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Abstra
t. The Java JDK 1.2 Se
urity Ar
hite
ture in
ludes a dynami


me
hanism for enfor
ing a

ess 
ontrol 
he
ks, so-
alled sta
k inspe
-

tion. This paper studies type systems whi
h 
an stati
ally guarantee the

su

ess of these 
he
ks. We develop these systems using a new, system-

ati
 methodology: we show that the se
urity-passing style translation,

proposed by Walla
h and Felten as a dynami
 implementation te
h-

nique, also gives rise to stati
 se
urity-aware type systems, by 
ompo-

sition with 
onventional type systems. To de�ne the latter, we use the

general HM(X) framework, and easily 
onstru
t several 
onstraint- and

uni�
ation-based type systems. They o�er signi�
ant improvements on

a previous type system for JDK a

ess 
ontrol, both in terms of expres-

siveness and in terms of readability of inferred type spe
i�
ations.

1 Introdu
tion

The Java Se
urity Ar
hite
ture [2℄, found in JDK 1.2 and later, in
ludes me
h-

anisms to prote
t systems from operations performed by untrusted 
ode. These

a

ess 
ontrol de
isions are enfor
ed by dynami
 
he
ks. Our goal is to make

some or all of these de
isions stati
ally, by extensions to the type system. Thus,

a

ess 
ontrol violations will be 
aught at 
ompile-time rather than run-time.

Furthermore, types (whether inferred or programmer-supplied) will 
onstitute a

spe
i�
ation of the se
urity poli
y.

A Brief Review of the JDK Se
urity Ar
hite
ture For la
k of spa
e, we


over the JDK se
urity ar
hite
ture in a 
ursory manner here; see [2, 13, 8℄ for

more detailed ba
kground. To use the a

ess 
ontrol system, the programmer

adds doPrivileged and 
he
kPrivilege 
ommands to the 
ode. At run-time,

a doPrivileged 
ommand adds a �ag to the 
urrent sta
k frame, enabling a

parti
ular privileged operation. The �ag is impli
itly eliminated when the frame

is popped. When a privilege is 
he
ked via a 
he
kPrivilege 
ommand, the

sta
k frames are sear
hed most to least re
ent. If a frame is en
ountered with

the desired �ag, the sear
h stops and the 
he
k su

eeds. Additionally, ea
h sta
k

frame is annotated with its owner (the owner of the method being invoked), and

all sta
k frames sear
hed by the above algorithm must be owned by some prin-


ipal authorized for the privilege being 
he
ked. This keeps illi
it 
ode, invoked

by the trusted 
odebase when doPrivileged is on the sta
k, from performing

the privileged operation.
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Our Framework This paper follows up on an initial a

ess 
ontrol type system

presented by the last two authors in [8℄ and pla
es emphasis on a more modular

approa
h to type system 
onstru
tion. The previous paper developed the se
urity

type system ab initio. In this paper, we redu
e the se
urity typing problem to a


onventional typing problem using a translation-based method inspired by [5℄.

We use a standard language of row types [7℄ to des
ribe sets of privileges. We also

re-use the HM(X) framework [3, 9℄, whi
h allows a wide variety of type systems

to be de�ned in a single stroke, saves some proof e�ort, and (most importantly)

shows that our 
ustom type systems arise naturally out of a standard one.

In addition to these methodologi
al enhan
ements, this paper improves upon

its prede
essor in several other ways. In parti
ular, [8℄ was based on subtyping


onstraints, whereas one of the type systems presented here uses row uni�
ation

alone; this makes it more e�
ient and leads to more 
on
ise types. Also, the


al
ulus studied in this paper allows for dynami
 test-and-bran
h on whether a

privilege is enabled. Lastly, be
ause our new approa
h relies on HM(X), we 
an

easily provide let-polymorphism.

We begin by de�ning a simpli�ed model of the Java JDK 1.2 se
urity ar
hi-

te
ture. It is a �-
al
ulus, 
alled �

se


, equipped with a non-standard operational

semanti
s that in
ludes a spe
i�
ation of sta
k inspe
tion. In order to 
onstru
t

a stati
 type system for �

se


, we translate it into a standard �-
al
ulus, 
alled

�

set

. The translation is a se
urity-passing style transformation [13℄: it imple-

ments sta
k inspe
tion by passing around sets of privileges at run-time. For this

purpose, �

set

is equipped with built-in notions of set and set operations.

Then, we de�ne a type system for �

set

. Be
ause �

set

is a standard �-
al
ulus,

we are able to de�ne our type system as a simple instan
e of the HM(X) frame-

work [3℄. In fa
t, by using this framework a whole family of type systems may be

su

in
tly de�ned, ea
h with di�erent 
osts and bene�ts. In order to give pre
ise

types to �

set

's built-in set operations, our instan
e uses set types, de�ned as a

simpli�
ation of Rémy's re
ord types [7℄.

