assertions ℓ ⇐ \𝑝 {𝜋}
and inside 𝜋 ∅ into ℓ ⇐ \𝑝 ∅ and inside 𝜋 {ℓ}. By giving up the points-to and pointed-by-thread

assertions, we fulfill the public postcondition. Then, we use IfTrue and enter the first branch of

the “if” statement. There, TrimInside lets us change the assertion inside 𝜋 {ℓ} to inside 𝜋 ∅. This
allows us to exit the protected section using Exit. We finish the proof with Val.

11.3 A Concurrent Counter Object
Our next example is a concurrent monotonic “counter” object, whose internal state is stored in

a mutable reference, and whose access is mediated by a pair of closures: a closure i increments the
counter; a closure g gets its current value. This is an example of a procedural abstraction [Reynolds

1975], also known as an object: indeed, “an object is a value exporting a procedural interface to

data or behavior” [Cook 2009]. Crucially, a counter can be used concurrently by several threads.

Code. The top of Figure 39 presents the code that we verify. The function call (ref [𝑥])ptr allocates
a mutable reference, that is, a block of size 1. The function call (pair [𝑥,𝑦])ptr allocates a mutable

pair, that is, a block of size 2. The function call (ignore [𝑥])ptr ignores its argument and returns the

unit value. The function call (create [])ptr returns a fresh “counter”, that is, a pair of two closures i
and g. Both closures point to an internal reference 𝑟 , which is initialized to the value 0. The closure i
uses our fetch-and-add function (§11.2) and ignores its result.

Specifications. Figure 39 presents the specification of our concurrent counter. It is inspired by

a specification that appears in lecture notes [Birkedal and Bizjak 2023]. It relies on an abstract

assertion counter i g 𝑝 𝑛 where i is the location of the “increment” closure, g is the location of the

15
As noted earlier (§11.1), while establishing an atomic triple, until the linearization point is reached, one can assume that

the public precondition continuously holds. Thus, to some extent, the public precondition is analogous to an Iris invariant:

it can be accessed, or “opened”, during an atomic instruction.

, Vol. 1, No. 1, Article . Publication date: January 2018.

56 Alexandre Moine, Arthur Charguéraud, and François Pottier

ref ≜ 𝜇ptr . 𝜆[𝑥] .
let 𝑟 = alloc 1 in

𝑟 [0]←𝑥 ; 𝑟

pair ≜ 𝜇ptr . 𝜆[𝑥,𝑦] .
let 𝑟 = alloc 2 in

𝑟 [0]←𝑥 ; 𝑟 [1]←𝑦 ; 𝑟

ignore ≜ 𝜇ptr . 𝜆[𝑥] . ()
create ≜ 𝜇ptr . 𝜆[] .

let 𝑟 = (ref [0])ptr in
let i = 𝜇

clo
. 𝜆_. (ignore [(faa [𝑟, 0, 1])ptr])ptr in

let g = 𝜇
clo

. 𝜆_. 𝑟 [0] in
(pair [i, g])ptr

(counter i g (𝑝1 + 𝑝2) (𝑛1 + 𝑛2)) ≡ (counter i g 𝑝1 𝑛1 ∗ counter i g 𝑝2 𝑛2)

[∅]
{
♦7

}
𝜋 : (create [])ptr


𝜆ℓ. ∃i g.

ℓ ↦→ [i; g] ∗ counter i g 1 0
ℓ ⇐\ {𝜋} ∗ ℓ ←[∅
i⇐\ ∅ ∗ i← [{+ℓ}
g ⇐\ ∅ ∗ g ←[{+ℓ}


[∅]

{
counter i g 𝑝 𝑛

}
𝜋 : (i [])

clo

{
𝜆(). counter i g 𝑝 (𝑛 + 1)

}
[∅]

{
counter i g 𝑝 𝑛

}
𝜋 : (g [])

clo

{
𝜆𝑚.

⌜𝑛 ≤ 𝑚 ∧ (𝑝 = 1 =⇒ 𝑛 =𝑚)⌝
counter i g 𝑝 𝑛

}
©­­«

counter i g 1𝑛
i⇐ \ ∅ ∗ i←[∅
g ⇐ \ ∅ ∗ g ← [∅

ª®®¬
(
♦5

)
Fig. 39. Code and specification of a concurrent monotonic counter

“get” closure, 𝑝 ∈ (0; 1] is a fraction that represents a share of the ownership of the counter, and 𝑛,

a natural number, represents a past contribution to the current value of the counter. If 𝑝 is 1 then

the contribution 𝑛 is in fact the current value of the counter.

The equivalence axiom in Figure 39 shows that “counter” assertions can be split and joined; both

the fraction and the contribution are then split or joined by addition. This allows a counter to be

used in a concurrent setting: the user can split the “counter” predicate into several parts and give

a part to each participating thread. In the end, the user can gather all parts, draw conclusions about

the final value of the counter, and logically deallocate the counter.

The specification of (create [])ptr states that this call consumes 7 space credits (1 credit for the

shared reference, 2 credits for each closure, and 2 credits for the pair). It returns a pair ℓ of two

locations i and g such that counter i g 1 0 holds. This assertion captures the full ownership of the

counter, and specifies that its current value is 0.

Figure 39 also shows the specifications of calls to i and g. Both calls require an assertion of the form
counter i g 𝑝 𝑛. The postcondition of a call to the “increment” closure contains an updated assertion

counter i g 𝑝 (𝑛+1). The postcondition of a call to the “get” closure contains an unmodified “counter”
assertion. Furthermore, it guarantees that the natural number𝑚 that is returned by this call is no

less than the past contribution 𝑛 and, in the case where 𝑝 is 1, is equal to the past contribution.

Last, Figure 39 shows the reasoning rule for deallocating a counter. This rule requires full

ownership of the counter as well as pointed-by-heap and pointed-by-thread assertions for the

closures i and g, with fraction 1 and empty sets—this witnesses that both closures are unreachable.

In exchange, the rule produces 5 spaces credits. The 2 credits corresponding to the pair produced

by create can be recovered independently.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 57

create ≜ 𝜇ptr . 𝜆[] .
(ref [0])ptr

async ≜ 𝜇ptr . 𝜆[𝑙, 𝑓] .
(faa [𝑙, 0, 1])ptr ;
fork ((𝑓 [])

clo
; (ignore [(faa [𝑙, 0,−1])ptr])ptr)

finish ≜ 𝜇ptr 𝑓 . 𝜆[𝑙] .
if 𝑙 [0] = 0

then ()
else (𝑓 [𝑙])ptr

AFCreate

[∅]{♦1} 𝜋 : (create [])ptr {𝜆ℓ. AF ℓ ∗ ℓ ⇐\ 1
2

{𝜋} ∗ ℓ ←[1 ∅}

AFAsync

∀𝜋 ′ . [{ℓ}]{𝑓 ⇐ \𝑝 {𝜋 ′} ∗ Φ} 𝜋 ′ : (𝑓 [])
clo
{𝜆(). Ψ}

[{ℓ}]{AF ℓ ∗ 𝑓 ⇐\𝑝 {𝜋} ∗ Φ} 𝜋 : (async [ℓ, 𝑓])ptr {𝜆(). spawned ℓ Ψ}

AFFinish

[∅]{AF ℓ ∗ ℓ ⇐ \ 1
2

{𝜋}} 𝜋 : (finish [ℓ])ptr {𝜆(). finished ℓ}

FinishedSpawned

finished ℓ ∗ spawned ℓ Ψ ⇛ Ψ
FinishedFree

finished ℓ ∗ ℓ ←[1 ∅ ♦1

AFPersistent

AF ℓ is persistent

FinishedPersistent

finished ℓ is persistent

Fig. 40. Code and specification of an async/finish library

Proof insights. The proof that the counter obeys its specification uses ghost state in a standard

way [Birkedal and Bizjak 2023, §8.7]. The internal definition of the abstract predicate “counter”
involves an existential quantification over the shared location 𝑟 : indeed, this location does not

appear in the specification. The assertion counter i g 𝑝 𝑛 contains an empty pointed-by-thread

assertion for the location 𝑟 with fraction 𝑝 . Moreover, the assertion counter i g 𝑝 𝑛 contains Spec
assertions (§9.6) for the closures i and g. The environments that appear in these Spec assertions
map 𝑟 to the fraction

1

2
, which means that each closure owns one half of the pointed-by-heap

assertion for the location 𝑟 .

