
A Systemati
 Approa
h to Stati
 A

ess Control

François Pottier

1

, Christian Skalka

2

, and S
ott Smith

2

1

INRIA Ro
quen
ourt, Fran
ois.Pottier�inria.fr

2

The Johns Hopkins University, {
es,s
ott}�
s.jhu.edu

Abstra
t. The Java JDK 1.2 Se
urity Ar
hite
ture in
ludes a dynami

me
hanism for enfor
ing a

ess
ontrol
he
ks, so-
alled sta
k inspe
-

tion. This paper studies type systems whi
h
an stati
ally guarantee the

su

ess of these
he
ks. We develop these systems using a new, system-

ati
 methodology: we show that the se
urity-passing style translation,

proposed by Walla
h and Felten as a dynami
 implementation te
h-

nique, also gives rise to stati
 se
urity-aware type systems, by
ompo-

sition with
onventional type systems. To de�ne the latter, we use the

general HM(X) framework, and easily
onstru
t several
onstraint- and

uni�
ation-based type systems. They o�er signi�
ant improvements on

a previous type system for JDK a

ess
ontrol, both in terms of expres-

siveness and in terms of readability of inferred type spe
i�
ations.

1 Introdu
tion

The Java Se
urity Ar
hite
ture [2℄, found in JDK 1.2 and later, in
ludes me
h-

anisms to prote
t systems from operations performed by untrusted
ode. These

a

ess
ontrol de
isions are enfor
ed by dynami

he
ks. Our goal is to make

some or all of these de
isions stati
ally, by extensions to the type system. Thus,

a

ess
ontrol violations will be
aught at
ompile-time rather than run-time.

Furthermore, types (whether inferred or programmer-supplied) will
onstitute a

spe
i�
ation of the se
urity poli
y.

A Brief Review of the JDK Se
urity Ar
hite
ture For la
k of spa
e, we

over the JDK se
urity ar
hite
ture in a
ursory manner here; see [2, 13, 8℄ for

more detailed ba
kground. To use the a

ess
ontrol system, the programmer

adds doPrivileged and
he
kPrivilege
ommands to the
ode. At run-time,

a doPrivileged
ommand adds a �ag to the
urrent sta
k frame, enabling a

parti
ular privileged operation. The �ag is impli
itly eliminated when the frame

is popped. When a privilege is
he
ked via a
he
kPrivilege
ommand, the

sta
k frames are sear
hed most to least re
ent. If a frame is en
ountered with

the desired �ag, the sear
h stops and the
he
k su

eeds. Additionally, ea
h sta
k

frame is annotated with its owner (the owner of the method being invoked), and

all sta
k frames sear
hed by the above algorithm must be owned by some prin-

ipal authorized for the privilege being
he
ked. This keeps illi
it
ode, invoked

by the trusted
odebase when doPrivileged is on the sta
k, from performing

the privileged operation.

2 François Pottier, Christian Skalka, and S
ott Smith

Our Framework This paper follows up on an initial a

ess
ontrol type system

presented by the last two authors in [8℄ and pla
es emphasis on a more modular

approa
h to type system
onstru
tion. The previous paper developed the se
urity

type system ab initio. In this paper, we redu
e the se
urity typing problem to a

onventional typing problem using a translation-based method inspired by [5℄.

We use a standard language of row types [7℄ to des
ribe sets of privileges. We also

re-use the HM(X) framework [3, 9℄, whi
h allows a wide variety of type systems

to be de�ned in a single stroke, saves some proof e�ort, and (most importantly)

shows that our
ustom type systems arise naturally out of a standard one.

In addition to these methodologi
al enhan
ements, this paper improves upon

its prede
essor in several other ways. In parti
ular, [8℄ was based on subtyping

onstraints, whereas one of the type systems presented here uses row uni�
ation

alone; this makes it more e�
ient and leads to more
on
ise types. Also, the

al
ulus studied in this paper allows for dynami
 test-and-bran
h on whether a

privilege is enabled. Lastly, be
ause our new approa
h relies on HM(X), we
an

easily provide let-polymorphism.

We begin by de�ning a simpli�ed model of the Java JDK 1.2 se
urity ar
hi-

te
ture. It is a �-
al
ulus,
alled �

se

, equipped with a non-standard operational

semanti
s that in
ludes a spe
i�
ation of sta
k inspe
tion. In order to
onstru
t

a stati
 type system for �

se

, we translate it into a standard �-
al
ulus,
alled

�

set

. The translation is a se
urity-passing style transformation [13℄: it imple-

ments sta
k inspe
tion by passing around sets of privileges at run-time. For this

purpose, �

set

is equipped with built-in notions of set and set operations.

Then, we de�ne a type system for �

set

. Be
ause �

set

is a standard �-
al
ulus,

we are able to de�ne our type system as a simple instan
e of the HM(X) frame-

work [3℄. In fa
t, by using this framework a whole family of type systems may be

su

in
tly de�ned, ea
h with di�erent
osts and bene�ts. In order to give pre
ise

types to �

set

's built-in set operations, our instan
e uses set types, de�ned as a

simpli�
ation of Rémy's re
ord types [7℄.

Lastly, we show that any type system for �

set

gives rise through the transla-

tion to a type system for �

se

. The latter's
orre
tness follows immediately from

the former's, provided the translation itself is
orre
t. This is quite easy to show,

sin
e the property does not involve types at all.

2 The Sour
e Language �

se

This se
tion de�nes �

se

, a simpli�ed model of the JDK 1.2 se
urity ar
hite
ture.