Lastly, we show that any type system for �

set

gives rise through the transla-

tion to a type system for �

se


. The latter's 
orre
tness follows immediately from

the former's, provided the translation itself is 
orre
t. This is quite easy to show,

sin
e the property does not involve types at all.

2 The Sour
e Language �

se


This se
tion de�nes �

se


, a simpli�ed model of the JDK 1.2 se
urity ar
hite
ture.

It is a �-
al
ulus equipped with a notion of 
ode ownership and with 
onstru
ts

for enabling or 
he
king privileges. Its grammar is given in Fig. 1.

We assume given notions of prin
ipals and resour
es (the latter also known

as privileges), taken from arbitrary sets P and R. We use p and r to range over

prin
ipals and resour
es, respe
tively, and P and R to range over sets thereof.

We assume given a �xed a

ess 
redentials list A. It is a fun
tion whi
h maps

every prin
ipal p 2 P to a subset of R. We let A

�1

denote its �inverse�, that is,
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p 2 P; P � P prin
ipals

r 2 R; R � R resour
es

A 2 P ! 2

R

a

ess 
redentials

v ::= �x:f values

e ::= x j �x:f j e e j letx = e in e j letpriv r in e j expressions


he
kpriv r for e j testpriv r then e else e j f

f ::= p:e signed expressions

E ::= [℄ j E e j v E j letx = E in e j evaluation 
ontexts

letpriv r inE j p:E

Fig. 1. Grammar for �

se


the fun
tion whi
h maps a resour
e r 2 R to fp 2 P j r 2 A(p)g. Without loss of

generality, we assume the existen
e of a �xed prin
ipal p

0

su
h that A(p

0

) = ?.

A signed expression p:e behaves as the expression e endowed with the au-

thority of prin
ipal p. Noti
e how the body of every �-abstra
tion is required to

be a signed expression � thus, every pie
e of 
ode must be vou
hed for by some

prin
ipal. The 
onstru
t letpriv r in e allows an authorized prin
ipal to enable the

use of a resour
e r within the expression e. The 
onstru
t 
he
kpriv r for e asserts

that the use of r is 
urrently enabled. If r is indeed enabled, e is evaluated; oth-

erwise, exe
ution fails. The 
onstru
t testpriv r then e

1

else e

2

dynami
ally tests

whether r is enabled, bran
hing to e

1

or e

2

if this holds or fails, respe
tively.

2.1 Sta
k Inspe
tion

The JDK 1.2 determines whether a resour
e is enabled by literally examining the

runtime sta
k, hen
e the name sta
k inspe
tion. We give a simple spe
i�
ation

of this pro
ess by noti
ing that sta
ks are impli
itly 
ontained in evaluation


ontexts, whose grammar is de�ned in Fig. 1. Indeed, a 
ontext de�nes a path

from the term's root down to its a
tive redex, along whi
h one �nds exa
tly the

se
urity annotations whi
h the JDK 1.2 would maintain on the sta
k, that is,


ode owners p and enabled resour
es r.

To formalize this idea, we asso
iate a �nite string of prin
ipals and resour
es,


alled a sta
k, to every evaluation 
ontext E. The right-most letters in the string


orrespond to the most re
ent sta
k frames.

sta
k([℄) = � sta
k(E e) = sta
k(E)

sta
k(v E) = sta
k(E) sta
k(letx = E in e) = sta
k(E)

sta
k(letpriv r inE) = r:sta
k(E) sta
k(p:E) = p:sta
k(E)

Then, Fig. 2 de�nes sta
k inspe
tion, with S ` r meaning a

ess to resour
e r is

allowed by sta
k S, and S ` P meaning some prin
ipal in P is the most re
ent

owner on S. This spe
i�
ation 
orresponds roughly to Walla
h's [13, p. 71℄. We

write E ` r for sta
k(E) ` r.



4 François Pottier, Christian Skalka, and S
ott Smith

r 2 A(p) S ` r

S:p ` r

S ` r

S:r

0

` r

S ` A

�1

(r)

S:r ` r

S ` P

S:r ` P

p 2 P

S:p ` P

Fig. 2. Sta
k inspe
tion algorithm

2.2 Operational Semanti
s for �

se


The operational semanti
s of �

se


is de�ned by the following redu
tion rules:

E[(�x:f) v℄ ! E[f [v=x℄℄

E[letx = v in e℄ ! E[e[v=x℄℄

E[
he
kpriv r for e℄ ! E[e℄ if E ` r

E[testpriv r then e

1

else e

2

℄ ! E[e

1

℄ if E ` r

E[testpriv r then e

1

else e

2

℄ ! E[e

2

℄ if :(E ` r)

E[letpriv r in v℄ ! E[v℄

E[p:v℄ ! E[v℄

The �rst two rules are standard. The next rule allows 
he
kpriv r for e to

redu
e into e only if sta
k inspe
tion su

eeds (as expressed by the side 
ondi-

tion E ` r); otherwise, exe
ution is blo
ked. The following two rules use sta
k

inspe
tion in a similar way to determine how to redu
e testpriv r then e

1

else e

2

;

however, they never 
ause exe
ution to fail. The last two rules state that se
u-

rity annotations be
ome unne
essary on
e the expression they en
lose has been

redu
ed to a value. In a Java virtual ma
hine, these rules would be implemented

simply by popping sta
k frames (and the se
urity annotations they 
ontain) after

exe
uting a method.

