
A Systemati Approah to Stati Aess Control

Fran�ois Pottier

INRIA Roquenourt

and

Christian Skalka

The University of Vermont

and

Sott Smith

The Johns Hopkins University

The Java Seurity Arhiteture inludes a dynami mehanism for enforing aess ontrol heks,

the so-alled stak inspetion proess. While the arhiteture has several appealing features, aess

ontrol heks are all implemented via dynami method alls. This is a highly non-delarative form

of spei�ation whih is hard to read, and whih leads to additional run-time overhead. This paper

develops type systems whih an statially guarantee the suess of these heks. Our systems

allow seurity properties of programs to be learly expressed within the types themselves, whih

thus serve as stati delarations of the seurity poliy. We develop these systems using a systemati

methodology: we show that the seurity-passing style translation, proposed by Wallah, Appel

and Felten as a dynami implementation tehnique, also gives rise to stati seurity-aware type

systems, by omposition with onventional type systems. To de�ne the latter, we use the general

HM(X) framework, and easily onstrut several onstraint- and uni�ation-based type systems.

Categories and Subjet Desriptors: D.3.3 [Programming Languages℄: Language Construts

and Features|ontrol strutures; polymorphism; F.3.3 [Logis and Meanings of Programs℄:

Studies of Program Construts|type struture

General Terms: Languages, reliability, seurity, theory

Additional Key Words and Phrases: Type systems, stak inspetion, aess ontrol

1. INTRODUCTION

The Java Seurity Arhiteture [Gong and Shemers 1998; Gong 1998℄, found in

the Java JDK 1.2 and later, inludes mehanisms to protet systems from opera-

tions performed by untrusted ode. These aess ontrol deisions are enfored by

dynami heks. Our goal is to make some or all of these deisions statially, by

extensions to the type system. Thus, aess ontrol violations will be aught at

ompile-time rather than run-time. Furthermore, these type extensions onstitute

a statially-spei�ed seurity poliy, whih is muh preferred to a dynami one.

Contat author's address: Christian Skalka, Department of Computer Siene, University of Ver-

mont, Votey 351, 33 Colhester Ave., Burlington, VT 05405.

Permission to make digital/hard opy of all or part of this material without fee for personal

or lassroom use provided that the opies are not made or distributed for pro�t or ommerial

advantage, the ACM opyright/server notie, the title of the publiation, and its date appear, and

notie is given that opying is by permission of the ACM, In. To opy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior spei� permission and/or a fee.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1{36.

2 � Fran�ois Pottier et al.

1.1 The Java Seurity Arhiteture

We now briey review the Java seurity Arhiteture [Gong and Shemers 1998;

Gong 1998; Wallah 1999℄. The stak inspetion algorithm underlying the arhite-

ture is primarily onerned with ode-based aess ontrol: in a single JVM an be

found ode loaded from di�erent odebases, and ode from eah odebase may have

di�erent aess rights. For instane, applets should not be allowed to read and write

arbitrary �les, but applets may be allowed to read and write �les in /tmp/*. Thus,

applets may have a FilePermission for read/write to /tmp/*, but no permissions

to read or write any other �les.

The stak inspetion system is used in two di�erent modes; these two di�er-

ent modes are not stated very learly in the literature so we review them now.

In the �rst mode, a hekPermission() ommand is exeuted before a riti-

al operation, suh as a system library about to do a low-level �le write; if this

ommand does not raise an exeption, exeution ontinues and the �le is writ-

ten. For the applet example, if the applet tries to write /tmp/srath2232, the

hekPermission() will sueed sine the applet has this privilege (we will de-

sribe the heking proess in more detail below). In the seond mode, there may

be a need to temporarily raise privileges to allow the system to perform a privi-

leged operation for untrusted ode. An example is the system may need to read

a font �le, /usr/java/fonts/helvetia.fnt, so the applet an use this font, but

this would otherwise ause an exeption sine the applet annot read that �le:

the hekPermission() for read of /usr/java/fonts/helvetia.fnt would fail.

The doPrivileged() ommand is designed to solve this problem: the system an

exeute doPrivileged(readFontCode) where readFontCode reads the font and

is exeuted with system, not applet, privileges; and, the hekPermission() will

sueed sine it was exeuted as a system-privileged operation.

Aess ontrol deisions of hekPermission() are made using a stak inspetion

algorithm. The original requestor of an ation suh as a �le read may be far bak

on the all stak: the applet invoked some system �le method whih in turn invoked

other system methods . . . whih �nally invoked a low-level system method to read

the �le whih invoked hekPermission(). So, bak on the all stak is a frame

owned by the applet odebase. The hekPermission() thus searhes bak the

stak, making sure every frame's odebase has the permission needed. This overs

the �rst ase of usage above. For the seond ase, where a temporary raising of

privileges is needed to e.g. read a font �le, the doPrivileged() ommand adds

a agged stak frame to the stak whih performs the privileged operation; when

a privilege is heked via the hekPermission() ommand, the stak frames are

searhed most to least reent. If a doPrivileged frame for the relevant permission

is enountered, and the odebase of every frame up to and inluding that one

is authorized for the permission, the hek terminates suessfully: even though

applet stak frames may be further up the stak beause applet ode indued the

font load, its privileges are not queried.

1.1.1 Java's Lak of Full Delarativity. The Java Seurity Arhiteture is pop-

ular in pratie and embodies several useful priniples, but it also has some weak-

nesses. There is a performane penalty to pay due to the need for run-time stak

inspetion. The arhiteture also is not as delarative as it ould be, but for seu-

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 3

rity poliies it is important to be maximally delarative: �xed, immutable poliies

have �xed meaning.

The Java poliy �le is a �xed delaration of privilege authorizations for ode-

bases, so this aspet of the arhiteture is suÆiently delarative. The problem

is how this poliy is enfored in the ode: e.g. is ode from foo.om indeed re-

strited at runtime from writing to "/tmp", if this is delared in the poliy �le?

In fat, implementation of this poliy requires that there be appropriate insertions

of hekPermissions whih guard all low-level �le aesses, whih are heked dy-

namially. Thus, a programmer must have a perfet understanding of the ontrol

ow of the underlying program to guarantee that proper heks are in plae. This

obviously makes it diÆult to see whether the ode is implementing the orret

poliy; in large programs, tens of thousands of lines long, how an programmers

have suh a perfet understanding?

This paper explores solutions to these problems through the use of stati type

systems. If types an delare preisely the privileges needed for an invoation of

a method to avoid run-time seurity exeptions, these types ould give a top-level

delaration of the permissions needed by eah hunk of ode, and programmers

ould verify that the orret poliies are implemented without having to understand

the omplete odebase.

1.2 Our Framework

We de�ne a seurity typing system whih statially typeheks, and thus statially

veri�es suess of, the run-time aess ontrol heks. This obviates the need for

stak inspetion at run-time, sine all the heks have been proven to sueed at

ompile-time. In this paper, a foundational framework is developed; there still

are several important issues to be addressed before it ould be applied to a real

language suh as Java.

We employ several tehnial tools to streamline the results. We redue the se-

urity typing problem to a onventional typing problem using a translation-based

method inspired by [Pottier and Conhon 2000℄. We use a standard language of

row types [R�emy 1992b℄ to desribe sets of privileges. We also re-use the HM(X)

framework [Odersky et al. 1999; Sulzmann 2000℄, whih allows a wide variety of

type systems to be de�ned in a single stroke, saves some proof e�ort, and (most

importantly) shows that our ustom type systems arise naturally out of a standard

one. Some tehnial results about HM(X) are drawn from [Skalka and Pottier

2002℄. We develop several di�erent type systems, inluding both onstraint-based

and uni�ation-based systems.

We begin by de�ning a simpli�ed model of the Java Seurity Arhiteture, �

se

.

This alulus is equipped with a non-standard operational semantis that inludes a

spei�ation of stak inspetion. In order to onstrut a stati type system for �

se

,

we translate it into a standard �-alulus, alled �

set

. The translation is a seurity-

passing style transformation [Wallah 1999; Wallah et al. 2000℄: it implements

stak inspetion by passing around sets of privileges at run-time. For this purpose,

�

set

is equipped with built-in notions of set and set operations. The translation is

proven to be orret, in that program semantis are preserved in translation.

Then, we de�ne a type system for �

set

. Beause �

set

is a standard �-alulus, we

are able to de�ne our type system as a simple instane of the HM(X) framework

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 � Fran�ois Pottier et al.

r 2 R; R � R resoures

p 2 P; P � P;where P = 2

R

prinipals

v ::= �x z:�x:f values

e ::= x j �x z:�x:f j e e j letx = e in e j enable r in e j hek r then e j expressions

test r then e else e j f

f ::= p:e signed expressions

E ::= [℄ j E e j v E j letx = E in e j enable r inE j p:E evaluation ontexts

Fig. 1. Grammar for �

se

[Odersky et al. 1999℄. In fat, by using this framework, a whole family of type

systems may be suintly de�ned, eah with di�erent osts and bene�ts. In order

to give preise types to �

set

's built-in set operations, our instane uses set types,

de�ned as a simpli�ation of R�emy's reord types [R�emy 1992b℄.

Due to orretness of the �

se

-to-�

set

translation, and type safety within the �

set

type framework, an indiret type analysis for �

se

is immediately obtained. That is,

a sound typing for any �

se

expression is the type of its enoding in �

set

. However,

a diret type system that treats �

se

expressions themselves is still desirable, for

various reasons (e.g. eÆieny, error reporting). Thus, we lastly de�ne diret type

systems for �

se

, whih are based on, or \derived" from, analogous �

set

type systems.

As an appealing onsequene of our tehnial approah, a diret type safety result

follows easily from indiret type safety, orretness of the �

se

-to-�

set

translation,

and a straighforward syntati orrespondane between the diret and indiret type

systems.

This paper expands on the onferene paper [Pottier et al. 2001℄, whih was itself

a re�guration of the ideas �rst presented in [Skalka and Smith 2000℄. The latter

paper de�ned the �rst stati type analysis for stak inspetion. There, funtion

types are of the form �

1

�

�! �

2

, where �

1

and �

2

are \ordinary" types, and �

represents a family of sets ontaining at least the permissions neessary to use

the funtion. An inferene tehnique based on a set onstraint solution algorithm

was de�ned to implement the system. However, the system is non-standard and

monomorphi; these shortomings are addressed in [Pottier et al. 2001℄ and the

urrent paper, whih extend the type analysis to a polymorphi setting, using

standard type logis with well-studied and eÆient inferene methods.

2. THE SOURCE LANGUAGE �

se

This setion de�nes �

se

, a simpli�ed model of the seurity arhiteture of the JDK

1.2 and later. It is a �-alulus equipped with a notion of ode ownership and on-

struts for enabling or heking privileges. For the sake of formal simpliity, we do

not de�ne staks expliitly; rather, staks are impliit in �

se

evaluation ontexts,

and an be gleaned from them. This is in ontrast to a version of the alulus

presented in [Skalka 2002℄ with expliit staks, inspetion thereon, and a dopriv

onstrut, alled �

S

se

, that learly reets the JDK implementation details. How-

ever, �

S

se

is shown to be embeddable in �

se

in [Skalka 2002℄, ensuring on�dene

in the orretness of �

se

as a model of the Java JDK arhiteture.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 5

We assume given an arbitrary set R of resoures (also known as privileges). We

use r and R to range over resoures and over sets thereof, respetively. Following

Fournet and Gordon [Fournet and Gordon 2002℄, we de�ne the set of prinipals P

as the powerset of R, that is, we identify a prinipal with the set of resoures to

whih it has aess. We use p and P to range over prinipals and over sets thereof,

respetively. We write nobody for the empty privilege set, that is, for the prinipal

with no aess rights. For typing purposes, we shall require every set of resoures

to be either �nite or o�nite (Setion 5.3).

The reader may be somewhat puzzled by the fat that both p and R range over

sets of resoures. The hoie of notation is intended to reet the manner in whih

a set of resoures is obtained. On the one hand, the notation p represents the set of

resoures assoiated (via an impliit aess rights matrix) with some prinipal name,

found in the ode. On the other hand, the notation R represents an arbitrary set of

resoures and may be the result of a omputation involving union and intersetion

operations. In other words, p represents what Fournet and Gordon refer to as a

\stati" set of privileges, while R represents a \dynami" set of privileges.

The grammar of �

se

is given in Fig. 1. An abstration �x z:�x:f may reursively

refer to itself through the program variable z. (This onation of the �x and �

binders simpli�es the treatment of reursion.) We write �x:f when z does not

appear free in f . The let form does not make the untyped alulus more expressive;

instead, as in ML, it is used by the type system to determine where polymorphism

may be introdued. A signed expression p:e behaves as the expression e endowed

with the authority of prinipal p. The body of every �-abstration is required to

be a signed expression { thus, every piee of ode must be vouhed for by some

prinipal. The onstrut enable r in e allows an authorized prinipal to enable the

use of a resoure r within the expression e. The onstrut hek r then e asserts that

the use of r is urrently enabled. If r is indeed enabled, e is evaluated; otherwise,

exeution fails. The onstrut test r then e

1

else e

2

dynamially tests whether r is

enabled, branhing to e

1

or e

2

if this holds or fails, respetively. Versions of enable,

hek, and test that bear on a set of resoures R, as opposed to a single resoure r,

may be later introdued as syntati sugar.

2.1 Stak Inspetion

The JDK determines whether a resoure is enabled by literally examining the run-

time stak, hene the name stak inspetion. We give a simple spei�ation of

this proess by notiing that staks are impliitly ontained in evaluation ontexts,

whose grammar is de�ned in Fig. 1. Indeed, a ontext de�nes a path from the

term's root down to its ative redex, along whih one �nds exatly the seurity

annotations whih the JDK would maintain on the stak, that is, ode owners p

and enabled resoures r.

To formalize this idea, we assoiate to every evaluation ontext E a �nite string

jE j of prinipals and resoures, alled a stak. The right-most letters in the string

orrespond to the most reent stak frames. We write � for the empty stak and

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 � Fran�ois Pottier et al.

r 2 p S ` r

S:p ` r

S ` r

S:r

0

` r

S `

�

r

S:r ` r

S `

�

r

S:r

0

`

�

r

r 2 p

S:p `

�

r

Fig. 2. Bakward stak inspetion algorithm

nobody;?; S ` R

r 2 R

S ` r

p;R; � ` R

p

0

; R \ p

0

; S ` R

0

p;R; p

0

:S ` R

0

p;R [(frg \ p); S ` R

0

p;R; r:S ` R

0

Fig. 3. Forward stak inspetion algorithm

S

1

:S

2

for the onatenation of the staks S

1

and S

2

.

j[℄j = � jE ej = jE j

jv E j = jE j jletx = E in ej = jE j

jenable r inE j = r:jE j jp:E j = p:jE j

We an now de�ne a \stak inspetion" algorithm. We give two variants of it,

a bakward (Fig. 2) and a forward one (Fig. 3). Both are de�ned in terms of a

judgement of the form S ` r, whih may be read: inspeting the stak S to hek

privilege r sueeds. The former algorithm sans the stak, starting with the most

reent frames, then moving towards their anestors. The latter, on the other hand,

sans the stak in the order it was built. Furthermore, its formulation is altered so

that it internally omputes not only whether aess to a given resoure r is legal, but

also the set of all resoures whih may be legally aessed given the urrent stak.

