
A Systemati
 Approa
h to Stati
 A

ess Control

Fran�
ois Pottier

INRIA Ro
quen
ourt

and

Christian Skalka

The University of Vermont

and

S
ott Smith

The Johns Hopkins University

The Java Se
urity Ar
hite
ture in
ludes a dynami
 me
hanism for enfor
ing a

ess
ontrol
he
ks,

the so-
alled sta
k inspe
tion pro
ess. While the ar
hite
ture has several appealing features, a

ess

ontrol
he
ks are all implemented via dynami
 method
alls. This is a highly non-de
larative form

of spe
i�
ation whi
h is hard to read, and whi
h leads to additional run-time overhead. This paper

develops type systems whi
h
an stati
ally guarantee the su

ess of these
he
ks. Our systems

allow se
urity properties of programs to be
learly expressed within the types themselves, whi
h

thus serve as stati
 de
larations of the se
urity poli
y. We develop these systems using a systemati

methodology: we show that the se
urity-passing style translation, proposed by Walla
h, Appel

and Felten as a dynami
 implementation te
hnique, also gives rise to stati
 se
urity-aware type

systems, by
omposition with
onventional type systems. To de�ne the latter, we use the general

HM(X) framework, and easily
onstru
t several
onstraint- and uni�
ation-based type systems.

Categories and Subje
t Des
riptors: D.3.3 [Programming Languages℄: Language Constru
ts

and Features|
ontrol stru
tures; polymorphism; F.3.3 [Logi
s and Meanings of Programs℄:

Studies of Program Constru
ts|type stru
ture

General Terms: Languages, reliability, se
urity, theory

Additional Key Words and Phrases: Type systems, sta
k inspe
tion, a

ess
ontrol

1. INTRODUCTION

The Java Se
urity Ar
hite
ture [Gong and S
hemers 1998; Gong 1998℄, found in

the Java JDK 1.2 and later, in
ludes me
hanisms to prote
t systems from opera-

tions performed by untrusted
ode. These a

ess
ontrol de
isions are enfor
ed by

dynami

he
ks. Our goal is to make some or all of these de
isions stati
ally, by

extensions to the type system. Thus, a

ess
ontrol violations will be
aught at

ompile-time rather than run-time. Furthermore, these type extensions
onstitute

a stati
ally-spe
i�ed se
urity poli
y, whi
h is mu
h preferred to a dynami
 one.

Conta
t author's address: Christian Skalka, Department of Computer S
ien
e, University of Ver-

mont, Votey 351, 33 Col
hester Ave., Burlington, VT 05405.

Permission to make digital/hard
opy of all or part of this material without fee for personal

or
lassroom use provided that the
opies are not made or distributed for pro�t or
ommer
ial

advantage, the ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, and

noti
e is given that
opying is by permission of the ACM, In
. To
opy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1{36.

2 � Fran�
ois Pottier et al.

1.1 The Java Se
urity Ar
hite
ture

We now brie
y review the Java se
urity Ar
hite
ture [Gong and S
hemers 1998;

Gong 1998; Walla
h 1999℄. The sta
k inspe
tion algorithm underlying the ar
hite
-

ture is primarily
on
erned with
ode-based a

ess
ontrol: in a single JVM
an be

found
ode loaded from di�erent
odebases, and
ode from ea
h
odebase may have

di�erent a

ess rights. For instan
e, applets should not be allowed to read and write

arbitrary �les, but applets may be allowed to read and write �les in /tmp/*. Thus,

applets may have a FilePermission for read/write to /tmp/*, but no permissions

to read or write any other �les.

The sta
k inspe
tion system is used in two di�erent modes; these two di�er-

ent modes are not stated very
learly in the literature so we review them now.

In the �rst mode, a
he
kPermission()
ommand is exe
uted before a
riti-

al operation, su
h as a system library about to do a low-level �le write; if this

ommand does not raise an ex
eption, exe
ution
ontinues and the �le is writ-

ten. For the applet example, if the applet tries to write /tmp/s
rat
h2232, the

he
kPermission() will su

eed sin
e the applet has this privilege (we will de-

s
ribe the
he
king pro
ess in more detail below). In the se
ond mode, there may

be a need to temporarily raise privileges to allow the system to perform a privi-

leged operation for untrusted
ode. An example is the system may need to read

a font �le, /usr/java/fonts/helveti
a.fnt, so the applet
an use this font, but

this would otherwise
ause an ex
eption sin
e the applet
annot read that �le:

the
he
kPermission() for read of /usr/java/fonts/helveti
a.fnt would fail.

The doPrivileged()
ommand is designed to solve this problem: the system
an

exe
ute doPrivileged(readFontCode) where readFontCode reads the font and

is exe
uted with system, not applet, privileges; and, the
he
kPermission() will

su

eed sin
e it was exe
uted as a system-privileged operation.

A

ess
ontrol de
isions of
he
kPermission() are made using a sta
k inspe
tion

algorithm. The original requestor of an a
tion su
h as a �le read may be far ba
k

on the
all sta
k: the applet invoked some system �le method whi
h in turn invoked

other system methods . . . whi
h �nally invoked a low-level system method to read

the �le whi
h invoked
he
kPermission(). So, ba
k on the
all sta
k is a frame

owned by the applet
odebase. The
he
kPermission() thus sear
hes ba
k the

sta
k, making sure every frame's
odebase has the permission needed. This
overs

the �rst
ase of usage above. For the se
ond
ase, where a temporary raising of

privileges is needed to e.g. read a font �le, the doPrivileged()
ommand adds

a
agged sta
k frame to the sta
k whi
h performs the privileged operation; when

a privilege is
he
ked via the
he
kPermission()
ommand, the sta
k frames are

sear
hed most to least re
ent. If a doPrivileged frame for the relevant permission

is en
ountered, and the
odebase of every frame up to and in
luding that one

is authorized for the permission, the
he
k terminates su

essfully: even though

applet sta
k frames may be further up the sta
k be
ause applet
ode indu
ed the

font load, its privileges are not queried.

1.1.1 Java's La
k of Full De
larativity. The Java Se
urity Ar
hite
ture is pop-

ular in pra
ti
e and embodies several useful prin
iples, but it also has some weak-

nesses. There is a performan
e penalty to pay due to the need for run-time sta
k

inspe
tion. The ar
hite
ture also is not as de
larative as it
ould be, but for se
u-

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 3

rity poli
ies it is important to be maximally de
larative: �xed, immutable poli
ies

have �xed meaning.

The Java poli
y �le is a �xed de
laration of privilege authorizations for
ode-

bases, so this aspe
t of the ar
hite
ture is suÆ
iently de
larative. The problem

is how this poli
y is enfor
ed in the
ode: e.g. is
ode from foo.
om indeed re-

stri
ted at runtime from writing to "/tmp", if this is de
lared in the poli
y �le?

In fa
t, implementation of this poli
y requires that there be appropriate insertions

of
he
kPermissions whi
h guard all low-level �le a

esses, whi
h are
he
ked dy-

nami
ally. Thus, a programmer must have a perfe
t understanding of the
ontrol

ow of the underlying program to guarantee that proper
he
ks are in pla
e. This

obviously makes it diÆ
ult to see whether the
ode is implementing the
orre
t

poli
y; in large programs, tens of thousands of lines long, how
an programmers

have su
h a perfe
t understanding?

This paper explores solutions to these problems through the use of stati
 type

systems. If types
an de
lare pre
isely the privileges needed for an invo
ation of

a method to avoid run-time se
urity ex
eptions, these types
ould give a top-level

de
laration of the permissions needed by ea
h
hunk of
ode, and programmers

ould verify that the
orre
t poli
ies are implemented without having to understand

the
omplete
odebase.

1.2 Our Framework

We de�ne a se
urity typing system whi
h stati
ally type
he
ks, and thus stati
ally

veri�es su

ess of, the run-time a

ess
ontrol
he
ks. This obviates the need for

sta
k inspe
tion at run-time, sin
e all the
he
ks have been proven to su

eed at

ompile-time. In this paper, a foundational framework is developed; there still

are several important issues to be addressed before it
ould be applied to a real

language su
h as Java.

We employ several te
hni
al tools to streamline the results. We redu
e the se-

urity typing problem to a
onventional typing problem using a translation-based

method inspired by [Pottier and Con
hon 2000℄. We use a standard language of

row types [R�emy 1992b℄ to des
ribe sets of privileges. We also re-use the HM(X)

framework [Odersky et al. 1999; Sulzmann 2000℄, whi
h allows a wide variety of

type systems to be de�ned in a single stroke, saves some proof e�ort, and (most

importantly) shows that our
ustom type systems arise naturally out of a standard

one. Some te
hni
al results about HM(X) are drawn from [Skalka and Pottier

2002℄. We develop several di�erent type systems, in
luding both
onstraint-based

and uni�
ation-based systems.

We begin by de�ning a simpli�ed model of the Java Se
urity Ar
hite
ture, �

se

.

This
al
ulus is equipped with a non-standard operational semanti
s that in
ludes a

spe
i�
ation of sta
k inspe
tion. In order to
onstru
t a stati
 type system for �

se

,

we translate it into a standard �-
al
ulus,
alled �

set

. The translation is a se
urity-

passing style transformation [Walla
h 1999; Walla
h et al. 2000℄: it implements

sta
k inspe
tion by passing around sets of privileges at run-time. For this purpose,

�

set

is equipped with built-in notions of set and set operations. The translation is

proven to be
orre
t, in that program semanti
s are preserved in translation.

Then, we de�ne a type system for �

set

. Be
ause �

set

is a standard �-
al
ulus, we

are able to de�ne our type system as a simple instan
e of the HM(X) framework

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 � Fran�
ois Pottier et al.

r 2 R; R � R resour
es

p 2 P; P � P;where P = 2

R

prin
ipals

v ::= �x z:�x:f values

e ::= x j �x z:�x:f j e e j letx = e in e j enable r in e j
he
k r then e j expressions

test r then e else e j f

f ::= p:e signed expressions

E ::= [℄ j E e j v E j letx = E in e j enable r inE j p:E evaluation
ontexts

Fig. 1. Grammar for �

se

[Odersky et al. 1999℄. In fa
t, by using this framework, a whole family of type

systems may be su

in
tly de�ned, ea
h with di�erent
osts and bene�ts. In order

to give pre
ise types to �

set

's built-in set operations, our instan
e uses set types,

de�ned as a simpli�
ation of R�emy's re
ord types [R�emy 1992b℄.

Due to
orre
tness of the �

se

-to-�

set

translation, and type safety within the �

set

type framework, an indire
t type analysis for �

se

is immediately obtained. That is,

a sound typing for any �

se

expression is the type of its en
oding in �

set

. However,

a dire
t type system that treats �

se

expressions themselves is still desirable, for

various reasons (e.g. eÆ
ien
y, error reporting). Thus, we lastly de�ne dire
t type

systems for �

se

, whi
h are based on, or \derived" from, analogous �

set

type systems.

As an appealing
onsequen
e of our te
hni
al approa
h, a dire
t type safety result

follows easily from indire
t type safety,
orre
tness of the �

se

-to-�

set

translation,

and a straighforward synta
ti

orrespondan
e between the dire
t and indire
t type

systems.

This paper expands on the
onferen
e paper [Pottier et al. 2001℄, whi
h was itself

a re�guration of the ideas �rst presented in [Skalka and Smith 2000℄. The latter

paper de�ned the �rst stati
 type analysis for sta
k inspe
tion. There, fun
tion

types are of the form �

1

�

�! �

2

, where �

1

and �

2

are \ordinary" types, and �

represents a family of sets
ontaining at least the permissions ne
essary to use

the fun
tion. An inferen
e te
hnique based on a set
onstraint solution algorithm

was de�ned to implement the system. However, the system is non-standard and

monomorphi
; these short
omings are addressed in [Pottier et al. 2001℄ and the

urrent paper, whi
h extend the type analysis to a polymorphi
 setting, using

standard type logi
s with well-studied and eÆ
ient inferen
e methods.

2. THE SOURCE LANGUAGE �

se

This se
tion de�nes �

se

, a simpli�ed model of the se
urity ar
hite
ture of the JDK

1.2 and later. It is a �-
al
ulus equipped with a notion of
ode ownership and
on-

stru
ts for enabling or
he
king privileges. For the sake of formal simpli
ity, we do

not de�ne sta
ks expli
itly; rather, sta
ks are impli
it in �

se

evaluation
ontexts,

and
an be gleaned from them. This is in
ontrast to a version of the
al
ulus

presented in [Skalka 2002℄ with expli
it sta
ks, inspe
tion thereon, and a dopriv

onstru
t,
alled �

S

se

, that
learly re
e
ts the JDK implementation details. How-

ever, �

S

se

is shown to be embeddable in �

se

in [Skalka 2002℄, ensuring
on�den
e

in the
orre
tness of �

se

as a model of the Java JDK ar
hite
ture.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 5

We assume given an arbitrary set R of resour
es (also known as privileges). We

use r and R to range over resour
es and over sets thereof, respe
tively. Following

Fournet and Gordon [Fournet and Gordon 2002℄, we de�ne the set of prin
ipals P

as the powerset of R, that is, we identify a prin
ipal with the set of resour
es to

whi
h it has a

ess. We use p and P to range over prin
ipals and over sets thereof,

respe
tively. We write nobody for the empty privilege set, that is, for the prin
ipal

with no a

ess rights. For typing purposes, we shall require every set of resour
es

to be either �nite or
o�nite (Se
tion 5.3).

The reader may be somewhat puzzled by the fa
t that both p and R range over

sets of resour
es. The
hoi
e of notation is intended to re
e
t the manner in whi
h

a set of resour
es is obtained. On the one hand, the notation p represents the set of

resour
es asso
iated (via an impli
it a

ess rights matrix) with some prin
ipal name,

found in the
ode. On the other hand, the notation R represents an arbitrary set of

resour
es and may be the result of a
omputation involving union and interse
tion

operations. In other words, p represents what Fournet and Gordon refer to as a

\stati
" set of privileges, while R represents a \dynami
" set of privileges.

The grammar of �

se

is given in Fig. 1. An abstra
tion �x z:�x:f may re
ursively

refer to itself through the program variable z. (This
on
ation of the �x and �

binders simpli�es the treatment of re
ursion.) We write �x:f when z does not

appear free in f . The let form does not make the untyped
al
ulus more expressive;

instead, as in ML, it is used by the type system to determine where polymorphism

may be introdu
ed. A signed expression p:e behaves as the expression e endowed

with the authority of prin
ipal p. The body of every �-abstra
tion is required to

be a signed expression { thus, every pie
e of
ode must be vou
hed for by some

prin
ipal. The
onstru
t enable r in e allows an authorized prin
ipal to enable the

use of a resour
e r within the expression e. The
onstru
t
he
k r then e asserts that

the use of r is
urrently enabled. If r is indeed enabled, e is evaluated; otherwise,

exe
ution fails. The
onstru
t test r then e

1

else e

2

dynami
ally tests whether r is

enabled, bran
hing to e

1

or e

2

if this holds or fails, respe
tively. Versions of enable,

he
k, and test that bear on a set of resour
es R, as opposed to a single resour
e r,

may be later introdu
ed as synta
ti
 sugar.

2.1 Sta
k Inspe
tion

The JDK determines whether a resour
e is enabled by literally examining the run-

time sta
k, hen
e the name sta
k inspe
tion. We give a simple spe
i�
ation of

this pro
ess by noti
ing that sta
ks are impli
itly
ontained in evaluation
ontexts,

whose grammar is de�ned in Fig. 1. Indeed, a
ontext de�nes a path from the

term's root down to its a
tive redex, along whi
h one �nds exa
tly the se
urity

annotations whi
h the JDK would maintain on the sta
k, that is,
ode owners p

and enabled resour
es r.