It is a �-
al
ulus equipped with a notion of
ode ownership and with
onstru
ts

for enabling or
he
king privileges. Its grammar is given in Fig. 1.

We assume given notions of prin
ipals and resour
es (the latter also known

as privileges), taken from arbitrary sets P and R. We use p and r to range over

prin
ipals and resour
es, respe
tively, and P and R to range over sets thereof.

We assume given a �xed a

ess
redentials list A. It is a fun
tion whi
h maps

every prin
ipal p 2 P to a subset of R. We let A

�1

denote its �inverse�, that is,

A Systemati
 Approa
h to Stati
 A

ess Control 3

p 2 P; P � P prin
ipals

r 2 R; R � R resour
es

A 2 P ! 2

R

a

ess
redentials

v ::= �x:f values

e ::= x j �x:f j e e j letx = e in e j letpriv r in e j expressions

he
kpriv r for e j testpriv r then e else e j f

f ::= p:e signed expressions

E ::= [℄ j E e j v E j letx = E in e j evaluation
ontexts

letpriv r inE j p:E

Fig. 1. Grammar for �

se

the fun
tion whi
h maps a resour
e r 2 R to fp 2 P j r 2 A(p)g. Without loss of

generality, we assume the existen
e of a �xed prin
ipal p

0

su
h that A(p

0

) = ?.

A signed expression p:e behaves as the expression e endowed with the au-

thority of prin
ipal p. Noti
e how the body of every �-abstra
tion is required to

be a signed expression � thus, every pie
e of
ode must be vou
hed for by some

prin
ipal. The
onstru
t letpriv r in e allows an authorized prin
ipal to enable the

use of a resour
e r within the expression e. The
onstru
t
he
kpriv r for e asserts

that the use of r is
urrently enabled. If r is indeed enabled, e is evaluated; oth-

erwise, exe
ution fails. The
onstru
t testpriv r then e

1

else e

2

dynami
ally tests

whether r is enabled, bran
hing to e

1

or e

2

if this holds or fails, respe
tively.

2.1 Sta
k Inspe
tion

The JDK 1.2 determines whether a resour
e is enabled by literally examining the

runtime sta
k, hen
e the name sta
k inspe
tion. We give a simple spe
i�
ation

of this pro
ess by noti
ing that sta
ks are impli
itly
ontained in evaluation

ontexts, whose grammar is de�ned in Fig. 1. Indeed, a
ontext de�nes a path

from the term's root down to its a
tive redex, along whi
h one �nds exa
tly the

se
urity annotations whi
h the JDK 1.2 would maintain on the sta
k, that is,

ode owners p and enabled resour
es r.

To formalize this idea, we asso
iate a �nite string of prin
ipals and resour
es,

alled a sta
k, to every evaluation
ontext E. The right-most letters in the string

orrespond to the most re
ent sta
k frames.

sta
k([℄) = � sta
k(E e) = sta
k(E)

sta
k(v E) = sta
k(E) sta
k(letx = E in e) = sta
k(E)

sta
k(letpriv r inE) = r:sta
k(E) sta
k(p:E) = p:sta
k(E)

Then, Fig. 2 de�nes sta
k inspe
tion, with S ` r meaning a

ess to resour
e r is

allowed by sta
k S, and S ` P meaning some prin
ipal in P is the most re
ent

owner on S. This spe
i�
ation
orresponds roughly to Walla
h's [13, p. 71℄. We

write E ` r for sta
k(E) ` r.

4 François Pottier, Christian Skalka, and S
ott Smith

r 2 A(p) S ` r

S:p ` r

S ` r

S:r

0

` r

S ` A

�1

(r)

S:r ` r

S ` P

S:r ` P

p 2 P

S:p ` P

Fig. 2. Sta
k inspe
tion algorithm

2.2 Operational Semanti
s for �

se

The operational semanti
s of �

se

is de�ned by the following redu
tion rules:

E[(�x:f) v℄ ! E[f [v=x℄℄

E[letx = v in e℄ ! E[e[v=x℄℄

E[
he
kpriv r for e℄ ! E[e℄ if E ` r

E[testpriv r then e

1

else e

2

℄ ! E[e

1

℄ if E ` r

E[testpriv r then e

1

else e

2

℄ ! E[e

2

℄ if :(E ` r)

E[letpriv r in v℄ ! E[v℄

E[p:v℄ ! E[v℄

The �rst two rules are standard. The next rule allows
he
kpriv r for e to

redu
e into e only if sta
k inspe
tion su

eeds (as expressed by the side
ondi-

tion E ` r); otherwise, exe
ution is blo
ked. The following two rules use sta
k

inspe
tion in a similar way to determine how to redu
e testpriv r then e

1

else e

2

;

however, they never
ause exe
ution to fail. The last two rules state that se
u-

rity annotations be
ome unne
essary on
e the expression they en
lose has been

redu
ed to a value. In a Java virtual ma
hine, these rules would be implemented

simply by popping sta
k frames (and the se
urity annotations they
ontain) after

exe
uting a method.

This operational semanti
s
onstitutes a
on
ise, formal des
ription of Java

sta
k inspe
tion in a higher-order setting. It is easy to
he
k that every
losed

term either is a value, or is redu
ible, or is of the form E[
he
kpriv r for e℄ where

:(E ` r). Terms of the third
ategory are stu
k ; they represent a

ess
ontrol

violations. An expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is

a stu
k expression, holds.

