
The ins and outs of iteration in Mezzo

Armaël Guéneau
ENS Lyon & INRIA

armael.gueneau@inria.fr

François Pottier
INRIA

francois.pottier@inria.fr

Jonathan Protzenko
INRIA

jonathan.protzenko@ens-lyon.org

Abstract
This is a talk proposal for HOPE 2013. Using iteration over a
collection as a case study, we wish to illustrate the strengths and
weaknesses of the prototype programming language Mezzo.

1. Introduction
Mezzo [2] is a high-level programming language in the style of ML.
It is equipped with a strong static discipline of duplicable and
affine permissions, which controls aliasing and ownership, and
rules out certain mistakes, such as representation exposure and data
races. In this talk, we would like to illustrate how Mezzo expresses
transfers of ownership: sometimes easily, sometimes less so. We
use iteration, a surprisingly rich problem, as a case study.

2. Algebraic data structures
Thanks to algebraic data types, it is easy to define list- and tree-like
data structures. For instance, here is a type of mutable binary trees:

data mutable tree a =
Leaf

| Node { left: tree a; elem: a; right: tree a }

As in ML, a tree carries a tag, which identifies it as a leaf or
a node. Unlike in ML, a type is interpreted not just as a structural
description, but also as an assertion of ownership. Thus, when one
writes “t @ tree a”, this does not mean that “t is a tree (now and
forever)”. Instead, this means “t is a tree (now) and I have exclusive
permission to read and write it”. We say that “t @ tree a” is an
affine permission: it is a unique token that grants access to t as a
tree. A function that takes an argument t and wishes to access it
as a tree requests this token from its caller and usually returns it
to its caller. Permissions exist at type-checking time and incur no
runtime overhead.

The permission “t @ tree a” can be refined, by analysis of t,
into the permission “t @ Node { left: tree a; elem: a;
right: tree a }”, which itself is automatically split by the type-
checker into a conjunction of four permissions:

t @ Node { left = l; elem = x; right = r } *
l @ tree a * x @ a * r @ tree a

(where l, x, r are fresh auxiliary names). Conjunction is naturally
separating, so the left and right subtrees must be disjoint: this really
is a type of trees, not of arbitrary graphs.

When reasoning abstractly, the permission “x @ a” is consid-
ered affine. This allows the type variable a to be later instantiated
with an affine type, i.e., one that has a non-trivial interpretation in
terms of ownership. For instance, “t @ tree (ref int)” means
that t is a tree of pairwise distinct integer references, and represents
the ownership of the tree and of its elements.

3. Higher-order iteration
The type-checker can split permissions (as above), join them, and
set them aside when they are not needed (a “frame rule”). This
makes it easy to write a recursive function that descends into a tree.
For instance, the type of the “tree size” function is:

val size: [a] tree a -> int

(Square brackets denote universal quantification.) By convention,
this means that the call “size t” requires the permission “t @
tree a” and returns it. It is equally easy to write a higher-order
function that descends into a tree and invokes a client-supplied
function at every node:

val iter: [a, s: perm]
(f: (a | s) -> bool,
t: tree a | s) -> bool

The function f has access to one tree element at a time: it receives
a permission of the form “x @ a” and must return it. Thus, this
element is temporarily “borrowed” from the tree. The function f
cannot access the tree, since it does not receive a permission for it.
The universal quantification over a permission s, which f receives
and returns, and which iter also receives and returns, allows the
client to supply a function f that has a side effect on an area
of memory represented by s. The Boolean value returned by f
indicates whether iteration should continue (i.e., false represents
an early termination request). The Boolean value returned by iter
indicates whether iteration went all the way to the end (i.e., false
means iteration was terminated early).

4. Tree iterators as an abstract data type
The higher-order function iter offers a style of iteration where
the provider invokes the consumer when an element is available. In
contrast, some programming languages, such as Java, encourage a
style where the consumer invokes the provider in order to obtain an
element. In Mezzo, at present, it is possible to encode this idiom,
but this requires a deep understanding of the system. Expressing
the iterator interface is tricky, because:

1. the permission for the collection (here, a tree) must disappear
while the iterator is active, and must somehow be recovered
once the iterator is discarded;

2. the permission for an element that was yielded by the iterator
must be surrendered before the iterator can be queried again.

