
A Systemati Approah to Stati Aess Control

François Pottier

1

, Christian Skalka

2

, and Sott Smith

2

1

INRIA Roquenourt, Franois.Pottier�inria.fr

2

The Johns Hopkins University, {es,sott}�s.jhu.edu

Abstrat. The Java JDK 1.2 Seurity Arhiteture inludes a dynami

mehanism for enforing aess ontrol heks, so-alled stak inspe-

tion. This paper studies type systems whih an statially guarantee the

suess of these heks. We develop these systems using a new, system-

ati methodology: we show that the seurity-passing style translation,

proposed by Wallah and Felten as a dynami implementation teh-

nique, also gives rise to stati seurity-aware type systems, by ompo-

sition with onventional type systems. To de�ne the latter, we use the

general HM(X) framework, and easily onstrut several onstraint- and

uni�ation-based type systems. They o�er signi�ant improvements on

a previous type system for JDK aess ontrol, both in terms of expres-

siveness and in terms of readability of inferred type spei�ations.

1 Introdution

The Java Seurity Arhiteture [2℄, found in JDK 1.2 and later, inludes meh-

anisms to protet systems from operations performed by untrusted ode. These

aess ontrol deisions are enfored by dynami heks. Our goal is to make

some or all of these deisions statially, by extensions to the type system. Thus,

aess ontrol violations will be aught at ompile-time rather than run-time.

Furthermore, types (whether inferred or programmer-supplied) will onstitute a

spei�ation of the seurity poliy.

A Brief Review of the JDK Seurity Arhiteture For lak of spae, we

over the JDK seurity arhiteture in a ursory manner here; see [2, 13, 8℄ for

more detailed bakground. To use the aess ontrol system, the programmer

adds doPrivileged and hekPrivilege ommands to the ode. At run-time,

a doPrivileged ommand adds a �ag to the urrent stak frame, enabling a

partiular privileged operation. The �ag is impliitly eliminated when the frame

is popped. When a privilege is heked via a hekPrivilege ommand, the

stak frames are searhed most to least reent. If a frame is enountered with

the desired �ag, the searh stops and the hek sueeds. Additionally, eah stak

frame is annotated with its owner (the owner of the method being invoked), and

all stak frames searhed by the above algorithm must be owned by some prin-

ipal authorized for the privilege being heked. This keeps illiit ode, invoked

by the trusted odebase when doPrivileged is on the stak, from performing

the privileged operation.

2 François Pottier, Christian Skalka, and Sott Smith

Our Framework This paper follows up on an initial aess ontrol type system

presented by the last two authors in [8℄ and plaes emphasis on a more modular

approah to type system onstrution. The previous paper developed the seurity

type system ab initio. In this paper, we redue the seurity typing problem to a

onventional typing problem using a translation-based method inspired by [5℄.

We use a standard language of row types [7℄ to desribe sets of privileges. We also

re-use the HM(X) framework [3, 9℄, whih allows a wide variety of type systems

to be de�ned in a single stroke, saves some proof e�ort, and (most importantly)

shows that our ustom type systems arise naturally out of a standard one.

In addition to these methodologial enhanements, this paper improves upon

its predeessor in several other ways. In partiular, [8℄ was based on subtyping

onstraints, whereas one of the type systems presented here uses row uni�ation

alone; this makes it more e�ient and leads to more onise types. Also, the

alulus studied in this paper allows for dynami test-and-branh on whether a

privilege is enabled. Lastly, beause our new approah relies on HM(X), we an

easily provide let-polymorphism.

We begin by de�ning a simpli�ed model of the Java JDK 1.2 seurity arhi-

teture. It is a �-alulus, alled �

se

, equipped with a non-standard operational

semantis that inludes a spei�ation of stak inspetion. In order to onstrut

a stati type system for �

se

, we translate it into a standard �-alulus, alled

�

set

. The translation is a seurity-passing style transformation [13℄: it imple-

ments stak inspetion by passing around sets of privileges at run-time. For this

purpose, �

set

is equipped with built-in notions of set and set operations.

Then, we de�ne a type system for �

set

. Beause �

set

is a standard �-alulus,

we are able to de�ne our type system as a simple instane of the HM(X) frame-

work [3℄. In fat, by using this framework a whole family of type systems may be

suintly de�ned, eah with di�erent osts and bene�ts. In order to give preise

types to �

set

's built-in set operations, our instane uses set types, de�ned as a

simpli�ation of Rémy's reord types [7℄.

Lastly, we show that any type system for �

set

gives rise through the transla-

tion to a type system for �

se

. The latter's orretness follows immediately from

the former's, provided the translation itself is orret. This is quite easy to show,

sine the property does not involve types at all.

2 The Soure Language �

se

This setion de�nes �

se

, a simpli�ed model of the JDK 1.2 seurity arhiteture.

It is a �-alulus equipped with a notion of ode ownership and with onstruts

for enabling or heking privileges. Its grammar is given in Fig. 1.

