
Information Flow Inferen
e for ML

FRANC�OIS POTTIER and VINCENT SIMONET

INRIA

This paper presents a type-based information
ow analysis for a
all-by-value �-
al
ulus equip-

ped with referen
es, ex
eptions and let-polymorphism, whi
h we refer to as Core ML. The type

system is
onstraint-based and has de
idable type inferen
e. Its noninterferen
e proof is reason-

ably light-weight, thanks to the use of a number of orthogonal te
hniques. First, a synta
ti

segregation between values and expressions allows a lighter formulation of the type system. Se
-

ond, noninterferen
e is redu
ed to subje
t redu
tion for a nonstandard language extension. Lastly,

a semi-synta
ti
 approa
h to type soundness allows dealing with
onstraint-based polymorphism

separately.

Categories and Subje
t Des
riptors: F.3.2 [Logi
s and Meanings of Programs℄: Semanti
s of

Programming Languages|Operational semanti
s; Program analysis; F.3.3 [Logi
s and Mean-

ings of Programs℄: Studies of Program Constru
ts|Control primitives; Fun
tional
onstru
ts;

Type stru
ture; D.4.6 [Operating systems℄: Se
urity and Prote
tion|Information
ow
ontrols

General Terms: Languages, Se
urity, Theory

1. INTRODUCTION

Information
ow analysis
onsists in stati
ally determining how a program's out-

puts are related to its inputs, i.e. how the former depend, dire
tly or indire
tly, on

the latter. This allows establishing se
re
y or integrity properties of a program,

i.e. proving that some aspe
ts of its behavior
onvey no information about those of

its inputs deemed \se
ret", or remain independent of those deemed \unreliable".

These properties are instan
es of noninterferen
e [Goguen and Meseguer 1982℄:

they state the absen
e of
ertain dependen
ies.

Be
ause information
ow analysis is
omplex and error-prone, it must be auto-

mated. During the past few years, several resear
hers have advo
ated its formula-

tion as a type system. Then, existing type inferen
e te
hniques provide automation,

while type signatures provide
on
ise, formal se
urity spe
i�
ations.

Our interest is in designing, and proving
orre
t, a type-based information
ow

analysis for (the kernel of) a realisti
, sequential programming language. (In the

presen
e of
on
urren
y, the termination of a pro
ess is observable by other pro-

esses,
reating new ways to leak information and requiring more restri
tive type

systems. Hen
e, it appears reasonable to �rst experiment with information
ow

ontrol in a sequential setting.) To date, most formal results obtained in this

Authors' address: INRIA, B.P. 105, 78153 Le Chesnay Cedex, Fran
e.

Permission to make digital/hard
opy of all or part of this material without fee for personal

or
lassroom use provided that the
opies are not made or distributed for pro�t or
ommer
ial

advantage, the ACM
opyright/server noti
e, the title of the publi
ation, and its date appear, and

noti
e is given that
opying is by permission of the ACM, In
. To
opy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior spe
i�
 permission and/or a fee.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1{40.

2 � F. Pottier and V. Simonet

area
on
ern extremely simpli�ed programming languages. Several papers address

pure �-
al
uli [Heintze and Rie
ke 1998; Abadi et al. 1999; Pottier and Con
hon

2000℄. Volpano et al. [Volpano et al. 1996; Volpano and Smith 1997b℄ study a
ore

imperative programming language, where all variables store integers. Volpano and

Smith [Volpano and Smith 1997a℄ also study a language equipped with a fatal (non-

at
hable) ex
eption,
orresponding to failure of arithmeti
 operations. Banerjee

and Naumann [Banerjee and Naumann 2002℄ deal with a fragment of Java, whi
h

in
ludes
lasses and methods. Standing in sharp
ontrast, Myers [Myers 1999a;

1999b℄
onsiders the full Java language, in
luding obje
ts, ex
eptions, parameter-

ized
lasses, et
. However, he does not give a formal proof of
orre
tness; indeed,

our formal approa
h un
overed a
ouple of
aws in his type system, whi
h are

des
ribed in the
onferen
e version of this paper [Pottier and Simonet 2002a℄.

In an attempt to bridge the gap, we
onsider a
all-by-value �-
al
ulus equipped

with let-polymorphism, produ
ts and sums, referen
es, ex
eptions, and generi

primitive operations. (These last appear only in Se
tion 7.) We refer to it as

Core ML, be
ause of its similarity with Wright and Felleisen's Core ML [Wright

and Felleisen 1994℄. In our version, however, ex
eption names have global s
ope,

and neither ex
eption names nor ex
eptions are �rst-
lass values. Our
al
ulus is

very
lose to the
ore of the fun
tional programming language Caml-Light [Leroy

et al. 1997℄. We endow it with a polymorphi
,
onstraint-based type system,
alled

mlif, whi
h has de
idable type inferen
e and guarantees noninterferen
e.

A (monomorphi
) treatment of referen
es in a higher-order language
an be found

in [Zdan
ewi
 and Myers 2001; 2002℄. Ex
eptions have been studied by Myers [My-

ers 1999a; 1999b℄ for Java. However, Myers' treatment relies on Java's expli
it,

monomorphi
 throws
lauses, whereas our type system uses a more
exible, poly-

morphi
 e�e
t analysis, giving rise to issues dis
ussed in Se
tion 10. The
ombina-

tion of referen
es, ex
eptions and
onstrained let-polymorphism, as well as our use

of a standard subje
t redu
tion te
hnique to establish noninterferen
e, are novel.

Our use of unannotated produ
t types and our treatment of generi
 primitive oper-

ations (su
h as polymorphi
 equality), whi
h require
ustom
onstraint forms, are

also original
ontributions of this paper.

This paper is a revised and extended version of [Pottier and Simonet 2002a℄.

The main novelty with respe
t to the
onferen
e version resides in our de
ision to

make ex
eptions se
ond-
lass entities, rather than �rst-
lass values. This simpli�es

the type system, by allowing several notions to be suppressed; namely, ex
eption

types, alternatives, and
onditional
onstraints. (More explanations are given in

Se
tion 5.4.) Eliminating
onditional
onstraints, in parti
ular, makes it more

straightforward to design an eÆ
ient
onstraint solving pro
edure, and helps infer

more readable types. We believe that the loss of expressiveness asso
iated with this

design de
ision remains minimal. Another improvement
onsists in a more detailed

des
ription of
onstraint solving, in
luding a
orre
tness proof.

2. OVERVIEW

Type systems are typi
ally used to establish safety properties, i.e. prove that a

ertain invariant holds throughout the exe
ution of a program. Type safety is su
h

a property. However, noninterferen
e [Goguen and Meseguer 1982℄ requires two

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 3

independent program runs, given di�erent inputs, to yield the same output. As a

result, its proof is often more deli
ate.

Abadi et al. [Abadi et al. 1996℄ devised a labeled operational semanti
s of the

�-
al
ulus, where the labels atta
hed to a term indi
ate how mu
h information

it
arries. Exe
uting a program under su
h a semanti
s amounts to performing

a dynami
 dependen
y analysis along with the a
tual
omputation. Pottier and

Con
hon [Pottier and Con
hon 2000℄ later showed how stati
, type-based depen-

den
y analyses
ould be systemati
ally derived, and proven safe, from su
h a labeled

semanti
s.

Unfortunately, in a programming language with side e�e
ts, it is possible to leak

information through the absen
e of a
ertain e�e
t. Indeed,
onsider the program

fragment \if x = 1 then y := 1". If, after exe
uting this statement, y isn't 1, then x

annot be 1 either. Thus, in that
ase, exe
ution transfers information about x to

y, even though no assignment takes pla
e, sin
e the statement y := 1 is skipped. It

appears diÆ
ult for a labeled semanti
s to a

ount for the e�e
t of
ode that is not

exe
uted; so, the approa
h must be re
onsidered.

Dire
t noninterferen
e proofs, although straightforward for simple programming

languages [Volpano et al. 1996℄, be
ome in
reasingly
omplex in the presen
e of

advan
ed features su
h as dynami
 memory allo
ation, higher-order fun
tions, and

type polymorphism. A noninterferen
e proof
an be viewed as a bisimulation proof.

For this reason, it requires manipulating a large, and often
umbersome, invariant:

see e.g. [Zdan
ewi
 and Myers 2001℄. To avoid this pitfall, we break our proof down

into several independent steps. First, we de�ne a spe
ial-purpose extension of the

language, whi
h allows expli
it reasoning about the
ommonalities and di�eren
es

between two arbitrary program
on�gurations, and prove it adequate in a
ertain

sense. Then, we de�ne a type system for this extended language, and prove that

it enjoys a subje
t redu
tion property. Lastly, we show that noninterferen
e for

the base language is a
onsequen
e of these results. In other words, we redu
e the

initial problem to subje
t redu
tion|a safety property|for our spe
ial-purpose

language. The bisimulation invariant is thus expressed in the type system itself,

making it easier to reason about.

In keeping with the ML tradition, our type system has let-polymorphism and

type inferen
e. In addition to stru
ture, our types des
ribe e�e
ts and se
urity

levels; polymorphism allows writing
ode that is generi
 with respe
t to all three.

Type inferen
e is indispensable, be
ause our types are verbose, and be
ause infor-

mation
ow often o

urs in unexpe
ted ways. Be
ause we employ subtyping (as

well as other forms of
onstraints), our type inferen
e system is
onstraint-based.

Yet, if type generalization, instantiation, and
onstraint manipulation were part of

the type system from the outset, our subje
t redu
tion proof would be signi�
antly

obfus
ated. To work around this problem, we adopt a semi-synta
ti
 approa
h [Pot-

tier 2001℄, whi
h again
onsists in breaking down the
onstru
tion into two steps.

First, we present a system equipped with an extensional form of polymorphism,

whose formal treatment is unintrusive. Then, we build a
onstraint-based system

in the style of HM(X) [Odersky et al. 1999℄, whi
h we prove
orre
t with respe
t

to the former.

We now pro
eed as follows. We �rst present the syntax of Core ML (Se
tion 3).

Then, we introdu
e our extension of Core ML, whi
h we refer to as \Core ML

2

", give

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 � F. Pottier and V. Simonet

v ::= x j () j k j �x f:�x:e j m j (v; v) j inj

j

v

a ::= v j raise " v

e ::= a j v v j ref v j v := v j ! v j proj

j

v j v
ase x � e e j let x = v in e j E[e℄

E ::= bind x = [℄ in e j [℄ handle " x � e j [℄ handle e done j [℄ handle e raise j [℄ �nally e

Fig. 1. The syntax of Core ML

an operational semanti
s for both languages at on
e, and show how they relate to

ea
h other (Se
tion 4). Se
tion 5 introdu
es mlif

0

, a type system for Core ML

2

, and

establishes subje
t redu
tion. Combining these results, we obtain a noninterferen
e

property for Core ML (Se
tion 6). In Se
tion 7, we extend the language with

generi
 primitive operations. Culminating our development, Se
tion 8 presents

mlif, a
onstraint-based type system whi
h we prove
orre
t with respe
t to mlif

0

.

We show that
onstraint solving is de
idable, allowing type inferen
e. Se
tion 9

lists some example programs with their types. Lastly, we dis
uss a few design

alternatives in Se
tion 10.

3. CORE ML

Let k range over integers; let x, m range over disjoint denumerable sets of program

variables, and memory lo
ations, respe
tively; let j range over f1; 2g. Let " range

over a denumerable set E of ex
eption names. Then, values, answers, expressions

and evaluation
ontexts are de�ned as in �gure 1.

Values in
lude variables, a unit
onstant, integers, �-abstra
tions, memory lo-

ations, pairs, and appli
ations of an inje
tion. An abstra
tion �x f:�x:e may re-

ursively refer to itself through the program variable f . (This is done merely to

avoid introdu
ing a separate �x-point
ombinator. We write �x:e when f does

not appear free in e.) Answers represent
ompleted
omputations; they are either

values or unhandled ex
eptions of the form raise " v. An expression is an answer, a

so-
alled basi
 expression, a let
onstru
t, or another expression en
losed within an

evaluation
ontext.

Basi
 expressions in
lude fun
tion appli
ations, instan
es of three primitive op-

erations, whi
h allow allo
ating, updating, and dereferen
ing memory
ells, pair

proje
tions, and sum elimination (
ase)
onstru
ts. They are built out of values,

rather than out of arbitrary sub-expressions. This synta
ti
 restri
tion, whi
h is

reminis
ent of Flanagan et al.'s A-normal forms [Flanagan et al. 1993℄, o�ers a

number of advantages. First and foremost, it enables a mu
h lighter formulation of

our type-and-e�e
t system. Indeed, be
ause values have no
omputational e�e
t, a

basi
 expression's
omponents now
ontribute nothing to its e�e
t. Furthermore,

it allows our system to remain independent of the evaluation strategy, i.e. of the

hoi
e of left-to-right vs. right-to-left evaluation order. User programs, expressed

in a more liberal syntax, must be translated down into our restri
ted syntax be-

fore they
an be analyzed. Di�erent evaluation strategies are then implemented by

di�erent translation s
hemes. We will
ome ba
k to this point in se
tion 5.6.

The let
onstru
t let x = v in e has the same meaning as the basi
 expression

(�x f:�x:e) v (where f is not free in e). However, as usual in ML [Wright and

Felleisen 1994℄, the let keyword dire
ts the type
he
ker to give x polymorphi

type. Following Wright [Wright 1995℄, we require the binding to
ontain a value v,

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 5

rather than an arbitrary sub-expression, so as to avoid unsoundness in the presen
e

of imperative features. As a result, let
onstru
ts do not appear among evaluation

ontexts.

Evaluation
ontexts provide glue to
ombine expressions and spe
ify their evalua-

tion order. The expression bind x = e

1

in e

2

evaluates e

1

, binds x to its value, then

evaluates e

2

. The bind keyword does not request type generalization; it merely

expresses sequentiality. Our de
ision of making let and bind separate
onstru
ts

emphasizes this distin
tion. We write e

1

; e

2

for bind x = e

1

in e

2

, where x does not

o

ur in e

2

.

The remaining evaluation
ontexts o�er a variety of ways of handling ex
eptions.

If the expression in the hole redu
es to raise " v, then [℄ handle " x � e binds x

to v and evaluates e; otherwise, it has no e�e
t. The
ontext [℄ handle e done

is analogous, but
at
hes every ex
eption, regardless of its name. It does not

bind a variable, be
ause ex
eptions are not values. The
ontext [℄ handle e raise

also
at
hes every ex
eption, and exe
utes the handler e; then, however, it lets

the answer raise " v es
ape, instead of
ompleting normally. Lastly, the
ontext

[℄ �nally e always exe
utes e, regardless of the answer produ
ed by the expression

in the hole, before pro
eeding; it is similar to Lisp's unwind-prote
t and Java's

try-�nally
onstru
ts.

Why do we provide so many distin
t ways of handling ex
eptions? The expla-

nation lies in our de
ision to make ex
eptions se
ond-
lass entities: an ex
eption

is not a value, so a variable
annot be bound to an ex
eption, and raising an ex-

eption requires its name " to be stati
ally spe
i�ed. This design
hoi
e will be

motivated in se
tion 5.4. To mitigate the loss in expressiveness, we must provide

enough
ontext forms to
over all
ommon programming idioms.

We do not yet give an operational semanti
s for Core ML, be
ause we view it as

a fragment of Core ML

2

, whi
h we de�ne in the next se
tion.

4. CORE ML

2

4.1 Presentation

Non-interferen
e requires reasoning about two programs and proving that they

share some sub-terms throughout exe
ution. To make su
h reasoning easier, we

hoose to represent them as a single term of an extended language,
alled Core

ML

2

, rather than as a pair of Core ML terms. The extension is as follows:

v ::= : : : j hv j vi j void

a ::= : : : j ha j ai

e ::= : : : j he j ei

The Core ML

2

term he

1

j e

2

i is intended to en
ode the pair of Core ML terms

(e

1

; e

2

). It is important to note that bra
kets
an appear at an arbitrary depth

within a term. For instan
e, if v is a Core ML value, then hv

1

j v

2

i v and hv

1

v j v

2

vi

both en
ode the pair (v

1

v; v

2

v). The former, however, is more informative, be
ause

it expli
itly re
ords the fa
t that the appli
ation node and its argument v are shared,

while the latter doesn't. We do not allow nesting h� j �i
onstru
ts, be
ause that

would not make sense given our intended interpretation; so, the sub-terms of su
h

a
onstru
t must be Core ML terms.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 � F. Pottier and V. Simonet

The
orresponden
e between Core ML and Core ML

2

is made expli
it by means

of two proje
tion fun
tions b�

i

, where i ranges over f1; 2g. These fun
tions satisfy

bhe

1

j e

2

i

i

= e

i

and are homomorphisms on other expression forms.

Before giving more de�nitions, let us give a hint of how Core ML

2

allows keeping

tra
k of the di�eren
es between two Core ML programs throughout exe
ution. For

instan
e, let us
onsider the fun
tion �x:0. Clearly, its result does not reveal any

information about its argument, sin
e it is a
onstant. Indeed, the type system

whi
h we will present in the following
laims that this fun
tion maps \se
ret"

inputs to \publi
" outputs. Now, in order to prove that the type system is
orre
t,

we must establish a noninterferen
e result: for all integers k

1

and k

2

, the programs

e

1

= (�x:0) k

1

and e

2

= (�x:0) k

2

yield the same value. To do so, we en
ode these

two programs into a single Core ML

2

term, namely e = (�x:0) hk

1

j k

2

i. Its two

proje
tions are the original Core ML programs: for i 2 f1; 2g, be

i

is e

i

. Note

that the \se
ret" inputs k

1

and k

2

appear under bra
kets in e, while the stru
ture

ommon to e

1

and e

2

, namely the appli
ation of �x:0, is shared|that is, it appears

outside the bra
kets. A

ording to Core ML

2

's operational semanti
s, whi
h we

will des
ribe further on, the
omposite term (�x:0) hk

1

j k

2

i redu
es to the Core

ML

2

term 0. The fa
t that this term does not
ontain any bra
kets is suÆ
ient to

ensure that its two proje
tions
oin
ide, that is, the original programs e

1

and e

2

both produ
e the same result. The noninterferen
e proof developed in this paper

(Theorem 15) is based on the same approa
h: we will prove that, under appropriate

typing hypotheses, the result of a Core ML

2

redu
tion sequen
e does not
ontain

any bra
kets.

