
Information Flow Inferene for ML

FRANC�OIS POTTIER and VINCENT SIMONET

INRIA

This paper presents a type-based information ow analysis for a all-by-value �-alulus equip-

ped with referenes, exeptions and let-polymorphism, whih we refer to as Core ML. The type

system is onstraint-based and has deidable type inferene. Its noninterferene proof is reason-

ably light-weight, thanks to the use of a number of orthogonal tehniques. First, a syntati

segregation between values and expressions allows a lighter formulation of the type system. Se-

ond, noninterferene is redued to subjet redution for a nonstandard language extension. Lastly,

a semi-syntati approah to type soundness allows dealing with onstraint-based polymorphism

separately.

Categories and Subjet Desriptors: F.3.2 [Logis and Meanings of Programs℄: Semantis of

Programming Languages|Operational semantis; Program analysis; F.3.3 [Logis and Mean-

ings of Programs℄: Studies of Program Construts|Control primitives; Funtional onstruts;

Type struture; D.4.6 [Operating systems℄: Seurity and Protetion|Information ow ontrols

General Terms: Languages, Seurity, Theory

1. INTRODUCTION

Information ow analysis onsists in statially determining how a program's out-

puts are related to its inputs, i.e. how the former depend, diretly or indiretly, on

the latter. This allows establishing serey or integrity properties of a program,

i.e. proving that some aspets of its behavior onvey no information about those of

its inputs deemed \seret", or remain independent of those deemed \unreliable".

These properties are instanes of noninterferene [Goguen and Meseguer 1982℄:

they state the absene of ertain dependenies.

Beause information ow analysis is omplex and error-prone, it must be auto-

mated. During the past few years, several researhers have advoated its formula-

tion as a type system. Then, existing type inferene tehniques provide automation,

while type signatures provide onise, formal seurity spei�ations.

Our interest is in designing, and proving orret, a type-based information ow

analysis for (the kernel of) a realisti, sequential programming language. (In the

presene of onurreny, the termination of a proess is observable by other pro-

esses, reating new ways to leak information and requiring more restritive type

systems. Hene, it appears reasonable to �rst experiment with information ow

ontrol in a sequential setting.) To date, most formal results obtained in this

Authors' address: INRIA, B.P. 105, 78153 Le Chesnay Cedex, Frane.

Permission to make digital/hard opy of all or part of this material without fee for personal

or lassroom use provided that the opies are not made or distributed for pro�t or ommerial

advantage, the ACM opyright/server notie, the title of the publiation, and its date appear, and

notie is given that opying is by permission of the ACM, In. To opy otherwise, to republish,

to post on servers, or to redistribute to lists requires prior spei� permission and/or a fee.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year, Pages 1{40.

2 � F. Pottier and V. Simonet

area onern extremely simpli�ed programming languages. Several papers address

pure �-aluli [Heintze and Rieke 1998; Abadi et al. 1999; Pottier and Conhon

2000℄. Volpano et al. [Volpano et al. 1996; Volpano and Smith 1997b℄ study a ore

imperative programming language, where all variables store integers. Volpano and

Smith [Volpano and Smith 1997a℄ also study a language equipped with a fatal (non-

athable) exeption, orresponding to failure of arithmeti operations. Banerjee

and Naumann [Banerjee and Naumann 2002℄ deal with a fragment of Java, whih

inludes lasses and methods. Standing in sharp ontrast, Myers [Myers 1999a;

1999b℄ onsiders the full Java language, inluding objets, exeptions, parameter-

ized lasses, et. However, he does not give a formal proof of orretness; indeed,

our formal approah unovered a ouple of aws in his type system, whih are

desribed in the onferene version of this paper [Pottier and Simonet 2002a℄.

In an attempt to bridge the gap, we onsider a all-by-value �-alulus equipped

with let-polymorphism, produts and sums, referenes, exeptions, and generi

primitive operations. (These last appear only in Setion 7.) We refer to it as

Core ML, beause of its similarity with Wright and Felleisen's Core ML [Wright

and Felleisen 1994℄. In our version, however, exeption names have global sope,

and neither exeption names nor exeptions are �rst-lass values. Our alulus is

very lose to the ore of the funtional programming language Caml-Light [Leroy

et al. 1997℄. We endow it with a polymorphi, onstraint-based type system, alled

mlif, whih has deidable type inferene and guarantees noninterferene.

A (monomorphi) treatment of referenes in a higher-order language an be found

in [Zdanewi and Myers 2001; 2002℄. Exeptions have been studied by Myers [My-

ers 1999a; 1999b℄ for Java. However, Myers' treatment relies on Java's expliit,

monomorphi throws lauses, whereas our type system uses a more exible, poly-

morphi e�et analysis, giving rise to issues disussed in Setion 10. The ombina-

tion of referenes, exeptions and onstrained let-polymorphism, as well as our use

of a standard subjet redution tehnique to establish noninterferene, are novel.