We assume given notions of prinipals and resoures (the latter also known

as privileges), taken from arbitrary sets P and R. We use p and r to range over

prinipals and resoures, respetively, and P and R to range over sets thereof.

We assume given a �xed aess redentials list A. It is a funtion whih maps

every prinipal p 2 P to a subset of R. We let A

�1

denote its �inverse�, that is,

A Systemati Approah to Stati Aess Control 3

p 2 P; P � P prinipals

r 2 R; R � R resoures

A 2 P ! 2

R

aess redentials

v ::= �x:f values

e ::= x j �x:f j e e j letx = e in e j letpriv r in e j expressions

hekpriv r for e j testpriv r then e else e j f

f ::= p:e signed expressions

E ::= [℄ j E e j v E j letx = E in e j evaluation ontexts

letpriv r inE j p:E

Fig. 1. Grammar for �

se

the funtion whih maps a resoure r 2 R to fp 2 P j r 2 A(p)g. Without loss of

generality, we assume the existene of a �xed prinipal p

0

suh that A(p

0

) = ?.

A signed expression p:e behaves as the expression e endowed with the au-

thority of prinipal p. Notie how the body of every �-abstration is required to

be a signed expression � thus, every piee of ode must be vouhed for by some

prinipal. The onstrut letpriv r in e allows an authorized prinipal to enable the

use of a resoure r within the expression e. The onstrut hekpriv r for e asserts

that the use of r is urrently enabled. If r is indeed enabled, e is evaluated; oth-

erwise, exeution fails. The onstrut testpriv r then e

1

else e

2

dynamially tests

whether r is enabled, branhing to e

1

or e

2

if this holds or fails, respetively.

2.1 Stak Inspetion

The JDK 1.2 determines whether a resoure is enabled by literally examining the

runtime stak, hene the name stak inspetion. We give a simple spei�ation

of this proess by notiing that staks are impliitly ontained in evaluation

ontexts, whose grammar is de�ned in Fig. 1. Indeed, a ontext de�nes a path

from the term's root down to its ative redex, along whih one �nds exatly the

seurity annotations whih the JDK 1.2 would maintain on the stak, that is,

ode owners p and enabled resoures r.

To formalize this idea, we assoiate a �nite string of prinipals and resoures,

alled a stak, to every evaluation ontext E. The right-most letters in the string

orrespond to the most reent stak frames.

stak([℄) = � stak(E e) = stak(E)

stak(v E) = stak(E) stak(letx = E in e) = stak(E)

stak(letpriv r inE) = r:stak(E) stak(p:E) = p:stak(E)

Then, Fig. 2 de�nes stak inspetion, with S ` r meaning aess to resoure r is

allowed by stak S, and S ` P meaning some prinipal in P is the most reent

owner on S. This spei�ation orresponds roughly to Wallah's [13, p. 71℄. We

write E ` r for stak(E) ` r.

4 François Pottier, Christian Skalka, and Sott Smith

r 2 A(p) S ` r

S:p ` r

S ` r

S:r

0

` r

S ` A

�1

(r)

S:r ` r

S ` P

S:r ` P

p 2 P

S:p ` P

Fig. 2. Stak inspetion algorithm

2.2 Operational Semantis for �

se

The operational semantis of �

se

is de�ned by the following redution rules:

E[(�x:f) v℄ ! E[f [v=x℄℄

E[letx = v in e℄ ! E[e[v=x℄℄

E[hekpriv r for e℄ ! E[e℄ if E ` r

E[testpriv r then e

1

else e

2

℄ ! E[e

1

℄ if E ` r

E[testpriv r then e

1

else e

2

℄ ! E[e

2

℄ if :(E ` r)

E[letpriv r in v℄ ! E[v℄

E[p:v℄ ! E[v℄

The �rst two rules are standard. The next rule allows hekpriv r for e to

redue into e only if stak inspetion sueeds (as expressed by the side ondi-

tion E ` r); otherwise, exeution is bloked. The following two rules use stak

inspetion in a similar way to determine how to redue testpriv r then e

1

else e

2

;

however, they never ause exeution to fail. The last two rules state that seu-

rity annotations beome unneessary one the expression they enlose has been

redued to a value. In a Java virtual mahine, these rules would be implemented

simply by popping stak frames (and the seurity annotations they ontain) after

exeuting a method.

This operational semantis onstitutes a onise, formal desription of Java

stak inspetion in a higher-order setting. It is easy to hek that every losed

term either is a value, or is reduible, or is of the form E[hekpriv r for e℄ where

:(E ` r). Terms of the third ategory are stuk ; they represent aess ontrol

violations. An expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is

a stuk expression, holds.

3 The Target Calulus �

set

We now de�ne a standard alulus, �

set

, to be used as the target of our transla-

tion. It is a �-alulus equipped with a number of onstants whih provide set

operations, and is given in Fig. 3. We will use e:r, e_R and e ^R as syntati

sugar for (:

r

e), (_

R

e) and (^

R

e), respetively.

The onstant R represents a onstant set. The onstrut e:r asserts that r

is an element of the set denoted by e; its exeution fails if that is not the ase.