To formalize this idea, we asso
iate to every evaluation
ontext E a �nite string

jE j of prin
ipals and resour
es,
alled a sta
k. The right-most letters in the string

orrespond to the most re
ent sta
k frames. We write � for the empty sta
k and

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 � Fran�
ois Pottier et al.

r 2 p S ` r

S:p ` r

S ` r

S:r

0

` r

S `

�

r

S:r ` r

S `

�

r

S:r

0

`

�

r

r 2 p

S:p `

�

r

Fig. 2. Ba
kward sta
k inspe
tion algorithm

nobody;?; S ` R

r 2 R

S ` r

p;R; � ` R

p

0

; R \ p

0

; S ` R

0

p;R; p

0

:S ` R

0

p;R [(frg \ p); S ` R

0

p;R; r:S ` R

0

Fig. 3. Forward sta
k inspe
tion algorithm

S

1

:S

2

for the
on
atenation of the sta
ks S

1

and S

2

.

j[℄j = � jE ej = jE j

jv E j = jE j jletx = E in ej = jE j

jenable r inE j = r:jE j jp:E j = p:jE j

We
an now de�ne a \sta
k inspe
tion" algorithm. We give two variants of it,

a ba
kward (Fig. 2) and a forward one (Fig. 3). Both are de�ned in terms of a

judgement of the form S ` r, whi
h may be read: inspe
ting the sta
k S to
he
k

privilege r su

eeds. The former algorithm s
ans the sta
k, starting with the most

re
ent frames, then moving towards their an
estors. The latter, on the other hand,

s
ans the sta
k in the order it was built. Furthermore, its formulation is altered so

that it internally
omputes not only whether a

ess to a given resour
e r is legal, but

also the set of all resour
es whi
h may be legally a

essed given the
urrent sta
k.

These algorithms are referred to as lazy and eager, respe
tively, by Gong [Gong and

S
hemers 1998; Gong 1998℄. While the former is employed by most
urrent JVM

implementations, the latter forms the basis of the se
urity-passing style [Walla
h

1999℄ translation whi
h we will introdu
e in Se
t. 4.

The following theorem states that forward and ba
kward sta
k inspe
tion are

in fa
t equivalent. This initial result is later used to establish the
orre
tness of

se
urity-passing style (Theorem 2). Subsequently, we will write S ` r without

spe
ifying whi
h of the two algorithms is being used. We will also write E ` r for

jE j ` r.

Theorem 1. Assume given a sta
k S and a resour
e r. Let P stand for the set

of all prin
ipals that
ontain r. Then, the following three statements are equivalent:

(1) S ` r holds a

ording to the rules of Fig. 2;

(2) S ` r holds a

ording to the rules of Fig. 3;

(3) some suÆx of S belongs to the regular language PR

?

r(P j R)

?

.

Proof. We begin by proving that the �rst statement is equivalent to the third

one. First,
he
k that the auxiliary judgement S `

�

r holds if and only if some

suÆx of S belongs to PR

?

. Then,
he
k that S ` r holds, a

ording to the rules of

Fig. 2, if and only if some suÆx of S belongs to the regular language PR

?

r(P j R)

?

.

Ea
h of these
he
ks is immediate.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 7

We now prove that the se
ond statement is equivalent to the third one. Let A

(resp. B, resp. C) be the set of sta
ks S su
h that 9R

0

3 r p;R; S ` R

0

for some

(or, equivalently, for all) p, R su
h that p 63 r ^ R 63 r (resp. p 3 r ^ R 63 r, resp.

p 3 r ^R 3 r). It is straightforward to
he
k that, a

ording to the last three rules

in Fig. 3, A, B and C are the least solutions to the following re
ursive equations:

A ::= P:B j (P n P):A j R:A

B ::= P:B j (P n P):A j r:C j (R n frg):B

C ::= � j (P n P):A j (P j R):C

An indu
tive argument shows that A � B � C holds. Then, through a few rewriting

steps, one
an bring the equations into a form where it is evident that A is exa
tly

(P j R)

?

PR

?

r(P j R)

?

. We do not give the details. In prin
iple, the
he
k
an

be me
hanized by verifying that the minimal deterministi
 �nite automaton (over

the 4-symbol alphabet frg, R n frg, P and P n P) asso
iated with this regular

expression is exa
tly the one des
ribed by the above equations. There remains to

on
lude by noti
ing that, a

ording to the �rst rule in Fig. 3, S ` r holds if and

only if S 2 A.

2.2 Operational Semanti
s for �

se

The operational semanti
s of �

se

is de�ned by the following redu
tion rules:

E[(�x z:�x:f) v℄ ! E[f [v=x℄[�x z:�x:f=z℄℄

E[letx = v in e℄ ! E[e[v=x℄℄

E[
he
k r then e℄ ! E[e℄ if E ` r

E[test r then e

1

else e

2

℄ ! E[e

1

℄ if E ` r

E[test r then e

1

else e

2

℄ ! E[e

2

℄ if :(E ` r)

E[enable r in v℄ ! E[v℄

E[p:v℄ ! E[v℄

The evaluation
ontext E is made expli
it in every rule, whi
h allows looking it

up when needing to perform se
urity
he
ks. Note that it is not the
ase that

e ! e

0

implies E[e℄ ! E[e

0

℄. Indeed, en
losing e within a new evaluation
ontext

E enables more privileges, possibly
ausing tests of the form test r then e

1

else e

2

to

be resolved di�erently.

The �rst two rules are standard. The next rule allows
he
k r then e to redu
e

into e only if sta
k inspe
tion su

eeds (as expressed by the side
ondition E ` r);

otherwise, exe
ution is blo
ked. The following two rules use sta
k inspe
tion in a

similar way to determine how to redu
e test r then e

1

else e

2

; however, they never

ause exe
ution to fail. The last two rules state that se
urity annotations be
ome

unne
essary on
e the expression they en
lose has been redu
ed to a value. In a

Java virtual ma
hine, these rules would be implemented simply by popping sta
k

frames (and the se
urity annotations they
ontain) after exe
uting a method.

This operational semanti
s
onstitutes a
on
ise, formal des
ription of Java sta
k

inspe
tion in a higher-order setting. It is easy to
he
k that every
losed term

either is a value, or is redu
ible, or is of the form E[
he
k r then e℄ where :(E ` r).

Terms of the third
ategory are stu
k ; they represent a

ess
ontrol violations. An

expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is a stu
k expression,

holds.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 � Fran�
ois Pottier et al.

e ::= x j v j e e j let x = e in e expressions

v ::= �x z:�x:e j R j :

r

j ?

r

j _

R

j ^

R

values

E ::= [℄ j E e j v E j let x = E in e evaluation
ontexts

Fig. 4. Grammar for �

set

JxK

p

= x

J�x z:�x:fK

p

= �x z:�x:�s:JfK

Je

1

e

2

K

p

= Je

1

K

p

Je

2

K

p

s

Jletx = e

1

in e

2

K

p

= letx = Je

1

K

p

in Je

2

K

p

Jenable r in eK

p

= let s = s _ (frg \ p) in JeK

p

J
he
k r then eK

p

= let = s:r in JeK

p

Jtest r then e

1

else e

2

K

p

= s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

)

JfK

p

= JfK

Jp:eK = let s = s ^ p in JeK

p

Fig. 5. Sour
e-to-Target Translation

3. THE TARGET CALCULUS �

set

We now de�ne a standard
al
ulus, �

set

, to be used as the target of our translation.

It is a �-
al
ulus equipped with a number of
onstants whi
h provide set operations,

and is given in Fig. 4. We will use e:r, e?r, e_R and e ^R as synta
ti
 sugar for

(:

r

e), (?

r

e), (_

R

e) and (^

R

e), respe
tively.

The
onstant R represents a
onstant privilege set. The
onstru
t e:r asserts that

r is an element of the set denoted by e; its exe
ution fails if that is not the
ase. The

onstru
t e_R (resp. e^R) allows
omputing the union (resp. interse
tion) of the

set denoted by e with a
onstant set R. Lastly, the expression e?r x y dynami
ally

tests whether r belongs to the set R denoted by e, and a

ordingly invokes x or y,

passing R to it. The operational semanti
s for �

set

is as follows:

(�x z:�x:e) v ! e[v=x℄[�x z:�x:e=z℄

letx = v in e ! e[v=x℄

R:r ! R if r 2 R

R?r ! �x:�y:(xR) if r 2 R

R?r ! �x:�y:(y R) if r 62 R

R

1

_ R

2

! R

1

[R

2

R

1

^ R

2

! R

1

\R

2

E[e℄ ! E[e

0

℄ if e! e

0

Again, an expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is a stu
k

expression, holds.

4. SOURCE-TO-TARGET TRANSLATION

4.1 De�nition

A translation of �

se

into �

set

is de�ned in Fig. 5. The distinguished identi�ers s and

are assumed not to appear in sour
e expressions. Noti
e that s may appear free

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 9

in translated expressions. Translating an (unsigned) expression requires spe
ifying

the
urrent prin
ipal p.

One will often wish to translate an expression under minimal hypotheses, i.e.

under the prin
ipal nobody and a void se
urity
ontext. To do so, we de�ne L e M =

JeK

nobody

[?=s℄. Noti
e that s does not appear free in L e M. If e is
losed, then so is

L e M.

The idea behind the translation is simple: the variable s is bound at all times

to the set of
urrently enabled resour
es. Every fun
tion a

epts s as an extra

parameter, be
ause it must exe
ute within its
aller's se
urity
ontext. As a result,

every fun
tion
all has s as its se
ond parameter. The
onstru
ts enable r in e and p:e

ause s to be lo
ally bound to a new value, re
e
ting the new se
urity
ontext; more

spe
i�
ally, the former enables r, while the latter disables all privileges not available

to p. The
onstru
ts
he
k r then e and test r then e

1

else e

2

are implemented simply

by looking up the
urrent value of s. In the latter, s is re-bound, within ea
h

bran
h, to the same value. This may appear super
uous at �rst sight, but has

an important impa
t on typing, be
ause it allows s to be given a di�erent (more

pre
ise) type within ea
h bran
h.

This translation
an be viewed as a generalization of the se
urity-passing style

transformation [Walla
h 1999; Walla
h et al. 2000℄ to a higher-order setting. While

Walla
h et al. advo
ated this idea as an implementation te
hnique, with eÆ
ien
y

in mind, we use it only as a vehi
le in the proof of our type systems. Here, eÆ-

ien
y is not at stake: it is suÆ
ient that the translation s
heme be
orre
t. The

next se
tion is devoted to proving this (in addition to its utility for our te
hni
al

purposes, it is the �rst formal
orre
tness result for se
urity-passing style).

One should point out that this
orre
tness proof is made ne
essary only by the

fa
t that we
hose to de�ne the semanti
s of �

se

at the sour
e level (se
tion 2.2).

If, instead, we had
hosen to
onsider the se
urity-passing style translation as a

de�nition of �

se

's semanti
s, then no proof would be ne
essary. Banerjee and

Naumann [Banerjee and Naumann 2001℄ follow the latter approa
h, by giving a

denotational semanti
s whi
h in
orporates the se
urity-passing style translation.

4.2 Properties

A basi
 property of the translation is that s never appears free in the translation

of a value. Furthermore, the translation of a value does not depend on the
urrent

prin
ipal, so we write JvK instead of JvK

p

.

For the purposes of our proofs, we need to isolate a parti
ular sub-
lass of target

language redu
tions, whi
h we wish to view as \administrative" (in a sense to be

explained later). Let !

s

be the subset of !

?

de�ned by

a ::= R j a _R j a ^R

let s = a in e !

s

e[R=s℄ if a!

?

R

E[e℄ !

s

E[e

0

℄ if e!

s

e

0

Our �rst lemma expresses the fa
t that the translation implements the forward

sta
k inspe
tion algorithm. It states that if p;R;E ` R

0

holds (as per the rules

of Fig. 3), then evaluating JE[e℄K

p

in a
ontext where s is bound to R leads to

evaluating JeK

p

0

, for some p

0

, in a
ontext where s is bound to R

0

. Furthermore,

this is a purely administrative redu
tion sequen
e. That is, it only a�e
ts the

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 � Fran�
ois Pottier et al.

se
urity
ontext, and does not re
e
t any
omputational steps apparent in the

original program. The proof of the lemma presents no diÆ
ulty, be
ause of the

lose similarity between the de�nitions of the translation fun
tion and of the sta
k

inspe
tion algorithm.

Lemma 1. Assume p;R; S ` R

0

and S = jE j. Then, there exist a (target)

evaluation
ontext E

0

and a prin
ipal p

0

su
h that, for every sour
e expression e,

JE[e℄K

p

[R=s℄!

?

s

E

0

[JeK

p

0

[R

0

=s℄℄

Proof. By indu
tion over the stru
ture of E. Let � and �

0

stand for the substi-

tutions [R=s℄ and [R

0

=s℄, respe
tively.

Case E = [℄. Then, S = � and R = R

0

. Thus, pi
king E

0

= [℄ and p

0

= p trivially

satis�es our requirement.

Case E = E

1

e

1

. Then,

JE[e℄K

p

� = JE

1

[e℄K

p

� Je

1

K

p

� R

Furthermore, the indu
tion hypothesis, applied to E

1

, yields E

0

1

and p

0

su
h that

JE

1

[e℄K

p

� !

?

s

E

0

1

[JeK

p

0

�

0

℄. So, pi
king E

0

= E

0

1

Je

1

K

p

� R �ts the bill.

Case E = v E

1

. This
ase is similar to the previous one. Apply the indu
tion

hypothesis to obtain E

0

1

and p

0

. Then, pi
k E

0

= JvK E

0

1

R. (E

0

is indeed an

evaluation
ontext, be
ause JvK is a value.)

Case E = letx = E

1

in e

1

. This
ase is also similar. Apply the indu
tion hypoth-

esis to obtain E

0

1

and p

0

. Then, pi
k E

0

= letx = E

0

1

in Je

1

K

p

�.

Case E = enable r inE

1

. Then, S = r:S

1

, where S

1

= jE

1

j. Thus, from p;R; S `

R

0

, we may dedu
e p;R

1

; S

1

` R

0

, where R

1

stands for R [(frg \ p). De�ne

�

1

= [R

1

=s℄. Then,

JE[e℄K

p

� = let s = R _ (frg \ p) in JE

1

[e℄K

p

!

s

JE

1

[e℄K

p

�

1

Applying the indu
tion hypothesis to E

1

yields E

0

1

, p

0

su
h that JE

1

[e℄K

p

�

1

!

?

s

E

0

1

[JeK

p

0

�

0

℄. So, pi
king E

0

= E

0

1

meets our goal.

Case E = p

1

:E

1

. Then, S = p

1

:S

1

, where S

1

= jE

1

j. Thus, from p;R; S ` R

0

, we

may dedu
e p

1

; R

1

; S

1

` R

0

, where R

1

stands for R\ p

1

. De�ne �

1

= [R

1

=s℄. Then,

JE[e℄K

p

� = let s = R ^ p

1

in JE

1

[e℄K

p

1

!

s

JE

1

[e℄K

p

1

�

1

Applying the indu
tion hypothesis to E

1

yields E

0

1

, p

0

su
h that JE

1

[e℄K

p

1

�

1

!

?

s

E

0

1

[JeK

p

0

�

0

℄. So, pi
king E

0

= E

0

1

meets our goal.

We now
ome to our
entral lemma, stating that, if a sour
e expression e leads, in

one
omputation step, to a sour
e expression e

0

, then the translation of e redu
es,

modulo administrative redu
tions, to the translation of e

0

.

Lemma 2. e ! e

0

implies L e M !

?

�

?

s

 L e

0

M. Furthermore, if the redu
tion

e! e

0

is a �-redu
tion step, then the redu
tion sequen
e L e M!

?

� involves at least

one �-redu
tion step.

Proof. The assertion e ! e

0

must be an instan
e of one of the redu
tion rules

that de�ne the operational semanti
s (Se
tion 2.2), all of whi
h are of the form

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 11

E[e

0

℄! E[e

0

0

℄. Thus, there exist E, e

0

, and e

0

0

su
h that e is E[e

0

℄ and e

0

is E[e

0

0

℄

and e

0

, e

0

0

have the shape required by one of the redu
tion rules.

Let S = jE j. There exists a unique R su
h that nobody;?; S ` R. Clearly, for

any resour
e r, E ` r is equivalent to r 2 R. De�ne � = [R=s℄. A

ording to

Lemma 1, there exist an evaluation
ontext E

0

and a prin
ipal p su
h that, for any

sour
e expression e,

LE[e℄ M!