The redu
tion sequen
e (�x:0) hk

1

j k

2

i ! 0, whi
h we des
ribed above, is ex-

tremely simple. In general, however, redu
tions in Core ML

2

an be mu
h more

omplex: several of its redu
tion rules must lift bra
kets when they blo
k redu
tion.

For instan
e, be
ause the appli
ation h�x:x j �x:0i 1 is not a �-redex, it must be

taken
are of by a redu
tion rule other than (�). We introdu
e a new rule, (lift-app),

whi
h redu
es it to h(�x:x) 1 j (�x:0) 1i. Note that this step a�e
ts neither proje
-

tion, so it has no
omputational
ontent: by moving bra
kets, it only keeps tra
k of

information
ow. Ea
h side of the new term is now a �-redex, allowing redu
tion

to pro
eed: we obtain h(�x:x) 1 j (�x:0) 1i !

?

h1 j 0i.

4.2 Stores and
on�gurations

The meaning of memory lo
ations is given by a store �, i.e. a partial map from

memory lo
ations to values. We write �[m 7! v℄ and � � [m 7! v℄ for the store

whi
h maps m to v and otherwise agrees with �; the latter is de�ned only if m 62

dom(�). We need to keep tra
k of sharing not only between expressions, but also

between stores. However, distin
t stores may have distin
t domains. To a

ount

for this fa
t, we introdu
e a spe
ial
onstant void. By
reating bindings of the form

m 7! hv j voidi and m 7! hvoid j vi in the store, we represent situations where

a memory lo
ation m is bound within only one of the two Core ML expressions

en
oded by a Core ML

2

term.

A
on�guration e =

i

� is a triple of an expression e, a store �, and an index

i 2 f�; 1; 2g, whose purpose is explained in Se
tion 4.3. It is stu
k if it is irredu
ible

and e isn't an answer. It is su

essful if e is an answer. We write e = � for e =

�

�.

To guarantee that bra
kets
annot be
ome nested during redu
tion and that void is

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 7

used ex
lusively in store bindings, as des
ribed above, we must introdu
e a
ouple

of te
hni
al notions, whose de�nitions one may wish to skip upon �rst reading. A

on�guration e =

i

� is well-formed if the following
onditions hold:

|e does not
ontain void; furthermore, if i 2 f1; 2g, then e is a Core ML expression;

|for every m 2 dom(�), �(m) is of the form v, hv j voidi or hvoid j vi, where v

does not
ontain void.

Furthermore, we
onsider a memory lo
ation m to be bound within e and � a

ord-

ing to the following rules:

|if �(m) is of the form hv j voidi (resp. hvoid j vi), then:

|m is in s
ope within the left (resp. right) bran
h of every h� j �i
onstru
t in �;

|if i = �, then m is in s
ope within the left (resp. right) bran
h of every h� j �i

onstru
t in e; if i = 1 (resp. i = 2), then m is in s
ope within e;

|otherwise, m is in s
ope everywhere within e and �.

A
on�guration e =

i

� is
losed if all o

urren
es of memory lo
ations in it are

in s
ope. We restri
t our attention to well-formed,
losed
on�gurations. (We

let the interested reader
he
k that this subset of
on�gurations is stable under

the redu
tion rules introdu
ed in Se
tion 4.3.) We identify
on�gurations up to

onsistent renamings of memory lo
ations.

The proje
tion fun
tions are extended to stores as follows: b�

i

maps m to

b�(m)

i

if and only if the latter is de�ned and isn't void. Lastly, the proje
tion of

a
on�guration is de�ned by be = �

i

= be

i

= b�

i

.

4.3 Semanti
s

The small-step operational semanti
s of Core ML

2

is given in Figure 2. The �rst

two groups of redu
tion rules are those of Core ML, with a few te
hni
al twists

explained below. The rules in the third group are spe
i�
 to Core ML

2

; they allow

dis
arding sharing information if redu
tion
annot otherwise take pla
e. The rules

in the fourth group allow redu
tion under a
ontext.

The rules are designed so that the image of any redu
tion step through a pro-

je
tion fun
tion is again a valid redu
tion step. Redu
tion may take pla
e out-

side bra
kets,
ausing both proje
tions to perform the same redu
tion step; inside

bra
kets, letting one proje
tion progress independently, while the other remains

stationary; or lift up the bra
ket boundary, dis
arding some sharing information,

while leaving both proje
tions un
hanged.

The
apture-free substitution of v for x in e, written e[x (v℄, is de�ned in the

usual way, ex
ept at h� j �i nodes, where we must use an appropriate proje
tion of

v in ea
h bran
h: he

1

j e

2

i[x(v℄ is he

1

[x(bv

1

℄ j e

2

[x(bv

2

℄i.

Roughly speaking, the rules in the �rst two groups are appli
able under any

ontext. However, (ref), (assign) and (deref) need a small amount of
ontextual

information. Indeed, the store must be a

essed in a
ontext-dependent manner:

redu
tions whi
h take pla
e inside a h� j �i
onstru
t must use or a�e
t only one

proje
tion of the store. The index i
arried by
on�gurations is used for this

purpose. Its value is � when dealing with top-level redu
tion steps; it is made 1

(resp. 2) by rule (bra
ket) when redu
ing within the left (resp. right) bran
h of a

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 � F. Pottier and V. Simonet

Basi
 redu
tions

(�x f:�x:e) v =

i

� ! e[x(v℄[f (�x f:�x:e℄ =

i

� (�)

ref v =

i

� ! m =

i

� � [m 7! new

i

v℄ (ref)

m := v =

i

� ! () =

i

�[m 7! update

i

�(m) v℄ (assign)

!m =

i

� ! read

i

�(m) =

i

� (deref)

proj

j

(v

1

; v

2

) =

i

� ! v

j

=

i

� (proj)

(inj

j

v)
ase x � e

1

e

2

=

i

� ! e

j

[x(v℄ =

i

� (
ase)

let x = v in e =

i

� ! e[x(v℄ =

i

� (let)

Sequen
ing

bind x = v in e =

i

� ! e[x(v℄ =

i

� (bind)

raise " v handle " x � e =

i

� ! e[x(v℄ =

i

� (handle)

raise " v handle e done =

i

� ! e =

i

� (handle-done)

raise " v handle e raise =

i

� ! e; raise " v =

i

� (handle-raise)

a �nally e =

i

� ! e; a =

i

� (�nally)

E[a℄ =

i

� ! a =

i

� (pop)

if E handles neither ba

1

nor ba

2

Lifting

hv

1

j v

2

i v = � ! hv

1

bv

1

j v

2

bv

2

i = � (lift-app)

hv

1

j v

2

i := v = � ! hv

1

:= bv

1

j v

2

:= bv

2

i = � (lift-assign)

! hv

1

j v

2

i = � ! h ! v

1

j ! v

2

i = � (lift-deref)

proj

j

hv

1

j v

2

i =� ! hproj

j

v

1

j proj

j

v

2

i =� (lift-proj)

hv

1

j v

2

i
ase x � e

1

e

2

=� ! hv

1

ase x � be

1

1

be

2

1

j

v

2

ase x � be

1

2

be

2

2

i =� (lift-
ase)

E[ha

1

j a

2

i℄ = � ! hbE

1

[a

1

℄ j bE

2

[a

2

℄i = � (lift-
ontext)

if none of the sequen
ing rules applies

Redu
tion under a
ontext

e =

i

�! e

0

=

i

�

0

E[e℄ =

i

�! E[e

0

℄ =

i

�

0

(
ontext)

e

i

=

i

�! e

0

i

=

i

�

0

e

j

= e

0

j

fi; jg = f1; 2g

he

1

j e

2

i = � ! he

0

1

j e

0

2

i = �

0

(bra
ket)

Auxiliary fun
tions

new

�

v = v update

�

v v

0

= v

0

read

�

v = v

new

1

v = hv j voidi update

1

v v

0

= hv

0

j bv

2

i read

1

v = bv

1

new

2

v = hvoid j vi update

2

v v

0

= hbv

1

j v

0

i read

2

v = bv

2

Fig. 2. Operational semanti
s of Core ML

2

h� j �i
onstru
t. It is used in the auxiliary fun
tions new

i

, update

i

and read

i

to

a

ess the store in an appropriate way.

The rules in the se
ond group des
ribe how answers (i.e. values and ex
eptions)

are handled or propagated by evaluation
ontexts. We say that E handles a if and

only if E[a℄
an be redu
ed via a sequen
ing rule other than (pop).

The rules in the third group have no
omputational
ontent: they leave both

proje
tions un
hanged. Their purpose is to prevent h� j �i
onstru
ts from blo
king

redu
tion, whi
h is done by lifting them up, thus
ausing some sub-terms to be

dupli
ated, but allowing redu
tion to pro
eed independently within ea
h bran
h.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 9

For instan
e, the left-hand expression in (lift-app) is not a �-redex. In its redu
t,

the appli
ation node and the sub-term v are dupli
ated, allowing two �-redexes

to appear. A somewhat analogous rule appears in the semanti
s of Abadi et al.'s

labeled �-
al
ulus [Abadi et al. 1996℄. To understand the signi�
an
e of the \lift"

rules, one must bear in mind that the
ontents of every h� j �i
onstru
t will be

viewed as \se
ret". By
ausing new sub-terms to be
ome se
ret during redu
tion,

these rules a
tually provide an expli
it des
ription of information
ow.

The h� j �i
onstru
t is reminis
ent of the fork node introdu
ed by Field and

Teitelbaum to perform in
remental redu
tion of �-terms [Field and Teitelbaum

1990℄. In fa
t, (lift-app) is one of their redu
tion rules. However, the details di�er;

in parti
ular, we work with terms, whereas Field and Teitelbaum
onsider graphs,

allowing a redex to be shared between two proje
tions of a term.

Our design attempts to dis
ard as little sharing information as possible; indeed,

repla
ing all of the \lift" rules with the single rule e! hbe

1

j be

2

i, while
omputa-

tionally
orre
t, would
ause the type system to view every expression as \se
ret".

Yet, the redu
tion rules of Core ML

2

are not
anoni
al: we have imagined a num-

ber of slight variations that work equally well. This is a
ommon defe
t of purely

synta
ti
 proof te
hniques. This point should not be taken too seriously: Core ML

2

is a te
hni
al devi
e, whose sole purpose is to prove a parti
ular type system sound.

One may wonder how general this synta
ti
 approa
h is. We do not have a de�nite

answer, although we have used it su

essfully in di�erent settings [Pottier 2002;

Simonet 2002℄.

4.4 Relating Core ML

2

to Core ML

We now show that Core ML

2

is an appropriate tool to reason simultaneously about

the exe
ution of two Core ML programs. This is expressed by two properties. First,

as explained above, the image of a valid redu
tion through proje
tion remains a

valid redu
tion. Conversely, if both proje
tions of a term
an be redu
ed to a

su

essful
on�guration, then so
an the term itself.

Lemma 1. Let i 2 f1; 2g. If e =

i

�! e

0

=

i

�

0

, then e = b�

i

! e

0

= b�

0

i

.

Proof. By inspe
tion of (ref), (assign) and (deref).

Lemma 2 (Soundness). Let i 2 f1; 2g. If e=�! e

0

=�

0

, then be=�

i

! be

0

=�

0

i

.

Proof. By inspe
tion of the redu
tion rules and by Lemma 1.

Lemma 3. If e = � is stu
k, then be = �

i

is stu
k for some i 2 f1; 2g.

Proof. By indu
tion on the stru
ture of e.

Æ Cases e = v, e = ref v, e = (let x = v in e

0

), e = raise " v. e = � is not stu
k.

Æ Case e = v

1

v

2

. Be
ause neither (�) nor (lift-app) is appli
able, v

1

annot be

of the form hv

11

j v

12

i or �x f:�x:e

0

. As a result, for any i 2 f1; 2g, bv

1

i

annot be

of the form �x f:�x:e

0

. It follows that be = �

i

is stu
k.

Æ Cases e = (v

1

:= v

2

), e = ! v, e = proj

j

v, e = v
ase x � e

1

e

2

are similar to

the previous
ase.

Æ Case e = E[e

1

℄. e

1

=� must be irredu
ible, otherwise, by (
ontext), e =� would

be redu
ible. Let us temporarily assume that e

1

is an answer a. Then, E does not

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 � F. Pottier and V. Simonet

handle a, otherwise E[a℄ would be redu
ible via one of the sequen
ing rules. If a

were of the form ha

1

j a

2

i, then
learly E[a℄ would be redu
ible via either one of the

sequen
ing rules or (lift-
ontext). So, a must be of the form v or raise " v, whi
h,

onsidering that E does not handle a, implies that E handles neither ba

1

nor ba

2

.

As a result, (pop) must be appli
able, a
ontradi
tion.

So, e

1

is not an answer, whi
h implies that e

1

=� is stu
k. By indu
tion hypothesis,

be

1

= �

i

is stu
k, for some i 2 f1; 2g. By inspe
tion of the redu
tion rules, so is

F [be

1

i

℄=b�

i

, for any Core ML evaluation
ontext F ; in parti
ular, so is bE[e

1

℄

i

=

b�

i

, whi
h is be = �

i

.

Æ Case e = he

1

j e

2

i. Assume e =� is stu
k. By (bra
ket), both e

1

=

1

� and e

2

=

2

�

are irredu
ible. Be
ause e isn't an answer, there exists i 2 f1; 2g su
h that e

i

isn't

an answer. As a result, e

i

=

i

� is stu
k. It follows that e

i

= b�

i

is stu
k as well.

Lemma 4 (Completeness). Assume be=�

i

!

?

a

i

=�

0

i

for all i 2 f1; 2g. Then,

there exists a
on�guration a = �

0

su
h that e = �!

?

a = �

0

.

Proof. To begin, let us establish that e=� does not admit an in�nite redu
tion

sequen
e. We �rst noti
e that no in�nite redu
tion sequen
e
an
onsist ex
lusively

of instan
es of the \lift" redu
tion rules. (Indeed, ea
h of these rules moves some

h� j �i
onstru
tor stri
tly
loser to the term's root.) Furthermore, these are the

only rules whi
h leave both proje
tions of a
on�guration un
hanged. In light of

this remark, if e = � admits an in�nite redu
tion sequen
e, then Lemma 2 yields

an in�nite redu
tion sequen
e out of be = �

i

, for some i 2 f1; 2g. However, this is

impossible, be
ause both be=�

1

and be=�

2

an be redu
ed to normal forms, and

the semanti
s of the Core ML fragment is deterministi
.

So, e =� redu
es to an irredu
ible
on�guration. Let us temporarily assume that

it is stu
k. Then, by Lemma 3, at least one of its proje
tions is stu
k, whi
h implies,

by Lemma 2, that be = �

i

redu
es to a stu
k
on�guration, for some i 2 f1; 2g|a

ontradi
tion. Thus, e = � redu
es to a su

essful
on�guration.

Our
ompleteness result requires both proje
tions to
onverge; it is not appli
able

if one of them diverges. Indeed, de�ne e as bind x = h
 j 0i in 0, where
 is a

nonterminating expression. Its right proje
tion is bind x = 0 in 0, whi
h redu
es

to 0; yet, e
annot be redu
ed to any term whose right proje
tion is 0, be
ause e

only redu
es to itself. Su
h a formulation of
ompleteness will naturally lead us to

establish a weak noninterferen
e result, whereby two programs
an be guaranteed

to yield the same result only if they both terminate. We do not aim at a strong

noninterferen
e result, be
ause it would make little sense to plug information leaks

related to termination without atta
king timing leaks in general. Furthermore, su
h

a result might require a mu
h more restri
tive type system.

In essen
e, the
ompleteness lemma guarantees that we have provided enough

\lift" rules to allow redu
ing all meaningful Core ML

2

expressions. In the next

se
tion, ea
h of these rules will add one
ase to our subje
t redu
tion proof, for
ing

us to ensure that our type system a

ounts for all possible kinds of information

ow.

5. TYPING CORE ML

2

We now give a type system,
alled mlif

0

, for Core ML

2

. It is a ground type system:

it has no type variables and deals with polymorphism in a simple, abstra
t way. As

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 11

a result, it does not des
ribe an algorithm; we address this issue in Se
tion 8.

Throughout the paper, every o

urren
e of � stands for a distin
t anonymous

meta-variable of appropriate kind.

5.1 Types

Let (L;�) be a latti
e whose elements, denoted by ` and p
, represent se
urity

levels. (Following Denning [Denning 1982℄, we typi
ally use the meta-variable p
,

rather than `, when
onsidering information obtained by observing the value of

the \program
ounter".) We write ? and > for L's least and greatest elements,

respe
tively. Types and rows are then de�ned as follows:

t ::= unit j int

`

j (t

p
 [r℄

���! t)

`

j t ref

`

j t� t j (t+ t)

`

r ::= f" 7! p
g

"2E

These are the types of ML's type system, de
orated with extra se
urity annotations.