The onstrut e_R (resp. e^R) allows omputing the union (resp. intersetion)

of the set denoted by e with a onstant set R. Lastly, the expression ?

r

e f g

A Systemati Approah to Stati Aess Control 5

e ::= x j v j e e j letx = e in e expressions

v ::= �x:e j R j :

r

j ?

r

j _

R

j ^

R

values

E ::= [℄ j E e j v E j letx = E in e evaluation ontexts

Fig. 3. Grammar for �

set

dynamially tests whether r belongs to the set R denoted by e, and aordingly

invokes f or g, passing R to it. The operational semantis for �

set

is as follows:

(�x:e) v ! e[v=x℄

letx = v in e! e[v=x℄

R:r ! R if r 2 R

?

r

R! �f:�g:(f R) if r 2 R

?

r

R! �f:�g:(g R) if r 62 R

R

1

_R

2

! R

1

[R

2

R

1

^R

2

! R

1

\ R

2

E[e℄ ! E[e

0

℄ if e! e

0

Again, an expression e is said to go wrong if and only if e !

?

e

0

, where e

0

is a

stuk expression, holds.

4 Soure-to-Target Translation

A translation of �

se

into �

set

is de�ned in Fig. 4. The distinguished identi�ers

s and are assumed not to appear in soure expressions. Notie that s may ap-

pear free in translated expressions. Translating an (unsigned) expression requires

speifying the urrent prinipal p.

One will often wish to translate an expression under minimal hypotheses, i.e.

under the initial prinipal p

0

and a void seurity ontext. To do so, we de�ne

L e M = JeK

p

0

[?=s℄. Notie that s does not appear free in L e M. If e is losed, then

so is L e M.

JxK

p

= x

J�x:fK

p

= �x:�s:JfK

Je

1

e

2

K

p

= Je

1

K

p

Je

2

K

p

s

Jletx = e

1

in e

2

K

p

= letx = Je

1

K

p

in Je

2

K

p

Jletpriv r in eK

p

= let s = s _ (frg \ A(p)) in JeK

p

Jhekpriv r for eK

p

= let = s:r in JeK

p

Jtestpriv r then e

1

else e

2

K

p

= ?

r

s (�s:Je

1

K

p

) (�s:Je

2

K

p

)

JfK

p

= JfK

Jp:eK = let s = s ^ A(p) in JeK

p

Fig. 4. Soure-to-Target Translation

6 François Pottier, Christian Skalka, and Sott Smith

The idea behind the translation is simple: the variable s is bound at all times

to the set of urrently enabled resoures. Every funtion aepts s as an extra pa-

rameter, beause it must exeute within its aller's seurity ontext. As a result,

every funtion all has s as its seond parameter. The onstruts letpriv r in e

and p:e ause s to be loally bound to a new value, re�eting the new seurity

ontext; more spei�ally, the former enables r, while the latter disables all priv-

ileges not in A(p). The onstruts hekpriv r for e and testpriv r then e

1

else e

2

are implemented simply by looking up the urrent value of s. In the latter, s is

re-bound, within eah branh, to the same value. This may appear super�uous

at �rst sight, but has an important impat on typing, beause it allows s to be

given a di�erent (more preise) type within eah branh.

This translation an be viewed as a generalization of Wallah's seurity-

passing style transformation [13℄ to a higher-order setting. Whereas they advo-

ated this idea as an implementation tehnique, with e�ieny in mind, we use

it only as a vehile in the proof of our type systems. Here, e�ieny is not at

stake. Our objetive is only to de�ne a orret translation, that is, to prove the

following:

Theorem 4.1. If e !

?

v, then L e M !

?

L v M. If e goes wrong, then L e M goes

wrong. If e diverges, then L e M diverges.

The proof is divided in two steps. First, we de�ne a new stak inspetion

algorithm, whih walks the stak forward instead of bakward, and omputes,

at eah step, the set of urrently enabled resoures. Then, we show that the

translation implements this algorithm, interleaved with the atual ode. Both

proof steps are straightforward, and we omit them here for brevity.

5 Types for �

set

We de�ne a type system for the target alulus as an instane of the parametri

framework HM(X) [3, 9℄. HM(X) is a generi type system in the Hindley-Milner

tradition, parameterized by an abstrat onstraint system X. Set. 5.1 brie�y

realls its de�nition. Set. 5.2 de�nes a spei� onstraint system alled SETS,

yielding the type system HM(SETS). Set. 5.3 extends HM(SETS) to the entire

language �

set

by assigning types to its primitive operations. Set. 5.4 states type

safety results and disusses a ouple of hoies.

5.1 The System HM(X)

The system HM(X) is parameterized by a sound term onstraint system X, i.e.

by notions of types � , onstraints C, and onstraint entailment , whih must

satisfy a number of axioms [3℄.