?

s

E

0

[JeK

p

�℄

Assume, for the time being, that Je

0

K

p

� !

?

Je

0

0

K

p

� holds. Then, we have

L e M = LE[e

0

℄ M !

?

s

E

0

[Je

0

K

p

�℄

!

?

E

0

[Je

0

0

K

p

�℄

?

s

 LE[e

0

0

℄ M = L e

0

M

whi
h is the desired result. Hen
e, there only remains to prove Je

0

K

p

� !

?

Je

0

0

K

p

�,

whi
h we now do, by
ases on the form of e

0

and e

0

0

. By de�nition of e

0

and e

0

0

,

there is one
ase per redu
tion rule.

Case e

0

= (�x z:�x:f) v, e

0

0

= f [v=x℄[�x z:�x:f=z℄. Then,

Je

0

K

p

� = J(�x z:�x:f) vK

p

�

= (J�x z:�x:fK JvK s)�

= (�x z:�x:�s:JfK) JvKR be
ause s
annot appear free in values

!

2

JfK[JvK=x℄[J�x z:�x:fK=z℄�

= Jf [v=x℄[�x z:�x:f=z℄K� by a straightforward auxiliary lemma

= Je

0

0

K

p

�

The auxiliary lemma mentioned above takes advantage of the fa
t that the trans-

lation of a value JvK

p

does not depend upon the parameter p. We omit its proof.

Case e

0

= letx = v in e

1

, e

0

0

= e

1

[v=x℄. Then,

Je

0

K

p

� = Jletx = v in e

1

K

p

�

= letx = JvK in Je

1

K

p

� be
ause s is not free in JvK

! Je

1

K

p

�[JvK=x℄

= Je

1

K

p

[JvK=x℄�

= Je

1

[v=x℄K

p

� by the same auxiliary lemma

= Je

0

0

K

p

�

Case e

0

= enable r in v, e

0

0

= v. Then,

Je

0

K

p

� = Jenable r in vK

p

� = let s = R _ (frg \ p) in JvK

!

2

JvK = Je

0

0

K

p

�

Again, we take advantage of the fa
t that s does not o

ur free in JvK.

Case e

0

=
he
k r then e

1

, e

0

0

= e

1

. We must have E ` r, hen
e r 2 R. Then,

Je

0

K

p

� = J
he
k r then e

1

K

p

� = let = R:r in Je

1

K

p

�

!

2

Je

1

K

p

� be
ause r 2 R

= Je

0

0

K

p

�

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 � Fran�
ois Pottier et al.

Case e

0

= test r then e

1

else e

2

. Then, e

0

0

equals e

i

, where i = 1 if E ` r (or,

equivalently, if r 2 R), and i = 2 otherwise. Thus, we have

Je

0

K

p

� = Jtest r then e

1

else e

2

K

p

� = R?r (�s:Je

1

K

p

) (�s:Je

2

K

p

)

!

3

(�s:Je

i

K

p

)R

! Je

i

K

p

� = Je

0

0

K

p

�

Case e

0

= p

1

:v, e

0

0

= v. Then,

Je

0

K

p

� = Jp

1

:vK

p

� = let s = R ^ p

1

in JvK

!

2

JvK = Je

0

0

K

p

�

Again, we take advantage of the fa
t that s does not o

ur free in JvK

p

, and of the

fa
t that this expression does not depend on p.

This result is easily generalized to redu
tion sequen
es of arbitrary length:

Lemma 3. e !

?

e

0

implies L e M !

?

�

?

s

 L e

0

M. Furthermore, if the redu
tion

sequen
e e!

?

e

0

involves k �-redu
tion steps, then the redu
tion sequen
e L e M!

?

�

involves at least k �-redu
tion steps.

Proof. By indu
tion on the length of the redu
tion sequen
e e !

?

e

0

. In the

base
ase, we have e = e

0

, and the result is immediate. In the indu
tive
ase, we

have e ! e

1

!

?

e

0

. By applying Lemma 2, on the one hand, and the indu
tion

hypothesis, on the other hand, we obtain

L e M!

?

�

?

s

 L e

1

M!

?

�

?

s

 L e

0

M

where the number of �-redu
tion steps in the sequen
es L e M!

?

� and L e

1

M!

?

� is at

least as high as in the sour
e redu
tion sequen
es e! e

1

and e

1

!

?

e

0

, respe
tively.

Be
ause the operational semanti
s of the target language is deterministi
, one of

the two redu
tion sequen
es starting at L e

1

M above must be a sub-sequen
e of the

other. In either
ase, the diagram
ollapses down to

L e M!

?

�

?

s

 L e

0

M:

Furthermore, be
ause �-redu
tion is not an administrative redu
tion, the number

of �-redu
tion steps in the sequen
e L e M !

?

� is at least as high as in the original

redu
tion sequen
e e!

?

e

0

.

As a
orollary, we obtain a soundness theorem for the translation. It essen-

tially states that se
urity-passing style is a valid implementation of the Java sta
k

inspe
tion dis
ipline.

Theorem 2. If e!

?

v, then L e M!

?

L v M. If e goes wrong, then L e M goes wrong.

If e diverges, then L e M diverges.

Proof. First, assume e redu
es to a value v. Then, Lemma 3 yields L e M !

?

�

?

s

 L v M. Be
ause L v M is a value, this diagram
ollapses down to L e M!

?

L v M.

Se
ond, assume e goes wrong. Then, e!

?

e

0

, where e

0

is stu
k, holds. We prove

that L e M goes wrong by indu
tion on the length of this redu
tion sequen
e.

In the base
ase, we have e = e

0

, i.e. e is stu
k. So, e must be of the form

E[
he
k r then e

1

℄, where :(E ` r). Let S = jE j. There exists a unique R

0

su
h

that nobody;?; S ` R

0

. Ne
essarily, r 62 R

0

. A

ording to Lemma 1, L e M may be

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 13

hm-Var

�(x) = � C
 �

C;� ` x : �

hm-Const

C;� `
 : �(
)

hm-Sub

C;� ` e : � C
 � � �

0

C;� ` e : �

0

hm-8 Intro

C ^D;� ` v : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` v : 8��[D℄:�

hm-8 Elim

C;� ` v : 8��[D℄:� C
 [��=��℄D

C;� ` v : [��=��℄�

hm-Abs

C; (�; x : � ; z : � ! �

0

) ` e : �

0

C;� ` �x z:�x:e : � ! �

0

hm-App

C;� ` e

1

: �

2

! � C;� ` e

2

: �

2

C;� ` e

1

e

2

: �

hm-Let

C;� ` v : � C; (�;x : �) ` e : �

C;� ` let x = v in e : �

Fig. 6. The system HM(X)

redu
ed to a term of the form E

0

[J
he
k r then e

1

K

p

0

�

0

℄, where �

0

= [R

0

=s℄. It is easy

to
he
k that su
h a term is stu
k. Hen
e, L e M goes wrong.

In the indu
tive
ase, we have e ! e

1

!

?

e

0

. Our indu
tion hypothesis shows

that L e

1

M goes wrong. Furthermore, Lemma 2 shows that L e M redu
es to some

redu
t of L e

1

M. Be
ause redu
tion is deterministi
, L e M must go wrong as well.

The result follows.

Third, assume e admits an in�nite redu
tion sequen
e. This sequen
e must

involve an in�nite number of �-redu
tion steps, be
ause the semanti
s of �

se

,

deprived of the �-redu
tion rule, is terminating. By Lemma 3, L e M admits an

in�nite redu
tion sequen
e as well.

5. TYPES FOR �

set

We de�ne a type system for the target
al
ulus as an instan
e of the paramet-

ri
 framework HM(X) [Odersky et al. 1999; Sulzmann 2000; Skalka and Pottier

2002℄. HM(X) is a generi
 type system in the Hindley-Milner tradition, parame-

terized by an abstra
t
onstraint system X. Se
t. 5.1 brie
y re
alls its de�nition.

Se
t. 5.2 de�nes a spe
i�

onstraint system
alled SETS, yielding the type system

HM(SETS). Se
t. 5.3 extends HM(SETS) to the entire language �

set

, by assigning

types to its primitive operations. Se
t. 5.4 states type safety results and dis
usses

several
hoi
es for our type system, whi
h may be de�ned as either a uni�
ation-

or
onstraint-based system, and whi
h is
exible with respe
t to the a

ura
y of

initial type bindings.

5.1 The System HM(X)

We adopt the de�nition of HM(X) given in [Skalka and Pottier 2002℄. The frame-

work is parameterized by a
onstraint system X, i.e. by notions of types � ,
on-

straints C, and interpretation of
onstraints in a model.

Given a
onstraint system, a type s
heme is a triple of a set of quanti�ers ��,

a
onstraint C, and a type � (whi
h, in this paper, must be of kind Type ; see

Se
t. 5.2), written � ::= 8��[C ℄:� . A type environment � is a partial mapping of

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 � Fran�
ois Pottier et al.

� ::= �; �; : : : j � ! � j f�g j r : � ; � j �� j
 types

 ::= ? j Pre j Abs j > presen
e
onstru
tors

C ::= true j C ^ C j 9�:C j � = � j � � �
onstraints

j if
 � � then � � � (
 6= ?)

Fig. 7. SETS Grammar

� 2 V

k

� : k

�; �

0

: Type

� ! �

0

: Type

� : Row

?

f�g : Type

� : Pres r 62 R

�

0

: Row

R[frg

(r : � ; �

0

) : Row

R

� : Pres

�� : Row

R

 : Pres

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9�:C

�; �

0

: k

` � = �

0

` � � �

0

�; �

0

; �

00

: k k 6= Type

` if
 � � then �

0

� �

00

Fig. 8. Kinding rules

program variables to type s
hemes. A judgement is a quadruple of a
onstraint C ,

a type environment �, an expression e and a type s
heme �, written C;� ` e : �,

derivable using the rules of Fig. 6. These rules
orrespond to those given in [Skalka

and Pottier 2002℄, less the rules relevant to stateful features, whi
h are not needed

in this presentation. Note that via the hm-Const rule, populating � with initial

bindings allows typing new language
onstants in parti
ular instan
es of HM(X).

In the
ase of �

set

,
 will range over the four primitive operators :

r

, _

R

, ^

R

and ?

r

.

The following synta
ti
 type safety theorem, in the style of [Wright and Felleisen

1994℄, is proven in [Skalka and Pottier 2002℄. Signi�
antly, the theorem holds with

respe
t to a
all-by-value �-
al
ulus with let in any instan
e of HM(X), and the

theorem may be easily extended to in
orporate additional
onstants by proving

soundness of initial bindings with respe
t to the semanti
s of fun
tional
onstants,

the so-
alled Æ-typability property.

Theorem 3. If C;? ` e : � holds and C is satis�able, then e does not go wrong.

We dis
uss Æ-typability and type safety for �

set

more thoroughly in Se
t. 5.4.

5.2 The Constraint System SETS

In order to give pre
ise types to the primitive set operations in �

set

, we need spe
i�

types and
onstraints. Together with their logi
al interpretation, whi
h de�nes their

meaning, these form a
onstraint system
alled SETS.

The syntax of types and
onstraints is de�ned in Fig. 7. The type language

features four so-
alled presen
e
onstru
tors, two standard row
onstru
tors [R�emy

1992b℄, and a set type
onstru
tor f�g.

Presen
e types are used to re
ord whether a resour
e r appears in a privilege set.

Pre means r is known to appear in the set, while Abs means r is known not to

appear in it. Of
ourse, our analysis is sometimes approximate: > means that it is

not known whether r is a member of the set. Lastly,
on
erns of eÆ
ien
y of type

inferen
e
all for a fourth presen
e
onstru
tor ?, whi
h, roughly speaking, means

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 15

that it is irrelevant whether r appears in the set, be
ause the
ode that requires

this privilege test is unrea
hable. In addition to these four
onstants, a presen
e

type
an also be a variable.

To des
ribe the
ontents of a set, we use rows of presen
e types. A row is a

�nite des
ription of an in�nite obje
t, namely a (possibly partial) fun
tion from

resour
e names to presen
e types. More pre
isely, a row des
ribes a fun
tion that

maps almost all resour
es in its domain (i.e. all but a �nite number of them) to

the same type. Rows
an be formed using two basi
 building blo
ks. First, the row

onstru
tor � allows forming
onstant rows: if � is a presen
e type, then �� is a row

that maps all resour
es in its domain to � . Se
ond, the row
onstru
tor (r : � ; �)

allows adding an entry to an existing row: (r : �

1

; �

2

) is a row that maps r to the

presen
e type �

1

and otherwise behaves as the row �

2

. Lastly, a row
an also be a

variable. The original presentations of rows [R�emy 1992b; 1994℄ equip row types

with an equational theory, whi
h, in parti
ular, allows row entries to
ommute. In

our presentation, these equations are not axioms; they simply happen to hold in

our interpretation of types (given below).

A whole set is des
ribed by a row � whose domain is R, wrapped within the set

type
onstru
tor, yielding a type of the form f�g. To determine whether a parti
ular

resour
e r appears in the set, one queries the row � at r, yielding a presen
e type.

Su
h a query is
arried out by unifying � against (r :
 ; �), where
 and � are fresh

presen
e and row variables, respe
tively. For instan
e, the singleton set frg is one

(and the only) value of type fr : Pre ; �Absg. To determine whether a resour
e

s appears within that set, we solve the equation (r : Pre ; �Abs) = (s :
 ; �). If

r and s are distin
t, this leads to
 = Abs and � = (r : Pre ; �Abs), the former

of whi
h re
e
ts the fa
t that s does not belong to frg. This treatment of sets is

inspired by Wand and R�emy's treatment of re
ords: a set is, in fa
t, a degenerate

re
ord where every �eld has unit type.

The
onstraint language o�ers standard equality and subtyping
onstraints, as

well as a simple form of
onditional
onstraints. Their use will be illustrated in

Se
t. 5.3 and 7.2.

To ensure that only meaningful types and
onstraints
an be built, we immedi-

ately equip them with kinds, de�ned by:

k ::= Pres j Row

R

j Type

where R ranges over �nite subsets of R. Kinds allow distinguishing presen
e types,

rows, and (regular) types. Furthermore, kinds keep tra
k of every row's domain: a

row of kind Row

R

represents a fun
tion of domain RnR. In parti
ular, a
omplete

row, i.e. a total fun
tion from R to presen
e types, has kind Row

?

. For every

kind k, we assume given a distin
t, denumerable set of type variables V

k

. We

use �; �;
; : : : to represent type variables. From here on, we
onsider only well-

kinded types and
onstraints, as de�ned in Fig. 8. The purpose of these rules is to

guarantee that every
onstraint has a well-de�ned interpretation within our model,

whose de�nition follows.

To every kind k, we asso
iate a mathemati
al stru
ture JkK. JPresK is the set of

all four presen
e
onstru
tors. Given a �nite set of resour
es R � R, JRow

R

K is the

set of total, almost
onstant fun
tions from R n R into JPresK. JTypeK is the free

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 � Fran�
ois Pottier et al.

� ` true

� ` C

1

� ` C

2

� ` C

1

^ C

2

� = �

0

[�℄ �

0

` C

� ` 9�:C

�(�) = �(�

0

)

� ` � = �

0

�(�) � �(�

0

)

� ` � � �

0

�; �

0

; �

00

: Pres
 � �(�)) �(�

0

) � �(�

00

)

� ` if
 � � then �

0

� �

00

�; �

0

; �

00

: Row

R

8r 2 R n R
 � �(�)(r)) �(�

0

)(r) � �(�

00

)(r)

� ` if
 � � then �

0

� �

00

Fig. 9. Interpretation of
onstraints

algebra generated by the
onstru
tors!, with signature JTypeK�JTypeK! JTypeK,

and f�g, with signature JRow

?

K! JTypeK.