A row r is an in�nite, quasi-
onstant family of se
urity levels, indexed by E . (A

family is quasi-
onstant if all but a �nite number of its entries are equal.) We write

(" : p
; r) for the row whose element at index " is p
 and whose other elements are

given by the sub-row r, whi
h is indexed by E n f"g. We write �p
 for the
onstant

row whi
h maps every ex
eption name to p
. We write t r for t

"2E

r(").

The type int

`

des
ribes integer expressions whose value may re
e
t information

of se
urity level `.

Fun
tion types
arry several se
urity annotations. The annotation ` represents

information about the fun
tion's identity. When the fun
tion is applied, part of

this information may be re
e
ted in its result or in other aspe
ts of its behavior

(i.e. in its e�e
t); as a result, their se
urity level will be made ` or greater. The

annotation p
 tells how mu
h information is asso
iated with the knowledge that

this fun
tion gains
ontrol. To avoid leaking this information, the fun
tion will

be allowed to write into memory
ells, or to raise ex
eptions, only at level p
 or

greater. In other words, the annotation p
 represents a lower bound on the level

of the fun
tion's e�e
ts. The annotations ` and p
 are standard, and
an be found

(under di�erent names) e.g. in Heintze and Rie
ke's work [Heintze and Rie
ke 1998℄.

We
orre
t a slight oversight on their part, however, by noti
ing that p

an be made

ontravariant, rather than invariant (see Se
tion 5.2). In Se
tion 10, we will suggest

merging the annotations ` and p
; we keep them distin
t in the bulk of the paper.

In addition, every fun
tion type
arries an e�e
t [r ℄. For every ex
eption name ",

the se
urity level r(") indi
ates how mu
h information is gained by observing that

the fun
tion raises an ex
eption named ". Following Myers [Myers 1999a; 1999b℄,

we asso
iate a distin
t se
urity level with every ex
eption name, so as to obtain

better pre
ision. Our rows are
losely related to Myers' sets of path labels X ; see

Se
tion 10 for more details. The reader may noti
e that rows do not re
ord the

type of ex
eption arguments. Indeed, as in ML, we make ex
eptions monomorphi

by assuming given a �xed mapping typexn from ex
eption names to types. This

de
ision makes fun
tion types mu
h more
ompa
t.

Referen
e types
arry one annotation `, whi
h represents information about the

referen
e's identity, i.e. about its address. Information about its
ontents is found

within the parameter t.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 � F. Pottier and V. Simonet

int

�

(

	 [�℄

����! �)

�

� ref

�

��� (�+ �)

�

f" 7! �g

"2E

Fig. 3. Subtyping

` C unit

` � `

0

` C int

`

0

` � `

0

` C (�

� [�℄

���! �)

`

0

` � `

0

` C � ref

`

0

` C t

1

` C t

2

` C t

1

� t

2

` � `

0

` C (�+ �)

`

0

Fig. 4. Guards

Be
ause there is only one value of type unit, the value of a unit expression yields no

information whatsoever. As a result, it would be super
uous for the unit type
on-

stru
tor to
arry a se
urity level. Similarly, produ
t types
arry no se
urity anno-

tation, be
ause, in the absen
e of a physi
al equality operator su
h as Caml-Light's

==, all of the information
arried by a tuple is in fa
t
arried by its
omponents.

Thus, we break the
onvention, established in a number of previous papers [Heintze

and Rie
ke 1998; Pottier and Con
hon 2000℄, that all types should be of the form

�

`

. This design de
ision, whi
h we expe
t to help redu
e verbosity, has impli
ations

on
onstraint solving, as explained in Se
tion 5.2.

Sum types
arry a se
urity annotation `, whi
h re
e
ts how mu
h information

the tag
arries, i.e. how mu
h information is obtained by determining whether the

value was built using a left or right inje
tion.

5.2 Subtyping and guards

We equip types and rows with a subtyping relation �, whi
h extends the partial

order (L;�). It is de�ned by the axioms in Figure 3. The axiom int

�

is a
ompa
t

version of the assertion int

`

1

� int

`

2

() `

1

� `

2

. In other words, it states that

int's parameter is
ovariant. The other axioms are to be understood similarly; �,

	 and � represent
ovariant,
ontravariant and invariant parameters, respe
tively.

The last axiom extends subtyping to rows, point-wise and
ovariantly. The use

of subtyping in information
ow
ontrol is ubiquitous [Bell and LaPadula 1975;

Denning 1982; Volpano and Smith 1997b; Heintze and Rie
ke 1998℄ and appears

essential, be
ause it allows building a dire
ted view of the program's information

ow graph, yielding better pre
ision than a uni�
ation-based analysis.

Figure 4 de�nes the binary predi
ate C, whi
h relates a se
urity level and a type.

In short, the assertion ` C t (read: ` guards t) requires t to have se
urity level `

or greater, and is used to re
ord a potential information
ow. This is similar to

Abadi et al.'s \t is prote
ted at level `" [Abadi et al. 1999℄. In systems where every

type
onstru
tor
arries a se
urity annotation [Heintze and Rie
ke 1998; Pottier

and Con
hon 2000℄, C would be synta
ti
 sugar for �. Indeed, every instan
e of

it would then be of the form ` C �

`

0

and equivalent to ` � `

0

. Here, the situation

is more
omplex, be
ause unit and produ
t types
arry no annotation. As a result,

C
onstraints must re
eive a treatment of their own during
onstraint solving; see

Se
tion 8.5.

For any given ` and t, there exists a (minimal) supertype t

0

of t su
h that ` C t

0

holds. Thus, the presen
e of ` C t among a typing rule's premises usually
annot

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 13

irremediably prevent the appli
ation of that rule: the premise
an be satis�ed by

�rst promoting t to t

0

using the subtyping rule. One ex
eption is e-Assign (see

Figure 6), where t
annot be promoted to a supertype be
ause it appears as an

invariant argument to the ref type
onstru
tor.

The predi
ate C intera
ts ni
ely with subtyping:

Lemma 5. If `

0

� ` and ` C t and t � t

0

then `

0

C t

0

.

Proof. ` C t is equivalent to ` � level (t), for an appropriate fun
tion level,

whose de�ning
lauses in
lude level (unit) = > and level (t

1

� t

2

) = level (t

1

) u

level (t

2

). Furthermore, level is
ovariant in its argument. The result follows.

5.3 Typing judgements

A polytype s is a nonempty set of types. By abuse of notation, a type t may be

viewed as a polytype ftg. A polytype environment � is a partial mapping from

program variables to polytypes. A memory environment M is a partial mapping

from memory lo
ations to types.

We distinguish two forms of typing judgements: one deals with values only, the

other with arbitrary expressions. Be
ause values are normal forms, they have no

side e�e
ts, so the �rst judgement form is quite simple:

�;M ` v : t

(We write �;M ` v : s if and only if �;M ` v : t holds for all t 2 s.) On the other

hand, expressions do produ
e side e�e
ts, so the se
ond judgement form is more

elaborate:

p
;�;M ` e : t [r ℄

The assumption p
 again tells how mu
h information is asso
iated with the knowl-

edge that e is evaluated; it is a lower bound on the level of its e�e
ts. It is stan-

dard [Volpano and Smith 1997b; Heintze and Rie
ke 1998℄. The row r tells how

mu
h information one obtains by observing ex
eptions es
ape out of e.

Two extra judgement forms are employed to reason about stores: M ` � and

on�gurations: � ` e=

i

� : t [r ℄. These are analogous to those found in e.g. [Pottier

2001℄. We omit � and M in a judgement when they are empty.

Even though the se
urity latti
e (L;�) is arbitrary, we wish to establish a tem-

porary di
hotomy between \low" and \high" se
urity levels. (This distin
tion will

be eliminated in Se
tion 6.) In the present se
tion, we assume H is a �xed, upward-

losed subset of L, and view levels inside (resp. outside) H as \high" (resp. \low").

Be
ause noninterferen
e is about two expressions that di�er only in \high"-level

sub-terms, our type system will require expressions of the form he

1

j e

2

i, whi
h we

use to en
ode the di�eren
es between two Core ML expressions, to have \high"-

se
urity result and side e�e
ts. (See v-Bra
ket and e-Bra
ket in Figures 5

and 6.) This will be our only use of H in this se
tion.

5.4 Typing rules

We now
omment on the typing rules, given in Figures 5 and 6. v-Unit and v-Int

assign base types to
onstants. v-Void allows typing values of the form hv j voidi or

hvoid j vi by pretending void has the same type as v. v-Lo
 and v-Var assign types

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 � F. Pottier and V. Simonet

v-Unit

�;M ` () : unit

v-Int

�;M ` k : int

�

v-Void

�;M ` void : �

v-Lo

�;M ` m :M(m) ref

�

v-Var

t 2 �(x)

�;M ` x : t

v-Abs

p
;�[x 7! t

0

℄[f 7! (t

0

p
 [r℄

����! t)

`

℄;M ` e : t [r ℄

�;M ` �x f:�x:e : (t

0

p
 [r℄

����! t)

`

v-Pair

�;M ` v

1

: t

1

�;M ` v

2

: t

2

�;M ` (v

1

; v

2

) : t

1

� t

2

v-Inj

�;M ` v : t

�;M ` inj

j

v : (t+

j

�)

�

v-Bra
ket

�;M ` v

1

: t �;M ` v

2

: t

p

0

2 H p

0

C t

�;M ` hv

1

j v

2

i : t

v-Sub

�;M ` v : t

0

t

0

� t

�;M ` v : t

Fig. 5. The type system mlif

0

(values)

to memory lo
ations and to variables by looking up the appropriate environment.

Note that �(x) is a polytype, of whi
h v-Var sele
ts an arbitrary instan
e. As

usual in type-and-e�e
t systems, v-Abs re
ords, on top of the ! type
onstru
tor,

information about the fun
tion's side e�e
ts. v-Pair is entirely standard. In v-Inj,

(t

1

+

j

t

2

)

`

stands for (t

j

+ t

i

)

`

, where i and j are 1 and 2, not ne
essarily in that

order, i.e. fi; jg = f1; 2g. v-Bra
ket requires the
omponents of a h� j �i
onstru
t

to have a
ommon type, whi
h must have \high" se
urity level, i.e. be guarded by

some (arbitrary) element of H . v-Sub is standard.

e-Value allows viewing a value as an expression, and re
e
ts the fa
t that values

have no side e�e
t.

e-Raise's premise
he
ks that the ex
eption's argument v has an appropriate

type, as determined by the �xed mapping typexn and the ex
eption name ". Its

on
lusion ensures that the expression's e�e
t is a row that maps " to p
. In

onjun
tion with e-Bind, e-Handle, e-HandleDone and e-HandleRaise, this

guarantees that any
ode fragment whi
h observes this ex
eption must run at level

p
 or greater.

e-App governs fun
tion appli
ation. The se
urity level p
, whi
h is an assumption

in the
on
lusion, appears on top of the ! type
onstru
tor in the premise. It

represents information that
ows from
aller to
allee, as a result of the invo
ation

itself. Furthermore, be
ause a fun
tion's side e�e
ts may reveal information about

its identity, their level must equal or ex
eed the fun
tion's own se
urity level, namely

`. As a result of these remarks, the fun
tion's body must be type
he
ked at level

p
 t `. Lastly, the fun
tion's result, too, may reveal information about its identity,

so we require its type to be guarded by `.

e-Ref and e-Assign require p
 C t to ensure that p
 is indeed a lower bound

on the se
urity level of the memory
ell that is written. e-Assign and e-Deref

require ` C t to re
e
t the fa
t that writing or reading a
ell may indire
tly reveal

information about its identity.

In e-Proj, both p
 and r are un
onstrained, be
ause pair proje
tion has no side

e�e
t. In e-Case, the bran
h e

j

, by being exe
uted, gains information about the

sum's tag, whose se
urity level is `. As a result, it must be type
he
ked under the

stri
ter se
urity assumption p
t `, and its result type t must be guarded by `. This

rule is a straightforward generalization of the treatment of if
onstru
ts in previous

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 15

e-Value

�;M ` v : t

�;�;M ` v : t [� ℄

e-Raise

�;M ` v : typexn(")

p
;�;M ` raise " v : � [" : p
; � ℄

e-App

�;M ` v

1

: (t

0

p
t` [r℄

�����! t)

`

�;M ` v

2

: t

0

` C t

p
;�;M ` v

1

v

2

: t [r ℄

e-Ref

�;M ` v : t p
 C t

p
;�;M ` ref v : t ref

�

[� ℄

e-Assign

�;M ` v

1

: t ref

`

�;M ` v

2

: t p
 t ` C t

p
;�;M ` v

1

:= v

2

: unit [� ℄

e-Deref

�;M ` v : t

0

ref

`

t

0

� t ` C t

p
;�;M ` ! v : t [� ℄

e-Proj

�;M ` v : t

1

� t

2

�;�;M ` proj

j

v : t

j

[� ℄

e-Case

�;M ` v : (t

1

+ t

2

)

`

8j 2 f1; 2g p
 t `;�[x 7! t

j

℄;M ` e

j

: t [r ℄ ` C t

p
;�;M ` v
ase x � e

1

e

2

: t [r ℄

e-Let

�;M ` v : s p
;�[x 7! s℄;M ` e : t [r ℄

p
;�;M ` let x = v in e : t [r ℄

e-Bind

p
;�;M ` e

1

: t

0

[r

1

℄

p
 t (t r

1

);�[x 7! t

0

℄;M ` e

2

: t [r

2

℄

p
;�;M ` bind x = e

1

in e

2

: t [r

1

t r

2

℄

e-Handle

p
;�;M ` e

1

: t [" : p

"

; r ℄

p
 t p

"

;�[x 7! typexn(")℄;M ` e

2

: t [" : p

0

; r ℄ p

"

C t

p
;�;M ` e

1

handle " x � e

2

: t [" : p

0

; r ℄

e-HandleDone

p
;�;M ` e

1

: t [r

1

℄

p
 t (t r

1

);�;M ` e

2

: t [r

2

℄ (t r

1

) C t

p
;�;M ` e

1

handle e

2

done : t [r

2

℄

e-HandleRaise

p
;�;M ` e

1

: t [r ℄

p
 t (t r);�;M ` e

2

: � [�? ℄

p
;�;M ` e

1

handle e

2

raise : t [r ℄

e-Finally

p
;�;M ` e

1

: t [r ℄

p
;�;M ` e

2

: � [�?℄

p
;�;M ` e

1

�nally e

2

: t [r ℄

e-Bra
ket

p
 t p

0

;�;M ` e

1

: t [r ℄ p
 t p

0

;�;M ` e

2

: t [r ℄

p

0

2 H (p

0

C t) _ (e

1

*) _ (e

2

*)

p
;�;M ` he

1

j e

2

i : t [r ℄

e-Sub

p
;�;M ` e : t

0

[r

0

℄ t

0

� t r

0

� r

p
;�;M ` e : t [r ℄

Store

dom(M) = dom(�)

8m 2 dom(�) M ` �(m) :M(m)

M ` �

Conf

p
;�;M ` e : t [r ℄ M ` �

� ` e = � : t [r ℄

Fig. 6. The type system mlif

0

(expressions and
on�gurations)

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 � F. Pottier and V. Simonet

information
ow analyses for imperative languages [Denning 1982; Volpano and

Smith 1997b℄.

Be
ause let only binds values, e-Let is nearly as simple as in ML. Note that v

an be given a polytype s, allowing x to be used at di�erent types within e.

In a binding
onstru
t bind x = e

1

in e

2

, the expression e

2

observes, if it re
eives

ontrol, that no ex
eption was raised by e

1

. To a

ount for this information
hannel,

e-Bind type
he
ks e

2

at a se
urity level augmented with t r

1

, the
ombined level of

all ex
eptions whi
h e

1

an potentially raise. This is a
onservative approximation,

whi
h works well in the
ommon
ase where e

1

is stati
ally known never to raise

ex
eptions; see Se
tion 10 for more details.

Like e-Bind, e-Handle type
he
ks e

2

at an in
reased se
urity level, re
e
ting

the fa
t that, by gaining
ontrol, e

2

observes that e

1

raised an ex
eption named ".

The in
rement is exa
tly p

"

, the se
urity level asso
iated with " in e

1

's e�e
t, so the

analysis is, in this
ase, quite a

urate. Be
ause the result of the handle
onstru
t

may also allow determining whether the handler was exe
uted, we require p

"

C t.

e-HandleDone is analogous; however, be
ause this
onstru
t allows observing any

ex
eption, regardless of its name, we again use t r

1

as a
onservative approximation

of how mu
h information is gained. Myers [Myers 1999a; 1999b℄ performs the same

approximation. Like e-HandleDone, e-HandleRaise type
he
ks the handler e

2

at an in
reased level. e-Finally, on the other hand, type
he
ks e

1

and e

2

at the

same level p
. Indeed, be
ause e

2

's invo
ation must o

ur, regardless of the answer

produ
ed by e

1

, no information is asso
iated with it.

Both e-HandleRaise and e-Finally require e

2

not to leak any information

through ex
eptions. (This is done by requiring its e�e
t to be the
onstant row

�?.) This design
hoi
e may seem restri
tive, but we believe it strikes a good

balan
e between expressiveness and simpli
ity. In the
onferen
e version of this

paper [Pottier and Simonet 2002a; 2002b℄, we presented more general versions of

these rules, whereby e

2

was allowed to raise arbitrary ex
eptions. This, however,

required adding a third premise, of the form t r

2

� u r

1

, re
e
ting the fa
t that, if

an ex
eption raised by e

1

es
apes, then e

2

must have
ompleted su

essfully. This

additional premise involved a form of
onditional
onstraint, making
onstraint

solving more intri
ate and yielding more
omplex inferred types, whi
h is why we

propose simpler versions of these rules here.