These algorithms are referred to as lazy and eager, respetively, by Gong [Gong and

Shemers 1998; Gong 1998℄. While the former is employed by most urrent JVM

implementations, the latter forms the basis of the seurity-passing style [Wallah

1999℄ translation whih we will introdue in Set. 4.

The following theorem states that forward and bakward stak inspetion are

in fat equivalent. This initial result is later used to establish the orretness of

seurity-passing style (Theorem 2). Subsequently, we will write S ` r without

speifying whih of the two algorithms is being used. We will also write E ` r for

jE j ` r.

Theorem 1. Assume given a stak S and a resoure r. Let P stand for the set

of all prinipals that ontain r. Then, the following three statements are equivalent:

(1) S ` r holds aording to the rules of Fig. 2;

(2) S ` r holds aording to the rules of Fig. 3;

(3) some suÆx of S belongs to the regular language PR

?

r(P j R)

?

.

Proof. We begin by proving that the �rst statement is equivalent to the third

one. First, hek that the auxiliary judgement S `

�

r holds if and only if some

suÆx of S belongs to PR

?

. Then, hek that S ` r holds, aording to the rules of

Fig. 2, if and only if some suÆx of S belongs to the regular language PR

?

r(P j R)

?

.

Eah of these heks is immediate.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 7

We now prove that the seond statement is equivalent to the third one. Let A

(resp. B, resp. C) be the set of staks S suh that 9R

0

3 r p;R; S ` R

0

for some

(or, equivalently, for all) p, R suh that p 63 r ^ R 63 r (resp. p 3 r ^ R 63 r, resp.

p 3 r ^R 3 r). It is straightforward to hek that, aording to the last three rules

in Fig. 3, A, B and C are the least solutions to the following reursive equations:

A ::= P:B j (P n P):A j R:A

B ::= P:B j (P n P):A j r:C j (R n frg):B

C ::= � j (P n P):A j (P j R):C

An indutive argument shows that A � B � C holds. Then, through a few rewriting

steps, one an bring the equations into a form where it is evident that A is exatly

(P j R)

?

PR

?

r(P j R)

?

. We do not give the details. In priniple, the hek an

be mehanized by verifying that the minimal deterministi �nite automaton (over

the 4-symbol alphabet frg, R n frg, P and P n P) assoiated with this regular

expression is exatly the one desribed by the above equations. There remains to

onlude by notiing that, aording to the �rst rule in Fig. 3, S ` r holds if and

only if S 2 A.

2.2 Operational Semantis for �

se

The operational semantis of �

se

is de�ned by the following redution rules:

E[(�x z:�x:f) v℄ ! E[f [v=x℄[�x z:�x:f=z℄℄

E[letx = v in e℄ ! E[e[v=x℄℄

E[hek r then e℄ ! E[e℄ if E ` r

E[test r then e

1

else e

2

℄ ! E[e

1

℄ if E ` r

E[test r then e

1

else e

2

℄ ! E[e

2

℄ if :(E ` r)

E[enable r in v℄ ! E[v℄

E[p:v℄ ! E[v℄

The evaluation ontext E is made expliit in every rule, whih allows looking it

up when needing to perform seurity heks. Note that it is not the ase that

e ! e

0

implies E[e℄ ! E[e

0

℄. Indeed, enlosing e within a new evaluation ontext

E enables more privileges, possibly ausing tests of the form test r then e

1

else e

2

to

be resolved di�erently.

The �rst two rules are standard. The next rule allows hek r then e to redue

into e only if stak inspetion sueeds (as expressed by the side ondition E ` r);

otherwise, exeution is bloked. The following two rules use stak inspetion in a

similar way to determine how to redue test r then e

1

else e

2

; however, they never

ause exeution to fail. The last two rules state that seurity annotations beome

unneessary one the expression they enlose has been redued to a value. In a

Java virtual mahine, these rules would be implemented simply by popping stak

frames (and the seurity annotations they ontain) after exeuting a method.

This operational semantis onstitutes a onise, formal desription of Java stak

inspetion in a higher-order setting. It is easy to hek that every losed term

either is a value, or is reduible, or is of the form E[hek r then e℄ where :(E ` r).

Terms of the third ategory are stuk ; they represent aess ontrol violations. An

expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is a stuk expression,

holds.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 � Fran�ois Pottier et al.

e ::= x j v j e e j let x = e in e expressions

v ::= �x z:�x:e j R j :

r

j ?

r

j _

R

j ^

R

values

E ::= [℄ j E e j v E j let x = E in e evaluation ontexts

Fig. 4. Grammar for �

set

JxK

p

= x

J�x z:�x:fK

p

= �x z:�x:�s:JfK

Je

1

e

2

K

p

= Je

1

K

p

Je

2

K

p

s

Jletx = e

1

in e

2

K

p

= letx = Je

1

K

p

in Je

2

K

p

Jenable r in eK

p

= let s = s _ (frg \ p) in JeK

p

Jhek r then eK

p

= let = s:r in JeK

p

Jtest r then e

1

else e

2

K

p

= s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

)

JfK

p

= JfK

Jp:eK = let s = s ^ p in JeK

p

Fig. 5. Soure-to-Target Translation

3. THE TARGET CALCULUS �

set

We now de�ne a standard alulus, �

set

, to be used as the target of our translation.

It is a �-alulus equipped with a number of onstants whih provide set operations,

and is given in Fig. 4. We will use e:r, e?r, e_R and e ^R as syntati sugar for

(:

r

e), (?

r

e), (_

R

e) and (^

R

e), respetively.

The onstant R represents a onstant privilege set. The onstrut e:r asserts that

r is an element of the set denoted by e; its exeution fails if that is not the ase. The

onstrut e_R (resp. e^R) allows omputing the union (resp. intersetion) of the

set denoted by e with a onstant set R. Lastly, the expression e?r x y dynamially

tests whether r belongs to the set R denoted by e, and aordingly invokes x or y,

passing R to it. The operational semantis for �

set

is as follows:

(�x z:�x:e) v ! e[v=x℄[�x z:�x:e=z℄

letx = v in e ! e[v=x℄

R:r ! R if r 2 R

R?r ! �x:�y:(xR) if r 2 R

R?r ! �x:�y:(y R) if r 62 R

R

1

_ R

2

! R

1

[R

2

R

1

^ R

2

! R

1

\R

2

E[e℄ ! E[e

0

℄ if e! e

0

Again, an expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is a stuk

expression, holds.

4. SOURCE-TO-TARGET TRANSLATION

4.1 De�nition

A translation of �

se

into �

set

is de�ned in Fig. 5. The distinguished identi�ers s and

are assumed not to appear in soure expressions. Notie that s may appear free

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 9

in translated expressions. Translating an (unsigned) expression requires speifying

the urrent prinipal p.

One will often wish to translate an expression under minimal hypotheses, i.e.

under the prinipal nobody and a void seurity ontext. To do so, we de�ne L e M =

JeK

nobody

[?=s℄. Notie that s does not appear free in L e M. If e is losed, then so is

L e M.

The idea behind the translation is simple: the variable s is bound at all times

to the set of urrently enabled resoures. Every funtion aepts s as an extra

parameter, beause it must exeute within its aller's seurity ontext. As a result,

every funtion all has s as its seond parameter. The onstruts enable r in e and p:e

ause s to be loally bound to a new value, reeting the new seurity ontext; more

spei�ally, the former enables r, while the latter disables all privileges not available

to p. The onstruts hek r then e and test r then e

1

else e

2

are implemented simply

by looking up the urrent value of s. In the latter, s is re-bound, within eah

branh, to the same value. This may appear superuous at �rst sight, but has

an important impat on typing, beause it allows s to be given a di�erent (more

preise) type within eah branh.

This translation an be viewed as a generalization of the seurity-passing style

transformation [Wallah 1999; Wallah et al. 2000℄ to a higher-order setting. While

Wallah et al. advoated this idea as an implementation tehnique, with eÆieny

in mind, we use it only as a vehile in the proof of our type systems. Here, eÆ-

ieny is not at stake: it is suÆient that the translation sheme be orret. The

next setion is devoted to proving this (in addition to its utility for our tehnial

purposes, it is the �rst formal orretness result for seurity-passing style).

One should point out that this orretness proof is made neessary only by the

fat that we hose to de�ne the semantis of �

se

at the soure level (setion 2.2).

If, instead, we had hosen to onsider the seurity-passing style translation as a

de�nition of �

se

's semantis, then no proof would be neessary. Banerjee and

Naumann [Banerjee and Naumann 2001℄ follow the latter approah, by giving a

denotational semantis whih inorporates the seurity-passing style translation.

4.2 Properties

A basi property of the translation is that s never appears free in the translation

of a value. Furthermore, the translation of a value does not depend on the urrent

prinipal, so we write JvK instead of JvK

p

.

For the purposes of our proofs, we need to isolate a partiular sub-lass of target

language redutions, whih we wish to view as \administrative" (in a sense to be

explained later). Let !

s

be the subset of !

?

de�ned by

a ::= R j a _R j a ^R

let s = a in e !

s

e[R=s℄ if a!

?

R

E[e℄ !

s

E[e

0

℄ if e!

s

e

0

Our �rst lemma expresses the fat that the translation implements the forward

stak inspetion algorithm. It states that if p;R;E ` R

0

holds (as per the rules

of Fig. 3), then evaluating JE[e℄K

p

in a ontext where s is bound to R leads to

evaluating JeK

p

0

, for some p

0

, in a ontext where s is bound to R

0

. Furthermore,

this is a purely administrative redution sequene. That is, it only a�ets the

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 � Fran�ois Pottier et al.

seurity ontext, and does not reet any omputational steps apparent in the

original program. The proof of the lemma presents no diÆulty, beause of the

lose similarity between the de�nitions of the translation funtion and of the stak

inspetion algorithm.

Lemma 1. Assume p;R; S ` R

0

and S = jE j. Then, there exist a (target)

evaluation ontext E

0

and a prinipal p

0

suh that, for every soure expression e,

JE[e℄K

p

[R=s℄!

?

s

E

0

[JeK

p

0

[R

0

=s℄℄

Proof. By indution over the struture of E. Let � and �

0

stand for the substi-

tutions [R=s℄ and [R

0

=s℄, respetively.

Case E = [℄. Then, S = � and R = R

0

. Thus, piking E

0

= [℄ and p

0

= p trivially

satis�es our requirement.

Case E = E

1

e

1

. Then,

JE[e℄K

p

� = JE

1

[e℄K

p

� Je

1

K

p

� R

Furthermore, the indution hypothesis, applied to E

1

, yields E

0

1

and p

0

suh that

JE

1

[e℄K

p

� !

?

s

E

0

1

[JeK

p

0

�

0

℄. So, piking E

0

= E

0

1

Je

1

K

p

� R �ts the bill.

Case E = v E

1

. This ase is similar to the previous one. Apply the indution

hypothesis to obtain E

0

1

and p

0

. Then, pik E

0

= JvK E

0

1

R. (E

0

is indeed an

evaluation ontext, beause JvK is a value.)

Case E = letx = E

1

in e

1

. This ase is also similar. Apply the indution hypoth-

esis to obtain E

0

1

and p

0

. Then, pik E

0

= letx = E

0

1

in Je

1

K

p

�.

Case E = enable r inE

1

. Then, S = r:S

1

, where S

1

= jE

1

j. Thus, from p;R; S `

R

0

, we may dedue p;R

1

; S

1

` R

0

, where R

1

stands for R [(frg \ p). De�ne

�

1

= [R

1

=s℄. Then,

JE[e℄K

p

� = let s = R _ (frg \ p) in JE

1

[e℄K

p

!

s

JE

1

[e℄K

p

�

1

Applying the indution hypothesis to E

1

yields E

0

1

, p

0

suh that JE

1

[e℄K

p

�

1

!

?

s

E

0

1

[JeK

p

0

�

0

℄. So, piking E

0

= E

0

1

meets our goal.

Case E = p

1

:E

1

. Then, S = p

1

:S

1

, where S

1

= jE

1

j. Thus, from p;R; S ` R

0

, we

may dedue p

1

; R

1

; S

1

` R

0

, where R

1

stands for R\ p

1

. De�ne �

1

= [R

1

=s℄. Then,

JE[e℄K

p

� = let s = R ^ p

1

in JE

1

[e℄K

p

1

!

s

JE

1

[e℄K

p

1

�

1

Applying the indution hypothesis to E

1

yields E

0

1

, p

0

suh that JE

1

[e℄K

p

1

�

1

!

?

s

E

0

1

[JeK

p

0

�

0

℄. So, piking E

0

= E

0

1

meets our goal.

We now ome to our entral lemma, stating that, if a soure expression e leads, in

one omputation step, to a soure expression e

0

, then the translation of e redues,

modulo administrative redutions, to the translation of e

0

.

Lemma 2. e ! e

0

implies L e M !

?

�

?

s

 L e

0

M. Furthermore, if the redution

e! e

0

is a �-redution step, then the redution sequene L e M!

?

� involves at least

one �-redution step.

Proof. The assertion e ! e

0

must be an instane of one of the redution rules

that de�ne the operational semantis (Setion 2.2), all of whih are of the form

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 11

E[e

0

℄! E[e

0

0

℄. Thus, there exist E, e

0

, and e

0

0

suh that e is E[e

0

℄ and e

0

is E[e

0

0

℄

and e

0

, e

0

0

have the shape required by one of the redution rules.

Let S = jE j. There exists a unique R suh that nobody;?; S ` R. Clearly, for

any resoure r, E ` r is equivalent to r 2 R. De�ne � = [R=s℄. Aording to

Lemma 1, there exist an evaluation ontext E

0

and a prinipal p suh that, for any

soure expression e,

LE[e℄ M!

?

s

E

0

[JeK

p

�℄

Assume, for the time being, that Je

0

K

p

� !

?

Je

0

0

K

p

� holds. Then, we have

L e M = LE[e

0

℄ M !

?

s

E

0

[Je

0

K

p

�℄

!

?

E

0

[Je

0

0

K

p

�℄

?

s

 LE[e

0

0

℄ M = L e

0

M

whih is the desired result. Hene, there only remains to prove Je

0

K

p

� !