Ea
h of these stru
tures is then equipped with an ordering. Here, a
hoi
e has

to be made. If we do not wish to allow subtyping, we merely de�ne the ordering

on every JkK as equality. Otherwise, we pro
eed as follows. First, a latti
e over

JPresK is de�ned, whose least (resp. greatest) element is ? (resp. >), and where

Abs and Pre are in
omparable. This ordering is then extended, point-wise and

ovariantly, to every JRow

R

K. Finally, it is extended indu
tively to JTypeK by

viewing the
onstru
tor f�g as
ovariant, and the
onstru
tor ! as
ontravariant

(resp.
ovariant) in its �rst (resp. se
ond) argument. This gives rise to a so-
alled

stru
tural, atomi
 subtyping relation: that is, two related types may di�er only in

their presen
e annotations.

We may now give the interpretation of types and
onstraints within the model. It

is parameterized by a kind-preserving assignment �, i.e. a fun
tion whi
h, for every

kind k, maps V

k

into JkK. The interpretation of types is obtained by extending �

so as to map every type of kind k to an element of JkK, as follows:

�(� ! �

0

) = �(�)! �(�

0

) �(f�g) = f�(�)g

�(r : � ; �

0

)(r) = �(�) �(r : � ; �

0

)(r

0

) = �(�

0

)(r

0

) (r 6= r

0

)

�(��)(r) = �(�) �(
) =

Noti
e how the interpretation of the two row
onstru
tors re
e
ts the informal ex-

planation given above, and validates the expe
ted equational theory. Fig. 9 de�nes

the
onstraint satisfa
tion predi
ate � ` �, whose arguments are an assignment �

and a
onstraint C. (The notation � = �

0

[�℄ means that � and �

0

oin
ide ex
ept

possibly on �.) This de�nition is standard. The last rule spe
i�es that a
ondi-

tional
onstraint whose
omponents are rows is to be interpreted point-wise, that

is, as an (in�nite)
onjun
tion of
onditional
onstraints bearing on presen
e types.

Entailment is then de�ned as usual: C
 C

0

(read: C entails C

0

) holds i�, for every

assignment �, � ` C implies � ` C

0

.

We refer to the type and
onstraint logi
, together with its interpretation, as

SETS. More pre
isely, we have de�ned two logi
s, where � is interpreted as either

equality or as a non-trivial subtype ordering. We will refer to them as SETS

=

and

SETS

�

, respe
tively.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 17

5.3 Dealing with the Primitive Operations in �

set

The typing rules of HM(X)
over only the �-
al
ulus with let. To extend HM(SETS)

to the whole language �

set

, we must assign types to its primitive operations. Let

us de�ne an initial type environment �

1

as follows:

R : fR : Pre ; �Absg

:

r

: 8�:fr : Pre ; �g ! fr : Pre ; �g

_

R

: 8��
:fR : �
 ; �g ! fR : Pre ; �g

^

R

: 8��
:fR : �
 ; �g ! fR : �
 ; �Absg

?

r

: 8��
:fr :
 ; �g ! (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! �

We let �, �,
 range over type variables of kind Type , Row

?

, Pres , respe
tively. In

this de�nition and from here on, p and R range over �nite sets of resour
es only.

We exploit this restri
tion to de�ne the following
on
ise notation, whi
h is used

above: if R is fr

1

; : : : ; r

n

g, then R :
 stands for r

1

:
 ; : : : ; r

n

:
, and R : �
 stands

for r

1

:

1

; : : : ; r

n

:

n

. We note that it is possible to deal with
o�nite sets of

resour
es as well, by writing

�

R for R n R and by employing the following bindings

when R is
o�nite:

R : f

�

R : Abs ; �Preg

_

R

: 8��
:f

�

R : �
 ; �g ! f

�

R : �
 ; �Preg

^

R

: 8��
:f

�

R : �
 ; �g ! f

�

R : Abs ; �g

Co�nite sets of resour
es allow modeling prin
ipals that enjoy all privileges but a

�nite number. For the sake of simpli
ity and brevity, we deal with �nite sets of

resour
es only in the following, although, in pra
ti
e, dealing with both �nite and

o�nite sets does not raise any additional diÆ
ulty.

We may also use
onditional
onstraints to assign a more
exible type s
heme to

?

r

. Let �

2

be the initial type environment obtained by repla
ing the last binding

in �

1

with:

?

r

: 8��

�

�
[C℄:fr :
 ; �g ! (fr : Pre ; �

1

g ! �

1

)! (fr : Abs ; �

2

g ! �

2

)! �

where C = (if Pre �
 then � � �

1

) ^ (if Abs �
 then � � �

2

)

^ (if Pre �
 then �

1

� �) ^ (if Abs �
 then �

2

� �)

Here, the input and output of ea
h bran
h (represented by �

i

and �

i

, respe
tively)

are linked to the input and output of the whole
onstru
t (represented by � and �)

through
onditional
onstraints. Intuitively, this means that the se
urity require-

ments and the return type of a bran
h may be entirely ignored unless the bran
h

seems liable to be taken. (For more ba
kground on
onditional
onstraints, the

reader is referred to [Aiken et al. 1994; Pottier 2000℄.)

5.4 The Type Systems S

rel

i

Se
t. 5.2 des
ribes two
onstraint systems, SETS

=

and SETS

�

. Se
t. 5.3 de�nes

two initial typing environments, �

1

and �

2

. These
hoi
es give rise to four related

type systems, whi
h we refer to as S

rel

i

, where rel and i range over f=;�g and

f1; 2g, respe
tively. Ea
h of them o�ers a di�erent
ompromise between a

ura
y,

readability and
ost of analysis. In ea
h
ase, Theorem 3 may be extended to the

entire language �

set

by proving a simple Æ-typability [Wright and Felleisen 1994℄

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 � Fran�
ois Pottier et al.

lemma, i.e. by
he
king that �

i

orre
tly des
ribes the behavior of the primitive

operations. This is the subje
t of the next se
tion.

Despite sharing a
ommon formalism, these systems may
all for vastly di�erent

implementations. Indeed, every instan
e of HM(X) must
ome with a
onstraint

solving algorithm. S

=

1

is a simple extension of the Hindley-Milner type system

with rows, and its
onstraint solver is row uni�
ation [R�emy 1992a℄. S

=

2

is sim-

ilar, but requires
onditional (i.e. delayed) uni�
ation
onstraints. S

�

1

and S

�

2

require solving (stru
tural) subtyping
onstraints, usually leading to more
omplex

implementations based on transitive
losure
omputations and on-the-
y
onstraint

simpli�
ations, see e.g. [Simonet 2003℄. A worst-
ase time bound for solving pos-

sibly
onditional subtyping
onstraints in the presen
e of rows is given in [Pottier

2003℄: it is
ubi
 in the size of the program and
lose to linear in the number of

resour
es that appear in the program, either individually or as part of a prin
ipal

p. In pra
ti
e, for all four systems, it is possible to design a
onstraint solver that

s
ales well.

One should also point out that, when the programming language is extended with

a me
hanism for de
laring the type of an expression (or, in Java, of a method), it is

ne
essary to be able to
he
k that the type inferred by the analysis for this expres-

sion mat
hes the de
laration. This requires an algorithm for de
iding
onstraint

entailment. In the setting of uni�
ation and of stru
tural subtyping, su
h algo-

rithms exist and are eÆ
ient. In the presen
e of
onditional
onstraints, however,

entailment be
omes a hard problem [Su and Aiken 2001℄, making the use of su
h

onstraints problemati
.

5.5 Proof of Æ-typability for �

set

Let us �rst state some basi
 properties of sets and set types, whose proofs are

omitted.

Lemma 4. Let v be a
losed value. If C;� ` v : f�g holds in S

rel

i

, then v is a

set R and C
 (R : Pre ; �Abs) � � .

Lemma 5. If C;� ` R : fR

0

: Pre ; �g holds in S

rel

i

, then R

0

� R.

Lemma 6. If C;� ` R : fR

0

: �� ; �g holds in S

rel

i

, then so do C;� ` R [R

0

:

fR

0

: Pre ; �g and C;� ` R \ R

0

: fR

0

: �� ; �Absg.

As mentioned in Se
t. 5.1, extending Theorem 3 to all of �

set

only requires proving

soundness of the initial bindings for the primitive operators. Let Æ(
; v) = v

0

if and

only if
 v ! v

0

. We state the so-
alled Æ-typability property in the style of [Skalka

and Pottier 2002℄:

Lemma 7. In every S

rel

i

, for every
onstant
 and
losed value v, if C;� `
 :

�

1

! �

2

and C;� ` v : �

1

hold, then Æ(
; v) is de�ned and C;� ` Æ(
; v) : �

2

holds.

Proof. Suppose C;� `
 : �

1

! �

2

and C;� ` v : �

1

. We
onsider two
ases:

�rst, the
ase where C;� `
 : �

1

! �

2

is obtained via hm-8 Elim and hm-Sub;

se
ond, the
ase where it is obtained via hm-8 Elim alone. A

ording to the

normalization result proved in [Skalka and Pottier 2002℄, this is enough.

In the �rst
ase, hm-Sub's premises are of the form C;� `
 : �

0

1

! �

0

2

(1) and

C
 �

0

1

! �

0

2

� �

1

! �

2

(2). By properties of �, (2) implies C
 �

1

� �

0

1

(3)

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 19

and C
 �

0

2

� �

2

(4). By assumption and hm-Sub, (3) implies C;� ` v : �

0

1

(5).

A

ording to the next
ase of the proof, (1) and (5) imply that Æ(
; v) is de�ned

and C;� ` Æ(
; v) : �

0

2

(6) holds. The result follows from (4) and (6) by hm-Sub.

Let us now
onsider the se
ond
ase. �

i

(
) is a type s
heme of the form

8��[D℄:�

0

1

! �

0

2

. Be
ause the derivation of C;� `
 : �

1

! �

2

onsists of a sin-

gle instan
e of hm-8 Elim, we have �

1

= '(�

0

1

) and �

2

= '(�

0

2

), where ' is a

substitution of domain �� and C
 '(D). We now pro
eed by
ase analysis on

and i:

Case
 = :

r

. In this
ase �

1

= �

2

= fr : Pre ; '�g. By Lemma 4, v is a

set R. By Lemma 5, we further obtain frg � R, hen
e Æ(:

r

; v) = v. The result

C;� ` Æ(
; v) : �

2

follows.

Case
 = _

R

. In this
ase �

1

= fR : '�
 ; '�g and �

2

= fR : Pre ; '�g.

By Lemma 4, v is a set R

0

, and Æ(_

R

; R

0

) = R [R

0

. Then, Lemma 6 yields

C;� ` Æ(
; v) : �

2

.

Case
 = ^

R

. In this
ase �

1

= fR : '�
 ; '�g and �

2

= fR : '�
 ; �Absg.

By Lemma 4, v is a set R

0

, and Æ(^

R

; R

0

) = R \ R

0

. Then, Lemma 6 yields

C;� ` Æ(
; v) : �

2

.

Case
 = ?

r

and i = 1. In this
ase �

1

= fr : '
 ; '�g and �

2

= (fr :

Pre ; '�g ! '�)! (fr : Abs ; '�g ! '�) ! '�. By Lemma 4, v is a set R, so

Æ(?

r

; v) is de�ned. Let us assume r 2 R (the other
ase is analogous). Then, Æ(?

r

; v)

is �x:�y:(xR). By Lemma 4, we have C
 (R : Pre ; �Abs) � (r : '
 ; '�).

This implies C
 (R : Pre ; �Abs) � (r : Pre ; '�) (we have simply made the

two rows agree at r). Be
ause C;� ` R : fR : Pre ; �Absg holds, hm-Sub yields

C;� ` R : fr : Pre ; '�g. From this fa
t, it is easy to derive C;� ` �x:�y:(xR) : �

2

.

Case
 = ?

r

and i = 2. In this
ase �

1

= fr : '
 ; '�g and �

2

= (fr :

Pre ; '�

1

g ! '�

1

) ! (fr : Abs ; '�

2

g ! '�

2

) ! '�. By Lemma 4, v is a

set R, so Æ(?

r

; v) is de�ned. Let us assume r 2 R (the other
ase is analogous).

Then, Æ(?

r

; v) is �x:�y:(xR). By Lemma 4, we have C
 (R : Pre ; �Abs) � (r :

'
 ; '�). This implies, in parti
ular, Pre � '
 (we have simply looked up the two

rows at r). Be
ause C
 '(D), and by de�nition of the satisfa
tion of
onditional

onstraints, we must then have C
 '� � '�

1

and C
 '�

1

� '�. Furthermore,

as in the previous
ase, we have C;� ` R : fr : Pre ; '�g. From these fa
ts, it is

easy to derive C;� ` �x:�y:(xR) : �

2

.

6. TYPES FOR �

se

6.1 Indire
t Type Systems

Se
t. 5 de�ned a type system, S

rel

i

, for �

set

. Se
t. 4 de�ned a translation of �

se

into �

set

. Composing the two automati
ally gives rise to a type system for �

se

,

also
alled S

rel

i

for simpli
ity, whose safety is a dire
t
onsequen
e of Theorems 2

and 3.

Definition 1. Let e be a �

se

expression. By de�nition, C;� ` e : � holds if

and only if C;� ` L e M : � holds.

Theorem 4. If C;? ` e : � holds and C is satis�able, then e does not go wrong.

Turning type safety into a trivial
orollary was the main motivation for bas-

ing our approa
h on a translation. Indeed, be
ause Theorem 2
on
erns untyped

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 � Fran�
ois Pottier et al.

Var

�(x) = �

p; &;� ` x : �

Abs

?; &

2

; (�; z : �

1

&

2

�! �

2

;x : �

1

) ` f : �

2

p; &

1

;� ` �x z:�x:f : �

1

&

2

�! �

2

App

p; &;� ` e

1

: �

2

&

�! � p; &;� ` e

2

: �

2

p; &;� ` e

1

e

2

: �

Let

p; &;� ` e

1

: � p; &; (�; x : �) ` e

2

: �

p; &;� ` letx = e

1

in e

2

: �

8 Intro

p; &;� ` e : � �� \ fv(&;�) = ?

p; &;� ` e : 8��:�

8 Elim

p; &;� ` e : 8��:�

p; &;� ` e : [��=��℄�

Enable Failure

p; f�g;� ` e : � r 62 p

p; f�g;� ` enable r in e : �

Enable Su

ess

p; fr : Pre ; �g;� ` e : � r 2 p

p; fr : ' ; �g;� ` enable r in e : �

Che
k

p; fr : Pre ; �g;� ` e : �

p; fr : Pre ; �g;� `
he
k r then e : �

Test

p; fr : Pre ; �g;� ` e

1

: � p; fr : Abs ; �g;� ` e

2

: �

p; fr : ' ; �g;� ` test r then e

1

else e

2

: �

Sign

p; fp : �' ; �Absg;� ` e : �

?; fp : �' ; �g;� ` p:e : �

Fig. 10. Typing rules for �

se

derived from S

=

1

terms, its proof is straightforward. (The Æ-typability lemma established in Se
t. 5.3

does involve types, but is very straightforward.) A dire
t type safety proof would

dupli
ate most of the steps involved in proving HM(X)
orre
t.

Although the above theorem only mentions type safety, it is possible to also

establish a subje
t redu
tion result for �

se

. Indeed, a

ording to Lemma 2, subje
t

redu
tion for �

se

follows dire
tly from subje
t redu
tion for �

set

and from the fa
t

that administrative expansion

s

 preserves types, whi
h is easy to
he
k.

6.2 Reformulation: Dire
t Type Systems

De�nition 1, although simple, is not a dire
t de�nition of typing for �

se

. But a

dire
t type system is desirable, for several reasons. First, given a dire
t type system,

it be
omes unne
essary to a
tually translate expressions down to �

set

. Also, with

a dire
t type system, more su

in
t and intuitive type and judgement forms
an be

adopted. Finally, understandable type error reporting is mu
h more feasible in a

dire
t type system. Therefore, we de�ne rules whi
h allow typing �

se

expressions

without expli
itly translating them into �

set

. These so-
alled dire
t or derived

rules
an be obtained in a rather systemati
 way from the de�nition of S

rel

i

and the

de�nition of the translation, making the dire
t type safety proof straightforward,

by appeal to the pre-existing result in �

set

and Theorem 2.

