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The Java Se
urity Ar
hite
ture in
ludes a dynami
 me
hanism for enfor
ing a

ess 
ontrol 
he
ks,

the so-
alled sta
k inspe
tion pro
ess. While the ar
hite
ture has several appealing features, a

ess


ontrol 
he
ks are all implemented via dynami
 method 
alls. This is a highly non-de
larative form

of spe
i�
ation whi
h is hard to read, and whi
h leads to additional run-time overhead. This paper

develops type systems whi
h 
an stati
ally guarantee the su

ess of these 
he
ks. Our systems

allow se
urity properties of programs to be 
learly expressed within the types themselves, whi
h

thus serve as stati
 de
larations of the se
urity poli
y. We develop these systems using a systemati


methodology: we show that the se
urity-passing style translation, proposed by Walla
h, Appel

and Felten as a dynami
 implementation te
hnique, also gives rise to stati
 se
urity-aware type

systems, by 
omposition with 
onventional type systems. To de�ne the latter, we use the general

HM(X) framework, and easily 
onstru
t several 
onstraint- and uni�
ation-based type systems.

Categories and Subje
t Des
riptors: D.3.3 [Programming Languages℄: Language Constru
ts

and Features|
ontrol stru
tures; polymorphism; F.3.3 [Logi
s and Meanings of Programs℄:

Studies of Program Constru
ts|type stru
ture

General Terms: Languages, reliability, se
urity, theory

Additional Key Words and Phrases: Type systems, sta
k inspe
tion, a

ess 
ontrol

1. INTRODUCTION

The Java Se
urity Ar
hite
ture [Gong and S
hemers 1998; Gong 1998℄, found in

the Java JDK 1.2 and later, in
ludes me
hanisms to prote
t systems from opera-

tions performed by untrusted 
ode. These a

ess 
ontrol de
isions are enfor
ed by

dynami
 
he
ks. Our goal is to make some or all of these de
isions stati
ally, by

extensions to the type system. Thus, a

ess 
ontrol violations will be 
aught at


ompile-time rather than run-time. Furthermore, these type extensions 
onstitute

a stati
ally-spe
i�ed se
urity poli
y, whi
h is mu
h preferred to a dynami
 one.
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1.1 The Java Se
urity Ar
hite
ture

We now brie
y review the Java se
urity Ar
hite
ture [Gong and S
hemers 1998;

Gong 1998; Walla
h 1999℄. The sta
k inspe
tion algorithm underlying the ar
hite
-

ture is primarily 
on
erned with 
ode-based a

ess 
ontrol: in a single JVM 
an be

found 
ode loaded from di�erent 
odebases, and 
ode from ea
h 
odebase may have

di�erent a

ess rights. For instan
e, applets should not be allowed to read and write

arbitrary �les, but applets may be allowed to read and write �les in /tmp/*. Thus,

applets may have a FilePermission for read/write to /tmp/*, but no permissions

to read or write any other �les.

The sta
k inspe
tion system is used in two di�erent modes; these two di�er-

ent modes are not stated very 
learly in the literature so we review them now.

In the �rst mode, a 
he
kPermission() 
ommand is exe
uted before a 
riti-


al operation, su
h as a system library about to do a low-level �le write; if this


ommand does not raise an ex
eption, exe
ution 
ontinues and the �le is writ-

ten. For the applet example, if the applet tries to write /tmp/s
rat
h2232, the


he
kPermission() will su

eed sin
e the applet has this privilege (we will de-

s
ribe the 
he
king pro
ess in more detail below). In the se
ond mode, there may

be a need to temporarily raise privileges to allow the system to perform a privi-

leged operation for untrusted 
ode. An example is the system may need to read

a font �le, /usr/java/fonts/helveti
a.fnt, so the applet 
an use this font, but

this would otherwise 
ause an ex
eption sin
e the applet 
annot read that �le:

the 
he
kPermission() for read of /usr/java/fonts/helveti
a.fnt would fail.

The doPrivileged() 
ommand is designed to solve this problem: the system 
an

exe
ute doPrivileged(readFontCode) where readFontCode reads the font and

is exe
uted with system, not applet, privileges; and, the 
he
kPermission() will

su

eed sin
e it was exe
uted as a system-privileged operation.

A

ess 
ontrol de
isions of 
he
kPermission() are made using a sta
k inspe
tion

algorithm. The original requestor of an a
tion su
h as a �le read may be far ba
k

on the 
all sta
k: the applet invoked some system �le method whi
h in turn invoked

other system methods . . . whi
h �nally invoked a low-level system method to read

the �le whi
h invoked 
he
kPermission(). So, ba
k on the 
all sta
k is a frame

owned by the applet 
odebase. The 
he
kPermission() thus sear
hes ba
k the

sta
k, making sure every frame's 
odebase has the permission needed. This 
overs

the �rst 
ase of usage above. For the se
ond 
ase, where a temporary raising of

privileges is needed to e.g. read a font �le, the doPrivileged() 
ommand adds

a 
agged sta
k frame to the sta
k whi
h performs the privileged operation; when

a privilege is 
he
ked via the 
he
kPermission() 
ommand, the sta
k frames are

sear
hed most to least re
ent. If a doPrivileged frame for the relevant permission

is en
ountered, and the 
odebase of every frame up to and in
luding that one

is authorized for the permission, the 
he
k terminates su

essfully: even though

applet sta
k frames may be further up the sta
k be
ause applet 
ode indu
ed the

font load, its privileges are not queried.

1.1.1 Java's La
k of Full De
larativity. The Java Se
urity Ar
hite
ture is pop-

ular in pra
ti
e and embodies several useful prin
iples, but it also has some weak-

nesses. There is a performan
e penalty to pay due to the need for run-time sta
k

inspe
tion. The ar
hite
ture also is not as de
larative as it 
ould be, but for se
u-
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rity poli
ies it is important to be maximally de
larative: �xed, immutable poli
ies

have �xed meaning.

The Java poli
y �le is a �xed de
laration of privilege authorizations for 
ode-

bases, so this aspe
t of the ar
hite
ture is suÆ
iently de
larative. The problem

is how this poli
y is enfor
ed in the 
ode: e.g. is 
ode from foo.
om indeed re-

stri
ted at runtime from writing to "/tmp", if this is de
lared in the poli
y �le?

In fa
t, implementation of this poli
y requires that there be appropriate insertions

of 
he
kPermissions whi
h guard all low-level �le a

esses, whi
h are 
he
ked dy-

nami
ally. Thus, a programmer must have a perfe
t understanding of the 
ontrol


ow of the underlying program to guarantee that proper 
he
ks are in pla
e. This

obviously makes it diÆ
ult to see whether the 
ode is implementing the 
orre
t

poli
y; in large programs, tens of thousands of lines long, how 
an programmers

have su
h a perfe
t understanding?

This paper explores solutions to these problems through the use of stati
 type

systems. If types 
an de
lare pre
isely the privileges needed for an invo
ation of

a method to avoid run-time se
urity ex
eptions, these types 
ould give a top-level

de
laration of the permissions needed by ea
h 
hunk of 
ode, and programmers


ould verify that the 
orre
t poli
ies are implemented without having to understand

the 
omplete 
odebase.

1.2 Our Framework

We de�ne a se
urity typing system whi
h stati
ally type
he
ks, and thus stati
ally

veri�es su

ess of, the run-time a

ess 
ontrol 
he
ks. This obviates the need for

sta
k inspe
tion at run-time, sin
e all the 
he
ks have been proven to su

eed at


ompile-time. In this paper, a foundational framework is developed; there still

are several important issues to be addressed before it 
ould be applied to a real

language su
h as Java.

We employ several te
hni
al tools to streamline the results. We redu
e the se-


urity typing problem to a 
onventional typing problem using a translation-based

method inspired by [Pottier and Con
hon 2000℄. We use a standard language of

row types [R�emy 1992b℄ to des
ribe sets of privileges. We also re-use the HM(X)

framework [Odersky et al. 1999; Sulzmann 2000℄, whi
h allows a wide variety of

type systems to be de�ned in a single stroke, saves some proof e�ort, and (most

importantly) shows that our 
ustom type systems arise naturally out of a standard

one. Some te
hni
al results about HM(X) are drawn from [Skalka and Pottier

2002℄. We develop several di�erent type systems, in
luding both 
onstraint-based

and uni�
ation-based systems.

We begin by de�ning a simpli�ed model of the Java Se
urity Ar
hite
ture, �

se


.

This 
al
ulus is equipped with a non-standard operational semanti
s that in
ludes a

spe
i�
ation of sta
k inspe
tion. In order to 
onstru
t a stati
 type system for �

se


,

we translate it into a standard �-
al
ulus, 
alled �

set

. The translation is a se
urity-

passing style transformation [Walla
h 1999; Walla
h et al. 2000℄: it implements

sta
k inspe
tion by passing around sets of privileges at run-time. For this purpose,

�

set

is equipped with built-in notions of set and set operations. The translation is

proven to be 
orre
t, in that program semanti
s are preserved in translation.

Then, we de�ne a type system for �

set

. Be
ause �

set

is a standard �-
al
ulus, we

are able to de�ne our type system as a simple instan
e of the HM(X) framework

ACM Transa
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r 2 R; R � R resour
es

p 2 P; P � P;where P = 2

R

prin
ipals

v ::= �x z:�x:f values

e ::= x j �x z:�x:f j e e j letx = e in e j enable r in e j 
he
k r then e j expressions

test r then e else e j f

f ::= p:e signed expressions

E ::= [℄ j E e j v E j letx = E in e j enable r inE j p:E evaluation 
ontexts

Fig. 1. Grammar for �

se


[Odersky et al. 1999℄. In fa
t, by using this framework, a whole family of type

systems may be su

in
tly de�ned, ea
h with di�erent 
osts and bene�ts. In order

to give pre
ise types to �

set

's built-in set operations, our instan
e uses set types,

de�ned as a simpli�
ation of R�emy's re
ord types [R�emy 1992b℄.

Due to 
orre
tness of the �

se


-to-�

set

translation, and type safety within the �

set

type framework, an indire
t type analysis for �

se


is immediately obtained. That is,

a sound typing for any �

se


expression is the type of its en
oding in �

set

. However,

a dire
t type system that treats �

se


expressions themselves is still desirable, for

various reasons (e.g. eÆ
ien
y, error reporting). Thus, we lastly de�ne dire
t type

systems for �

se


, whi
h are based on, or \derived" from, analogous �

set

type systems.

As an appealing 
onsequen
e of our te
hni
al approa
h, a dire
t type safety result

follows easily from indire
t type safety, 
orre
tness of the �

se


-to-�

set

translation,

and a straighforward synta
ti
 
orrespondan
e between the dire
t and indire
t type

systems.

This paper expands on the 
onferen
e paper [Pottier et al. 2001℄, whi
h was itself

a re�guration of the ideas �rst presented in [Skalka and Smith 2000℄. The latter

paper de�ned the �rst stati
 type analysis for sta
k inspe
tion. There, fun
tion

types are of the form �

1

�

�! �

2

, where �

1

and �

2

are \ordinary" types, and �

represents a family of sets 
ontaining at least the permissions ne
essary to use

the fun
tion. An inferen
e te
hnique based on a set 
onstraint solution algorithm

was de�ned to implement the system. However, the system is non-standard and

monomorphi
; these short
omings are addressed in [Pottier et al. 2001℄ and the


urrent paper, whi
h extend the type analysis to a polymorphi
 setting, using

standard type logi
s with well-studied and eÆ
ient inferen
e methods.

2. THE SOURCE LANGUAGE �

se


This se
tion de�nes �

se


, a simpli�ed model of the se
urity ar
hite
ture of the JDK

1.2 and later. It is a �-
al
ulus equipped with a notion of 
ode ownership and 
on-

stru
ts for enabling or 
he
king privileges. For the sake of formal simpli
ity, we do

not de�ne sta
ks expli
itly; rather, sta
ks are impli
it in �

se


evaluation 
ontexts,

and 
an be gleaned from them. This is in 
ontrast to a version of the 
al
ulus

presented in [Skalka 2002℄ with expli
it sta
ks, inspe
tion thereon, and a dopriv


onstru
t, 
alled �

S

se


, that 
learly re
e
ts the JDK implementation details. How-

ever, �

S

se


is shown to be embeddable in �

se


in [Skalka 2002℄, ensuring 
on�den
e

in the 
orre
tness of �

se


as a model of the Java JDK ar
hite
ture.
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We assume given an arbitrary set R of resour
es (also known as privileges). We

use r and R to range over resour
es and over sets thereof, respe
tively. Following

Fournet and Gordon [Fournet and Gordon 2002℄, we de�ne the set of prin
ipals P

as the powerset of R, that is, we identify a prin
ipal with the set of resour
es to

whi
h it has a

ess. We use p and P to range over prin
ipals and over sets thereof,

respe
tively. We write nobody for the empty privilege set, that is, for the prin
ipal

with no a

ess rights. For typing purposes, we shall require every set of resour
es

to be either �nite or 
o�nite (Se
tion 5.3).

The reader may be somewhat puzzled by the fa
t that both p and R range over

sets of resour
es. The 
hoi
e of notation is intended to re
e
t the manner in whi
h

a set of resour
es is obtained. On the one hand, the notation p represents the set of

resour
es asso
iated (via an impli
it a

ess rights matrix) with some prin
ipal name,

found in the 
ode. On the other hand, the notation R represents an arbitrary set of

resour
es and may be the result of a 
omputation involving union and interse
tion

operations. In other words, p represents what Fournet and Gordon refer to as a

\stati
" set of privileges, while R represents a \dynami
" set of privileges.

The grammar of �

se


is given in Fig. 1. An abstra
tion �x z:�x:f may re
ursively

refer to itself through the program variable z. (This 
on
ation of the �x and �

binders simpli�es the treatment of re
ursion.) We write �x:f when z does not

appear free in f . The let form does not make the untyped 
al
ulus more expressive;

instead, as in ML, it is used by the type system to determine where polymorphism

may be introdu
ed. A signed expression p:e behaves as the expression e endowed

with the authority of prin
ipal p. The body of every �-abstra
tion is required to

be a signed expression { thus, every pie
e of 
ode must be vou
hed for by some

prin
ipal. The 
onstru
t enable r in e allows an authorized prin
ipal to enable the

use of a resour
e r within the expression e. The 
onstru
t 
he
k r then e asserts that

the use of r is 
urrently enabled. If r is indeed enabled, e is evaluated; otherwise,

exe
ution fails. The 
onstru
t test r then e

1

else e

2

dynami
ally tests whether r is

enabled, bran
hing to e

1

or e

2

if this holds or fails, respe
tively. Versions of enable,


he
k, and test that bear on a set of resour
es R, as opposed to a single resour
e r,

may be later introdu
ed as synta
ti
 sugar.