In e-HandleRaise, the e�e
t of the whole expression, namely r, is exa
tly

e

1

's e�e
t, be
ause it is known that any informative ex
eption that es
apes out

of e

1

handle e

2

raise was originally raised by e

1

. (By \informative" ex
eption, we

mean one whose se
urity level is stri
tly greater than ?.) This is more pre
ise

than we
ould hope to a
hieve if this idiom was emulated in a language with �rst-

lass ex
eptions, by writing, say, e

1

handle x � (e

2

; raise x). Indeed, in the

type system given in the
onferen
e version of this paper [Pottier and Simonet

2002a℄, the sub-expression raise x would be type
he
ked at an in
reased se
urity

level p
t (t r). As a result, every ex
eption " liable to es
ape out of e

1

would be re-

raised at level t r, instead of its original level r("), whi
h would defeat the purpose

of dis
riminating between ex
eption names. This explains why, in this paper, we

rely solely on spe
ial-purpose
onstru
ts, su
h as handle� raise, and abandon �rst-

lass ex
eptions. (Again, in the
onferen
e paper, e-Raise involved a
onditional

onstraint, whi
h is no longer ne
essary here, be
ause every raise form expli
itly

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 17

spe
i�es an ex
eption name ".)

As explained earlier, e-Bra
ket requires both
omponents of a h� j �i expression

to have a
ommon type, and demands that its side e�e
ts and its result be of

\high" se
urity level, i.e. guarded by an arbitrary p

0

2 H. The fourth premise,

however, is slightly more general than that of v-Bra
ket. By de�nition, the

auxiliary predi
ate e* holds if and only if the Core ML expression e is of the form

raise " v or bind x = raise " v in e

0

or raise " v handle e

0

raise or e

0

; raise " v. This

synta
ti

riterion, whi
h is preserved by substitution and by redu
tion, ensures

that e
annot redu
e to a value, that is, e must diverge or redu
e to a raise form.

There is no way, in the syntax of typing judgements, to express the knowledge

that the expression at hand
annot possibly return a value; yet, the ability to

keep tra
k of su
h knowledge is needed, in a small number of pla
es, for subje
t

redu
tion to hold. The use of the predi
ate �* in e-Bra
ket's last premise
an be

viewed as a
heap way of a�ording this expressiveness. In short, e-Bra
ket's last

premise requires t to have a \high" se
urity level, unless it is known that one of the

expressions at hand will never produ
e a value. This is in a

ordan
e with the fa
t

that our noninterferen
e result, to be given in Se
tion 6, requires both expressions

to produ
e values.

Rules e-Sub, Store and Conf are standard.

5.5 Subje
t redu
tion

We now give a subje
t redu
tion proof for Core ML

2

.

Lemma 6 (Weakening). p

0

� p
 and p
;�;M ` e : t [r ℄ imply p

0

;�;M `

e : t [r ℄.

Proof. By indu
tion on the derivation of p
;�;M ` e : t [r ℄. By monotoni
ity

of t,
ontravarian
e of ! with respe
t to its p
 parameter, rule v-Sub, Lemma 5,

and the indu
tion hypothesis, it is easy to
he
k that every premise remains valid

when p
 de
reases. The result follows.

Lemma 7 (Proje
tion). Let i 2 f1; 2g. If �;M ` v : t then �;M ` bv

i

: t. If

p
;�;M ` e : t [r ℄ then p
;�;M ` be

i

: t [r ℄.

Proof. By indu
tion on the input derivation. The only
ase of interest is that

of e-Bra
ket, where the expression at hand is he

1

j e

2

i. Then, one of the �rst

two premises is p
 t p

0

;�;M ` e

i

: t [r ℄. Lemma 6 yields p
;�;M ` e

i

: t [r ℄, as

required.

Lemma 8 (Guard). If �;M ` hv

1

j v

2

i : t then there exists p

0

2 H s.t. p

0

C t.

Proof. Thanks to Lemma 5, we may assume, w.l.o.g., that the derivation of

�;M ` hv

1

j v

2

i : t does not end with an instan
e of v-Sub. Thus, it must end with

an instan
e of v-Bra
ket, among whose premises we �nd p

0

C t and p

0

2 H .

Lemma 9 (Store a

ess). Let i be in f�; 1; 2g. Assume �;M ` v : t and

�;M ` v

0

: t. Then, �;M ` read

i

v : t holds. Moreover, if i 2 f1; 2g, assume

there exists some p

0

2 H su
h that p

0

C t. Then, �;M ` new

i

v : t and �;M `

update

i

v v

0

: t hold.

Proof. By de�nition of the fun
tions new, update and read (Figure 2), by

Lemma 7, by v-Void and v-Bra
ket.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 � F. Pottier and V. Simonet

Lemma 10 (Substitution). Assume M ` v : s. Then, �[x 7! s℄;M ` v

0

: t

implies �;M ` v

0

[x (v℄ : t. Also, p
;�[x 7! s℄;M ` e : t [r ℄ implies p
;�;M `

e[x(v℄ : t [r ℄.

Proof. Both statements are proved simultaneously, by indu
tion.

Æ Case v-Var. If v

0

is x, then the premise is t 2 s. Thus, the hypothesisM ` v : s

implies M ` v : t, and, a fortiori, �;M ` v : t. Considering v

0

[x (v℄ = v,

this was the goal. If, on the other hand, v

0

isn't x, then the result stems from

�[x 7! s℄(v

0

) = �(v

0

) and v

0

[x(v℄ = v

0

.

Æ Case v-Abs. Then, the premise must be of the form p

0

;�[x 7! s℄[y 7! t

0

℄[f 7!

t

f

℄;M ` e

0

: t

00

[r

0

℄. Be
ause typing judgements are stable under �-
onversion, we

will assume, w.l.o.g., that x, f and y are distin
t. Then, �[x 7! s℄[y 7! t

0

℄[f 7! t

f

℄

oin
ides with �[y 7! t

0

℄[f 7! t

f

℄[x 7! s℄. We
on
lude by applying the indu
tion

hypothesis, followed by an instan
e of v-Abs.

Æ Case v-Bra
ket. The �rst premise is of the form �[x 7! s℄;M ` v

0

1

: t. By

Lemma 7, the hypothesis M ` v : s implies M ` bv

1

: s. Thus, by indu
tion

hypothesis, �;M ` v

0

1

[x (bv

1

℄ : t holds. The se
ond premise is dealt with

similarly. By v-Bra
ket, we obtain �;M ` hv

0

1

[x (bv

1

℄ j v

0

2

[x (bv

2

℄i : t,

whi
h,
onsidering our de�nition of substitution (Se
tion 4.3), was our goal.

Æ Case e-Bra
ket. Similar to the
ase of v-Bra
ket. We use the fa
t that �*

is preserved by substitution, i.e. e* implies e[x(v℄*.

The other
ases are immediate or analogous to one of those above.

Lemma 11 (Value). p
;M ` v : t [r ℄ implies M ` v : t.

Proof. By indu
tion on the proof of p
;M ` v : t [r ℄.

Æ Case e-Value. Immediate.

Æ Case e-Sub. The result follows from the indu
tion hypothesis and v-Sub.

Æ Case e-Bra
ket. The predi
ate �* is never true of a value, so p

0

C t must

hold. The result follows from the indu
tion hypothesis and v-Bra
ket.

Lemma 12 (Subje
t redu
tion). Let e =

i

� ! e

0

=

i

�

0

. Assume p
;M ` e :

t [r ℄ and M ` �. If i 2 f1; 2g, assume p
 2 H. Then, there exists a memory

environment M

0

, whi
h extends M , su
h that p
;M

0

` e

0

: t [r ℄ and M

0

` �

0

.

Proof. By indu
tion on the derivation of e =

i

�! e

0

=

i

�

0

. We assume, w.l.o.g.,

that the derivation of p
;M ` e : t [r ℄ does not end with an instan
e of e-Sub.

As a result, it must end with an instan
e of the single syntax-dire
ted rule that

mat
hes e's stru
ture.

Æ Case (�). e is (�x f:�x:e

0

) v. Let � stand for (t

0

p
t` [r℄

�����! t)

`

. In e-App's

premises, we have M ` �x f:�x:e

0

: � and M ` v : t

0

. The former's derivation

must end with an instan
e of v-Abs, followed by a number of instan
es of v-Sub.

Be
ause ! is
ontravariant (resp.
ovariant) in its �rst and se
ond (resp. third

and fourth) parameters, applying Lemma 6 and e-Sub to v-Abs's premise yields

p
; (x 7! t

00

; f 7! �

0

);M ` e

0

: t [r ℄, for some t

00

and �

0

su
h that t

0

� t

00

and

� � �

0

. By v-Sub, M ` v : t

00

and M ` �x f:�x:e

0

: �

0

hold. Then, Lemma 10

yields p
;M ` e

0

[x(v℄[f (�x f:�x:e

0

℄ : t [r ℄.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 19

Æ Case (ref). e is ref v, e

0

is m and �

0

is � � [m 7! new

i

v℄. e-Ref's premises

are M ` v : t

0

and p
 C t

0

, provided t = t

0

ref

�

. By Lemma 9, these imply

M ` new

i

v : t

0

. De�ne M

0

= M [m 7! t

0

℄. A

ording to Store, M ` � implies

dom(M) = dom(�). Be
ause � � [m 7! new

i

v℄ is de�ned, m isn't a member of

dom(�). So, M

0

extends M . Be
ause M

0

(m) = t

0

, v-Lo
 and e-Value yield

p
;M

0

` e

0

: t [r ℄. Lastly, M ` � and M ` new

i

v : t

0

entail M

0

` �

0

.

Æ Case (assign). e is m := v and e

0

is (). e-Assign's premises are M ` m :

t

0

ref

�

and M ` v : t

0

and p
 C t

0

. Furthermore, t must be unit, whi
h implies

p
;M ` e

0

: t [r ℄. By v-Lo
, v-Sub and by invarian
e of the ref type
onstru
tor,

M ` m : t

0

ref

�

implies M(m) = t

0

. Thus, M ` � entails M ` �(m) : t

0

. By

Lemma 9, we have M ` update

i

�(m) v : t

0

, whi
h yields M ` �

0

.

Æ Case (deref). e is !m. e-Deref's �rst two premises are M ` m : t

0

ref

�

and

t

0

� t. As above, the former entails M ` �(m) : t

0

. By Lemma 9, M ` read

i

�(m) :

t

0

follows. Con
lude with v-Sub and e-Value.

Æ Case (proj). e is proj

j

(v

1

; v

2

) and e

0

is v

j

. e-Proj's premise is M ` (v

1

; v

2

) :

t

1

� t

2

, where t

j

is t. A

ording to v-Pair and v-Sub, this implies M ` v

j

: t

j

.

Æ Case (
ase). e is (inj

j

v)
ase x � e

1

e

2

and e

0

is e

j

[x (v℄. e-Case's �rst

premise is M ` inj

j

v : (t

1

+ t

2

)

`

. A

ording to v-Inj and v-Sub, this implies

M ` v : t

j

. This allows applying Lemma 10 to e-Case's se
ond premise, yielding

p
 t `;M ` e

j

[x(v℄ : t [r ℄. The result follows by Lemma 6.

Æ Case (let). By e-Let and Lemma 10.

Æ Case (bind). e is bind x = v in e

2

and e

0

is e

2

[x (v℄. e-Bind's premises are

p
;M ` v : t

0

[r

1

℄ and p
 t (t r

1

); (x 7! t

0

);M ` e

2

: t [r

2

℄, where r

2

� r. By

Lemma 11, the former implies M ` v : t

0

. By Lemma 6, the latter implies p
; (x 7!

t

0

);M ` e

2

: t [r

2

℄. By Lemma 10 and e-Sub, we obtain p
;M ` e

2

[x(v℄ : t [r ℄.

Æ Case (handle). e is raise " v handle " x � e

2

and e

0

is e

2

[x (v℄. e-Handle's

�rst two premises are of the form p
;M ` raise " v : t [� ℄ and p
 t �; (x 7!

typexn("));M ` e

2

: t [r ℄. A

ording to e-Sub and e-Raise, the former implies

M ` v : typexn("). By Lemmas 10 and 6, this yields p
;M ` e

2

[x(v℄ : t [r ℄.

Æ Case (handle-done). e is a handle e

2

done and e

0

is e

2

. e-HandleDone's

se
ond premise is p
 t �;M ` e

2

: t [r ℄. Lemma 6 yields p
;M ` e

2

: t [r ℄.

Æ Cases (handle-raise), (�nally). e is of the form a handle e

2

raise or a �nally e

2

,

while e

0

is (e

2

; a). e-HandleRaise or e-Finally's �rst premise is p
;M ` a :

t [r ℄. Its se
ond premise, modulo an appli
ation of Lemma 6, is p
;M ` e

2

:

� [�? ℄. Given the identities p
t (t(�?)) = p
t? = p
 and rt (�?) = r, e-Bind

yields p
;M ` (e

2

; a) : t [r ℄.

Æ Case (pop). e is E[a℄ and e

0

is a. Several sub-
ases arise.

Sub-
ase E = bind x = [℄ in e

2

. e-Bind's �rst premise is p
;M ` a : t

0

[r

1

℄,

where r

1

� r. Be
ause E does not handle a, a must be of the form raise " v or

hraise "

1

v

1

j raise "

2

v

2

i. So, this judgement must be a
onsequen
e of e-Raise,

e-Bra
ket and e-Sub. A derivation of identi
al shape
an be built to establish

p
;M ` a : t [r

1

℄. (In the
ase of e-Bra
ket, the fourth premise is satis�ed,

though its �rst disjun
t may be false, be
ause the other two hold.) The result

follows by e-Sub.

Sub-
ase E = [℄ handle " x � e

2

. e-Handle's �rst premise is p
;M ` a : t [" :

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 � F. Pottier and V. Simonet

�; r

0

℄. a must be of the form v or raise "

0

v or hv

1

j raise "

2

v

2

i or hraise "

1

v

1

j v

2

i

or hraise "

1

v

1

j raise "

2

v

2

i, where "

0

, "

1

and "

2

are distin
t from ". As a result, a

derivation of identi
al shape
an be built to establish p
;M ` a : t [" : p

0

; r

0

℄, that

is, p
;M ` a : t [r ℄.

Sub-
ase E = [℄ handle e

2

done. e-HandleDone's �rst premise is of the form

p
;M ` a : t [� ℄. Be
ause a must be a value, Lemma 11 and e-Value yield

p
;M ` a : t [r ℄.

Sub-
ase E = [℄ handle e

2

raise. e-HandleRaise's �rst premise is the goal.

Æ Case (lift-app). e is hv

1

j v

2

i v. Let � stand for (t

0

p
t` [r℄

�����! t)

`

. e-App's

premises are M ` hv

1

j v

2

i : � and M ` v : t

0

and ` C t. Lemma 7 yields M ` v

i

: �

and M ` bv

i

: t

0

, for i 2 f1; 2g. Then, e-App yields p
 t `;M ` v

i

bv

i

: t [r ℄.

Furthermore, applying Lemma 8 to the �rst premise above and re
alling that H is

upward-
losed yields ` 2 H . Be
ause ` C t, e-Bra
ket is appli
able and yields

p
;M ` e

0

: t [r ℄.

Æ Case (lift-assign). e is hv

1

j v

2

i := v. e-Assign's premises are M ` hv

1

j v

2

i :

t

0

ref

`

and M ` v : t

0

and p
 t ` C t

0

. As above, applying Lemma 7 and building

new instan
es of e-Assign, we obtain p
 t `;M ` v

i

:= bv

i

: t [r ℄, for i 2 f1; 2g.

Similarly, Lemma 8 allows establishing ` 2 H . The result follows by e-Bra
ket.

Æ Case (lift-deref). e is ! hv

1

j v

2

i. e-Deref's premises are M ` hv

1

j v

2

i : t

0

ref

`

and t

0

� t and ` C t. As above, applying Lemma 7 and building new instan
es

of e-Deref, we obtain p
 t `;M ` ! v

i

: t [r ℄, for i 2 f1; 2g. Similarly, Lemma 8

yields ` 2 H . Lastly, by e-Bra
ket, we obtain p
;M ` h ! v

1

j ! v

2

i : t [r ℄.

Æ Case (lift-proj). e is proj

j

hv

1

j v

2

i. e-Proj's premise is M ` hv

1

j v

2

i : t

1

� t

2

,

where t

j

is t. By Lemma 8, there exists p

0

2 H su
h that p

0

C t

1

� t

2

, whi
h

implies, in parti
ular, p

0

C t

j

. Furthermore, by Lemma 7, we have M ` v

i

: t

1

�t

2

,

for all i 2 f1; 2g. By e-Proj, this implies p
 t p

0

;M ` proj

j

v

i

: t

j

[r ℄. Lastly, by

e-Bra
ket, we obtain p
;M ` hproj

j

v

1

j proj

j

v

2

i : t

j

[r ℄.

Æ Case (lift-
ase). e is hv

1

j v

2

i
ase x � e

1

e

2

. Lemma 8, applied to e-Case's

�rst premise, yields ` 2 H . By applying Lemma 7 to e-Case's �rst two premises

and re-building new instan
es of e-Case, we obtain p
 t `;M ` v

i

ase x �

be

1

i

be

2

i

: t [r ℄, for all i 2 f1; 2g. e-Case's third premise is ` C t, whi
h

allows applying e-Bra
ket, yielding the goal.