This operational semanti
s 
onstitutes a 
on
ise, formal des
ription of Java

sta
k inspe
tion in a higher-order setting. It is easy to 
he
k that every 
losed

term either is a value, or is redu
ible, or is of the form E[
he
kpriv r for e℄ where

:(E ` r). Terms of the third 
ategory are stu
k ; they represent a

ess 
ontrol

violations. An expression e is said to go wrong if and only if e!

?

e

0

, where e

0

is

a stu
k expression, holds.

3 The Target Cal
ulus �

set

We now de�ne a standard 
al
ulus, �

set

, to be used as the target of our transla-

tion. It is a �-
al
ulus equipped with a number of 
onstants whi
h provide set

operations, and is given in Fig. 3. We will use e:r, e_R and e ^R as synta
ti


sugar for (:

r

e), (_

R

e) and (^

R

e), respe
tively.

The 
onstant R represents a 
onstant set. The 
onstru
t e:r asserts that r

is an element of the set denoted by e; its exe
ution fails if that is not the 
ase.

The 
onstru
t e_R (resp. e^R) allows 
omputing the union (resp. interse
tion)

of the set denoted by e with a 
onstant set R. Lastly, the expression ?

r

e f g
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e ::= x j v j e e j letx = e in e expressions

v ::= �x:e j R j :

r

j ?

r

j _

R

j ^

R

values

E ::= [℄ j E e j v E j letx = E in e evaluation 
ontexts

Fig. 3. Grammar for �

set

dynami
ally tests whether r belongs to the set R denoted by e, and a

ordingly

invokes f or g, passing R to it. The operational semanti
s for �

set

is as follows:

(�x:e) v ! e[v=x℄

letx = v in e! e[v=x℄

R:r ! R if r 2 R

?

r

R! �f:�g:(f R) if r 2 R

?

r

R! �f:�g:(g R) if r 62 R

R

1

_R

2

! R

1

[ R

2

R

1

^R

2

! R

1

\ R

2

E[e℄ ! E[e

0

℄ if e! e

0

Again, an expression e is said to go wrong if and only if e !

?

e

0

, where e

0

is a

stu
k expression, holds.

4 Sour
e-to-Target Translation

A translation of �

se


into �

set

is de�ned in Fig. 4. The distinguished identi�ers

s and are assumed not to appear in sour
e expressions. Noti
e that s may ap-

pear free in translated expressions. Translating an (unsigned) expression requires

spe
ifying the 
urrent prin
ipal p.

One will often wish to translate an expression under minimal hypotheses, i.e.

under the initial prin
ipal p

0

and a void se
urity 
ontext. To do so, we de�ne

L e M = JeK

p

0

[?=s℄. Noti
e that s does not appear free in L e M. If e is 
losed, then

so is L e M.

JxK

p

= x

J�x:fK

p

= �x:�s:JfK

Je

1

e

2

K

p

= Je

1

K

p

Je

2

K

p

s

Jletx = e

1

in e

2

K

p

= letx = Je

1

K

p

in Je

2

K

p

Jletpriv r in eK

p

= let s = s _ (frg \ A(p)) in JeK

p

J
he
kpriv r for eK

p

= let = s:r in JeK

p

Jtestpriv r then e

1

else e

2

K

p

= ?

r

s (�s:Je

1

K

p

) (�s:Je

2

K

p

)

JfK

p

= JfK

Jp:eK = let s = s ^ A(p) in JeK

p

Fig. 4. Sour
e-to-Target Translation
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The idea behind the translation is simple: the variable s is bound at all times

to the set of 
urrently enabled resour
es. Every fun
tion a

epts s as an extra pa-

rameter, be
ause it must exe
ute within its 
aller's se
urity 
ontext. As a result,

every fun
tion 
all has s as its se
ond parameter. The 
onstru
ts letpriv r in e

and p:e 
ause s to be lo
ally bound to a new value, re�e
ting the new se
urity


ontext; more spe
i�
ally, the former enables r, while the latter disables all priv-

ileges not in A(p). The 
onstru
ts 
he
kpriv r for e and testpriv r then e

1

else e

2

are implemented simply by looking up the 
urrent value of s. In the latter, s is

re-bound, within ea
h bran
h, to the same value. This may appear super�uous

at �rst sight, but has an important impa
t on typing, be
ause it allows s to be

given a di�erent (more pre
ise) type within ea
h bran
h.

This translation 
an be viewed as a generalization of Walla
h's se
urity-

passing style transformation [13℄ to a higher-order setting. Whereas they advo-


ated this idea as an implementation te
hnique, with e�
ien
y in mind, we use

it only as a vehi
le in the proof of our type systems. Here, e�
ien
y is not at

stake. Our obje
tive is only to de�ne a 
orre
t translation, that is, to prove the

following:

Theorem 4.1. If e !