2.1 Sta
k Inspe
tion

The JDK determines whether a resour
e is enabled by literally examining the run-

time sta
k, hen
e the name sta
k inspe
tion. We give a simple spe
i�
ation of

this pro
ess by noti
ing that sta
ks are impli
itly 
ontained in evaluation 
ontexts,

whose grammar is de�ned in Fig. 1. Indeed, a 
ontext de�nes a path from the

term's root down to its a
tive redex, along whi
h one �nds exa
tly the se
urity

annotations whi
h the JDK would maintain on the sta
k, that is, 
ode owners p

and enabled resour
es r.

To formalize this idea, we asso
iate to every evaluation 
ontext E a �nite string

jE j of prin
ipals and resour
es, 
alled a sta
k. The right-most letters in the string


orrespond to the most re
ent sta
k frames. We write � for the empty sta
k and

ACM Transa
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r 2 p S ` r

S:p ` r

S ` r

S:r

0

` r

S `

�

r

S:r ` r

S `

�

r

S:r

0

`

�

r

r 2 p

S:p `

�

r

Fig. 2. Ba
kward sta
k inspe
tion algorithm

nobody;?; S ` R

r 2 R

S ` r

p;R; � ` R

p

0

; R \ p

0

; S ` R

0

p;R; p

0

:S ` R

0

p;R [ (frg \ p); S ` R

0

p;R; r:S ` R

0

Fig. 3. Forward sta
k inspe
tion algorithm

S

1

:S

2

for the 
on
atenation of the sta
ks S

1

and S

2

.

j[℄j = � jE ej = jE j

jv E j = jE j jletx = E in ej = jE j

jenable r inE j = r:jE j jp:E j = p:jE j

We 
an now de�ne a \sta
k inspe
tion" algorithm. We give two variants of it,

a ba
kward (Fig. 2) and a forward one (Fig. 3). Both are de�ned in terms of a

judgement of the form S ` r, whi
h may be read: inspe
ting the sta
k S to 
he
k

privilege r su

eeds. The former algorithm s
ans the sta
k, starting with the most

re
ent frames, then moving towards their an
estors. The latter, on the other hand,

s
ans the sta
k in the order it was built. Furthermore, its formulation is altered so

that it internally 
omputes not only whether a

ess to a given resour
e r is legal, but

also the set of all resour
es whi
h may be legally a

essed given the 
urrent sta
k.

These algorithms are referred to as lazy and eager, respe
tively, by Gong [Gong and

S
hemers 1998; Gong 1998℄. While the former is employed by most 
urrent JVM

implementations, the latter forms the basis of the se
urity-passing style [Walla
h

1999℄ translation whi
h we will introdu
e in Se
t. 4.

The following theorem states that forward and ba
kward sta
k inspe
tion are

in fa
t equivalent. This initial result is later used to establish the 
orre
tness of

se
urity-passing style (Theorem 2). Subsequently, we will write S ` r without

spe
ifying whi
h of the two algorithms is being used. We will also write E ` r for

jE j ` r.

Theorem 1. Assume given a sta
k S and a resour
e r. Let P stand for the set

of all prin
ipals that 
ontain r. Then, the following three statements are equivalent:

(1 ) S ` r holds a

ording to the rules of Fig. 2;

(2 ) S ` r holds a

ording to the rules of Fig. 3;

(3 ) some suÆx of S belongs to the regular language PR

?

r(P j R)

?

.

Proof. We begin by proving that the �rst statement is equivalent to the third

one. First, 
he
k that the auxiliary judgement S `

�

r holds if and only if some

suÆx of S belongs to PR

?

. Then, 
he
k that S ` r holds, a

ording to the rules of

Fig. 2, if and only if some suÆx of S belongs to the regular language PR

?

r(P j R)

?

.

Ea
h of these 
he
ks is immediate.
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We now prove that the se
ond statement is equivalent to the third one. Let A

(resp. B, resp. C) be the set of sta
ks S su
h that 9R

0

3 r p;R; S ` R

0

for some

(or, equivalently, for all) p, R su
h that p 63 r ^ R 63 r (resp. p 3 r ^ R 63 r, resp.

p 3 r ^R 3 r). It is straightforward to 
he
k that, a

ording to the last three rules

in Fig. 3, A, B and C are the least solutions to the following re
ursive equations:

A ::= P:B j (P n P ):A j R:A

B ::= P:B j (P n P ):A j r:C j (R n frg):B

C ::= � j (P n P ):A j (P j R):C

An indu
tive argument shows that A � B � C holds. Then, through a few rewriting

steps, one 
an bring the equations into a form where it is evident that A is exa
tly

(P j R)

?

PR

?

r(P j R)

?

. We do not give the details. In prin
iple, the 
he
k 
an

be me
hanized by verifying that the minimal deterministi
 �nite automaton (over

the 4-symbol alphabet frg, R n frg, P and P n P ) asso
iated with this regular

expression is exa
tly the one des
ribed by the above equations. There remains to


on
lude by noti
ing that, a

ording to the �rst rule in Fig. 3, S ` r holds if and

only if S 2 A.

2.2 Operational Semanti
s for �

se


The operational semanti
s of �

se


is de�ned by the following redu
tion rules:

E[(�x z:�x:f) v℄ ! E[f [v=x℄[�x z:�x:f=z℄℄

E[letx = v in e℄ ! E[e[v=x℄℄

E[
he
k r then e℄ ! E[e℄ if E ` r

E[test r then e

1

else e

2

℄ ! E[e

1

℄ if E ` r

E[test r then e

1

else e

2

℄ ! E[e

2

℄ if :(E ` r)

E[enable r in v℄ ! E[v℄

E[p:v℄ ! E[v℄

The evaluation 
ontext E is made expli
it in every rule, whi
h allows looking it

up when needing to perform se
urity 
he
ks. Note that it is not the 
ase that

e ! e

0

implies E[e℄ ! E[e

0

℄. Indeed, en
losing e within a new evaluation 
ontext

E enables more privileges, possibly 
ausing tests of the form test r then e

1

else e

2

to

be resolved di�erently.

The �rst two rules are standard. The next rule allows 
he
k r then e to redu
e

into e only if sta
k inspe
tion su

eeds (as expressed by the side 
ondition E ` r);

otherwise, exe
ution is blo
ked. The following two rules use sta
k inspe
tion in a

similar way to determine how to redu
e test r then e

1

else e

2

; however, they never


ause exe
ution to fail. The last two rules state that se
urity annotations be
ome

unne
essary on
e the expression they en
lose has been redu
ed to a value. In a

Java virtual ma
hine, these rules would be implemented simply by popping sta
k

frames (and the se
urity annotations they 
ontain) after exe
uting a method.

This operational semanti
s 
onstitutes a 
on
ise, formal des
ription of Java sta
k

inspe
tion in a higher-order setting. It is easy to 
he
k that every 
losed term

either is a value, or is redu
ible, or is of the form E[
he
k r then e℄ where :(E ` r).

Terms of the third 
ategory are stu
k ; they represent a

ess 
ontrol violations. An

expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is a stu
k expression,

holds.

ACM Transa
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e ::= x j v j e e j let x = e in e expressions

v ::= �x z:�x:e j R j :

r

j ?

r

j _

R

j ^

R

values

E ::= [℄ j E e j v E j let x = E in e evaluation 
ontexts

Fig. 4. Grammar for �

set

JxK

p

= x

J�x z:�x:fK

p

= �x z:�x:�s:JfK

Je

1

e

2

K

p

= Je

1

K

p

Je

2

K

p

s

Jletx = e

1

in e

2

K

p

= letx = Je

1

K

p

in Je

2

K

p

Jenable r in eK

p

= let s = s _ (frg \ p) in JeK

p

J
he
k r then eK

p

= let = s:r in JeK

p

Jtest r then e

1

else e

2

K

p

= s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

)

JfK

p

= JfK

Jp:eK = let s = s ^ p in JeK

p

Fig. 5. Sour
e-to-Target Translation

3. THE TARGET CALCULUS �

set

We now de�ne a standard 
al
ulus, �

set

, to be used as the target of our translation.

It is a �-
al
ulus equipped with a number of 
onstants whi
h provide set operations,

and is given in Fig. 4. We will use e:r, e?r, e_R and e ^R as synta
ti
 sugar for

(:

r

e), (?

r

e), (_

R

e) and (^

R

e), respe
tively.

The 
onstant R represents a 
onstant privilege set. The 
onstru
t e:r asserts that

r is an element of the set denoted by e; its exe
ution fails if that is not the 
ase. The


onstru
t e_R (resp. e^R) allows 
omputing the union (resp. interse
tion) of the

set denoted by e with a 
onstant set R. Lastly, the expression e?r x y dynami
ally

tests whether r belongs to the set R denoted by e, and a

ordingly invokes x or y,

passing R to it. The operational semanti
s for �

set

is as follows:

(�x z:�x:e) v ! e[v=x℄[�x z:�x:e=z℄

letx = v in e ! e[v=x℄

R:r ! R if r 2 R

R?r ! �x:�y:(xR) if r 2 R

R?r ! �x:�y:(y R) if r 62 R

R

1

_ R

2

! R

1

[R

2

R

1

^ R

2

! R

1

\R

2

E[e℄ ! E[e

0

℄ if e! e

0

Again, an expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is a stu
k

expression, holds.

4. SOURCE-TO-TARGET TRANSLATION

4.1 De�nition

A translation of �

se


into �

set

is de�ned in Fig. 5. The distinguished identi�ers s and

are assumed not to appear in sour
e expressions. Noti
e that s may appear free
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in translated expressions. Translating an (unsigned) expression requires spe
ifying

the 
urrent prin
ipal p.

One will often wish to translate an expression under minimal hypotheses, i.e.

under the prin
ipal nobody and a void se
urity 
ontext. To do so, we de�ne L e M =

JeK

nobody

[?=s℄. Noti
e that s does not appear free in L e M. If e is 
losed, then so is

L e M.

The idea behind the translation is simple: the variable s is bound at all times

to the set of 
urrently enabled resour
es. Every fun
tion a

epts s as an extra

parameter, be
ause it must exe
ute within its 
aller's se
urity 
ontext. As a result,

every fun
tion 
all has s as its se
ond parameter. The 
onstru
ts enable r in e and p:e


ause s to be lo
ally bound to a new value, re
e
ting the new se
urity 
ontext; more

spe
i�
ally, the former enables r, while the latter disables all privileges not available

to p. The 
onstru
ts 
he
k r then e and test r then e

1

else e

2

are implemented simply

by looking up the 
urrent value of s. In the latter, s is re-bound, within ea
h

bran
h, to the same value. This may appear super
uous at �rst sight, but has

an important impa
t on typing, be
ause it allows s to be given a di�erent (more

pre
ise) type within ea
h bran
h.

This translation 
an be viewed as a generalization of the se
urity-passing style

transformation [Walla
h 1999; Walla
h et al. 2000℄ to a higher-order setting. While

Walla
h et al. advo
ated this idea as an implementation te
hnique, with eÆ
ien
y

in mind, we use it only as a vehi
le in the proof of our type systems. Here, eÆ-


ien
y is not at stake: it is suÆ
ient that the translation s
heme be 
orre
t. The

next se
tion is devoted to proving this (in addition to its utility for our te
hni
al

purposes, it is the �rst formal 
orre
tness result for se
urity-passing style).

One should point out that this 
orre
tness proof is made ne
essary only by the

fa
t that we 
hose to de�ne the semanti
s of �

se


at the sour
e level (se
tion 2.2).

If, instead, we had 
hosen to 
onsider the se
urity-passing style translation as a

de�nition of �

se


's semanti
s, then no proof would be ne
essary. Banerjee and

Naumann [Banerjee and Naumann 2001℄ follow the latter approa
h, by giving a

denotational semanti
s whi
h in
orporates the se
urity-passing style translation.

4.2 Properties

A basi
 property of the translation is that s never appears free in the translation

of a value. Furthermore, the translation of a value does not depend on the 
urrent

prin
ipal, so we write JvK instead of JvK

p

.

For the purposes of our proofs, we need to isolate a parti
ular sub-
lass of target

language redu
tions, whi
h we wish to view as \administrative" (in a sense to be

explained later). Let !

s

be the subset of !

?

de�ned by

a ::= R j a _R j a ^R

let s = a in e !

s

e[R=s℄ if a!

?

R

E[e℄ !

s

E[e

0

℄ if e!

s

e

0

Our �rst lemma expresses the fa
t that the translation implements the forward

sta
k inspe
tion algorithm. It states that if p;R;E ` R

0

holds (as per the rules

of Fig. 3), then evaluating JE[e℄K

p

in a 
ontext where s is bound to R leads to

evaluating JeK

p

0

, for some p

0

, in a 
ontext where s is bound to R

0

. Furthermore,

this is a purely administrative redu
tion sequen
e. That is, it only a�e
ts the
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se
urity 
ontext, and does not re
e
t any 
omputational steps apparent in the

original program. The proof of the lemma presents no diÆ
ulty, be
ause of the


lose similarity between the de�nitions of the translation fun
tion and of the sta
k

inspe
tion algorithm.

Lemma 1. Assume p;R; S ` R

0

and S = jE j. Then, there exist a (target)

evaluation 
ontext E

0

and a prin
ipal p

0

su
h that, for every sour
e expression e,

JE[e℄K

p

[R=s℄!

?

s

E

0

[JeK

p

0

[R

0

=s℄℄

Proof. By indu
tion over the stru
ture of E. Let � and �

0

stand for the substi-

tutions [R=s℄ and [R

0

=s℄, respe
tively.

Case E = [℄. Then, S = � and R = R

0

. Thus, pi
king E

0

= [℄ and p

0

= p trivially

satis�es our requirement.

Case E = E

1

e

1

. Then,

JE[e℄K

p

� = JE

1

[e℄K

p

� Je

1

K

p

� R

Furthermore, the indu
tion hypothesis, applied to E

1

, yields E

0

1

and p

0

su
h that

JE

1

[e℄K

p

� !

?

s

E

0

1

[JeK

p

0

�

0

℄. So, pi
king E

0

= E

0

1

Je

1

K

p

� R �ts the bill.