In these rules, the symbols � and & range over types of kind Type ; more spe
i�-

ally, & is used to represent some se
urity
ontext, i.e. a set of available resour
es.

The symbols � and ' range over types of kind Row

?

and Pres , respe
tively. The

? symbol in the rules stands for an arbitrary prin
ipal. In the sour
e-to-target

translation, all fun
tions are given an additional parameter, yielding types of the

form �

1

! & ! �

2

. To re
over the more familiar and appealing notation proposed

in [Skalka and Smith 2000℄, we de�ne the ma
ro �

1

&

�! �

2

=

def

�

1

! & ! �

2

.

Fig. 10 gives derived rules for S

=

1

, the simplest of our type systems. There, all

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 21

onstraints are equations. As a result, all type information
an be represented in

term form, rather than in
onstraint form [Sulzmann et al. 1999℄, provided types

are identi�ed modulo the (standard) equational theory for rows. We exploit this

fa
t to give a simple presentation of the derived rules. Type s
hemes have the form

8��:� , and judgements have the form p; &;� ` e : �. Although rule Enable Failure

naturally arises through the translation, it may be desirable, in pra
ti
e, to remove

it. Thus, any attempt to enable a privilege by a prin
ipal who does not own it

would result in an immediate stati
 type error.

Var

�(x) = � C
 �

p; &;C;� ` x : �

Sub

p; &;C;� ` e : � C
 � � �

0

p; &; C;� ` e : �

0

Abs

?; &

2

; C; (�; z : �

1

&

2

�! �

2

;x : �

1

) ` f : �

2

p; &

1

; C;� ` �x z:�x:f : �

1

&

2

�! �

2

App

p; &;C;� ` e

1

: �

2

&

�! � p; &; C;� ` e

2

: �

2

p; &; C;� ` e

1

e

2

: �

Let

p; &; C;� ` e

1

: � p; &; C; (�;x : �) ` e

2

: �

p; &; C;� ` letx = e

1

in e

2

: �

8 Intro

p; &;C ^D;� ` e : � �� \ fv(&; C;�) = ?

p; &;C ^ 9��:D;� ` e : 8��[D℄:�

8 Elim

p; &;C;� ` e : 8��[D℄:� C
 [��=��℄D

p; &; C;� ` e : [��=��℄�

Enable Failure

p; f�g; C;� ` e : � r 62 p

p; f�g; C;� ` enable r in e : �

Enable Su

ess

p; fr : Pre ; �g; C;� ` e : � r 2 p

p; fr : ' ; �g; C;� ` enable r in e : �

Che
k

p; fr : Pre ; �g; C;� ` e : �

p; fr : Pre ; �g; C;� `
he
k r then e : �

Test

p; fr : Pre ; �

1

g; C;� ` e

1

: �

1

p; fr : Abs ; �

2

g; C;� ` e

2

: �

2

C
 if Pre � ' then � � �

1

C
 if Abs � ' then � � �

2

C
 if Pre � ' then �

1

� � C
 if Abs � ' then �

2

� �

p; fr : ' ; �g; C;� ` test r then e

1

else e

2

: �

Sign

p; fp : �' ; �Absg; C;� ` e : �

?; fp : �' ; �g; C;� ` p:e : �

Fig. 11. Typing rules for �

se

derived from S

�

2

Figure 11 gives rules for the system derived from S

�

2

, the most
omplex element

in our array of type systems. Judgements have the form p; &; C;� ` e : �. The most

signi�
ant di�eren
es are the a

ura
y of the Test rule, re
e
ting the more pre
ise

binding for ?

r

in �

2

, and the addition of subtyping
onstraints.

Be
ause the system presented in Fig. 10 is based on uni�
ation, it is eÆ
ient,

easy to implement, and yields readable types. Also, we
onje
ture that, thanks to

the power of row polymorphism, it is
exible enough for many pra
ti
al uses (see

Se
t. 7). Therefore, we will fo
us on this system in the rest of this paper. We prove

that this system is
orre
t in Se
tion 6.3.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 � Fran�
ois Pottier et al.

6.3 Dire
t Type Corre
tness

In this se
tion we prove the
orre
tness of the type system derived from S

=

1

, that

is, we prove Lemma 11. We begin by proving soundness of the derived system with

respe
t to S

=

1

.

Lemma 8. p; &;� ` e : � implies true; (�; s : &) ` JeK

p

: �.

Proof. By stru
tural indu
tion on the derivation of p; &;� ` e : �. Let �

0

stand

for (�; s : &).

Case Var. In this
ase e is a variable x. Be
ause s is a distinguished variable, we

have x 6= s, so �(x) and �

0

(x)
oin
ide. Furthermore, JxK

p

is x. The result follows

by hm-Var.

CaseAbs. In this
ase e is �x z:�x:f , � is �

1

&

0

�! �

2

and p

0

; &

0

; (�; z : �;x : �

1

) ` f :

�

2

is derivable. By the indu
tion hypothesis, true; (�; z : �;x : �

1

; s : &

0

) ` JfK

p

0

: �

2

is derivable. This judgement
an also be written true; (�

0

; z : �;x : �

1

; s : &

0

) ` JfK :

�

2

. Thus true;�

0

` �x z:�x:�s:JfK : �

1

! &

0

! �

2

is derivable by two appli
ations

of hm-Abs. Given the de�nition of JeK

p

in this
ase, this was the goal.

Case App. In this
ase e = e

1

e

2

, � = � and p; &;� ` e

1

: �

2

&

�! � and p; &;� `

e

2

: �

2

are derivable. By the indu
tion hypothesis, true;�

0

` Je

1

K

p

: �

2

! & ! �

and true;�

0

` Je

2

K

p

: �

2

are derivable. Furthermore, true;�

0

` s : & holds by

hm-Var. Hen
e true;�

0

` Je

1

K

p

Je

2

K

p

s : �

2

is derivable by two appli
ations of

hm-App. Given the de�nition of JeK

p

in this
ase, this was the goal.

Case Let. In this
ase e = letx = e

1

in e

2

, and p; &;� ` e

1

: �

0

and p; &; (�;x :

�

0

) ` e

2

: � are derivable. By the indu
tion hypothesis, true;�

0

` Je

1

K

p

: �

0

and

true; (�

0

;x : �

0

) ` Je

2

K

p

: � hold. The result follows by hm-Let and by de�nition

of JeK

p

in this
ase.

Case 8 Intro. In this
ase � = 8��[true℄:� where �� \ fv(&;�) = ? and p; &;� `

e : � is derivable. By the indu
tion hypothesis, true;�

0

` JeK

p

: � is derivable.

Furthermore, we have �� \ fv(true;�

0

) = ?. Thus, by hm-8 Intro, true;�

0

`

JeK

p

: � is derivable. We have impli
itly used the equivalen
es true � true ^ true

and true � 9��:true.

Case 8 Elim. In this
ase � = [��=��℄� and p; &;� ` e : 8��[true℄:� is derivable. By

the indu
tion hypothesis, true;�

0

` JeK

p

: 8��[true℄:� is derivable. Furthermore,

[��=��℄true is true, so the result follows by hm-8 Elim.

Case Enable Failure. In this
ase e = enable r in e

0

where r 62 p so that frg\p =

?, & = f�g, � = � and p; &;� ` e

0

: � is derivable. Now, by de�nition of �

1

,

by hm-Const and hm-8 Elim, true;�

0

` _

?

: & ! & is derivable. Furthermore,

true;�

0

` s : & follows from hm-Var. Therefore, hm-App yields true;�

0

` s_? : & .

The indu
tion hypothesis yields true;�

0

` Je

0

K

p

: � , so also true; (�

0

; s : &) ` Je

0

K

p

:

� . The result follows by hm-Let and the de�nition of JeK

p

in this
ase.

Case Enable Su

ess. In this
ase e = enable r in e

0

where r 2 p so that

frg\ p = frg, & = fr : '; �g, � = � and p; fr : Pre; �g ;� ` e

0

: � is derivable. Now,

by de�nition of �

1

, by hm-Const and hm-8 Elim, true;�

0

` _

frg

: fr : '; �g !

fr : Pre; �g is derivable. Furthermore, true;�

0

` s : & follows from hm-Var.

Therefore, hm-App yields true;�

0

` s_frg : fr : Pre; �g. The indu
tion hypothesis

yields true; (�; s : fr : Pre; �g) ` Je

0

K

p

: � , so also true; (�

0

; s : fr : Pre; �g) `

Je

0

K

p

: � . The result follows by hm-Let and the de�nition of JeK

p

in this
ase.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 23

Case Che
k. In this
ase e =
he
k r then e

0

and � = � , & = fr : Pre; �g and

p; &;� ` e

0

: � is derivable. Now, by de�nition of �

1

, by hm-Const, hm-8 Elim,

hm-Var and hm-App, true;�

0

` s:r : & is derivable. By the indu
tion hypothesis,

true;�

0

` Je

0

K

p

: � is derivable, so also true; (�

0

; : &) ` Je

0

K

p

: � , if is a variable

that does not appear free in e

0

. The result follows by hm-Let and the de�nition of

JeK

p

in this
ase.

Case Test. In this
ase e = test r then e

1

else e

2

and � = � , & = fr : ' ; �g

and p; fr : Pre ; �g;� ` e

1

: � and p; fr : Abs ; �g;� ` e

2

: � are derivable.

By the indu
tion hypothesis, we have true; (�; s : fr : Pre ; �g) ` Je

1

K

p

: � . By

hm-Abs, this implies true;� ` �s:Je

1

K

p

: fr : Pre ; �g ! � . By weakening, we

also have true;�

0

` �s:Je

1

K

p

: fr : Pre ; �g ! � . Similarly, true;�

0

` �s:Je

2

K

p

:

fr : Abs ; �g ! � holds. The result follows by de�nition of �

1

, by hm-Const,

hm-8 Elim, hm-Var, hm-App and by de�nition of JeK

p

in this
ase.

Case Sign. In this
ase e = p

0

:e

0

, & = fp

0

: �' ; �g, � = � and p

0

; &

0

;� ` e

0

: � is

derivable, where &

0

= fp

0

: �' ; �Absg. By the indu
tion hypothesis, true; (�; s :

&

0

) ` Je

0

K

p

0

: � holds, so also true; (�

0

; s : &

0

) ` Je

0

K

p

0

: � . Now, by de�nition of �

1

,

by hm-Const, hm-8 Elim, hm-Var and hm-App, true;�

0

` s^ p

0

: &

0

holds. The

result follows by hm-Let and the de�nition of JeK

p

in this
ase.

Our next task is to prove
ompleteness of the derived type system with respe
t to

S

=

1

. We begin with a normalization result analogous to the one proved in [Skalka

and Pottier 2002℄.

Lemma 9. If C;� ` e : � holds then it may be derived via an instan
e of Sub

from a judgement C;� ` e : �

0

, whi
h itself follows from an instan
e of a syntax-

dire
ted rule and at most one instan
e of 8 Elim.

We may now pro
eed to demonstrate
ompleteness. In this lemma, we abbreviate

type s
hemes 8��[true℄:� as 8��:� and judgements true;� ` e : � as � ` e : �,

omitting the trivial requirement true
 true from instan
es of 8 Elim and Var.

Lemma 10. (�; s : &) ` JeK

p

: � implies p; &;� ` e : � .

Proof. In this proof, we will write � = �

0

for true
 � = �

0

, whi
h amounts

to identifying types modulo the equational theory on rows and allows us to ignore

instan
es of hm-Sub in the derivation d of (�; s : &) ` JeK

p

: � . By Lemma 9, we

may assume that d ends with a syntax-dire
ted rule and at most one instan
e of

8 Elim. The proof pro
eeds by indu
tion on the stru
ture of e and analysis of the

derivation d. Let �

0

= (�; s : &).

Case e = JeK

p

= x. By assumption, we have x 6= s. The derivation d must

involve hm-Var possibly followed by hm-8 Elim. As a result, � must be of the form

[��=��℄�

0

, where �(x) = 8��:�

0

. By Var and 8 Elim, this implies p; &;� ` x : [��=��℄�

0

.

Therefore, this
ase holds.

Case e = �x z:�x:f and JeK

p

= �x z:�x:�s:JfK

p

. By Lemma 9, we may assume

that d ends with two instan
es of hm-Abs, as follows.

�

0

; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

` JfK

p

: �

2

�

0

; z : �

1

! &

0

! �

2

;x : �

1

` �s:JfK

p

: &

0

! �

2

�

0

` �x z:�x:�s:JfK

p

: �

1

! &

0

! �

2

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 � Fran�
ois Pottier et al.

Here, � is �

1

! &

0

! �

2

. Now, we have:

(�

0

; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

) = (�; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

)

This allows applying the indu
tion hypothesis, yielding p; &

0

; (�; z : �

1

! &

0

! �

2

;x :

�

1

) ` f : �

2

. By Abs, this implies p; &;� ` �x z:�x:f : �

1

! &

0

! �

2

.

Case e = e

1

e

2

and JeK

p

= Je

1

K

p

Je

2

K

p

s. By Lemma 9, we may assume that d ends

with two instan
es of hm-App, as follows.

�

0

` Je

1

K

p

: �

0

! & ! � �

0

` Je

2

K

p

: �

0

�

0

` Je

1

K

p

Je

2

K

p

: & ! �

�

0

(s) = &

�

0

` s : &

�

0

` Je

1

K

p

Je

2

K

p

s : �

By the indu
tion hypothesis, we have p; &;� ` e

1

: �

0

! & ! � and p; &;� ` e

2

: �

0

.

The judgement p; &;� ` e

1

e

2

: � follows by App.

Case e = letx = e

1

in e

2

and JeK

p

= letx = Je

1

K

p

in Je

2

K

p

. Then, d ends with an

instan
e of hm-Let:

�

0

` Je

1

K

p

: 8��[D℄:�

0

(�; s : & ;x : 8��[D℄:�

0

) ` Je

2

K

p

: �

�

0

` letx = Je

1

K

p

in Je

2

K

p

: �

Here, we have 9��:D � true, whi
h implies that the
onstraint D|a system of

equations|admits a most general uni�er. In that
ase, the type s
heme 8��[D℄:�

0

an be shown equivalent to an un
onstrained type s
heme, so we may assume,

without loss of generality, that D is in fa
t true. We may further assume, without

loss of generality, that the left-hand premise is an instan
e of hm-8 Intro:

�

0

` Je

1

K

p

: �

0

�� \ fv(�

0

) = ?

�

0

` Je

1

K

p

: 8��:�

0

The indu
tion hypothesis yields p; &;� ` e

1

: �

0

. We have �� \ fv(&;�) = ?, so, by

8 Intro, we obtain p; &;� ` e

1

: 8��:�

0

. Sin
e x 6= s, we have (�; s : & ;x : 8��:�

0

) =

(�;x : 8��:�

0

; s : &), therefore the indu
tion hypothesis yields p; &; (�;x : 8��:�

0

) `

e

2

: � . The result follows by Let.

Case e = enable r in e

0

and JeK

p

= let s = s _ (frg \ p) in Je

0

K

p

. By Lemma 9 and

de�nition of �

1

, the derivation d must be of the following form, where R = frg\p,

& = fR : �' ; �g and &

0

= fR : Pre ; �g:

�

0

` _

R

: & ! &

0

�

0

` s : &

�

0

` s _ R : &

0

�� \ fv(�

0

) = ?

�

0

` s _R : 8��:&

0

�

0

; s : 8��:&

0

` Je

0

K

p

: �

�

0

` let s = s _ R in Je

0

K

p

: �

Sin
e & appears in �

0

, the free type variables of � are free in �

0

as well, so the free

type variables of &

0

are free in �

0

. As a result, the type s
heme 8��:&

0

is equivalent to

the monotype &

0

. We will thus assume, without loss of generality, that �� is empty.

Sin
e (�

0

; s : &

0

) = (�; s : &

0

), the indu
tion hypothesis yields p; &

0

;� ` e

0

: � . As

a result, p; &;� ` enable r in e

0

: � is derivable by Enable Failure if r 62 p and by

Enable Su

ess if r 2 p.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 25

Case e =
he
k r then e

0

and JeK

p

= let = s:r in Je

0

K

p

. By Lemma 9 and de�nition

of �

1

, the derivation d must be of the following form, where & = fr : Pre ; �g:

�

0

` :

r

: & ! & �

0

` s : &

�

0

` s:r : & �� \ fv(�

0

) = ?