?

Je

0

0

K

p

�,

whih we now do, by ases on the form of e

0

and e

0

0

. By de�nition of e

0

and e

0

0

,

there is one ase per redution rule.

Case e

0

= (�x z:�x:f) v, e

0

0

= f [v=x℄[�x z:�x:f=z℄. Then,

Je

0

K

p

� = J(�x z:�x:f) vK

p

�

= (J�x z:�x:fK JvK s)�

= (�x z:�x:�s:JfK) JvKR beause s annot appear free in values

!

2

JfK[JvK=x℄[J�x z:�x:fK=z℄�

= Jf [v=x℄[�x z:�x:f=z℄K� by a straightforward auxiliary lemma

= Je

0

0

K

p

�

The auxiliary lemma mentioned above takes advantage of the fat that the trans-

lation of a value JvK

p

does not depend upon the parameter p. We omit its proof.

Case e

0

= letx = v in e

1

, e

0

0

= e

1

[v=x℄. Then,

Je

0

K

p

� = Jletx = v in e

1

K

p

�

= letx = JvK in Je

1

K

p

� beause s is not free in JvK

! Je

1

K

p

�[JvK=x℄

= Je

1

K

p

[JvK=x℄�

= Je

1

[v=x℄K

p

� by the same auxiliary lemma

= Je

0

0

K

p

�

Case e

0

= enable r in v, e

0

0

= v. Then,

Je

0

K

p

� = Jenable r in vK

p

� = let s = R _ (frg \ p) in JvK

!

2

JvK = Je

0

0

K

p

�

Again, we take advantage of the fat that s does not our free in JvK.

Case e

0

= hek r then e

1

, e

0

0

= e

1

. We must have E ` r, hene r 2 R. Then,

Je

0

K

p

� = Jhek r then e

1

K

p

� = let = R:r in Je

1

K

p

�

!

2

Je

1

K

p

� beause r 2 R

= Je

0

0

K

p

�

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 � Fran�ois Pottier et al.

Case e

0

= test r then e

1

else e

2

. Then, e

0

0

equals e

i

, where i = 1 if E ` r (or,

equivalently, if r 2 R), and i = 2 otherwise. Thus, we have

Je

0

K

p

� = Jtest r then e

1

else e

2

K

p

� = R?r (�s:Je

1

K

p

) (�s:Je

2

K

p

)

!

3

(�s:Je

i

K

p

)R

! Je

i

K

p

� = Je

0

0

K

p

�

Case e

0

= p

1

:v, e

0

0

= v. Then,

Je

0

K

p

� = Jp

1

:vK

p

� = let s = R ^ p

1

in JvK

!

2

JvK = Je

0

0

K

p

�

Again, we take advantage of the fat that s does not our free in JvK

p

, and of the

fat that this expression does not depend on p.

This result is easily generalized to redution sequenes of arbitrary length:

Lemma 3. e !

?

e

0

implies L e M !

?

�

?

s

 L e

0

M. Furthermore, if the redution

sequene e!

?

e

0

involves k �-redution steps, then the redution sequene L e M!

?

�

involves at least k �-redution steps.

Proof. By indution on the length of the redution sequene e !

?

e

0

. In the

base ase, we have e = e

0

, and the result is immediate. In the indutive ase, we

have e ! e

1

!

?

e

0

. By applying Lemma 2, on the one hand, and the indution

hypothesis, on the other hand, we obtain

L e M!

?

�

?

s

 L e

1

M!

?

�

?

s

 L e

0

M

where the number of �-redution steps in the sequenes L e M!

?

� and L e

1

M!

?

� is at

least as high as in the soure redution sequenes e! e

1

and e

1

!

?

e

0

, respetively.

Beause the operational semantis of the target language is deterministi, one of

the two redution sequenes starting at L e

1

M above must be a sub-sequene of the

other. In either ase, the diagram ollapses down to

L e M!

?

�

?

s

 L e

0

M:

Furthermore, beause �-redution is not an administrative redution, the number

of �-redution steps in the sequene L e M !

?

� is at least as high as in the original

redution sequene e!

?

e

0

.

As a orollary, we obtain a soundness theorem for the translation. It essen-

tially states that seurity-passing style is a valid implementation of the Java stak

inspetion disipline.

Theorem 2. If e!

?

v, then L e M!

?

L v M. If e goes wrong, then L e M goes wrong.

If e diverges, then L e M diverges.

Proof. First, assume e redues to a value v. Then, Lemma 3 yields L e M !

?

�

?

s

 L v M. Beause L v M is a value, this diagram ollapses down to L e M!

?

L v M.

Seond, assume e goes wrong. Then, e!

?

e

0

, where e

0

is stuk, holds. We prove

that L e M goes wrong by indution on the length of this redution sequene.

In the base ase, we have e = e

0

, i.e. e is stuk. So, e must be of the form

E[hek r then e

1

℄, where :(E ` r). Let S = jE j. There exists a unique R

0

suh

that nobody;?; S ` R

0

. Neessarily, r 62 R

0

. Aording to Lemma 1, L e M may be

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 13

hm-Var

�(x) = � C �

C;� ` x : �

hm-Const

C;� ` : �()

hm-Sub

C;� ` e : � C � � �

0

C;� ` e : �

0

hm-8 Intro

C ^D;� ` v : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` v : 8��[D℄:�

hm-8 Elim

C;� ` v : 8��[D℄:� C [��=��℄D

C;� ` v : [��=��℄�

hm-Abs

C; (�; x : � ; z : � ! �

0

) ` e : �

0

C;� ` �x z:�x:e : � ! �

0

hm-App

C;� ` e

1

: �

2

! � C;� ` e

2

: �

2

C;� ` e

1

e

2

: �

hm-Let

C;� ` v : � C; (�;x : �) ` e : �

C;� ` let x = v in e : �

Fig. 6. The system HM(X)

redued to a term of the form E

0

[Jhek r then e

1

K

p

0

�

0

℄, where �

0

= [R

0

=s℄. It is easy

to hek that suh a term is stuk. Hene, L e M goes wrong.

In the indutive ase, we have e ! e

1

!

?

e

0

. Our indution hypothesis shows

that L e

1

M goes wrong. Furthermore, Lemma 2 shows that L e M redues to some

redut of L e

1

M. Beause redution is deterministi, L e M must go wrong as well.

The result follows.

Third, assume e admits an in�nite redution sequene. This sequene must

involve an in�nite number of �-redution steps, beause the semantis of �

se

,

deprived of the �-redution rule, is terminating. By Lemma 3, L e M admits an

in�nite redution sequene as well.

5. TYPES FOR �

set

We de�ne a type system for the target alulus as an instane of the paramet-

ri framework HM(X) [Odersky et al. 1999; Sulzmann 2000; Skalka and Pottier

2002℄. HM(X) is a generi type system in the Hindley-Milner tradition, parame-

terized by an abstrat onstraint system X. Set. 5.1 briey realls its de�nition.

Set. 5.2 de�nes a spei� onstraint system alled SETS, yielding the type system

HM(SETS). Set. 5.3 extends HM(SETS) to the entire language �

set

, by assigning

types to its primitive operations. Set. 5.4 states type safety results and disusses

several hoies for our type system, whih may be de�ned as either a uni�ation-

or onstraint-based system, and whih is exible with respet to the auray of

initial type bindings.

5.1 The System HM(X)

We adopt the de�nition of HM(X) given in [Skalka and Pottier 2002℄. The frame-

work is parameterized by a onstraint system X, i.e. by notions of types � , on-

straints C, and interpretation of onstraints in a model.

Given a onstraint system, a type sheme is a triple of a set of quanti�ers ��,

a onstraint C, and a type � (whih, in this paper, must be of kind Type ; see

Set. 5.2), written � ::= 8��[C ℄:� . A type environment � is a partial mapping of

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 � Fran�ois Pottier et al.

� ::= �; �; : : : j � ! � j f�g j r : � ; � j �� j types

 ::= ? j Pre j Abs j > presene onstrutors

C ::= true j C ^ C j 9�:C j � = � j � � � onstraints

j if � � then � � � (6= ?)

Fig. 7. SETS Grammar

� 2 V

k

� : k

�; �

0

: Type

� ! �

0

: Type

� : Row

?

f�g : Type

� : Pres r 62 R

�

0

: Row

R[frg

(r : � ; �

0

) : Row

R

� : Pres

�� : Row

R

 : Pres

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9�:C

�; �

0

: k

` � = �

0

` � � �

0

�; �

0

; �

00

: k k 6= Type

` if � � then �

0

� �

00

Fig. 8. Kinding rules

program variables to type shemes. A judgement is a quadruple of a onstraint C ,

a type environment �, an expression e and a type sheme �, written C;� ` e : �,

derivable using the rules of Fig. 6. These rules orrespond to those given in [Skalka

and Pottier 2002℄, less the rules relevant to stateful features, whih are not needed

in this presentation. Note that via the hm-Const rule, populating � with initial

bindings allows typing new language onstants in partiular instanes of HM(X).

In the ase of �

set

, will range over the four primitive operators :

r

, _

R

, ^

R

and ?

r

.

The following syntati type safety theorem, in the style of [Wright and Felleisen

1994℄, is proven in [Skalka and Pottier 2002℄. Signi�antly, the theorem holds with

respet to a all-by-value �-alulus with let in any instane of HM(X), and the

theorem may be easily extended to inorporate additional onstants by proving

soundness of initial bindings with respet to the semantis of funtional onstants,

the so-alled Æ-typability property.

Theorem 3. If C;? ` e : � holds and C is satis�able, then e does not go wrong.

We disuss Æ-typability and type safety for �

set

more thoroughly in Set. 5.4.

5.2 The Constraint System SETS

In order to give preise types to the primitive set operations in �

set

, we need spei�

types and onstraints. Together with their logial interpretation, whih de�nes their

meaning, these form a onstraint system alled SETS.

The syntax of types and onstraints is de�ned in Fig. 7. The type language

features four so-alled presene onstrutors, two standard row onstrutors [R�emy

1992b℄, and a set type onstrutor f�g.

Presene types are used to reord whether a resoure r appears in a privilege set.

Pre means r is known to appear in the set, while Abs means r is known not to

appear in it. Of ourse, our analysis is sometimes approximate: > means that it is

not known whether r is a member of the set. Lastly, onerns of eÆieny of type

inferene all for a fourth presene onstrutor ?, whih, roughly speaking, means

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 15

that it is irrelevant whether r appears in the set, beause the ode that requires

this privilege test is unreahable. In addition to these four onstants, a presene

type an also be a variable.

To desribe the ontents of a set, we use rows of presene types. A row is a

�nite desription of an in�nite objet, namely a (possibly partial) funtion from

resoure names to presene types. More preisely, a row desribes a funtion that

maps almost all resoures in its domain (i.e. all but a �nite number of them) to

the same type. Rows an be formed using two basi building bloks. First, the row

onstrutor � allows forming onstant rows: if � is a presene type, then �� is a row

that maps all resoures in its domain to � . Seond, the row onstrutor (r : � ; �)

allows adding an entry to an existing row: (r : �

1

; �

2

) is a row that maps r to the

presene type �

1

and otherwise behaves as the row �

2

. Lastly, a row an also be a

variable. The original presentations of rows [R�emy 1992b; 1994℄ equip row types

with an equational theory, whih, in partiular, allows row entries to ommute. In

our presentation, these equations are not axioms; they simply happen to hold in

our interpretation of types (given below).

A whole set is desribed by a row � whose domain is R, wrapped within the set

type onstrutor, yielding a type of the form f�g. To determine whether a partiular

resoure r appears in the set, one queries the row � at r, yielding a presene type.

Suh a query is arried out by unifying � against (r : ; �), where and � are fresh

presene and row variables, respetively. For instane, the singleton set frg is one

(and the only) value of type fr : Pre ; �Absg. To determine whether a resoure

s appears within that set, we solve the equation (r : Pre ; �Abs) = (s : ; �). If

r and s are distint, this leads to = Abs and � = (r : Pre ; �Abs), the former

of whih reets the fat that s does not belong to frg. This treatment of sets is

inspired by Wand and R�emy's treatment of reords: a set is, in fat, a degenerate

reord where every �eld has unit type.

The onstraint language o�ers standard equality and subtyping onstraints, as

well as a simple form of onditional onstraints. Their use will be illustrated in

Set. 5.3 and 7.2.

To ensure that only meaningful types and onstraints an be built, we immedi-

ately equip them with kinds, de�ned by:

k ::= Pres j Row

R

j Type

where R ranges over �nite subsets of R. Kinds allow distinguishing presene types,

rows, and (regular) types. Furthermore, kinds keep trak of every row's domain: a

row of kind Row

R

represents a funtion of domain RnR. In partiular, a omplete

row, i.e. a total funtion from R to presene types, has kind Row

?

. For every

kind k, we assume given a distint, denumerable set of type variables V

k

. We

use �; �; ; : : : to represent type variables. From here on, we onsider only well-

kinded types and onstraints, as de�ned in Fig. 8. The purpose of these rules is to

guarantee that every onstraint has a well-de�ned interpretation within our model,

whose de�nition follows.

To every kind k, we assoiate a mathematial struture JkK. JPresK is the set of

all four presene onstrutors. Given a �nite set of resoures R � R, JRow

R

K is the

set of total, almost onstant funtions from R n R into JPresK. JTypeK is the free

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 � Fran�ois Pottier et al.

� ` true

� ` C

1

� ` C

2

� ` C

1

^ C

2

� = �

0

[�℄ �

0

` C

� ` 9�:C

�(�) = �(�

0

)

� ` � = �

0

�(�) � �(�

0

)

� ` � � �

0

�; �

0

; �

00

: Pres � �(�)) �(�

0

) � �(�

00

)

� ` if � � then �

0

� �

00

�; �

0

; �

00

: Row

R

8r 2 R n R � �(�)(r)) �(�

0

)(r) � �(�

00

)(r)

� ` if � � then �

0

� �

00

Fig. 9. Interpretation of onstraints

algebra generated by the onstrutors!, with signature JTypeK�JTypeK! JTypeK,

and f�g, with signature JRow

?

K! JTypeK.

Eah of these strutures is then equipped with an ordering. Here, a hoie has

to be made. If we do not wish to allow subtyping, we merely de�ne the ordering

on every JkK as equality. Otherwise, we proeed as follows. First, a lattie over

JPresK is de�ned, whose least (resp. greatest) element is ? (resp. >), and where

Abs and Pre are inomparable. This ordering is then extended, point-wise and

ovariantly, to every JRow

R

K. Finally, it is extended indutively to JTypeK by

viewing the onstrutor f�g as ovariant, and the onstrutor ! as ontravariant

(resp. ovariant) in its �rst (resp. seond) argument. This gives rise to a so-alled

strutural, atomi subtyping relation: that is, two related types may di�er only in

their presene annotations.