Case E = v E

1

. This 
ase is similar to the previous one. Apply the indu
tion

hypothesis to obtain E

0

1

and p

0

. Then, pi
k E

0

= JvK E

0

1

R. (E

0

is indeed an

evaluation 
ontext, be
ause JvK is a value.)

Case E = letx = E

1

in e

1

. This 
ase is also similar. Apply the indu
tion hypoth-

esis to obtain E

0

1

and p

0

. Then, pi
k E

0

= letx = E

0

1

in Je

1

K

p

�.

Case E = enable r inE

1

. Then, S = r:S

1

, where S

1

= jE

1

j. Thus, from p;R; S `

R

0

, we may dedu
e p;R

1

; S

1

` R

0

, where R

1

stands for R [ (frg \ p). De�ne

�

1

= [R

1

=s℄. Then,

JE[e℄K

p

� = let s = R _ (frg \ p) in JE

1

[e℄K

p

!

s

JE

1

[e℄K

p

�

1

Applying the indu
tion hypothesis to E

1

yields E

0

1

, p

0

su
h that JE

1

[e℄K

p

�

1

!

?

s

E

0

1

[JeK

p

0

�

0

℄. So, pi
king E

0

= E

0

1

meets our goal.

Case E = p

1

:E

1

. Then, S = p

1

:S

1

, where S

1

= jE

1

j. Thus, from p;R; S ` R

0

, we

may dedu
e p

1

; R

1

; S

1

` R

0

, where R

1

stands for R\ p

1

. De�ne �

1

= [R

1

=s℄. Then,

JE[e℄K

p

� = let s = R ^ p

1

in JE

1

[e℄K

p

1

!

s

JE

1

[e℄K

p

1

�

1

Applying the indu
tion hypothesis to E

1

yields E

0

1

, p

0

su
h that JE

1

[e℄K

p

1

�

1

!

?

s

E

0

1

[JeK

p

0

�

0

℄. So, pi
king E

0

= E

0

1

meets our goal.

We now 
ome to our 
entral lemma, stating that, if a sour
e expression e leads, in

one 
omputation step, to a sour
e expression e

0

, then the translation of e redu
es,

modulo administrative redu
tions, to the translation of e

0

.

Lemma 2. e ! e

0

implies L e M !

?

�

?

s

 L e

0

M. Furthermore, if the redu
tion

e! e

0

is a �-redu
tion step, then the redu
tion sequen
e L e M!

?

� involves at least

one �-redu
tion step.

Proof. The assertion e ! e

0

must be an instan
e of one of the redu
tion rules

that de�ne the operational semanti
s (Se
tion 2.2), all of whi
h are of the form
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E[e

0

℄! E[e

0

0

℄. Thus, there exist E, e

0

, and e

0

0

su
h that e is E[e

0

℄ and e

0

is E[e

0

0

℄

and e

0

, e

0

0

have the shape required by one of the redu
tion rules.

Let S = jE j. There exists a unique R su
h that nobody;?; S ` R. Clearly, for

any resour
e r, E ` r is equivalent to r 2 R. De�ne � = [R=s℄. A

ording to

Lemma 1, there exist an evaluation 
ontext E

0

and a prin
ipal p su
h that, for any

sour
e expression e,

LE[e℄ M!

?

s

E

0

[JeK

p

�℄

Assume, for the time being, that Je

0

K

p

� !

?

Je

0

0

K

p

� holds. Then, we have

L e M = LE[e

0

℄ M !

?

s

E

0

[Je

0

K

p

�℄

!

?

E

0

[Je

0

0

K

p

�℄

?

s

 LE[e

0

0

℄ M = L e

0

M

whi
h is the desired result. Hen
e, there only remains to prove Je

0

K

p

� !

?

Je

0

0

K

p

�,

whi
h we now do, by 
ases on the form of e

0

and e

0

0

. By de�nition of e

0

and e

0

0

,

there is one 
ase per redu
tion rule.

Case e

0

= (�x z:�x:f) v, e

0

0

= f [v=x℄[�x z:�x:f=z℄. Then,

Je

0

K

p

� = J(�x z:�x:f) vK

p

�

= (J�x z:�x:fK JvK s)�

= (�x z:�x:�s:JfK) JvKR be
ause s 
annot appear free in values

!

2

JfK[JvK=x℄[J�x z:�x:fK=z℄�

= Jf [v=x℄[�x z:�x:f=z℄K� by a straightforward auxiliary lemma

= Je

0

0

K

p

�

The auxiliary lemma mentioned above takes advantage of the fa
t that the trans-

lation of a value JvK

p

does not depend upon the parameter p. We omit its proof.

Case e

0

= letx = v in e

1

, e

0

0

= e

1

[v=x℄. Then,

Je

0

K

p

� = Jletx = v in e

1

K

p

�

= letx = JvK in Je

1

K

p

� be
ause s is not free in JvK

! Je

1

K

p

�[JvK=x℄

= Je

1

K

p

[JvK=x℄�

= Je

1

[v=x℄K

p

� by the same auxiliary lemma

= Je

0

0

K

p

�

Case e

0

= enable r in v, e

0

0

= v. Then,

Je

0

K

p

� = Jenable r in vK

p

� = let s = R _ (frg \ p) in JvK

!

2

JvK = Je

0

0

K

p

�

Again, we take advantage of the fa
t that s does not o

ur free in JvK.

Case e

0

= 
he
k r then e

1

, e

0

0

= e

1

. We must have E ` r, hen
e r 2 R. Then,

Je

0

K

p

� = J
he
k r then e

1

K

p

� = let = R:r in Je

1

K

p

�

!

2

Je

1

K

p

� be
ause r 2 R

= Je

0

0

K

p

�
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Case e

0

= test r then e

1

else e

2

. Then, e

0

0

equals e

i

, where i = 1 if E ` r (or,

equivalently, if r 2 R), and i = 2 otherwise. Thus, we have

Je

0

K

p

� = Jtest r then e

1

else e

2

K

p

� = R?r (�s:Je

1

K

p

) (�s:Je

2

K

p

)

!

3

(�s:Je

i

K

p

)R

! Je

i

K

p

� = Je

0

0

K

p

�

Case e

0

= p

1

:v, e

0

0

= v. Then,

Je

0

K

p

� = Jp

1

:vK

p

� = let s = R ^ p

1

in JvK

!

2

JvK = Je

0

0

K

p

�

Again, we take advantage of the fa
t that s does not o

ur free in JvK

p

, and of the

fa
t that this expression does not depend on p.

This result is easily generalized to redu
tion sequen
es of arbitrary length:

Lemma 3. e !

?

e

0

implies L e M !

?

�

?

s

 L e

0

M. Furthermore, if the redu
tion

sequen
e e!

?

e

0

involves k �-redu
tion steps, then the redu
tion sequen
e L e M!

?

�

involves at least k �-redu
tion steps.

Proof. By indu
tion on the length of the redu
tion sequen
e e !

?

e

0

. In the

base 
ase, we have e = e

0

, and the result is immediate. In the indu
tive 
ase, we

have e ! e

1

!

?

e

0

. By applying Lemma 2, on the one hand, and the indu
tion

hypothesis, on the other hand, we obtain

L e M!

?

�

?

s

 L e

1

M!

?

�

?

s

 L e

0

M

where the number of �-redu
tion steps in the sequen
es L e M!

?

� and L e

1

M!

?

� is at

least as high as in the sour
e redu
tion sequen
es e! e

1

and e

1

!

?

e

0

, respe
tively.

Be
ause the operational semanti
s of the target language is deterministi
, one of

the two redu
tion sequen
es starting at L e

1

M above must be a sub-sequen
e of the

other. In either 
ase, the diagram 
ollapses down to

L e M!

?

�

?

s

 L e

0

M:

Furthermore, be
ause �-redu
tion is not an administrative redu
tion, the number

of �-redu
tion steps in the sequen
e L e M !

?

� is at least as high as in the original

redu
tion sequen
e e!

?

e

0

.

As a 
orollary, we obtain a soundness theorem for the translation. It essen-

tially states that se
urity-passing style is a valid implementation of the Java sta
k

inspe
tion dis
ipline.

Theorem 2. If e!

?

v, then L e M!

?

L v M. If e goes wrong, then L e M goes wrong.

If e diverges, then L e M diverges.

Proof. First, assume e redu
es to a value v. Then, Lemma 3 yields L e M !

?

�

?

s

 L v M. Be
ause L v M is a value, this diagram 
ollapses down to L e M!

?

L v M.

Se
ond, assume e goes wrong. Then, e!

?

e

0

, where e

0

is stu
k, holds. We prove

that L e M goes wrong by indu
tion on the length of this redu
tion sequen
e.

In the base 
ase, we have e = e

0

, i.e. e is stu
k. So, e must be of the form

E[
he
k r then e

1

℄, where :(E ` r). Let S = jE j. There exists a unique R

0

su
h

that nobody;?; S ` R

0

. Ne
essarily, r 62 R

0

. A

ording to Lemma 1, L e M may be
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hm-Var

�(x) = � C 
 �

C;� ` x : �

hm-Const

C;� ` 
 : �(
)

hm-Sub

C;� ` e : � C 
 � � �

0

C;� ` e : �

0

hm-8 Intro

C ^D;� ` v : � �� \ fv(C;�) = ?

C ^ 9��:D;� ` v : 8��[D℄:�

hm-8 Elim

C;� ` v : 8��[D℄:� C 
 [��=��℄D

C;� ` v : [��=��℄�

hm-Abs

C; (�; x : � ; z : � ! �

0

) ` e : �

0

C;� ` �x z:�x:e : � ! �

0

hm-App

C;� ` e

1

: �

2

! � C;� ` e

2

: �

2

C;� ` e

1

e

2

: �

hm-Let

C;� ` v : � C; (�;x : �) ` e : �

C;� ` let x = v in e : �

Fig. 6. The system HM(X)

redu
ed to a term of the form E

0

[J
he
k r then e

1

K

p

0

�

0

℄, where �

0

= [R

0

=s℄. It is easy

to 
he
k that su
h a term is stu
k. Hen
e, L e M goes wrong.

In the indu
tive 
ase, we have e ! e

1

!

?

e

0

. Our indu
tion hypothesis shows

that L e

1

M goes wrong. Furthermore, Lemma 2 shows that L e M redu
es to some

redu
t of L e

1

M. Be
ause redu
tion is deterministi
, L e M must go wrong as well.

The result follows.

Third, assume e admits an in�nite redu
tion sequen
e. This sequen
e must

involve an in�nite number of �-redu
tion steps, be
ause the semanti
s of �

se


,

deprived of the �-redu
tion rule, is terminating. By Lemma 3, L e M admits an

in�nite redu
tion sequen
e as well.

5. TYPES FOR �

set

We de�ne a type system for the target 
al
ulus as an instan
e of the paramet-

ri
 framework HM(X) [Odersky et al. 1999; Sulzmann 2000; Skalka and Pottier

2002℄. HM(X) is a generi
 type system in the Hindley-Milner tradition, parame-

terized by an abstra
t 
onstraint system X. Se
t. 5.1 brie
y re
alls its de�nition.

Se
t. 5.2 de�nes a spe
i�
 
onstraint system 
alled SETS, yielding the type system

HM(SETS). Se
t. 5.3 extends HM(SETS) to the entire language �

set

, by assigning

types to its primitive operations. Se
t. 5.4 states type safety results and dis
usses

several 
hoi
es for our type system, whi
h may be de�ned as either a uni�
ation-

or 
onstraint-based system, and whi
h is 
exible with respe
t to the a

ura
y of

initial type bindings.

5.1 The System HM(X)

We adopt the de�nition of HM(X) given in [Skalka and Pottier 2002℄. The frame-

work is parameterized by a 
onstraint system X, i.e. by notions of types � , 
on-

straints C, and interpretation of 
onstraints in a model.

Given a 
onstraint system, a type s
heme is a triple of a set of quanti�ers ��,

a 
onstraint C, and a type � (whi
h, in this paper, must be of kind Type ; see

Se
t. 5.2), written � ::= 8��[C ℄:� . A type environment � is a partial mapping of
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� ::= �; �; : : : j � ! � j f�g j r : � ; � j �� j 
 types


 ::= ? j Pre j Abs j > presen
e 
onstru
tors

C ::= true j C ^ C j 9�:C j � = � j � � � 
onstraints

j if 
 � � then � � � (
 6= ?)

Fig. 7. SETS Grammar

� 2 V

k

� : k

�; �

0

: Type

� ! �

0

: Type

� : Row

?

f�g : Type

� : Pres r 62 R

�

0

: Row

R[frg

(r : � ; �

0

) : Row

R

� : Pres

�� : Row

R


 : Pres

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9�:C

�; �

0

: k

` � = �

0

` � � �

0

�; �

0

; �

00

: k k 6= Type

` if 
 � � then �

0

� �

00

Fig. 8. Kinding rules

program variables to type s
hemes. A judgement is a quadruple of a 
onstraint C ,

a type environment �, an expression e and a type s
heme �, written C;� ` e : �,

derivable using the rules of Fig. 6. These rules 
orrespond to those given in [Skalka

and Pottier 2002℄, less the rules relevant to stateful features, whi
h are not needed

in this presentation. Note that via the hm-Const rule, populating � with initial

bindings allows typing new language 
onstants in parti
ular instan
es of HM(X).

In the 
ase of �

set

, 
 will range over the four primitive operators :

r

, _

R

, ^

R

and ?

r

.

The following synta
ti
 type safety theorem, in the style of [Wright and Felleisen

1994℄, is proven in [Skalka and Pottier 2002℄. Signi�
antly, the theorem holds with

respe
t to a 
all-by-value �-
al
ulus with let in any instan
e of HM(X), and the

theorem may be easily extended to in
orporate additional 
onstants by proving

soundness of initial bindings with respe
t to the semanti
s of fun
tional 
onstants,

the so-
alled Æ-typability property.

Theorem 3. If C;? ` e : � holds and C is satis�able, then e does not go wrong.

We dis
uss Æ-typability and type safety for �

set

more thoroughly in Se
t. 5.4.

5.2 The Constraint System SETS

In order to give pre
ise types to the primitive set operations in �

set

, we need spe
i�


types and 
onstraints. Together with their logi
al interpretation, whi
h de�nes their

meaning, these form a 
onstraint system 
alled SETS.

The syntax of types and 
onstraints is de�ned in Fig. 7. The type language

features four so-
alled presen
e 
onstru
tors, two standard row 
onstru
tors [R�emy

1992b℄, and a set type 
onstru
tor f�g.

Presen
e types are used to re
ord whether a resour
e r appears in a privilege set.