?

v, then L e M !

?

L v M. If e goes wrong, then L e M goes

wrong. If e diverges, then L e M diverges.

The proof is divided in two steps. First, we de�ne a new sta
k inspe
tion

algorithm, whi
h walks the sta
k forward instead of ba
kward, and 
omputes,

at ea
h step, the set of 
urrently enabled resour
es. Then, we show that the

translation implements this algorithm, interleaved with the a
tual 
ode. Both

proof steps are straightforward, and we omit them here for brevity.

5 Types for �

set

We de�ne a type system for the target 
al
ulus as an instan
e of the parametri


framework HM(X) [3, 9℄. HM(X) is a generi
 type system in the Hindley-Milner

tradition, parameterized by an abstra
t 
onstraint system X. Se
t. 5.1 brie�y

re
alls its de�nition. Se
t. 5.2 de�nes a spe
i�
 
onstraint system 
alled SETS,

yielding the type system HM(SETS). Se
t. 5.3 extends HM(SETS) to the entire

language �

set

by assigning types to its primitive operations. Se
t. 5.4 states type

safety results and dis
usses a 
ouple of 
hoi
es.

5.1 The System HM(X)

The system HM(X) is parameterized by a sound term 
onstraint system X, i.e.

by notions of types � , 
onstraints C, and 
onstraint entailment 
, whi
h must

satisfy a number of axioms [3℄.

Then, a type s
heme is a triple of a set of quanti�ers ��, a 
onstraint C, and

a type � (whi
h, in this paper, must be of kind Type ; see Se
t. 5.2), written

� ::= 8��[C℄:� . A type environment � is a partial mapping of program variables

to type s
hemes. A judgement is a quadruple of a satis�able 
onstraint C, a
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Var

� (x) = 8��[D℄:� C 
 9��:D

C; � ` x : 8��[D℄:�

Sub

C; � ` e : � C 
 � � �

0

C; � ` e : �

0

Abs

C; (� ;x : �) ` e : �

0

C; � ` �x:e : � ! �

0

App

C; � ` e

1

: �

2

! � C; � ` e

2

: �

2

C; � ` e

1

e

2

: �

Let

C; � ` e

1

: � C; (� ; x : �) ` e

2

: �

C; � ` letx = e

1

in e

2

: �

8 Intro

C ^D;� ` e : � �� \ fv(C; � ) = ?

C ^ 9��:D; � ` e : 8��[D℄:�

8 Elim

C; � ` e : 8��[D℄:�

C ^D;� ` e : �

9 Intro

C; � ` e : � �� \ fv(�; �) = ?

9��:C; � ` e : �

Fig. 5. The system HM(X)

� ::= �; �; : : : j � ! � j f�g j r : � ; � j �� j 
 types


 ::= NA j Pre j Abs j Either 
apabilities

C ::= true j C ^ C j 9�:C j � = � j � � � j if 
 � � then � � � 
onstraints

Fig. 6. SETS Grammar

type environment � , an expression e and a type s
heme �, written C; � ` e : �,

derivable using the rules of Fig. 5. These rules 
orrespond to those given in [9℄.

The following type safety theorem is proven in [3℄ with respe
t to a denota-

tional presentation of the 
all-by-value �-
al
ulus with let. We have proved a

synta
ti
 version of it, in the style of [14℄, whi
h better suits our needs.

Theorem 5.1. If C; � ` e : � holds, then e does not go wrong.

5.2 The Constraint System SETS

In order to give pre
ise types to the primitive set operations in �

set

, we need

spe
i�
 types and 
onstraints. Together with their logi
al interpretation, whi
h

de�nes their meaning, these form a 
onstraint system 
alled SETS.

The syntax of types and 
onstraints is de�ned in Fig. 6. The type language

features a set type 
onstru
tor f�g, the two standard row 
onstru
tors [7℄, and

four 
apability 
onstru
tors. Capabilities tell whether a given element may ap-

pear in a set (Pre), may not appear in it (Abs), may or may not appear in

it (Either), or whether this information is irrelevant, be
ause the set itself is

unavailable (NA). For instan
e, the singleton set frg will be one (and the only)
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� 2 V

k

� : k

�; �

0

: Type

� ! �

0

: Type

� : Row

?

f�g : Type

� : Cap r 62 R

�

0

: Row

R[frg

(r : � ; �

0

) : Row

R

� : Cap

�� : Row

R


 : Cap ` true

` C

1

; C

2

` C

1

^ C

2

` if C

1

then C

2

` C

` 9�:C

�; �

0

: k

` � = �

0

` � � �

0

Fig. 7. Kinding rules

value of type fr : Pre ; �Absg. The 
onstraint language o�ers standard equality

and subtyping 
onstraints, as well as a form of 
onditional 
onstraints. Sample

uses of these types and 
onstraints will be shown in Se
t. 5.3.

