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Abstract. The Java JDK 1.2 Security Architecture includes a dynamic
mechanism for enforcing access control checks, so-called stack inspec-
tion. This paper studies type systems which can statically guarantee the
success of these checks. We develop these systems using a new, system-
atic methodology: we show that the security-passing style translation,
proposed by Wallach and Felten as a dynamic implementation tech-
nique, also gives rise to static security-aware type systems, by compo-
sition with conventional type systems. To define the latter, we use the
general HM(X) framework, and easily construct several constraint- and
unification-based type systems. They offer significant improvements on
a previous type system for JDK access control, both in terms of expres-
siveness and in terms of readability of inferred type specifications.

1 Introduction

The Java Security Architecture [2], found in JDK 1.2 and later, includes mech-
anisms to protect systems from operations performed by untrusted code. These
access control decisions are enforced by dynamic checks. Our goal is to make
some or all of these decisions statically, by extensions to the type system. Thus,
access control violations will be caught at compile-time rather than run-time.
Furthermore, types (whether inferred or programmer-supplied) will constitute a
specification of the security policy.

A Brief Review of the JDK Security Architecture For lack of space, we
cover the JDK security architecture in a cursory manner here; see [2, 13, 8| for
more detailed background. To use the access control system, the programmer
adds doPrivileged and checkPrivilege commands to the code. At run-time,
a doPrivileged command adds a flag to the current stack frame, enabling a
particular privileged operation. The flag is implicitly eliminated when the frame
is popped. When a privilege is checked via a checkPrivilege command, the
stack frames are searched most to least recent. If a frame is encountered with
the desired flag, the search stops and the check succeeds. Additionally, each stack
frame is annotated with its owner (the owner of the method being invoked), and
all stack frames searched by the above algorithm must be owned by some prin-
cipal authorized for the privilege being checked. This keeps illicit code, invoked
by the trusted codebase when doPrivileged is on the stack, from performing
the privileged operation.
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Our Framework This paper follows up on an initial access control type system
presented by the last two authors in [8] and places emphasis on a more modular
approach to type system construction. The previous paper developed the security
type system ab initio. In this paper, we reduce the security typing problem to a
conventional typing problem using a translation-based method inspired by [5].
We use a standard language of row types [7] to describe sets of privileges. We also
re-use the HM(X) framework [3, 9], which allows a wide variety of type systems
to be defined in a single stroke, saves some proof effort, and (most importantly)
shows that our custom type systems arise naturally out of a standard one.

In addition to these methodological enhancements, this paper improves upon
its predecessor in several other ways. In particular, [8] was based on subtyping
constraints, whereas one of the type systems presented here uses row unification
alone; this makes it more efficient and leads to more concise types. Also, the
calculus studied in this paper allows for dynamic test-and-branch on whether a
privilege is enabled. Lastly, because our new approach relies on HM(X), we can
easily provide let-polymorphism.

We begin by defining a simplified model of the Java JDK 1.2 security archi-
tecture. It is a A-calculus, called Agec, equipped with a non-standard operational
semantics that includes a specification of stack inspection. In order to construct
a static type system for Agec, we translate it into a standard A-calculus, called
Aset- The translation is a security-passing style transformation [13]: it imple-
ments stack inspection by passing around sets of privileges at run-time. For this
purpose, Aget 1S equipped with built-in notions of set and set operations.

Then, we define a type system for Age;. Because Ageq is a standard A-calculus,
we are able to define our type system as a simple instance of the HM(X) frame-
work [3]. In fact, by using this framework a whole family of type systems may be
succinctly defined, each with different costs and benefits. In order to give precise
types to Aget’s built-in set operations, our instance uses set types, defined as a
simplification of Rémy’s record types [7].

Lastly, we show that any type system for Ageq gives rise through the transla-
tion to a type system for Agec. The latter’s correctness follows immediately from
the former’s, provided the translation itself is correct. This is quite easy to show,
since the property does not involve types at all.