The proof of the logical deallocation rule for a counter (that is, the last rule in Figure 39) is

straightforward. We first deallocate the closures i and g, and recover 2 × 2 space credits as well as
an empty pointed-by-heap assertion for the shared location 𝑟 . Then, by exploiting the empty

pointed-by-thread assertion for 𝑟 , which is contained inside the counter assertion, we logically
deallocate the location 𝑟 , thereby recovering one more space credit. In total, 5 space credits are

recovered, as expected.

11.4 An Async/Finish Library
The async/finish paradigm was introduced in X10 [Charles et al. 2005; Lee and Palsberg 2010]

as a generalization of the spawn/sync mechanism of Cilk [Blumofe et al. 1996], which itself was

a generalization of the fork/join paradigm. where exactly two child threads are spawned and

awaited. The async/finish paradigm allows spawning an arbitrary number of tasks before waiting

at a common join point. More precisely, “async” allows spawning new tasks, whereas “finish”

performs synchronization: it blocks until all previously spawned tasks terminate. In this section,

we encode these constructs in LambdaFit using a shared mutable reference that is updated via

, Vol. 1, No. 1, Article . Publication date: January 2018.

58 Alexandre Moine, Arthur Charguéraud, and François Pottier

a fetch-and-add operation (§11.2). We then provide specifications in IrisFit, and show that the space

credits associated to the shared reference can be recovered as soon as “finish” returns.
16
A strength

of our specification is that it allows for nested spawns: a spawned task can itself spawn tasks.

Code. The code of our async/finish library is presented in the top part of Figure 40. The library

uses a reference that we call the session. A session is a channel through which tasks communicate.

It stores the number of currently running tasks.

The function (create [])ptr returns a fresh session, with zero running tasks.

The function (async [𝑙, 𝑓])ptr expects a session 𝑙 and a closure 𝑓 as arguments. It first atomically

increments the session, hence recording the existence of a new running task, then forks off a thread

that invokes the closure 𝑓 with no arguments. When this invocation terminates, it atomically

decrements the session, thereby recording that this task is finished.

The function (finish [𝑙])ptr consists of an active waiting loop. This loop ends when it observes

that the session contains the value 0, which guarantees that all previously spawned tasks have

terminated.

Specifications. The bottom part of Figure 40 presents the specification of our async/finish library.

According to AFCreate, (create [])ptr consumes one space credit, which corresponds to the

space occupied by the session, and returns a location ℓ such that AF ℓ holds. This persistent assertion

guarantees that ℓ is a session. The postcondition also provides pointed-by-thread and pointed-by-

heap assertions for the location ℓ . The pointed-by-heap assertion carries the fraction
1

2
; the other

half is hidden from the user.

The specification of (async [ℓ, 𝑓])ptr is stated as a triple featuring a souvenir on ℓ . This means

that, for the duration of this call, ℓ is a root. The precondition requires ℓ to be a session. A fractional

pointed-by-thread assertion for the closure 𝑓 , as well as an arbitrary assertion Φ, are consumed

and transmitted to the new task, which invokes the closure 𝑓 . The premise of the rule AFAsync

requires the user to prove that, under an arbitrary thread identifier 𝜋 ′, this invocation is safe and

satisfies some postcondition Ψ. The postcondition of (async [ℓ, 𝑓])ptr provides a witness that this
task was spawned, in the form of the assertion spawned ℓ Ψ. This assertion is not persistent: it can

be understood as a unique permission to collect Ψ once the task is finished.

The specification of 𝑓 in the premise of AFAsync is again a triple with a souvenir of ℓ . This

formulation allows 𝑓 to itself use async. Using an ordinary triple there would place a stronger

requirement on 𝑓 and would forbid the use of async inside 𝑓 .

According to AFFinish, (finish [ℓ])ptr consumes the pointed-by-thread assertion that was

produced by create. This forbids any further use of the session ℓ : indeed, both AFAsync and

AFFinish require a pointed-by-thread assertion for ℓ .17 The postcondition contains the persistent

assertion finished ℓ , which witnesses that this session has been ended.

The ghost update FinishedSpawned states that if the witness finished ℓ is at hand then the

assertion spawned ℓ Ψ can be converted to Ψ. This reflects the idea that if the session has been

ended, then all tasksmust have terminated: so, a permission to collectΨ can indeed be converted toΨ.
The ghost update FinishedFree states that if the session has ended then abandoning the pointed-

by-heap assertion for ℓ allows recovering the space credit associated with the session ℓ .

Proof insights. The assertionAF ℓ is internally defined as an Iris invariant, with a part consisting of
a liveness-based cancellable invariant (§5.10). Among other things, this invariant imposes a protocol

16
That is to say, as soon as every task reaches the linearization point of the fetch-and-add operation to signal that it is done.

A task can still execute some code past the linearization point before actually terminating.

17
In the case of AFAsync, this is implicit in the fact that the conclusion of the rule is a triple with a souvenir on ℓ .

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 59

StackCreate

[∅]{♦1} 𝜋 : (create [])ptr {𝜆ℓ. stack ℓ [] ∗ ℓ ⇐ \ {𝜋} ∗ ℓ ←[∅}

StackPush

[{ℓ}]
〈

♦2 ∗ 𝑣 ⇐ \𝑝 {𝜋} ∗ 𝑣 ← [>0𝑞 ∅
∀vpqs. stack ℓ vpqs

〉
𝜋 : (push [ℓ ; 𝑣])ptr

〈
𝜆(). ⌜True⌝
stack ℓ ((𝑣, 𝑝, 𝑞) :: vpqs)

〉
StackPop

[{ℓ}]
〈

⌜True⌝
∀𝑣 𝑝 𝑞 vpqs. stack ℓ ((𝑣, 𝑝, 𝑞) :: vpqs)

〉
𝜋 : (pop [ℓ])ptr

〈
𝜆𝑤. ⌜𝑤 = 𝑣⌝ ∗ 𝑣 ⇐ \𝑝 {𝜋}
stack ℓ vpqs ∗ ♦2 ∗ 𝑣 ← [>0𝑞 ∅

〉
StackFree

stack ℓ vpqs ∗ ℓ ⇐ \ ∅ ∗ ℓ ← [∅ ♦(1 + 2 × |vpqs |) ∗ ∗
(𝑣,𝑝,𝑞) ∈vpqs

(𝑣 ⇐\𝑝 ∅ ∗ 𝑣 ←[>0𝑞 ∅)

Fig. 41. Specification of Treiber’s Stack

on the pointed-by-thread assertion for the session ℓ . Initially, the invariant contains a pointed-by-

thread assertion carrying the fraction
1

2
and an empty set; the other half is given to the user by

AFCreate. Each spawned task gets a fraction of this assertion: indeed, spawning a task involves

“fork”, and our Fork rule requires updating a pointed-by-thread assertion so as to reflect the fact

that ℓ is a root of the new thread. When a task signals that it is finished, it surrenders its fractional

pointed-by-thread assertion, carrying an empty set of thread identifiers. Hence, once every task

has terminated, the invariant again contains ℓ ⇐\ 1
2

∅.
How and when exactly does a task signal that it is finished? This is done via a fetch-and-

add (FAA) operation, which decrements the count of active tasks, and takes effect precisely at the

linearization point of this FAA operation. Hence, as soon as this linearization point is reached, the

invariant requires this task to surrender its fractional pointed-by-thread assertion. Fortunately, our

specification of FAA (§11.2) allows this: the pointed-by-thread assertion ℓ ⇐ \𝑝 ∅ appears in the

public postcondition in FAA.

The absence of a “later” modality in front of Ψ in FinishedSpawned may seem surprising. As

the assertion Ψ has transited through an invariant, an Iris expert might expect it to be guarded

by such a modality. The usual way to eliminate a “later” modality is through a physical step, yet

this rule is a ghost update. Fortunately, IrisFit supports and takes advantage of later credits (§6.2).
A later credit is a piece of ghost state that is produced by a physical step and that can later be used

to eliminate a “later” modality. With each spawned task, we are able to internally associate one

later credit, which we obtain from the function call (async [ℓ, 𝑓])ptr. By exploiting this later credit,

we can eliminate the “later” modality in front of Ψ before giving this assertion back to the user.

11.5 Treiber’s Stack
Code. The code that we verify is the code of Figure 3, translated to LambdaFit syntax. A reference

is a block of size 1 and a list cell is a block of size 2.