Furthermore, writing an iterator implementation is tricky, because:

3. whereas the function iter relies on an implicit control stack,
an iterator contains an explicit representation of this stack,
whose shape must be described by an appropriate permission—
typically, some kind of “tree segment”.

An iterator interface, in the form of an abstract data type (ADT)
equipped with a number of operations, can be expressed as follows.

1 2013/8/19

The type tree_iterator is parameterized with the type a of
the elements and with a permission post, which represents the
underlying collection. The idea is that this permission is recovered
when the iterator is discarded.

abstract tree_iterator a (post: perm)

A tree iterator is created by invoking the function new:

val new: [a]
(consumes t: tree a) ->
tree_iterator a (t @ tree a)

When the type-checker examines the function call “let it =
new t in ...”, it checks that the permission “t @ tree a” is
available at the program point before the call. At the program
point after the call, this permission is gone (as specified by the
consumes keyword), and the permission “it @ tree_iterator
a (t @ tree a)” appears instead.

At any moment, one can discard the iterator and recover the
permission post (which, in this context, is “t @ tree a”) by
invoking “stop it”:

val stop: [a, post: perm]
(consumes it: tree_iterator a post) -> (| post)

One may hope (and this holds in our implementation) that stop has
no runtime effect and runs in constant time. It may be possible to
extend Mezzo with a notion of “ghost” code and to declare stop as
a ghost function.

While an iterator is active, it can be queried for a new element:

val next: [a, post: perm]
(consumes it: tree_iterator a post) ->
either (focused a (it @ tree_iterator a post))

(| post)

The call “next it” requires “it @ tree_iterator a post”,
and (perhaps surprisingly) consumes this permission, which means
that, immediately after this call, the iterator can no longer be used.
One must first examine the value returned by the call. Roughly
speaking, either:

1. it carries an element x of type a, together with a promise that
by abandoning the permission “x @ a”, one can recover “it @
tree_iterator a post” and continue using the iterator; or

2. it carries the permission post, because the iterator has stopped.

(We omit the definition of the algebraic data type either, which
represents a binary sum.) A value of type “focused a post” can
be thought of as a dependent pair of a value x of type a and a “magic
wand”, that is, a “one-shot” ability to convert “x @ a” to post:

alias focused a (post: perm) =
(x: a, release: wand (x @ a) post)

Mezzo does not currently have a primitive concept of a magic wand,
viewed as a permission. As an approximation, we view a magic
wand of pre to post as a runtime function that consumes pre and
produces post. (Again, ideally, this should be a ghost function.)
We make it a “one-shot” function (i.e., one that can be invoked at
most once) by specifying that it consumes an abstract permission
ammo and by pairing it with just one copy of ammo. (Curly braces
denote existential quantification. An abstract permission is by de-
fault considered affine.)

alias wand (pre: perm) (post: perm) =
{ammo: perm} (

(| consumes (pre * ammo)) -> (| post)
| ammo)

This concludes the definition of the iterator interface. We do not
show the implementation of tree iterators, but note that the internal
definition of tree_iterator itself relies on focused:

alias tree_iterator a (post: perm) =
ref (focused (list (tree a)) post)

This means that a tree iterator is a stack of sub-trees and that, by
abandoning the ownership of this stack, one recovers post, which
represents the ownership of the complete tree.

5. Generic iterators as objects
We have constructed an abstract data type of iterators for a specific
type of trees. The same approach can be applied to other data
structures. Unfortunately, every time one does so, one obtains a
new abstract data type of iterators. Thus, one cannot write generic
code that uses “an iterator” without knowing how this iterator was
constructed.