Then, a type sheme is a triple of a set of quanti�ers ��, a onstraint C, and

a type � (whih, in this paper, must be of kind Type ; see Set. 5.2), written

� ::= 8��[C℄:� . A type environment � is a partial mapping of program variables

to type shemes. A judgement is a quadruple of a satis�able onstraint C, a

A Systemati Approah to Stati Aess Control 7

Var

� (x) = 8��[D℄:� C 9��:D

C; � ` x : 8��[D℄:�

Sub

C; � ` e : � C � � �

0

C; � ` e : �

0

Abs

C; (� ;x : �) ` e : �

0

C; � ` �x:e : � ! �

0

App

C; � ` e

1

: �

2

! � C; � ` e

2

: �

2

C; � ` e

1

e

2

: �

Let

C; � ` e

1

: � C; (� ; x : �) ` e

2

: �

C; � ` letx = e

1

in e

2

: �

8 Intro

C ^D;� ` e : � �� \ fv(C; �) = ?

C ^ 9��:D; � ` e : 8��[D℄:�

8 Elim

C; � ` e : 8��[D℄:�

C ^D;� ` e : �

9 Intro

C; � ` e : � �� \ fv(�; �) = ?

9��:C; � ` e : �

Fig. 5. The system HM(X)

� ::= �; �; : : : j � ! � j f�g j r : � ; � j �� j types

 ::= NA j Pre j Abs j Either apabilities

C ::= true j C ^ C j 9�:C j � = � j � � � j if � � then � � � onstraints

Fig. 6. SETS Grammar

type environment � , an expression e and a type sheme �, written C; � ` e : �,

derivable using the rules of Fig. 5. These rules orrespond to those given in [9℄.

The following type safety theorem is proven in [3℄ with respet to a denota-

tional presentation of the all-by-value �-alulus with let. We have proved a

syntati version of it, in the style of [14℄, whih better suits our needs.

Theorem 5.1. If C; � ` e : � holds, then e does not go wrong.

5.2 The Constraint System SETS

In order to give preise types to the primitive set operations in �

set

, we need

spei� types and onstraints. Together with their logial interpretation, whih

de�nes their meaning, these form a onstraint system alled SETS.

The syntax of types and onstraints is de�ned in Fig. 6. The type language

features a set type onstrutor f�g, the two standard row onstrutors [7℄, and

four apability onstrutors. Capabilities tell whether a given element may ap-

pear in a set (Pre), may not appear in it (Abs), may or may not appear in

it (Either), or whether this information is irrelevant, beause the set itself is

unavailable (NA). For instane, the singleton set frg will be one (and the only)

8 François Pottier, Christian Skalka, and Sott Smith

� 2 V

k

� : k

�; �

0

: Type

� ! �

0

: Type

� : Row

?

f�g : Type

� : Cap r 62 R

�

0

: Row

R[frg

(r : � ; �

0

) : Row

R

� : Cap

�� : Row

R

 : Cap ` true

` C

1

; C

2

` C

1

^ C

2

` if C

1

then C

2

` C

` 9�:C

�; �

0

: k

` � = �

0

` � � �

0

Fig. 7. Kinding rules

value of type fr : Pre ; �Absg. The onstraint language o�ers standard equality

and subtyping onstraints, as well as a form of onditional onstraints. Sample

uses of these types and onstraints will be shown in Set. 5.3.

To ensure that only meaningful types and onstraints an be built, we im-

mediately equip them with kinds, de�ned by k ::= Cap j Row

R

j Type , where R

ranges over �nite subsets of R. For every kind k, we assume given a distint, de-

numerable set of type variables V

k

. We use �; �; ; : : : to represent type variables.

From here on, we onsider only well-kinded types and onstraints, as de�ned in

Fig. 7. The purpose of these rules is to guarantee that every onstraint has a

well-de�ned interpretation within our model, whose de�nition follows.

To every kind k, we assoiate a mathematial struture JkK. JCapK is the set

of all four apabilities. Given a �nite set of resoures R � R, JRow

R

K is the set

of total, almost onstant funtions from RnR into JCapK. (A funtion is almost

onstant if it is onstant exept on a �nite number of inputs.) In short, Row

R

is

the kind of rows whih do not arry the �elds mentioned inR; Row

?

is the kind of

omplete rows. JTypeK is the free algebra generated by the onstrutors !, with

signature JTypeK� JTypeK ! JTypeK, and f�g, with signature JRow

?

K ! JTypeK.

Eah of these strutures is then equipped with an ordering. Here, a hoie has

to be made. If we do not wish to allow subtyping, we merely de�ne the ordering

on every JkK as equality. Otherwise, we proeed as follows. First, a lattie over

JCapK is de�ned, whose least (resp. greatest) element is NA (resp. Either), and

where Abs and Pre are inomparable. This ordering is then extended, point-

wise and ovariantly, to every JRow

R

K. Finally, it is extended indutively to

JTypeK by viewing the onstrutor f�g as ovariant, and the onstrutor ! as

ontravariant (resp. ovariant) in its �rst (resp. seond) argument.