�

0

` s:r : 8��:& �

0

; : 8��:& ` Je

0

K

p

: �

�

0

` let = s:r in Je

0

K

p

:

Sin
e does not o

ur in e

0

, by weakening, we have �

0

` Je

0

K

p

: � . As a result,

the indu
tion hypothesis yields p; &;� ` e

0

: � . Thus, p; &;� `
he
k r then e

0

: � is

derivable by Che
k.

Case e = test r then e

1

else e

2

and JeK

p

= s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

). By Lemma 9

and de�nition of �

1

, d must be of the following form, where & = fr : ' ; �g:

�

0

` ?

r

: fr : ' ; �g ! (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! �

�

0

` s : fr : ' ; �g

�

0

` s?r : (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! � (1)

�

0

; s : fr : Pre ; �g ` Je

1

K

p

: �

�

0

` �s:Je

1

K

p

: fr : Pre ; �g ! � (2)

�

0

; s : fr : Abs ; �g ` Je

2

K

p

: �

�

0

` �s:Je

2

K

p

: fr : Abs ; �g ! � (3)

(1) (2)

�

0

` s?r (�s:Je

1

K

p

) : (fr : Abs ; �g ! �)! � (3)

�

0

` s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

) : �

By the indu
tion hypothesis, p; fr : Pre ; �g;� ` e

1

: � and p; fr : Abs ; �g;� `

e

2

: � hold. The judgement p; fr : ' ; �g;� ` test r then e

1

else e

2

: � follows by

Test.

Case e = p

0

:e

0

and JeK

p

= let s = s ^ p

0

in Je

0

K

p

0

. By Lemma 9 and de�nition of

�

1

, the derivation d must be of the following form, where & = fp

0

: �' ; �g and

&

0

= fp

0

: �' ; �Absg:

�

0

` ^

p

0

: & ! &

0

�

0

` s : &

�

0

` s ^ p

0

: &

0

�� \ fv(�

0

) = ?

�

0

` s ^ p

0

: 8��:&

0

�

0

; s : 8��:&

0

` Je

0

K

p

0

: �

�

0

` let s = s ^ p

0

in Je

0

K

p

0

: �

Sin
e & appears in �

0

, the free type variables of �' are free in �

0

as well, so the free

type variables of &

0

are free in �

0

. As a result, the type s
heme 8��:&

0

is equivalent to

the monotype &

0

. We will thus assume, without loss of generality, that �� is empty.

Sin
e (�

0

; s : &

0

) = (�; s : &

0

), the indu
tion hypothesis yields p

0

; &

0

;� ` e

0

: � . As a

result, p; &;� ` p

0

:e

0

: � is derivable by Sign.

We are now ready to demonstrate
orre
tness of the derived type system.

Lemma 11. nobody; fÆAbsg ;? ` e : � holds for some � if and only if C;? `

L e M : � holds for some satis�able C and for some � .

Proof. Suppose on the one hand that nobody; fÆAbsg ;? ` e : � holds. By

Lemma 8 we have true; s : f�Absg ` JeK

nobody

: � . Now, by de�nition of �

1

and

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 � Fran�
ois Pottier et al.

by Const, we have true;? ` ? : f�Absg. By the substitution lemma for HM(X),

whi
h is proved in [Skalka and Pottier 2002℄, this leads to true;? ` JeK

nobody

[?=s℄ :

� . Be
ause true is satis�able and be
ause JeK

nobody

[?=s℄ is L e M, this yields the goal.

Suppose on the other hand that C;? ` L e M : � holds, where C is satis�able.

Be
ause C is satis�able, it admits a uni�er ', whi
h has the property that the

onstraint '(C) is equivalent to true. Thus, by the substitution lemma, we have

that true;? ` L e M : '(�) holds. Now, as above, we have L e M = JeK

nobody

[?=s℄

and true;? ` ? : f�Absg. By a simple inverse substitution lemma, whi
h we do

not expli
itly establish here, this implies true; s : f�Absg ` JeK

nobody

: '(�). The

result follows by Lemma 10.

In other words, Lemma 11 states that a
losed �

se

program e is well-typed in

the derived type system under the initial prin
ipal nobody and the empty se
u-

rity
ontext f�Absg if and only if L e M is well-typed in the original type system.

Furthermore, by Theorem 4, su
h programs
annot go wrong.

7. EXAMPLES

In this se
tion, we give examples whi
h illustrate the expressivity (and limitations)

of our type system. These examples fa
ilitate a dis
ussion of the di�eren
es between

the variants of the system, yielding insights into the possible tradeo�s between

pre
ision and
ost.

7.1 Se
urity Wrappers

A library writer often needs to surround numerous internal fun
tions with \boiler-

plate" se
urity
ode before making them a

essible. To avoid redundan
y, it seems

desirable to allow the de�nition of generi
 se
urity wrappers. When applied to

a fun
tion, a wrapper returns a new fun
tion whi
h has the same
omputational

meaning but di�erent se
urity requirements.

Assume given a prin
ipal p = fr; sg. Here are two wrappers likely to be of use to

this prin
ipal:

enable

r

= �f:p:�x:p:enable r in f x

require

r

= �f:p:�x:p:
he
k r then f x

In system S

=

1

, these wrappers re
eive the following (most general) type s
hemes.

All of the type variables whi
h appear in them are universally quanti�ed, so we do

not give the quanti�er pre�x expli
itly.

enable

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:

2

; s:

1

; �

2

g

����������! �

2

)

require

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:

1

; �

2

g

�����������! �

2

)

These types are very similar; they may be read as follows. Both wrappers expe
t a

fun
tion f whi
h allows that r be enabled (r : Pre), i.e. one whi
h either requires

r to be enabled, or doesn't
are about its status. (Indeed, as in ML, the type of the

a
tual argument may be more general than that of the formal.) They return a new

fun
tion with identi
al domain and
odomain (�

1

, �

2

), whi
h works regardless of

r's status (enable

r

yields r :

2

) or requires r to be enabled (require

r

yields r : Pre).

The new fun
tion retains f 's expe
tations about s (s :

1

). f must not require any

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 27

further privileges (�Abs), be
ause it is invoked by p, whi
h enjoys privileges r and

s only.

These polymorphi
 types are very expressive. Our main
on
ern is that, even

though the privilege s is not mentioned in the
ode of these wrappers, it does appear

in their type. More generally, every privilege available to p may show up in the type

of a fun
tion written on behalf of prin
ipal p, whi
h may lead to very verbose types.

An appropriate type abbreviation me
hanism may be able to address this problem;

this is left as a subje
t for future work.

7.2 Use and Types of Se
urity tests

In this se
tion, we dis
uss two typi
al programming idioms involving test. One

(arguably the most
ommon) is very simple, and may be typed in S

=

1

. The other is

more
omplex and requires at least S

=

2

. We take this opportunity to dis
uss various

problems related to the interpretation of
onditional
onstraints.

Imagine an operating system with two kinds of pro
esses, root pro
esses and

user pro
esses. Killing a user pro
ess is always allowed, while killing a root pro
ess

requires the privilege k. At least one distinguished prin
ipal root has this privilege.

The system fun
tions whi
h perform the killing are implemented by root, as follows:

kill = �(p : pro
):root:
he
k k then : : : { kill the pro
ess

killIfUser = �(p : pro
):root: : : : { kill the pro
ess if it is user-level

In system S

=

1

, these fun
tions re
eive the following (most general) types:

kill : 8�:pro

fk:Pre ; �g

�������! unit

killIfUser : 8
�:pro

fk:
 ; �g

�����! unit

The �rst fun
tion
an be
alled only if it
an be stati
ally proven that the privilege

k is enabled. The se
ond one, on the other hand,
an be
alled at any time, but

will never kill a root pro
ess. To
omplement these fun
tions, it may be desirable

to de�ne a fun
tion whi
h provides a \best attempt" given the
urrent (dynami
)

se
urity
ontext. This may be done by dynami
ally
he
king whether the privilege

is enabled, then
alling the appropriate fun
tion:

tryKill = �(p : pro
):root:

test k then kill(p) else killIfUser(p)

This fun
tion is well-typed in system S

=

1

. Indeed, within the �rst bran
h of the

test
onstru
t, it is stati
ally known that the privilege k must be enabled; this is

why the sub-expression kill(p) is well-typed. The inferred type shows that tryKill

does not have any se
urity requirements:

tryKill : 8
�:pro

fk:
 ; �g

�����! unit

The sensitive a
tion kill(p) is performed within the lexi
al s
ope of the test
on-

stru
t, whi
h is why it is easily seen to be safe. However, one
an also move it

outside of the s
ope, as follows:

tryKill' , �(p : pro
):root:

let a
tion = test k then kill else killIfUser in a
tion(p)

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 � Fran�
ois Pottier et al.

Here, the dynami
 se
urity
he
k yields a
losure, whose behavior depends on the

he
k's out
ome. It
an be passed on and used in further
omputations. Su
h a

programming idiom is useful in pra
ti
e, be
ause it allows hoisting a se
urity
he
k

out of a loop. For instan
e, if we were to kill a set of pro
esses, instead of a single

one, we would apply a
tion su

essively to ea
h element of the set. Thus, only one

se
urity
he
k would have to be performed, regardless of the number of pro
esses

in the set.

Is tryKill' also well-typed? This is more subtle. In S

rel

1

, the two bran
hes of

a test
onstru
t must re
eive the same type. Be
ause the fun
tion kill requires a

non-trivial se
urity
ontext, it is
onservatively assumed that a
tion may do so as

well. As a result, in (say) S

=

1

, tryKill' has (most general) type 8�:pro
 ! fk :

Pre ; �g ! unit, just as kill. Thus, it is well-typed, but its type is more restri
tive

than expe
ted.

To solve this problem, we need to keep tra
k of the fa
t that the behavior (i.e.

the type) of a
tion depends on the out
ome of the test, i.e. on whether the privilege

k is enabled. This is pre
isely the reason for moving to the
olumn i = 2 in our

array of type systems. In this
olumn, the result of a test
onstru
t is des
ribed

by
onditional
onstraints, whi
h en
ode the desired dependen
y. Indeed, in S

=

2

,

tryKill' has (most general) inferred type

8 : : : :pro
! fk :

1

; �

1

g ! �

where

if Abs =

1

then �Abs = �

2

if Pre =

1

then �Abs = �

3

if Abs =

1

then pro
! fk :

1

; �Absg ! � = pro
! fk :

2

; �

4

g ! unit

if Pre =

1

then pro
! fk :

1

; �Absg ! � = pro
! fk : Pre ; �

5

g ! unit

The four
onditional
onstraints are generated by Test (see Fig. 11). Of
ourse,

the meaning of su
h a
onstrained type s
heme is quite obs
ure, but it is possible

to simplify it, as follows. First, be
ause there is only one o

urren
e of the variable

�

2

, this variable
an be quanti�ed lo
ally. That is, the �rst
onditional
onstraint

an be written

if Abs =

1

then 9�

2

:(�Abs = �

2

)

It is now evident that this
onstraint is a tautology|that is, it is equivalent to

true|so it
an be suppressed. The se
ond
onstraint
an be suppressed in a

similar way. Then, the third and fourth
onstraints, whose
on
lusions are equa-

tions between terms of similar stru
ture,
an be de
omposed into a
onjun
tion

of
onditional
onstraints whose
on
lusions are equations between atomi
 terms.

Performing this de
omposition and again suppressing tautologi
al
onstraints, we

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 29

obtain

8 : : : :pro
! fk :

1

; �

1

g ! �

where

if Abs =

1

then � = unit

if Pre =

1

then

1

= Pre

if Pre =

1

then � = unit

The se
ond
onstraint above is again a tautology (of a di�erent kind) and may be

suppressed. Thus, the simpli�
ation pro
ess yields

8 : : : :pro
! fk :

1

; �

1

g ! �

where

if Abs =

1

then � = unit

if Pre =

1

then � = unit

It is important to note that this simpli�
ation pro
ess
an be automated. We
hose

to show its intermediate steps, be
ause it would otherwise be diÆ
ult to relate the

�nal type s
heme to the
ode for tryKill'. We now see that this type s
heme does

not require the privilege k to be enabled: our analysis was smart enough to prove

that this
ode is safe.

The reader may wonder why we
an't further simplify this type s
heme by unify-

ing � with unit, sin
e both

1

= Pre and

1

= Abs imply unit = �. This is be
ause

there remain other
ases (namely

1

= ? and

1

= >) where � is un
onstrained;

as a result, these
onditional
onstraints do not logi
ally imply unit = �.

To �x this apparent problem, one possibility would be to remove ? and > from

the model. In that
ase, repla
ing the two
onstraints above with unit = � would be

a valid simpli�
ation. However, this
hange would e�e
tively add disjun
tion to the

onstraint language|indeed, it would then be possible to en
ode the disjun
tion

C

1

_C

2

as 9
:(if Pre =
 then C

1

^ if Abs =
 then C

2

). (When ? is part of the

model, su
h an en
oding be
omes impossible, be
ause of the side
ondition
 6= ?

in Fig. 7.) We
onje
ture that the
onstraint satisfa
tion problem would then have

exponential time
omplexity, while it
urrently has quasi-linear time
omplexity.

Another interesting possibility
onsists in giving a di�erent interpretation to
on-

ditional
onstraints. Noti
e that we really wish to use
onditional
onstraints in

only a very limited way. Indeed, we want to allow the bran
hes of a test
onstru
t

to re
eive di�erent types. But we do not wish for these types to di�er in arbitrary

ways; we only wish to allow their se
urity annotations to di�er. It is in fa
t possible

to enfor
e su
h a restri
tion. De�ne � as the binary relation whi
h is uniformly

true on JPresK. Extend it straightforwardly to JkK for every kind k. Then, re-de�ne

the interpretation of
onditional
onstraints as follows:

�(�

0

) � �(�

00

)
 � �(�)) � ` �

0

� �

00

� ` if
 � � then �

0

� �

00

This interpretation requires the types whi
h appear in the
on
lusion of a
ondi-

tional
onstraint (here, �

0

and �

00

) to be equal modulo se
urity annotations. This

allows the stru
ture of types to be determined using rigid rules (whi
h is desirable,

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 � Fran�
ois Pottier et al.

be
ause many programming errors are then dete
ted earlier), while keeping the

exibility of
onditional reasoning on se
urity annotations. Under su
h an inter-

pretation, the type of tryKill' may be simpli�ed to

8

1

�

1

:pro
! fk :

1

; �

1

g ! unit

as desired. From a pra
ti
al point of view, this
hange in the interpretation of

onditional
onstraints requires implementing two uni�
ation algorithms on top of

one another|one for = and one for �|whi
h is straightforward. This variant of S

=

2

may o�er another good
ompromise between pre
ision, eÆ
ien
y, and readability

of the types inferred.

7.3 Subtyping

All of the examples given so far
an be given useful types in S

=

i

for some i 2 f1; 2g.

In other words, these examples do not require subtyping. Nevertheless, there are a

few
ases where the extra pre
ision a�orded by subtyping be
omes ne
essary.

Imagine we write a slightly modi�ed version of the wrapper enable

r

presented in

Se
t. 7.1 as follows, where P is some arbitrary
ondition:

maybeEnable

r

, �f:p:�x:p: ifP then fx else enable r in fx

This wrapper may or may not enable the privilege r before
alling f . In S

=

i

, its

(most general) type is

maybeEnable

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:

1

; �

2

g

�����������! �

2

)

i.e. exa
tly the same as that of require

r

in Se
t. 7.1. In other words, the type

system asserts, more
onservatively than ne
essary, that maybeEnable

r

requires the

privilege r. How was this
on
lusion drawn?

Be
ause f is bound by � and be
ause HM(X) is restri
ted to Hindley-Milner

polymorphism, the two uses of f must re
eive the same type, say �

1

! � ! �

2

.