Pre means r is known to appear in the set, while Abs means r is known not to

appear in it. Of 
ourse, our analysis is sometimes approximate: > means that it is

not known whether r is a member of the set. Lastly, 
on
erns of eÆ
ien
y of type

inferen
e 
all for a fourth presen
e 
onstru
tor ?, whi
h, roughly speaking, means
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that it is irrelevant whether r appears in the set, be
ause the 
ode that requires

this privilege test is unrea
hable. In addition to these four 
onstants, a presen
e

type 
an also be a variable.

To des
ribe the 
ontents of a set, we use rows of presen
e types. A row is a

�nite des
ription of an in�nite obje
t, namely a (possibly partial) fun
tion from

resour
e names to presen
e types. More pre
isely, a row des
ribes a fun
tion that

maps almost all resour
es in its domain (i.e. all but a �nite number of them) to

the same type. Rows 
an be formed using two basi
 building blo
ks. First, the row


onstru
tor � allows forming 
onstant rows: if � is a presen
e type, then �� is a row

that maps all resour
es in its domain to � . Se
ond, the row 
onstru
tor (r : � ; �)

allows adding an entry to an existing row: (r : �

1

; �

2

) is a row that maps r to the

presen
e type �

1

and otherwise behaves as the row �

2

. Lastly, a row 
an also be a

variable. The original presentations of rows [R�emy 1992b; 1994℄ equip row types

with an equational theory, whi
h, in parti
ular, allows row entries to 
ommute. In

our presentation, these equations are not axioms; they simply happen to hold in

our interpretation of types (given below).

A whole set is des
ribed by a row � whose domain is R, wrapped within the set

type 
onstru
tor, yielding a type of the form f�g. To determine whether a parti
ular

resour
e r appears in the set, one queries the row � at r, yielding a presen
e type.

Su
h a query is 
arried out by unifying � against (r : 
 ; �), where 
 and � are fresh

presen
e and row variables, respe
tively. For instan
e, the singleton set frg is one

(and the only) value of type fr : Pre ; �Absg. To determine whether a resour
e

s appears within that set, we solve the equation (r : Pre ; �Abs) = (s : 
 ; �). If

r and s are distin
t, this leads to 
 = Abs and � = (r : Pre ; �Abs), the former

of whi
h re
e
ts the fa
t that s does not belong to frg. This treatment of sets is

inspired by Wand and R�emy's treatment of re
ords: a set is, in fa
t, a degenerate

re
ord where every �eld has unit type.

The 
onstraint language o�ers standard equality and subtyping 
onstraints, as

well as a simple form of 
onditional 
onstraints. Their use will be illustrated in

Se
t. 5.3 and 7.2.

To ensure that only meaningful types and 
onstraints 
an be built, we immedi-

ately equip them with kinds, de�ned by:

k ::= Pres j Row

R

j Type

where R ranges over �nite subsets of R. Kinds allow distinguishing presen
e types,

rows, and (regular) types. Furthermore, kinds keep tra
k of every row's domain: a

row of kind Row

R

represents a fun
tion of domain RnR. In parti
ular, a 
omplete

row, i.e. a total fun
tion from R to presen
e types, has kind Row

?

. For every

kind k, we assume given a distin
t, denumerable set of type variables V

k

. We

use �; �; 
; : : : to represent type variables. From here on, we 
onsider only well-

kinded types and 
onstraints, as de�ned in Fig. 8. The purpose of these rules is to

guarantee that every 
onstraint has a well-de�ned interpretation within our model,

whose de�nition follows.

To every kind k, we asso
iate a mathemati
al stru
ture JkK. JPresK is the set of

all four presen
e 
onstru
tors. Given a �nite set of resour
es R � R, JRow

R

K is the

set of total, almost 
onstant fun
tions from R n R into JPresK. JTypeK is the free
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� ` true

� ` C

1

� ` C

2

� ` C

1

^ C

2

� = �

0

[�℄ �

0

` C

� ` 9�:C

�(�) = �(�

0

)

� ` � = �

0

�(�) � �(�

0

)

� ` � � �

0

�; �

0

; �

00

: Pres 
 � �(�)) �(�

0

) � �(�

00

)

� ` if 
 � � then �

0

� �

00

�; �

0

; �

00

: Row

R

8r 2 R n R 
 � �(�)(r)) �(�

0

)(r) � �(�

00

)(r)

� ` if 
 � � then �

0

� �

00

Fig. 9. Interpretation of 
onstraints

algebra generated by the 
onstru
tors!, with signature JTypeK�JTypeK! JTypeK,

and f�g, with signature JRow

?

K! JTypeK.

Ea
h of these stru
tures is then equipped with an ordering. Here, a 
hoi
e has

to be made. If we do not wish to allow subtyping, we merely de�ne the ordering

on every JkK as equality. Otherwise, we pro
eed as follows. First, a latti
e over

JPresK is de�ned, whose least (resp. greatest) element is ? (resp. >), and where

Abs and Pre are in
omparable. This ordering is then extended, point-wise and


ovariantly, to every JRow

R

K. Finally, it is extended indu
tively to JTypeK by

viewing the 
onstru
tor f�g as 
ovariant, and the 
onstru
tor ! as 
ontravariant

(resp. 
ovariant) in its �rst (resp. se
ond) argument. This gives rise to a so-
alled

stru
tural, atomi
 subtyping relation: that is, two related types may di�er only in

their presen
e annotations.

We may now give the interpretation of types and 
onstraints within the model. It

is parameterized by a kind-preserving assignment �, i.e. a fun
tion whi
h, for every

kind k, maps V

k

into JkK. The interpretation of types is obtained by extending �

so as to map every type of kind k to an element of JkK, as follows:

�(� ! �

0

) = �(� )! �(�

0

) �(f�g) = f�(� )g

�(r : � ; �

0

)(r) = �(� ) �(r : � ; �

0

)(r

0

) = �(�

0

)(r

0

) (r 6= r

0

)

�(��)(r) = �(� ) �(
) = 


Noti
e how the interpretation of the two row 
onstru
tors re
e
ts the informal ex-

planation given above, and validates the expe
ted equational theory. Fig. 9 de�nes

the 
onstraint satisfa
tion predi
ate � ` �, whose arguments are an assignment �

and a 
onstraint C. (The notation � = �

0

[�℄ means that � and �

0


oin
ide ex
ept

possibly on �.) This de�nition is standard. The last rule spe
i�es that a 
ondi-

tional 
onstraint whose 
omponents are rows is to be interpreted point-wise, that

is, as an (in�nite) 
onjun
tion of 
onditional 
onstraints bearing on presen
e types.

Entailment is then de�ned as usual: C 
 C

0

(read: C entails C

0

) holds i�, for every

assignment �, � ` C implies � ` C

0

.

We refer to the type and 
onstraint logi
, together with its interpretation, as

SETS. More pre
isely, we have de�ned two logi
s, where � is interpreted as either

equality or as a non-trivial subtype ordering. We will refer to them as SETS

=

and

SETS

�

, respe
tively.
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5.3 Dealing with the Primitive Operations in �

set

The typing rules of HM(X) 
over only the �-
al
ulus with let. To extend HM(SETS)

to the whole language �

set

, we must assign types to its primitive operations. Let

us de�ne an initial type environment �

1

as follows:

R : fR : Pre ; �Absg

:

r

: 8�:fr : Pre ; �g ! fr : Pre ; �g

_

R

: 8��
:fR : �
 ; �g ! fR : Pre ; �g

^

R

: 8��
:fR : �
 ; �g ! fR : �
 ; �Absg

?

r

: 8��
:fr : 
 ; �g ! (fr : Pre ; �g ! �)! (fr : Abs ; �g ! �)! �

We let �, �, 
 range over type variables of kind Type , Row

?

, Pres , respe
tively. In

this de�nition and from here on, p and R range over �nite sets of resour
es only.

We exploit this restri
tion to de�ne the following 
on
ise notation, whi
h is used

above: if R is fr

1

; : : : ; r

n

g, then R : 
 stands for r

1

: 
 ; : : : ; r

n

: 
, and R : �
 stands

for r

1

: 


1

; : : : ; r

n

: 


n

. We note that it is possible to deal with 
o�nite sets of

resour
es as well, by writing

�

R for R n R and by employing the following bindings

when R is 
o�nite:

R : f

�

R : Abs ; �Preg

_

R

: 8��
:f

�

R : �
 ; �g ! f

�

R : �
 ; �Preg

^

R

: 8��
:f

�

R : �
 ; �g ! f

�

R : Abs ; �g

Co�nite sets of resour
es allow modeling prin
ipals that enjoy all privileges but a

�nite number. For the sake of simpli
ity and brevity, we deal with �nite sets of

resour
es only in the following, although, in pra
ti
e, dealing with both �nite and


o�nite sets does not raise any additional diÆ
ulty.

We may also use 
onditional 
onstraints to assign a more 
exible type s
heme to

?

r

. Let �

2

be the initial type environment obtained by repla
ing the last binding

in �

1

with:

?

r

: 8��

�

�
[C℄:fr : 
 ; �g ! (fr : Pre ; �

1

g ! �

1

)! (fr : Abs ; �

2

g ! �

2

)! �

where C = (if Pre � 
 then � � �

1

) ^ (if Abs � 
 then � � �

2

)

^ (if Pre � 
 then �

1

� �) ^ (if Abs � 
 then �

2

� �)

Here, the input and output of ea
h bran
h (represented by �

i

and �

i

, respe
tively)

are linked to the input and output of the whole 
onstru
t (represented by � and �)

through 
onditional 
onstraints. Intuitively, this means that the se
urity require-

ments and the return type of a bran
h may be entirely ignored unless the bran
h

seems liable to be taken. (For more ba
kground on 
onditional 
onstraints, the

reader is referred to [Aiken et al. 1994; Pottier 2000℄.)

5.4 The Type Systems S

rel

i

Se
t. 5.2 des
ribes two 
onstraint systems, SETS

=

and SETS

�

. Se
t. 5.3 de�nes

two initial typing environments, �

1

and �

2

. These 
hoi
es give rise to four related

type systems, whi
h we refer to as S

rel

i

, where rel and i range over f=;�g and

f1; 2g, respe
tively. Ea
h of them o�ers a di�erent 
ompromise between a

ura
y,

readability and 
ost of analysis. In ea
h 
ase, Theorem 3 may be extended to the

entire language �

set

by proving a simple Æ-typability [Wright and Felleisen 1994℄
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lemma, i.e. by 
he
king that �

i


orre
tly des
ribes the behavior of the primitive

operations. This is the subje
t of the next se
tion.

Despite sharing a 
ommon formalism, these systems may 
all for vastly di�erent

implementations. Indeed, every instan
e of HM(X) must 
ome with a 
onstraint

solving algorithm. S

=

1

is a simple extension of the Hindley-Milner type system

with rows, and its 
onstraint solver is row uni�
ation [R�emy 1992a℄. S

=

2

is sim-

ilar, but requires 
onditional (i.e. delayed) uni�
ation 
onstraints. S

�

1

and S

�

2

require solving (stru
tural) subtyping 
onstraints, usually leading to more 
omplex

implementations based on transitive 
losure 
omputations and on-the-
y 
onstraint

simpli�
ations, see e.g. [Simonet 2003℄. A worst-
ase time bound for solving pos-

sibly 
onditional subtyping 
onstraints in the presen
e of rows is given in [Pottier

2003℄: it is 
ubi
 in the size of the program and 
lose to linear in the number of

resour
es that appear in the program, either individually or as part of a prin
ipal

p. In pra
ti
e, for all four systems, it is possible to design a 
onstraint solver that

s
ales well.

One should also point out that, when the programming language is extended with

a me
hanism for de
laring the type of an expression (or, in Java, of a method), it is

ne
essary to be able to 
he
k that the type inferred by the analysis for this expres-

sion mat
hes the de
laration. This requires an algorithm for de
iding 
onstraint

entailment. In the setting of uni�
ation and of stru
tural subtyping, su
h algo-

rithms exist and are eÆ
ient. In the presen
e of 
onditional 
onstraints, however,

entailment be
omes a hard problem [Su and Aiken 2001℄, making the use of su
h


onstraints problemati
.

5.5 Proof of Æ-typability for �

set

Let us �rst state some basi
 properties of sets and set types, whose proofs are

omitted.

Lemma 4. Let v be a 
losed value. If C;� ` v : f�g holds in S

rel

i

, then v is a

set R and C 
 (R : Pre ; �Abs) � � .

Lemma 5. If C;� ` R : fR

0

: Pre ; �g holds in S

rel

i

, then R

0

� R.

Lemma 6. If C;� ` R : fR

0

: �� ; �g holds in S

rel

i

, then so do C;� ` R [ R

0

:

fR

0

: Pre ; �g and C;� ` R \ R

0

: fR

0

: �� ; �Absg.

As mentioned in Se
t. 5.1, extending Theorem 3 to all of �

set

only requires proving

soundness of the initial bindings for the primitive operators. Let Æ(
; v) = v

0

if and

only if 
 v ! v

0

. We state the so-
alled Æ-typability property in the style of [Skalka

and Pottier 2002℄:

Lemma 7. In every S

rel

i

, for every 
onstant 
 and 
losed value v, if C;� ` 
 :

�

1

! �

2

and C;� ` v : �

1

hold, then Æ(
; v) is de�ned and C;� ` Æ(
; v) : �

2

holds.

Proof. Suppose C;� ` 
 : �

1

! �

2

and C;� ` v : �

1

. We 
onsider two 
ases:

�rst, the 
ase where C;� ` 
 : �

1

! �

2

is obtained via hm-8 Elim and hm-Sub;

se
ond, the 
ase where it is obtained via hm-8 Elim alone. A

ording to the

normalization result proved in [Skalka and Pottier 2002℄, this is enough.

In the �rst 
ase, hm-Sub's premises are of the form C;� ` 
 : �

0

1

! �

0

2

(1) and

C 
 �

0

1

! �

0

2

� �

1

! �

2

(2). By properties of �, (2) implies C 
 �

1

� �

0

1

(3)
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and C 
 �

0

2

� �

2

(4). By assumption and hm-Sub, (3) implies C;� ` v : �

0

1

(5).

A

ording to the next 
ase of the proof, (1) and (5) imply that Æ(
; v) is de�ned

and C;� ` Æ(
; v) : �

0

2

(6) holds. The result follows from (4) and (6) by hm-Sub.