We may now give the interpretation of types and onstraints within the

model. It is parameterized by an assignment �, i.e. a funtion whih, for every

kind k, maps V

k

into JkK. The interpretation of types is obtained by extending

� so as to map every type of kind k to an element of JkK, as follows:

�(� ! �

0

) = �(�) ! �(�

0

) �(f�g) = f�(�)g

�(r : � ; �

0

)(r) = �(�) �(r : � ; �

0

)(r

0

) = �(�

0

)(r

0

) (r 6= r

0

)

�(��)(r) = �(�) �() =

A Systemati Approah to Stati Aess Control 9

� ` true

� ` C

1

� ` C

2

� ` C

1

^ C

2

� = �

0

[�℄ �

0

` C

� ` 9�:C

�(�) = �(�

0

)

� ` � = �

0

�(�) � �(�

0

)

� ` � � �

0

 � �(�)) � ` �

0

� �

00

� ` if � � then �

0

� �

00

Fig. 8. Interpretation of onstraints

Fig. 8 de�nes the onstraint satisfation prediate � ` �, whose arguments are an

assignment � and a onstraint C. (The notation � = �

0

[�℄ means that � and �

0

oinide exept possibly on �.) Entailment is de�ned as usual: C C

0

(read:

C entails C

0

) holds i�, for every assignment �, � ` C implies � ` C

0

.

We refer to the type and onstraint logi, together with its interpretation,

as SETS. More preisely, we have de�ned two logis, where � is interpreted as

either equality or as a non-trivial subtype ordering. We will refer to them as

SETS

=

and SETS

�

, respetively. Both are sound term onstraint systems [3℄.

5.3 Dealing with the Primitive Operations in �

set

The typing rules of HM(X) over only the �-alulus with let. To extend

HM(SETS) to the whole language �

set

, we must assign types to its primitive

operations. Let us de�ne an initial type environment �

1

as follows:

R : fR : Pre ; �Absg

:

r

: 8�:fr : Pre ; �g ! fr : Pre ; �g

_

R

: 8��:fR : � ; �g ! fR : Pre ; �g

^

R

: 8��:fR : � ; �g ! fR : � ; �Absg

?

r

: 8��:fr : ; �g ! (fr : Pre ; �g ! �) ! (fr : Abs ; �g ! �) ! �

Here, �, �, range over type variables of kind Type , Row

?

, Cap, respetively.

We abuse notation: if R is fr

1

; : : : ; r

n

g, then R : denotes r

1

: ; : : : ; r

n

: ,

and R : � denotes r

1

:

1

; : : : ; r

n

:

n

.

None of the type shemes in �

1

arry onstraints. If we wish to take advantage

of onditional onstraints, we must re�ne the type of ?

r

. Let �

2

be the initial

type environment obtained by replaing the last binding in �

1

with

?

r

: 8��

�

�[C ℄:fr : ; �g ! (fr : Pre ; �

1

g ! �

1

) ! (fr : Abs ; �

2

g ! �

2

) ! �

where C = if Pre � then � � �

1

^ if Abs � then � � �

2

^ if Pre � then �

1

� � ^ if Abs � then �

2

� �

Here, the input and output of eah branh (represented by �

i

and �

i

, respe-

tively) are linked to the input and output of the whole onstrut (represented

10 François Pottier, Christian Skalka, and Sott Smith

by � and �) through onditional onstraints. Intuitively, this means that the

seurity requirements and the return type of a branh may be entirely ignored

unless the branh seems liable to be taken. (For more bakground on onditional

onstraints, the reader is referred to [1, 4℄.)

5.4 The Type Systems S

rel

i

Set. 5.2 desribes two onstraint systems, SETS

=

and SETS

�

. Set. 5.3 de�nes

two initial typing environments, �

1

and �

2

. These hoies give rise to four related

type systems, whih we refer to as S

rel

i

, where rel and i range over f=;�g and

f1; 2g, respetively. Eah of them o�ers a di�erent ompromise between auray,

readability and ost of analysis. In eah ase, Theorem 5.1 may be extended to

the entire language �

set

by proving a simple Æ-typability [14℄ lemma, i.e. by

heking that �

i

orretly desribes the behavior of the primitive operations.

The proofs are straightforward and are not given here.

Despite sharing a ommon formalism, these systems may all for vastly dif-

ferent implementations. Indeed, every instane of HM(X) must ome with a

onstraint resolution algorithm. S

=

1

is a simple extension of the Hindley-Milner

type system with rows, and may be implemented using uni�ation [6℄. S

=

2

is sim-

ilar, but requires onditional (i.e. delayed) uni�ation onstraints, adding some

omplexity to the implementation. S

�

1

and S

�

2

require maintaining subtyping

onstraints, usually leading to omplex implementations.

In the following, we lak the spae to desribe all four variants. Therefore,

we will fous on S

=

1

. Beause it is based on uni�ation, it is e�ient, easy to

implement, and yields readable types. We onjeture that, thanks to the power

of row polymorphism, it is �exible enough for many pratial uses (see Set. 7.3).