Æ Case (lift-
ontext). e is E[ha

1

j a

2

i℄. If E is a bind
ontext, then, be
ause

e
annot be redu
ed by (bind), ha

1

j a

2

i
annot be a value. If, on the other

hand, E is a handle
ontext, then, be
ause (pop) isn't appli
able, E must handle

a

1

or a

2

. In either
ase, we
on
lude that a

j

is of the form raise " v, for some j 2

f1; 2g. Now, e's typing derivation must end with an instan
e of e-Bind, e-Handle,

e-HandleDone or e-HandleRaise, whose �rst premise is of the form p
;M `

ha

1

j a

2

i : t

0

[r

1

℄. Be
ause ha

1

j a

2

i isn't a value, this must be a
onsequen
e of

e-Sub and e-Bra
ket, whi
h yields p
 t `;M ` a

i

: t

0

[r

1

℄, for some ` 2 H and

for all i 2 f1; 2g. In parti
ular, taking i = j and a

ording to e-Sub and e-Raise,

this implies ` � r

1

("), when
e ` � t r

1

. Thus, the se
urity assumption in e-Bind,

e-Handle, e-HandleDone or e-HandleRaise's se
ond premise is greater than

or equal to `. As a result, by applying Lemma 7 to that premise, then building new

instan
es of e-Bind, e-Handle, e-HandleDone or e-HandleRaise, we obtain

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 21

p
 t `;M ` bE

i

[a

i

℄ : t [r ℄, for all i 2 f1; 2g. There remains to apply e-Bra
ket.

If E is a bind or handle� raise
ontext, then bE

j

[a

j

℄* holds. If, on the other

hand, E is some other handle
ontext, then ` C t holds, a

ording to e-Handle

or e-HandleDone's third premise. In either
ase, e-Bra
ket's fourth premise

holds.

Æ Case (bra
ket). e is he

1

j e

2

i and e

0

is he

0

1

j e

0

2

i. We have e

i

=

i

� ! e

0

i

=

i

�

0

and e

j

= e

0

j

, where fi; jg = f1; 2g. Be
ause he

1

j e

2

i isn't a value, its typing

derivation must end with an instan
e of e-Bra
ket, whose �rst two premises are

p
t p

0

;M ` e

i

: t [r ℄ and p
t p

0

;M ` e

j

: t [r ℄. Be
ause p

0

2 H , the indu
tion

hypothesis is appli
able, yielding a memory environment M

0

, whi
h extends M ,

su
h that p
 t p

0

;M

0

` e

0

i

: t [r ℄ and M

0

` �

0

. Be
ause M

0

extends M , the

judgement p
tp

0

;M

0

` e

j

: t [r ℄ holds as well. The result follows by e-Bra
ket,

whose fourth premise is preserved be
ause �* is preserved by redu
tion, i.e. for all

i 2 f1; 2g, e

i

* implies e

0

i

*.

Æ Case (
ontext). e is E[e

0

℄ and e

0

is E[e

0

0

℄, where e

0

=

i

�! e

0

0

=

i

�

0

. Applying the

indu
tion hypothesis to e-Bind, e-Handle, e-HandleDone, e-HandleRaise or

e-Finally's �rst premise yields a version of it withM and e

0

repla
ed withM

0

and

e

0

0

, where M

0

extends M and M

0

` �

0

holds. Be
ause M extends M

0

, the se
ond

premise remains valid when the former is repla
ed with the latter. Build a new

instan
e of e-Bind, e-Handle, e-HandleDone, e-HandleRaise or e-Finally

to
on
lude.

The previous lemma entails the following, more abstra
t statement:

Theorem 13 (Subje
t redu
tion). If ` e =� : t [r ℄ and e =�! e

0

=�

0

then

` e

0

=�

0

: t [r ℄.

Proof. By Conf and Lemma 12.

We do not give a progress statement (i.e. \no well-typed
on�guration is stu
k")

be
ause it is unrelated to our
on
erns; that is, it would be of no use in the nonin-

terferen
e proof. If desired, progress for Core ML
an be established via a straight-

forward
ase analysis.

5.6 On evaluation order

As explained in Se
tion 3, our restri
ted syntax is fully expli
it about evaluation

order. In pra
ti
e, it is possible to allow a more permissive syntax, provided some

evaluation strategy is �xed. For instan
e, if left-to-right evaluation order is
hosen,

then e

1

e

2

(the appli
ation of an expression to another expression) is synta
ti
 sugar

for bind x

1

= e

1

in bind x

2

= e

2

in x

1

x

2

. This gives rise to the following derived

typing rule:

p
;�;M ` e

1

: (t

0

p
t`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[r

1

℄

p
 t (t r

1

);�;M ` e

2

: t

0

[r

2

℄ ` C t

p
;�;M ` e

1

e

2

: t [r t r

1

t r

2

℄

Conversely, under a right-to-left evaluation strategy, the appli
ation e

1

e

2

is en
oded

as bind x

2

= e

2

in bind x

1

= e

1

in x

1

x

2

, yielding another derived rule, that di�ers

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 � F. Pottier and V. Simonet

in the se
urity assumptions of the premises:

p
 t (t r

2

);�;M ` e

1

: (t

0

p
t`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[r

1

℄

p
;�;M ` e

2

: t

0

[r

2

℄ ` C t

p
;�;M ` e

1

e

2

: t [r t r

1

t r

2

℄

In either
ase, the expression that is evaluated last is type
he
ked at an in
reased

se
urity level, re
e
ting the fa
t that, if it re
eives
ontrol, then the other expression

must have
ompleted normally.

Some variants of ML, su
h as Caml-Light [Leroy et al. 1997℄ and Obje
tive

Caml [Leroy et al. 2002℄, leave the evaluation order unspe
i�ed. It is possible

to give a
onservative typing rule whi
h is safe with respe
t to both left-to-right

and right-to-left evaluation orders. Su
h a rule type
he
ks e

i

under p
 t (t r

j

), for

all fi; jg = f1; 2g. However, there is a
at
h. Let us assume that e

i

(resp. e

j

)

potentially raises an ex
eption "

i

(resp. "

j

). Then, be
ause e-Raise annotates

every ex
eption with the
urrent p
, and be
ause p

an only in
rease within sub-

expressions, we must have t r

i

� r

j

("

j

) and t r

j

� r

i

("

i

). Of
ourse, by de�nition,

we also have r

j

("

j

) � t r

j

and r

i

("

i

) � t r

i

. As a result, all four inequalities must

be equalities. In other words, if both e

i

and e

j

are liable to raise at least one

ex
eption, then all ex
eptions in r

i

and r

j

must re
eive the same se
urity level.

Thus, under-spe
ifying the evaluation order
auses an important loss of pre
ision

in our analysis. Caml-Light's
urrent implementation uses a right-to-left evaluation

strategy; for our purposes, this should be made part of its spe
i�
ation.

6. NON-INTERFERENCE

In this se
tion, we omit p
 and r in typing judgements when they are unspe
i�ed,

i.e. when they
ould be written �.

From here on, the set H is no longer �xed. We introdu
e it expli
itly when

needed, writing `

H

instead of ` in Core ML

2

typing judgements. (This is not

ne
essary for the judgements that involve Core ML expressions, be
ause H is used

only in v-Bra
ket and e-Bra
ket.) We write e !

?

a if there exists a store �

su
h that e =?!

?

a =�, where ? is the empty store.

Our type system assigns \high" se
urity levels (i.e. levels in H) to values of the

form hv

1

j v

2

i. By subje
t redu
tion, any expression whi
h may redu
e to su
h a

value must also
arry a \high" annotation. Conversely, no expression with a \low"

annotation
an produ
e su
h a value, as stated, in the parti
ular
ase of integers,

by the following lemma:

Lemma 14. Let H be an upward-
losed subset of L. Let ` 62 H. If `

H

e : int

`

and e!

?

v then bv

1

= bv

2

.

Proof. By Theorem 13, by Conf and Lemma 11, there exists a memory en-

vironment M su
h that M `

H

v : int

`

holds. A value of type int

�

must be of

the form k or hk

1

j k

2

i. If the latter, then, by v-Bra
ket, there exists p

0

2 H

su
h that p

0

� `, whi
h implies ` 2 H, a
ontradi
tion. Thus, we must have

v = k = bv

1

= bv

2

.

We
an now use the
orresponden
e between Core ML and Core ML

2

established

in Se
tion 4.4 to reformulate this result in a Core ML setting:

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 23

Theorem 15 (Non-interferen
e). Choose `; h 2 L su
h that h 6� `. Let

h C t. Assume (x 7! t) ` e : int

`

, where e is a Core ML expression. If, for all

i 2 f1; 2g, ` v

i

: t and e[x(v

i

℄!

?

v

0

i

hold, then v

0

1

= v

0

2

.

Proof. Let H be the upward
losure of fhg. De�ne v = hv

1

j v

2

i. By

v-Bra
ket, `

H

v : t holds. Lemma 10 yields `

H

e[x(v℄ : int

`

. Now, be[x(v℄

i

is e[x (v

i

℄, whi
h, by hypothesis, redu
es to v

0

i

. A

ording to Lemma 4, there

exists an answer a su
h that e[x (v℄ !

?

a. Then, Lemma 2 yields ba

i

= v

0

i

for

all i 2 f1; 2g, whi
h implies that a is a value. Lastly, h 6� ` yields ` 62 H . The result

follows by Lemma 14.

In words, h and ` are se
urity levels su
h that information
ow from h to ` is

disallowed by the se
urity latti
e. Assuming the hole x in the expression e has a

\high"-level type t, e admits the \low"-level type int

`

. Then, no matter whi
h value

(of type t) is pla
ed in the hole, e will
ompute the same value (that is, if it does

produ
e a value at all). Be
ause both programs are assumed to terminate, this is a

weak noninterferen
e statement; see the dis
ussion in Se
tion 4.4. For simpli
ity, we

have restri
ted our attention to the
ase of integer results, whi
h may be
ompared

using equality. It would be possible to give a more general statement, expressed in

terms of a notion of observational equivalen
e, as a
orollary of Theorem 15. As

another
orollary, one may allow several holes, instead of the single hole x. This

essentially amounts to spe
ializing Theorem 15 to the
ase where t is a tuple type.

7. GENERIC PRIMITIVE OPERATIONS

Pra
ti
al programming languages usually provide many primitive operations, su
h

as integer arithmeti
 operators. Some languages, su
h as Caml-Light [Leroy et al.

1997℄, Obje
tive Caml [Leroy et al. 2002℄ or SML [Milner et al. 1997℄, provide

generi
 (i.e. polymorphi
)
omparison, hashing or marshalling fun
tions. In the

following, we present a way of assigning types to su
h generi
 primitive operations,

without knowledge of their semanti
s, i.e. by
onsidering them as \bla
k boxes"

whi
h potentially use all of the information
ontent of their arguments.

7.1 Semanti
s

Let o range over a set of operation names, and extend the syntax of expressions as

follows:

e ::= : : : j o v

We assume that the semanti
s of every operation o is given as a partial fun
tion JoK

whi
h maps
losed Core ML
on�gurations v = � to
losed Core ML answers. As

a result, operations may a

ess the store and raise ex
eptions; however, we do not

allow them to modify the store. For simpli
ity, we only
onsider unary operations;

multiple arguments must be passed in a tuple.

Let a

essibility with respe
t to a (Core ML) store � be the smallest transitive

relation between (Core ML) values su
h that, for every value v, every sub-term

of v that is not found under a �-abstra
tion is a

essible through v and, for every

memory lo
ation m, �(m) is a

essible through m. If v

0

is a

essible through v with

respe
t to �, we also say that v

0

is a

essible through v = �. If no �-abstra
tion is

a

essible through v =�, then let �

v

be the restri
tion of � to the memory lo
ations

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 � F. Pottier and V. Simonet

unit J `

`

0

� `

int

`

0

J `

t J ` `

0

� `

t ref

`

0

J `

t

1

J ` t

2

J `

t

1

� t

2

J `

`

0

� ` t

1

J ` t

2

J `

(t

1

+ t

2

)

`

0

J `

Fig. 7. Colle
ting se
urity annotations

a

essible through v = �, and let jv = �j stand for v = �

v

. In words, when jv = �j is

de�ned, it represents the whole data stru
ture a

essible through v within the store

�. Below, we use this notion to for
e operations to a

ess data only through v.

This prevents them from being stateful, e.g. by maintaining a pointer to a private,

mutable data stru
ture, and is ne
essary for our typing rule to be sound.

The semanti
s of Core ML

2

is extended as follows:

o v =

i

� ! JoK(jv = b�

i

j) =

i

� (op)

if i 2 f1; 2g

o v = � ! JoK(jbv = �

1

j) = � (op

�

)

if jbv = �

1

j = jbv = �

2

j

o v =� ! ho bv

1

j o bv

2

i =� (lift-op)

if jbv = �

1

j 6= jbv = �

2

j

(op) and (op

�

) are the basi
 redu
tion rules asso
iated with primitive operations. It

would be possible to merge them in a single rule, but we believe this formulation is

somewhat
learer. (op) a

esses the store through its proje
tion b�

i

, as done e.g.

by (deref) in Se
tion 4.3. As explained above, the semanti
 fun
tion JoK is applied

to jv =b�

i

j, rather than v =b�

i

, whi
h makes it impossible for the operation to use

any data but that a

essible through v itself. The rule is inappli
able if jv = b�

i

j is

unde�ned, i.e. if a �-abstra
tion is a

essible through v. Indeed, it is illegal to apply

a generi
 primitive operation to a data stru
ture that
ontains a �-abstra
tion; our

typing rule will prevent this situation from arising.

(op) applies only when i 2 f1; 2g, i.e. when performing redu
tion under bra
kets.

When i is �, i.e. when redu
ing outside bra
kets, exa
tly one of (op

�

) and (lift-op)

applies. If the argument to o is the same under both proje
tions, then (op

�

) is

appli
able, and performs a shared redu
tion step. Otherwise, (lift-op) applies, and

introdu
es bra
kets at the top level, so as to allow redu
tion via (op). We let the

reader
he
k that the results of Se
tion 4.4 are preserved by this extension.

7.2 Typing

We introdu
e a two-pla
e predi
ate J, whi
h relates a type and a se
urity level, and

whose de�nition appears in Figure 7. In short, t J ` holds if and only if all of the

se
urity annotations whi
h appear within t, in
luding its sub-terms, are less than or

equal to `. It also requires t to have no fun
tion type as a sub-term. This de�nition

mimi
s the behavior of generi
 primitive operations, su
h as Caml-Light's generi

omparison or hashing operations, whi
h traverse data stru
tures re
ursively, and

fail upon en
ountering a
losure. The predi
ate J enjoys the following property:

Lemma 16. Assume `

H

v = � : t and t J `. If a sub-term of the form hv

1

j v

2

i

is a

essible through v = �, with v

1

6= v

2

, then ` 2 H.

Proof. By indu
tion on the path that leads to hv

1

j v

2

i.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 25

Æ Case v is hv

1

j v

2

i. Then, `

H

v = � : t implies p
 C t, for some p
 2 H . By

Lemma 7, both v

1

and v

2

have type t; so,
onsidering that these values di�er, t

annot be built solely out of produ
ts and unit. (Types that are built solely out of

produ
ts and unit are inhabited by a single value.) In that
ase, p
 C t and t J `

imply p
 � `, when
e ` 2 H .

Æ Case v is (v

0

1

; v

0

2

), and hv

1

j v

2

i is a

essible through v

0

j

=�, for some j 2 f1; 2g.

Then, we must have `

H

v

0

j

=� : t

j

, where t = t

1

� t

2

, and t

j

J `. The result follows

by indu
tion hypothesis.

Æ Case v is inj

j

v

0

, and hv

1

j v

2

i is a

essible through v

0

= �, for some j 2 f1; 2g.

Then, we must have `

H

v

0

= � : t

0

, where t = (t

0

+

j

�)

�

, and t

0

J `. The result

follows by indu
tion hypothesis.

Æ Case v is m, and hv

1

j v

2

i is a

essible through �(m) = �. Then, we must have

`

H

�(m) = � : t

0

, where t = t

0

ref

�

and t

0

J `. The result follows by indu
tion

hypothesis.

We wish to give a typing rule for primitive operations that is independent of

their semanti
s. To a
hieve this, we will assume that every primitive operation

omes with a typing rule whi
h is suÆ
ient to ensure type safety in the usual sense,

and we will show how to re�ne it with information
ow analysis in mind. In the

following, R denotes a �nite set of ex
eption names. We write R : p
 for the row

whi
h maps " to p
 if " 2 R and to ? otherwise. For every operation o, we assume

a ternary relation typeof (o) su
h that, if (t

0

; t; R) 2 typeof (o), then M ` v : t

0

and

M ` � imply p
;M ` JoK(jv = �j) : t [R : p
 ℄ for all p
 2 L. Roughly speaking, this

amounts to assuming subje
t redu
tion for (op) and (op

�

). Then, we augment the

type system with the following rule:

e-Primitive

�;M ` v : t

0

(t

0

; t; R) 2 typeof (o)

t

0

J ` ` C t

p
;�;M ` o v : t [R : p
 t ` ℄

e-Primitive requires the se
urity level of the result type t to dominate all of the

se
urity levels whi
h appear in the argument type t

0

. Indeed, be
ause nothing

is known about the semanti
s of o, no better approximation
an be given: the

result may depend on any value a

essible through v within the
urrent store. Any

ex
eption that is liable to be raised by o is marked similarly.