Let us now 
onsider the se
ond 
ase. �

i

(
) is a type s
heme of the form

8��[D℄:�

0

1

! �

0

2

. Be
ause the derivation of C;� ` 
 : �

1

! �

2


onsists of a sin-

gle instan
e of hm-8 Elim, we have �

1

= '(�

0

1

) and �

2

= '(�

0

2

), where ' is a

substitution of domain �� and C 
 '(D). We now pro
eed by 
ase analysis on 


and i:

Case 
 = :

r

. In this 
ase �

1

= �

2

= fr : Pre ; '�g. By Lemma 4, v is a

set R. By Lemma 5, we further obtain frg � R, hen
e Æ(:

r

; v) = v. The result

C;� ` Æ(
; v) : �

2

follows.

Case 
 = _

R

. In this 
ase �

1

= fR : '�
 ; '�g and �

2

= fR : Pre ; '�g.

By Lemma 4, v is a set R

0

, and Æ(_

R

; R

0

) = R [ R

0

. Then, Lemma 6 yields

C;� ` Æ(
; v) : �

2

.

Case 
 = ^

R

. In this 
ase �

1

= fR : '�
 ; '�g and �

2

= fR : '�
 ; �Absg.

By Lemma 4, v is a set R

0

, and Æ(^

R

; R

0

) = R \ R

0

. Then, Lemma 6 yields

C;� ` Æ(
; v) : �

2

.

Case 
 = ?

r

and i = 1. In this 
ase �

1

= fr : '
 ; '�g and �

2

= (fr :

Pre ; '�g ! '�)! (fr : Abs ; '�g ! '�) ! '�. By Lemma 4, v is a set R, so

Æ(?

r

; v) is de�ned. Let us assume r 2 R (the other 
ase is analogous). Then, Æ(?

r

; v)

is �x:�y:(xR). By Lemma 4, we have C 
 (R : Pre ; �Abs) � (r : '
 ; '�).

This implies C 
 (R : Pre ; �Abs) � (r : Pre ; '�) (we have simply made the

two rows agree at r). Be
ause C;� ` R : fR : Pre ; �Absg holds, hm-Sub yields

C;� ` R : fr : Pre ; '�g. From this fa
t, it is easy to derive C;� ` �x:�y:(xR) : �

2

.

Case 
 = ?

r

and i = 2. In this 
ase �

1

= fr : '
 ; '�g and �

2

= (fr :

Pre ; '�

1

g ! '�

1

) ! (fr : Abs ; '�

2

g ! '�

2

) ! '�. By Lemma 4, v is a

set R, so Æ(?

r

; v) is de�ned. Let us assume r 2 R (the other 
ase is analogous).

Then, Æ(?

r

; v) is �x:�y:(xR). By Lemma 4, we have C 
 (R : Pre ; �Abs) � (r :

'
 ; '�). This implies, in parti
ular, Pre � '
 (we have simply looked up the two

rows at r). Be
ause C 
 '(D), and by de�nition of the satisfa
tion of 
onditional


onstraints, we must then have C 
 '� � '�

1

and C 
 '�

1

� '�. Furthermore,

as in the previous 
ase, we have C;� ` R : fr : Pre ; '�g. From these fa
ts, it is

easy to derive C;� ` �x:�y:(xR) : �

2

.

6. TYPES FOR �

se


6.1 Indire
t Type Systems

Se
t. 5 de�ned a type system, S

rel

i

, for �

set

. Se
t. 4 de�ned a translation of �

se


into �

set

. Composing the two automati
ally gives rise to a type system for �

se


,

also 
alled S

rel

i

for simpli
ity, whose safety is a dire
t 
onsequen
e of Theorems 2

and 3.

Definition 1. Let e be a �

se


expression. By de�nition, C;� ` e : � holds if

and only if C;� ` L e M : � holds.

Theorem 4. If C;? ` e : � holds and C is satis�able, then e does not go wrong.

Turning type safety into a trivial 
orollary was the main motivation for bas-

ing our approa
h on a translation. Indeed, be
ause Theorem 2 
on
erns untyped
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Var

�(x) = �

p; &;� ` x : �

Abs

?; &

2

; (�; z : �

1

&

2

�! �

2

;x : �

1

) ` f : �

2

p; &

1

;� ` �x z:�x:f : �

1

&

2

�! �

2

App

p; &;� ` e

1

: �

2

&

�! � p; &;� ` e

2

: �

2

p; &;� ` e

1

e

2

: �

Let

p; &;� ` e

1

: � p; &; (�; x : �) ` e

2

: �

p; &;� ` letx = e

1

in e

2

: �

8 Intro

p; &;� ` e : � �� \ fv(&;�) = ?

p; &;� ` e : 8��:�

8 Elim

p; &;� ` e : 8��:�

p; &;� ` e : [��=��℄�

Enable Failure

p; f�g;� ` e : � r 62 p

p; f�g;� ` enable r in e : �

Enable Su

ess

p; fr : Pre ; �g;� ` e : � r 2 p

p; fr : ' ; �g;� ` enable r in e : �

Che
k

p; fr : Pre ; �g;� ` e : �

p; fr : Pre ; �g;� ` 
he
k r then e : �

Test

p; fr : Pre ; �g;� ` e

1

: � p; fr : Abs ; �g;� ` e

2

: �

p; fr : ' ; �g;� ` test r then e

1

else e

2

: �

Sign

p; fp : �' ; �Absg;� ` e : �

?; fp : �' ; �g;� ` p:e : �

Fig. 10. Typing rules for �

se


derived from S

=

1

terms, its proof is straightforward. (The Æ-typability lemma established in Se
t. 5.3

does involve types, but is very straightforward.) A dire
t type safety proof would

dupli
ate most of the steps involved in proving HM(X) 
orre
t.

Although the above theorem only mentions type safety, it is possible to also

establish a subje
t redu
tion result for �

se


. Indeed, a

ording to Lemma 2, subje
t

redu
tion for �

se


follows dire
tly from subje
t redu
tion for �

set

and from the fa
t

that administrative expansion

s

 preserves types, whi
h is easy to 
he
k.

6.2 Reformulation: Dire
t Type Systems

De�nition 1, although simple, is not a dire
t de�nition of typing for �

se


. But a

dire
t type system is desirable, for several reasons. First, given a dire
t type system,

it be
omes unne
essary to a
tually translate expressions down to �

set

. Also, with

a dire
t type system, more su

in
t and intuitive type and judgement forms 
an be

adopted. Finally, understandable type error reporting is mu
h more feasible in a

dire
t type system. Therefore, we de�ne rules whi
h allow typing �

se


expressions

without expli
itly translating them into �

set

. These so-
alled dire
t or derived

rules 
an be obtained in a rather systemati
 way from the de�nition of S

rel

i

and the

de�nition of the translation, making the dire
t type safety proof straightforward,

by appeal to the pre-existing result in �

set

and Theorem 2.

In these rules, the symbols � and & range over types of kind Type ; more spe
i�-


ally, & is used to represent some se
urity 
ontext, i.e. a set of available resour
es.

The symbols � and ' range over types of kind Row

?

and Pres , respe
tively. The

? symbol in the rules stands for an arbitrary prin
ipal. In the sour
e-to-target

translation, all fun
tions are given an additional parameter, yielding types of the

form �

1

! & ! �

2

. To re
over the more familiar and appealing notation proposed

in [Skalka and Smith 2000℄, we de�ne the ma
ro �

1

&

�! �

2

=

def

�

1

! & ! �

2

.

Fig. 10 gives derived rules for S

=

1

, the simplest of our type systems. There, all
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onstraints are equations. As a result, all type information 
an be represented in

term form, rather than in 
onstraint form [Sulzmann et al. 1999℄, provided types

are identi�ed modulo the (standard) equational theory for rows. We exploit this

fa
t to give a simple presentation of the derived rules. Type s
hemes have the form

8��:� , and judgements have the form p; &;� ` e : �. Although rule Enable Failure

naturally arises through the translation, it may be desirable, in pra
ti
e, to remove

it. Thus, any attempt to enable a privilege by a prin
ipal who does not own it

would result in an immediate stati
 type error.

Var

�(x) = � C 
 �

p; &;C;� ` x : �

Sub

p; &;C;� ` e : � C 
 � � �

0

p; &; C;� ` e : �

0

Abs

?; &

2

; C; (�; z : �

1

&

2

�! �

2

;x : �

1

) ` f : �

2

p; &

1

; C;� ` �x z:�x:f : �

1

&

2

�! �

2

App

p; &;C;� ` e

1

: �

2

&

�! � p; &; C;� ` e

2

: �

2

p; &; C;� ` e

1

e

2

: �

Let

p; &; C;� ` e

1

: � p; &; C; (�;x : �) ` e

2

: �

p; &; C;� ` letx = e

1

in e

2

: �

8 Intro

p; &;C ^D;� ` e : � �� \ fv(&; C;�) = ?

p; &;C ^ 9��:D;� ` e : 8��[D℄:�

8 Elim

p; &;C;� ` e : 8��[D℄:� C 
 [��=��℄D

p; &; C;� ` e : [��=��℄�

Enable Failure

p; f�g; C;� ` e : � r 62 p

p; f�g; C;� ` enable r in e : �

Enable Su

ess

p; fr : Pre ; �g; C;� ` e : � r 2 p

p; fr : ' ; �g; C;� ` enable r in e : �

Che
k

p; fr : Pre ; �g; C;� ` e : �

p; fr : Pre ; �g; C;� ` 
he
k r then e : �

Test

p; fr : Pre ; �

1

g; C;� ` e

1

: �

1

p; fr : Abs ; �

2

g; C;� ` e

2

: �

2

C 
 if Pre � ' then � � �

1

C 
 if Abs � ' then � � �

2

C 
 if Pre � ' then �

1

� � C 
 if Abs � ' then �

2

� �

p; fr : ' ; �g; C;� ` test r then e

1

else e

2

: �

Sign

p; fp : �' ; �Absg; C;� ` e : �

?; fp : �' ; �g; C;� ` p:e : �

Fig. 11. Typing rules for �

se


derived from S

�

2

Figure 11 gives rules for the system derived from S

�

2

, the most 
omplex element

in our array of type systems. Judgements have the form p; &; C;� ` e : �. The most

signi�
ant di�eren
es are the a

ura
y of the Test rule, re
e
ting the more pre
ise

binding for ?

r

in �

2

, and the addition of subtyping 
onstraints.

Be
ause the system presented in Fig. 10 is based on uni�
ation, it is eÆ
ient,

easy to implement, and yields readable types. Also, we 
onje
ture that, thanks to

the power of row polymorphism, it is 
exible enough for many pra
ti
al uses (see

Se
t. 7). Therefore, we will fo
us on this system in the rest of this paper. We prove

that this system is 
orre
t in Se
tion 6.3.
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6.3 Dire
t Type Corre
tness

In this se
tion we prove the 
orre
tness of the type system derived from S

=

1

, that

is, we prove Lemma 11. We begin by proving soundness of the derived system with

respe
t to S

=

1

.

Lemma 8. p; &;� ` e : � implies true; (�; s : &) ` JeK

p

: �.

Proof. By stru
tural indu
tion on the derivation of p; &;� ` e : �. Let �

0

stand

for (�; s : &).

Case Var. In this 
ase e is a variable x. Be
ause s is a distinguished variable, we

have x 6= s, so �(x) and �

0

(x) 
oin
ide. Furthermore, JxK

p

is x. The result follows

by hm-Var.

CaseAbs. In this 
ase e is �x z:�x:f , � is �

1

&

0

�! �

2

and p

0

; &

0

; (�; z : �;x : �

1

) ` f :

�

2

is derivable. By the indu
tion hypothesis, true; (�; z : �;x : �

1

; s : &

0

) ` JfK

p

0

: �

2

is derivable. This judgement 
an also be written true; (�

0

; z : �;x : �

1

; s : &

0

) ` JfK :

�

2

. Thus true;�

0

` �x z:�x:�s:JfK : �

1

! &

0

! �

2

is derivable by two appli
ations

of hm-Abs. Given the de�nition of JeK

p

in this 
ase, this was the goal.

Case App. In this 
ase e = e

1

e

2

, � = � and p; &;� ` e

1

: �

2

&

�! � and p; &;� `

e

2

: �

2

are derivable. By the indu
tion hypothesis, true;�

0

` Je

1

K

p

: �

2

! & ! �

and true;�

0

` Je

2

K

p

: �

2

are derivable. Furthermore, true;�

0

` s : & holds by

hm-Var. Hen
e true;�

0

` Je

1

K

p

Je

2

K

p

s : �

2

is derivable by two appli
ations of

hm-App. Given the de�nition of JeK

p

in this 
ase, this was the goal.

Case Let. In this 
ase e = letx = e

1

in e

2

, and p; &;� ` e

1

: �

0

and p; &; (�;x :

�

0

) ` e

2

: � are derivable. By the indu
tion hypothesis, true;�

0

` Je

1

K

p

: �

0

and

true; (�

0

;x : �

0

) ` Je

2

K

p

: � hold. The result follows by hm-Let and by de�nition

of JeK

p

in this 
ase.

Case 8 Intro. In this 
ase � = 8��[true℄:� where �� \ fv(&;�) = ? and p; &;� `

e : � is derivable. By the indu
tion hypothesis, true;�

0

` JeK

p

: � is derivable.

Furthermore, we have �� \ fv(true;�

0

) = ?. Thus, by hm-8 Intro, true;�

0

`

JeK

p

: � is derivable. We have impli
itly used the equivalen
es true � true ^ true

and true � 9��:true.

Case 8 Elim. In this 
ase � = [��=��℄� and p; &;� ` e : 8��[true℄:� is derivable. By

the indu
tion hypothesis, true;�

0

` JeK

p

: 8��[true℄:� is derivable. Furthermore,

[��=��℄true is true, so the result follows by hm-8 Elim.

Case Enable Failure. In this 
ase e = enable r in e

0

where r 62 p so that frg\p =

?, & = f�g, � = � and p; &;� ` e

0

: � is derivable. Now, by de�nition of �

1

,

by hm-Const and hm-8 Elim, true;�

0

` _

?

: & ! & is derivable. Furthermore,

true;�

0

` s : & follows from hm-Var. Therefore, hm-App yields true;�

0

` s_? : & .

The indu
tion hypothesis yields true;�

0

` Je

0

K

p

: � , so also true; (�

0

; s : &) ` Je

0

K

p

:

� . The result follows by hm-Let and the de�nition of JeK

p

in this 
ase.