To ensure that only meaningful types and 
onstraints 
an be built, we im-

mediately equip them with kinds, de�ned by k ::= Cap j Row

R

j Type , where R

ranges over �nite subsets of R. For every kind k, we assume given a distin
t, de-

numerable set of type variables V

k

. We use �; �; 
; : : : to represent type variables.

From here on, we 
onsider only well-kinded types and 
onstraints, as de�ned in

Fig. 7. The purpose of these rules is to guarantee that every 
onstraint has a

well-de�ned interpretation within our model, whose de�nition follows.

To every kind k, we asso
iate a mathemati
al stru
ture JkK. JCapK is the set

of all four 
apabilities. Given a �nite set of resour
es R � R, JRow

R

K is the set

of total, almost 
onstant fun
tions from RnR into JCapK. (A fun
tion is almost


onstant if it is 
onstant ex
ept on a �nite number of inputs.) In short, Row

R

is

the kind of rows whi
h do not 
arry the �elds mentioned inR; Row

?

is the kind of


omplete rows. JTypeK is the free algebra generated by the 
onstru
tors !, with

signature JTypeK� JTypeK ! JTypeK, and f�g, with signature JRow

?

K ! JTypeK.

Ea
h of these stru
tures is then equipped with an ordering. Here, a 
hoi
e has

to be made. If we do not wish to allow subtyping, we merely de�ne the ordering

on every JkK as equality. Otherwise, we pro
eed as follows. First, a latti
e over

JCapK is de�ned, whose least (resp. greatest) element is NA (resp. Either), and

where Abs and Pre are in
omparable. This ordering is then extended, point-

wise and 
ovariantly, to every JRow

R

K. Finally, it is extended indu
tively to

JTypeK by viewing the 
onstru
tor f�g as 
ovariant, and the 
onstru
tor ! as


ontravariant (resp. 
ovariant) in its �rst (resp. se
ond) argument.

We may now give the interpretation of types and 
onstraints within the

model. It is parameterized by an assignment �, i.e. a fun
tion whi
h, for every

kind k, maps V

k

into JkK. The interpretation of types is obtained by extending

� so as to map every type of kind k to an element of JkK, as follows:

�(� ! �

0

) = �(� ) ! �(�

0

) �(f�g) = f�(� )g

�(r : � ; �

0

)(r) = �(� ) �(r : � ; �

0

)(r

0

) = �(�

0

)(r

0

) (r 6= r

0

)

�(�� )(r) = �(� ) �(
) = 
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� ` true

� ` C

1

� ` C

2

� ` C

1

^ C

2

� = �

0

[�℄ �

0

` C

� ` 9�:C

�(�) = �(�

0

)

� ` � = �

0

�(� ) � �(�

0

)

� ` � � �

0


 � �(�)) � ` �

0

� �

00

� ` if 
 � � then �

0

� �

00

Fig. 8. Interpretation of 
onstraints

Fig. 8 de�nes the 
onstraint satisfa
tion predi
ate � ` �, whose arguments are an

assignment � and a 
onstraint C. (The notation � = �

0

[�℄ means that � and �

0


oin
ide ex
ept possibly on �.) Entailment is de�ned as usual: C 
 C

0

(read:

C entails C

0

) holds i�, for every assignment �, � ` C implies � ` C

0

.

We refer to the type and 
onstraint logi
, together with its interpretation,

as SETS. More pre
isely, we have de�ned two logi
s, where � is interpreted as

either equality or as a non-trivial subtype ordering. We will refer to them as

SETS

=

and SETS

�

, respe
tively. Both are sound term 
onstraint systems [3℄.

5.3 Dealing with the Primitive Operations in �

set

The typing rules of HM(X) 
over only the �-
al
ulus with let. To extend

HM(SETS) to the whole language �

set

, we must assign types to its primitive

operations. Let us de�ne an initial type environment �

1

as follows:

R : fR : Pre ; �Absg

:

r

: 8�:fr : Pre ; �g ! fr : Pre ; �g

_

R

: 8��
:fR : �
 ; �g ! fR : Pre ; �g

^

R

: 8��
:fR : �
 ; �g ! fR : �
 ; �Absg

?

r

: 8��
:fr : 
 ; �g ! (fr : Pre ; �g ! �) ! (fr : Abs ; �g ! �) ! �

Here, �, �, 
 range over type variables of kind Type , Row

?

, Cap, respe
tively.

We abuse notation: if R is fr

1

; : : : ; r

n

g, then R : 
 denotes r

1

: 
 ; : : : ; r

n

: 
,

and R : �
 denotes r

1

: 


1

; : : : ; r

n

: 


n

.