3 The Target Cal
ulus �

set

We now de�ne a standard
al
ulus, �

set

, to be used as the target of our transla-

tion. It is a �-
al
ulus equipped with a number of
onstants whi
h provide set

operations, and is given in Fig. 3. We will use e:r, e_R and e ^R as synta
ti

sugar for (:

r

e), (_

R

e) and (^

R

e), respe
tively.

The
onstant R represents a
onstant set. The
onstru
t e:r asserts that r

is an element of the set denoted by e; its exe
ution fails if that is not the
ase.

The
onstru
t e_R (resp. e^R) allows
omputing the union (resp. interse
tion)

of the set denoted by e with a
onstant set R. Lastly, the expression ?

r

e f g

A Systemati
 Approa
h to Stati
 A

ess Control 5

e ::= x j v j e e j letx = e in e expressions

v ::= �x:e j R j :

r

j ?

r

j _

R

j ^

R

values

E ::= [℄ j E e j v E j letx = E in e evaluation
ontexts

Fig. 3. Grammar for �

set

dynami
ally tests whether r belongs to the set R denoted by e, and a

ordingly

invokes f or g, passing R to it. The operational semanti
s for �

set

is as follows:

(�x:e) v ! e[v=x℄

letx = v in e! e[v=x℄

R:r ! R if r 2 R

?

r

R! �f:�g:(f R) if r 2 R

?

r

R! �f:�g:(g R) if r 62 R

R

1

_R

2

! R

1

[R

2

R

1

^R

2

! R

1

\ R

2

E[e℄ ! E[e

0

℄ if e! e

0

Again, an expression e is said to go wrong if and only if e !

?

e

0

, where e

0

is a

stu
k expression, holds.

4 Sour
e-to-Target Translation

A translation of �

se

into �

set

is de�ned in Fig. 4. The distinguished identi�ers

s and are assumed not to appear in sour
e expressions. Noti
e that s may ap-

pear free in translated expressions. Translating an (unsigned) expression requires

spe
ifying the
urrent prin
ipal p.

One will often wish to translate an expression under minimal hypotheses, i.e.

under the initial prin
ipal p

0

and a void se
urity
ontext. To do so, we de�ne

L e M = JeK

p

0

[?=s℄. Noti
e that s does not appear free in L e M. If e is
losed, then

so is L e M.

JxK

p

= x

J�x:fK

p

= �x:�s:JfK

Je

1

e

2

K

p

= Je

1

K

p

Je

2

K

p

s

Jletx = e

1

in e

2

K

p

= letx = Je

1

K

p

in Je

2

K

p

Jletpriv r in eK

p

= let s = s _ (frg \ A(p)) in JeK

p

J
he
kpriv r for eK

p

= let = s:r in JeK

p

Jtestpriv r then e

1

else e

2

K

p

= ?

r

s (�s:Je

1

K

p

) (�s:Je

2

K

p

)

JfK

p

= JfK

Jp:eK = let s = s ^ A(p) in JeK

p

Fig. 4. Sour
e-to-Target Translation

6 François Pottier, Christian Skalka, and S
ott Smith

The idea behind the translation is simple: the variable s is bound at all times

to the set of
urrently enabled resour
es. Every fun
tion a

epts s as an extra pa-

rameter, be
ause it must exe
ute within its
aller's se
urity
ontext. As a result,

every fun
tion
all has s as its se
ond parameter. The
onstru
ts letpriv r in e

and p:e
ause s to be lo
ally bound to a new value, re�e
ting the new se
urity

ontext; more spe
i�
ally, the former enables r, while the latter disables all priv-

ileges not in A(p). The
onstru
ts
he
kpriv r for e and testpriv r then e

1

else e

2

are implemented simply by looking up the
urrent value of s. In the latter, s is

re-bound, within ea
h bran
h, to the same value. This may appear super�uous

at �rst sight, but has an important impa
t on typing, be
ause it allows s to be

given a di�erent (more pre
ise) type within ea
h bran
h.

This translation
an be viewed as a generalization of Walla
h's se
urity-

passing style transformation [13℄ to a higher-order setting. Whereas they advo-

ated this idea as an implementation te
hnique, with e�
ien
y in mind, we use

it only as a vehi
le in the proof of our type systems. Here, e�
ien
y is not at

stake. Our obje
tive is only to de�ne a
orre
t translation, that is, to prove the

following:

Theorem 4.1. If e !

?

v, then L e M !

?

L v M. If e goes wrong, then L e M goes

wrong. If e diverges, then L e M diverges.

The proof is divided in two steps. First, we de�ne a new sta
k inspe
tion

algorithm, whi
h walks the sta
k forward instead of ba
kward, and
omputes,

at ea
h step, the set of
urrently enabled resour
es. Then, we show that the

translation implements this algorithm, interleaved with the a
tual
ode. Both

proof steps are straightforward, and we omit them here for brevity.

5 Types for �

set

We de�ne a type system for the target
al
ulus as an instan
e of the parametri

framework HM(X) [3, 9℄. HM(X) is a generi
 type system in the Hindley-Milner

tradition, parameterized by an abstra
t
onstraint system X. Se
t. 5.1 brie�y

re
alls its de�nition. Se
t. 5.2 de�nes a spe
i�

onstraint system
alled SETS,

yielding the type system HM(SETS). Se
t. 5.3 extends HM(SETS) to the entire

language �

set

by assigning types to its primitive operations. Se
t. 5.4 states type

safety results and dis
usses a
ouple of
hoi
es.