We may now give the interpretation of types and onstraints within the model. It

is parameterized by a kind-preserving assignment �, i.e. a funtion whih, for every

kind k, maps V

k

into JkK. The interpretation of types is obtained by extending �

so as to map every type of kind k to an element of JkK, as follows:

�(� ! �

0

) = �(�)! �(�

0

) �(f�g) = f�(�)g

�(r : � ; �

0

)(r) = �(�) �(r : � ; �

0

)(r

0

) = �(�

0

)(r

0

) (r 6= r

0

)

�(��)(r) = �(�) �() =

Notie how the interpretation of the two row onstrutors reets the informal ex-

planation given above, and validates the expeted equational theory. Fig. 9 de�nes

the onstraint satisfation prediate � ` �, whose arguments are an assignment �

and a onstraint C. (The notation � = �

0

[�℄ means that � and �

0

oinide exept

possibly on �.) This de�nition is standard. The last rule spei�es that a ondi-

tional onstraint whose omponents are rows is to be interpreted point-wise, that

is, as an (in�nite) onjuntion of onditional onstraints bearing on presene types.

Entailment is then de�ned as usual: C C

0

(read: C entails C

0

) holds i�, for every

assignment �, � ` C implies � ` C

0

.

We refer to the type and onstraint logi, together with its interpretation, as

SETS. More preisely, we have de�ned two logis, where � is interpreted as either

equality or as a non-trivial subtype ordering. We will refer to them as SETS

=

and

SETS

�

, respetively.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 17

5.3 Dealing with the Primitive Operations in �

set

The typing rules of HM(X) over only the �-alulus with let. To extend HM(SETS)

to the whole language �

set

, we must assign types to its primitive operations. Let

us de�ne an initial type environment �

1

as follows:

R : fR : Pre ; �Absg

:

r

: 8�:fr : Pre ; �g ! fr : Pre ; �g

_

R

: 8��:fR : � ; �g ! fR : Pre ; �g

^

R

: 8��:fR : � ; �g ! fR : � ; �Absg

?

r

: 8��:fr : ; �g ! (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! �

We let �, �, range over type variables of kind Type , Row

?

, Pres , respetively. In

this de�nition and from here on, p and R range over �nite sets of resoures only.

We exploit this restrition to de�ne the following onise notation, whih is used

above: if R is fr

1

; : : : ; r

n

g, then R : stands for r

1

: ; : : : ; r

n

: , and R : � stands

for r

1

:

1

; : : : ; r

n

:

n

. We note that it is possible to deal with o�nite sets of

resoures as well, by writing

�

R for R n R and by employing the following bindings

when R is o�nite:

R : f

�

R : Abs ; �Preg

_

R

: 8��:f

�

R : � ; �g ! f

�

R : � ; �Preg

^

R

: 8��:f

�

R : � ; �g ! f

�

R : Abs ; �g

Co�nite sets of resoures allow modeling prinipals that enjoy all privileges but a

�nite number. For the sake of simpliity and brevity, we deal with �nite sets of

resoures only in the following, although, in pratie, dealing with both �nite and

o�nite sets does not raise any additional diÆulty.

We may also use onditional onstraints to assign a more exible type sheme to

?

r

. Let �

2

be the initial type environment obtained by replaing the last binding

in �

1

with:

?

r

: 8��

�

�[C℄:fr : ; �g ! (fr : Pre ; �

1

g ! �

1

)! (fr : Abs ; �

2

g ! �

2

)! �

where C = (if Pre � then � � �

1

) ^ (if Abs � then � � �

2

)

^ (if Pre � then �

1

� �) ^ (if Abs � then �

2

� �)

Here, the input and output of eah branh (represented by �

i

and �

i

, respetively)

are linked to the input and output of the whole onstrut (represented by � and �)

through onditional onstraints. Intuitively, this means that the seurity require-

ments and the return type of a branh may be entirely ignored unless the branh

seems liable to be taken. (For more bakground on onditional onstraints, the

reader is referred to [Aiken et al. 1994; Pottier 2000℄.)

5.4 The Type Systems S

rel

i

Set. 5.2 desribes two onstraint systems, SETS

=

and SETS

�

. Set. 5.3 de�nes

two initial typing environments, �

1

and �

2

. These hoies give rise to four related

type systems, whih we refer to as S

rel

i

, where rel and i range over f=;�g and

f1; 2g, respetively. Eah of them o�ers a di�erent ompromise between auray,

readability and ost of analysis. In eah ase, Theorem 3 may be extended to the

entire language �

set

by proving a simple Æ-typability [Wright and Felleisen 1994℄

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 � Fran�ois Pottier et al.

lemma, i.e. by heking that �

i

orretly desribes the behavior of the primitive

operations. This is the subjet of the next setion.

Despite sharing a ommon formalism, these systems may all for vastly di�erent

implementations. Indeed, every instane of HM(X) must ome with a onstraint

solving algorithm. S

=

1

is a simple extension of the Hindley-Milner type system

with rows, and its onstraint solver is row uni�ation [R�emy 1992a℄. S

=

2

is sim-

ilar, but requires onditional (i.e. delayed) uni�ation onstraints. S

�

1

and S

�

2

require solving (strutural) subtyping onstraints, usually leading to more omplex

implementations based on transitive losure omputations and on-the-y onstraint

simpli�ations, see e.g. [Simonet 2003℄. A worst-ase time bound for solving pos-

sibly onditional subtyping onstraints in the presene of rows is given in [Pottier

2003℄: it is ubi in the size of the program and lose to linear in the number of

resoures that appear in the program, either individually or as part of a prinipal

p. In pratie, for all four systems, it is possible to design a onstraint solver that

sales well.

One should also point out that, when the programming language is extended with

a mehanism for delaring the type of an expression (or, in Java, of a method), it is

neessary to be able to hek that the type inferred by the analysis for this expres-

sion mathes the delaration. This requires an algorithm for deiding onstraint

entailment. In the setting of uni�ation and of strutural subtyping, suh algo-

rithms exist and are eÆient. In the presene of onditional onstraints, however,

entailment beomes a hard problem [Su and Aiken 2001℄, making the use of suh

onstraints problemati.

5.5 Proof of Æ-typability for �

set

Let us �rst state some basi properties of sets and set types, whose proofs are

omitted.

Lemma 4. Let v be a losed value. If C;� ` v : f�g holds in S

rel

i

, then v is a

set R and C (R : Pre ; �Abs) � � .

Lemma 5. If C;� ` R : fR

0

: Pre ; �g holds in S

rel

i

, then R

0

� R.

Lemma 6. If C;� ` R : fR

0

: �� ; �g holds in S

rel

i

, then so do C;� ` R [R

0

:

fR

0

: Pre ; �g and C;� ` R \ R

0

: fR

0

: �� ; �Absg.

As mentioned in Set. 5.1, extending Theorem 3 to all of �

set

only requires proving

soundness of the initial bindings for the primitive operators. Let Æ(; v) = v

0

if and

only if v ! v

0

. We state the so-alled Æ-typability property in the style of [Skalka

and Pottier 2002℄:

Lemma 7. In every S

rel

i

, for every onstant and losed value v, if C;� ` :

�

1

! �

2

and C;� ` v : �

1

hold, then Æ(; v) is de�ned and C;� ` Æ(; v) : �

2

holds.

Proof. Suppose C;� ` : �

1

! �

2

and C;� ` v : �

1

. We onsider two ases:

�rst, the ase where C;� ` : �

1

! �

2

is obtained via hm-8 Elim and hm-Sub;

seond, the ase where it is obtained via hm-8 Elim alone. Aording to the

normalization result proved in [Skalka and Pottier 2002℄, this is enough.

In the �rst ase, hm-Sub's premises are of the form C;� ` : �

0

1

! �

0

2

(1) and

C �

0

1

! �

0

2

� �

1

! �

2

(2). By properties of �, (2) implies C �

1

� �

0

1

(3)

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 19

and C �

0

2

� �

2

(4). By assumption and hm-Sub, (3) implies C;� ` v : �

0

1

(5).

Aording to the next ase of the proof, (1) and (5) imply that Æ(; v) is de�ned

and C;� ` Æ(; v) : �

0

2

(6) holds. The result follows from (4) and (6) by hm-Sub.

Let us now onsider the seond ase. �

i

() is a type sheme of the form

8��[D℄:�

0

1

! �

0

2

. Beause the derivation of C;� ` : �

1

! �

2

onsists of a sin-

gle instane of hm-8 Elim, we have �

1

= '(�

0

1

) and �

2

= '(�

0

2

), where ' is a

substitution of domain �� and C '(D). We now proeed by ase analysis on

and i:

Case = :

r

. In this ase �

1

= �

2

= fr : Pre ; '�g. By Lemma 4, v is a

set R. By Lemma 5, we further obtain frg � R, hene Æ(:

r

; v) = v. The result

C;� ` Æ(; v) : �

2

follows.

Case = _

R

. In this ase �

1

= fR : '� ; '�g and �

2

= fR : Pre ; '�g.

By Lemma 4, v is a set R

0

, and Æ(_

R

; R

0

) = R [R

0

. Then, Lemma 6 yields

C;� ` Æ(; v) : �

2

.

Case = ^

R

. In this ase �

1

= fR : '� ; '�g and �

2

= fR : '� ; �Absg.

By Lemma 4, v is a set R

0

, and Æ(^

R

; R

0

) = R \ R

0

. Then, Lemma 6 yields

C;� ` Æ(; v) : �

2

.

Case = ?

r

and i = 1. In this ase �

1

= fr : ' ; '�g and �

2

= (fr :

Pre ; '�g ! '�)! (fr : Abs ; '�g ! '�) ! '�. By Lemma 4, v is a set R, so

Æ(?

r

; v) is de�ned. Let us assume r 2 R (the other ase is analogous). Then, Æ(?

r

; v)

is �x:�y:(xR). By Lemma 4, we have C (R : Pre ; �Abs) � (r : ' ; '�).

This implies C (R : Pre ; �Abs) � (r : Pre ; '�) (we have simply made the

two rows agree at r). Beause C;� ` R : fR : Pre ; �Absg holds, hm-Sub yields

C;� ` R : fr : Pre ; '�g. From this fat, it is easy to derive C;� ` �x:�y:(xR) : �

2

.

Case = ?

r

and i = 2. In this ase �

1

= fr : ' ; '�g and �

2

= (fr :

Pre ; '�

1

g ! '�

1

) ! (fr : Abs ; '�

2

g ! '�

2

) ! '�. By Lemma 4, v is a

set R, so Æ(?

r

; v) is de�ned. Let us assume r 2 R (the other ase is analogous).

Then, Æ(?

r

; v) is �x:�y:(xR). By Lemma 4, we have C (R : Pre ; �Abs) � (r :

' ; '�). This implies, in partiular, Pre � ' (we have simply looked up the two

rows at r). Beause C '(D), and by de�nition of the satisfation of onditional

onstraints, we must then have C '� � '�

1

and C '�

1

� '�. Furthermore,

as in the previous ase, we have C;� ` R : fr : Pre ; '�g. From these fats, it is

easy to derive C;� ` �x:�y:(xR) : �

2

.

6. TYPES FOR �

se

6.1 Indiret Type Systems

Set. 5 de�ned a type system, S

rel

i

, for �

set

. Set. 4 de�ned a translation of �

se

into �

set

. Composing the two automatially gives rise to a type system for �

se

,

also alled S

rel

i

for simpliity, whose safety is a diret onsequene of Theorems 2

and 3.

Definition 1. Let e be a �

se

expression. By de�nition, C;� ` e : � holds if

and only if C;� ` L e M : � holds.

Theorem 4. If C;? ` e : � holds and C is satis�able, then e does not go wrong.

Turning type safety into a trivial orollary was the main motivation for bas-

ing our approah on a translation. Indeed, beause Theorem 2 onerns untyped

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 � Fran�ois Pottier et al.

Var

�(x) = �

p; &;� ` x : �

Abs

?; &

2

; (�; z : �

1

&

2

�! �

2

;x : �

1

) ` f : �

2

p; &

1

;� ` �x z:�x:f : �

1

&

2

�! �

2

App

p; &;� ` e

1

: �

2

&

�! � p; &;� ` e

2

: �

2

p; &;� ` e

1

e

2

: �

Let

p; &;� ` e

1

: � p; &; (�; x : �) ` e

2

: �

p; &;� ` letx = e

1

in e

2

: �

8 Intro

p; &;� ` e : � �� \ fv(&;�) = ?

p; &;� ` e : 8��:�

8 Elim

p; &;� ` e : 8��:�

p; &;� ` e : [��=��℄�

Enable Failure

p; f�g;� ` e : � r 62 p

p; f�g;� ` enable r in e : �

Enable Suess

p; fr : Pre ; �g;� ` e : � r 2 p

p; fr : ' ; �g;� ` enable r in e : �

Chek

p; fr : Pre ; �g;� ` e : �

p; fr : Pre ; �g;� ` hek r then e : �

Test

p; fr : Pre ; �g;� ` e

1

: � p; fr : Abs ; �g;� ` e

2

: �

p; fr : ' ; �g;� ` test r then e

1

else e

2

: �

Sign

p; fp : �' ; �Absg;� ` e : �

?; fp : �' ; �g;� ` p:e : �

Fig. 10. Typing rules for �

se

derived from S

=

1

terms, its proof is straightforward. (The Æ-typability lemma established in Set. 5.3

does involve types, but is very straightforward.) A diret type safety proof would

dupliate most of the steps involved in proving HM(X) orret.

Although the above theorem only mentions type safety, it is possible to also

establish a subjet redution result for �

se

. Indeed, aording to Lemma 2, subjet

redution for �

se

follows diretly from subjet redution for �

set

and from the fat

that administrative expansion

s

 preserves types, whih is easy to hek.

6.2 Reformulation: Diret Type Systems

De�nition 1, although simple, is not a diret de�nition of typing for �

se

. But a

diret type system is desirable, for several reasons. First, given a diret type system,

it beomes unneessary to atually translate expressions down to �

set

. Also, with

a diret type system, more suint and intuitive type and judgement forms an be

adopted. Finally, understandable type error reporting is muh more feasible in a

diret type system. Therefore, we de�ne rules whih allow typing �

se

expressions

without expliitly translating them into �

set

. These so-alled diret or derived

rules an be obtained in a rather systemati way from the de�nition of S

rel

i

and the

de�nition of the translation, making the diret type safety proof straightforward,

by appeal to the pre-existing result in �

set

and Theorem 2.

In these rules, the symbols � and & range over types of kind Type ; more spei�-

ally, & is used to represent some seurity ontext, i.e. a set of available resoures.