2 The Source Language A

This section defines Agee, a simplified model of the JDK 1.2 security architecture.
It is a A-calculus equipped with a notion of code ownership and with constructs
for enabling or checking privileges. Its grammar is given in Fig. 1.

We assume given notions of principals and resources (the latter also known
as privileges), taken from arbitrary sets P and R. We use p and r to range over
principals and resources, respectively, and P and R to range over sets thereof.

We assume given a fixed access credentials list A. It is a function which maps
every principal p € P to a subset of R. We let A~! denote its “inverse”, that is,
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peEP,PCP principals
reR,RCR TeSOUTCES
AeP — 2R access credentials
via= Az f values
ex=uw|Av.f|ee|lete =eine | letprivrine | erpressions
checkpriv rfor e | testpriv r theneelsee | f
fua=pe signed erpressions
E:=][]|Ee|vE|letz =FEine | evaluation contexts
letprivrinE | p.E

Fig. 1. Grammar for Asec

the function which maps a resource r € R to {p € P | r € A(p)}. Without loss of
generality, we assume the existence of a fixed principal py such that A(py) = @.
A signed expression p.e behaves as the expression e endowed with the au-
thority of principal p. Notice how the body of every A-abstraction is required to
be a signed expression — thus, every piece of code must be vouched for by some
principal. The construct letpriv r in e allows an authorized principal to enable the
use of a resource r within the expression e. The construct checkpriv r for e asserts
that the use of r is currently enabled. If r is indeed enabled, e is evaluated; oth-
erwise, execution fails. The construct testpriv r then e; else es dynamically tests
whether r is enabled, branching to e; or ey if this holds or fails, respectively.

2.1 Stack Inspection

The JDK 1.2 determines whether a resource is enabled by literally examining the
runtime stack, hence the name stack inspection. We give a simple specification
of this process by noticing that stacks are implicitly contained in evaluation
contexts, whose grammar is defined in Fig. 1. Indeed, a context defines a path
from the term’s root down to its active redex, along which one finds exactly the
security annotations which the JDK 1.2 would maintain on the stack, that is,
code owners p and enabled resources r.

To formalize this idea, we associate a finite string of principals and resources,
called a stack, to every evaluation context E. The right-most letters in the string
correspond to the most recent stack frames.

stack([]) = € stack(E e) = stack(E)
stack(v E) = stack(E) stack(let z = Eine) = stack(E)
stack(letpriv rin E) = r.stack(E) stack(p.E) = p.stack(E)

Then, Fig. 2 defines stack inspection, with S F 7 meaning access to resource r is
allowed by stack S, and S F P meaning some principal in P is the most recent
owner on S. This specification corresponds roughly to Wallach’s [13, p. 71]. We
write E b r for stack(E) F r.
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Fig. 2. Stack inspection algorithm

2.2 Operational Semantics for A

The operational semantics of Agec is defined by the following reduction rules:

El(\z.f)v] - E[f[o/a]]
Elletz = vine] — Ele[v/z]]
E|[checkpriv r fore] — Ele] itEFr
Eltestpriv rthen e elsees] — Elfeq] itEFr
Eltestpriv rthen e; else es] — Eles] if «(EFr)
Elletpriv rinv] — E[v]
Elv]

Elpo] —

The first two rules are standard. The next rule allows checkprivrfore to
reduce into e only if stack inspection succeeds (as expressed by the side condi-
tion E F 1); otherwise, execution is blocked. The following two rules use stack
inspection in a similar way to determine how to reduce testpriv r then e; else es;
however, they never cause execution to fail. The last two rules state that secu-
rity annotations become unnecessary once the expression they enclose has been
reduced to a value. In a Java virtual machine, these rules would be implemented
simply by popping stack frames (and the security annotations they contain) after
executing a method.