In short, given a typing rule for o that does not know about se
urity, en
oded

by the ternary relation typeof (o), our approa
h produ
es a re�ned version, whi
h

guarantees noninterferen
e, regardless of o's semanti
s. Of
ourse, we must
he
k

that the new redu
tion rules satisfy subje
t redu
tion under the extended type

system. This is done by adding new
ases to the proof of Lemma 12, as follows:

Æ Case (op). A

ording to Conf and e-Primitive, we have (t

0

; t; R) 2 typeof (o)

and M ` v : t

0

and M ` �. The latter implies M ` b�

i

. A

ording to our

assumption about typeof (�), this implies p
;M ` JoK(jv = b�

i

j) : t [R : p
 ℄. The

result follows by e-Sub and Conf.

Æ Case (op

�

). Analogous; the rule's side-
ondition is unused.

Æ Case (lift-op). Be
ause jbv = �

1

j and jbv = �

2

j di�er, a sub-term of the form

hv

1

j v

2

i, where v

1

6= v

2

, must be a

essible through v = �. A

ording to Conf and

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 � F. Pottier and V. Simonet

e-Primitive, we may then apply Lemma 16, yielding ` 2 H . Applying Lemma 7

and building a new instan
e of e-Primitive, we obtain p
 t `;M ` o bv

i

: t [R :

p
 t ` ℄ for all i 2 f1; 2g. Re
alling ` C t, we
on
lude with e-Bra
ket.

7.3 Appli
ations

Let us now illustrate the use of this general me
hanism. We give typing rules for sev-

eral
on
rete primitive operations and prove that they are instan
es of e-Primitive.

To begin, let us
onsider a binary integer arithmeti
 operation, su
h as addition.

The meaning of addition is, of
ourse, given by J+K((k

1

; k

2

) = �) = k

1

+ k

2

. Its

treatment is in fa
t quite simple, be
ause it is monomorphi
: it maps a pair of

integers to an integer. For this reason, it would be easy to deal with it dire
tly.

Nevertheless, let us pro
eed. De�ne typeof (+) by setting (int

�

� int

�

; int

�

;?) 2

typeof (+). We let the reader
he
k that this de�nition satis�es the requirement

stated in Se
tion 7.2. Then, e-Primitive may be spe
ialized as follows:

e-Add

�;M ` v : int

`

� int

`

�;�;M ` + v : int

`

[� ℄

This rule e�e
tively makes the sum's se
urity the least upper bound of the operands'

levels. Most operations on primitive data
an be dealt with in a similar manner.

In some
ases, a dire
t treatment is preferable; in the
ase of division, for instan
e,

an ex
eption is raised only if the se
ond argument is zero, so the se
urity level

asso
iated with the ex
eption should be that of the se
ond argument alone, not the

union of both arguments' levels, as we would obtain by spe
ializing e-Primitive.

The treatment of Caml-Light's generi
 (i.e. polymorphi
)
omparison operators

is more interesting, and is the true motivation for developing our generi
 approa
h.

Let bool

`

stand for (unit + unit)

`

. De�ne typeof (=) by setting (t � t; bool

�

;?) 2

typeof (=) for every type t. We do not de�ne J=K, be
ause that would require a

somewhat lengthy
o-indu
tive de�nition, whi
h is irrelevant here; let us simply say

that it always produ
es a Boolean value, so the requirement stated in Se
tion 7.2

is satis�ed. Then, spe
ializing e-Primitive yields

�;M ` v : t� t t J `

�;�;M ` = v : bool

`

[� ℄

All of Caml-Light's generi

omparison operators (namely, =, <>, <, >)
an be dealt

with in the same manner. (One ex
eption is physi
al equality ==, whi
h
annot be

de�ned in our framework, sin
e only mutable values have addresses in our semanti
s.

Anyway, it would be diÆ
ult to give it a pre
ise type, sin
e produ
ts do not
arry a

se
urity annotation.) Be
ause these operators traverse data stru
tures re
ursively,

the result of a
omparison may reveal information about any sub-term. The premise

t J ` re
e
ts this fa
t by requiring ` to dominate all se
urity annotations whi
h

appear in t.

Lastly, generi
 hashing and marshalling operations
an be dealt with similarly,

yielding the following typing rules:

�;M ` v : t t J `

�;�;M ` hash v : int

`

[� ℄

�;M ` v : t t J `

�;�;M ` marshal v : int

`

[� ℄

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 27

By
ontrast, in Myers' Java-based framework [Myers 1999a; 1999b℄, hashing is done

by having every
lass override the standard hashCode method, whi
h is de
lared in

lass Obje
t with signature intfthisg hashCode (). A re-implementation of hashCode

by a sub-
lass of Obje
tmust also satisfy this signature. As a result, it may only rely

on �elds labeled this. The parametri

lass Ve
tor[L℄, for instan
e, must
ompute

a hash
ode in a way that does not depend upon the ve
tor's length or
ontents,

be
ause their label is L. Of
ourse, this severely limits hashCode's usefulness.

8. A CONSTRAINT-BASED TYPE SYSTEM

We now give a more algorithmi
 presentation of our type system,
alled mlif. It

di�ers from mlif

0

mainly by introdu
ing variables,
onstraints, and using them to

form universally quanti�ed,
onstrained type s
hemes, in the style of HM(X) [Oder-

sky et al. 1999℄. Like HM(X), it has prin
ipal types and de
idable type inferen
e.

Be
ause the
onstru
tion is not the
entral topi
 of this paper, we will des
ribe it

only su

in
tly. For more details about the proof of
orresponden
e between mlif

0

and mlif, the reader is referred to [Pottier 2001℄. For information about deriving

a set of type inferen
e rules from the typing rules given in this se
tion, see [Oder-

sky et al. 1999; Sulzmann et al. 1999; Sulzmann 2000℄. In this se
tion, we will

on
entrate mainly on
onstraint solving, be
ause C and J
onstraints are new.

8.1 Types and
onstraints

In mlif, the grammar of types, rows and levels is extended with type, row and level

variables, written �,
 and Æ, respe
tively. We write � for a variable of arbitrary

kind. Furthermore, R�emy's [R�emy 1993℄ row syntax is introdu
ed, turning rows

into �nite lists of bindings from ex
eption names to levels, terminated with a row

variable or with a uniform row ��.

� ::= � j unit j int

�

j (�

� [�℄

���! �)

�

j � ref

�

j � � � j (� + �)

�

� ::=
 j (" : �; �) j ��

�; � ::= Æ j `

(� and � are level meta-variables, just as ` and p
 were ground level meta-variables.)

The variable-free types (resp. rows, levels) of mlif are isomorphi
 to the types

(resp. rows, levels) of mlif

0

; we identify them and refer to them as ground. Then,

onstraints are de�ned as follows:

C ::= true j false j C ^ C j 9�:C

j � � � j � � � j � � �

j � C � j � J �

The
onstraint forms on the �rst line are standard [Odersky et al. 1999℄. Those on

the se
ond line are subtyping
onstraints. We will use �

1

= �

2

as synta
ti
 sugar for

�

1

� �

2

^ �

2

� �

1

. The third line lists
ustom
onstraint forms, whi
h
orrespond to

the notions developed in Se
tions 5 and 7. We will say that a
onstraint C involves

types (resp. rows, resp. levels) if it is of the form � � � , � C � or � J � (resp.

� � �, resp. � � �). We omit the sorting rules ne
essary to ensure that terms and

onstraints whi
h
ontain rows are well-formed; see [R�emy 1993℄. Let us simply

re
all that these rules asso
iate a
o�nite subset of E , written dom(�) and
alled

the domain of �, with every row �.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 � F. Pottier and V. Simonet

Let a ground assignment � map every variable � to a ground type, row or level,

a

ording to its kind. The meaning of terms and
onstraints under an assignment

� is de�ned in the obvious way; we write � ` C if and only if � satis�es C . A

onstraint C is satis�able if and only if there exists an assignment � su
h that

� ` C . We write C
 C

0

(read: C entails C

0

) if and only if every assignment �

whi
h satis�es C satis�es C

0

as well. We write C � C

0

if and only if satis�ability

of C and satis�ability of C

0

are equivalent.

Let a type s
heme be a triple of a set of quanti�ers ��, a
onstraint C and a

type � ; we write � = 8��[C ℄:� . The variables in �� are bound in �; type s
hemes

are
onsidered equal modulo �-
onversion. By abuse of notation, a type � may be

viewed as a type s
heme 8?[true℄:� . An environment � is a partial mapping from

program variables to type s
hemes.

8.2 Typing rules

The typing rules for mlif are given in Figures 8 and 9. They look very similar to

those of mlif

0

; let us brie
y dis
uss the di�eren
es. We restri
t our attention to

sour
e expressions, i.e. Core ML expressions whi
h do not
ontain memory lo
a-

tions; this is enough for our purposes. Thus, typing judgements no longer
ontain

a memory environment M . Every judgement begins with a
onstraint C whi
h

represents an assumption about its free variables; for the judgement to be valid,

C must be satis�able. (We omit C when it is true.) Constrained type s
hemes

are introdu
ed by e-Let, whi
h performs generalization, and eliminated by v-Var,

whi
h performs instantiation. For the sake of
on
iseness, some rules use the binary

operator t on levels and on rows, as well as the unary operator t on rows, as if

they were part of our term syntax. We let the reader
he
k that these notations

an be de-sugared into extra meta-variables and
onstraints. In parti
ular, every

term of the form t � may be repla
ed with a fresh level variable Æ, together with

the
onstraint � � �Æ.

8.3 Non-interferen
e

We prove the following statement by indu
tion on type derivations, along the lines

of [Pottier 2001℄.

Lemma 17 (Soundness). Assume C; �;� ` e : � [� ℄. Let � be an arbitrary

ground assignment whi
h satis�es C. Then, �(�); �(�);? ` e : �(�) [�(�) ℄ holds

in mlif

0

.

(We do not de�ne �(�) here; see [Pottier 2001℄.) In parti
ular, every ground typing

judgement in mlif is also a valid judgement in mlif

0

. This allows us to lift our

noninterferen
e result to mlif. That is, the statement of Theorem 15 remains valid

if (x 7! t) ` e : int

`

and ` v

i

: t are read as mlif typing judgements.

8.4 Type inferen
e

It is easy to
he
k that there exists a type inferen
e algorithm whi
h
omputes

prin
ipal types for mlif. Sulzmann [Sulzmann 2000℄ shows how to derive a set of

type inferen
e rules from a set of typing rules similar to ours. The main point that

remains to be settled is whether
onstraint solving is de
idable.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 29

v-Unit

C;� ` () : unit

v-Int

C;� ` k : int

�

v-Var

�(x) = 8��[D℄:� C
 9��:D

C ^ D;� ` x : �

v-Abs

C; �;�[x 7! �

0

℄[f 7! (�

0

� [�℄

���! �)

�

℄ ` e : � [� ℄

C;� ` �x f:�x:e : (�

0

� [�℄

���! �)

�

v-Pair

C;� ` v

1

: �

1

C;� ` v

2

: �

2

C;� ` (v

1

; v

2

) : �

1

� �

2

v-Inj

C;� ` v : �

C;� ` inj

j

v : (� +

j

�)

�

v-Sub

C;� ` v : �

0

C
 �

0

� �

C;� ` v : �

Fig. 8. The type system mlif (values)

e-Value

C;� ` v : �

C; �;� ` v : � [� ℄

e-Raise

C;� ` v : typexn(")

C;�;� ` raise " v : � [" : �; � ℄

e-App

C;� ` v

1

: (�

0

�t� [�℄

�����! �)

�

C;� ` v

2

: �

0

C
 � C �

C; �;� ` v

1

v

2

: � [� ℄

e-Ref

C;� ` v : � C
 � C �

C; �;� ` ref v : � ref

�

[� ℄

e-Assign

C;� ` v

1

: � ref

�

C;� ` v

2

: � C
 � t � C �

C; �;� ` v

1

:= v

2

: unit [� ℄

e-Deref

C;� ` v : �

0

ref

�

C
 �

0

� � C
 � C �

C; �;� ` ! v : � [� ℄

e-Proj

C;� ` v : �

1

� �

2

C; �;� ` proj

j

v : �

j

[� ℄

e-Case

C;� ` v : (�

1

+ �

2

)

�

8j 2 f1; 2g C;� t �;�[x 7! �

j

℄ ` e

j

: � [� ℄ C
 � C �

C; �;� ` v
ase x � e

1

e

2

: � [� ℄

e-Let

C ^ D;� ` v : �

0

�� \ fv(C;�) = ?

C;�;�[x 7! 8��[D℄:�

0

℄ ` e : � [� ℄

C ^ 9��:D; �;� ` let x = v in e : � [� ℄

e-Bind

C; �;� ` e

1

: �

0

[�

1

℄

C;� t (t �

1

);�[x 7! �

0

℄ ` e

2

: � [�

2

℄

C; �;� ` bind x = e

1

in e

2

: � [�

1

t �

2

℄

e-Handle

C;�;� ` e

1

: � [" : �

"

; � ℄ C; � t �

"

;�[x 7! typexn(")℄ ` e

2

: � [" : �

0

; � ℄ C
 �

"

C �

C; �;� ` e

1

handle " x � e

2

: � [" : �

0

; � ℄

e-HandleDone

C;�;� ` e

1

: � [�

1

℄

C;� t (t �

1

);� ` e

2

: � [�

2

℄ C
 t �

1

C �

C; �;� ` e

1

handle e

2

done : � [�

2

℄

e-HandleRaise

C;�;� ` e

1

: � [� ℄

C;� t (t �);� ` e

2

: � [�? ℄

C; �;� ` e

1

handle e

2

raise : � [� ℄

e-Finally

C;�;� ` e

1

: � [� ℄

C;�;� ` e

2

: � [�? ℄

C;�;� ` e

1

�nally e

2

: � [� ℄

e-Sub

C;�;� ` e : �

0

[�

0

℄ C
 �

0

� � C
 �

0

� �

C; �;� ` e : � [� ℄

Fig. 9. The type system mlif (expressions)

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 � F. Pottier and V. Simonet

� �

C

�

�

1

�

C

�

2

�

2

�

C

�

1

�

1

�

C

�

2

�

2

�

C

�

3

�

1

�

C

�

3

�

1

� �

2

A C

�

1

�

C

�

2

(�

0

1

� [�℄

���! �

1

)

�

�

C

(�

0

2

� [�℄

���! �

2

)

�

�

0

1

�

C

�

0

2

�

1

�

C

�

2

�

1

ref

�

�

C

�

2

ref

�

�

1

�

C

�

2

�

1

� �

0

1

�

C

�

2

� �

0

2

�

1

�

C

�

2

�

0

1

�

C

�

0

2

(�

1

+ �

0

1

)

�

�

C

(�

2

+ �

0

2

)

�

�

1

�

C

�

2

�

0

1

�

C

�

0

2

Fig. 10. Stru
tural equivalen
e indu
ed by a
onstraint

8.5 Constraint solving

Our subtyping relation is stru
tural (a.k.a. atomi
); that is, two ground types whi
h

are in the subtyping relation must have the same stru
ture, and may di�er only

in their se
urity annotations. Constraint solving for atomi
 subtyping is de
idable

and well understood [Rehof 1997℄. The introdu
tion of rows is essentially orthogo-

nal to other
onstraint solving issues [F�ahndri
h 1999; Pottier 2000℄. There mainly

remains to show that the the
ustom
onstraint forms employed by mlif preserve

the de
idability of
onstraint solving. In the following, we do so by giving a sim-

ple algorithm that determines whether a
onstraint is satis�able. We do not aim

at eÆ
ien
y, be
ause that would require more advan
ed rewriting strategies and

onstraint simpli�
ation te
hniques, whi
h we will study in a later paper.

By �-
onversion and s
ope extrusion, any
onstraint C
an be written 9��:C

0

,

where C

0

does not employ existential quanti�
ation. Moreover, the
onstraint C is

satis�able if and only if C

0

is satis�able. Thus, from here on, we will
onsider solely

onstraints that do not make use of existential quantiti
ation. As a result, every

onstraint C
an be viewed as a
onjun
tion

1

^ : : : ^

n

, where every elementary

onstraint

i

is of the form true, false, � � �, � C � or � J �. We identify su
h

onjun
tions modulo permutations and repetitions of elementary
onstraints. We

write C

0

A C (read: C

0

appears in C) if and only if C = � ^ C

0

.

Be
ause ground types are �nite, our algorithm must perform an o

ur
he
k in

order to verify that the
onstraint at hand does not impose a
y
le on type stru
ture.

For this purpose, given a
onstraint C, we introdu
e an equivalen
e relation �

C

between types, de�ned in Figure 10. The rightmost rule in the �gure states that

any two types whi
h are related by a subtyping
onstraint should be stru
turally

equivalent; the next rules propagate stru
tural equivalen
e from terms to sub-terms.

Let us write �

1

� � if and only if �

1

is a stri
t subterm of � . Then, we de�ne the

domination relation indu
ed by C as follows: �

1

�

C

� holds if and only if there

exist �

0

1

and �

0

su
h that �

1

�

C

�

0

1

and �

0

1

� �

0

and �

0

�

C

� . Let �

+

C

denote the

transitive
losure of �

C

. A
onstraint C satis�es the o

ur
he
k if and only if

there exists no type � su
h that � �

+

C

� .

Lemma 18 (O

ur
he
k). If C fails the o

ur
he
k, then C is not satis�able.

Proof. De�ne the height of a ground type by h((t

0

� [�℄

���! t)

�

) = h(t � t

0

) =

h((t + t

0

)

�

) = 1 + max(h(t); h(t

0

)), h(t ref

�

) = 1 + h(t) and h(unit) = h(int

�

) = 0.