6 Types for �

se

6.1 De�nition

Set. 5 de�ned a type system, S

rel

i

, for �

set

. Set. 4 de�ned a translation of

�

se

into �

set

. Composing the two automatially gives rise to a type system

for �

se

, also alled S

rel

i

for simpliity, whose safety is a diret onsequene of

Theorems 4.1 and 5.1.

De�nition 6.1. Let e be a losed �

se

expression. By de�nition, C; � ` e : �

holds if and only if C;� ` L e M : � holds.

Theorem 6.2. If C; � ` e : � holds, then e does not go wrong.

Turning type safety into a trivial orollary was the main motivation for bas-

ing our approah on a translation. Indeed, beause Theorem 4.1 onerns un-

typed terms, its proof is straightforward. (The Æ-typability lemmas mentioned

in Set. 5.3 do involve types, but are typially very simple.) A diret type safety

proof would be non-trivial and would dupliate most of the steps involved in

proving HM(X) orret.

A Systemati Approah to Stati Aess Control 11

6.2 Reformulation: Derived Type Systems

De�nition 6.1, although simple, is not a diret de�nition of typing for �

se

.

We thus will give rules whih allow typing �

se

expressions without expliitly

translating them into �

set

. These so-alled derived rules an be obtained in

a rather systemati way from the de�nition of S

rel

i

and the de�nition of the

translation. (In fat, it would be interesting to formally automate the proess.)

In these rules, the symbols � and & range over types of kind Type; more speif-

ially, & is used to represent some seurity ontext, i.e. a set of available resoures.

The symbols � and ' range over types of kind Row

?

and Cap, respetively. The

? symbol in the rules indiates an irrelevant prinipal. In the soure-to-target

translation, all funtions are given an additional parameter, yielding types of

the form �

1

! &

2

! �

2

. To reover the more familiar and appealing notation

proposed in [8℄, we de�ne the maro �

1

&

2

�! �

2

=

def

�

1

! &

2

! �

2

.

Fig. 9 gives derived rules for S

=

1

, the simplest of our type systems. There, all

Var

� (x) = �

p; &; � ` x : �

Abs

?; &

2

; (� ; x : �

1

) ` f : �

2

p; &

1

; � ` �x:f : �

1

&

2

�! �

2

App

p; &; � ` e

1

: �

2

&

�! � p; &; � ` e

2

: �

2

p; &; � ` e

1

e

2

: �

Let

p; &; � ` e

1

: � p; &; (� ;x : �) ` e

2

: �

p; &; � ` letx = e

1

in e

2

: �

8 Intro

p; &; � ` e : � �� \ fv(&; �) = ?

p; &; � ` e : 8��:�

8 Elim

p; &; � ` e : 8��:�

p; &; � ` e : � [��=��℄

Letpriv

�

p; f�g; � ` e : � r 62 A(p)

p; f�g; � ` letpriv r in e : �

Letpriv

+

p; fr : Pre ; �g; � ` e : � r 2 A(p)

p; fr : ' ; �g; � ` letpriv r in e : �

Chekpriv

p; fr : Pre ; �g; � ` e : �

p; fr : Pre ; �g; � ` hekpriv r for e : �

Testpriv

p; fr : Pre ; �g; � ` e

1

: � p; fr : Abs ; �g; � ` e

2

: �

p; fr : ' ; �g; � ` testpriv r then e

1

else e

2

: �

Own

p; fr

1

: '

1

; : : : ; r

n

: '

n

; �Absg; � ` e : � A(p) = fr

1

; : : : ; r

n

g

?; fr

1

: '

1

; : : : ; r

n

: '

n

; �g; � ` p:e : �

Fig. 9. Typing rules for �

se

derived from S

=

1

12 François Pottier, Christian Skalka, and Sott Smith

onstraints are equations. As a result, all type information an be represented

in term form, rather than in onstraint form [9℄. We exploit this fat to give a

simple presentation of the derived rules. Type shemes have the form 8��:� , and

judgements have the form p; &; � ` e : �.

To hek that these derived rules are orret, we prove the following lemmas:

Lemma 6.3. p; &; � ` e : � holds i� true; (�

1

;� ; s : &) ` JeK

p

: � holds.

Lemma 6.4. p

0

; f�Absg; � ` e : � holds i� true; (�

1

;�) ` L e M : � holds.

Together, Theorem 6.2 and Lemma 6.4 show that, if a losed �

se

expression

e is well-typed aording to the rules of Fig. 9, under the initial prinipal p

0

and

the empty seurity ontext f�Absg, then e annot go wrong.

Derived rules for eah member of the S

rel

i

family an be given in a similar

way. The same proess an also be used to yield type inferene rules, rather than

the logial typing rules shown here.