This operational semantics constitutes a concise, formal description of Java
stack inspection in a higher-order setting. It is easy to check that every closed
term either is a value, or is reducible, or is of the form E[checkpriv r for €] where
—(E F 7). Terms of the third category are stuck; they represent access control
violations. An expression e is said to go wrong if and only if e —* €', where €’ is
a stuck expression, holds.

3 The Target Calculus A

We now define a standard calculus, A, to be used as the target of our transla-
tion. It is a A-calculus equipped with a number of constants which provide set
operations, and is given in Fig. 3. We will use e.r, eV R and e A R as syntactic
sugar for (.. e), (Vre) and (Age), respectively.

The constant R represents a constant set. The construct e.r asserts that r
is an element of the set denoted by e; its execution fails if that is not the case.
The construct eV R (resp. e A R) allows computing the union (resp. intersection)
of the set denoted by e with a constant set R. Lastly, the expression ?7,.e fg
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ex=wx|v|ee|lete =eine eTPressions
va=Aze|R| .. |7 |VrR]|Ar values
E:=[]|Ee|vE|lete =Fine evaluation contexts

Fig. 3. Grammar for A

dynamically tests whether r belongs to the set R denoted by e, and accordingly
invokes f or g, passing R to it. The operational semantics for Age is as follows:

(Az.e)v — efv/x]
letz =vine — e[v/x]
Rr—R ifreRr
7R = AfAg.(fR) ifreR
7. R— Af.\g.(g R) ifrgR
RiVRy; - R;UR>
Ry ARy — Ri N Ry
Ele] — E[€'] ife— e

Again, an expression e is said to go wrong if and only if e —* €', where €' is a
stuck expression, holds.

4 Source-to-Target Translation

A translation of Agee into Agey is defined in Fig. 4. The distinguished identifiers
s and _ are assumed not to appear in source expressions. Notice that s may ap-
pear free in translated expressions. Translating an (unsigned) expression requires
specifying the current principal p.

One will often wish to translate an expression under minimal hypotheses, i.e.
under the initial principal py and a void security context. To do so, we define
(e) = [e]p,[@/s]. Notice that s does not appear free in (e]). If e is closed, then
sois (e).

[z], ==
[Ae.flp = Az As.[f]
[erea]p, = [er]p [e2] s
[letz = erines], = letx = [e1]pin [e2]p
[letprivrine], =lets = sV ({r} N A(p))in[e],

[checkpriv rfore], = let - = s.rin[e],
[testpriv r thene; elsees], = 7 s (As.Jer]p) (As.[e2]p)
[£1, = [1]

[p.e] =lets =sA A(p)in[e],

Fig. 4. Source-to-Target Translation
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The idea behind the translation is simple: the variable s is bound at all times
to the set of currently enabled resources. Every function accepts s as an extra pa-
rameter, because it must execute within its caller’s security context. As a result,
every function call has s as its second parameter. The constructs letprivrine
and p.e cause s to be locally bound to a new value, reflecting the new security
context; more specifically, the former enables r, while the latter disables all priv-
ileges not in A(p). The constructs checkpriv rfore and testprivr thene; else ey
are implemented simply by looking up the current value of s. In the latter, s is
re-bound, within each branch, to the same value. This may appear superfluous
at first sight, but has an important impact on typing, because it allows s to be
given a different (more precise) type within each branch.

This translation can be viewed as a generalization of Wallach’s security-
passing style transformation [13] to a higher-order setting. Whereas they advo-
cated this idea as an implementation technique, with efficiency in mind, we use
it only as a vehicle in the proof of our type systems. Here, efficiency is not at
stake. Our objective is only to define a correct translation, that is, to prove the
following:

Theorem 4.1. If e —* v, then (e)) —* (v). If e goes wrong, then (e]) goes
wrong. If e diverges, then (e) diverges.