Case Enable Su

ess. In this 
ase e = enable r in e

0

where r 2 p so that

frg\ p = frg, & = fr : '; �g, � = � and p; fr : Pre; �g ;� ` e

0

: � is derivable. Now,

by de�nition of �

1

, by hm-Const and hm-8 Elim, true;�

0

` _

frg

: fr : '; �g !

fr : Pre; �g is derivable. Furthermore, true;�

0

` s : & follows from hm-Var.

Therefore, hm-App yields true;�

0

` s_frg : fr : Pre; �g. The indu
tion hypothesis

yields true; (�; s : fr : Pre; �g) ` Je

0

K

p

: � , so also true; (�

0

; s : fr : Pre; �g) `

Je

0

K

p

: � . The result follows by hm-Let and the de�nition of JeK

p

in this 
ase.
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Case Che
k. In this 
ase e = 
he
k r then e

0

and � = � , & = fr : Pre; �g and

p; &;� ` e

0

: � is derivable. Now, by de�nition of �

1

, by hm-Const, hm-8 Elim,

hm-Var and hm-App, true;�

0

` s:r : & is derivable. By the indu
tion hypothesis,

true;�

0

` Je

0

K

p

: � is derivable, so also true; (�

0

; : &) ` Je

0

K

p

: � , if is a variable

that does not appear free in e

0

. The result follows by hm-Let and the de�nition of

JeK

p

in this 
ase.

Case Test. In this 
ase e = test r then e

1

else e

2

and � = � , & = fr : ' ; �g

and p; fr : Pre ; �g;� ` e

1

: � and p; fr : Abs ; �g;� ` e

2

: � are derivable.

By the indu
tion hypothesis, we have true; (�; s : fr : Pre ; �g) ` Je

1

K

p

: � . By

hm-Abs, this implies true;� ` �s:Je

1

K

p

: fr : Pre ; �g ! � . By weakening, we

also have true;�

0

` �s:Je

1

K

p

: fr : Pre ; �g ! � . Similarly, true;�

0

` �s:Je

2

K

p

:

fr : Abs ; �g ! � holds. The result follows by de�nition of �

1

, by hm-Const,

hm-8 Elim, hm-Var, hm-App and by de�nition of JeK

p

in this 
ase.

Case Sign. In this 
ase e = p

0

:e

0

, & = fp

0

: �' ; �g, � = � and p

0

; &

0

;� ` e

0

: � is

derivable, where &

0

= fp

0

: �' ; �Absg. By the indu
tion hypothesis, true; (�; s :

&

0

) ` Je

0

K

p

0

: � holds, so also true; (�

0

; s : &

0

) ` Je

0

K

p

0

: � . Now, by de�nition of �

1

,

by hm-Const, hm-8 Elim, hm-Var and hm-App, true;�

0

` s^ p

0

: &

0

holds. The

result follows by hm-Let and the de�nition of JeK

p

in this 
ase.

Our next task is to prove 
ompleteness of the derived type system with respe
t to

S

=

1

. We begin with a normalization result analogous to the one proved in [Skalka

and Pottier 2002℄.

Lemma 9. If C;� ` e : � holds then it may be derived via an instan
e of Sub

from a judgement C;� ` e : �

0

, whi
h itself follows from an instan
e of a syntax-

dire
ted rule and at most one instan
e of 8 Elim.

We may now pro
eed to demonstrate 
ompleteness. In this lemma, we abbreviate

type s
hemes 8��[true℄:� as 8��:� and judgements true;� ` e : � as � ` e : �,

omitting the trivial requirement true 
 true from instan
es of 8 Elim and Var.

Lemma 10. (�; s : &) ` JeK

p

: � implies p; &;� ` e : � .

Proof. In this proof, we will write � = �

0

for true 
 � = �

0

, whi
h amounts

to identifying types modulo the equational theory on rows and allows us to ignore

instan
es of hm-Sub in the derivation d of (�; s : &) ` JeK

p

: � . By Lemma 9, we

may assume that d ends with a syntax-dire
ted rule and at most one instan
e of

8 Elim. The proof pro
eeds by indu
tion on the stru
ture of e and analysis of the

derivation d. Let �

0

= (�; s : &).

Case e = JeK

p

= x. By assumption, we have x 6= s. The derivation d must

involve hm-Var possibly followed by hm-8 Elim. As a result, � must be of the form

[��=��℄�

0

, where �(x) = 8��:�

0

. By Var and 8 Elim, this implies p; &;� ` x : [��=��℄�

0

.

Therefore, this 
ase holds.

Case e = �x z:�x:f and JeK

p

= �x z:�x:�s:JfK

p

. By Lemma 9, we may assume

that d ends with two instan
es of hm-Abs, as follows.

�

0

; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

` JfK

p

: �

2

�

0

; z : �

1

! &

0

! �

2

;x : �

1

` �s:JfK

p

: &

0

! �

2

�

0

` �x z:�x:�s:JfK

p

: �

1

! &

0

! �

2
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Here, � is �

1

! &

0

! �

2

. Now, we have:

(�

0

; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

) = (�; z : �

1

! &

0

! �

2

;x : �

1

; s : &

0

)

This allows applying the indu
tion hypothesis, yielding p; &

0

; (�; z : �

1

! &

0

! �

2

;x :

�

1

) ` f : �

2

. By Abs, this implies p; &;� ` �x z:�x:f : �

1

! &

0

! �

2

.

Case e = e

1

e

2

and JeK

p

= Je

1

K

p

Je

2

K

p

s. By Lemma 9, we may assume that d ends

with two instan
es of hm-App, as follows.

�

0

` Je

1

K

p

: �

0

! & ! � �

0

` Je

2

K

p

: �

0

�

0

` Je

1

K

p

Je

2

K

p

: & ! �

�

0

(s) = &

�

0

` s : &

�

0

` Je

1

K

p

Je

2

K

p

s : �

By the indu
tion hypothesis, we have p; &;� ` e

1

: �

0

! & ! � and p; &;� ` e

2

: �

0

.

The judgement p; &;� ` e

1

e

2

: � follows by App.

Case e = letx = e

1

in e

2

and JeK

p

= letx = Je

1

K

p

in Je

2

K

p

. Then, d ends with an

instan
e of hm-Let:

�

0

` Je

1

K

p

: 8��[D℄:�

0

(�; s : & ;x : 8��[D℄:�

0

) ` Je

2

K

p

: �

�

0

` letx = Je

1

K

p

in Je

2

K

p

: �

Here, we have 9��:D � true, whi
h implies that the 
onstraint D|a system of

equations|admits a most general uni�er. In that 
ase, the type s
heme 8��[D℄:�

0


an be shown equivalent to an un
onstrained type s
heme, so we may assume,

without loss of generality, that D is in fa
t true. We may further assume, without

loss of generality, that the left-hand premise is an instan
e of hm-8 Intro:

�

0

` Je

1

K

p

: �

0

�� \ fv(�

0

) = ?

�

0

` Je

1

K

p

: 8��:�

0

The indu
tion hypothesis yields p; &;� ` e

1

: �

0

. We have �� \ fv(&;�) = ?, so, by

8 Intro, we obtain p; &;� ` e

1

: 8��:�

0

. Sin
e x 6= s, we have (�; s : & ;x : 8��:�

0

) =

(�;x : 8��:�

0

; s : &), therefore the indu
tion hypothesis yields p; &; (�;x : 8��:�

0

) `

e

2

: � . The result follows by Let.

Case e = enable r in e

0

and JeK

p

= let s = s _ (frg \ p) in Je

0

K

p

. By Lemma 9 and

de�nition of �

1

, the derivation d must be of the following form, where R = frg\p,

& = fR : �' ; �g and &

0

= fR : Pre ; �g:

�

0

` _

R

: & ! &

0

�

0

` s : &

�

0

` s _ R : &

0

�� \ fv(�

0

) = ?

�

0

` s _R : 8��:&

0

�

0

; s : 8��:&

0

` Je

0

K

p

: �

�

0

` let s = s _ R in Je

0

K

p

: �

Sin
e & appears in �

0

, the free type variables of � are free in �

0

as well, so the free

type variables of &

0

are free in �

0

. As a result, the type s
heme 8��:&

0

is equivalent to

the monotype &

0

. We will thus assume, without loss of generality, that �� is empty.

Sin
e (�

0

; s : &

0

) = (�; s : &

0

), the indu
tion hypothesis yields p; &

0

;� ` e

0

: � . As

a result, p; &;� ` enable r in e

0

: � is derivable by Enable Failure if r 62 p and by

Enable Su

ess if r 2 p.
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Case e = 
he
k r then e

0

and JeK

p

= let = s:r in Je

0

K

p

. By Lemma 9 and de�nition

of �

1

, the derivation d must be of the following form, where & = fr : Pre ; �g:

�

0

` :

r

: & ! & �

0

` s : &

�

0

` s:r : & �� \ fv(�

0

) = ?

�

0

` s:r : 8��:& �

0

; : 8��:& ` Je

0

K

p

: �

�

0

` let = s:r in Je

0

K

p

:

Sin
e does not o

ur in e

0

, by weakening, we have �

0

` Je

0

K

p

: � . As a result,

the indu
tion hypothesis yields p; &;� ` e

0

: � . Thus, p; &;� ` 
he
k r then e

0

: � is

derivable by Che
k.

Case e = test r then e

1

else e

2

and JeK

p

= s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

). By Lemma 9

and de�nition of �

1

, d must be of the following form, where & = fr : ' ; �g:

�

0

` ?

r

: fr : ' ; �g ! (fr : Pre ; �g ! � )! (fr : Abs ; �g ! � )! �

�

0

` s : fr : ' ; �g

�

0

` s?r : (fr : Pre ; �g ! � )! (fr : Abs ; �g ! � )! � (1)

�

0

; s : fr : Pre ; �g ` Je

1

K

p

: �

�

0

` �s:Je

1

K

p

: fr : Pre ; �g ! � (2)

�

0

; s : fr : Abs ; �g ` Je

2

K

p

: �

�

0

` �s:Je

2

K

p

: fr : Abs ; �g ! � (3)

(1) (2)

�

0

` s?r (�s:Je

1

K

p

) : (fr : Abs ; �g ! � )! � (3)

�

0

` s?r (�s:Je

1

K

p

) (�s:Je

2

K

p

) : �

By the indu
tion hypothesis, p; fr : Pre ; �g;� ` e

1

: � and p; fr : Abs ; �g;� `

e

2

: � hold. The judgement p; fr : ' ; �g;� ` test r then e

1

else e

2

: � follows by

Test.

Case e = p

0

:e

0

and JeK

p

= let s = s ^ p

0

in Je

0

K

p

0

. By Lemma 9 and de�nition of

�

1

, the derivation d must be of the following form, where & = fp

0

: �' ; �g and

&

0

= fp

0

: �' ; �Absg:

�

0

` ^

p

0

: & ! &

0

�

0

` s : &

�

0

` s ^ p

0

: &

0

�� \ fv(�

0

) = ?

�

0

` s ^ p

0

: 8��:&

0

�

0

; s : 8��:&

0

` Je

0

K

p

0

: �

�

0

` let s = s ^ p

0

in Je

0

K

p

0

: �

Sin
e & appears in �

0

, the free type variables of �' are free in �

0

as well, so the free

type variables of &

0

are free in �

0

. As a result, the type s
heme 8��:&

0

is equivalent to

the monotype &

0

. We will thus assume, without loss of generality, that �� is empty.

Sin
e (�

0

; s : &

0

) = (�; s : &

0

), the indu
tion hypothesis yields p

0

; &

0

;� ` e

0

: � . As a

result, p; &;� ` p

0

:e

0

: � is derivable by Sign.

We are now ready to demonstrate 
orre
tness of the derived type system.

Lemma 11. nobody; fÆAbsg ;? ` e : � holds for some � if and only if C;? `

L e M : � holds for some satis�able C and for some � .

Proof. Suppose on the one hand that nobody; fÆAbsg ;? ` e : � holds. By

Lemma 8 we have true; s : f�Absg ` JeK

nobody

: � . Now, by de�nition of �

1

and
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by Const, we have true;? ` ? : f�Absg. By the substitution lemma for HM(X),

whi
h is proved in [Skalka and Pottier 2002℄, this leads to true;? ` JeK

nobody

[?=s℄ :

� . Be
ause true is satis�able and be
ause JeK

nobody

[?=s℄ is L e M, this yields the goal.

Suppose on the other hand that C;? ` L e M : � holds, where C is satis�able.

Be
ause C is satis�able, it admits a uni�er ', whi
h has the property that the


onstraint '(C) is equivalent to true. Thus, by the substitution lemma, we have

that true;? ` L e M : '(� ) holds. Now, as above, we have L e M = JeK

nobody

[?=s℄

and true;? ` ? : f�Absg. By a simple inverse substitution lemma, whi
h we do

not expli
itly establish here, this implies true; s : f�Absg ` JeK

nobody

: '(�). The

result follows by Lemma 10.

In other words, Lemma 11 states that a 
losed �

se


program e is well-typed in

the derived type system under the initial prin
ipal nobody and the empty se
u-

rity 
ontext f�Absg if and only if L e M is well-typed in the original type system.

Furthermore, by Theorem 4, su
h programs 
annot go wrong.

7. EXAMPLES

In this se
tion, we give examples whi
h illustrate the expressivity (and limitations)

of our type system. These examples fa
ilitate a dis
ussion of the di�eren
es between

the variants of the system, yielding insights into the possible tradeo�s between

pre
ision and 
ost.

7.1 Se
urity Wrappers

A library writer often needs to surround numerous internal fun
tions with \boiler-

plate" se
urity 
ode before making them a

essible. To avoid redundan
y, it seems

desirable to allow the de�nition of generi
 se
urity wrappers. When applied to

a fun
tion, a wrapper returns a new fun
tion whi
h has the same 
omputational

meaning but di�erent se
urity requirements.

Assume given a prin
ipal p = fr; sg. Here are two wrappers likely to be of use to

this prin
ipal:

enable

r

= �f:p:�x:p:enable r in f x

require

r

= �f:p:�x:p:
he
k r then f x

In system S

=

1

, these wrappers re
eive the following (most general) type s
hemes.

All of the type variables whi
h appear in them are universally quanti�ed, so we do

not give the quanti�er pre�x expli
itly.

enable

r

: 8 : : : :(�

1

fr:Pre ; s:


1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:


2

; s:


1

; �

2

g

����������! �

2

)

require

r

: 8 : : : :(�

1

fr:Pre ; s:


1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:


1

; �

2

g

�����������! �

2

)

These types are very similar; they may be read as follows. Both wrappers expe
t a

fun
tion f whi
h allows that r be enabled (r : Pre), i.e. one whi
h either requires

r to be enabled, or doesn't 
are about its status. (Indeed, as in ML, the type of the

a
tual argument may be more general than that of the formal.) They return a new

fun
tion with identi
al domain and 
odomain (�

1

, �

2

), whi
h works regardless of

r's status (enable

r

yields r : 


2

) or requires r to be enabled (require

r

yields r : Pre).