The symbols � and ' range over types of kind Row

?

and Pres , respetively. The

? symbol in the rules stands for an arbitrary prinipal. In the soure-to-target

translation, all funtions are given an additional parameter, yielding types of the

form �

1

! & ! �

2

. To reover the more familiar and appealing notation proposed

in [Skalka and Smith 2000℄, we de�ne the maro �

1

&

�! �

2

=

def

�

1

! & ! �

2

.

Fig. 10 gives derived rules for S

=

1

, the simplest of our type systems. There, all

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 21

onstraints are equations. As a result, all type information an be represented in

term form, rather than in onstraint form [Sulzmann et al. 1999℄, provided types

are identi�ed modulo the (standard) equational theory for rows. We exploit this

fat to give a simple presentation of the derived rules. Type shemes have the form

8��:� , and judgements have the form p; &;� ` e : �. Although rule Enable Failure

naturally arises through the translation, it may be desirable, in pratie, to remove

it. Thus, any attempt to enable a privilege by a prinipal who does not own it

would result in an immediate stati type error.

Var

�(x) = � C �

p; &;C;� ` x : �

Sub

p; &;C;� ` e : � C � � �

0

p; &; C;� ` e : �

0

Abs

?; &

2

; C; (�; z : �

1

&

2

�! �

2

;x : �

1

) ` f : �

2

p; &

1

; C;� ` �x z:�x:f : �

1

&

2

�! �

2

App

p; &;C;� ` e

1

: �

2

&

�! � p; &; C;� ` e

2

: �

2

p; &; C;� ` e

1

e

2

: �

Let

p; &; C;� ` e

1

: � p; &; C; (�;x : �) ` e

2

: �

p; &; C;� ` letx = e

1

in e

2

: �

8 Intro

p; &;C ^D;� ` e : � �� \ fv(&; C;�) = ?

p; &;C ^ 9��:D;� ` e : 8��[D℄:�

8 Elim

p; &;C;� ` e : 8��[D℄:� C [��=��℄D

p; &; C;� ` e : [��=��℄�

Enable Failure

p; f�g; C;� ` e : � r 62 p

p; f�g; C;� ` enable r in e : �

Enable Suess

p; fr : Pre ; �g; C;� ` e : � r 2 p

p; fr : ' ; �g; C;� ` enable r in e : �

Chek

p; fr : Pre ; �g; C;� ` e : �

p; fr : Pre ; �g; C;� ` hek r then e : �

Test

p; fr : Pre ; �

1

g; C;� ` e

1

: �

1

p; fr : Abs ; �

2

g; C;� ` e

2

: �

2

C if Pre � ' then � � �

1

C if Abs � ' then � � �

2

C if Pre � ' then �

1

� � C if Abs � ' then �

2

� �

p; fr : ' ; �g; C;� ` test r then e

1

else e

2

: �

Sign

p; fp : �' ; �Absg; C;� ` e : �

?; fp : �' ; �g; C;� ` p:e : �

Fig. 11. Typing rules for �

se

derived from S

�

2

Figure 11 gives rules for the system derived from S

�

2

, the most omplex element

in our array of type systems. Judgements have the form p; &; C;� ` e : �. The most

signi�ant di�erenes are the auray of the Test rule, reeting the more preise

binding for ?

r

in �

2

, and the addition of subtyping onstraints.

Beause the system presented in Fig. 10 is based on uni�ation, it is eÆient,

easy to implement, and yields readable types. Also, we onjeture that, thanks to

the power of row polymorphism, it is exible enough for many pratial uses (see

Set. 7). Therefore, we will fous on this system in the rest of this paper. We prove

that this system is orret in Setion 6.3.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 � Fran�ois Pottier et al.

6.3 Diret Type Corretness

In this setion we prove the orretness of the type system derived from S

=

1

, that

is, we prove Lemma 11. We begin by proving soundness of the derived system with

respet to S

=

1

.

Lemma 8. p; &;� ` e : � implies true; (�; s : &) ` JeK

p

: �.

Proof. By strutural indution on the derivation of p; &;� ` e : �. Let �

0

stand

for (�; s : &).

Case Var. In this ase e is a variable x. Beause s is a distinguished variable, we

have x 6= s, so �(x) and �

0

(x) oinide. Furthermore, JxK

p

is x. The result follows

by hm-Var.

CaseAbs. In this ase e is �x z:�x:f , � is �

1

&

0

�! �

2

and p

0

; &

0

; (�; z : �;x : �

1

) ` f :

�

2

is derivable. By the indution hypothesis, true; (�; z : �;x : �

1

; s : &

0

) ` JfK

p

0

: �

2

is derivable. This judgement an also be written true; (�

0

; z : �;x : �

1

; s : &

0

) ` JfK :

�

2

. Thus true;�

0

` �x z:�x:�s:JfK : �

1

! &

0

! �

2

is derivable by two appliations

of hm-Abs. Given the de�nition of JeK

p

in this ase, this was the goal.

Case App. In this ase e = e

1

e

2

, � = � and p; &;� ` e

1

: �

2

&

�! � and p; &;� `

e

2

: �

2

are derivable. By the indution hypothesis, true;�

0

` Je

1

K

p

: �

2

! & ! �

and true;�

0

` Je

2

K

p

: �

2

are derivable. Furthermore, true;�

0

` s : & holds by

hm-Var. Hene true;�

0

` Je

1

K

p

Je

2

K

p

s : �

2

is derivable by two appliations of

hm-App. Given the de�nition of JeK

p

in this ase, this was the goal.

Case Let. In this ase e = letx = e

1

in e

2

, and p; &;� ` e

1

: �

0

and p; &; (�;x :

�

0

) ` e

2

: � are derivable. By the indution hypothesis, true;�

0

` Je

1

K

p

: �

0

and

true; (�

0

;x : �

0

) ` Je

2

K

p

: � hold. The result follows by hm-Let and by de�nition

of JeK

p

in this ase.

Case 8 Intro. In this ase � = 8��[true℄:� where �� \ fv(&;�) = ? and p; &;� `

e : � is derivable. By the indution hypothesis, true;�

0

` JeK

p

: � is derivable.

Furthermore, we have �� \ fv(true;�

0

) = ?. Thus, by hm-8 Intro, true;�

0

`

JeK

p

: � is derivable. We have impliitly used the equivalenes true � true ^ true

and true � 9��:true.

Case 8 Elim. In this ase � = [��=��℄� and p; &;� ` e : 8��[true℄:� is derivable. By

the indution hypothesis, true;�

0

` JeK

p

: 8��[true℄:� is derivable. Furthermore,

[��=��℄true is true, so the result follows by hm-8 Elim.

Case Enable Failure. In this ase e = enable r in e

0

where r 62 p so that frg\p =

?, & = f�g, � = � and p; &;� ` e

0

: � is derivable. Now, by de�nition of �

1

,

by hm-Const and hm-8 Elim, true;�

0

` _

?

: & ! & is derivable. Furthermore,

true;�

0

` s : & follows from hm-Var. Therefore, hm-App yields true;�

0

` s_? : & .

The indution hypothesis yields true;�

0

` Je

0

K

p

: � , so also true; (�

0

; s : &) ` Je

0

K

p

:

� . The result follows by hm-Let and the de�nition of JeK

p

in this ase.

Case Enable Suess. In this ase e = enable r in e

0

where r 2 p so that

frg\ p = frg, & = fr : '; �g, � = � and p; fr : Pre; �g ;� ` e

0

: � is derivable. Now,

by de�nition of �

1

, by hm-Const and hm-8 Elim, true;�

0

` _

frg

: fr : '; �g !

fr : Pre; �g is derivable. Furthermore, true;�

0

` s : & follows from hm-Var.

Therefore, hm-App yields true;�

0

` s_frg : fr : Pre; �g. The indution hypothesis

yields true; (�; s : fr : Pre; �g) ` Je

0

K

p

: � , so also true; (�

0

; s : fr : Pre; �g) `

Je

0

K

p

: � . The result follows by hm-Let and the de�nition of JeK

p

in this ase.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 23

Case Chek. In this ase e = hek r then e

0

and � = � , & = fr : Pre; �g and

p; &;� ` e

0

: � is derivable. Now, by de�nition of �

1

, by hm-Const, hm-8 Elim,

hm-Var and hm-App, true;�

0

` s:r : & is derivable. By the indution hypothesis,

true;�

0

` Je

0

K

p

: � is derivable, so also true; (�

0

; : &) ` Je

0

K

p

: � , if is a variable

that does not appear free in e

0

. The result follows by hm-Let and the de�nition of

JeK

p

in this ase.

Case Test. In this ase e = test r then e

1

else e

2

and � = � , & = fr : ' ; �g

and p; fr : Pre ; �g;� ` e

1

: � and p; fr : Abs ; �g;� ` e

2

: � are derivable.

By the indution hypothesis, we have true; (�; s : fr : Pre ; �g) ` Je

1

K

p

: � . By

hm-Abs, this implies true;� ` �s:Je

1

K

p

: fr : Pre ; �g ! � . By weakening, we

also have true;�

0

` �s:Je

1

K

p

: fr : Pre ; �g ! � . Similarly, true;�

0

` �s:Je

2

K

p

:

fr : Abs ; �g ! � holds. The result follows by de�nition of �

1

, by hm-Const,

hm-8 Elim, hm-Var, hm-App and by de�nition of JeK

p

in this ase.

Case Sign. In this ase e = p

0

:e

0

, & = fp

0

: �' ; �g, � = � and p

0

; &

0

;� ` e

0

: � is

derivable, where &

0

= fp

0

: �' ; �Absg. By the indution hypothesis, true; (�; s :

&

0

) ` Je

0

K

p

0

: � holds, so also true; (�

0

; s : &

0

) ` Je

0

K

p

0

: � . Now, by de�nition of �

1

,

by hm-Const, hm-8 Elim, hm-Var and hm-App, true;�

0

` s^ p

0

: &

0

holds. The

result follows by hm-Let and the de�nition of JeK

p

in this ase.

Our next task is to prove ompleteness of the derived type system with respet to

S

=

1

. We begin with a normalization result analogous to the one proved in [Skalka

and Pottier 2002℄.

Lemma 9. If C;� ` e : � holds then it may be derived via an instane of Sub

from a judgement C;� ` e : �

0

, whih itself follows from an instane of a syntax-

direted rule and at most one instane of 8 Elim.

We may now proeed to demonstrate ompleteness. In this lemma, we abbreviate

type shemes 8��[true℄:� as 8��:� and judgements true;� ` e : � as � ` e : �,

omitting the trivial requirement true true from instanes of 8 Elim and Var.

Lemma 10. (�; s : &) ` JeK

p

: � implies p; &;� ` e : � .

Proof. In this proof, we will write � = �

0

for true � = �

0

, whih amounts

to identifying types modulo the equational theory on rows and allows us to ignore

instanes of hm-Sub in the derivation d of (�; s : &) ` JeK

p

: � . By Lemma 9, we

may assume that d ends with a syntax-direted rule and at most one instane of

8 Elim. The proof proeeds by indution on the struture of e and analysis of the

derivation d. Let �

0

= (�; s : &).

Case e = JeK

p

= x. By assumption, we have x 6= s. The derivation d must

involve hm-Var possibly followed by hm-8 Elim. As a result, � must be of the form

[��=��℄�

0

, where �(x) = 8��:�

0

. By Var and 8 Elim, this implies p; &;� ` x : [��=��℄�

0

.

Therefore, this ase holds.

Case e = �x z:�x:f and JeK

p

= �x z:�x:�s:JfK

p

. By Lemma 9, we may assume

that d ends with two instanes of hm-Abs, as follows.

�

0

; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

` JfK

p

: �

2

�

0

; z : �

1

! &

0

! �

2

;x : �

1

` �s:JfK

p

: &

0

! �

2

�

0

` �x z:�x:�s:JfK

p

: �

1

! &

0

! �

2

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 � Fran�ois Pottier et al.

Here, � is �

1

! &

0

! �

2

. Now, we have:

(�

0

; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

) = (�; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

)

This allows applying the indution hypothesis, yielding p; &

0

; (�; z : �

1

! &

0

! �

2

;x :

�

1

) ` f : �

2

. By Abs, this implies p; &;� ` �x z:�x:f : �

1

! &

0

! �

2

.

Case e = e

1

e

2

and JeK

p

= Je

1

K

p

Je

2

K

p

s. By Lemma 9, we may assume that d ends

with two instanes of hm-App, as follows.

�

0

` Je

1

K

p

: �

0

! & ! � �

0

` Je

2

K

p

: �

0

�

0

` Je

1

K

p

Je

2

K

p

: & ! �

�

0

(s) = &

�

0

` s : &

�

0

` Je

1

K

p

Je

2

K

p

s : �

By the indution hypothesis, we have p; &;� ` e

1

: �

0

! & ! � and p; &;� ` e

2

: �

0

.

The judgement p; &;� ` e

1

e

2

: � follows by App.

Case e = letx = e

1

in e

2

and JeK

p

= letx = Je

1

K

p

in Je

2

K

p

. Then, d ends with an

instane of hm-Let:

�

0

` Je

1

K

p

: 8��[D℄:�

0

(�; s : & ;x : 8��[D℄:�

0

) ` Je

2

K

p

: �

�

0

` letx = Je

1

K

p

in Je

2

K

p

: �

Here, we have 9��:D � true, whih implies that the onstraint D|a system of

equations|admits a most general uni�er. In that ase, the type sheme 8��[D℄:�

0

an be shown equivalent to an unonstrained type sheme, so we may assume,

without loss of generality, that D is in fat true. We may further assume, without

loss of generality, that the left-hand premise is an instane of hm-8 Intro:

�

0

` Je

1

K

p

: �

0

�� \ fv(�

0

) = ?

�

0

` Je

1

K

p

: 8��:�

0

The indution hypothesis yields p; &;� ` e

1

: �

0

. We have �� \ fv(&;�) = ?, so, by

8 Intro, we obtain p; &;� ` e

1

: 8��:�

0

. Sine x 6= s, we have (�; s : & ;x : 8��:�

0

) =

(�;x : 8��:�

0

; s : &), therefore the indution hypothesis yields p; &; (�;x : 8��:�

0

) `

e

2

: � . The result follows by Let.

Case e = enable r in e

0

and JeK

p

= let s = s _ (frg \ p) in Je

0

K

p

. By Lemma 9 and

de�nition of �

1

, the derivation d must be of the following form, where R = frg\p,

& = fR : �' ; �g and &

0

= fR : Pre ; �g:

�

0

` _

R

: & ! &

0

�

0

` s : &

�

0

` s _ R : &

0

�� \ fv(�

0

) = ?