The proof is divided in two steps. First, we define a new stack inspection
algorithm, which walks the stack forward instead of backward, and computes,
at each step, the set of currently enabled resources. Then, we show that the
translation implements this algorithm, interleaved with the actual code. Both
proof steps are straightforward, and we omit them here for brevity.

5 Types for Ay

We define a type system for the target calculus as an instance of the parametric
framework HM(X) [3, 9]. HM(X) is a generic type system in the Hindley-Milner
tradition, parameterized by an abstract constraint system X. Sect. 5.1 briefly
recalls its definition. Sect. 5.2 defines a specific constraint system called SETS,
yielding the type system HM(SETS). Sect. 5.3 extends HM(SETS) to the entire
language Asey by assigning types to its primitive operations. Sect. 5.4 states type
safety results and discusses a couple of choices.

5.1 The System HM(X)

The system HM(X) is parameterized by a sound term constraint system X, i.e.
by notions of types T, constraints C, and constraint entailment IF, which must
satisfy a number of axioms [3].

Then, a type scheme is a triple of a set of quantifiers @, a constraint C', and
a type 7 (which, in this paper, must be of kind Type; see Sect. 5.2), written
o ==VYa[Cl.T. A type environment I is a partial mapping of program variables
to type schemes. A judgement is a quadruple of a satisfiable constraint C, a
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VAR SuB
I'(z) =Va[D].t CIF3a.D CI'ke:T Clkr<r
C,I' -z :Va[D].r C,'ke:7
ABs App
C,(F;ac:T)l-e:T' CI'tei:m—rT1 C,I'texy:m
C,Fi—)\w.e:T—H" C,I'tejex: T
LeT V INTRO
CI'kei:o C,(Ix:o0)kFex:T CAD,T'tFe:T antv(C,IN =o
C,I'tletx =ejiney : 7 CA3a.D,I't+e:Va[D].7
Y ELiMm 3 INTRO
C,I'+-e:Va[D].T C,I'ke:o antv(lLo)=o
CAND,I'te:T Ja.C,I'te:o

Fig. 5. The system HM(X)

Tu=ao,B,...|T=71|{r}|r:7; 7|07 |c types
¢ :=NA | Pre | Abs | Either capabilities
Cu=true|CAC|JaC|r=7|7<7r|ifc<rthent <7 constraints

Fig. 6. SETS Grammar

type environment I, an expression e and a type scheme o, written C,I"' Fe : o,
derivable using the rules of Fig. 5. These rules correspond to those given in [9].
The following type safety theorem is proven in [3] with respect to a denota-
tional presentation of the call-by-value A-calculus with let. We have proved a
syntactic version of it, in the style of [14], which better suits our needs.

Theorem 5.1. If C.I' - e : o holds, then e does not go wrong.

5.2 The Constraint System SETS

In order to give precise types to the primitive set operations in Age;, we need
specific types and constraints. Together with their logical interpretation, which
defines their meaning, these form a constraint system called SETS.

The syntax of types and constraints is defined in Fig. 6. The type language
features a set type constructor {-}, the two standard row constructors [7], and
four capability constructors. Capabilities tell whether a given element may ap-
pear in a set (Pre), may not appear in it (Abs), may or may not appear in
it (Either), or whether this information is irrelevant, because the set itself is
unavailable (NA). For instance, the singleton set {r} will be one (and the only)
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7: Cap ré¢ R
a €V T, 7 : Type 7: Rowg T Rowgrugry 7: Cap
a:k T — 7 : Type {r}: Type (r:7; 7'): Rowg Ot : Rowpg
FCi,Co FC Tk
c: Cap F true FCiACy F3da.C Fr=1
I—ifClthenCz "TST’

Fig. 7. Kinding rules

value of type {r : Pre; 0Abs}. The constraint language offers standard equality
and subtyping constraints, as well as a form of conditional constraints. Sample
uses of these types and constraints will be shown in Sect. 5.3.