None of the type s
hemes in �

1


arry 
onstraints. If we wish to take advantage

of 
onditional 
onstraints, we must re�ne the type of ?

r

. Let �

2

be the initial

type environment obtained by repla
ing the last binding in �

1

with

?

r

: 8��

�

�
[C ℄:fr : 
 ; �g ! (fr : Pre ; �

1

g ! �

1

) ! (fr : Abs ; �

2

g ! �

2

) ! �

where C = if Pre � 
 then � � �

1

^ if Abs � 
 then � � �

2

^ if Pre � 
 then �

1

� � ^ if Abs � 
 then �

2

� �

Here, the input and output of ea
h bran
h (represented by �

i

and �

i

, respe
-

tively) are linked to the input and output of the whole 
onstru
t (represented
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by � and �) through 
onditional 
onstraints. Intuitively, this means that the

se
urity requirements and the return type of a bran
h may be entirely ignored

unless the bran
h seems liable to be taken. (For more ba
kground on 
onditional


onstraints, the reader is referred to [1, 4℄.)

5.4 The Type Systems S

rel

i

Se
t. 5.2 des
ribes two 
onstraint systems, SETS

=

and SETS

�

. Se
t. 5.3 de�nes

two initial typing environments, �

1

and �

2

. These 
hoi
es give rise to four related

type systems, whi
h we refer to as S

rel

i

, where rel and i range over f=;�g and

f1; 2g, respe
tively. Ea
h of them o�ers a di�erent 
ompromise between a

ura
y,

readability and 
ost of analysis. In ea
h 
ase, Theorem 5.1 may be extended to

the entire language �

set

by proving a simple Æ-typability [14℄ lemma, i.e. by


he
king that �

i


orre
tly des
ribes the behavior of the primitive operations.

The proofs are straightforward and are not given here.

Despite sharing a 
ommon formalism, these systems may 
all for vastly dif-

ferent implementations. Indeed, every instan
e of HM(X) must 
ome with a


onstraint resolution algorithm. S

=

1

is a simple extension of the Hindley-Milner

type system with rows, and may be implemented using uni�
ation [6℄. S

=

2

is sim-

ilar, but requires 
onditional (i.e. delayed) uni�
ation 
onstraints, adding some


omplexity to the implementation. S

�

1

and S

�

2

require maintaining subtyping


onstraints, usually leading to 
omplex implementations.

In the following, we la
k the spa
e to des
ribe all four variants. Therefore,

we will fo
us on S

=

1

. Be
ause it is based on uni�
ation, it is e�
ient, easy to

implement, and yields readable types. We 
onje
ture that, thanks to the power

of row polymorphism, it is �exible enough for many pra
ti
al uses (see Se
t. 7.3).

6 Types for �

se


6.1 De�nition

Se
t. 5 de�ned a type system, S

rel

i

, for �

set

. Se
t. 4 de�ned a translation of

�

se


into �

set

. Composing the two automati
ally gives rise to a type system

for �

se


, also 
alled S

rel

i

for simpli
ity, whose safety is a dire
t 
onsequen
e of

Theorems 4.1 and 5.1.

De�nition 6.1. Let e be a 
losed �

se


expression. By de�nition, C; � ` e : �

holds if and only if C;� ` L e M : � holds.

Theorem 6.2. If C; � ` e : � holds, then e does not go wrong.

Turning type safety into a trivial 
orollary was the main motivation for bas-

ing our approa
h on a translation. Indeed, be
ause Theorem 4.1 
on
erns un-

typed terms, its proof is straightforward. (The Æ-typability lemmas mentioned

in Se
t. 5.3 do involve types, but are typi
ally very simple.) A dire
t type safety

proof would be non-trivial and would dupli
ate most of the steps involved in

proving HM(X) 
orre
t.
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6.2 Reformulation: Derived Type Systems

De�nition 6.1, although simple, is not a dire
t de�nition of typing for �

se


.

We thus will give rules whi
h allow typing �

se


expressions without expli
itly

translating them into �

set

. These so-
alled derived rules 
an be obtained in

a rather systemati
 way from the de�nition of S

rel

i

and the de�nition of the

translation. (In fa
t, it would be interesting to formally automate the pro
ess.)

In these rules, the symbols � and & range over types of kind Type; more spe
if-

i
ally, & is used to represent some se
urity 
ontext, i.e. a set of available resour
es.

The symbols � and ' range over types of kind Row

?

and Cap, respe
tively. The

? symbol in the rules indi
ates an irrelevant prin
ipal. In the sour
e-to-target

translation, all fun
tions are given an additional parameter, yielding types of

the form �

1

! &

2

! �

2

. To re
over the more familiar and appealing notation

proposed in [8℄, we de�ne the ma
ro �

1

&

2

�! �

2

=

def

�

1

! &

2

! �

2

.