5.1 The System HM(X)

The system HM(X) is parameterized by a sound term
onstraint system X, i.e.

by notions of types � ,
onstraints C, and
onstraint entailment
, whi
h must

satisfy a number of axioms [3℄.

Then, a type s
heme is a triple of a set of quanti�ers ��, a
onstraint C, and

a type � (whi
h, in this paper, must be of kind Type ; see Se
t. 5.2), written

� ::= 8��[C℄:� . A type environment � is a partial mapping of program variables

to type s
hemes. A judgement is a quadruple of a satis�able
onstraint C, a

A Systemati
 Approa
h to Stati
 A

ess Control 7

Var

� (x) = 8��[D℄:� C
 9��:D

C; � ` x : 8��[D℄:�

Sub

C; � ` e : � C
 � � �

0

C; � ` e : �

0

Abs

C; (� ;x : �) ` e : �

0

C; � ` �x:e : � ! �

0

App

C; � ` e

1

: �

2

! � C; � ` e

2

: �

2

C; � ` e

1

e

2

: �

Let

C; � ` e

1

: � C; (� ; x : �) ` e

2

: �

C; � ` letx = e

1

in e

2

: �

8 Intro

C ^D;� ` e : � �� \ fv(C; �) = ?

C ^ 9��:D; � ` e : 8��[D℄:�

8 Elim

C; � ` e : 8��[D℄:�

C ^D;� ` e : �

9 Intro

C; � ` e : � �� \ fv(�; �) = ?

9��:C; � ` e : �

Fig. 5. The system HM(X)

� ::= �; �; : : : j � ! � j f�g j r : � ; � j �� j
 types

 ::= NA j Pre j Abs j Either
apabilities

C ::= true j C ^ C j 9�:C j � = � j � � � j if
 � � then � � �
onstraints

Fig. 6. SETS Grammar

type environment � , an expression e and a type s
heme �, written C; � ` e : �,

derivable using the rules of Fig. 5. These rules
orrespond to those given in [9℄.

The following type safety theorem is proven in [3℄ with respe
t to a denota-

tional presentation of the
all-by-value �-
al
ulus with let. We have proved a

synta
ti
 version of it, in the style of [14℄, whi
h better suits our needs.

Theorem 5.1. If C; � ` e : � holds, then e does not go wrong.

5.2 The Constraint System SETS

In order to give pre
ise types to the primitive set operations in �

set

, we need

spe
i�
 types and
onstraints. Together with their logi
al interpretation, whi
h

de�nes their meaning, these form a
onstraint system
alled SETS.

The syntax of types and
onstraints is de�ned in Fig. 6. The type language

features a set type
onstru
tor f�g, the two standard row
onstru
tors [7℄, and

four
apability
onstru
tors. Capabilities tell whether a given element may ap-

pear in a set (Pre), may not appear in it (Abs), may or may not appear in

it (Either), or whether this information is irrelevant, be
ause the set itself is

unavailable (NA). For instan
e, the singleton set frg will be one (and the only)

8 François Pottier, Christian Skalka, and S
ott Smith

� 2 V

k

� : k

�; �

0

: Type

� ! �

0

: Type

� : Row

?

f�g : Type

� : Cap r 62 R

�

0

: Row

R[frg

(r : � ; �

0

) : Row

R

� : Cap

�� : Row

R

 : Cap ` true

` C

1

; C

2

` C

1

^ C

2

` if C

1

then C

2

` C

` 9�:C

�; �

0

: k

` � = �

0

` � � �

0

Fig. 7. Kinding rules

value of type fr : Pre ; �Absg. The
onstraint language o�ers standard equality

and subtyping
onstraints, as well as a form of
onditional
onstraints. Sample

uses of these types and
onstraints will be shown in Se
t. 5.3.

To ensure that only meaningful types and
onstraints
an be built, we im-

mediately equip them with kinds, de�ned by k ::= Cap j Row

R

j Type , where R

ranges over �nite subsets of R. For every kind k, we assume given a distin
t, de-

numerable set of type variables V

k

. We use �; �;
; : : : to represent type variables.

From here on, we
onsider only well-kinded types and
onstraints, as de�ned in

Fig. 7. The purpose of these rules is to guarantee that every
onstraint has a

well-de�ned interpretation within our model, whose de�nition follows.

To every kind k, we asso
iate a mathemati
al stru
ture JkK. JCapK is the set

of all four
apabilities. Given a �nite set of resour
es R � R, JRow

R

K is the set

of total, almost
onstant fun
tions from RnR into JCapK. (A fun
tion is almost

onstant if it is
onstant ex
ept on a �nite number of inputs.) In short, Row

R

is

the kind of rows whi
h do not
arry the �elds mentioned inR; Row

?

is the kind of

omplete rows. JTypeK is the free algebra generated by the
onstru
tors !, with

signature JTypeK� JTypeK ! JTypeK, and f�g, with signature JRow

?

K ! JTypeK.

Ea
h of these stru
tures is then equipped with an ordering. Here, a
hoi
e has

to be made. If we do not wish to allow subtyping, we merely de�ne the ordering

on every JkK as equality. Otherwise, we pro
eed as follows. First, a latti
e over

JCapK is de�ned, whose least (resp. greatest) element is NA (resp. Either), and

where Abs and Pre are in
omparable. This ordering is then extended, point-

wise and
ovariantly, to every JRow

R

K. Finally, it is extended indu
tively to

JTypeK by viewing the
onstru
tor f�g as
ovariant, and the
onstru
tor ! as

ontravariant (resp.
ovariant) in its �rst (resp. se
ond) argument.