To ensure that only meaningful types and constraints can be built, we im-
mediately equip them with kinds, defined by k ::= Cap | Rowg | Type, where R
ranges over finite subsets of R. For every kind k, we assume given a distinct, de-
numerable set of type variables V. We use a, 3,7, . .. to represent type variables.
From here on, we consider only well-kinded types and constraints, as defined in
Fig. 7. The purpose of these rules is to guarantee that every constraint has a
well-defined interpretation within our model, whose definition follows.

To every kind k, we associate a mathematical structure [k]. [Cap] is the set
of all four capabilities. Given a finite set of resources R C R, [Rowg] is the set
of total, almost constant functions from R \ R into [Cap]. (A function is almost
constant if it is constant except on a finite number of inputs.) In short, Rowg is
the kind of rows which do not carry the fields mentioned in R; Row is the kind of
complete rows. [ Type] is the free algebra generated by the constructors —, with
signature [ Type] x [ Type] — [ Type], and {-}, with signature [Rowg] — [ Type].

Each of these structures is then equipped with an ordering. Here, a choice has
to be made. If we do not wish to allow subtyping, we merely define the ordering
on every [k] as equality. Otherwise, we proceed as follows. First, a lattice over
[Cap] is defined, whose least (resp. greatest) element is NA (resp. Either), and
where Abs and Pre are incomparable. This ordering is then extended, point-
wise and covariantly, to every [Rowg]. Finally, it is extended inductively to
[ Type] by viewing the constructor {-} as covariant, and the constructor — as
contravariant (resp. covariant) in its first (resp. second) argument.

We may now give the interpretation of types and constraints within the
model. It is parameterized by an assignment p, i.e. a function which, for every
kind &, maps Vj, into [k]. The interpretation of types is obtained by extending
p so as to map every type of kind k to an element of [k], as follows:

plr = 7) = plr) > p() p({r}) = {p(n)}
plr 75 7)) = p(r) plr s T = o)) )
p(O7)(r) = () ple) =
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pCL pFCo p=pld pFrC
p F true pECLAC pF3JdaC
p(r) = p(r) p(r) < p() c<p(n)=prr <"
prr=1 pFr <7 pFifc<rthen 7" < 7"

Fig. 8. Interpretation of constraints

Fig. 8 defines the constraint satisfaction predicate - - -, whose arguments are an
assignment p and a constraint C. (The notation p = p’ [a] means that p and p'
coincide except possibly on «.) Entailment is defined as usual: C' I+ C" (read:
C entails C") holds iff, for every assignment p, p - C implies p - C".

We refer to the type and constraint logic, together with its interpretation,
as SETS. More precisely, we have defined two logics, where < is interpreted as
either equality or as a non-trivial subtype ordering. We will refer to them as
SETS™ and SETSS, respectively. Both are sound term constraint systems [3].

5.3 Dealing with the Primitive Operations in Agg

The typing rules of HM(X) cover only the A-calculus with let. To extend
HM(SETS) to the whole language Ase;, we must assign types to its primitive
operations. Let us define an initial type environment I as follows:

R:{R:Pre; 0Abs}

2 VB8.{r:Pre; f} = {r:Pre; 5}

Vg :VBy4{R:7; B} = {R:Pre; 3}

Ag :YBYyA{R:%; B} = {R:7; OAbs}

e Vafy{r:y; B} = ({r: Pre; f} - a) = ({r: Abs; 8} = a) - «a

Here, a, (3, v range over type variables of kind Type, Row,, Cap, respectively.
We abuse notation: if R is {r1,...,r,}, then R : c denotes r1 : ¢; ...; 7y : ¢,
and R : 7 denotes ry :7y1; -.. 5 I'n V-

None of the type schemes in I} carry constraints. If we wish to take advantage
of conditional constraints, we must refine the type of 7,.. Let I, be the initial
type environment obtained by replacing the last binding in I with

2. VaBy[Cl{r:v; B} = ({r : Pre; B1} = ) —» ({r: Abs; B} = ) > «
where C' = if Pre <+ then f < 1 A if Abs < then 8 < f2
A if Pre <« then a; < aA if Abs < then ay <«

Here, the input and output of each branch (represented by f; and «;, respec-
tively) are linked to the input and output of the whole construct (represented
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by 8 and «) through conditional constraints. Intuitively, this means that the
security requirements and the return type of a branch may be entirely ignored
unless the branch seems liable to be taken. (For more background on conditional
constraints, the reader is referred to [1, 4].)