7 Examples

7.1 Basi Use of Seurity Cheks

Imagine an operating system with two kinds of proesses, root proesses and user

proesses. Killing a user proess is always allowed, while killing a root proess

requires the privilege killing. At least one distinguished prinipal root has this

privilege. The system funtions whih perform the killing are implemented by

root, as follows:

kill = �(p : proess):root:hekpriv killing for : : : () � kill the proess

killIfUser = �(p : proess):root: : : : () � kill the proess if it is user-level

In system S

=

1

, these funtions reeive the following (most general) types:

kill : 8�:proess

fkilling:Pre ; �g

����������! unit

killIfUser : 8�:proess

f�g

��! unit

The �rst funtion an be alled only if it an be statially proven that the

privilege killing is enabled. The seond one, on the other hand, an be alled at

any time, but will never kill a root proess. To omplement these funtions, it

may be desirable to de�ne a funtion whih provides a �best attempt� given the

urrent (dynami) seurity ontext. This may be done by dynamially heking

whether the privilege is enabled, then alling the appropriate funtion:

tryKill = �(p : proess):root:

testpriv killing then kill(p) else killIfUser(p)

This funtion is well-typed in system S

=

1

. Indeed, within the �rst branh of

the testpriv onstrut, it is statially known that the privilege killing must be

enabled; this is why the sub-expression kill(p) is well-typed. The inferred type

shows that tryKill does not have any seurity requirements:

tryKill : 8�:proess

f�g

��! unit

A Systemati Approah to Stati Aess Control 13

7.2 Seurity Wrappers

A library writer often needs to surround numerous internal funtions with �boil-

erplate� seurity ode before making them aessible. To avoid redundany, it

seems desirable to allow the de�nition of generi seurity wrappers. When applied

to a funtion, a wrapper returns a new funtion whih has the same omputa-

tional meaning but di�erent seurity requirements.

Assume given a prinipal p suh that A(p) = fr; sg. Here are two wrappers

likely to be of use to this prinipal:

enable

r

= �f:p:�x:p:letpriv r in f x

require

r

= �f:p:�x:p:hekpriv r for f x

In system S

=

1

, these wrappers reeive the following (most general) types:

enable

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:

2

; s:

1

; �

2

g

����������! �

2

)

require

r

: 8 : : : :(�

1

fr:Pre ; s:

1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:

1

; �

2

g

�����������! �

2

)

These types are very similar; they may be read as follows. Both wrappers expet

a funtion f whih allows that r be enabled (r : Pre), i.e. one whih either

requires r to be enabled, or doesn't are about its status. (Indeed, as in ML,

the type of the atual argument may be more general than that of the formal.)

They return a new funtion with idential domain and odomain (�

1

, �

2

), whih

works regardless of r's status (enable

r

yields r :

2

) or requires r to be enabled

(require

r

yields r : Pre). The new funtion retains f 's expetations about s

(s :

1

). f must not require any further privileges (�Abs), beause it is invoked

by p, whih enjoys privileges r and s only.

These polymorphi types are very expressive. Our main onern is that, even

though the privilege s is not mentioned in the ode of these wrappers, it does

appear in their type. More generally, every privilege in A(p) may show up in

the type of a funtion written on behalf of prinipal p, whih may lead to very

verbose types. An appropriate type abbreviation mehanism may be able to

address this problem; this is left as a subjet for future work.

7.3 Advaned Examples

We lak spae to over numerous more subtle features of the type systems; let

us give only some brief omments.

In Set. 7.1, our use of testpriv was easily seen to be orret, beause the

sensitive ation kill(p) was performed within its lexial sope. Matters beome

more deliate when testpriv is used to yield a funtion (or, in Java, an objet),

whose seurity requirements depend on the test's outome, and whih is later

invoked outside its sope. Conditional onstraints are then required to trak

the dependeny and prove that the funtion invoation is safe. It is not lear

whether this idiom is a ritial one to support in pratie, and the question may

be answerable only through experiment.

14 François Pottier, Christian Skalka, and Sott Smith

In Set. 7.2, we pointed out that it is legal to pass enable

r

a funtion f whih

doesn't are about the status of r, provided the type of f is polymorphi in r's

status, as in

8:�

1

fr: ; �g

�����! �

2

If, on the other hand, it is monomorphi (beause f is �-bound rather than

let-bound), as in

�

1

fr:Either ; �g

���������! �

2

then the appliation (enable

r

f) beomes well-typed only if subtyping is available,

i.e. if Pre is a subtype of Either. We expet this situation to be infrequent,

although this remains to be on�rmed.

8 Disussion

Extension to a Full-Featured Language Many features of the Java language or

environment are not addressed in this theoretial study. In partiular, Java views

privileges as �rst-lass objets, making stati typing problemati. In our model,

privileges are identi�ers, and expressions annot ompute privileges. In the ase

of Java, it is an open question whether a ompletely stati mehanism an be

devised. If not, it may be desirable to take a soft typing approah [1℄.

Related Work The seurity-passing style translation desribed in Set. 4 is

monadi. Monadi type systems have been used to analyze the use of impure

language features in otherwise pure languages [11℄. However, as deplored in [11℄,

there is still �a need to reate a new e�et system for eah new e�et�. In other

words, we apparently annot readily re-use the work on monadi type systems in

our setting. In fat, our work may be viewed as a systemati onstrution of an

�e�et� type system adapted to our partiular e�etful programming language.