We may now give the interpretation of types and
onstraints within the

model. It is parameterized by an assignment �, i.e. a fun
tion whi
h, for every

kind k, maps V

k

into JkK. The interpretation of types is obtained by extending

� so as to map every type of kind k to an element of JkK, as follows:

�(� ! �

0

) = �(�) ! �(�

0

) �(f�g) = f�(�)g

�(r : � ; �

0

)(r) = �(�) �(r : � ; �

0

)(r

0

) = �(�

0

)(r

0

) (r 6= r

0

)

�(��)(r) = �(�) �(
) =

A Systemati
 Approa
h to Stati
 A

ess Control 9

� ` true

� ` C

1

� ` C

2

� ` C

1

^ C

2

� = �

0

[�℄ �

0

` C

� ` 9�:C

�(�) = �(�

0

)

� ` � = �

0

�(�) � �(�

0

)

� ` � � �

0

 � �(�)) � ` �

0

� �

00

� ` if
 � � then �

0

� �

00

Fig. 8. Interpretation of
onstraints

Fig. 8 de�nes the
onstraint satisfa
tion predi
ate � ` �, whose arguments are an

assignment � and a
onstraint C. (The notation � = �

0

[�℄ means that � and �

0

oin
ide ex
ept possibly on �.) Entailment is de�ned as usual: C
 C

0

(read:

C entails C

0

) holds i�, for every assignment �, � ` C implies � ` C

0

.

We refer to the type and
onstraint logi
, together with its interpretation,

as SETS. More pre
isely, we have de�ned two logi
s, where � is interpreted as

either equality or as a non-trivial subtype ordering. We will refer to them as

SETS

=

and SETS

�

, respe
tively. Both are sound term
onstraint systems [3℄.

5.3 Dealing with the Primitive Operations in �

set

The typing rules of HM(X)
over only the �-
al
ulus with let. To extend

HM(SETS) to the whole language �

set

, we must assign types to its primitive

operations. Let us de�ne an initial type environment �

1

as follows:

R : fR : Pre ; �Absg

:

r

: 8�:fr : Pre ; �g ! fr : Pre ; �g

_

R

: 8��
:fR : �
 ; �g ! fR : Pre ; �g

^

R

: 8��
:fR : �
 ; �g ! fR : �
 ; �Absg

?

r

: 8��
:fr :
 ; �g ! (fr : Pre ; �g ! �) ! (fr : Abs ; �g ! �) ! �

Here, �, �,
 range over type variables of kind Type , Row

?

, Cap, respe
tively.

We abuse notation: if R is fr

1

; : : : ; r

n

g, then R :
 denotes r

1

:
 ; : : : ; r

n

:
,

and R : �
 denotes r

1

:

1

; : : : ; r

n

:

n

.

None of the type s
hemes in �

1

arry
onstraints. If we wish to take advantage

of
onditional
onstraints, we must re�ne the type of ?

r

. Let �

2

be the initial

type environment obtained by repla
ing the last binding in �

1

with

?

r

: 8��

�

�
[C ℄:fr :
 ; �g ! (fr : Pre ; �

1

g ! �

1

) ! (fr : Abs ; �

2

g ! �

2

) ! �

where C = if Pre �
 then � � �

1

^ if Abs �
 then � � �

2

^ if Pre �
 then �

1

� � ^ if Abs �
 then �

2

� �

Here, the input and output of ea
h bran
h (represented by �

i

and �

i

, respe
-

tively) are linked to the input and output of the whole
onstru
t (represented

10 François Pottier, Christian Skalka, and S
ott Smith

by � and �) through
onditional
onstraints. Intuitively, this means that the

se
urity requirements and the return type of a bran
h may be entirely ignored

unless the bran
h seems liable to be taken. (For more ba
kground on
onditional

onstraints, the reader is referred to [1, 4℄.)

5.4 The Type Systems S

rel

i

Se
t. 5.2 des
ribes two
onstraint systems, SETS

=

and SETS

�

. Se
t. 5.3 de�nes

two initial typing environments, �

1

and �

2

. These
hoi
es give rise to four related

type systems, whi
h we refer to as S

rel

i

, where rel and i range over f=;�g and

f1; 2g, respe
tively. Ea
h of them o�ers a di�erent
ompromise between a

ura
y,

readability and
ost of analysis. In ea
h
ase, Theorem 5.1 may be extended to

the entire language �

set

by proving a simple Æ-typability [14℄ lemma, i.e. by

he
king that �

i

orre
tly des
ribes the behavior of the primitive operations.

The proofs are straightforward and are not given here.

Despite sharing a
ommon formalism, these systems may
all for vastly dif-

ferent implementations. Indeed, every instan
e of HM(X) must
ome with a

onstraint resolution algorithm. S

=

1

is a simple extension of the Hindley-Milner

type system with rows, and may be implemented using uni�
ation [6℄. S

=

2

is sim-

ilar, but requires
onditional (i.e. delayed) uni�
ation
onstraints, adding some

omplexity to the implementation. S

�

1

and S

�

2

require maintaining subtyping

onstraints, usually leading to
omplex implementations.

In the following, we la
k the spa
e to des
ribe all four variants. Therefore,

we will fo
us on S

=

1

. Be
ause it is based on uni�
ation, it is e�
ient, easy to

implement, and yields readable types. We
onje
ture that, thanks to the power

of row polymorphism, it is �exible enough for many pra
ti
al uses (see Se
t. 7.3).