Fig. 9 gives derived rules for S

=

1

, the simplest of our type systems. There, all

Var

� (x) = �

p; &; � ` x : �

Abs

?; &

2

; (� ; x : �

1

) ` f : �

2

p; &

1

; � ` �x:f : �

1

&

2

�! �

2

App

p; &; � ` e

1

: �

2

&

�! � p; &; � ` e

2

: �

2

p; &; � ` e

1

e

2

: �

Let

p; &; � ` e

1

: � p; &; (� ;x : �) ` e

2

: �

p; &; � ` letx = e

1

in e

2

: �

8 Intro

p; &; � ` e : � �� \ fv(&; � ) = ?

p; &; � ` e : 8��:�

8 Elim

p; &; � ` e : 8��:�

p; &; � ` e : � [��=��℄

Letpriv

�

p; f�g; � ` e : � r 62 A(p)

p; f�g; � ` letpriv r in e : �

Letpriv

+

p; fr : Pre ; �g; � ` e : � r 2 A(p)

p; fr : ' ; �g; � ` letpriv r in e : �

Che
kpriv

p; fr : Pre ; �g; � ` e : �

p; fr : Pre ; �g; � ` 
he
kpriv r for e : �

Testpriv

p; fr : Pre ; �g; � ` e

1

: � p; fr : Abs ; �g; � ` e

2

: �

p; fr : ' ; �g; � ` testpriv r then e

1

else e

2

: �

Own

p; fr

1

: '

1

; : : : ; r

n

: '

n

; �Absg; � ` e : � A(p) = fr

1

; : : : ; r

n

g

?; fr

1

: '

1

; : : : ; r

n

: '

n

; �g; � ` p:e : �

Fig. 9. Typing rules for �

se


derived from S

=

1
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onstraints are equations. As a result, all type information 
an be represented

in term form, rather than in 
onstraint form [9℄. We exploit this fa
t to give a

simple presentation of the derived rules. Type s
hemes have the form 8��:� , and

judgements have the form p; &; � ` e : �.

To 
he
k that these derived rules are 
orre
t, we prove the following lemmas:

Lemma 6.3. p; &; � ` e : � holds i� true; (�

1

;� ; s : &) ` JeK

p

: � holds.

Lemma 6.4. p

0

; f�Absg; � ` e : � holds i� true; (�

1

;� ) ` L e M : � holds.

Together, Theorem 6.2 and Lemma 6.4 show that, if a 
losed �

se


expression

e is well-typed a

ording to the rules of Fig. 9, under the initial prin
ipal p

0

and

the empty se
urity 
ontext f�Absg, then e 
annot go wrong.

Derived rules for ea
h member of the S

rel

i

family 
an be given in a similar

way. The same pro
ess 
an also be used to yield type inferen
e rules, rather than

the logi
al typing rules shown here.

7 Examples

7.1 Basi
 Use of Se
urity Che
ks

Imagine an operating system with two kinds of pro
esses, root pro
esses and user

pro
esses. Killing a user pro
ess is always allowed, while killing a root pro
ess

requires the privilege killing. At least one distinguished prin
ipal root has this

privilege. The system fun
tions whi
h perform the killing are implemented by

root, as follows:

kill = �(p : pro
ess):root:
he
kpriv killing for : : : () � kill the pro
ess

killIfUser = �(p : pro
ess):root: : : : () � kill the pro
ess if it is user-level

In system S

=

1

, these fun
tions re
eive the following (most general) types:

kill : 8�:pro
ess

fkilling:Pre ; �g

����������! unit

killIfUser : 8�:pro
ess

f�g

��! unit

The �rst fun
tion 
an be 
alled only if it 
an be stati
ally proven that the

privilege killing is enabled. The se
ond one, on the other hand, 
an be 
alled at

any time, but will never kill a root pro
ess. To 
omplement these fun
tions, it

may be desirable to de�ne a fun
tion whi
h provides a �best attempt� given the


urrent (dynami
) se
urity 
ontext. This may be done by dynami
ally 
he
king

whether the privilege is enabled, then 
alling the appropriate fun
tion:

tryKill = �(p : pro
ess):root:

testpriv killing then kill(p) else killIfUser(p)

This fun
tion is well-typed in system S

=

1

. Indeed, within the �rst bran
h of

the testpriv 
onstru
t, it is stati
ally known that the privilege killing must be

enabled; this is why the sub-expression kill(p) is well-typed. The inferred type

shows that tryKill does not have any se
urity requirements:

tryKill : 8�:pro
ess

f�g

��! unit
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7.2 Se
urity Wrappers

A library writer often needs to surround numerous internal fun
tions with �boil-

erplate� se
urity 
ode before making them a

essible. To avoid redundan
y, it

seems desirable to allow the de�nition of generi
 se
urity wrappers. When applied

to a fun
tion, a wrapper returns a new fun
tion whi
h has the same 
omputa-

tional meaning but di�erent se
urity requirements.