The new fun
tion retains f 's expe
tations about s (s : 


1

). f must not require any
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further privileges (�Abs), be
ause it is invoked by p, whi
h enjoys privileges r and

s only.

These polymorphi
 types are very expressive. Our main 
on
ern is that, even

though the privilege s is not mentioned in the 
ode of these wrappers, it does appear

in their type. More generally, every privilege available to p may show up in the type

of a fun
tion written on behalf of prin
ipal p, whi
h may lead to very verbose types.

An appropriate type abbreviation me
hanism may be able to address this problem;

this is left as a subje
t for future work.

7.2 Use and Types of Se
urity tests

In this se
tion, we dis
uss two typi
al programming idioms involving test. One

(arguably the most 
ommon) is very simple, and may be typed in S

=

1

. The other is

more 
omplex and requires at least S

=

2

. We take this opportunity to dis
uss various

problems related to the interpretation of 
onditional 
onstraints.

Imagine an operating system with two kinds of pro
esses, root pro
esses and

user pro
esses. Killing a user pro
ess is always allowed, while killing a root pro
ess

requires the privilege k. At least one distinguished prin
ipal root has this privilege.

The system fun
tions whi
h perform the killing are implemented by root, as follows:

kill = �(p : pro
):root:
he
k k then : : : { kill the pro
ess

killIfUser = �(p : pro
):root: : : : { kill the pro
ess if it is user-level

In system S

=

1

, these fun
tions re
eive the following (most general) types:

kill : 8�:pro


fk:Pre ; �g

�������! unit

killIfUser : 8
�:pro


fk:
 ; �g

�����! unit

The �rst fun
tion 
an be 
alled only if it 
an be stati
ally proven that the privilege

k is enabled. The se
ond one, on the other hand, 
an be 
alled at any time, but

will never kill a root pro
ess. To 
omplement these fun
tions, it may be desirable

to de�ne a fun
tion whi
h provides a \best attempt" given the 
urrent (dynami
)

se
urity 
ontext. This may be done by dynami
ally 
he
king whether the privilege

is enabled, then 
alling the appropriate fun
tion:

tryKill = �(p : pro
):root:

test k then kill(p) else killIfUser(p)

This fun
tion is well-typed in system S

=

1

. Indeed, within the �rst bran
h of the

test 
onstru
t, it is stati
ally known that the privilege k must be enabled; this is

why the sub-expression kill(p) is well-typed. The inferred type shows that tryKill

does not have any se
urity requirements:

tryKill : 8
�:pro


fk:
 ; �g

�����! unit

The sensitive a
tion kill(p) is performed within the lexi
al s
ope of the test 
on-

stru
t, whi
h is why it is easily seen to be safe. However, one 
an also move it

outside of the s
ope, as follows:

tryKill' , �(p : pro
):root:

let a
tion = test k then kill else killIfUser in a
tion(p)
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Here, the dynami
 se
urity 
he
k yields a 
losure, whose behavior depends on the


he
k's out
ome. It 
an be passed on and used in further 
omputations. Su
h a

programming idiom is useful in pra
ti
e, be
ause it allows hoisting a se
urity 
he
k

out of a loop. For instan
e, if we were to kill a set of pro
esses, instead of a single

one, we would apply a
tion su

essively to ea
h element of the set. Thus, only one

se
urity 
he
k would have to be performed, regardless of the number of pro
esses

in the set.

Is tryKill' also well-typed? This is more subtle. In S

rel

1

, the two bran
hes of

a test 
onstru
t must re
eive the same type. Be
ause the fun
tion kill requires a

non-trivial se
urity 
ontext, it is 
onservatively assumed that a
tion may do so as

well. As a result, in (say) S

=

1

, tryKill' has (most general) type 8�:pro
 ! fk :

Pre ; �g ! unit, just as kill. Thus, it is well-typed, but its type is more restri
tive

than expe
ted.

To solve this problem, we need to keep tra
k of the fa
t that the behavior (i.e.

the type) of a
tion depends on the out
ome of the test, i.e. on whether the privilege

k is enabled. This is pre
isely the reason for moving to the 
olumn i = 2 in our

array of type systems. In this 
olumn, the result of a test 
onstru
t is des
ribed

by 
onditional 
onstraints, whi
h en
ode the desired dependen
y. Indeed, in S

=

2

,

tryKill' has (most general) inferred type

8 : : : :pro
! fk : 


1

; �

1

g ! �

where

if Abs = 


1

then �Abs = �

2

if Pre = 


1

then �Abs = �

3

if Abs = 


1

then pro
! fk : 


1

; �Absg ! � = pro
! fk : 


2

; �

4

g ! unit

if Pre = 


1

then pro
! fk : 


1

; �Absg ! � = pro
! fk : Pre ; �

5

g ! unit

The four 
onditional 
onstraints are generated by Test (see Fig. 11). Of 
ourse,

the meaning of su
h a 
onstrained type s
heme is quite obs
ure, but it is possible

to simplify it, as follows. First, be
ause there is only one o

urren
e of the variable

�

2

, this variable 
an be quanti�ed lo
ally. That is, the �rst 
onditional 
onstraint


an be written

if Abs = 


1

then 9�

2

:(�Abs = �

2

)

It is now evident that this 
onstraint is a tautology|that is, it is equivalent to

true|so it 
an be suppressed. The se
ond 
onstraint 
an be suppressed in a

similar way. Then, the third and fourth 
onstraints, whose 
on
lusions are equa-

tions between terms of similar stru
ture, 
an be de
omposed into a 
onjun
tion

of 
onditional 
onstraints whose 
on
lusions are equations between atomi
 terms.

Performing this de
omposition and again suppressing tautologi
al 
onstraints, we
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obtain

8 : : : :pro
! fk : 


1

; �

1

g ! �

where

if Abs = 


1

then � = unit

if Pre = 


1

then 


1

= Pre

if Pre = 


1

then � = unit

The se
ond 
onstraint above is again a tautology (of a di�erent kind) and may be

suppressed. Thus, the simpli�
ation pro
ess yields

8 : : : :pro
! fk : 


1

; �

1

g ! �

where

if Abs = 


1

then � = unit

if Pre = 


1

then � = unit

It is important to note that this simpli�
ation pro
ess 
an be automated. We 
hose

to show its intermediate steps, be
ause it would otherwise be diÆ
ult to relate the

�nal type s
heme to the 
ode for tryKill'. We now see that this type s
heme does

not require the privilege k to be enabled: our analysis was smart enough to prove

that this 
ode is safe.

The reader may wonder why we 
an't further simplify this type s
heme by unify-

ing � with unit, sin
e both 


1

= Pre and 


1

= Abs imply unit = �. This is be
ause

there remain other 
ases (namely 


1

= ? and 


1

= >) where � is un
onstrained;

as a result, these 
onditional 
onstraints do not logi
ally imply unit = �.

To �x this apparent problem, one possibility would be to remove ? and > from

the model. In that 
ase, repla
ing the two 
onstraints above with unit = � would be

a valid simpli�
ation. However, this 
hange would e�e
tively add disjun
tion to the


onstraint language|indeed, it would then be possible to en
ode the disjun
tion

C

1

_C

2

as 9
:(if Pre = 
 then C

1

^ if Abs = 
 then C

2

). (When ? is part of the

model, su
h an en
oding be
omes impossible, be
ause of the side 
ondition 
 6= ?

in Fig. 7.) We 
onje
ture that the 
onstraint satisfa
tion problem would then have

exponential time 
omplexity, while it 
urrently has quasi-linear time 
omplexity.

Another interesting possibility 
onsists in giving a di�erent interpretation to 
on-

ditional 
onstraints. Noti
e that we really wish to use 
onditional 
onstraints in

only a very limited way. Indeed, we want to allow the bran
hes of a test 
onstru
t

to re
eive di�erent types. But we do not wish for these types to di�er in arbitrary

ways; we only wish to allow their se
urity annotations to di�er. It is in fa
t possible

to enfor
e su
h a restri
tion. De�ne � as the binary relation whi
h is uniformly

true on JPresK. Extend it straightforwardly to JkK for every kind k. Then, re-de�ne

the interpretation of 
onditional 
onstraints as follows:

�(�

0

) � �(�

00

) 
 � �(� )) � ` �

0

� �

00

� ` if 
 � � then �

0

� �

00

This interpretation requires the types whi
h appear in the 
on
lusion of a 
ondi-

tional 
onstraint (here, �

0

and �

00

) to be equal modulo se
urity annotations. This

allows the stru
ture of types to be determined using rigid rules (whi
h is desirable,
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be
ause many programming errors are then dete
ted earlier), while keeping the


exibility of 
onditional reasoning on se
urity annotations. Under su
h an inter-

pretation, the type of tryKill' may be simpli�ed to

8


1

�

1

:pro
! fk : 


1

; �

1

g ! unit

as desired. From a pra
ti
al point of view, this 
hange in the interpretation of


onditional 
onstraints requires implementing two uni�
ation algorithms on top of

one another|one for = and one for �|whi
h is straightforward. This variant of S

=

2

may o�er another good 
ompromise between pre
ision, eÆ
ien
y, and readability

of the types inferred.

7.3 Subtyping

All of the examples given so far 
an be given useful types in S

=

i

for some i 2 f1; 2g.

In other words, these examples do not require subtyping. Nevertheless, there are a

few 
ases where the extra pre
ision a�orded by subtyping be
omes ne
essary.

Imagine we write a slightly modi�ed version of the wrapper enable

r

presented in

Se
t. 7.1 as follows, where P is some arbitrary 
ondition:

maybeEnable

r

, �f:p:�x:p: ifP then fx else enable r in fx

This wrapper may or may not enable the privilege r before 
alling f . In S

=

i

, its

(most general) type is

maybeEnable

r

: 8 : : : :(�

1

fr:Pre ; s:


1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:


1

; �

2

g

�����������! �

2

)

i.e. exa
tly the same as that of require

r

in Se
t. 7.1. In other words, the type

system asserts, more 
onservatively than ne
essary, that maybeEnable

r

requires the

privilege r. How was this 
on
lusion drawn?

Be
ause f is bound by � and be
ause HM(X) is restri
ted to Hindley-Milner

polymorphism, the two uses of f must re
eive the same type, say �

1

! � ! �

2

.

In the se
ond bran
h of the if statement, f is 
alled with r enabled. Thus, � must

be of the form fr : Pre ; : : :g. Sin
e, in the �rst bran
h of the if statement, f is


alled within an unmodi�ed se
urity 
ontext, the type-
he
ker 
on
ludes that the

wrapped fun
tion also has fr : Pre ; : : :g as a se
urity requirement.

The 
aw is really in our use of equality 
onstraints. Be
ause f may be 
alled

with r enabled, they lead us to require � = fr : Pre ; : : :g, i.e. to believe f must be


alled with r enabled. This extremely 
oarse approximation is good enough when

f has polymorphi
 type, be
ause we are then able to deal separately with ea
h

of its 
all sites. Here, however, polymorphism is inhibited, making the problem

unbearable.

A standard solution is to move to a system where equality is repla
ed with sub-

typing, e.g. S

�

1

. There, we obtain

maybeEnable

r

: 8 : : : :(�

1

fr:
 ; s:


1

; �Absg

������������! �

2

)

f�

1

g

���! (�

1

fr:


2

; s:


1

; �

2

g

����������! �

2

)

where Pre � 
 ^ 


2

� 


This type s
heme is mu
h more permissive, be
ause 


2

� 
 � Pre does not allow


on
luding 


2

� Pre (as was the 
ase when � was interpreted by equality). Indeed,




2

may take the value Abs, i.e. the wrapped fun
tion may be 
alled in a 
ontext
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where r is disabled. The 
onstraint Pre � 
 ^ 


2

� 
 then requires > � 
, i.e. f

must be able to a

ept either state of the privilege r.

Our experien
e seems to indi
ate that subtyping is useful only where polymor-

phism is inhibited, i.e. when using higher-order fun
tions. Java has no su
h 
on-

stru
t. Java does have �rst-
lass obje
ts, whi
h 
ontain methods; but it seems

reasonable to require that methods be given expli
it polymorphi
 types by the user

as part of 
lass de
larations. Considering that subtyping has substantial 
ost in

terms of readability and eÆ
ien
y, it may then be interesting not to use it in a

real-world system. However, more work is needed to 
on�rm this 
onje
ture.

7.4 Expressiveness versus dis
ipline

It is unde
idable whether the exe
ution of a given program eventually leads to a

se
urity failure. As a result, a safe type system equipped with de
idable type in-

feren
e must be 
onservative, that is, reje
t programs that in fa
t do not violate

the se
urity poli
y. For instan
e, in every S

rel

i

, a fun
tion f that requires privilege

r unless some 
ondition P holds re
eives a type that spe
i�es that f requires r

always, leading to a type error if f is invoked in a 
ontext where P holds and r is

not available. Our types, viewed as a spe
i�
ation language for se
urity poli
ies,

only have limited expressiveness. This is a 
urse and a blessing: while it prevents

some legitimate programming idioms, it also for
es programmers to sti
k to a rea-

sonably straightforward programming style. The key, as always, is to strike a good


ompromise between expressiveness and dis
ipline.

8. DISCUSSION

8.1 Extensions

There should be no parti
ular diÆ
ulty in extending the ideas of this paper to

more advan
ed language features su
h as ex
eptions, state, modules, and threads.

In fa
t, for some of these features, we expe
t the type-the-translation approa
h to

prove fruitful, by layering e.g. an ex
eptions en
oding on top of the se
urity-passing

en
oding.

8.1.1 Java. The approa
h taken here has re
ently been shown to be extensible

to the Java byte
ode language [Higu
hi and Ohori 2003℄, so the ideas here do trans-

fer to the full JVM. But, modeling all the features of the Java se
urity ar
hite
ture

is not possible stati
ally. Java views privileges as �rst-
lass obje
ts, making stati


typing problemati
. In our model, privileges are identi�ers, and expressions 
annot


ompute privileges. It would be desirable to extend the stati
 framework to at least

handle �rst-
lass parameters of privileges, so e.g. a Java FilePermission, whi
h

takes a parameter that is a spe
i�
 �le, 
ould be modeled. The additional expres-

siveness of Java's implementation, in
luding dynami
 addition of permissions, and

dynami
ally 
omputable parameters to privileges (for instan
e a FilePermission

for the string "/tmp/s
rat
h" that was 
reated by appending strings "/tmp" and

"s
rat
h"), is very diÆ
ult to model stati
ally.