Specifications. Figure 41 presents our specification of Treiber’s stack. The stack is described

in terms of the abstract predicate stack ℓ vpqs, where ℓ is the location of the stack and vpqs is its
mathematical model. This model is a list of triples (𝑣, 𝑝, 𝑞) of a value 𝑣 and two positive fractions 𝑝

and 𝑞. The list of the values 𝑣 describes the content of the stack. For each value 𝑣 , the fractions 𝑝

and 𝑞 describe what quantity of the pointed-by-thread and pointed-by-heap assertions for the

value 𝑣 have been acquired by the stack. Having the stack acquire a fractional pointed-by-heap

, Vol. 1, No. 1, Article . Publication date: January 2018.

60 Alexandre Moine, Arthur Charguéraud, and François Pottier

assertion for the value 𝑣 lets us record that this value is pointed to by a list cell without revealing or

even mentioning the address of this cell. Having the stack acquire a fractional pointed-by-thread

assertion for the value 𝑣 lets us express a plausible specification for “pop”. Indeed, “pop” needs to

read the value 𝑣 from the heap: then, the Load rule requires (and updates) a fractional pointed-by-

thread assertion for 𝑣 . Expecting the caller to supply this assertion seems impractical, so it must be

found in the stack itself.

The assertion stack ℓ vpqs is not fractional: it represents the full ownership of the stack. To allow

the stack to be accessed by several concurrent threads, the user must share this assertion. This is

typically achieved via an Iris invariant [Birkedal and Bizjak 2023].

According to StackCreate, creating a new stack consumes one space credit. This is the size of

the reference that holds the address of the top list cell. The result is a fresh location ℓ that represents

an empty stack.

The specification of (push [ℓ ; 𝑣])ptr, expressed by StackPush, is an atomic triple with a souvenir

on ℓ . The private precondition requires two space credits, which is the size of a new list cell, as

well as fractional pointed-by-heap and pointed-by-thread assertions for the value 𝑣 that is pushed

onto the stack. Together, the public precondition and postcondition indicate that the model of the

stack is atomically updated from vpqs updated to (𝑣, 𝑝, 𝑞) :: vpqs at the linearization point.

The specification of (pop [ℓ])ptr, expressed by StackPop, is also an atomic triple with a souvenir

on ℓ . The public precondition and postcondition indicate that the model of the stack is atomically

updated from (𝑣, 𝑝, 𝑞) :: vpqs to vpqs. Furthermore, according to the public postcondition, at the

linearization point, two space credits are produced, and a pointed-by-heap assertion for 𝑣 , carrying

an empty multiset of predecessors, is produced as well, as a pointer from the stack to 𝑣 has been

destroyed.

Our specification of “pop” exhibits a certain asymmetry: whereas the space credits and the

pointed-by-heap assertion appear in the public postcondition, which means that they are produced

at the linearization point, the pointed-by-thread assertion appears in the private postcondition.
which means that it is produced when the function returns. The space credits and the pointed-

by-heap assertion can be produced at the linearization point because there we are already able to

logically deallocate the list cell and to argue that a pointer from the stack to 𝑣 has been destroyed.

However, the pointed-by-thread assertion cannot be surrendered as part of the public postcondition,

because the value 𝑣 is read from the heap after the linearization point has been passed.

The last rule in Figure 41, StackFree, logically deallocates a (possibly nonempty) stack. The

assertion stack ℓ vpqs, as well as empty pointed-by-thread and pointed-by-heap assertions for ℓ ,

are consumed. A number of space credits are produced, which reflect the overall size occupied by

the stack data structure in the heap: one credit for the toplevel reference, plus two credits per list

cell. The pointed-by-thread and pointed-by-heap assertions associated with every triple (𝑣, 𝑝, 𝑞) in
the stack are also produced. Of course, in the common case where vpqs is an empty list, this rule

can be significantly simplified.

Proof insights. As argued earlier (§3), the main difficulty of the proof is to produce space credits

when a “pop” operation succeeds. This requires logically deallocating the list cell that is being

extracted. This in turn requires exhibiting both an empty pointed-by-thread assertion and an empty

pointed-by-heap assertion for this cell. Yet, neither of these assertions is easy to obtain.

Let us discuss the pointed-by-thread assertion first. The difficulty is that “push” and “pop” are

invisible readers [Alistarh et al. 2018]: these operations read the top of the stack (that is, the address

of a list cell) without synchronization. Such a read normally requires updating a pointed-by-thread

assertion for the cell whose address is thus obtained. However, here, we do not wish to record that

this cell is pointed to by the current thread. Fortunately, these reads occur inside protected sections.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 61

Hence, we use LoadInside, which updates an “inside” assertion instead of a pointed-by-thread

assertion. This allows the stack’s invariant to keep an empty pointed-by-thread assertion, at all

times, for every list cell. This in turn allows a successful “pop” operation to extract this empty

pointed-by-thread assertion out of the invariant. Maintaining empty pointed-by-thread assertions

for locations that are acquired only inside protected sections is a typical idiom.

Next, let us discuss the pointed-by-heap assertion. Here, the difficulty is that a list cell ℓ may

be pointed to by a new cell ℓ ′ that has just been allocated by an ongoing “push” operation. This

scenario was discussed earlier (§3.2). Hence, each ongoing “push” holds an assertion ℓ ←[𝑝 {+ℓ ′},
where ℓ is the list cell that “pop” is attempting to extract and ℓ ′ is the new list cell that “push”

has allocated. Now, how can “pop” obtain the assertion ℓ ← [1 ∅ that is required to allow logical

deallocation? We answer this question via an original technique that we dub logical deallocation
by proxy: the thread that successfully pops the list cell ℓ also takes care of logically deallocating

the predecessor cells ℓ ′ that have been allocated by ongoing “push” operations.
18

The logical

deallocation of these locations is made possible by the protected section in “push”. This approach

has a somewhat strange consequence: in the proof of “push”, it may be the case that the cell ℓ ′ has
been logically deallocated by another thread, yet “push” still needs to access this cell. Fortunately,

IrisFit allows this: for example, the proof of “push” makes use of the rule StoreDead. More details

can be found in the first author’s dissertation [Moine 2024, §12.5].

12 RELATEDWORK
12.1 Polling Points
A stop-the-world event may be viewed as an asynchronous interruption: a thread that emits such

an event stops the execution of all other threads. Such an interruption can be implemented using

hardware interrupts, but this scheme can be expensive and non-portable [Feeley 1993]. Another

approach is to let the compiler insert explicit tests for interruptions into the code. These tests appear

in the literature under various names, including polling points [Feeley 1993], GC points [Agesen
1998], yield points [Lin et al. 2015], and safe points [Sivaramakrishnan et al. 2020]. Let us refer to

them collectively as safe points. Safe points are typically inserted by the compiler in such a way

that no computation can run forever without encountering a safe point. When a thread encounters

a safe point, it tests whether some other thread has requested garbage collection. If so, it pauses

and passes control to the runtime system. Once all threads have paused in this way, the runtime

system performs a global garbage collection phase.

Safe points are used in the Jalapeño/Jikes RVM [Alpern et al. 1999, 2005], in the .NET CLR [Warren

2016], in Go [The Go Authors 2019], and in OCaml 5 [Sivaramakrishnan et al. 2020], among other

examples. The existence of safe points is not revealed to the programmer, who is not expected to

know about their existence and is given nomeans of controlling their placement. As an experimental

feature, the OCaml 5 compiler does offer a [@poll error] attribute [Jaffer 2021; Leroy et al. 2025].

This attribute is placed on a function definition. An attempt by the compiler to insert a safe point

into a function that carries this attribute causes a compile-time error. This lets the programmer

check that a function body does not contain any safe point, therefore is (de facto) a protected

section. At this time, there is not a clear consensus whether this feature is useful and corresponds

to the needs of expert programmers.

Safe points, as described above, and polling points, as proposed in this paper, are two related yet

distinct concepts. Indeed, in our view, safe points play two distinct roles. On the one hand, they are

points where a threadmust stop and allow garbage collection to take place. On the other hand, they

18
These ongoing “push” operations will fail, because the top list cell that they have observed has been replaced with another

cell. No ABA problem arises because memory locations are not recycled (§4.2.1).

, Vol. 1, No. 1, Article . Publication date: January 2018.

62 Alexandre Moine, Arthur Charguéraud, and François Pottier

dictate where garbage can take place: indeed, the GC cannot run unless every thread has reached a

safe point. Because of this dual role, safe points do not enjoy a monotonicity property. When a safe

point is inserted in a program, the set of possible behaviors of this program is neither shrunk nor

enlarged; it is transformed into an incomparable set. We believe that our design, where polling

points and protected sections are separate concepts, is better behaved. In particular, it enjoys several

monotonicity properties. Inserting a new polling point shrinks the set of possible behaviors of

the program.
19
Creating or enlarging a protected section shrinks the family of programs that is

implicitly described by a source program.