Assume given a prin
ipal p su
h that A(p) = fr; sg. Here are two wrappers

likely to be of use to this prin
ipal:

enable

r

= �f:p:�x:p:letpriv r in f x

require

r

= �f:p:�x:p:
he
kpriv r for f x

In system S

=

1

, these wrappers re
eive the following (most general) types:

enable

r

: 8 : : : :(�

1

fr:Pre ; s:


1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:


2

; s:


1

; �

2

g

����������! �

2

)

require

r

: 8 : : : :(�

1

fr:Pre ; s:


1

; �Absg

�������������! �

2

)

f�

1

g

���! (�

1

fr:Pre ; s:


1

; �

2

g

�����������! �

2

)

These types are very similar; they may be read as follows. Both wrappers expe
t

a fun
tion f whi
h allows that r be enabled (r : Pre), i.e. one whi
h either

requires r to be enabled, or doesn't 
are about its status. (Indeed, as in ML,

the type of the a
tual argument may be more general than that of the formal.)

They return a new fun
tion with identi
al domain and 
odomain (�

1

, �

2

), whi
h

works regardless of r's status (enable

r

yields r : 


2

) or requires r to be enabled

(require

r

yields r : Pre). The new fun
tion retains f 's expe
tations about s

(s : 


1

). f must not require any further privileges (�Abs), be
ause it is invoked

by p, whi
h enjoys privileges r and s only.

These polymorphi
 types are very expressive. Our main 
on
ern is that, even

though the privilege s is not mentioned in the 
ode of these wrappers, it does

appear in their type. More generally, every privilege in A(p) may show up in

the type of a fun
tion written on behalf of prin
ipal p, whi
h may lead to very

verbose types. An appropriate type abbreviation me
hanism may be able to

address this problem; this is left as a subje
t for future work.

7.3 Advan
ed Examples

We la
k spa
e to 
over numerous more subtle features of the type systems; let

us give only some brief 
omments.

In Se
t. 7.1, our use of testpriv was easily seen to be 
orre
t, be
ause the

sensitive a
tion kill(p) was performed within its lexi
al s
ope. Matters be
ome

more deli
ate when testpriv is used to yield a fun
tion (or, in Java, an obje
t),

whose se
urity requirements depend on the test's out
ome, and whi
h is later

invoked outside its s
ope. Conditional 
onstraints are then required to tra
k

the dependen
y and prove that the fun
tion invo
ation is safe. It is not 
lear

whether this idiom is a 
riti
al one to support in pra
ti
e, and the question may

be answerable only through experiment.



14 François Pottier, Christian Skalka, and S
ott Smith

In Se
t. 7.2, we pointed out that it is legal to pass enable

r

a fun
tion f whi
h

doesn't 
are about the status of r, provided the type of f is polymorphi
 in r's

status, as in

8
:�

1

fr:
 ; �g

�����! �

2

If, on the other hand, it is monomorphi
 (be
ause f is �-bound rather than

let-bound), as in

�

1

fr:Either ; �g

���������! �

2

then the appli
ation (enable

r

f) be
omes well-typed only if subtyping is available,

i.e. if Pre is a subtype of Either. We expe
t this situation to be infrequent,

although this remains to be 
on�rmed.

8 Dis
ussion

Extension to a Full-Featured Language Many features of the Java language or

environment are not addressed in this theoreti
al study. In parti
ular, Java views

privileges as �rst-
lass obje
ts, making stati
 typing problemati
. In our model,

privileges are identi�ers, and expressions 
annot 
ompute privileges. In the 
ase

of Java, it is an open question whether a 
ompletely stati
 me
hanism 
an be

devised. If not, it may be desirable to take a soft typing approa
h [1℄.

Related Work The se
urity-passing style translation des
ribed in Se
t. 4 is

monadi
. Monadi
 type systems have been used to analyze the use of impure

language features in otherwise pure languages [11℄. However, as deplored in [11℄,

there is still �a need to 
reate a new e�e
t system for ea
h new e�e
t�. In other

words, we apparently 
annot readily re-use the work on monadi
 type systems in

our setting. In fa
t, our work may be viewed as a systemati
 
onstru
tion of an

�e�e
t� type system adapted to our parti
ular e�e
tful programming language.

Several resear
hers have proposed ways of de�ning e�
ient, provably 
orre
t


ompilation s
hemes for languages whose se
urity poli
y is expressed by a se-


urity automaton. Walker [12℄ de�nes a sour
e language, equipped with su
h a

se
urity poli
y, then shows how to 
ompile it into a dependently-typed target

language, whose type system, by en
oding assertions about se
urity states, guar-

antees that no run-time violations will o

ur. Walker �rst builds the target type

system, then de�nes a typed translation. On the opposite, our approa
h 
on-

sists in �rst de�ning an untyped translation, then letting the sour
e type system

arise from it. Thiemann's approa
h to se
urity automata [10℄ is 
on
eptually

mu
h 
loser to ours: he also starts with an untyped se
urity-passing translation,

whose output he then feeds through a standard program spe
ializer, in order to

automati
ally obtain an optimizing translation.

Our paper shares some motivations with these works; however, our aim was

not only to gain performan
e by eliminating many dynami
 
he
ks, but also to

de�ne a programming dis
ipline. This requires se
urity types to be available not

only at the level of 
ompiled 
ode, as in Walker's work, but also in the sour
e


ode itself.
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