From a manual inspe
tion of the Sun JDK libraries, a substantial majority of the

se
urity 
ode 
he
ks there 
an be stati
ally type
he
ked. However, some of the uses

are fundamentally dynami
. These in
lude 
onditional 
he
king of privileges where

the 
ondition is fundamentally dynami
 and so 
annot be 
aptured stati
ally. So, a
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purely stati
 alternative would require some re
oding of libraries, and a rethinking of

where the se
urity boundary is to be drawn. This is a deep problem, and it remains

an open question whether the best 
ompletely stati
 reworking of the ar
hite
ture

would be powerful enough to make the limitations of the stati
 system a

eptable.

An alternative approa
h is to a

ept that a 
ompletely stati
 approa
h is not

possible, and to use soft typing [Aiken et al. 1994; Wright and Cartwright 1997℄.

We dis
uss this further below, and also remark on extending our model to in
lude

ex
eptions.

With the addition of JAAS in the JDK 1.4 [Lai et al. 1999℄, the ar
hite
ture also

supports general authenti
ation based on prin
ipals, not just 
odebases. The doAs

instru
tion enables a blo
k of 
ode to be exe
uted under a parti
ular prin
ipal. We

do not dire
tly model JAAS, but for prin
ipals that are groups �xed in advan
e, the

stru
ture is stati
 (and, desirably, more de
larative than 
ode that refers to spe
i�


users), and so our type system will be able to model it. So, prin
ipals Ali
e

and Bob are not modeled stati
ally, but �xed groups su
h as DepartmentUser and

GuestUser whi
h 
ould 
ontain Ali
e and Bob, respe
tively, 
ould be de
lared and


he
ked stati
ally; only the membership of Ali
e in DepartmentUser would need

to be 
he
ked dynami
ally.

8.1.2 Soft Typing. A soft typing system is a 
ross between a type system and

a stati
 optimizer. In our 
ontext, a soft typing system would allow some ill-typed


he
k operations through, and mark them as requiring run-time 
he
king. In prin-


iple, there is no problem with applying the soft typing approa
h in our framework,

and allows our ideas to be applied dire
tly to the JDK Se
urity Ar
hite
ture as

now de�ned. Marked 
he
k operations would be treated mu
h like test operations.

The type system should provide a wealth of information to enable an eÆ
ient im-

plementation of these tests. The 
onstraint-based 
onditional type systems su
h as

S

�

2

are parti
ularly appropriate for soft typing sin
e the added expressiveness will

allow more 
he
ks to be stati
ally veri�ed.

8.1.3 Implementation of test. Although our system stati
ally 
he
ks whether

all 
he
k operations will su

eed at run-time, there is still a need to 
arry some

privilege information at run-time to support test, whi
h must dynami
ally bran
h

on presen
e or absen
e of a privilege. We believe a stati
 optimizer may be able to

remove mu
h of the run-time overhead of test. However, this implementation issue

is beyond the s
ope of the 
urrent foundational study, and is a subje
t for future

work.

8.1.4 Ex
eptions. In the simple language presented so far, se
urity violations

are fatal: they 
ause the program to halt. However, in Java, a se
urity violation

gives rise to an ex
eption, whi
h 
an be observed and dealt with by any (dire
t or

indire
t) 
aller. Thus, if our stati
 se
urity type system is to be viewed as realisti
,

it must be able to deal with ex
eptions.

For the sake of simpli
ity, we haven't in
luded ex
eptions in our sour
e language.

However, it should be easy to add them as a se
ond layer, with only little modi�
a-

tion to our 
urrent proofs. In short, the idea is to introdu
e a new sour
e language,

featuring ex
eptions in addition to the se
urity 
onstru
ts, and to translate it down

into an extension of �

se


with sums. Indeed, it is a well-known fa
t that ex
eptions
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an be de�ned in terms of sums [Wadler 1985; Moggi 1989; Spivey 1990℄. Any S

rel

i


an then be lifted, through this new translation, up to the new sour
e language.

This 
onstru
tion shows that the \typing-by-en
oding" approa
h 
an be used to a
-


ount for ex
eptions. It also shows that several layers of en
odings 
an be sta
ked

on top of one another, making the proofs somewhat more modular.

This 
onstru
tion gives rise to type systems where fun
tion types 
arry not only

a se
urity pre
ondition & , but also an e�e
t �, whi
h des
ribes the ex
eptions that

may be thrown when the fun
tion is invoked. This is a standard feature of type-

based ex
eption analyses [Guzm�an and Su�arez 1994; Aiken and F�ahndri
h 1997;

Pessaux and Leroy 2000℄. In Java terms, an e�e
t is essentially a throws 
lause.

However, a throws 
lause is 
onstant, whereas, in our type systems, e�e
ts would be

allowed to 
ontain presen
e variables (that is, type variables of kind Pres). These


ould be related, via 
onstraints, to the fun
tion's se
urity pre
ondition & , allowing

properties su
h as \if privilege r is disabled, then this fun
tion may throw ex
eption

E" to be en
oded in the types|and inferred by a type re
onstru
tion algorithm.

A se
urity 
he
k whi
h throws an ex
eption (instead of halting the program) upon

failure 
an be de�ned, in the new sour
e language, by 
ombining test and throw.

Thus, our new sour
e language has both fatal and non-fatal forms of se
urity 
he
ks.

It is interesting to noti
e that ea
h form has its advantages. Indeed, if a fun
tion

yields a fatal error when the privilege r is disabled, then its type will quite 
on
isely

en
ode the senten
e \r must be enabled", and the type-
he
ker will automati
ally

enfor
e this 
ondition at every 
all site. If, on the other hand, the fun
tion throws

an ex
eption, then its type will more 
losely en
ode the senten
e \if r is disabled,

then the fun
tion may raise an ex
eption", and the type-
he
ker will not enfor
e

any pre-
ondition when 
alling the fun
tion. (It is still possible to manually assert,

using a type annotation, that a given 
all does not yield an ex
eption, thus for
ing

r to be provably enabled at this 
all site.) The former may be preferred, be
ause it

is more legible, and be
ause it do
uments the programmer's intent more pre
isely.

On the other hand, the use of ex
eptions leads to a more modular programming

style, be
ause there is often no telling, at the time a parti
ular pie
e of 
ode is

written, where and how se
urity violations should be handled. We 
on
lude that

both forms of se
urity 
he
ks may be of use in pra
ti
e.

8.2 Related Work

8.2.1 Other analyses of sta
k inspe
tion. Banerjee and Naumann have devel-

oped an alternate proof of type safety for a programming language equipped with

sta
k inspe
tion [Banerjee and Naumann 2001℄. However, the denotational seman-

ti
s of their language is in fa
t a se
urity-passing style transform, whi
h means

that the 
orre
tness of this transform is taken for granted. Besson, Jensen, et

al. [Jensen et al. 1999; Besson et al. 2001℄ de�ne a whole-program stati
 analy-

sis based on model-
he
king temporal logi
 formul�. Sta
k inspe
tion is one (but

not the only) appli
ation of their framework. A later paper [Besson et al. 2002℄

takes the analysis one step further by introdu
ing a notion of se
ure 
alling 
on-

text, symboli
ally represented as a temporal logi
 formula. However, the analysis is

still not quite 
ompositional, be
ause the 
ontrol 
ow graph of the entire program

must be available. Bartoletti et al. [Bartoletti et al. 2001℄ propose a stati
 analysis

expressed as a �x-point 
omputation. Like Besson, Jensen, et al., they assume that
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programs are represented as graphs where only se
urity 
he
ks and 
ontrol 
ow are

made expli
it. Higu
hi and Ohori [Higu
hi and Ohori 2003℄ impose a monomor-

phi
 type system with subtyping, reminis
ent of the one developed in [Skalka and

Smith 2000℄, on a simple fragment on the JVM byte
ode language. They note

that, sin
e 
he
k instru
tions 
an never fail in a well-typed program, they are no

longer true operations: they are really only type annotations. For this reason, they

suggest removing 
he
k from the language and repla
ing it with a more de
larative

type annotation me
hanism. Allowing or requiring the programmer to assign a

se
urity-annotated type to ea
h method provides one su
h me
hanism. Koved et

al. [Koved et al. 2002℄ implement a 
ow-sensitive, 
ontext-sensitive analysis that

determines, in a 
onservative fashion, whi
h a

ess rights are required by a pie
e of

Java 
ode. The analysis is pre
ise|in parti
ular, it keeps tra
k of string 
onstants,

whi
h are used in the 
reation of Permission obje
ts, whereas we do not|and

s
ales well. However, the paper does not 
ontain enough detail for the reader to

be able to implement the analysis. Koved et al.'s goals appear somewhat di�erent

from ours: they analyze unmodi�ed Java programs, while our intention is to require

programmers to annotate method headers with se
urity requirements. While their

approa
h requires less programmer e�ort, it is not 
lear whether it allows libraries

to be analyzed in isolation, and whether it is able to provide an explanation for

unexpe
ted analysis results. We believe that a type-based approa
h, although more


ostly in terms of programmer e�ort, helps enfor
e a dis
ipline that the program-

mer understands and 
ontrols. Naumovi
h [Naumovi
h 2002℄ des
ribes a data 
ow

analysis that ensures that 
ertain privileges must be held in order to rea
h a 
ertain

program point. His purpose is dual to ours. Indeed, our type system is intended to

ensure that no privilege 
he
ks may fail at runtime, but does not dire
tly guarantee

that the program is se
ure, while Naumovi
h's approa
h allows establishing se
urity

properties, but does not eliminate the possibility of a runtime failure. On a more

theoreti
al level, Fournet and Gordon [Fournet and Gordon 2002℄ o�er an in-depth

study of the semanti
s of sta
k inspe
tion; they establish equivalen
e laws whi
h

allow 
ompilers to optimize away 
ertain se
urity-related instru
tions. Clements

and Felleisen [Clements and Felleisen 2003℄ 
ontinue this line of work by developing

an alternate but equivalent implementation of sta
k inspe
tion that is shown to be

tail-
all optimizing.

8.2.2 Other approa
hes based on a translation. Several resear
hers have pro-

posed ways of de�ning eÆ
ient, provably 
orre
t 
ompilation s
hemes for languages

whose se
urity poli
y is expressed by a se
urity automaton [Erlingsson and S
hnei-

der 1999; S
hneider 2000℄.

Walker [Walker 2000℄ de�nes a sour
e language, equipped with su
h a se
urity

poli
y, then shows how to 
ompile it into a dependently-typed target language,

whose type system, by en
oding assertions about se
urity states, guarantees that

no run-time violations will o

ur. Walker �rst builds the target type system, then

de�nes a typed translation. On the opposite, our approa
h 
onsists in de�ning an

untyped translation, whose output we feed through a type 
he
ker or inferen
er for

the target language. The 
omposition yields a se
urity-aware type 
he
ker or in-

feren
er for the sour
e language. In prin
iple, our approa
h, whi
h was developed

with sta
k inspe
tion in mind, is also appli
able to se
urity poli
ies spe
i�ed by

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.



A Systemati
 Approa
h to Stati
 A

ess Control � 35

se
urity automata. Type inferen
e for the target language, where the automaton's

states and transition fun
tion are built-in 
onstants, seems feasible: dedi
ated 
on-

straint language and 
onstraint solver may be employed to allow stati
ally reasoning

about them. The untyped translation would thread the se
urity automaton's state

through every 
omputation, making it an extra argument and an extra result of

every fun
tion. Thus, in the derived type system, every fun
tion type would 
arry

two annotations, a pre
ondition and a post
ondition, representing the automaton's

state upon entry and upon exit. Again, these annotations 
ould be type variables,

related via 
onstraints. In 
ontrast with Walker's work, our approa
h makes se
u-

rity information visible in the type system of the sour
e language: indeed, our aim

is not only to gain performan
e by eliminating many dynami
 
he
ks, but also to

de�ne a programming dis
ipline.

Thiemann's approa
h to se
urity automata [Thiemann 2001℄ may be viewed as


losely related to ours: he also starts with an untyped se
urity-passing transla-

tion, whose output he then feeds through a standard program spe
ializer. The


omposition automati
ally yields an optimizing translation.

8.2.3 The Conne
tion with Monads. The en
oding of ex
eptions alluded to in

Se
t. 8.1.4 is a monadi
 translation [Moggi 1989℄. So is the se
urity-passing style

translation des
ribed in Se
t. 4. In fa
t, an alternate semanti
s for our sour
e

language 
an be de�ned by su

essively layering [Filinski 1999℄ the following on top

of a purely fun
tional 
ore:

(1) a failure monad, de�ned by F � = �+1, representing the possibility of abrupt

program termination;

(2) a se
urity monad, de�ned by S � = PrivSet ! �, where PrivSet represents

privilege sets; enable, 
he
k and test 
an be de�ned as primitive operations at

this level;

(3) (optionally) an ex
eption monad, de�ned by E � = � + Ex
, where Ex
 repre-

sents ex
eptions.

Choosing su
h a semanti
s for our sour
e language would remove the need to prove

the translation sound, thus redu
ing even further the amount of work needed to

prove the 
orre
tness of our type system. However, our 
hoi
e of a 
on
ise opera-

tional semanti
s possibly brings us 
loser to the original des
ription of Java sta
k

inspe
tion.

Monadi
 type systems have been used as a tool to isolate [Peyton Jones and

Wadler 1993℄ or analyze [Wadler and Thiemann 2003℄ the use of impure language

features in pure fun
tional languages. Yet, as deplored in [Wadler and Thiemann

2003℄, there is still \a need to 
reate a new e�e
t system for ea
h new e�e
t". In

this light, our work may be viewed as a systemati
 
onstru
tion of an \e�e
t" type

system adapted to our parti
ular e�e
tful programming language.

8.3 Final Remarks

From this methodologi
al study emerge two type systems whi
h improve on our

previous work in type systems for a

ess 
ontrol. System S

=

1

infers what appear

to be very readable types, while remaining surprisingly expressive, and 
an be

implemented very eÆ
iently [R�emy 1992a℄. System S

�

2

is even more 
exible and
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ould form the basis of a soft typing system for the Java JDK platform. These

systems were developed using a transformational te
hnique and the system HM(X),

whi
h simpli�ed proof e�ort and inspired design.
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