In our approach, the user explicitly inserts enough protected sections to (verifiably) obtain the

desired worst-case heap space complexity, then lets the compiler implicitly insert enough polling

points to guarantee liveness, without endangering the program’s space complexity. This is expressed

by Theorem 8.2.

12.2 Protected Sections
In the production systems that we are aware of, the concept that seems closest to our protected

sections appears in the .NET runtime system, where it was introduced in 2015, with perfor-

mance in mind [Lander 2015]. The API of the GC module [Microsoft 2024] provides a method

TryStartNoGCRegion(Int64) and a method EndNoGCRegion(). A “NoGC region” is not quite

a protected section in our sense, though, as allocation is permitted inside a “NoGC region”. The in-

teger parameter of the method TryStartNoGCRegion is a request for a certain amount of free heap

space: garbage collection takes place at this point so as to guarantee that this much free space

exists. Allocation requests within the “NoGC region” are then served out of this pre-allocated free

space. However, if the runtime system runs out of free space while some thread is inside a “NoGC

region”, then garbage collection will take place.

Feeley [1993, §1.2.1] discusses why “critical sections”—sections in which the GC must not run—

may be needed for safety reasons. He takes the example of a store instruction that stores a 64-bit

pointer into memory and that is decomposed into two 32-bit stores. In between the two stores, the

memory is in an inconsistent state and must not be read by the GC.

To the best of our knowledge, our paper is the first where a notion of protected section is

introduced for complexity reasons, that is, with the aim of guaranteeing tighter worst-case heap

space complexity bounds.

12.3 Reasoning about Space without a GC
Hofmann [1999, 2003] introduces space credits in the setting of an affine type system for the

𝜆-calculus. Hofmann [2000] and Aspinall and Hofmann [2002] adapt the idea to LFPL, a first-order

functional programming language without GC and with explicit destructive pattern matching.

There, a value of type ^ exists at runtime and can be understood as a pointer to a free block in the

heap. Subsequent work aims at automating space complexity analyses. In particular, Hofmann and

Jost [2003] propose an affine type system where types carry space credits. Hofmann and Jost [2006];

Hofmann and Rodriguez [2009, 2013] analyze a variant of Java where garbage collection has been

replaced with explicit deallocation. RaML [Hoffmann et al. 2012a,b, 2017] analyzes a fragment of

OCaml, also without GC and with explicit destructive pattern matching. Niu and Hoffmann [2018]

present a type-based amortized space analysis for a pure, first-order programming language where

destructive pattern matching can be applied to shared objects, an unusual feature. Their system

performs significant over-approximations: when a data structure becomes shared, the logic charges

19
In our setting, inserting a new polling point does not create a new opportunity for the GC to run, because the GC is

always enabled anyway.

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 63

the cost of creating a copy of this data structure. As far as we understand, this analysis can be used

to reason in a sound yet very conservative way about a programming language with GC. Kahn

and Hoffmann [2021] present a system that is equipped with more flexible typing rules than its

predecessors and therefore can derive tighter resource consumption bounds. Hoffmann and Jost

[2022] offer a survey of two decades of work on automated amortized resource analysis (AARA).

Following the ideas of LFPL, Lorenzen et al. [2023] introduce a calculus with “reuse” credits.

Explicit destructive pattern matching produces reuse credits, which can be used to satisfy a new

allocation. Because the system allows fragmentation, reuse credits cannot be joined. The goal of

Lorenzen et al. [2023] is to statically detect fully in-place functions—that is, functions that do not

need to allocate new memory. This includes, for example, functions that reuse the heap space

occupied by their arguments.

Chin et al. [2005, 2008] present a type system that automatically keeps track of data structure

sizes. The type system incorporates an alias analysis, which distinguishes between shared and

unique objects and allows unique objects to be explicitly deallocated. Shared objects can never be

logically deallocated. Specifications indicate how much memory a method may need (a high-water

mark) and how much memory it releases, in terms of the sizes of the arguments and results.

Compared with type systems, program logics offer weaker automation but greater expressiveness.

Aspinall et al. [2007] propose a VDM-style program logic, where postconditions depend not only on

the pre-state, post-state, and return value, but also on a cost. Atkey [2011] proposes an extension

of Separation Logic with an abstract notion of resource, such as time or space, and introduces an

assertion that denotes the ownership of a certain amount of resources.

All of the work cited above concerns languages with explicit memory deallocation, where there

is no need to reason about unreachability. Reasoning about unreachability in the setting of a static

analysis or program logic is a central challenge.

12.4 Reasoning about Space with a GC
Hur et al. [2011] propose a Separation Logic for the combination of a low-level language with

explicit deallocation and a high-level language with a GC. They are interested in verifying just

safety, not space complexity.

Madiot and Pottier [2022] and Moine et al. [2023] propose Separation Logics that allow reasoning

about space in the presence of a GC.

The logic presented by Madiot and Pottier [2022] concerns a low-level language where roots are

explicitly marked as such inside the heap via so-called “stack cells”. Programming in this artificial

language is impractical because local variables must be manually registered and unregistered as

stack cells. Madiot and Pottier’s language and program logic technically support concurrency, but

the paper does not provide any case study.

The logic presented in our previous paper [Moine et al. 2023] concerns a high-level language,

where the roots and the call stack are implicit, but is restricted to a sequential setting. This paper

also introduces support for closures. The logic relies on a distinction between visible roots—the roots
of the term under focus—and invisible roots—the roots of the evaluation context. The logic keeps

track of invisible roots using a Stackable assertion, and introduces the idea that Stackable assertions
must be “forcibly framed out” at applications of the Bind rule. We re-use this idea in our own Bind

rule (§6.4), but replace Stackable assertions with pointed-by-thread assertions, which are better

suited to a concurrent setting. In so doing, we remove the distinction between visible roots and

invisible roots, which does not seem to make sense in a concurrent setting; our pointed-by-thread

assertions keep track of all (ordinary) roots. In contrast, Moine et al. [2023] do not keep track of

visible roots via an a dedicated assertion: indeed, in their setting, it suffices to inspect the term

, Vol. 1, No. 1, Article . Publication date: January 2018.

64 Alexandre Moine, Arthur Charguéraud, and François Pottier

under focus to determine the set of visible roots. This allows them to offer a standard Load rule,

whereas our Load rule updates a pointed-by-thread assertion for the value that is loaded (§6.2).

Our mechanization [Moine 2025] includes an encoding of our previous logic for sequential

programs [Moine et al. 2023] into IrisFit. This encoding demonstrates that IrisFit can be used to

reason about sequential programs with no overhead.

12.5 Space-Related Results for Compilers
Paraskevopoulou and Appel [2019] prove that, in the presence of a GC, closure conversion is safe

for space: that is, it does not change the space consumption of a program. They view closure

conversion as a transformation from a CPS-style 𝜆-calculus into itself. This calculus is equipped

with two different environment-based big-step operational semantics. The “source” semantics

implicitly constructs a closure for each function definition by capturing the relevant part of the

environment and storing it in the heap. The “target” semantics performs no such construction:

it requires every function to be closed. In either semantics, the roots are defined as the locations

that occur in the environment. Up to the stylistic difference between a substitution-based seman-

tics and an environment-based semantics, this definition is equivalent to the “free variable rule”

(FVR) [Morrisett et al. 1995].

Besson et al. [2019] prove that (an enhanced version of) CompCert [Leroy 2024] preserves

memory consumption when compiling C programs.

In a sequential setting, Gómez-Londoño et al. [2020] prove that the CakeML compiler respects

a cost model that is defined at the level of the intermediate language DataLang, which serves as

the target of closure conversion. Our cost model is analogous to theirs. Our work and theirs are

complementary: whereas they prove that the CakeML compiler respects the DataLang cost model,

we show how to establish space complexity bounds about source programs, based on a similar cost

model. One could in principle adapt IrisFit to DataLang. Then, one would be able to use IrisFit to

establish a space complexity bound about a source CakeML program, to compile this program down

to machine code using the CakeML compiler, and to obtain a machine-checked space complexity

guarantee about the compiled code.