If � ` C, then � �

C

�

0

implies h(�(�)) = h(�(�

0

)) and � � �

0

implies �(�) < �(�

0

).

Thus, � �

+

C

� implies h(�) < h(�). The result follows.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 31

Types

int

�

1

� int

�

2

� �

1

� �

2

(�

0

1

�

1

[�

1

℄

�����! �

1

)

�

1

� (�

0

2

�

2

[�

2

℄

�����! �

2

)

�

2

� �

0

2

� �

0

1

^ �

2

� �

1

^ �

1

� �

2

^ �

1

� �

2

^ �

1

� �

2

�

1

ref

�

1

� �

2

ref

�

2

� �

1

= �

2

^ �

1

� �

2

�

1

� �

0

1

� �

2

� �

0

2

� �

1

� �

2

^ �

0

1

� �

0

2

(�

1

+ �

0

1

)

�

1

� (�

2

+ �

0

2

)

�

2

� �

1

� �

2

^ �

0

1

� �

0

2

^ �

1

� �

2

Rows

(" : �

1

; �

1

) � (" : �

2

; �

2

) � �

1

� �

2

^ �

1

� �

2

(" : �; �) � ��

0

� � � �

0

^ � � ��

0

��

0

� (" : �; �) � �

0

� � ^ ��

0

� �

��

1

�

1

� � � � �

n

� ��

2

� �

1

� �

2

Guards

�

0

C int

�

� �

0

� �

�

0

C (�

� [�℄

���! �)

�

� �

0

� �

�

0

C � ref

�

� �

0

� �

�

0

C �

1

� �

2

� �

0

C �

1

^ �

0

C �

2

�

0

C (�+ �)

�

� �

0

� �

int

�

J �

0

� � � �

0

� ref

�

J �

0

� � J �

0

^ � � �

0

� � �

0

J �

0

� � J �

0

^ �

0

J �

0

(� + �

0

)

�

J �

0

� � J �

0

^ �

0

J �

0

^ � � �

0

Errors

`

1

� Æ

1

� � � � � Æ

n

� `

2

� false if `

1

6�

L

`

2

�

1

� �

2

� false if �

1

� �

2

(�

� [�℄

���! �)

�

J � � false

Context

� ^ C � C

0

if C � C

0

Fig. 11. Synta
ti

onstraint impli
ation

Roughly speaking, on
e it is known that the
onstraint passes the o

ur
he
k,

the bulk of the
onstraint solving pro
edure
onsists in expanding types and rows

and de
omposing
onstraints, so as to obtain
onstraints that bear on variables or

on atoms only. The absen
e of
y
les in the type stru
ture guarantees that the

expansion pro
ess terminates.

Let us introdu
e a so-
alled synta
ti
 impli
ation predi
ate between
onstraints,

written C � C

0

, de�ned by the rules in Figure 11. This predi
ate allows deriving

(a �nite number of) logi
al
onsequen
es of a
onstraint C . The rules in Types

and Guards (see Figure 11)
on
ern
onstraints bearing on types whose stru
ture is

known, i.e. non-variable types. Su
h
onstraints are de
omposed into a number of

sub-
onstraints bearing on their sub-terms. Similarly, the rules in Rows de
ompose

onstraints bearing on non-variable rows. The last rule in Rows allows ��

1

and ��

2

to be linked by an arbitrarily long path of row variables. (This is made ne
essary

by the fa
t that the existen
e of a
onstraint �� �
 does not allow expanding

into �Æ, for a fresh Æ. Indeed, �` � r does not imply that r is a
onstant row.) The

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 � F. Pottier and V. Simonet

Closure

C � C

0

C

0

6A C

C _ C ^ C

0

"

1

6= "

2

 62 fv(C) �� �

1

� ("

2

: �

2

; �) ^ ("

1

: �

1

; �) � �

2

A C

C ^ ("

1

: �

1

; �

1

) � ("

2

: �

2

; �

2

)_ C ^ �

1

� ("

2

: �

2

;
) ^ ("

1

: �

1

;
) � �

2

Expansion

� 7 unit A C

C _ C[unit=�℄

� 7 int

�

A C Æ 62 fv(C)

C _ C[int

Æ

=�℄

� 7 (�

� [�℄

���! �)

�

A C

�

0

; �

00

;
; Æ; Æ

0

62 fv(C)

C _ C[(�

00

Æ

0

[
℄

����! �

0

)

Æ

=�℄

� 7 � ref

�

A C �

0

; Æ 62 fv(C)

C _ C[�

0

ref

Æ

=�℄

� 7 � � � A C �

0

; �

00

62 fv(C)

C _ C[�

0

� �

00

=�℄

� 7 (�+ �)

�

A C �

0

; �

00

; Æ 62 fv(C)

C _ C[(�

0

+ �

00

)

Æ

=�℄

 7 (" : �; �) A C

0

; Æ 62 fv(C)

C _ C[(" : Æ;

0

)=
℄

Fig. 12. Rewriting
onstraints

�rst rule in Errors dis
overs paths of the form `

1

� � � � � `

2

, whi
h are in
onsistent

unless `

1

� `

2

holds in L. The se
ond error rule en
odes the fa
t that any types

whi
h are in the subtyping relation must have the same head
onstru
tor. (Let

�

1

� �

2

hold if and only if either one of �

1

, �

2

is a variable or �

1

and �

2

are (non-

variable) types with the same head
onstru
tor.) The last error rule re
e
ts the

fa
t that an arrow type
annot satisfy a J
onstraint.

The �nal pie
e in the puzzle is a redu
tion relation _ on
onstraints, de�ned in

Figure 12. The �rst rewriting rule
loses the
onstraint under synta
ti
 impli
ation.

The se
ond rule solves subtyping
onstraints between rows that do not exhibit the

same head label; in other words, it allows row labels to
ommute. It introdu
es a

new row variable
, whi
h must be fresh with respe
t to the whole
onstraint, as

expressed by its se
ond premise. The last premise prevents multiple appli
ations

of the rule, whi
h would
ompromise termination. The remaining rules expand

every type or row variable that is related to a non-variable term. This is a
hieved

by substituting for the former, within the whole
onstraint, a fresh term whose

stru
ture mirrors the latter. �

1

7 �

2

A C is short for �

1

� �

2

A C _ �

2

� �

1

A C .

The following lemma states that redu
tion preserves satis�ability.

Lemma 19 (Corre
tness). If C _ C

0

then C � C

0

.

Proof. By inspe
tion of the de�nitions of � and _.

Redu
tion is strongly normalizing. This property ensures that the
onstraint

solving algorithm terminates.

Lemma 20 (Termination). There is no in�nite redu
tion for _ out of a
on-

straint that satis�es the o

ur
he
k.

Proof. Let us �rst remark that, if C passes the o

ur
he
k, then so does every

redu
t of C.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 33

Let C be a
onstraint that satis�es the o

ur
he
k. De�ne the height of � with

respe
t to C, written h

C

(�), as max fn j 9�

1

: : : �

n

�

n

�

C

� � � �

C

�

1

�

C

�g.

Be
ause C only has a �nite number of sub-terms, any in�nite des
ending
hain for

�

C

must exhibit a
y
le. However, be
ause C satis�es the o

ur
he
k, no su
h

y
le exists. As a result, h

C

(�) must be �nite.

A row label " is said to be apparent in C if there exists a row variable
 in

fv(C) su
h that " 62 dom(
). It is easy to
he
k that redu
tion preserves the set of

apparent row labels, i.e. it does not
ause new labels to appear.

We extend h

C

to elementary
onstraints that involve types: let h

C

(�

1

� �

2

) =

max (h

C

(�

1

); h

C

(�

2

)) and h

C

(� J �) = h

C

(� C �) = h

C

(�). The weight of a

row variable
 is the pair (dom(
); 1). The weight of a
onstraint �

1

� �

2

is the

pair (dom(�

1

); 0). (Be
ause the
onstraint is well-sorted, dom(�

1

) = dom(�

2

) must

hold.) Lastly, let us say that an elementary
onstraint
 is a
tive in C if and only

if either (i) there exists C

0

su
h that
 � C

0

and C

0

6A C or (ii)
 = ("

1

: �

1

; �

1

) �

("

2

: �

2

; �

2

) and �� �

1

� ("

2

: �

2

; �) ^ ("

1

: �

1

; �) � �

2

A C.

Let us now measure a
onstraint a

ording to the following quantities, ordered

lexi
ographi
ally: (1) the multiset of the heights of its type variables; (2) the mul-

tiset of the heights of its a
tive elementary
onstraints that involve types; (3) the

multiset of the weights of its row variables and of its a
tive elementary
onstraints

that involve rows; (4) the number of paths ��

1

�

1

� � � � �

n

� ��

2

whi
h

appear in it, while �

1

� �

2

does not; (5) 1 if false appears in the
onstraint, 0

otherwise. Given that heights are �nite and the set of apparent ex
eption names is

�xed, the ordering on measures has no in�nite de
reasing
hain. We
laim that this

measure de
reases through every redu
tion step. Indeed, all expansion rules but the

last one eliminate a type variable, while introdu
ing fresh type variables of lesser

height, so they de
rease (1). The rules in Types and Guards (Figure 11) remove

an a
tive
onstraint that involves types, while possibly introdu
ing
onstraints on

types of lesser heights, on rows or on levels, so they de
rease (2). Similarly, the �rst

three rules in Rows, as well as the se
ond and last rules in Figure 12, de
rease (3).

The last rule in Rows de
reases (4). Lastly, the error rules de
rease (5). It follows

that _ terminates.

Che
king for the presen
e of false provides a
omplete satis�ability
he
k for

onstraints that are normal forms with respe
t to _.

Lemma 21 (Completeness). Let C be a normal form with respe
t to _ whi
h

passes the o

ur
he
k. C is satis�able if and only if C does not
ontain false.

Proof. Clearly, if C
ontains false then C is not satis�able. Conversely, assume

C passes the o

ur
he
k test and does not
ontain false.

Let us de�ne a stri
t ordering � on elementary
onstraints as the smallest

transitive relation su
h that (i) �

0

1

� �

i

and �

0

2

� �

j

and fi; jg = f1; 2g imply

(�

0

1

� �

0

2

) � (�

1

� �

2

), (ii) �

0

� � implies (�

0

J �) � (� J �) and (� C �

0

) � (� C �),

(iii) dom(�

0

1

) � dom(�

1

) and dom(�

0

2

) � dom(�

2

) imply (�

0

1

� �

0

2

) � (�

1

� �

2

), (iv)

if

0

involves rows and
 involves types, then

0

�
, and (v) if

0

involves labels and

 involves rows, then

0

�
. Again, if heights are �nite and the set of apparent

ex
eption names is �xed, this ordering has no in�nite de
reasing
hain.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 � F. Pottier and V. Simonet

De�ne the assignment � as follows:

�(Æ) = tf` j ` � � � � � Æ A Cg

�(
) = �(tf�(�) j �� � � � � �
 A Cg)

�(�) = unit

We will now prove that � ` C; that is, every elementary
onstraint
 su
h that
 A C

is satis�ed by �. The proof is by well-founded indu
tion on �. The meta-variable

_� (resp. _�) denotes a non-variable type (resp. row).

Æ Case
 = _�

1

� _�

2

. Be
ause C does not
ontain false and be
ause it is a normal

form, the types _�

1

and _�

2

must have the same head
onstru
tor. By inspe
tion

of the �rst group of rules in Figure 11,
 is entailed by a number of elementary

onstraints, ea
h of whi
h appears in C and is less than
 with respe
t to �. The

result follows by the indu
tion hypothesis.

Æ Cases
 = _� J �,
 = � C _� ,
 = _�

1

� _�

2

. Similar to the previous
ase.

Æ Cases
 = _� � �,
 = � � _� ,
 = (" : �; �) �
 and
 =
 � (" : �; �). Be
ause

none of the expansion rules apply, these
ases
annot arise.

Æ Case
 = � � �

0

. Immediate.

Æ Cases
 = � J � and
 = � C �. Be
ause �(�) = unit, � `
 holds.

Æ Case
 = ��

1

� ��

2

. Be
ause C is a normal form, �

1

� �

2

A C must hold. By

indu
tion hypothesis, �(�

1

) � �(�

2

) follows. This yields �(��

1

) � �(��

2

).

Æ Case
 = �� �
. By
onstru
tion, �(�(�)) � �(
) holds.

Æ Case
 =
 � ��. If ��

0

� � � � �
 A C , then, by transitivity, ��

0

� � � � � �� A

C holds as well. Be
ause C is a normal form, �

0

� � A C must hold. By indu
tion

hypothesis, �(�

0

) � �(�) follows. As a result, we have �(
) � �(�(�)).

Æ Case
 =
 �

0

. By transitivity, �� � � � � �
 A C implies �� � � � � �

0

A C .

It follows that f�� j �� � � � � �
 A Cg � f�� j �� � � � � �

0

A Cg. This yields

�(
) � �(

0

).

Æ Case
 = `

1

� `

2

. Be
ause C does not
ontain false and be
ause it is a normal

form, `

1

� `

2

must hold in L. � `
 follows.

Æ Case
 = ` � Æ. By
onstru
tion, ` � �(Æ) holds.

Æ Case
 = Æ � `. If `

0

� � � � � Æ A C , then, by transitivity, `

0

� � � � � ` A C

holds as well. Be
ause C does not
ontain false and be
ause it is a normal form,

`

0

� ` must hold. As a result, we have tf`

0

j `

0

� � � � � Æ A Cg � `, that is,

�(Æ) � `.

Æ Case
 = Æ � Æ

0

. By transitivity, ` � � � � � Æ A C implies ` � � � � � Æ

0

A C .

It follows that f` j ` � � � � � Æ A Cg � f` j ` � � � � � Æ

0

A Cg. This yields

�(Æ) � �(Æ

0

).

The results developed in this se
tion may be summarized as follows.

Theorem 22. Constraint solving is de
idable.

Proof. Given a
onstraint C, determine whether it satis�es the o

ur
he
k.

If it doesn't, report C is unsatis�able. If it does, normalize it with respe
t to _,

yielding C

0

. If C

0

ontains false, report C is unsatis�able; otherwise, report it

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 35

is satis�able. Lemma 20 ensures that the algorithm terminates. Lemmas 18, 19

and 21 guarantee that it is
orre
t.

9. EXAMPLES

We intend to integrate mlif into a realisti
 programming language, su
h as Caml-

Light [Leroy et al. 1997℄. In this se
tion, we give a taste of that by des
ribing

the prin
ipal type s
hemes inferred for some library fun
tions by our prototype

implementation. We use Caml-Light syntax, whi
h
an be easily de-sugared into

Core ML.

We omit type annotations on top of! when they are un
onstrained, anonymous

type variables. Be
ause none of the type s
hemes below has free type variables, we

omit the universally quanti�ed variables after 8.

We have not explained how to in
lude datatype de
larations in the language.

Sin
e we already have produ
t and sum types, this should be straightforward. Let

us assume the type
onstru
tor list is de
lared as follows:

type ('b, 'd) list = <'d>

| [℄

| (::) of 'b * ('b, 'd) list

In � list

Æ

, the parameter � is the type of the list's elements, as usual, while Æ is a

se
urity level. The annotation <'d> on the right-hand side is meant to indi
ate that

Æ is the se
urity annotation
arried by the sum type. Our �rst example fun
tion

omputes the length of a list:

let re
 length = fun
tion

| [℄ -> 0

| _ :: l -> 1 + length l

A valid type s
heme for length is 8[Æ � Æ

0

℄: � list

Æ

! int

Æ

0

. As expe
ted, the

result's se
urity annotation Æ

0

does not depend on the type of the list's elements.

The
onstraint Æ � Æ

0

des
ribes the information
ow indu
ed by the fun
tion: the

length of a list
ontains some information about its stru
ture. This type s
heme is

in fa
t equivalent to 8[℄: � list

Æ

! int

Æ

, a simpli�
ation whi
h our implementation

performs automati
ally.

let re
 iter f = fun
tion

| [℄ -> ()

| x :: l -> f x; iter f l

iter applies f su

essively to every element of a list. Its inferred type s
heme is

8[t
 � Æ℄:(�

Æ [
℄

���! �)

Æ

! � list

Æ

Æ [
℄

���! unit

Here,
 represents f's e�e
t. Be
ause iter does not raise any ex
eptions of its

own,
 is also iter's e�e
t. Æ is f's p
 parameter. It must dominate iter's own p

parameter (be
ause f is invoked by iter), the list's se
urity level (be
ause gaining

ontrol tells f that the list is nonempty) and t
 (be
ause gaining
ontrol tells f

that its previous invo
ation terminated normally).

let in
r r =

r := !r + 1

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 � F. Pottier and V. Simonet

in
r has 8[℄:int

Æ

ref

Æ

Æ [�℄

���! unit as prin
ipal type s
heme. Indeed, by e-Assign, the

se
urity level of the referen
e's
ontents must dominate both in
r's p
 parameter

and the referen
e's own se
urity level. We now re-implement length in imperative

style:

let length' l =

let
ount = ref 0 in

iter (fun () -> in
r
ount) l;

!
ount

We obtain 8[℄: � list

Æ

Æ [�℄

���! int

Æ

. This appears more restri
tive than length's type

s
heme: the result's se
urity level must now be greater than or equal to the fun
-

tion's p
 parameter. However, the di�eren
e is only super�
ial; it
an be
he
ked

that both types in fa
t have the same expressive power. Formalizing this
laim,

and understanding its
onsequen
es, are left for future work. We
ontinue with a

few library fun
tions whi
h deal with asso
iation lists.

let re
 mem_asso
 x = fun
tion

| [℄ -> false

| (y, _) :: l -> if x = y then true else mem_asso
 x l

Be
ause mem asso
's result reveals information about both the stru
ture of the list

and the keys stored in it, we obtain:

8[� J Æ℄:� ! (� � �) list

Æ

! bool

Æ

The
onstraint � J Æ, whi
h arises due to the use of polymorphi
 equality, spe
i�es

that Æ must be an upper bound for all se
urity annotations whi
h o

ur in the type

of the keys.

let re
 asso
 x = fun
tion

| [℄ -> raise Not_found

| (y, d) :: l -> if x = y then d else asso
 x l

asso
 returns the pie
e of data asso
iated with a given key. If no su
h key exists,

Not found is raised, as re
e
ted in asso
's e�e
t:

8[� J Æ; Æ C �

0

; Æ � Æ

0

℄:� ! (� � �

0

) list

Æ

Æ

0

[Not found: Æ

0

; �℄

�����������! �

0

Here, as in mem asso
, Æ represents the information asso
iated with the list's stru
-

ture and keys. Be
ause this information is re
e
ted both in asso
's normal and

ex
eptional results, the type system requires Æ C �

0

and Æ � Æ

0

.