6 Types for �

se

6.1 De�nition

Se
t. 5 de�ned a type system, S

rel

i

, for �

set

. Se
t. 4 de�ned a translation of

�

se

into �

set

. Composing the two automati
ally gives rise to a type system

for �

se

, also
alled S

rel

i

for simpli
ity, whose safety is a dire
t
onsequen
e of

Theorems 4.1 and 5.1.

De�nition 6.1. Let e be a
losed �

se

expression. By de�nition, C; � ` e : �

holds if and only if C;� ` L e M : � holds.

Theorem 6.2. If C; � ` e : � holds, then e does not go wrong.

Turning type safety into a trivial
orollary was the main motivation for bas-

ing our approa
h on a translation. Indeed, be
ause Theorem 4.1
on
erns un-

typed terms, its proof is straightforward. (The Æ-typability lemmas mentioned

in Se
t. 5.3 do involve types, but are typi
ally very simple.) A dire
t type safety

proof would be non-trivial and would dupli
ate most of the steps involved in

proving HM(X)
orre
t.

A Systemati
 Approa
h to Stati
 A

ess Control 11

6.2 Reformulation: Derived Type Systems

De�nition 6.1, although simple, is not a dire
t de�nition of typing for �

se

.

We thus will give rules whi
h allow typing �

se

expressions without expli
itly

translating them into �

set

. These so-
alled derived rules
an be obtained in

a rather systemati
 way from the de�nition of S

rel

i

and the de�nition of the

translation. (In fa
t, it would be interesting to formally automate the pro
ess.)

In these rules, the symbols � and & range over types of kind Type; more spe
if-

i
ally, & is used to represent some se
urity
ontext, i.e. a set of available resour
es.

The symbols � and ' range over types of kind Row

?

and Cap, respe
tively. The

? symbol in the rules indi
ates an irrelevant prin
ipal. In the sour
e-to-target

translation, all fun
tions are given an additional parameter, yielding types of

the form �

1

! &

2

! �

2

. To re
over the more familiar and appealing notation

proposed in [8℄, we de�ne the ma
ro �

1

&

2

�! �

2

=

def

�

1

! &

2

! �

2

.

Fig. 9 gives derived rules for S

=

1

, the simplest of our type systems. There, all

Var

� (x) = �

p; &; � ` x : �

Abs

?; &

2

; (� ; x : �

1

) ` f : �

2

p; &

1

; � ` �x:f : �

1

&

2

�! �

2

App

p; &; � ` e

1

: �

2

&

�! � p; &; � ` e

2

: �

2

p; &; � ` e

1

e

2

: �

Let

p; &; � ` e

1

: � p; &; (� ;x : �) ` e

2

: �

p; &; � ` letx = e

1

in e

2

: �

8 Intro

p; &; � ` e : � �� \ fv(&; �) = ?

p; &; � ` e : 8��:�

8 Elim

p; &; � ` e : 8��:�

p; &; � ` e : � [��=��℄

Letpriv

�

p; f�g; � ` e : � r 62 A(p)

p; f�g; � ` letpriv r in e : �

Letpriv

+

p; fr : Pre ; �g; � ` e : � r 2 A(p)

p; fr : ' ; �g; � ` letpriv r in e : �

Che
kpriv

p; fr : Pre ; �g; � ` e : �

p; fr : Pre ; �g; � `
he
kpriv r for e : �

Testpriv

p; fr : Pre ; �g; � ` e

1

: � p; fr : Abs ; �g; � ` e

2

: �

p; fr : ' ; �g; � ` testpriv r then e

1

else e

2

: �

Own

p; fr

1

: '

1

; : : : ; r

n

: '

n

; �Absg; � ` e : � A(p) = fr

1

; : : : ; r

n

g

?; fr

1

: '

1

; : : : ; r

n

: '

n

; �g; � ` p:e : �

Fig. 9. Typing rules for �

se

derived from S

=

1

12 François Pottier, Christian Skalka, and S
ott Smith

onstraints are equations. As a result, all type information
an be represented

in term form, rather than in
onstraint form [9℄. We exploit this fa
t to give a

simple presentation of the derived rules. Type s
hemes have the form 8��:� , and

judgements have the form p; &; � ` e : �.

To
he
k that these derived rules are
orre
t, we prove the following lemmas:

Lemma 6.3. p; &; � ` e : � holds i� true; (�

1

;� ; s : &) ` JeK

p

: � holds.

Lemma 6.4. p

0

; f�Absg; � ` e : � holds i� true; (�

1

;�) ` L e M : � holds.

Together, Theorem 6.2 and Lemma 6.4 show that, if a
losed �

se

expression

e is well-typed a

ording to the rules of Fig. 9, under the initial prin
ipal p

0

and

the empty se
urity
ontext f�Absg, then e
annot go wrong.

Derived rules for ea
h member of the S

rel

i

family
an be given in a similar

way. The same pro
ess
an also be used to yield type inferen
e rules, rather than

the logi
al typing rules shown here.