12.6 Safe Memory Reclamation Schemes
Manual memory management can be so difficult in a concurrent setting that programmers often

rely on semi-automatic safe memory reclamation (SMR) schemes. Two main families exist, namely

hazard pointers [Michael 2004a; Michael et al. 2023] and read-copy-update (RCU) [McKenney

2004; McKenney et al. 2023]. The two families offer roughly similar APIs. First, the user declares

hazardous locations for a delimited scope. While it is marked hazardous, a location is not deallocated.

Second, the user can retire a location to indicate that this location is no longer needed. The SMR

implementation deallocates a retired location once it is not marked hazardous by any thread.

Hazard pointers operates selectively: the usermanuallymarks and unmarks pointers as hazardous.

On the contrary, RCU declares every non-retired pointer hazardous inside a certain section of the

code. RCU seems close to our concept of a protected section. Indeed, RCU delays the deallocation

of a retired pointer until every RCU section that mentions this pointer terminates. Yet, there is

not a perfect analogy between RCU sections and protected sections. Indeed, garbage collection

provides a strong guarantee: no dangling pointer can exist. SMR schemes, on the contrary, can create

dangling pointers, which client data structures often tolerate. For example, with RCU, a location

that is mentioned in the code, but is not read or written, does not need to be protected. For example,

in the “push” operation of Treiber’s stack (Figure 1), the address of the first cell of the internal

list (named h in the code) is loaded from the heap and is a root throughout a certain section of

the code, but is never dereferenced. Hence, “push” can tolerate the deallocation of this cell by a

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 65

successful concurrent pop operation, and “push” does not need an RCU section [Jung et al. 2023,

mechanization]. On the contrary, the “pop” operation does need a RCU section. Indeed, the address

of the first cell of the internal list (again named h in the code) is dereferenced twice: once during

the call to the function is_nil and once by the CAS instruction.

Automatic memory management, based on garbage collection, and manual memory management,

based on a safe memory reclamation scheme, can cohabit. For example, SnowFlake [Parkinson et al.

2017], an extension of the GC-based system .NET CLR, lets the user allocate objects in a manual
heap where memory must be manually deallocated via a variant of hazard pointers. The main

motivation for such a hybrid scheme is efficiency: manual memory management in concurrent

lock-free data structures can reduce the number of stop-the-world GC pauses.

Equipping SMR schemes with abstract Separation Logic specifications and verifying them has

long been a challenge. Treiber’s stack has been the first data structure based on hazard pointers to

be verified. This task was tackled several times using different variants of Concurrent Separation

Logic [Parkinson et al. 2007; Fu et al. 2010]. Tofan et al. [2011] verify Treiber’s stack both with

hazard pointers and with garbage collection (though without a heap space complexity analysis).

They show that a large part of the main invariant can be shared between the two proofs. Gotsman

et al. [2013] provide the first general framework for verifying programs using SMR schemes in

Separation Logic, making use of temporal logic reasoning. Jung et al. [2023] provide a more abstract

framework, where temporal reasoning is replaced with ownership arguments. Their work unveils

a close relationship between RCU and garbage collection. Indeed, RCU allows accessing any location

that was not retired when the current RCU section was entered. (There is a loose analogy with

our liveness-based cancellable invariants: to access such an invariant, one must eliminate the case

where ℓ has been logically deallocated.) To prove that a location is not retired at a certain point in

time, Jung et al. [2023] express the topology of data structures using pointed-by-heap assertions,

which they borrow from our prior paper [Moine et al. 2023]. Like us, when retiring a location, they

require the predecessors of this location to have been previously retired.

Outside the Separation Logic world, Meyer and Wolff [2019] propose an API for SMR schemes,

in the form of an observer automaton, inspired by the temporal reasoning of Gotsman et al. [2013].

Meyer and Wolff [2019] make use of the observer automaton to de-correlate the verification of

lock-free data structures from the SMR implementation, allowing them to develop an automatic

linearizability checker.

13 CONCLUSION
We have presented LambdaFit, a language with shared-memory concurrency and tracing garbage

collection. In particular, LambdaFit is equipped with protected sections, a new, realistic construct

that programmers can and sometimes must exploit to ensure that fine-grained concurrent data

structures have the desired worst-case heap space complexity. We believe that protected sections

could be a useful part of a concurrent programmer’s toolbox, and that they should be considered

for inclusion in high-level languages.

Furthermore, we have presented IrisFit, a Concurrent Separation Logic with space credits, which

allows expressing and verifying worst-case heap space bounds about LambdaFit programs. IrisFit

features pointed-by-heap and pointed-by-thread assertions, which offer a compositional means of

keeping track of the various ways through which a memory block is reachable. These assertions

can be used to prove that a block is unreachable, or more accurately, that by the time the garbage

collector is allowed to run, this block will be unreachable. IrisFit provides special treatment of

temporary roots within protected sections and is thereby able to take advantage of protected

sections to establish stronger worst-case heap space bounds.

, Vol. 1, No. 1, Article . Publication date: January 2018.

66 Alexandre Moine, Arthur Charguéraud, and François Pottier

All of our results are mechanized in the Coq proof assistant using the Iris library [Jung et al.

2018b] and its dedicated Proof Mode [Krebbers et al. 2018]. Our definitions and proofs are available

in electronic form [Moine 2025]. Discounting blank lines and comments, the definition of LambdaFit

and of its oblivious semantics occupy roughly 2800LOC; the construction of IrisFit, including the

reasoning rules and the core soundness theorem, represent 9200LOC; the definition of the default

semantics of LambdaFit and the proof of the safety and liveness theorems take up 4500LOC; and

the verification of the case studies represents 6400LOC. In addition to these numbers, we re-use

about 3700LOC of proofs from Madiot and Pottier [2022] and from our own previous work [Moine

et al. 2023]. We provide tactics that facilitate reasoning with IrisFit and achieve a basic level of

automation thanks to the Diaframe library [Mulder et al. 2022].

14 FUTUREWORK
We now propose avenues for future work on LambdaFit and IrisFit.

More Liberal Protected Sections. LambdaFit forbids function calls inside protected sections. This

is a simple way of ensuring that a protected section is exited in a bounded number of steps. One

might wish to relax this restriction and tolerate calls to “small” functions (that is, functions whose

execution requires a bounded number of steps) inside protected sections. The obligation of proving

that every protected section terminates in bounded time would then have to be delegated to the user

of IrisFit, perhaps via a variation on time credits [Charguéraud and Pottier 2019]. One could relax

this restriction even further by requiring only that every protected section terminates (without

a statically known bound). The proof obligation would again be delegated to the user of IrisFit.

This would allow traversing a data structure of unbounded size inside a protected section. Harris’s

list [Harris 2001; Michael 2002] is an example where this is required. Indeed, the search function

searches for an element in a linked list. As long as this function is running, the location of at least

one internal list cell is a root. Hence, in order to respect the principle that “an internal cell may be

a root only inside a protected section”, the whole search loop should be wrapped inside a protected

section.

If the restrictions that bear on protected sections are relaxed, then the polling point insertion

strategy must be adapted accordingly. Our current polling point insertion strategy, addpp, inserts a
polling point in front of each function call. This is a simple way of ensuring that every execution

path must, in a bounded number of steps, reach a polling point. However, polling points must not

be inserted inside protected sections. So, if a function call appears inside a protected section, then

it must not be preceded by a polling point.

Additional Case Studies. We would like to apply IrisFit to more ambitious case studies. This

includes larger examples as well as subtler concurrent examples, including multi-CAS algorithms

such as RDCSS [Harris et al. 2002], Harris’s list [2001], or its variant due to Michael [2002]. As

explained in the previous paragraph, Harris’s list would require unbounded protected sections.

Additionally, Harris’s list features lazy deletion, in which a node is first marked as deleted, before

an attempt is made to physically unlink it from the structure. If this attempt fails, another function

call may perform this unlinking operation. It is presently unclear to us what the specification of

Harris’s list delete function would be and whether protected sections would allow this function to

be verified.

Immutable Data Structures. We would like to determine whether immutable data structures could

be specified and verified in a more pleasant and lightweight manner. At present, IrisFit offers no

special support for immutable data structures: every memory block is considered mutable by default,

and it is up to the user to exploit the logical tools offered by Iris, such as invariants, to indicate that

, Vol. 1, No. 1, Article . Publication date: January 2018.

Will it Fit? 67

a memory block is immutable. In this paper, we have done so in the special case of closures: we

have been able to describe the behavior of a closure via a persistent predicate, while still allowing
for its deallocation. We would like to investigate whether this approach can be extended to all

immutable data structures.