In the se
ond bran
h of the if statement, f is
alled with r enabled. Thus, � must

be of the form fr : Pre ; : : :g. Sin
e, in the �rst bran
h of the if statement, f is

alled within an unmodi�ed se
urity
ontext, the type-
he
ker
on
ludes that the

wrapped fun
tion also has fr : Pre ; : : :g as a se
urity requirement.

The
aw is really in our use of equality
onstraints. Be
ause f may be
alled

with r enabled, they lead us to require � = fr : Pre ; : : :g, i.e. to believe f must be

alled with r enabled. This extremely
oarse approximation is good enough when

f has polymorphi
 type, be
ause we are then able to deal separately with ea
h

of its
all sites. Here, however, polymorphism is inhibited, making the problem

unbearable.

A standard solution is to move to a system where equality is repla
ed with sub-

typing, e.g. S

�

1

. There, we obtain

maybeEnable

r

: 8 : : : :(�

1

fr:
 ; s:

1

; �Absg

������������! �

2

)

f�

1

g

���! (�

1

fr:

2

; s:

1

; �

2

g

����������! �

2

)

where Pre �
 ^

2

�

This type s
heme is mu
h more permissive, be
ause

2

�
 � Pre does not allow

on
luding

2

� Pre (as was the
ase when � was interpreted by equality). Indeed,

2

may take the value Abs, i.e. the wrapped fun
tion may be
alled in a
ontext

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 31

where r is disabled. The
onstraint Pre �
 ^

2

�
 then requires > �
, i.e. f

must be able to a

ept either state of the privilege r.

Our experien
e seems to indi
ate that subtyping is useful only where polymor-

phism is inhibited, i.e. when using higher-order fun
tions. Java has no su
h
on-

stru
t. Java does have �rst-
lass obje
ts, whi
h
ontain methods; but it seems

reasonable to require that methods be given expli
it polymorphi
 types by the user

as part of
lass de
larations. Considering that subtyping has substantial
ost in

terms of readability and eÆ
ien
y, it may then be interesting not to use it in a

real-world system. However, more work is needed to
on�rm this
onje
ture.

7.4 Expressiveness versus dis
ipline

It is unde
idable whether the exe
ution of a given program eventually leads to a

se
urity failure. As a result, a safe type system equipped with de
idable type in-

feren
e must be
onservative, that is, reje
t programs that in fa
t do not violate

the se
urity poli
y. For instan
e, in every S

rel

i

, a fun
tion f that requires privilege

r unless some
ondition P holds re
eives a type that spe
i�es that f requires r

always, leading to a type error if f is invoked in a
ontext where P holds and r is

not available. Our types, viewed as a spe
i�
ation language for se
urity poli
ies,

only have limited expressiveness. This is a
urse and a blessing: while it prevents

some legitimate programming idioms, it also for
es programmers to sti
k to a rea-

sonably straightforward programming style. The key, as always, is to strike a good

ompromise between expressiveness and dis
ipline.

8. DISCUSSION

8.1 Extensions

There should be no parti
ular diÆ
ulty in extending the ideas of this paper to

more advan
ed language features su
h as ex
eptions, state, modules, and threads.

In fa
t, for some of these features, we expe
t the type-the-translation approa
h to

prove fruitful, by layering e.g. an ex
eptions en
oding on top of the se
urity-passing

en
oding.

8.1.1 Java. The approa
h taken here has re
ently been shown to be extensible

to the Java byte
ode language [Higu
hi and Ohori 2003℄, so the ideas here do trans-

fer to the full JVM. But, modeling all the features of the Java se
urity ar
hite
ture

is not possible stati
ally. Java views privileges as �rst-
lass obje
ts, making stati

typing problemati
. In our model, privileges are identi�ers, and expressions
annot

ompute privileges. It would be desirable to extend the stati
 framework to at least

handle �rst-
lass parameters of privileges, so e.g. a Java FilePermission, whi
h

takes a parameter that is a spe
i�
 �le,
ould be modeled. The additional expres-

siveness of Java's implementation, in
luding dynami
 addition of permissions, and

dynami
ally
omputable parameters to privileges (for instan
e a FilePermission

for the string "/tmp/s
rat
h" that was
reated by appending strings "/tmp" and

"s
rat
h"), is very diÆ
ult to model stati
ally.

From a manual inspe
tion of the Sun JDK libraries, a substantial majority of the

se
urity
ode
he
ks there
an be stati
ally type
he
ked. However, some of the uses

are fundamentally dynami
. These in
lude
onditional
he
king of privileges where

the
ondition is fundamentally dynami
 and so
annot be
aptured stati
ally. So, a

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 � Fran�
ois Pottier et al.

purely stati
 alternative would require some re
oding of libraries, and a rethinking of

where the se
urity boundary is to be drawn. This is a deep problem, and it remains

an open question whether the best
ompletely stati
 reworking of the ar
hite
ture

would be powerful enough to make the limitations of the stati
 system a

eptable.

An alternative approa
h is to a

ept that a
ompletely stati
 approa
h is not

possible, and to use soft typing [Aiken et al. 1994; Wright and Cartwright 1997℄.

We dis
uss this further below, and also remark on extending our model to in
lude

ex
eptions.

With the addition of JAAS in the JDK 1.4 [Lai et al. 1999℄, the ar
hite
ture also

supports general authenti
ation based on prin
ipals, not just
odebases. The doAs

instru
tion enables a blo
k of
ode to be exe
uted under a parti
ular prin
ipal. We

do not dire
tly model JAAS, but for prin
ipals that are groups �xed in advan
e, the

stru
ture is stati
 (and, desirably, more de
larative than
ode that refers to spe
i�

users), and so our type system will be able to model it. So, prin
ipals Ali
e

and Bob are not modeled stati
ally, but �xed groups su
h as DepartmentUser and

GuestUser whi
h
ould
ontain Ali
e and Bob, respe
tively,
ould be de
lared and

he
ked stati
ally; only the membership of Ali
e in DepartmentUser would need

to be
he
ked dynami
ally.

8.1.2 Soft Typing. A soft typing system is a
ross between a type system and

a stati
 optimizer. In our
ontext, a soft typing system would allow some ill-typed

he
k operations through, and mark them as requiring run-time
he
king. In prin-

iple, there is no problem with applying the soft typing approa
h in our framework,

and allows our ideas to be applied dire
tly to the JDK Se
urity Ar
hite
ture as

now de�ned. Marked
he
k operations would be treated mu
h like test operations.

The type system should provide a wealth of information to enable an eÆ
ient im-

plementation of these tests. The
onstraint-based
onditional type systems su
h as

S

�

2

are parti
ularly appropriate for soft typing sin
e the added expressiveness will

allow more
he
ks to be stati
ally veri�ed.

8.1.3 Implementation of test. Although our system stati
ally
he
ks whether

all
he
k operations will su

eed at run-time, there is still a need to
arry some

privilege information at run-time to support test, whi
h must dynami
ally bran
h

on presen
e or absen
e of a privilege. We believe a stati
 optimizer may be able to

remove mu
h of the run-time overhead of test. However, this implementation issue

is beyond the s
ope of the
urrent foundational study, and is a subje
t for future

work.

8.1.4 Ex
eptions. In the simple language presented so far, se
urity violations

are fatal: they
ause the program to halt. However, in Java, a se
urity violation

gives rise to an ex
eption, whi
h
an be observed and dealt with by any (dire
t or

indire
t)
aller. Thus, if our stati
 se
urity type system is to be viewed as realisti
,

it must be able to deal with ex
eptions.

For the sake of simpli
ity, we haven't in
luded ex
eptions in our sour
e language.

However, it should be easy to add them as a se
ond layer, with only little modi�
a-

tion to our
urrent proofs. In short, the idea is to introdu
e a new sour
e language,

featuring ex
eptions in addition to the se
urity
onstru
ts, and to translate it down

into an extension of �

se

with sums. Indeed, it is a well-known fa
t that ex
eptions

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 33

an be de�ned in terms of sums [Wadler 1985; Moggi 1989; Spivey 1990℄. Any S

rel

i

an then be lifted, through this new translation, up to the new sour
e language.

This
onstru
tion shows that the \typing-by-en
oding" approa
h
an be used to a
-

ount for ex
eptions. It also shows that several layers of en
odings
an be sta
ked

on top of one another, making the proofs somewhat more modular.

This
onstru
tion gives rise to type systems where fun
tion types
arry not only

a se
urity pre
ondition & , but also an e�e
t �, whi
h des
ribes the ex
eptions that

may be thrown when the fun
tion is invoked. This is a standard feature of type-

based ex
eption analyses [Guzm�an and Su�arez 1994; Aiken and F�ahndri
h 1997;

Pessaux and Leroy 2000℄. In Java terms, an e�e
t is essentially a throws
lause.

However, a throws
lause is
onstant, whereas, in our type systems, e�e
ts would be

allowed to
ontain presen
e variables (that is, type variables of kind Pres). These

ould be related, via
onstraints, to the fun
tion's se
urity pre
ondition & , allowing

properties su
h as \if privilege r is disabled, then this fun
tion may throw ex
eption

E" to be en
oded in the types|and inferred by a type re
onstru
tion algorithm.

A se
urity
he
k whi
h throws an ex
eption (instead of halting the program) upon

failure
an be de�ned, in the new sour
e language, by
ombining test and throw.

Thus, our new sour
e language has both fatal and non-fatal forms of se
urity
he
ks.

It is interesting to noti
e that ea
h form has its advantages. Indeed, if a fun
tion

yields a fatal error when the privilege r is disabled, then its type will quite
on
isely

en
ode the senten
e \r must be enabled", and the type-
he
ker will automati
ally

enfor
e this
ondition at every
all site. If, on the other hand, the fun
tion throws

an ex
eption, then its type will more
losely en
ode the senten
e \if r is disabled,

then the fun
tion may raise an ex
eption", and the type-
he
ker will not enfor
e

any pre-
ondition when
alling the fun
tion. (It is still possible to manually assert,

using a type annotation, that a given
all does not yield an ex
eption, thus for
ing

r to be provably enabled at this
all site.) The former may be preferred, be
ause it

is more legible, and be
ause it do
uments the programmer's intent more pre
isely.

On the other hand, the use of ex
eptions leads to a more modular programming

style, be
ause there is often no telling, at the time a parti
ular pie
e of
ode is

written, where and how se
urity violations should be handled. We
on
lude that

both forms of se
urity
he
ks may be of use in pra
ti
e.

8.2 Related Work

8.2.1 Other analyses of sta
k inspe
tion. Banerjee and Naumann have devel-

oped an alternate proof of type safety for a programming language equipped with

sta
k inspe
tion [Banerjee and Naumann 2001℄. However, the denotational seman-

ti
s of their language is in fa
t a se
urity-passing style transform, whi
h means

that the
orre
tness of this transform is taken for granted. Besson, Jensen, et

al. [Jensen et al. 1999; Besson et al. 2001℄ de�ne a whole-program stati
 analy-

sis based on model-
he
king temporal logi
 formul�. Sta
k inspe
tion is one (but

not the only) appli
ation of their framework. A later paper [Besson et al. 2002℄

takes the analysis one step further by introdu
ing a notion of se
ure
alling
on-

text, symboli
ally represented as a temporal logi
 formula. However, the analysis is

still not quite
ompositional, be
ause the
ontrol
ow graph of the entire program

must be available. Bartoletti et al. [Bartoletti et al. 2001℄ propose a stati
 analysis

expressed as a �x-point
omputation. Like Besson, Jensen, et al., they assume that

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 � Fran�
ois Pottier et al.

programs are represented as graphs where only se
urity
he
ks and
ontrol
ow are

made expli
it. Higu
hi and Ohori [Higu
hi and Ohori 2003℄ impose a monomor-

phi
 type system with subtyping, reminis
ent of the one developed in [Skalka and

Smith 2000℄, on a simple fragment on the JVM byte
ode language. They note

that, sin
e
he
k instru
tions
an never fail in a well-typed program, they are no

longer true operations: they are really only type annotations. For this reason, they

suggest removing
he
k from the language and repla
ing it with a more de
larative

type annotation me
hanism. Allowing or requiring the programmer to assign a

se
urity-annotated type to ea
h method provides one su
h me
hanism. Koved et

al. [Koved et al. 2002℄ implement a
ow-sensitive,
ontext-sensitive analysis that

determines, in a
onservative fashion, whi
h a

ess rights are required by a pie
e of

Java
ode. The analysis is pre
ise|in parti
ular, it keeps tra
k of string
onstants,

whi
h are used in the
reation of Permission obje
ts, whereas we do not|and

s
ales well. However, the paper does not
ontain enough detail for the reader to

be able to implement the analysis. Koved et al.'s goals appear somewhat di�erent

from ours: they analyze unmodi�ed Java programs, while our intention is to require

programmers to annotate method headers with se
urity requirements. While their

approa
h requires less programmer e�ort, it is not
lear whether it allows libraries

to be analyzed in isolation, and whether it is able to provide an explanation for

unexpe
ted analysis results. We believe that a type-based approa
h, although more

ostly in terms of programmer e�ort, helps enfor
e a dis
ipline that the program-

mer understands and
ontrols. Naumovi
h [Naumovi
h 2002℄ des
ribes a data
ow

analysis that ensures that
ertain privileges must be held in order to rea
h a
ertain

program point. His purpose is dual to ours. Indeed, our type system is intended to

ensure that no privilege
he
ks may fail at runtime, but does not dire
tly guarantee

that the program is se
ure, while Naumovi
h's approa
h allows establishing se
urity

properties, but does not eliminate the possibility of a runtime failure. On a more

theoreti
al level, Fournet and Gordon [Fournet and Gordon 2002℄ o�er an in-depth

study of the semanti
s of sta
k inspe
tion; they establish equivalen
e laws whi
h

allow
ompilers to optimize away
ertain se
urity-related instru
tions. Clements

and Felleisen [Clements and Felleisen 2003℄
ontinue this line of work by developing

an alternate but equivalent implementation of sta
k inspe
tion that is shown to be

tail-
all optimizing.

8.2.2 Other approa
hes based on a translation. Several resear
hers have pro-

posed ways of de�ning eÆ
ient, provably
orre
t
ompilation s
hemes for languages

whose se
urity poli
y is expressed by a se
urity automaton [Erlingsson and S
hnei-

der 1999; S
hneider 2000℄.

Walker [Walker 2000℄ de�nes a sour
e language, equipped with su
h a se
urity

poli
y, then shows how to
ompile it into a dependently-typed target language,

whose type system, by en
oding assertions about se
urity states, guarantees that

no run-time violations will o

ur. Walker �rst builds the target type system, then

de�nes a typed translation. On the opposite, our approa
h
onsists in de�ning an

untyped translation, whose output we feed through a type
he
ker or inferen
er for

the target language. The
omposition yields a se
urity-aware type
he
ker or in-

feren
er for the sour
e language. In prin
iple, our approa
h, whi
h was developed

with sta
k inspe
tion in mind, is also appli
able to se
urity poli
ies spe
i�ed by

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 35

se
urity automata. Type inferen
e for the target language, where the automaton's

states and transition fun
tion are built-in
onstants, seems feasible: dedi
ated
on-

straint language and
onstraint solver may be employed to allow stati
ally reasoning

about them. The untyped translation would thread the se
urity automaton's state

through every
omputation, making it an extra argument and an extra result of

every fun
tion. Thus, in the derived type system, every fun
tion type would
arry

two annotations, a pre
ondition and a post
ondition, representing the automaton's

state upon entry and upon exit. Again, these annotations
ould be type variables,

related via
onstraints. In
ontrast with Walker's work, our approa
h makes se
u-

rity information visible in the type system of the sour
e language: indeed, our aim

is not only to gain performan
e by eliminating many dynami

he
ks, but also to

de�ne a programming dis
ipline.

Thiemann's approa
h to se
urity automata [Thiemann 2001℄ may be viewed as

losely related to ours: he also starts with an untyped se
urity-passing transla-

tion, whose output he then feeds through a standard program spe
ializer. The

omposition automati
ally yields an optimizing translation.