�

0

` s _R : 8��:&

0

�

0

; s : 8��:&

0

` Je

0

K

p

: �

�

0

` let s = s _ R in Je

0

K

p

: �

Sine & appears in �

0

, the free type variables of � are free in �

0

as well, so the free

type variables of &

0

are free in �

0

. As a result, the type sheme 8��:&

0

is equivalent to

the monotype &

0

. We will thus assume, without loss of generality, that �� is empty.

Sine (�

0

; s : &

0

) = (�; s : &

0

), the indution hypothesis yields p; &

0

;� ` e

0

: � . As

a result, p; &;� ` enable r in e

0

: � is derivable by Enable Failure if r 62 p and by

Enable Suess if r 2 p.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 25

Case e = hek r then e

0

and JeK

p

= let = s:r in Je

0

K

p

. By Lemma 9 and de�nition

of �

1

, the derivation d must be of the following form, where & = fr : Pre ; �g:

�

0

` :

r

: & ! & �

0

` s : &

�

0

` s:r : & �� \ fv(�

0

) = ?

�

0

` s:r : 8��:& �

0

; : 8��:& ` Je

0

K

p

: �

�

0

` let = s:r in Je

0

K

p

:

Sine does not our in e

0

, by weakening, we have �

0

` Je

0

K

p

: � . As a result,

the indution hypothesis yields p; &;� ` e

0

: � . Thus, p; &;� ` hek r then e

0

: � is

derivable by Chek.

Case e = test r then e

1

else e

2

and JeK

p

= s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

). By Lemma 9

and de�nition of �

1

, d must be of the following form, where & = fr : ' ; �g:

�

0

` ?

r

: fr : ' ; �g ! (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! �

�

0

` s : fr : ' ; �g

�

0

` s?r : (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! � (1)

�

0

; s : fr : Pre ; �g ` Je

1

K

p

: �

�

0

` �s:Je

1

K

p

: fr : Pre ; �g ! � (2)

�

0

; s : fr : Abs ; �g ` Je

2

K

p

: �

�

0

` �s:Je

2

K

p

: fr : Abs ; �g ! � (3)

(1) (2)

�

0

` s?r (�s:Je

1

K

p

) : (fr : Abs ; �g ! �)! � (3)

�

0

` s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

) : �

By the indution hypothesis, p; fr : Pre ; �g;� ` e

1

: � and p; fr : Abs ; �g;� `

e

2

: � hold. The judgement p; fr : ' ; �g;� ` test r then e

1

else e

2

: � follows by

Test.

Case e = p

0

:e

0

and JeK

p

= let s = s ^ p

0

in Je

0

K

p

0

. By Lemma 9 and de�nition of

�

1

, the derivation d must be of the following form, where & = fp

0

: �' ; �g and

&

0

= fp

0

: �' ; �Absg:

�

0

` ^

p

0

: & ! &

0

�

0

` s : &

�

0

` s ^ p

0

: &

0

�� \ fv(�

0

) = ?

�

0

` s ^ p

0

: 8��:&

0

�

0

; s : 8��:&

0

` Je

0

K

p

0

: �

�

0

` let s = s ^ p

0

in Je

0

K

p

0

: �

Sine & appears in �

0

, the free type variables of �' are free in �

0

as well, so the free

type variables of &

0

are free in �

0

. As a result, the type sheme 8��:&

0

is equivalent to

the monotype &

0

. We will thus assume, without loss of generality, that �� is empty.

Sine (�

0

; s : &

0

) = (�; s : &

0

), the indution hypothesis yields p

0

; &

0

;� ` e

0

: � . As a

result, p; &;� ` p

0

:e

0

: � is derivable by Sign.

We are now ready to demonstrate orretness of the derived type system.

Lemma 11. nobody; fÆAbsg ;? ` e : � holds for some � if and only if C;? `

L e M : � holds for some satis�able C and for some � .

Proof. Suppose on the one hand that nobody; fÆAbsg ;? ` e : � holds. By

Lemma 8 we have true; s : f�Absg ` JeK

nobody

: � . Now, by de�nition of �

1

and

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 � Fran�ois Pottier et al.

by Const, we have true;? ` ? : f�Absg. By the substitution lemma for HM(X),

whih is proved in [Skalka and Pottier 2002℄, this leads to true;? ` JeK

nobody

[?=s℄ :

� . Beause true is satis�able and beause JeK

nobody

[?=s℄ is L e M, this yields the goal.

Suppose on the other hand that C;? ` L e M : � holds, where C is satis�able.

Beause C is satis�able, it admits a uni�er ', whih has the property that the

onstraint '(C) is equivalent to true. Thus, by the substitution lemma, we have

that true;? ` L e M : '(�) holds. Now, as above, we have L e M = JeK

nobody

[?=s℄

and true;? ` ? : f�Absg. By a simple inverse substitution lemma, whih we do

not expliitly establish here, this implies true; s : f�Absg ` JeK

nobody

: '(�). The

result follows by Lemma 10.

In other words, Lemma 11 states that a losed �

se

program e is well-typed in

the derived type system under the initial prinipal nobody and the empty seu-

rity ontext f�Absg if and only if L e M is well-typed in the original type system.

Furthermore, by Theorem 4, suh programs annot go wrong.

7. EXAMPLES

In this setion, we give examples whih illustrate the expressivity (and limitations)

of our type system. These examples failitate a disussion of the di�erenes between

the variants of the system, yielding insights into the possible tradeo�s between

preision and ost.

7.1 Seurity Wrappers

A library writer often needs to surround numerous internal funtions with \boiler-

plate" seurity ode before making them aessible. To avoid redundany, it seems

desirable to allow the de�nition of generi seurity wrappers. When applied to

a funtion, a wrapper returns a new funtion whih has the same omputational

meaning but di�erent seurity requirements.

Assume given a prinipal p = fr; sg. Here are two wrappers likely to be of use to

this prinipal:

enable

r

= �f:p:�x:p:enable r in f x

require

r

= �f:p:�x:p:hek r then f x

In system S

=

1

, these wrappers reeive the following (most general) type shemes.

All of the type variables whih appear in them are universally quanti�ed, so we do

not give the quanti�er pre�x expliitly.

enable

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:

2

; s:

1

; �

2

g

����������! �

2

)

require

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:

1

; �

2

g

�����������! �

2

)

These types are very similar; they may be read as follows. Both wrappers expet a

funtion f whih allows that r be enabled (r : Pre), i.e. one whih either requires

r to be enabled, or doesn't are about its status. (Indeed, as in ML, the type of the

atual argument may be more general than that of the formal.) They return a new

funtion with idential domain and odomain (�

1

, �

2

), whih works regardless of

r's status (enable

r

yields r :

2

) or requires r to be enabled (require

r

yields r : Pre).

The new funtion retains f 's expetations about s (s :

1

). f must not require any

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 27

further privileges (�Abs), beause it is invoked by p, whih enjoys privileges r and

s only.

These polymorphi types are very expressive. Our main onern is that, even

though the privilege s is not mentioned in the ode of these wrappers, it does appear

in their type. More generally, every privilege available to p may show up in the type

of a funtion written on behalf of prinipal p, whih may lead to very verbose types.

An appropriate type abbreviation mehanism may be able to address this problem;

this is left as a subjet for future work.

7.2 Use and Types of Seurity tests

In this setion, we disuss two typial programming idioms involving test. One

(arguably the most ommon) is very simple, and may be typed in S

=

1

. The other is

more omplex and requires at least S

=

2

. We take this opportunity to disuss various

problems related to the interpretation of onditional onstraints.

Imagine an operating system with two kinds of proesses, root proesses and

user proesses. Killing a user proess is always allowed, while killing a root proess

requires the privilege k. At least one distinguished prinipal root has this privilege.

The system funtions whih perform the killing are implemented by root, as follows:

kill = �(p : pro):root:hek k then : : : { kill the proess

killIfUser = �(p : pro):root: : : : { kill the proess if it is user-level

In system S

=

1

, these funtions reeive the following (most general) types:

kill : 8�:pro

fk:Pre ; �g

�������! unit

killIfUser : 8�:pro

fk: ; �g

�����! unit

The �rst funtion an be alled only if it an be statially proven that the privilege

k is enabled. The seond one, on the other hand, an be alled at any time, but

will never kill a root proess. To omplement these funtions, it may be desirable

to de�ne a funtion whih provides a \best attempt" given the urrent (dynami)

seurity ontext. This may be done by dynamially heking whether the privilege

is enabled, then alling the appropriate funtion:

tryKill = �(p : pro):root:

test k then kill(p) else killIfUser(p)

This funtion is well-typed in system S

=

1

. Indeed, within the �rst branh of the

test onstrut, it is statially known that the privilege k must be enabled; this is

why the sub-expression kill(p) is well-typed. The inferred type shows that tryKill

does not have any seurity requirements:

tryKill : 8�:pro

fk: ; �g

�����! unit

The sensitive ation kill(p) is performed within the lexial sope of the test on-

strut, whih is why it is easily seen to be safe. However, one an also move it

outside of the sope, as follows:

tryKill' , �(p : pro):root:

let ation = test k then kill else killIfUser in ation(p)

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 � Fran�ois Pottier et al.

Here, the dynami seurity hek yields a losure, whose behavior depends on the

hek's outome. It an be passed on and used in further omputations. Suh a

programming idiom is useful in pratie, beause it allows hoisting a seurity hek

out of a loop. For instane, if we were to kill a set of proesses, instead of a single

one, we would apply ation suessively to eah element of the set. Thus, only one

seurity hek would have to be performed, regardless of the number of proesses

in the set.

Is tryKill' also well-typed? This is more subtle. In S

rel

1

, the two branhes of

a test onstrut must reeive the same type. Beause the funtion kill requires a

non-trivial seurity ontext, it is onservatively assumed that ation may do so as

well. As a result, in (say) S

=

1

, tryKill' has (most general) type 8�:pro ! fk :

Pre ; �g ! unit, just as kill. Thus, it is well-typed, but its type is more restritive

than expeted.

To solve this problem, we need to keep trak of the fat that the behavior (i.e.

the type) of ation depends on the outome of the test, i.e. on whether the privilege

k is enabled. This is preisely the reason for moving to the olumn i = 2 in our

array of type systems. In this olumn, the result of a test onstrut is desribed

by onditional onstraints, whih enode the desired dependeny. Indeed, in S

=

2

,

tryKill' has (most general) inferred type

8 : : : :pro! fk :

1

; �

1

g ! �

where

if Abs =

1

then �Abs = �

2

if Pre =

1

then �Abs = �

3

if Abs =

1

then pro! fk :

1

; �Absg ! � = pro! fk :

2

; �

4

g ! unit

if Pre =

1

then pro! fk :

1

; �Absg ! � = pro! fk : Pre ; �

5

g ! unit

The four onditional onstraints are generated by Test (see Fig. 11). Of ourse,

the meaning of suh a onstrained type sheme is quite obsure, but it is possible

to simplify it, as follows. First, beause there is only one ourrene of the variable

�

2

, this variable an be quanti�ed loally. That is, the �rst onditional onstraint

an be written

if Abs =

1

then 9�

2

:(�Abs = �

2

)

It is now evident that this onstraint is a tautology|that is, it is equivalent to

true|so it an be suppressed. The seond onstraint an be suppressed in a

similar way. Then, the third and fourth onstraints, whose onlusions are equa-

tions between terms of similar struture, an be deomposed into a onjuntion

of onditional onstraints whose onlusions are equations between atomi terms.

Performing this deomposition and again suppressing tautologial onstraints, we

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 29

obtain

8 : : : :pro! fk :

1

; �

1

g ! �

where

if Abs =

1

then � = unit

if Pre =

1

then

1

= Pre

if Pre =

1

then � = unit

The seond onstraint above is again a tautology (of a di�erent kind) and may be

suppressed. Thus, the simpli�ation proess yields

8 : : : :pro! fk :

1

; �

1

g ! �

where

if Abs =

1

then � = unit

if Pre =

1

then � = unit

It is important to note that this simpli�ation proess an be automated. We hose

to show its intermediate steps, beause it would otherwise be diÆult to relate the

�nal type sheme to the ode for tryKill'. We now see that this type sheme does

not require the privilege k to be enabled: our analysis was smart enough to prove

that this ode is safe.

The reader may wonder why we an't further simplify this type sheme by unify-

ing � with unit, sine both

1

= Pre and

1

= Abs imply unit = �. This is beause

there remain other ases (namely

1

= ? and

1

= >) where � is unonstrained;

as a result, these onditional onstraints do not logially imply unit = �.

To �x this apparent problem, one possibility would be to remove ? and > from

the model. In that ase, replaing the two onstraints above with unit = � would be

a valid simpli�ation. However, this hange would e�etively add disjuntion to the

onstraint language|indeed, it would then be possible to enode the disjuntion

C

1

_C

2

as 9:(if Pre = then C

1

^ if Abs = then C

2

). (When ? is part of the

model, suh an enoding beomes impossible, beause of the side ondition 6= ?

in Fig. 7.) We onjeture that the onstraint satisfation problem would then have

exponential time omplexity, while it urrently has quasi-linear time omplexity.

Another interesting possibility onsists in giving a di�erent interpretation to on-

ditional onstraints. Notie that we really wish to use onditional onstraints in

only a very limited way. Indeed, we want to allow the branhes of a test onstrut

to reeive di�erent types. But we do not wish for these types to di�er in arbitrary

ways; we only wish to allow their seurity annotations to di�er. It is in fat possible

to enfore suh a restrition. De�ne � as the binary relation whih is uniformly

true on JPresK. Extend it straightforwardly to JkK for every kind k. Then, re-de�ne

the interpretation of onditional onstraints as follows:

�(�

0

) � �(�

00

) � �(�)) � ` �

0

� �

00

� ` if � � then �

0

� �

00

This interpretation requires the types whih appear in the onlusion of a ondi-

tional onstraint (here, �

0

and �

00

) to be equal modulo seurity annotations. This

allows the struture of types to be determined using rigid rules (whih is desirable,

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 � Fran�ois Pottier et al.

beause many programming errors are then deteted earlier), while keeping the

exibility of onditional reasoning on seurity annotations. Under suh an inter-

pretation, the type of tryKill' may be simpli�ed to

8

1

�

1

:pro! fk :

1

; �

1

g ! unit

as desired. From a pratial point of view, this hange in the interpretation of

onditional onstraints requires implementing two uni�ation algorithms on top of

one another|one for = and one for �|whih is straightforward. This variant of S

=

2

may o�er another good ompromise between preision, eÆieny, and readability

of the types inferred.

7.3 Subtyping

All of the examples given so far an be given useful types in S

=

i

for some i 2 f1; 2g.

In other words, these examples do not require subtyping. Nevertheless, there are a

few ases where the extra preision a�orded by subtyping beomes neessary.