IrisFit as a Foundation for Type Systems or Static Analyses. We would like to draw upon our

experience with IrisFit to investigate automated static analyses of the worst-case heap space

complexity of a program in the presence of garbage collection. As far as we know, relatively few

such analyses have been presented in the literature. A brief review of those that we know of is

given by Madiot and Pottier [2022, §7]. None of them is justified by a machine-checked argument.

It would be interesting to justify existing analyses by reduction to the reasoning rules of IrisFit or

to draw inspiration from these rules to design new analyses.

ACKNOWLEDGMENTS
We wish to thank the anonymous reviewers, whose insights and perseverance have significantly

helped improve the quality and presentation of this paper.

REFERENCES
Ole Agesen. 1998. GC Points in a Threaded Environment. Technical Report SMLI TR-98-70. Sun Microsystems, Inc.

Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2018. ThreadScan: Automatic and Scalable Memory

Reclamation. ACM Trans. Parallel Comput. 4, 4, Article 18 (May 2018).

Bowen Alpern, C. Richard Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn Hummel, Derek Lieber, Ton Ngo, Mark F.

Mergen, Janice C. Shepherd, and Stephen E. Smith. 1999. Implementing Jalapeño in Java. In Object-Oriented Programming
Systems, Languages & Applications (OOPSLA). 314–324.

Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria A. Butrico, Anthony Cocchi, Perry Cheng, Julian Dolby, Stephen J.

Fink, David Grove, Michael Hind, Kathryn S. McKinley, Mark F. Mergen, J. Eliot B. Moss, Ton Anh Ngo, Vivek Sarkar,

and Martin Trapp. 2005. The Jikes Research Virtual Machine project: Building an open-source research community. IBM
Syst. J. 44, 2 (2005), 399–418.

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press.

David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Alberto Momigliano. 2007. A program logic

for resources. Theoretical Computer Science 389, 3 (2007), 411–445.
David Aspinall and Martin Hofmann. 2002. Another Type System for In-Place Update. In European Symposium on Program-

ming (ESOP) (Lecture Notes in Computer Science, Vol. 2305). Springer, 36–52.
Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in Computer Science 7, 2:17 (2011),

1–33.

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program Development – Coq’Art: The Calculus of
Inductive Constructions. Springer.

Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. CompCertS: a Memory-Aware Verified C Compiler Using a Pointer

as Integer Semantics. Journal of Automated Reasoning 63, 2 (2019), 369–392.

Lars Birkedal and Aleš Bizjak. 2023. Lecture notes on Iris: Higher-order concurrent separation logic. (2023). Unpublished.

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svendsen, and Nikos Tzevelekos. 2021.

Theorems for free from separation logic specifications. Proceedings of the ACM on Programming Languages 5, ICFP (2021),

1–29.

Wayne D. Blizard. 1990. Negative membership. Notre Dame Journal of Formal Logic 31, 3 (1990), 346–368.
Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. 1996.

Cilk: An Efficient Multithreaded Runtime System. J. Parallel Distributed Comput. 37, 1 (1996), 55–69.
Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Permission accounting in separation

logic. In Principles of Programming Languages (POPL). 259–270.
John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis Symposium (SAS) (Lecture Notes

in Computer Science, Vol. 2694). Springer, 55–72.
Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation logic. SIGLOG News 3, 3 (2016), 47–65.
Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compositional certified resource bounds. In Programming

Language Design and Implementation (PLDI). 467–478.

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://dl.acm.org/doi/10.5555/974974
https://doi.org/10.1145/3201897
https://doi.org/10.1145/3201897
https://doi.org/10.1145/320384.320418
https://doi.org/10.1147/sj.442.0399
http://www.cambridge.org/9780521033114
https://doi.org/10.1016/j.tcs.2007.09.003
https://doi.org/10.1016/j.tcs.2007.09.003
https://homepages.inf.ed.ac.uk/da/papers/readonly/readonly.pdf
https://lmcs.episciences.org/685/pdf
https://www.labri.fr/perso/casteran/CoqArt/coqartF.pdf
https://www.labri.fr/perso/casteran/CoqArt/coqartF.pdf
https://doi.org/10.1007/s10817-018-9496-y
https://doi.org/10.1007/s10817-018-9496-y
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1145/3473586
https://doi.org/10.1305/ndjfl/1093635499
https://doi.org/10.1006/jpdc.1996.0107
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
https://doi.org/10.1007/3-540-44898-5_4
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_news_9.pdf
https://www.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf

68 Alexandre Moine, Arthur Charguéraud, and François Pottier

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning 62, 3 (March 2019), 331–365.

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von

Praun, and Vivek Sarkar. 2005. X10: an object-oriented approach to non-uniform cluster computing. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). 519–538.

Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin. 2008. Analysing memory resource bounds for

low-level programs. In International Symposium on Memory Management. 151–160.
Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin C. Rinard. 2005. Memory Usage Verification for OO Programs.

In Static Analysis Symposium (SAS) (Lecture Notes in Computer Science, Vol. 3672). Springer, 70–86.
William R. Cook. 2009. On understanding data abstraction, revisited. In Object-Oriented Programming, Systems, Languages,

and Applications (OOPSLA). 557–572.
Karl Crary and Stephanie Weirich. 2000. Resource bound certification. In Principles of Programming Languages (POPL).

184–198.

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A Logic for Time and Data Abstraction.

In European Conference on Object-Oriented Programming (ECOOP) (Lecture Notes in Computer Science, Vol. 8586), Richard E.
Jones (Ed.). Springer, 207–231.

Marc Feeley. 1993. Polling Efficiently on Stock Hardware. In Functional programming languages and computer architecture
(FPCA). 179–190.

Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories of Sequential Control and State.

Theoretical Computer Science 103, 2 (1992), 235–271.
Jean-Christophe Filliâtre. 2011. Deductive software verification. Software Tools for Technology Transfer 13, 5 (2011), 397–403.
Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Optimistic Concurrency Using a Program

Logic for History. In International Conference on Concurrency Theory (CONCUR) (Lecture Notes in Computer Science,
Vol. 6269). Springer, 388–402.

Alejandro Gómez-Londoño and Magnus O. Myreen. 2021. A flat reachability-based measure for CakeML’s cost semantics.

In Implementation of Functional Languages (IFL). 1–9.
Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Magnus O. Myreen, and Yong Kiam Tan. 2020.

Do you have space for dessert? A verified space cost semantics for CakeML programs. Proceedings of the ACM on
Programming Languages 4, OOPSLA (2020), 204:1–204:29.

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory Reclamation Algorithms with

Grace. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer, 249–269.
Theodore Hailperin. 1986. Formalization of Boole’s Logic. In Boole’s Logic and Probability. Studies in Logic and the

Foundations of Mathematics, Vol. 85. Elsevier, 135–172.

Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-Lists. In Proceedings of the 15th International
Conference on Distributed Computing (DISC ’01). Springer-Verlag, Berlin, Heidelberg, 300–314.

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-word Compare-and-Swap Operation. In Distributed
Computing, Dahlia Malkhi (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 265–279.

Guanhua He, Shengchao Qin, Chenguang Luo, and Wei-Ngan Chin. 2009. Memory Usage Verification Using Hip/Sleek.

In Automated Technology for Verification and Analysis (ATVA) (Lecture Notes in Computer Science, Vol. 5799). Springer,
166–181.

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming, Revised Reprint (1st ed.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems 12, 3 (July 1990), 463–492.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012a. Multivariate amortized resource analysis. ACM Transactions on
Programming Languages and Systems 34, 3 (2012), 14:1–14:62.

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012b. Resource Aware ML. In Computer Aided Verification (CAV)
(Lecture Notes in Computer Science, Vol. 7358). Springer, 781–786.

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards automatic resource bound analysis for OCaml. In Principles
of Programming Languages (POPL). 359–373.

Jan Hoffmann and Steffen Jost. 2022. Two decades of automatic amortized resource analysis. Mathematical Structures in
Computer Science 32, 6 (2022), 729–759.

Martin Hofmann. 1999. Linear Types and Non-Size-Increasing Polynomial Time Computation. In Logic in Computer Science
(LICS). 464–473.

Martin Hofmann. 2000. A type system for bounded space and functional in-place update. Nordic Journal of Computing 7, 4

(2000), 258–289.