Several researhers have proposed ways of de�ning e�ient, provably orret

ompilation shemes for languages whose seurity poliy is expressed by a se-

urity automaton. Walker [12℄ de�nes a soure language, equipped with suh a

seurity poliy, then shows how to ompile it into a dependently-typed target

language, whose type system, by enoding assertions about seurity states, guar-

antees that no run-time violations will our. Walker �rst builds the target type

system, then de�nes a typed translation. On the opposite, our approah on-

sists in �rst de�ning an untyped translation, then letting the soure type system

arise from it. Thiemann's approah to seurity automata [10℄ is oneptually

muh loser to ours: he also starts with an untyped seurity-passing translation,

whose output he then feeds through a standard program speializer, in order to

automatially obtain an optimizing translation.

Our paper shares some motivations with these works; however, our aim was

not only to gain performane by eliminating many dynami heks, but also to

de�ne a programming disipline. This requires seurity types to be available not

only at the level of ompiled ode, as in Walker's work, but also in the soure

ode itself.

A Systemati Approah to Stati Aess Control 15

Referenes

[1℄ Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing

with onditional types. In Priniples of Programming Languages, pages 163�173,

January 1994. URL: http://http.s.berkeley.edu/~aiken/ftp/popl94.ps.

[2℄ Li Gong. Java seurity arhiteture (JDK1.2). URL: http://java.sun.om/

produts/jdk/1.2/dos/guide/seurity/spe/seurity-spe.do.html, O-

tober 1998.

[3℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferene with on-

strained types. Theory and Pratie of Objet Systems, 5(1):35�55, 1999. URL:

http://www.s.mu.oz.au/~sulzmann/publiations/tapos.ps.

[4℄ François Pottier. A 3-part type inferene engine. In Gert Smolka, edi-

tor, Proeedings of the 2000 European Symposium on Programming (ESOP'00),

volume 1782 of Leture Notes in Computer Siene, pages 320�335. Springer

Verlag, Marh 2000. URL: http://pauilla.inria.fr/~fpottier/publis/

fpottier-esop-2000.ps.gz.

[5℄ François Pottier and Sylvain Conhon. Information �ow inferene for free. In

Proeedings of the the Fifth ACM SIGPLAN International Conferene on Fun-

tional Programming (ICFP'00), pages 46�57, September 2000. URL: http:

//pauilla.inria.fr/~fpottier/publis/fpottier-onhon-ifp00.ps.gz.

[6℄ Didier Rémy. Extending ML type system with a sorted equational theory. Teh-

nial Report 1766, INRIA, Roquenourt, BP 105, 78153 Le Chesnay Cedex,

Frane, 1992. URL: ftp://ftp.inria.fr/INRIA/Projets/ristal/Didier.

Remy/eq-theory-on-types.ps.gz.

[7℄ Didier Rémy. Projetive ML. In 1992 ACM Conferene on Lisp and Fun-

tional Programming, pages 66�75, New-York, 1992. ACM Press. URL: ftp:

//ftp.inria.fr/INRIA/Projets/ristal/Didier.Remy/lfp92.ps.gz.

[8℄ Christian Skalka and Sott Smith. Stati enforement of seurity with types. In

Proeedings of the the Fifth ACM SIGPLAN International Conferene on Fun-

tional Programming (ICFP'00), pages 34�45, Montréal, Canada, September 2000.

URL: http://www.s.jhu.edu/~es/papers/sety_ifp2000.ps.gz.

[9℄ Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style

type systems in onstraint form. Researh Report ACRC�99�009, University of

South Australia, Shool of Computer and Information Siene, July 1999. URL:

http://www.ps.uni-sb.de/~mmueller/papers/hm-onstraints.ps.gz.

[10℄ Peter Thiemann. Enforing seurity properties using type speialization. In David

Sands, editor, Proeedings of the 2001 European Symposium on Programming

(ESOP'01), Leture Notes in Computer Siene. Springer Verlag, April 2001.

[11℄ Philip Wadler and Peter Thiemann. The marriage of e�ets and monads. Submit-

ted to ACM Transations on Computational Logi. URL: http://m.bell-labs.

om/m/s/who/wadler/papers/effetstol/effetstol.ps.gz.

[12℄ David Walker. A type system for expressive seurity poliies. In Conferene Reord

of POPL'00: The 27th ACM SIGPLAN-SIGACT Symposium on Priniples of

Programming Languages, pages 254�267, Boston, Massahusetts, January 2000.

URL: http://www.s.ornell.edu/home/walker/papers/sa-popl00_ps.gz.

[13℄ Dan S. Wallah. A New Approah to Mobile Code Seurity. PhD thesis, Prine-

ton University, January 1999. URL: http://www.s.prineton.edu/sip/pub/

dwallah-dissertation.html.

[14℄ Andrew K. Wright and Matthias Felleisen. A syntati approah to type sound-

ness. Information and Computation, 115(1):38�94, November 1994. URL: http:

//www.s.rie.edu/CS/PLT/Publiations/i94-wf.ps.gz.