Imagine we write a slightly modi�ed version of the wrapper enable

r

presented in

Set. 7.1 as follows, where P is some arbitrary ondition:

maybeEnable

r

, �f:p:�x:p: ifP then fx else enable r in fx

This wrapper may or may not enable the privilege r before alling f . In S

=

i

, its

(most general) type is

maybeEnable

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:

1

; �

2

g

�����������! �

2

)

i.e. exatly the same as that of require

r

in Set. 7.1. In other words, the type

system asserts, more onservatively than neessary, that maybeEnable

r

requires the

privilege r. How was this onlusion drawn?

Beause f is bound by � and beause HM(X) is restrited to Hindley-Milner

polymorphism, the two uses of f must reeive the same type, say �

1

! � ! �

2

.

In the seond branh of the if statement, f is alled with r enabled. Thus, � must

be of the form fr : Pre ; : : :g. Sine, in the �rst branh of the if statement, f is

alled within an unmodi�ed seurity ontext, the type-heker onludes that the

wrapped funtion also has fr : Pre ; : : :g as a seurity requirement.

The aw is really in our use of equality onstraints. Beause f may be alled

with r enabled, they lead us to require � = fr : Pre ; : : :g, i.e. to believe f must be

alled with r enabled. This extremely oarse approximation is good enough when

f has polymorphi type, beause we are then able to deal separately with eah

of its all sites. Here, however, polymorphism is inhibited, making the problem

unbearable.

A standard solution is to move to a system where equality is replaed with sub-

typing, e.g. S

�

1

. There, we obtain

maybeEnable

r

: 8 : : : :(�

1

fr: ; s:

1

; �Absg

������������! �

2

)

f�

1

g

���! (�

1

fr:

2

; s:

1

; �

2

g

����������! �

2

)

where Pre � ^

2

�

This type sheme is muh more permissive, beause

2

� � Pre does not allow

onluding

2

� Pre (as was the ase when � was interpreted by equality). Indeed,

2

may take the value Abs, i.e. the wrapped funtion may be alled in a ontext

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 31

where r is disabled. The onstraint Pre � ^

2

� then requires > � , i.e. f

must be able to aept either state of the privilege r.

Our experiene seems to indiate that subtyping is useful only where polymor-

phism is inhibited, i.e. when using higher-order funtions. Java has no suh on-

strut. Java does have �rst-lass objets, whih ontain methods; but it seems

reasonable to require that methods be given expliit polymorphi types by the user

as part of lass delarations. Considering that subtyping has substantial ost in

terms of readability and eÆieny, it may then be interesting not to use it in a

real-world system. However, more work is needed to on�rm this onjeture.

7.4 Expressiveness versus disipline

It is undeidable whether the exeution of a given program eventually leads to a

seurity failure. As a result, a safe type system equipped with deidable type in-

ferene must be onservative, that is, rejet programs that in fat do not violate

the seurity poliy. For instane, in every S

rel

i

, a funtion f that requires privilege

r unless some ondition P holds reeives a type that spei�es that f requires r

always, leading to a type error if f is invoked in a ontext where P holds and r is

not available. Our types, viewed as a spei�ation language for seurity poliies,

only have limited expressiveness. This is a urse and a blessing: while it prevents

some legitimate programming idioms, it also fores programmers to stik to a rea-

sonably straightforward programming style. The key, as always, is to strike a good

ompromise between expressiveness and disipline.

8. DISCUSSION

8.1 Extensions

There should be no partiular diÆulty in extending the ideas of this paper to

more advaned language features suh as exeptions, state, modules, and threads.

In fat, for some of these features, we expet the type-the-translation approah to

prove fruitful, by layering e.g. an exeptions enoding on top of the seurity-passing

enoding.

8.1.1 Java. The approah taken here has reently been shown to be extensible

to the Java byteode language [Higuhi and Ohori 2003℄, so the ideas here do trans-

fer to the full JVM. But, modeling all the features of the Java seurity arhiteture

is not possible statially. Java views privileges as �rst-lass objets, making stati

typing problemati. In our model, privileges are identi�ers, and expressions annot

ompute privileges. It would be desirable to extend the stati framework to at least

handle �rst-lass parameters of privileges, so e.g. a Java FilePermission, whih

takes a parameter that is a spei� �le, ould be modeled. The additional expres-

siveness of Java's implementation, inluding dynami addition of permissions, and

dynamially omputable parameters to privileges (for instane a FilePermission

for the string "/tmp/srath" that was reated by appending strings "/tmp" and

"srath"), is very diÆult to model statially.

From a manual inspetion of the Sun JDK libraries, a substantial majority of the

seurity ode heks there an be statially typeheked. However, some of the uses

are fundamentally dynami. These inlude onditional heking of privileges where

the ondition is fundamentally dynami and so annot be aptured statially. So, a

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 � Fran�ois Pottier et al.

purely stati alternative would require some reoding of libraries, and a rethinking of

where the seurity boundary is to be drawn. This is a deep problem, and it remains

an open question whether the best ompletely stati reworking of the arhiteture

would be powerful enough to make the limitations of the stati system aeptable.

An alternative approah is to aept that a ompletely stati approah is not

possible, and to use soft typing [Aiken et al. 1994; Wright and Cartwright 1997℄.

We disuss this further below, and also remark on extending our model to inlude

exeptions.

With the addition of JAAS in the JDK 1.4 [Lai et al. 1999℄, the arhiteture also

supports general authentiation based on prinipals, not just odebases. The doAs

instrution enables a blok of ode to be exeuted under a partiular prinipal. We

do not diretly model JAAS, but for prinipals that are groups �xed in advane, the

struture is stati (and, desirably, more delarative than ode that refers to spei�

users), and so our type system will be able to model it. So, prinipals Alie

and Bob are not modeled statially, but �xed groups suh as DepartmentUser and

GuestUser whih ould ontain Alie and Bob, respetively, ould be delared and

heked statially; only the membership of Alie in DepartmentUser would need

to be heked dynamially.

8.1.2 Soft Typing. A soft typing system is a ross between a type system and

a stati optimizer. In our ontext, a soft typing system would allow some ill-typed

hek operations through, and mark them as requiring run-time heking. In prin-

iple, there is no problem with applying the soft typing approah in our framework,

and allows our ideas to be applied diretly to the JDK Seurity Arhiteture as

now de�ned. Marked hek operations would be treated muh like test operations.

The type system should provide a wealth of information to enable an eÆient im-

plementation of these tests. The onstraint-based onditional type systems suh as

S

�

2

are partiularly appropriate for soft typing sine the added expressiveness will

allow more heks to be statially veri�ed.

8.1.3 Implementation of test. Although our system statially heks whether

all hek operations will sueed at run-time, there is still a need to arry some

privilege information at run-time to support test, whih must dynamially branh

on presene or absene of a privilege. We believe a stati optimizer may be able to

remove muh of the run-time overhead of test. However, this implementation issue

is beyond the sope of the urrent foundational study, and is a subjet for future

work.

8.1.4 Exeptions. In the simple language presented so far, seurity violations

are fatal: they ause the program to halt. However, in Java, a seurity violation

gives rise to an exeption, whih an be observed and dealt with by any (diret or

indiret) aller. Thus, if our stati seurity type system is to be viewed as realisti,

it must be able to deal with exeptions.

For the sake of simpliity, we haven't inluded exeptions in our soure language.

However, it should be easy to add them as a seond layer, with only little modi�a-

tion to our urrent proofs. In short, the idea is to introdue a new soure language,

featuring exeptions in addition to the seurity onstruts, and to translate it down

into an extension of �

se

with sums. Indeed, it is a well-known fat that exeptions

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 33

an be de�ned in terms of sums [Wadler 1985; Moggi 1989; Spivey 1990℄. Any S

rel

i

an then be lifted, through this new translation, up to the new soure language.

This onstrution shows that the \typing-by-enoding" approah an be used to a-

ount for exeptions. It also shows that several layers of enodings an be staked

on top of one another, making the proofs somewhat more modular.

This onstrution gives rise to type systems where funtion types arry not only

a seurity preondition & , but also an e�et �, whih desribes the exeptions that

may be thrown when the funtion is invoked. This is a standard feature of type-

based exeption analyses [Guzm�an and Su�arez 1994; Aiken and F�ahndrih 1997;

Pessaux and Leroy 2000℄. In Java terms, an e�et is essentially a throws lause.

However, a throws lause is onstant, whereas, in our type systems, e�ets would be

allowed to ontain presene variables (that is, type variables of kind Pres). These

ould be related, via onstraints, to the funtion's seurity preondition & , allowing

properties suh as \if privilege r is disabled, then this funtion may throw exeption

E" to be enoded in the types|and inferred by a type reonstrution algorithm.

A seurity hek whih throws an exeption (instead of halting the program) upon

failure an be de�ned, in the new soure language, by ombining test and throw.

Thus, our new soure language has both fatal and non-fatal forms of seurity heks.

It is interesting to notie that eah form has its advantages. Indeed, if a funtion

yields a fatal error when the privilege r is disabled, then its type will quite onisely

enode the sentene \r must be enabled", and the type-heker will automatially

enfore this ondition at every all site. If, on the other hand, the funtion throws

an exeption, then its type will more losely enode the sentene \if r is disabled,

then the funtion may raise an exeption", and the type-heker will not enfore

any pre-ondition when alling the funtion. (It is still possible to manually assert,

using a type annotation, that a given all does not yield an exeption, thus foring

r to be provably enabled at this all site.) The former may be preferred, beause it

is more legible, and beause it douments the programmer's intent more preisely.

On the other hand, the use of exeptions leads to a more modular programming

style, beause there is often no telling, at the time a partiular piee of ode is

written, where and how seurity violations should be handled. We onlude that

both forms of seurity heks may be of use in pratie.

8.2 Related Work

8.2.1 Other analyses of stak inspetion. Banerjee and Naumann have devel-

oped an alternate proof of type safety for a programming language equipped with

stak inspetion [Banerjee and Naumann 2001℄. However, the denotational seman-

tis of their language is in fat a seurity-passing style transform, whih means

that the orretness of this transform is taken for granted. Besson, Jensen, et

al. [Jensen et al. 1999; Besson et al. 2001℄ de�ne a whole-program stati analy-

sis based on model-heking temporal logi formul�. Stak inspetion is one (but

not the only) appliation of their framework. A later paper [Besson et al. 2002℄

takes the analysis one step further by introduing a notion of seure alling on-

text, symbolially represented as a temporal logi formula. However, the analysis is

still not quite ompositional, beause the ontrol ow graph of the entire program

must be available. Bartoletti et al. [Bartoletti et al. 2001℄ propose a stati analysis

expressed as a �x-point omputation. Like Besson, Jensen, et al., they assume that

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 � Fran�ois Pottier et al.

programs are represented as graphs where only seurity heks and ontrol ow are

made expliit. Higuhi and Ohori [Higuhi and Ohori 2003℄ impose a monomor-

phi type system with subtyping, reminisent of the one developed in [Skalka and

Smith 2000℄, on a simple fragment on the JVM byteode language. They note

that, sine hek instrutions an never fail in a well-typed program, they are no

longer true operations: they are really only type annotations. For this reason, they

suggest removing hek from the language and replaing it with a more delarative

type annotation mehanism. Allowing or requiring the programmer to assign a

seurity-annotated type to eah method provides one suh mehanism. Koved et

al. [Koved et al. 2002℄ implement a ow-sensitive, ontext-sensitive analysis that

determines, in a onservative fashion, whih aess rights are required by a piee of

Java ode. The analysis is preise|in partiular, it keeps trak of string onstants,

whih are used in the reation of Permission objets, whereas we do not|and

sales well. However, the paper does not ontain enough detail for the reader to

be able to implement the analysis. Koved et al.'s goals appear somewhat di�erent

from ours: they analyze unmodi�ed Java programs, while our intention is to require

programmers to annotate method headers with seurity requirements. While their

approah requires less programmer e�ort, it is not lear whether it allows libraries

to be analyzed in isolation, and whether it is able to provide an explanation for

unexpeted analysis results. We believe that a type-based approah, although more

ostly in terms of programmer e�ort, helps enfore a disipline that the program-

mer understands and ontrols. Naumovih [Naumovih 2002℄ desribes a data ow

analysis that ensures that ertain privileges must be held in order to reah a ertain

program point. His purpose is dual to ours. Indeed, our type system is intended to

ensure that no privilege heks may fail at runtime, but does not diretly guarantee

that the program is seure, while Naumovih's approah allows establishing seurity

properties, but does not eliminate the possibility of a runtime failure. On a more

theoretial level, Fournet and Gordon [Fournet and Gordon 2002℄ o�er an in-depth

study of the semantis of stak inspetion; they establish equivalene laws whih

allow ompilers to optimize away ertain seurity-related instrutions. Clements

and Felleisen [Clements and Felleisen 2003℄ ontinue this line of work by developing

an alternate but equivalent implementation of stak inspetion that is shown to be

tail-all optimizing.

8.2.2 Other approahes based on a translation. Several researhers have pro-

posed ways of de�ning eÆient, provably orret ompilation shemes for languages

whose seurity poliy is expressed by a seurity automaton [Erlingsson and Shnei-

der 1999; Shneider 2000℄.

Walker [Walker 2000℄ de�nes a soure language, equipped with suh a seurity

poliy, then shows how to ompile it into a dependently-typed target language,

whose type system, by enoding assertions about seurity states, guarantees that

no run-time violations will our. Walker �rst builds the target type system, then

de�nes a typed translation. On the opposite, our approah onsists in de�ning an

untyped translation, whose output we feed through a type heker or inferener for

the target language. The omposition yields a seurity-aware type heker or in-

ferener for the soure language. In priniple, our approah, whih was developed

with stak inspetion in mind, is also appliable to seurity poliies spei�ed by

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 35

seurity automata. Type inferene for the target language, where the automaton's

states and transition funtion are built-in onstants, seems feasible: dediated on-

straint language and onstraint solver may be employed to allow statially reasoning

about them. The untyped translation would thread the seurity automaton's state

through every omputation, making it an extra argument and an extra result of

every funtion. Thus, in the derived type system, every funtion type would arry

two annotations, a preondition and a postondition, representing the automaton's

state upon entry and upon exit. Again, these annotations ould be type variables,

related via onstraints. In ontrast with Walker's work, our approah makes seu-

rity information visible in the type system of the soure language: indeed, our aim

is not only to gain performane by eliminating many dynami heks, but also to

de�ne a programming disipline.

Thiemann's approah to seurity automata [Thiemann 2001℄ may be viewed as

losely related to ours: he also starts with an untyped seurity-passing transla-

tion, whose output he then feeds through a standard program speializer. The

omposition automatially yields an optimizing translation.