, Vol. 1, No. 1, Article . Publication date: January 2018.

http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
https://doi.org/10.1145/1094811.1094852
https://www7.in.tum.de/~popeea/research/memory.ismm08.pdf
https://www7.in.tum.de/~popeea/research/memory.ismm08.pdf
https://doi.org/10.1007/11547662_7
http://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf
http://www.cs.cornell.edu/talc/papers/resource_bound/res.pdf
https://vtss.doc.ic.ac.uk/publications/daRochaPinto2014TaDA.pdf
https://doi.org/10.1145/165180.165205
https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf
https://doi.org/10.1007/s10009-011-0211-0
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1145/3544885.3544887
https://doi.org/10.1145/3428272
https://software.imdea.org/~gotsman/papers/recycling-esop13.pdf
https://software.imdea.org/~gotsman/papers/recycling-esop13.pdf
https://www.sciencedirect.com/science/article/pii/S0049237X08702477
https://doi.org/10.1007/3-540-45414-4_21
https://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf
https://dro.dur.ac.uk/6241/
https://doi.org/10.1145/78969.78972
https://www.cs.cmu.edu/~janh/assets/pdf/HoffmannAH10.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_64
http://www.cs.cmu.edu/~janh/papers/HoffmannDW17.pdf
https://doi.org/10.1017/S0960129521000487
https://doi.org/10.1109/LICS.1999.782641
http://www.dcs.ed.ac.uk/home/mxh/nordic.ps.gz

Will it Fit? 69

Martin Hofmann. 2003. Linear types and non-size-increasing polynomial time computation. Information and Computation
183, 1 (2003), 57–85.

Martin Hofmann and Steffen Jost. 2003. Static prediction of heap space usage for first-order functional programs. In Principles
of Programming Languages (POPL). 185–197.

Martin Hofmann and Steffen Jost. 2006. Type-Based Amortised Heap-Space Analysis. In European Symposium on Program-
ming (ESOP) (Lecture Notes in Computer Science, Vol. 3924). Springer, 22–37.

Martin Hofmann and Dulma Rodriguez. 2009. Efficient Type-Checking for Amortised Heap-Space Analysis. In Computer
Science Logic (Lecture Notes in Computer Science, Vol. 5771). Springer, 317–331.

Martin Hofmann and Dulma Rodriguez. 2013. Automatic Type Inference for Amortised Heap-Space Analysis. In European
Symposium on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer, 593–613.

Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2011. Separation Logic in the Presence of Garbage Collection. In Logic
in Computer Science (LICS). 247–256.

Sadiq Jaffer. 2021. OCaml Compiler Pull Request 10462: Add [@poll error] attribute. https://github.com/ocaml/ocaml/pull/

10462.

Richard E. Jones and Rafael Dueire Lins. 1996. Garbage collection – algorithms for automatic dynamic memory management.
Wiley.

Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang. 2023. Modular Verification of Safe

Memory Reclamation in Concurrent Separation Logic. Proceedings of the ACM on Programming Languages 7, OOPSLA2
(2023), 828–856.

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt: Securing the Foundations of the

Rust Programming Language. Proceedings of the ACM on Programming Languages 2, POPL (2018), 66:1–66:34.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018b. Iris from the

ground up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28

(2018), e20.

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris:

monoids and invariants as an orthogonal basis for concurrent reasoning. In Principles of Programming Languages (POPL).
637–650.

David M. Kahn and Jan Hoffmann. 2021. Automatic amortized resource analysis with the quantum physicist’s method.

Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–29.

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic for Weak Memory:

Reasoning About Release-Acquire Consistency in Iris. In European Conference on Object-Oriented Programming (ECOOP).
17:1–17:29.

Ioannis T. Kassios and Eleftherios Kritikos. 2013. A Discipline for Program Verification Based on Backpointers and Its

Use in Observational Disjointness. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science,
Vol. 7792). Springer, 149–168.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,

and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in separation logic.

Proceedings of the ACM on Programming Languages 2, ICFP (2018), 77:1–77:30.

Rich Lander. 2015. Announcing .NET Framework 4.6. https://devblogs.microsoft.com/dotnet/announcing-net-framework-4-

6/.

Peter J. Landin. 1964. The Mechanical Evaluation of Expressions. Computer Journal 6, 4 (Jan. 1964), 308–320.
Jonathan K. Lee and Jens Palsberg. 2010. Featherweight X10: a core calculus for async-finish parallelism. In Principles and

Practice of Parallel Programming (PPoPP). 25–36.
Xavier Leroy. 2024. The CompCert C compiler. http://compcert.org/.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme Vouillon. 2025. The OCaml language

(language extensions; attributes). https://ocaml.org/manual/5.3/attributes.html.

Yi Lin, Kunshan Wang, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish. 2015. Stop and go: understanding

yieldpoint behavior. In Symposium on Memory Management (ISMM). 70–80.
Daniel Loeb. 1992. Sets with a negative number of elements. Advances in Mathematics 91, 1 (1992), 64–74.
Anton Lorenzen, Daan Leijen, and Wouter Swierstra. 2023. FP

2
: Fully in-Place Functional Programming. Proceedings of the

ACM on Programming Languages 7, ICFP (Aug. 2023), 275–304.

Anil Madhavapeddy and Yaron Minsky. 2022. Real World OCaml: Functional programming for the masses (2 ed.). Cambridge

University Press.

Jean-Marie Madiot and François Pottier. 2022. A Separation Logic for Heap Space under Garbage Collection. Proceedings of
the ACM on Programming Languages 6, POPL (Jan. 2022), 718–747.

Simon Marlow, Tim Harris, Roshan P. James, and Simon Peyton Jones. 2008. Parallel generational-copying garbage collection

with a block-structured heap. In Proceedings of the 7th International Symposium onMemoryManagement (Tucson, AZ, USA)

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://doi.org/10.1016/S0890-5401(03)00009-9
http://www2.tcs.ifi.lmu.de/~jost/research/POPL_2003_Jost_Hofmann.pdf
https://www2.tcs.ifi.lmu.de/~jost/research/hofmann_jost_esop06_postfinal.pdf
https://doi.org/10.1007/978-3-642-04027-6_24
https://doi.org/10.1007/978-3-642-37036-6_32
http://people.mpi-sws.org/~dreyer/papers/gcsl/paper.pdf
https://github.com/ocaml/ocaml/pull/10462
https://github.com/ocaml/ocaml/pull/10462
https://doi.org/10.1145/3622827
https://doi.org/10.1145/3622827
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
https://doi.org/10.1145/3473581
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
https://doi.org/10.1007/978-3-642-37036-6_10
https://doi.org/10.1007/978-3-642-37036-6_10
https://doi.org/10.1145/3236772
https://devblogs.microsoft.com/dotnet/announcing-net-framework-4-6/
https://devblogs.microsoft.com/dotnet/announcing-net-framework-4-6/
https://doi.org/10.1145/1693453.1693459
http://compcert.org/
https://ocaml.org/manual/5.3/attributes.html
https://doi.org/10.1145/2754169.2754187
https://doi.org/10.1145/2754169.2754187
https://www.sciencedirect.com/science/article/pii/0001870892900119
https://doi.org/10.1145/3607840
https://realworldocaml.org/
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
https://doi.org/10.1145/1375634.1375637
https://doi.org/10.1145/1375634.1375637

70 Alexandre Moine, Arthur Charguéraud, and François Pottier

(ISMM). Association for Computing Machinery, New York, NY, USA, 11–20. https://doi.org/10.1145/1375634.1375637

Paul McKenney, Michael Wong, Maged M. Michael, Andrew Hunter, Daisy Hollman, JF Bastien, Hans Boehm, David

Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kamiński, Olivier Giroux, David Vernet, and Timur Doumler. 2023.

Read-Copy Update (RCU). P2545R4 https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf.

Paul E. McKenney. 2004. Exploiting deferred destruction: an analysis of read-copy-update techniques in operating system
kernels. Ph. D. Dissertation. Oregon Health & Science University.

Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data structures from memory reclamation for static analysis.

Proc. ACM Program. Lang. 3, POPL, Article 58 (jan 2019), 31 pages.

Maged M. Michael. 2002. High performance dynamic lock-free hash tables and list-based sets. In Proceedings of the Fourteenth
Annual ACM Symposium on Parallel Algorithms and Architectures (Winnipeg, Manitoba, Canada) (SPAA). Association for

Computing Machinery, New York, NY, USA, 73–82. https://doi.org/10.1145/564870.564881

Maged M. Michael. 2004a. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects. IEEE Transactions on Parallel
and Distributed Systems 15, 6 (2004), 491–504.