7 Examples

7.1 Basi
 Use of Se
urity Che
ks

Imagine an operating system with two kinds of pro
esses, root pro
esses and user

pro
esses. Killing a user pro
ess is always allowed, while killing a root pro
ess

requires the privilege killing. At least one distinguished prin
ipal root has this

privilege. The system fun
tions whi
h perform the killing are implemented by

root, as follows:

kill = �(p : pro
ess):root:
he
kpriv killing for : : : () � kill the pro
ess

killIfUser = �(p : pro
ess):root: : : : () � kill the pro
ess if it is user-level

In system S

=

1

, these fun
tions re
eive the following (most general) types:

kill : 8�:pro
ess

fkilling:Pre ; �g

����������! unit

killIfUser : 8�:pro
ess

f�g

��! unit

The �rst fun
tion
an be
alled only if it
an be stati
ally proven that the

privilege killing is enabled. The se
ond one, on the other hand,
an be
alled at

any time, but will never kill a root pro
ess. To
omplement these fun
tions, it

may be desirable to de�ne a fun
tion whi
h provides a �best attempt� given the

urrent (dynami
) se
urity
ontext. This may be done by dynami
ally
he
king

whether the privilege is enabled, then
alling the appropriate fun
tion:

tryKill = �(p : pro
ess):root:

testpriv killing then kill(p) else killIfUser(p)

This fun
tion is well-typed in system S

=

1

. Indeed, within the �rst bran
h of

the testpriv
onstru
t, it is stati
ally known that the privilege killing must be

enabled; this is why the sub-expression kill(p) is well-typed. The inferred type

shows that tryKill does not have any se
urity requirements:

tryKill : 8�:pro
ess

f�g

��! unit

A Systemati
 Approa
h to Stati
 A

ess Control 13

7.2 Se
urity Wrappers

A library writer often needs to surround numerous internal fun
tions with �boil-

erplate� se
urity
ode before making them a

essible. To avoid redundan
y, it

seems desirable to allow the de�nition of generi
 se
urity wrappers. When applied

to a fun
tion, a wrapper returns a new fun
tion whi
h has the same
omputa-

tional meaning but di�erent se
urity requirements.

Assume given a prin
ipal p su
h that A(p) = fr; sg. Here are two wrappers

likely to be of use to this prin
ipal:

enable

r

= �f:p:�x:p:letpriv r in f x

require

r

= �f:p:�x:p:
he
kpriv r for f x

In system S

=

1

, these wrappers re
eive the following (most general) types:

enable

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:

2

; s:

1

; �

2

g

����������! �

2

)

require

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:

1

; �

2

g

�����������! �

2

)

These types are very similar; they may be read as follows. Both wrappers expe
t

a fun
tion f whi
h allows that r be enabled (r : Pre), i.e. one whi
h either

requires r to be enabled, or doesn't
are about its status. (Indeed, as in ML,

the type of the a
tual argument may be more general than that of the formal.)

They return a new fun
tion with identi
al domain and
odomain (�

1

, �

2

), whi
h

works regardless of r's status (enable

r

yields r :

2

) or requires r to be enabled

(require

r

yields r : Pre). The new fun
tion retains f 's expe
tations about s

(s :

1

). f must not require any further privileges (�Abs), be
ause it is invoked

by p, whi
h enjoys privileges r and s only.

These polymorphi
 types are very expressive. Our main
on
ern is that, even

though the privilege s is not mentioned in the
ode of these wrappers, it does

appear in their type. More generally, every privilege in A(p) may show up in

the type of a fun
tion written on behalf of prin
ipal p, whi
h may lead to very

verbose types. An appropriate type abbreviation me
hanism may be able to

address this problem; this is left as a subje
t for future work.

7.3 Advan
ed Examples

We la
k spa
e to
over numerous more subtle features of the type systems; let

us give only some brief
omments.

In Se
t. 7.1, our use of testpriv was easily seen to be
orre
t, be
ause the

sensitive a
tion kill(p) was performed within its lexi
al s
ope. Matters be
ome

more deli
ate when testpriv is used to yield a fun
tion (or, in Java, an obje
t),

whose se
urity requirements depend on the test's out
ome, and whi
h is later

invoked outside its s
ope. Conditional
onstraints are then required to tra
k

the dependen
y and prove that the fun
tion invo
ation is safe. It is not
lear

whether this idiom is a
riti
al one to support in pra
ti
e, and the question may

be answerable only through experiment.

14 François Pottier, Christian Skalka, and S
ott Smith

In Se
t. 7.2, we pointed out that it is legal to pass enable

r

a fun
tion f whi
h

doesn't
are about the status of r, provided the type of f is polymorphi
 in r's

status, as in

8
:�

1

fr:
 ; �g

�����! �

2

If, on the other hand, it is monomorphi
 (be
ause f is �-bound rather than

let-bound), as in

�

1

fr:Either ; �g

���������! �

2

then the appli
ation (enable

r

f) be
omes well-typed only if subtyping is available,

i.e. if Pre is a subtype of Either. We expe
t this situation to be infrequent,

although this remains to be
on�rmed.

8 Dis
ussion

Extension to a Full-Featured Language Many features of the Java language or

environment are not addressed in this theoreti
al study. In parti
ular, Java views

privileges as �rst-
lass obje
ts, making stati
 typing problemati
. In our model,

privileges are identi�ers, and expressions
annot
ompute privileges. In the
ase

of Java, it is an open question whether a
ompletely stati
 me
hanism
an be

devised. If not, it may be desirable to take a soft typing approa
h [1℄.

Related Work The se
urity-passing style translation des
ribed in Se
t. 4 is

monadi
. Monadi
 type systems have been used to analyze the use of impure

language features in otherwise pure languages [11℄. However, as deplored in [11℄,

there is still �a need to
reate a new e�e
t system for ea
h new e�e
t�. In other

words, we apparently
annot readily re-use the work on monadi
 type systems in

our setting. In fa
t, our work may be viewed as a systemati

onstru
tion of an

�e�e
t� type system adapted to our parti
ular e�e
tful programming language.