One way out of this problem is to adopt an object-oriented (OO)
style and to define an iterator to be an object equipped with next
and stop methods. The methods must have access to the iterator’s
internal state, which we represent by an abstract permission s.
Thus, an iterator is a package of two functions that require s and
of s itself:

data iterator_s (s: perm) a (post: perm) =
Iterator {

next: (| consumes s) -> either (focused a s)
(| post);

stop: (| consumes s) -> (| post)
| s }

alias iterator a (post: perm) =
{s: perm} iterator_s s a post

This is an encoding in the style of Pierce and Turner, with the added
twists that s is a permission, not a type (so the client never obtains
a pointer to the object’s internal state) and s is affine (so the client
cannot invoke stop twice, for instance).

An ADT-style iterator can be converted a posteriori to OO-
style. This is done by the following function, which accepts an
iterator it of an arbitrary type i, provided this type is equipped
with appropriate next and stop operations.

val wrap: [a, i, post: perm] (
consumes it: i,
next: (consumes it: i) ->

either (focused a (it @ i)) (| post),
stop: (consumes it: i) -> (| post)

) -> iterator a post

By combining wrap and the ADT-style library of the previous
section (§4), one obtains:

val new_tree_iterator: [a]
(consumes t: tree a) -> iterator a (t @ tree a)

Conversely, one can convert from OO style to ADT style, in the
following sense: if desired, the type iterator defined above can
be equipped with three operations new (a constructor), next, and
stop, and made abstract.

An OO-style iterator is a stream (with mutable internal state),
so it should not be surprising that many of the standard operations
on streams can be defined on the type iterator. For instance,
filter creates a new iterator out of an existing one:

val filter: [a, p: perm, post: perm] (
consumes it: iterator a post,
f: (a | p) -> bool

| consumes p) -> iterator a (p * post)

2 2013/8/19

A few points are worth noting:

1. The pre-existing iterator is consumed. It becomes owned by the
new iterator, so to speak. Stopping the new iterator transpar-
ently stops the underlying iterator and yields post, which rep-
resents the ownership of the underlying collection(s).

2. The function f may have internal state, represented by the
permission p, which f requires and returns. This permission is
consumed by the call to filter (i.e., the new iterator takes
possession of p), and is recovered when the new iterator stops.

3. f receives a permission to examine an element of type a, and
must return this permission (there is no consumes keyword).

Other examples of operations that can be expressed include map,
zip, concat, equal (which in the case of trees solves the “same
fringe” problem), etc.

6. Turning a fold inside out
We have presented two approaches to iteration. In one, the producer
is in control and invokes the consumer via a function call (§3);
in the other, this situation is reversed (§4 and §5). The former
approach makes it easy to implement a producer, while the latter
approach facilitates life for the consumer, especially when one
wishes to draw data out of several collections simultaneously.

In order to get the best of both approaches, one would like to be
able to automatically derive a first-order iterator in the style of §4
and §5 out of a higher-order iteration function in the style of §3. It is
well-known that this can in principle be achieved by using control
operators. Unfortunately, for the moment at least, Mezzo does not
have first-class control. Yet, as a preliminary study, we verify that
an iterator can be derived out of a higher-order iteration function
written in continuation-passing style (CPS).

In order to allow early termination, we use a “double-barreled
continuation” style, and work with pairs of an abort continuation
and a normal continuation. The type continuations pre b1
b2, defined below, represents such a pair. The abstract permission
ammo is analogous to the one that was used in the definition of
wand (§4) so as to ensure that a magic wand is applied at most
once. Here, because both continuations require the same ammo, and
because only copy of ammo is included, it ensures that at most one
of the two continuations can be invoked.

alias continuations (pre : perm) b1 b2 =
{ ammo : perm } (

failure: (| consumes (ammo * pre)) -> b1,
success: (| consumes (ammo * pre)) -> b2

| ammo
)

The two continuations have the same domain: they expect zero
runtime argument and they consume a permission pre, which is a
parameter of this definition. They may have distinct answer types,
b1 and b2.