5.4 The Type Systems S{el

Sect. 5.2 describes two constraint systems, SETS= and SETS=. Sect. 5.3 defines
two initial typing environments, I} and I's. These choices give rise to four related
type systems, which we refer to as S'®, where rel and 4 range over {=, <} and
{1, 2}, respectively. Each of them offers a different compromise between accuracy,
readability and cost of analysis. In each case, Theorem 5.1 may be extended to
the entire language Aset by proving a simple J-typability [14] lemma, i.e. by
checking that I correctly describes the behavior of the primitive operations.
The proofs are straightforward and are not given here.

Despite sharing a common formalism, these systems may call for vastly dif-
ferent implementations. Indeed, every instance of HM(X) must come with a
constraint resolution algorithm. S~ is a simple extension of the Hindley-Milner
type system with rows, and may be implemented using unification [6]. S5 is sim-
ilar, but requires conditional (i.e. delayed) unification constraints, adding some
complexity to the implementation. 81S and 825 require maintaining subtyping
constraints, usually leading to complex implementations.

In the following, we lack the space to describe all four variants. Therefore,
we will focus on 8. Because it is based on unification, it is efficient, easy to
implement, and yields readable types. We conjecture that, thanks to the power
of row polymorphism, it is flexible enough for many practical uses (see Sect. 7.3).

6 Types for A,

6.1 Definition

Sect. 5 defined a type system, S'®, for Ageq. Sect. 4 defined a translation of
Asec N0 Agey. Composing the two automatically gives rise to a type system
for Asec, also called S for simplicity, whose safety is a direct consequence of
Theorems 4.1 and 5.1.

Definition 6.1. Let e be a closed s expression. By definition, C;I" - e : o
holds if and only if C, ' F (e) : o holds.

Theorem 6.2. If C,I' F e : o holds, then e does not go wrong.

Turning type safety into a trivial corollary was the main motivation for bas-
ing our approach on a translation. Indeed, because Theorem 4.1 concerns un-
typed terms, its proof is straightforward. (The J-typability lemmas mentioned
in Sect. 5.3 do involve types, but are typically very simple.) A direct type safety
proof would be non-trivial and would duplicate most of the steps involved in
proving HM(X) correct.
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6.2 Reformulation: Derived Type Systems

Definition 6.1, although simple, is not a direct definition of typing for Agec.
We thus will give rules which allow typing Agec expressions without explicitly
translating them into Age¢. These so-called derived rules can be obtained in
a rather systematic way from the definition of S and the definition of the
translation. (In fact, it would be interesting to formally automate the process.)

In these rules, the symbols 7 and ¢ range over types of kind Type; more specif-
ically, ¢ is used to represent some security context, i.e. a set of available resources.
The symbols p and ¢ range over types of kind Row, and Cap, respectively. The
* symbol in the rules indicates an irrelevant principal. In the source-to-target
translation, all functions are given an additional parameter, yielding types of
the form 7 — ¢ — 7». To recover the more familiar and appealing notation
proposed in [8], we define the macro 7 =27 =4 TI = S2 = To.