8.2.3 The Connetion with Monads. The enoding of exeptions alluded to in

Set. 8.1.4 is a monadi translation [Moggi 1989℄. So is the seurity-passing style

translation desribed in Set. 4. In fat, an alternate semantis for our soure

language an be de�ned by suessively layering [Filinski 1999℄ the following on top

of a purely funtional ore:

(1) a failure monad, de�ned by F � = �+1, representing the possibility of abrupt

program termination;

(2) a seurity monad, de�ned by S � = PrivSet ! �, where PrivSet represents

privilege sets; enable, hek and test an be de�ned as primitive operations at

this level;

(3) (optionally) an exeption monad, de�ned by E � = � + Ex, where Ex repre-

sents exeptions.

Choosing suh a semantis for our soure language would remove the need to prove

the translation sound, thus reduing even further the amount of work needed to

prove the orretness of our type system. However, our hoie of a onise opera-

tional semantis possibly brings us loser to the original desription of Java stak

inspetion.

Monadi type systems have been used as a tool to isolate [Peyton Jones and

Wadler 1993℄ or analyze [Wadler and Thiemann 2003℄ the use of impure language

features in pure funtional languages. Yet, as deplored in [Wadler and Thiemann

2003℄, there is still \a need to reate a new e�et system for eah new e�et". In

this light, our work may be viewed as a systemati onstrution of an \e�et" type

system adapted to our partiular e�etful programming language.

8.3 Final Remarks

From this methodologial study emerge two type systems whih improve on our

previous work in type systems for aess ontrol. System S

=

1

infers what appear

to be very readable types, while remaining surprisingly expressive, and an be

implemented very eÆiently [R�emy 1992a℄. System S

�

2

is even more exible and

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 � Fran�ois Pottier et al.

ould form the basis of a soft typing system for the Java JDK platform. These

systems were developed using a transformational tehnique and the system HM(X),

whih simpli�ed proof e�ort and inspired design.

REFERENCES

Aiken, A. S. and F

�

ahndrih, M. 1997. Program analysis using mixed term and set onstraints.

In Stati Analysis Symposium (SAS). 114{126. URL: http://www.s.berkeley.edu/~aiken/

publiations/papers/sas97.ps.

Aiken, A. S., Wimmers, E. L., and Lakshman, T. K. 1994. Soft typing with onditional types.

In ACM Symposium on Priniples of Programming Languages (POPL). 163{173. URL: http:

//http.s.berkeley.edu/~aiken/ftp/popl94.ps.

Banerjee, A. and Naumann, D. A. 2001. A simple semantis and stati analysis for Java

seurity. Teh. Rep. 2001-1, Stevens Institute of Tehnology. June. URL: http://guinness.

s.stevens-teh.edu/~naumann/publiations/tr2001.ps.

Bartoletti, M., Degano, P., and Ferrari, G. 2001. Stati analysis for stak inspetion. In

International Workshop on Conurreny and Coordination. Eletroni Notes in Theoretial

Computer Siene, vol. 54. Elsevier Siene.

Besson, F., de Grenier de Latour, T., and Jensen, T. 2002. Seure alling ontexts for

stak inspetion. In ACM International Conferene on Priniples and Pratie of Delarative

Programming (PPDP). 76{87. URL: http://www.irisa.fr/lande/jensen/ppdp02.pdf.

Besson, F., Jensen, T. P., Le M

�

etayer, D., and Thorn, T. 2001. Model heking seurity

properties of ontrol ow graphs. Journal of Computer Seurity 9, 3, 217{250. URL: http:

//www.irisa.fr/lande/jensen/js.pdf.

Clements, J. and Felleisen, M. 2003. A tail-reursive semantis for stak inspetions. In

European Symposium on Programming (ESOP). Leture Notes in Computer Siene, vol. 2618.

Springer Verlag, 22{37. URL: http://www.s.neu.edu/sheme/pubs/esop2003-f.ps.gz.

Dean, D. 1997. The seurity of stati typing with dynami linking. In Proeedings of the Fourth

ACM Conferene on Computer and Communiations Seurity. 18{27. URL: http://www.s.

prineton.edu/sip/pub/s4.html.

Erlingsson,

�

U. and Shneider, F. B. 1999. SASI enforement of seurity poliies: a retrospe-

tive. In New Seurity Paradigms Workshop. 87{95. URL: http://www.s.ornell.edu/fbs/

publiations/sasiNSPW.ps.

Erlingsson,

�

U. and Shneider, F. B. 2000. IRM enforement of Java stak inspetion. In

IEEE Symposium on Seurity and Privay (S&P). 246{255. URL: http://www.omputer.org/

proeedings/s&p/0665/06650246abs.htm.

Filinski, A. 1999. Representing layered monads. In ACM Symposium on Priniples of Program-

ming Languages (POPL). 175{188. URL: http://www.bris.dk/~andrzej/papers/RLM.ps.gz.

Fournet, C. and Gordon, A. D. 2002. Stak inspetion: Theory and variants. In ACM Sym-

posium on Priniples of Programming Languages (POPL). 307{318. URL: http://researh.

mirosoft.om/~fournet/papers/stak-inspetion-theory-and-variants-popl-02.ps.

Gong, L. 1998. Java seurity arhiteture (JDK1.2). URL: http://java.sun.om/produts/jdk/

1.2/dos/guide/seurity/spe/seurity-spe.do.html.

Gong, L. and Shemers, R. 1998. Implementing protetion domains in the Java Development

Kit 1.2. In Internet Soiety Symposium on Network and Distributed System Seurity. 125{134.

URL: http://java.sun.om/people/gong/papers/jdk12impl.ps.gz.

Guzm

�

an, J. C. and Su

�

arez, A. 1994. An extended type system for exeptions. In ACM Workshop

on ML and its Appliations. Number 2265 in INRIA Researh Reports. INRIA, 127{135.

Higuhi, T. and Ohori, A. 2003. A stati type system for JVM aess ontrol. In ACM Inter-

national Conferene on Funtional Programming (ICFP). 227{237. URL: http://www.jaist.

a.jp/~ohori/researh/higuhiOhoriIfp03.pdf.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati Approah to Stati Aess Control � 37

Jensen, T., Le M

�

etayer, D., and Thorn, T. 1999. Verifying seurity properties of ontrol-ow

graphs. In IEEE Symposium on Seurity and Privay (S&P). 89{105. URL: http://www.

irisa.fr/lande/jensen/papers/SP99.ps.

Koved, L., Pistoia, M., and Kershenbaum, A. 2002. Aess rights analysis for Java. In ACM

Conferene on Objet-Oriented Programming, Systems, Languages, and Appliations (OOP-

SLA). 359{372. URL: http://www.researh.ibm.om/javase/OOPSLA2002preprint.pdf.

Lai, C., Gong, L., Koved, L., Nadalin, A. J., and Shemers, R. 1999. User authentiation and

authorization in the Java platform. In Annual Computer Seurity Appliations Conferene.

285{290. URL: http://java.sun.om/people/gong/papers/jass.pdf.

Moggi, E. 1989. Computational �-alulus and monads. In IEEE Symposium on Logi in Com-

puter Siene (LICS). 14{23. URL: http://www.disi.unige.it/person/MoggiE/ftp/lis89.

ps.gz.

Naumovih, G. 2002. A onservative algorithm for omputing the ow of permissions in Java

programs. In Proeedings of the International Symposium on Software Testing and Analysis

(ISSTA). 33{43. URL: http://is.poly.edu/gnaumovi/papers/permission-analysis.ps.

Odersky, M., Sulzmann, M., andWehr, M. 1999. Type inferene with onstrained types. Theory

and Pratie of Objet Systems 5, 1, 35{55. URL: http://www.omp.nus.edu.sg/~sulzmann/

publiations/tapos.ps.

Pessaux, F. and Leroy, X. 2000. Type-based analysis of unaught exeptions. ACM Transations

on Programming Languages and Systems 22, 2, 340{377. URL: http://pauilla.inria.fr/

~xleroy/publi/exeptions-toplas.ps.gz.

Peyton Jones, S. and Wadler, P. 1993. Imperative funtional programming. In ACM Sym-

posium on Priniples of Programming Languages (POPL). URL: http://www.researh.

avayalabs.om/user/wadler/papers/imperative/imperative.ps.gz.

Pottier, F. 2000. A versatile onstraint-based type inferene system. Nordi Journal

of Computing 7, 4 (Nov.), 312{347. URL: http://pauilla.inria.fr/~fpottier/publis/

fpottier-nj-2000.ps.gz.

Pottier, F. 2003. A onstraint-based presentation and generalization of rows. In IEEE Sym-

posium on Logi in Computer Siene (LICS). 331{340. URL: http://pauilla.inria.fr/

~fpottier/publis/fpottier-lis03.ps.gz.

Pottier, F. and Conhon, S. 2000. Information ow inferene for free. In ACM International

Conferene on Funtional Programming (ICFP). 46{57. URL: http://pauilla.inria.fr/

~fpottier/publis/fpottier-onhon-ifp00.ps.gz.

Pottier, F., Skalka, C., and Smith, S. 2001. A systemati approah to stati aess on-

trol. In European Symposium on Programming (ESOP). Leture Notes in Computer Si-

ene, vol. 2028. Springer Verlag, 30{45. URL: http://pauilla.inria.fr/~fpottier/publis/

fpottier-skalka-smith-esop01.ps.gz.

R

�

emy, D. 1992a. Extending ML type system with a sorted equational theory. Teh. Rep. 1766,

INRIA, Roquenourt, BP 105, 78153 Le Chesnay Cedex, Frane. URL: ftp://ftp.inria.fr/

INRIA/Projets/ristal/Didier.Remy/eq-theory-on-types.ps.gz.

R

�

emy, D. 1992b. Projetive ML. In ACM Symposium on Lisp and Funtional Programming

(LFP). 66{75. URL: ftp://ftp.inria.fr/INRIA/Projets/ristal/Didier.Remy/lfp92.ps.

gz.

R

�

emy, D. 1994. Type inferene for reords in a natural extension of ML. In Theoretial Aspets

Of Objet-Oriented Programming. Types, Semantis and Language Design, C. A. Gunter and

J. C. Mithell, Eds. MIT Press. URL: ftp://ftp.inria.fr/INRIA/Projets/ristal/Didier.

Remy/taoop1.ps.gz.

Shneider, F. B. 2000. Enforeable seurity poliies. ACM Transations on Information and

System Seurity 3, 1 (Feb.), 1{50. URL: http://www.s.ornell.edu/fbs/publiations/

EnfSePols.pdf.

Simonet, V. 2003. Type inferene with strutural subtyping: a faithful formalization of an eÆient

onstraint solver. In Asian Symposium on Programming Languages and Systems. URL: http:

//ristal.inria.fr/~simonet/publis/simonet-strutural-subtyping.ps.gz.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 � Fran�ois Pottier et al.

Skalka, C. 2002. Types for programming language-based seurity. Ph.D. thesis, The Johns Hop-

kins University. URL: http://www.s.uvm.edu/~skalka/skalka-pubs/skalka-phd-thesis.ps.

Skalka, C. and Pottier, F. 2002. Syntati type soundness for HM(X). In Workshop on Types

in Programming (TIP). Eletroni Notes in Theoretial Computer Siene, vol. 75. URL:

http://pauilla.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz.

Skalka, C. and Smith, S. 2000. Stati enforement of seurity with types. In ACM Interna-

tional Conferene on Funtional Programming (ICFP). 34{45. URL: http://www.s.uvm.edu/

~skalka/skalka-pubs/skalka-smith-ifp00.ps.

Spivey, M. 1990. A funtional theory of exeptions. Siene of Computer Programming 14,

25{42.

Su, Z. and Aiken, A. 2001. Entailment with onditional equality onstraints. In European

Symposium on Programming (ESOP). Leture Notes in Computer Siene, vol. 2028. 170{189.

URL: http://www.s.udavis.edu/~su/publiations/esop01.pdf.

Sulzmann, M. 2000. A general framework for Hindley/Milner type systems with onstraints.

Ph.D. thesis, Yale University, Department of Computer Siene. URL: http://www.omp.nus.

edu.sg/~sulzmann/publiations/diss.ps.gz.

Sulzmann, M., M

�

uller, M., and Zenger, C. 1999. Hindley/Milner style type systems in on-

straint form. Researh Report ACRC{99{009, University of South Australia, Shool of Com-

puter and Information Siene. July. URL: http://www.ps.uni-sb.de/~mmueller/papers/

hm-onstraints.ps.gz.

Thiemann, P. 2001. Enforing seurity properties using type speialization. In European Sym-

posium on Programming (ESOP). Leture Notes in Computer Siene. Springer Verlag. URL:

http://www.informatik.uni-freiburg.de/~thiemann/papers/espps-het.ps.gz.

Wadler, P. and Thiemann, P. 2003. The marriage of e�ets and monads. ACM Transations

on Computational Logi 4, 1 (Jan.), 1{32. URL: http://www.researh.avayalabs.om/user/

wadler/papers/effetstol/effetstol.ps.gz.

Wadler, P. L. 1985. How to replae failure by a list of suesses. In Conferene on Funtional

Programming Languages and Computer Arhiteture (FPCA). Leture Notes in Computer Si-

ene, vol. 201. Springer Verlag, 113{128.

Walker, D. 2000. A type system for expressive seurity poliies. In ACM Symposium on Prini-

ples of Programming Languages (POPL). 254{267. URL: http://www.s.ornell.edu/home/

walker/papers/sa-popl00_ps.gz.

Wallah, D. S. 1999. A new approah to mobile ode seurity. Ph.D. thesis, Prineton University.

URL: http://www.s.prineton.edu/sip/pub/dwallah-dissertation.html.

Wallah, D. S., Appel, A. W., and Felten, E. W. 2000. Safkasi: A seurity mehanism for

language-based systems. ACM Transations on Software Engineering and Methodology 9, 4

(Ot.), 341{378. URL: http://www.s.rie.edu/~dwallah/pub/tosem2000.ps.

Wallah, D. S., Balfanz, D., Dean, D., and Felten, E. W. 1997. Extensible seurity arhite-

tures for Java. In ACM Symposium on Operating Systems Priniples (SOSP). 116{128. URL:

http://www.s.prineton.edu/sip/pub/sosp97.html.

Wallah, D. S. and Felten, E. 1998. Understanding Java stak inspetion. In IEEE Symposium

on Seurity and Privay (S&P). URL: http://www.s.prineton.edu/sip/pub/oakland98.

php3.

Wright, A. K. and Cartwright, R. 1997. A pratial soft type system for Sheme. ACM

Transations on Programming Languages and Systems 19, 1 (Jan.), 87{152. URL: http:

//doi.am.org/10.1145/239912.239917.

Wright, A. K. and Felleisen, M. 1994. A syntati approah to type soundness. Information

and Computation 115, 1 (Nov.), 38{94. URL: http://www.s.rie.edu/CS/PLT/Publiations/

Sheme/i94-wf.ps.gz.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