Several resear
hers have proposed ways of de�ning e�
ient, provably
orre
t

ompilation s
hemes for languages whose se
urity poli
y is expressed by a se-

urity automaton. Walker [12℄ de�nes a sour
e language, equipped with su
h a

se
urity poli
y, then shows how to
ompile it into a dependently-typed target

language, whose type system, by en
oding assertions about se
urity states, guar-

antees that no run-time violations will o

ur. Walker �rst builds the target type

system, then de�nes a typed translation. On the opposite, our approa
h
on-

sists in �rst de�ning an untyped translation, then letting the sour
e type system

arise from it. Thiemann's approa
h to se
urity automata [10℄ is
on
eptually

mu
h
loser to ours: he also starts with an untyped se
urity-passing translation,

whose output he then feeds through a standard program spe
ializer, in order to

automati
ally obtain an optimizing translation.

Our paper shares some motivations with these works; however, our aim was

not only to gain performan
e by eliminating many dynami

he
ks, but also to

de�ne a programming dis
ipline. This requires se
urity types to be available not

only at the level of
ompiled
ode, as in Walker's work, but also in the sour
e

ode itself.

A Systemati
 Approa
h to Stati
 A

ess Control 15

Referen
es

[1℄ Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing

with
onditional types. In Prin
iples of Programming Languages, pages 163�173,

January 1994. URL: http://http.
s.berkeley.edu/~aiken/ftp/popl94.ps.

[2℄ Li Gong. Java se
urity ar
hite
ture (JDK1.2). URL: http://java.sun.
om/

produ
ts/jdk/1.2/do
s/guide/se
urity/spe
/se
urity-spe
.do
.html, O
-

tober 1998.

[3℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferen
e with
on-

strained types. Theory and Pra
ti
e of Obje
t Systems, 5(1):35�55, 1999. URL:

http://www.
s.mu.oz.au/~sulzmann/publi
ations/tapos.ps.

[4℄ François Pottier. A 3-part type inferen
e engine. In Gert Smolka, edi-

tor, Pro
eedings of the 2000 European Symposium on Programming (ESOP'00),

volume 1782 of Le
ture Notes in Computer S
ien
e, pages 320�335. Springer

Verlag, Mar
h 2000. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-esop-2000.ps.gz.

[5℄ François Pottier and Sylvain Con
hon. Information �ow inferen
e for free. In

Pro
eedings of the the Fifth ACM SIGPLAN International Conferen
e on Fun
-

tional Programming (ICFP'00), pages 46�57, September 2000. URL: http:

//pauilla
.inria.fr/~fpottier/publis/fpottier-
on
hon-i
fp00.ps.gz.

[6℄ Didier Rémy. Extending ML type system with a sorted equational theory. Te
h-

ni
al Report 1766, INRIA, Ro
quen
ourt, BP 105, 78153 Le Chesnay Cedex,

Fran
e, 1992. URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
ristal/Didier.

Remy/eq-theory-on-types.ps.gz.

[7℄ Didier Rémy. Proje
tive ML. In 1992 ACM Conferen
e on Lisp and Fun
-

tional Programming, pages 66�75, New-York, 1992. ACM Press. URL: ftp:

//ftp.inria.fr/INRIA/Proje
ts/
ristal/Didier.Remy/lfp92.ps.gz.

[8℄ Christian Skalka and S
ott Smith. Stati
 enfor
ement of se
urity with types. In

Pro
eedings of the the Fifth ACM SIGPLAN International Conferen
e on Fun
-

tional Programming (ICFP'00), pages 34�45, Montréal, Canada, September 2000.

URL: http://www.
s.jhu.edu/~
es/papers/se
ty_i
fp2000.ps.gz.

[9℄ Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style

type systems in
onstraint form. Resear
h Report ACRC�99�009, University of

South Australia, S
hool of Computer and Information S
ien
e, July 1999. URL:

http://www.ps.uni-sb.de/~mmueller/papers/hm-
onstraints.ps.gz.

[10℄ Peter Thiemann. Enfor
ing se
urity properties using type spe
ialization. In David

Sands, editor, Pro
eedings of the 2001 European Symposium on Programming

(ESOP'01), Le
ture Notes in Computer S
ien
e. Springer Verlag, April 2001.

[11℄ Philip Wadler and Peter Thiemann. The marriage of e�e
ts and monads. Submit-

ted to ACM Transa
tions on Computational Logi
. URL: http://
m.bell-labs.

om/
m/
s/who/wadler/papers/effe
tsto
l/effe
tsto
l.ps.gz.

[12℄ David Walker. A type system for expressive se
urity poli
ies. In Conferen
e Re
ord

of POPL'00: The 27th ACM SIGPLAN-SIGACT Symposium on Prin
iples of

Programming Languages, pages 254�267, Boston, Massa
husetts, January 2000.

URL: http://www.
s.
ornell.edu/home/walker/papers/sa-popl00_ps.gz.

[13℄ Dan S. Walla
h. A New Approa
h to Mobile Code Se
urity. PhD thesis, Prin
e-

ton University, January 1999. URL: http://www.
s.prin
eton.edu/sip/pub/

dwalla
h-dissertation.html.

[14℄ Andrew K. Wright and Matthias Felleisen. A synta
ti
 approa
h to type sound-

ness. Information and Computation, 115(1):38�94, November 1994. URL: http:

//www.
s.ri
e.edu/CS/PLT/Publi
ations/i
94-wf.ps.gz.