Fig. 9 gives derived rules for S, the simplest of our type systems. There, all

VAR ABs
I'z)=0 * 6, (I :m)F f:m
ps,I'Fax:o pos, T FXe.f 1 =21
AppP

p7§71—'"€1!7’2i>7' p,s, ez :T

ps,'Feiex:T

LET V INTRO
p,s,['Fei:o DS, (z:0)Fex:T p,s,'Fe:T antv(s,I') =o
p,s,'Fletx =ejines : 7 p,s, e :Va.r
V ELiM LETPRIV™
p,s,['Fe:Va.r p,{p},I'Fe:T r & A(p)
p,s, I'Fe:7[T/q] p,{p}, ' Fletprivrine : 7
LETPRIVT CHECKPRIV
p,{r:Pre; p},'Fe:T r € A(p) p,{r:Pre; p},'Fe:1
p,{r:¢; p}, ' Fletprivrine : 7 p,{r : Pre; p},I' - checkprivrfore: 7
TESTPRIV

p,{r:Pre; p},I'te:7 p,{r:Abs; p},I'Fex: 7
p,{r:¢; p}, ' F testprivrthene; elseey : 7

OwN
p{riter; ... rhipn; OAbs} I'Fe: T Alp) ={r1,...,r}

*{riio1; ..y rnien; ph,I'EperT

Fig. 9. Typing rules for Agec derived from ST
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constraints are equations. As a result, all type information can be represented
in term form, rather than in constraint form [9]. We exploit this fact to give a
simple presentation of the derived rules. Type schemes have the form Va.r, and
judgements have the form p,¢, '+ e: 0.

To check that these derived rules are correct, we prove the following lemmas:

Lemma 6.3. p,s,I' e : o holds iff true, (I';I;s : ) F [e]p : o holds.
Lemma 6.4. po, {0Abs},I' e : o holds iff true, (I;I") - (e) : o holds.

Together, Theorem 6.2 and Lemma 6.4 show that, if a closed Agec expression
e is well-typed according to the rules of Fig. 9, under the initial principal py and
the empty security context {OAbs}, then e cannot go wrong.

Derived rules for each member of the S’ family can be given in a similar
way. The same process can also be used to yield type inference rules, rather than
the logical typing rules shown here.

7 Examples
7.1 Basic Use of Security Checks

Imagine an operating system with two kinds of processes, root processes and user
processes. Killing a user process is always allowed, while killing a root process
requires the privilege killing. At least one distinguished principal root has this
privilege. The system functions which perform the killing are implemented by
root, as follows:

kill = X(p : process).root.checkpriv killing for ... () - kill the process
killlfUser = X(p : process).root....() — kill the process if it is user-level

In system S, these functions receive the following (most general) types:

killing:Pre ; .
kill - V3.process M} unit

killlfUser : V3.process ﬁi} unit

The first function can be called only if it can be statically proven that the
privilege killing is enabled. The second one, on the other hand, can be called at
any time, but will never kill a root process. To complement these functions, it
may be desirable to define a function which provides a “best attempt” given the
current (dynamic) security context. This may be done by dynamically checking
whether the privilege is enabled, then calling the appropriate function:

tryKill = \(p : process).root.
testpriv killing then kill(p) else killlfUser(p)

This function is well-typed in system S . Indeed, within the first branch of
the testpriv construct, it is statically known that the privilege killing must be
enabled; this is why the sub-expression kill(p) is well-typed. The inferred type
shows that tryKill does not have any security requirements:

tryKill : V3.process ﬂ unit
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7.2 Security Wrappers

A library writer often needs to surround numerous internal functions with “boil-
erplate” security code before making them accessible. To avoid redundancy, it
seems desirable to allow the definition of generic security wrappers. When applied
to a function, a wrapper returns a new function which has the same computa-
tional meaning but different security requirements.