Lastly, we re-implement mem asso
 in terms of asso
, using an ex
eption handler:

let mem_asso
' x l =

try

let _ = asso
 x l in

true

with Not_found ->

false

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 37

As in the
ase of length vs. length', the new type s
heme requires the result's

se
urity level to be greater than or equal to the fun
tion's p
 parameter:

8[� J Æ℄:� ! (� � �) list

Æ

Æ [�℄

���! bool

Æ

This betrays the fa
t that the fun
tion's implementation uses e�e
ts, but does not

otherwise restri
t its appli
ability.

10. DISCUSSION

10.1 On ex
eptions

The reader may noti
e that normal and ex
eptional results are not dealt with in

a symmetri
 way by our type system. Indeed, in a typing judgement p
;�;M `

e : t [r ℄, the row r asso
iates a se
urity level with every ex
eption name, so as

to re
ord how mu
h information is gained by observing that parti
ular ex
eption.

However, no information level is expli
itly asso
iated with normal termination.

Instead, the typing rule for sequential
omposition, namely e-Bind, uses t r as an

approximation of it.

Myers' [Myers 1999a; 1999b℄ sets of path labels X, on the other hand, re
ord

the se
urity level asso
iated with normal termination under a spe
ial label n, whi
h

is then used in the sequential
omposition rule. It is, however, typi
ally an upper

bound for the value of p
 inside every sub-expression of the expression at hand, so

this design alone would make the type system very restri
tive. To prevent that,

Myers adds a non-syntax-dire
ted rule, the single-path rule, stating that X[n℄
an

be reset to ; if the expression at hand
an be shown to always terminate normally.

Our system doesn't need the single-path rule: indeed, when r

1

is �?, then t r

1

is ?, and e-Bind type
he
ks e

1

and e

2

at a
ommon p
, as desired. Myers' system

is more pre
ise than ours in a few
ases, whi
h involve expressions that never

terminate normally; experien
e will tell how
ommon they are. The single-path

rule requires a distin
tion between ; and ? (i.e. between expressions that do not

raise ex
eptions and expressions that raise only low-se
urity ex
eptions), whi
h we

have dropped, for simpli
ity. More importantly, it requires
ounting the number

of non-; entries in a row; in the presen
e of row variables, this requires heavy

onstraint forms, whi
h is why we avoid it. This diÆ
ulty does not arise in Myers'

framework be
ause he relies on Java's expli
it, monomorphi
 throws
lauses.

There exists a simple monadi
 en
oding of ex
eptions into sums [Moggi 1989;

Wadler 1992℄. Thus, it is possible, in prin
iple, to derive a type system for ex
ep-

tions out of a type system that
an handle sums. This approa
h sounds interesting,

be
ause it is systemati
 and promises to yield a symmetri
 treatment of normal vs.

ex
eptional results. However, we have found that, in order to obtain a

eptable

pre
ision in the end, the treatment of sums that is
hosen as a starting point must

be very a

urate (mu
h more so than the one given in this paper). For more details,

the reader is referred to a re
ent paper by the se
ond author [Simonet 2002℄.

10.2 Variations

In this paper, the type unit
arries no se
urity annotation, whi
h is natural, and

�ts well with the
onstraint solving algorithm proposed in Se
tion 8.5, be
ause unit

an be proposed as a solution for � in every
onstraint of the form � C � or � J �

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 � F. Pottier and V. Simonet

v-Abs

p
;�[x 7! t

0

℄[f 7! t

0

p
 [r℄

����! t℄;M ` e : t [r ℄

�;M ` �x f:�x:e : t

0

p
 [r℄

����! t

e-App

�;M ` v

1

: t

0

p

0

[r℄

����! t

�;M ` v

2

: t

0

p
 � p

0

p
;�;M ` v

1

v

2

: t [r ℄

Fig. 13. Modi�
ations for an invariant p
 parameter

(see the proof of Lemma 21). However, as a
onsequen
e of this fa
t, it is not the

ase that ` C t and t J `

0

imply ` � `

0

. We have found that the la
k of su
h a

law makes
onstraint simpli�
ation more intri
ate and less e�e
tive. This might

be suÆ
ient motivation to swit
h ba
k to a type of the form unit

`

. (Produ
t types

would remain unannotated.) Then, every type t would
ontain at least one se
urity

annotation, restoring the above law.

As in previous work [Heintze and Rie
ke 1998℄, our arrow types
arry two anno-

tations p
 and `, whi
h are respe
tively
ontravariant and
ovariant. These anno-

tations are independent. Yet, the �rst premise of rule e-App (Figure 6), together

with the subtyping rules, show that a fun
tion
annot be applied unless ` � p

holds. So, the
urrent type system makes it possible to
reate fun
tions that are

not appli
able|a rather undesirable feature. To eliminate this problem, one might

wish to merge the annotations p
 and `, that is, to use arrow types of the form

t

p
 [r℄

���! t

0

, where p
 is invariant. Then, by de�nition, ` C �

p
 [�℄

���! t

0

would be

equivalent to ` � p
 ^ ` C t

0

. The typing rules for abstra
tion and appli
ation

would be modi�ed as des
ribed in Figure 13. In addition to earlier dete
tion of

type errors, this modi�
ation would perhaps help infer more readable types. We

have experimented with this idea, however, and have run into trouble with re
ur-

sive de�nitions: the types inferred for some re
ursive fun
tions be
ome less pre
ise,

unless polymorphi
 re
ursion [My
roft 1984℄ is added to the type system.

10.3 Future work

Our main dire
tion for future work is to
reate a full implementation of the system

on top of a fragment of Obje
tive Caml, and to assess its usability through a number

of
ase studies. We also intend to publish a more detailed a

ount of our
onstraint

resolution and simpli�
ation te
hniques. Lastly, the fa
t that
ertain distin
t types

appear to have the \same" meaning, illustrated in Se
tion 9 by
omparing the types

as
ribed to length and length', would deserve deeper study.

REFERENCES

Abadi, M., Banerjee, A., Heintze, N., and Rie
ke, J. G. 1999. A
ore
al
ulus of dependen
y.

In Conferen
e Re
ord of the 26th ACM Symposium on Prin
iples of Programming Languages.

ACM Press, San Antonio, Texas, 147{160. URL: http://www.soe.u
s
.edu/~abadi/Papers/

flowpopl.ps.

Abadi, M., Lampson, B., and L

�

evy, J.-J. 1996. Analysis and
a
hing of dependen
ies. In Pro
eed-

ings of the 1996 ACM SIGPLAN International Conferen
e on Fun
tional Programming. ACM

Press, Philadelphia, Pennsylvania, 83{91. URL: http://www.soe.u
s
.edu/~abadi/Papers/

make-preprint.ps.

Banerjee, A. and Naumann, D. 2002. Se
ure information
ow and pointer
on�nement in a Java-

like language. In Pro
eedings of the 15th IEEE Computer Se
urity Foundations Workshop

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferen
e for ML � 39

(CSFW 15). Cape Breton, Nova S
otia, 253{267. URL: http://www.
s.stevens-te
h.edu/

~naumann/
sfw15.ps.

Bell, D. E. and LaPadula, L. J. 1975. Se
ure
omputer systems: Uni�ed exposition and Multi
s

interpretation. Te
h. Rep. MTR-2997, The MITRE Corp., Bedford, Massa
husetts. July. URL:

http://www.mitre.org/resour
es/
enters/infose
/infose
.html.

Denning, D. E. 1982. Cryptography and Data Se
urity. Addison-Wesley, Reading, Massa
husetts.

F

�

ahndri
h, M. 1999. Bane: A library for s
alable
onstraint-based program analysis. Ph.D. thesis,

University of California at Berkeley. URL: http://resear
h.mi
rosoft.
om/~maf/diss.ps.

Field, J. and Teitelbaum, T. 1990. In
remental redu
tion in the lambda
al
ulus. In Pro
eedings

of the 1990 ACM Conferen
e on Lisp and Fun
tional Programming. ACM Press, 307{322.

Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. 1993. The essen
e of
ompiling

with
ontinuations. In Pro
eedings of the ACM SIGPLAN'93 Conferen
e on Programming

Language Design and Implementation. ACM Press, Albuquerque, New Mexi
o, 237{247. URL:

http://www.
s.ri
e.edu/CS/PLT/Publi
ations/pldi93-fsdf.ps.gz.

Goguen, J. and Meseguer, J. 1982. Se
urity poli
ies and se
urity models. In Pro
eedings of

the 1982 IEEE Symposium on Se
urity and Priva
y. IEEE Computer So
iety Press, Oakland,

California, 11{20.

Heintze, N. and Rie
ke, J. G. 1998. The SLam
al
ulus: Programming with se
re
y and integrity.

In Conferen
e Re
ord of the 25th ACM Symposium on Prin
iples of Programming Languages.

ACM Press, San Diego, California, 365{377. URL: http://
m.bell-labs.
om/
m/
s/who/n
h/

slam.ps.

Leroy, X., Doligez, D., et al. 1997. The Caml Light system, release 0.74. URL: http://
aml.

inria.fr/.

Leroy, X., Doligez, D., Garrigue, J., R

�

emy, D., and Vouillon, J. 2002. The Obje
tive Caml

system, release 3.06. URL: http://
aml.inria.fr/.

Milner, R., Tofte, M., Harper, R., and Ma
Queen, D. 1997. The De�nition of Standard ML

(Revised). The MIT Press.

Moggi, E. 1989. An abstra
t view of programming languages. Te
h. Rep. ECS-LFCS-90-113, Uni-

versity of Edinburgh. June. URL: http://www.disi.unige.it/person/MoggiE/ftp/abs-view.

ps.gz.

My
roft, A. 1984. Polymorphi
 type s
hemes and re
ursive de�nitions. In Pro
eedings of the

6th International Symposium on Programming, M. Paul and B. Robinet, Eds. Le
ture Notes

in Computer S
ien
e, vol. 167. Toulouse, Fran
e, 217{228.

Myers, A. C. 1999a. JFlow: pra
ti
al mostly-stati
 information
ow
ontrol. In Pro
eedings of

the 26th ACM SIGPLAN-SIGACT on Prin
iples of Programming Languages. ACM Press,

San Antonio, Texas, 228{241. URL: http://www.
s.
ornell.edu/andru/papers/popl99/

myers-popl99.ps.gz.

Myers, A. C. 1999b. Mostly-stati
 de
entralized information
ow
ontrol. Ph.D. thesis,

Massa
husetts Institute of Te
hnology. Te
hni
al Report MIT/LCS/TR-783. URL: http:

//www.
s.
ornell.edu/andru/release/tr783.ps.gz.

Odersky, M., Sulzmann, M., and Wehr, M. 1999. Type inferen
e with
onstrained types.

Theory and Pra
ti
e of Obje
t Systems 5, 1, 35{55. URL: http://www.
s.mu.oz.au/~sulzmann/

publi
ations/tapos.ps.

Pottier, F. 2000. Walla
e: an eÆ
ient implementation of type inferen
e with subtyping. URL:

http://pauilla
.inria.fr/~fpottier/walla
e/.

Pottier, F. 2001. A semi-synta
ti
 soundness proof for HM(X). Resear
h Report 4150, INRIA.

Mar. URL: ftp://ftp.inria.fr/INRIA/publi
ation/RR/RR-4150.ps.gz.

Pottier, F. 2002. A simple view of type-se
ure information
ow in the �-
al
ulus. In Pro
eedings

of the 15th IEEE Computer Se
urity Foundations Workshop. Cape Breton, Nova S
otia, 320{

330. URL: http://pauilla
.inria.fr/~fpottier/publis/fpottier-
sfw15.ps.gz.

Pottier, F. and Con
hon, S. 2000. Information
ow inferen
e for free. In Pro
eedings of the

the 5th ACM SIGPLAN International Conferen
e on Fun
tional Programming (ICFP'00).

ACM Press, Montr�eal, Canada, 46{57. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-
on
hon-i
fp00.ps.gz.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 � F. Pottier and V. Simonet

Pottier, F. and Simonet, V. 2002a. Information
ow inferen
e for ML. In Pro
eedings

of the 29th ACM Symposium on Prin
iples of Programming Languages (POPL'02). ACM

Press, Portland, Oregon, 319{330. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-simonet-popl02.ps.gz.

Pottier, F. and Simonet, V. 2002b. Information
ow inferen
e for ML. Full version. URL:

http://pauilla
.inria.fr/~fpottier/publis/fpottier-simonet-popl02-long.ps.gz.

Rehof, J. 1997. Minimal typings in atomi
 subtyping. In Conferen
e Re
ord of the 24th ACM

Symposium on Prin
iples of Programming Languages. ACM Press, Paris, Fran
e, 278{291.

URL: http://resear
h.mi
rosoft.
om/~rehof/popl97.ps.

R

�

emy, D. 1993. Type inferen
e for re
ords in a natural extension of ML. In Theoreti
al Aspe
ts

Of Obje
t-Oriented Programming. Types, Semanti
s and Language Design, C. A. Gunter and

J. C. Mit
hell, Eds. MIT Press. URL: ftp://ftp.inria.fr/INRIA/Proje
ts/
ristal/Didier.

Remy/taoop1.ps.gz.

Simonet, V. 2002. Fine-grained information
ow analysis for a �-
al
ulus with sum types.

In Pro
eedings of the 15th IEEE Computer Se
urity Foundations Workshop (CSFW 15).

Cape Breton, Nova S
otia, 223{237. URL: http://
ristal.inria.fr/~simonet/publis/

simonet-
sfw-02.ps.gz.

Sulzmann, M. 2000. Completenss of
onstraint-based inferen
e. URL: http://www.
s.mu.oz.au/

~sulzmann/publi
ations/
onstraint-inferen
e.ps.

Sulzmann, M., M

�

uller, M., and Zenger, C. 1999. Hindley/Milner style type systems in
on-

straint form. Resear
h Report ACRC{99{009, University of South Australia, S
hool of Com-

puter and Information S
ien
e. July. URL: http://www.ps.uni-sb.de/~mmueller/papers/

hm-
onstraints.ps.gz.

Volpano, D. and Smith, G. 1997a. Eliminating
overt
ows with minimum typings. In 10th

IEEE Computer Se
urity Foundations Workshop. Ro
kport, MA, 156{168. URL: http://www.

s.nps.navy.mil/people/fa
ulty/volpano/papers/
sfw97.ps.Z.

Volpano, D. and Smith, G. 1997b. A type-based approa
h to program se
urity. Le
ture Notes

in Computer S
ien
e 1214, 607{621. URL: http://www.
s.nps.navy.mil/people/fa
ulty/

volpano/papers/tapsoft97.ps.Z.

Volpano, D., Smith, G., and Irvine, C. 1996. A sound type system for se
ure
ow analysis.

Journal of Computer Se
urity 4, 3, 167{187. URL: http://www.
s.nps.navy.mil/people/

fa
ulty/volpano/papers/j
s96.ps.Z.

Wadler, P. 1992. Comprehending monads. Mathemati
al Stru
tures in Computer S
ien
e 2, 461{

493. URL: http://www.resear
h.avayalabs.
om/user/wadler/papers/monads/monads.ps.gz.

Wright, A. K. 1995. Simple imperative polymorphism. Lisp and Symboli
 Computation 8, 4

(De
.), 343{356. URL: http://www.
s.ri
e.edu/CS/PLT/Publi
ations/las
95-w.ps.gz.

Wright, A. K. and Felleisen, M. 1994. A synta
ti
 approa
h to type soundness. Information

and Computation 115, 1 (Nov.), 38{94. URL: http://www.
s.ri
e.edu/CS/PLT/Publi
ations/

i
94-wf.ps.gz.

Zdan
ewi
, S. and Myers, A. C. 2001. Se
ure information
ow and CPS. In Pro
eedings of

the 2001 European Symposium on Programming (ESOP'01), D. Sands, Ed. Le
ture Notes in

Computer S
ien
e. Springer Verlag, Genova, Italy. URL: http://www.
s.
ornell.edu/zdan
e/

lin
ont.ps.

Zdan
ewi
, S. and Myers, A. C. 2002. Se
ure information
ow via linear
ontinuations. Higher

Order and Symboli
 Computation. To appear. URL: http://www.
s.
ornell.edu/andru/

papers/hos
01.ps.gz.

Do
ument
ompiled August 22, 2002.

ACM Transa
tions on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