Maged M. Michael. 2004b. RC23089: ABA Prevention Using Single-Word Instructions. Technical Report.
Maged M. Michael, Michael Wong, Paul McKenney, Andrew Hunter, Daisy Hollman, JF Bastien, Hans Boehm, David

Goldblatt, Frank Birbacher, and Mathias Stearn. 2023. Hazard Pointers for C++26. P2530R3 https://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf.

Microsoft. 2024. Documentation of the GC class of the .NET 8.0 framework.

Alexandre Moine. 2024. Formal Verification of Heap Space Bounds under Garbage Collection. Ph. D. Dissertation. Université
Paris Cité.

Alexandre Moine. 2025. Will it Fit? Verifying Heap Space Bounds for Concurrent Programs under Garbage Col-

lection with Separation Logic (Artifact). Permanent snapshot: https://archive.softwareheritage.org/swh:1:snp:

20f90f6c746ee641b3d8473340f68eae48c6bdd2;origin=https://github.com/nobrakal/irisfit.

Alexandre Moine, Arthur Charguéraud, and François Pottier. 2023. A High-Level Separation Logic for Heap Space under

Garbage Collection. Proceedings of the ACM on Programming Languages 7, POPL (Jan. 2023), 718–747.

J. Gregory Morrisett, Matthias Felleisen, and Robert Harper. 1995. Abstract Models of Memory Management. In Functional
Programming Languages and Computer Architecture (FPCA). 66–77.

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verification of fine-grained concurrent

programs in Iris. In Programming Language Design and Implementation (PLDI). 809–824.
Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time credits and time receipts in Iris. In European Symposium

on Programming (ESOP) (Lecture Notes in Computer Science, Vol. 11423). Springer, 1–27.
Yue Niu and Jan Hoffmann. 2018. Automatic Space Bound Analysis for Functional Programs with Garbage Collection. In

Logic for Programming Artificial Intelligence and Reasoning (LPAR) (EPiC Series in Computing, Vol. 57). 543–563.
Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95.

Zoe Paraskevopoulou and Andrew W. Appel. 2019. Closure conversion is safe for space. Proceedings of the ACM on
Programming Languages 3, ICFP (2019), 83:1–83:29.

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular verification of a non-blocking stack. In

Principles of Programming Languages (POPL). 297–302.
Matthew J. Parkinson, Dimitrios Vytiniotis, Kapil Vaswani, Manuel Costa, Pantazis Deligiannis, Dylan McDermott, Aaron

Blankstein, and Jonathan Balkind. 2017. Project Snowflake: non-blocking safe manual memory management in .NET.

Proceedings of the ACM on Programming Languages 1, OOPSLA (2017), 95:1–95:25.

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules Villard. 2020. Local Reasoning

About the Presence of Bugs: Incorrectness Separation Logic. In Computer Aided Verification (CAV) (Lecture Notes in
Computer Science, Vol. 12225). Springer, 225–252.

John C. Reynolds. 1975. User-defined Types and Procedural Data Structures as Complementary Approaches to Data Abstraction.
Technical Report 1278. Carnegie Mellon University.

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In Logic in Computer Science (LICS).
55–74.

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo, Sudha Parimala, Atul Dhiman,

and Anil Madhavapeddy. 2020. Retrofitting Parallelism onto OCaml. Proceedings of the ACM on Programming Languages
4, ICFP (Aug. 2020), 113:1–113:30.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2022. Later

credits: resourceful reasoning for the later modality. Proceedings of the ACM on Programming Languages 6, ICFP (2022),

283–311.

The Go Authors. 2019. Goroutine preemption. https://go.dev/src/runtime/preempt.go.

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif. 2011. Formal Verification of a Lock-Free Stack with Hazard Pointers.

In Theoretical Aspects of Computing (ICTAC) (Lecture Notes in Computer Science, Vol. 6916). Springer, 239–255.

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://doi.org/10.1145/1375634.1375637
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
https://doi.org/10.1145/3290371
https://doi.org/10.1145/564870.564881
https://doi.org/10.1145/564870.564881
https://doi.org/10.1109/TPDS.2004.8
https://dominoweb.draco.res.ibm.com/4813d7c4e4c6b1a085256e2b00539e0f.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://learn.microsoft.com/en-us/dotnet/api/system.gc?view=net-8.0
https://cambium.inria.fr/~amoine/phd.html
https://github.com/nobrakal/irisfit
https://github.com/nobrakal/irisfit
https://archive.softwareheritage.org/swh:1:snp:20f90f6c746ee641b3d8473340f68eae48c6bdd2;origin=https://github.com/nobrakal/irisfit
https://archive.softwareheritage.org/swh:1:snp:20f90f6c746ee641b3d8473340f68eae48c6bdd2;origin=https://github.com/nobrakal/irisfit
https://doi.org/10.1145/3571218
https://doi.org/10.1145/3571218
https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf
https://doi.org/10.1145/3519939.3523432
https://doi.org/10.1145/3519939.3523432
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
https://easychair.org/publications/paper/dcnD
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3341687
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1145/3141879
https://plv.mpi-sws.org/ISL/
https://plv.mpi-sws.org/ISL/
http://repository.cmu.edu/compsci/1278/
http://www.cs.cmu.edu/~jcr/seplogic.pdf
https://doi.org/10.1145/3408995
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631
https://go.dev/src/runtime/preempt.go
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/55403

Will it Fit? 71

R. Kent Treiber. 1986. Systems programming: Coping with parallelism.

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue. In Certified Programs and
Proofs (CPP). 76–90.

Matt Warren. 2016. GC Pauses and Safe Points. https://mattwarren.org/2016/08/08/GC-Pauses-and-Safe-Points/.

Hassler Whitney. 1933. Characteristic Functions and the Algebra of Logic. Annals of Mathematics 34, 3 (1933), 405–414.

, Vol. 1, No. 1, Article . Publication date: January 2018.

https://dominoweb.draco.res.ibm.com/reports/rj5118.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://mattwarren.org/2016/08/08/GC-Pauses-and-Safe-Points/
http://www.jstor.org/stable/1968168

	Abstract
	1 Introduction
	2 Overview
	2.1 One Language, Several Semantics
	2.2 Roots and Garbage Collection
	2.3 Why Block Large Memory Allocation Requests
	2.4 Polling Points
	2.5 Protected Sections
	2.6 A Concurrent Separation Logic for Heap Space
	2.7 Closures

	3 Why Treiber's Stack Needs Protected Sections
	3.1 Naive Implementation of Treiber's Stack
	3.2 Space Consumption of Treiber's Stack without Protected Sections
	3.3 Space Consumption of Treiber's Stack with Protected Sections

	4 Syntax and Semantics of LambdaFit
	4.1 Syntax
	4.2 Semantics

	5 Program Logic: Assertions
	5.1 Triples
	5.2 Ghost Updates
	5.3 Points-to Assertions
	5.4 Sizeof Assertions
	5.5 Space Credits
	5.6 Pointed-By-Heap Assertions
	5.7 Pointed-By-Thread Assertions
	5.8 Inside and Outside Assertions
	5.9 Deallocation Witnesses
	5.10 Liveness-Based Cancellable Invariants

	6 Program Logic: Reasoning Rules
	6.1 Logical Deallocation
	6.2 Reasoning Rules for Terms
	6.3 Reasoning about Protected Sections
	6.4 Reasoning under Evaluation Contexts
	6.5 Locally Trading Trimming for a Simpler and More Powerful Bind Rule
	6.6 Logical Deallocation of Cycles

	7 Interlude: Verifying a Small Example
	8 Safety and Liveness
	8.1 Safety
	8.2 Liveness
	8.3 Safety and Liveness for the Growing Semantics
	8.4 Core Soundness

	9 Closures
	9.1 Environments
	9.2 Closure Implementation
	9.3 Pending Substitutions
	9.4 Low-Level Closure API
	9.5 Low-Level Closure API: Implementation Details
	9.6 High-Level Closure API
	9.7 High-Level Closure API: Implementation Details

	10 Triples with Souvenir
	10.1 Those Who Cannot Remember the Past Are Condemned to Repeat It
	10.2 Internals of Souvenirs

	11 Case Studies
	11.1 Atomic triples
	11.2 Fetch-and-Add
	11.3 A Concurrent Counter Object
	11.4 An Async/Finish Library
	11.5 Treiber's Stack

	12 Related Work
	12.1 Polling Points
	12.2 Protected Sections
	12.3 Reasoning about Space without a GC
	12.4 Reasoning about Space with a GC
	12.5 Space-Related Results for Compilers
	12.6 Safe Memory Reclamation Schemes

	13 Conclusion
	14 Future Work
	Acknowledgments
	References