Assume given a principal p such that A(p) = {r,s}. Here are two wrappers
likely to be of use to this principal:

enable, = Af.p.Ax.pletprivrin f x
require, = Af.p.Az.p.checkpriv r for f x

In system Si, these wrappers receive the following (most general) types:

:Pre; siy1; 0Ab Y2 81
enable, : V... (a1 {rPre; s S}> as) {Bl}, (a1 {rvos s s Ba) as)

7

{r:Pre; s:v1; OAbs} {B1} {r:Pre; s:71; B2}
> 042) > ( > 042)

require, - V... .(aq a
These types are very similar; they may be read as follows. Both wrappers expect
a function f which allows that r be enabled (r : Pre), i.e. one which either
requires 7 to be enabled, or doesn’t care about its status. (Indeed, as in ML,
the type of the actual argument may be more general than that of the formal.)
They return a new function with identical domain and codomain (a4, as), which
works regardless of r’s status (enable, yields r : v2) or requires  to be enabled
(require, yields r : Pre). The new function retains f’s expectations about s
(s :y1). f must not require any further privileges (0Abs), because it is invoked
by p, which enjoys privileges r and s only.

These polymorphic types are very expressive. Our main concern is that, even
though the privilege s is not mentioned in the code of these wrappers, it does
appear in their type. More generally, every privilege in A(p) may show up in
the type of a function written on behalf of principal p, which may lead to very
verbose types. An appropriate type abbreviation mechanism may be able to
address this problem; this is left as a subject for future work.

7.3 Advanced Examples

We lack space to cover numerous more subtle features of the type systems; let
us give only some brief comments.

In Sect. 7.1, our use of testpriv was easily seen to be correct, because the
sensitive action kill(p) was performed within its lexical scope. Matters become
more delicate when testpriv is used to yield a function (or, in Java, an object),
whose security requirements depend on the test’s outcome, and which is later
invoked outside its scope. Conditional constraints are then required to track
the dependency and prove that the function invocation is safe. It is not clear
whether this idiom is a critical one to support in practice, and the question may
be answerable only through experiment.
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In Sect. 7.2, we pointed out that it is legal to pass enable, a function f which
doesn’t care about the status of r, provided the type of f is polymorphic in r’s

status, as in
Vy.aq M Qo
If, on the other hand, it is monomorphic (because f is A-bound rather than

let-bound), as in
{r:Either; 8}
Q) ——————— Q2
then the application (enable,. f) becomes well-typed only if subtyping is available,
i.e. if Pre is a subtype of Either. We expect this situation to be infrequent,
although this remains to be confirmed.

8 Discussion

Extension to a Full-Featured Language Many features of the Java language or
environment are not addressed in this theoretical study. In particular, Java views
privileges as first-class objects, making static typing problematic. In our model,
privileges are identifiers, and expressions cannot compute privileges. In the case
of Java, it is an open question whether a completely static mechanism can be
devised. If not, it may be desirable to take a soft typing approach [1].

Related Work The security-passing style translation described in Sect. 4 is
monadic. Monadic type systems have been used to analyze the use of impure
language features in otherwise pure languages [11]. However, as deplored in [11],
there is still “a need to create a new effect system for each new effect”. In other
words, we apparently cannot readily re-use the work on monadic type systems in
our setting. In fact, our work may be viewed as a systematic construction of an
“effect” type system adapted to our particular effectful programming language.

Several researchers have proposed ways of defining efficient, provably correct
compilation schemes for languages whose security policy is expressed by a se-
curity automaton. Walker [12] defines a source language, equipped with such a
security policy, then shows how to compile it into a dependently-typed target
language, whose type system, by encoding assertions about security states, guar-
antees that no run-time violations will occur. Walker first builds the target type
system, then defines a typed translation. On the opposite, our approach con-
sists in first defining an untyped translation, then letting the source type system
arise from it. Thiemann’s approach to security automata [10] is conceptually
much closer to ours: he also starts with an untyped security-passing translation,
whose output he then feeds through a standard program specializer, in order to
automatically obtain an optimizing translation.

Our paper shares some motivations with these works; however, our aim was
not only to gain performance by eliminating many dynamic checks, but also to
define a programming discipline. This requires security types to be available not
only at the level of compiled code, as in Walker’s work, but also in the source
code itself.
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