A CPS version of iter (§3) has the following type:

val cps_iter: [a, s : perm, b1, b2] (
consumes t: (tree a | s),
f: (

consumes x: (a | s),
consumes continuations (x @ (a | s)) b1 b2

) -> b2,
consumes continuations (t @ (tree a | s)) b1 b2

) -> b2

The original iter (§3) does not consume “t @ (tree a | s)”:
it requires this permission and returns it to its caller. Here, this idea
remains valid in principle. However, cps_iter does not return the

permission “t @ (tree a | s)” to its caller: instead, it transmits
this permission to one of its continuations. By the same token, the
callback function f requires the permission “x @ (a | s)” and
transmits this permission to one of its continuations.

Using cps_iter, one can re-implement new_tree_iterator
(§5). The idea is to apply cps_iter to a function yield that cap-
tures the current continuation pair and stores it within the iterator.
We omit the (fairly interesting) details. It is worth noting that this
construction is independent of trees, so, by abstracting over “tree
a” and cps_iter, it can be turned into a re-usable library.

7. Other approaches to iteration
One particularly elegant approach, well-known in the functional
programming community, is to view the producer as a function that
returns a lazy stream of elements, while the consumer is a function
that accepts such a stream. In this approach, both producer and
consumer are written in direct style, and the transfer of control is
implicit. In Mezzo, by building upon a primitive notion of lock, one
can define a type “thunk a” of suspensions, and on top of that,
a type “stream a” of lazy streams. Suspensions and streams are
considered duplicable, which means that they can be shared without
restriction, just as in ML or Haskell. This approach works well, but
is restricted to the case where the type a is itself duplicable.

Another attractive approach consists in running the producer
and consumer as two threads connected by channels. The commu-
nication protocol is as follows. The producer sends an element x
of type a along one channel, and the consumer replies (once it is
done processing this element) by sending a message of type (|
x @ a) (i.e., no runtime value, and the permission for x) along a
second channel. Thus, the reply channel must be heterogeneous:
every message has a different type, as it concerns a different ele-
ment x. A limited kind of heterogeneous channel can be axioma-
tized in Mezzo, but this topic deserves further study: taking inspi-
ration from Villard et al.’s work [3], we would like to understand
how to best express complex communication protocols in Mezzo
and how to extend Mezzo’s formal proof of type soundness with
these features.

8. Conclusion
In this talk proposal, we have refrained from including numerous
citations. However, there is a rich literature on type systems for
mutable state and on approaches to iteration. Krishnaswami et al.’s
paper [1] is particularly relevant. We will draw a comparison with
some of the related work during the talk.

The “little” problem of iteration is surprisingly rich, because it
involves the two fundamental issues of modularity and transfer of
ownership. We believe that it is a good way of illustrating Mezzo’s
expressive power and, more generally, how one might program in a
language equipped with a pervasive notion of permission.

References
[1] Neelakantan R. Krishnaswami, Jonathan Aldrich, Lars Birkedal,

Kasper Svendsen, and Alexandre Buisse. Design patterns in separa-
tion logic. In Types in Language Design and Implementation (TLDI),
pages 105–116, 2009.

[2] François Pottier and Jonathan Protzenko. Programming with permis-
sions in Mezzo. In International Conference on Functional Program-
ming (ICFP), 2013. To appear.

[3] Jules Villard, Étienne Lozes, and Cristiano Calcagno. Proving copyless
message passing. In Asian Symposium on Programming Languages
and Systems (APLAS), volume 5904 of Lecture Notes in Computer
Science, pages 194–209. Springer, 2009.

3 2013/8/19

http://www.cs.cmu.edu/~neelk/design-patterns-tldi09.pdf
http://www.cs.cmu.edu/~neelk/design-patterns-tldi09.pdf
http://gallium.inria.fr/~fpottier/publis/pottier-protzenko-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/pottier-protzenko-mezzo.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VLC-aplas09.pdf
http://www.lsv.ens-cachan.fr/Publis/PAPERS/PDF/VLC-aplas09.pdf

	Introduction
	Algebraic data structures
	Higher-order iteration
	Tree iterators as an abstract data type
	Generic iterators as objects
	Turning a fold inside out
	Other approaches to iteration
	Conclusion