8.2.3 The Conne
tion with Monads. The en
oding of ex
eptions alluded to in

Se
t. 8.1.4 is a monadi
 translation [Moggi 1989℄. So is the se
urity-passing style

translation des
ribed in Se
t. 4. In fa
t, an alternate semanti
s for our sour
e

language
an be de�ned by su

essively layering [Filinski 1999℄ the following on top

of a purely fun
tional
ore:

(1) a failure monad, de�ned by F � = �+1, representing the possibility of abrupt

program termination;

(2) a se
urity monad, de�ned by S � = PrivSet ! �, where PrivSet represents

privilege sets; enable,
he
k and test
an be de�ned as primitive operations at

this level;

(3) (optionally) an ex
eption monad, de�ned by E � = � + Ex
, where Ex
 repre-

sents ex
eptions.

Choosing su
h a semanti
s for our sour
e language would remove the need to prove

the translation sound, thus redu
ing even further the amount of work needed to

prove the
orre
tness of our type system. However, our
hoi
e of a
on
ise opera-

tional semanti
s possibly brings us
loser to the original des
ription of Java sta
k

inspe
tion.

Monadi
 type systems have been used as a tool to isolate [Peyton Jones and

Wadler 1993℄ or analyze [Wadler and Thiemann 2003℄ the use of impure language

features in pure fun
tional languages. Yet, as deplored in [Wadler and Thiemann

2003℄, there is still \a need to
reate a new e�e
t system for ea
h new e�e
t". In

this light, our work may be viewed as a systemati

onstru
tion of an \e�e
t" type

system adapted to our parti
ular e�e
tful programming language.

8.3 Final Remarks

From this methodologi
al study emerge two type systems whi
h improve on our

previous work in type systems for a

ess
ontrol. System S

=

1

infers what appear

to be very readable types, while remaining surprisingly expressive, and
an be

implemented very eÆ
iently [R�emy 1992a℄. System S

�

2

is even more
exible and

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 � Fran�
ois Pottier et al.

ould form the basis of a soft typing system for the Java JDK platform. These

systems were developed using a transformational te
hnique and the system HM(X),

whi
h simpli�ed proof e�ort and inspired design.

REFERENCES

Aiken, A. S. and F

�

ahndri
h, M. 1997. Program analysis using mixed term and set
onstraints.

In Stati
 Analysis Symposium (SAS). 114{126. URL: http://www.
s.berkeley.edu/~aiken/

publi
ations/papers/sas97.ps.

Aiken, A. S., Wimmers, E. L., and Lakshman, T. K. 1994. Soft typing with
onditional types.

In ACM Symposium on Prin
iples of Programming Languages (POPL). 163{173. URL: http:

//http.
s.berkeley.edu/~aiken/ftp/popl94.ps.

Banerjee, A. and Naumann, D. A. 2001. A simple semanti
s and stati
 analysis for Java

se
urity. Te
h. Rep. 2001-1, Stevens Institute of Te
hnology. June. URL: http://guinness.

s.stevens-te
h.edu/~naumann/publi
ations/tr2001.ps.

Bartoletti, M., Degano, P., and Ferrari, G. 2001. Stati
 analysis for sta
k inspe
tion. In

International Workshop on Con
urren
y and Coordination. Ele
troni
 Notes in Theoreti
al

Computer S
ien
e, vol. 54. Elsevier S
ien
e.

Besson, F., de Grenier de Latour, T., and Jensen, T. 2002. Se
ure
alling
ontexts for

sta
k inspe
tion. In ACM International Conferen
e on Prin
iples and Pra
ti
e of De
larative

Programming (PPDP). 76{87. URL: http://www.irisa.fr/lande/jensen/ppdp02.pdf.

Besson, F., Jensen, T. P., Le M

�

etayer, D., and Thorn, T. 2001. Model
he
king se
urity

properties of
ontrol
ow graphs. Journal of Computer Se
urity 9, 3, 217{250. URL: http:

//www.irisa.fr/lande/jensen/j
s.pdf.

Clements, J. and Felleisen, M. 2003. A tail-re
ursive semanti
s for sta
k inspe
tions. In

European Symposium on Programming (ESOP). Le
ture Notes in Computer S
ien
e, vol. 2618.

Springer Verlag, 22{37. URL: http://www.

s.neu.edu/s
heme/pubs/esop2003-
f.ps.gz.

Dean, D. 1997. The se
urity of stati
 typing with dynami
 linking. In Pro
eedings of the Fourth

ACM Conferen
e on Computer and Communi
ations Se
urity. 18{27. URL: http://www.
s.

prin
eton.edu/sip/pub/

s4.html.

Erlingsson,

�

U. and S
hneider, F. B. 1999. SASI enfor
ement of se
urity poli
ies: a retrospe
-

tive. In New Se
urity Paradigms Workshop. 87{95. URL: http://www.
s.
ornell.edu/fbs/

publi
ations/sasiNSPW.ps.

Erlingsson,

�

U. and S
hneider, F. B. 2000. IRM enfor
ement of Java sta
k inspe
tion. In

IEEE Symposium on Se
urity and Priva
y (S&P). 246{255. URL: http://www.
omputer.org/

pro
eedings/s&p/0665/06650246abs.htm.

Filinski, A. 1999. Representing layered monads. In ACM Symposium on Prin
iples of Program-

ming Languages (POPL). 175{188. URL: http://www.bri
s.dk/~andrzej/papers/RLM.ps.gz.

Fournet, C. and Gordon, A. D. 2002. Sta
k inspe
tion: Theory and variants. In ACM Sym-

posium on Prin
iples of Programming Languages (POPL). 307{318. URL: http://resear
h.

mi
rosoft.
om/~fournet/papers/sta
k-inspe
tion-theory-and-variants-popl-02.ps.

Gong, L. 1998. Java se
urity ar
hite
ture (JDK1.2). URL: http://java.sun.
om/produ
ts/jdk/

1.2/do
s/guide/se
urity/spe
/se
urity-spe
.do
.html.

Gong, L. and S
hemers, R. 1998. Implementing prote
tion domains in the Java Development

Kit 1.2. In Internet So
iety Symposium on Network and Distributed System Se
urity. 125{134.

URL: http://java.sun.
om/people/gong/papers/jdk12impl.ps.gz.

Guzm

�

an, J. C. and Su

�

arez, A. 1994. An extended type system for ex
eptions. In ACM Workshop

on ML and its Appli
ations. Number 2265 in INRIA Resear
h Reports. INRIA, 127{135.

Higu
hi, T. and Ohori, A. 2003. A stati
 type system for JVM a

ess
ontrol. In ACM Inter-

national Conferen
e on Fun
tional Programming (ICFP). 227{237. URL: http://www.jaist.

a
.jp/~ohori/resear
h/higu
hiOhoriI
fp03.pdf.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

A Systemati
 Approa
h to Stati
 A

ess Control � 37

Jensen, T., Le M

�

etayer, D., and Thorn, T. 1999. Verifying se
urity properties of
ontrol-
ow

graphs. In IEEE Symposium on Se
urity and Priva
y (S&P). 89{105. URL: http://www.

irisa.fr/lande/jensen/papers/SP99.ps.

Koved, L., Pistoia, M., and Kershenbaum, A. 2002. A

ess rights analysis for Java. In ACM

Conferen
e on Obje
t-Oriented Programming, Systems, Languages, and Appli
ations (OOP-

SLA). 359{372. URL: http://www.resear
h.ibm.
om/javase
/OOPSLA2002preprint.pdf.

Lai, C., Gong, L., Koved, L., Nadalin, A. J., and S
hemers, R. 1999. User authenti
ation and

authorization in the Java platform. In Annual Computer Se
urity Appli
ations Conferen
e.

285{290. URL: http://java.sun.
om/people/gong/papers/jass.pdf.

Moggi, E. 1989. Computational �-
al
ulus and monads. In IEEE Symposium on Logi
 in Com-

puter S
ien
e (LICS). 14{23. URL: http://www.disi.unige.it/person/MoggiE/ftp/li
s89.

ps.gz.

Naumovi
h, G. 2002. A
onservative algorithm for
omputing the
ow of permissions in Java

programs. In Pro
eedings of the International Symposium on Software Testing and Analysis

(ISSTA). 33{43. URL: http://
is.poly.edu/gnaumovi/papers/permission-analysis.ps.

Odersky, M., Sulzmann, M., andWehr, M. 1999. Type inferen
e with
onstrained types. Theory

and Pra
ti
e of Obje
t Systems 5, 1, 35{55. URL: http://www.
omp.nus.edu.sg/~sulzmann/

publi
ations/tapos.ps.

Pessaux, F. and Leroy, X. 2000. Type-based analysis of un
aught ex
eptions. ACM Transa
tions

on Programming Languages and Systems 22, 2, 340{377. URL: http://pauilla
.inria.fr/

~xleroy/publi/ex
eptions-toplas.ps.gz.

Peyton Jones, S. and Wadler, P. 1993. Imperative fun
tional programming. In ACM Sym-

posium on Prin
iples of Programming Languages (POPL). URL: http://www.resear
h.

avayalabs.
om/user/wadler/papers/imperative/imperative.ps.gz.

Pottier, F. 2000. A versatile
onstraint-based type inferen
e system. Nordi
 Journal

of Computing 7, 4 (Nov.), 312{347. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-nj
-2000.ps.gz.

Pottier, F. 2003. A
onstraint-based presentation and generalization of rows. In IEEE Sym-

posium on Logi
 in Computer S
ien
e (LICS). 331{340. URL: http://pauilla
.inria.fr/

~fpottier/publis/fpottier-li
s03.ps.gz.

Pottier, F. and Con
hon, S. 2000. Information
ow inferen
e for free. In ACM International

Conferen
e on Fun
tional Programming (ICFP). 46{57. URL: http://pauilla
.inria.fr/

~fpottier/publis/fpottier-
on
hon-i
fp00.ps.gz.

Pottier, F., Skalka, C., and Smith, S. 2001. A systemati
 approa
h to stati
 a

ess
on-

trol. In European Symposium on Programming (ESOP). Le
ture Notes in Computer S
i-

en
e, vol. 2028. Springer Verlag, 30{45. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-skalka-smith-esop01.ps.gz.

R

�

emy, D. 1992a. Extending ML type system with a sorted equational theory. Te
h. Rep. 1766,

INRIA, Ro
quen
ourt, BP 105, 78153 Le Chesnay Cedex, Fran
e. URL: ftp://ftp.inria.fr/

INRIA/Proje
ts/
ristal/Didier.Remy/eq-theory-on-types.ps.gz.

R

�

emy, D. 1992b. Proje
tive ML. In ACM Symposium on Lisp and Fun
tional Programming

(LFP). 66{75. URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
ristal/Didier.Remy/lfp92.ps.

gz.

R

�

emy, D. 1994. Type inferen
e for re
ords in a natural extension of ML. In Theoreti
al Aspe
ts

Of Obje
t-Oriented Programming. Types, Semanti
s and Language Design, C. A. Gunter and

J. C. Mit
hell, Eds. MIT Press. URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
ristal/Didier.

Remy/taoop1.ps.gz.

S
hneider, F. B. 2000. Enfor
eable se
urity poli
ies. ACM Transa
tions on Information and

System Se
urity 3, 1 (Feb.), 1{50. URL: http://www.
s.
ornell.edu/fbs/publi
ations/

EnfSe
Pols.pdf.

Simonet, V. 2003. Type inferen
e with stru
tural subtyping: a faithful formalization of an eÆ
ient

onstraint solver. In Asian Symposium on Programming Languages and Systems. URL: http:

//
ristal.inria.fr/~simonet/publis/simonet-stru
tural-subtyping.ps.gz.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 � Fran�
ois Pottier et al.

Skalka, C. 2002. Types for programming language-based se
urity. Ph.D. thesis, The Johns Hop-

kins University. URL: http://www.
s.uvm.edu/~skalka/skalka-pubs/skalka-phd-thesis.ps.

Skalka, C. and Pottier, F. 2002. Synta
ti
 type soundness for HM(X). In Workshop on Types

in Programming (TIP). Ele
troni
 Notes in Theoreti
al Computer S
ien
e, vol. 75. URL:

http://pauilla
.inria.fr/~fpottier/publis/skalka-fpottier-tip-02.ps.gz.

Skalka, C. and Smith, S. 2000. Stati
 enfor
ement of se
urity with types. In ACM Interna-

tional Conferen
e on Fun
tional Programming (ICFP). 34{45. URL: http://www.
s.uvm.edu/

~skalka/skalka-pubs/skalka-smith-i
fp00.ps.

Spivey, M. 1990. A fun
tional theory of ex
eptions. S
ien
e of Computer Programming 14,

25{42.

Su, Z. and Aiken, A. 2001. Entailment with
onditional equality
onstraints. In European

Symposium on Programming (ESOP). Le
ture Notes in Computer S
ien
e, vol. 2028. 170{189.

URL: http://www.
s.u
davis.edu/~su/publi
ations/esop01.pdf.

Sulzmann, M. 2000. A general framework for Hindley/Milner type systems with
onstraints.

Ph.D. thesis, Yale University, Department of Computer S
ien
e. URL: http://www.
omp.nus.

edu.sg/~sulzmann/publi
ations/diss.ps.gz.

Sulzmann, M., M

�

uller, M., and Zenger, C. 1999. Hindley/Milner style type systems in
on-

straint form. Resear
h Report ACRC{99{009, University of South Australia, S
hool of Com-

puter and Information S
ien
e. July. URL: http://www.ps.uni-sb.de/~mmueller/papers/

hm-
onstraints.ps.gz.

Thiemann, P. 2001. Enfor
ing se
urity properties using type spe
ialization. In European Sym-

posium on Programming (ESOP). Le
ture Notes in Computer S
ien
e. Springer Verlag. URL:

http://www.informatik.uni-freiburg.de/~thiemann/papers/espps-het.ps.gz.

Wadler, P. and Thiemann, P. 2003. The marriage of e�e
ts and monads. ACM Transa
tions

on Computational Logi
 4, 1 (Jan.), 1{32. URL: http://www.resear
h.avayalabs.
om/user/

wadler/papers/effe
tsto
l/effe
tsto
l.ps.gz.

Wadler, P. L. 1985. How to repla
e failure by a list of su

esses. In Conferen
e on Fun
tional

Programming Languages and Computer Ar
hite
ture (FPCA). Le
ture Notes in Computer S
i-

en
e, vol. 201. Springer Verlag, 113{128.

Walker, D. 2000. A type system for expressive se
urity poli
ies. In ACM Symposium on Prin
i-

ples of Programming Languages (POPL). 254{267. URL: http://www.
s.
ornell.edu/home/

walker/papers/sa-popl00_ps.gz.

Walla
h, D. S. 1999. A new approa
h to mobile
ode se
urity. Ph.D. thesis, Prin
eton University.

URL: http://www.
s.prin
eton.edu/sip/pub/dwalla
h-dissertation.html.

Walla
h, D. S., Appel, A. W., and Felten, E. W. 2000. Safkasi: A se
urity me
hanism for

language-based systems. ACM Transa
tions on Software Engineering and Methodology 9, 4

(O
t.), 341{378. URL: http://www.
s.ri
e.edu/~dwalla
h/pub/tosem2000.ps.

Walla
h, D. S., Balfanz, D., Dean, D., and Felten, E. W. 1997. Extensible se
urity ar
hite
-

tures for Java. In ACM Symposium on Operating Systems Prin
iples (SOSP). 116{128. URL:

http://www.
s.prin
eton.edu/sip/pub/sosp97.html.

Walla
h, D. S. and Felten, E. 1998. Understanding Java sta
k inspe
tion. In IEEE Symposium

on Se
urity and Priva
y (S&P). URL: http://www.
s.prin
eton.edu/sip/pub/oakland98.

php3.

Wright, A. K. and Cartwright, R. 1997. A pra
ti
al soft type system for S
heme. ACM

Transa
tions on Programming Languages and Systems 19, 1 (Jan.), 87{152. URL: http:

//doi.a
m.org/10.1145/239912.239917.

Wright, A. K. and Felleisen, M. 1994. A synta
ti
 approa
h to type soundness. Information

and Computation 115, 1 (Nov.), 38{94. URL: http://www.
s.ri
e.edu/CS/PLT/Publi
ations/

S
heme/i
94-wf.ps.gz.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