Our use of unannotated produt types and our treatment of generi primitive oper-

ations (suh as polymorphi equality), whih require ustom onstraint forms, are

also original ontributions of this paper.

This paper is a revised and extended version of [Pottier and Simonet 2002a℄.

The main novelty with respet to the onferene version resides in our deision to

make exeptions seond-lass entities, rather than �rst-lass values. This simpli�es

the type system, by allowing several notions to be suppressed; namely, exeption

types, alternatives, and onditional onstraints. (More explanations are given in

Setion 5.4.) Eliminating onditional onstraints, in partiular, makes it more

straightforward to design an eÆient onstraint solving proedure, and helps infer

more readable types. We believe that the loss of expressiveness assoiated with this

design deision remains minimal. Another improvement onsists in a more detailed

desription of onstraint solving, inluding a orretness proof.

2. OVERVIEW

Type systems are typially used to establish safety properties, i.e. prove that a

ertain invariant holds throughout the exeution of a program. Type safety is suh

a property. However, noninterferene [Goguen and Meseguer 1982℄ requires two

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 3

independent program runs, given di�erent inputs, to yield the same output. As a

result, its proof is often more deliate.

Abadi et al. [Abadi et al. 1996℄ devised a labeled operational semantis of the

�-alulus, where the labels attahed to a term indiate how muh information

it arries. Exeuting a program under suh a semantis amounts to performing

a dynami dependeny analysis along with the atual omputation. Pottier and

Conhon [Pottier and Conhon 2000℄ later showed how stati, type-based depen-

deny analyses ould be systematially derived, and proven safe, from suh a labeled

semantis.

Unfortunately, in a programming language with side e�ets, it is possible to leak

information through the absene of a ertain e�et. Indeed, onsider the program

fragment \if x = 1 then y := 1". If, after exeuting this statement, y isn't 1, then x

annot be 1 either. Thus, in that ase, exeution transfers information about x to

y, even though no assignment takes plae, sine the statement y := 1 is skipped. It

appears diÆult for a labeled semantis to aount for the e�et of ode that is not

exeuted; so, the approah must be reonsidered.

Diret noninterferene proofs, although straightforward for simple programming

languages [Volpano et al. 1996℄, beome inreasingly omplex in the presene of

advaned features suh as dynami memory alloation, higher-order funtions, and

type polymorphism. A noninterferene proof an be viewed as a bisimulation proof.

For this reason, it requires manipulating a large, and often umbersome, invariant:

see e.g. [Zdanewi and Myers 2001℄. To avoid this pitfall, we break our proof down

into several independent steps. First, we de�ne a speial-purpose extension of the

language, whih allows expliit reasoning about the ommonalities and di�erenes

between two arbitrary program on�gurations, and prove it adequate in a ertain

sense. Then, we de�ne a type system for this extended language, and prove that

it enjoys a subjet redution property. Lastly, we show that noninterferene for

the base language is a onsequene of these results. In other words, we redue the

initial problem to subjet redution|a safety property|for our speial-purpose

language. The bisimulation invariant is thus expressed in the type system itself,

making it easier to reason about.

In keeping with the ML tradition, our type system has let-polymorphism and

type inferene. In addition to struture, our types desribe e�ets and seurity

levels; polymorphism allows writing ode that is generi with respet to all three.

Type inferene is indispensable, beause our types are verbose, and beause infor-

mation ow often ours in unexpeted ways. Beause we employ subtyping (as

well as other forms of onstraints), our type inferene system is onstraint-based.

Yet, if type generalization, instantiation, and onstraint manipulation were part of

the type system from the outset, our subjet redution proof would be signi�antly

obfusated. To work around this problem, we adopt a semi-syntati approah [Pot-

tier 2001℄, whih again onsists in breaking down the onstrution into two steps.

First, we present a system equipped with an extensional form of polymorphism,

whose formal treatment is unintrusive. Then, we build a onstraint-based system

in the style of HM(X) [Odersky et al. 1999℄, whih we prove orret with respet

to the former.

We now proeed as follows. We �rst present the syntax of Core ML (Setion 3).

Then, we introdue our extension of Core ML, whih we refer to as \Core ML

2

", give

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

4 � F. Pottier and V. Simonet

v ::= x j () j k j �x f:�x:e j m j (v; v) j inj

j

v

a ::= v j raise " v

e ::= a j v v j ref v j v := v j ! v j proj

j

v j v ase x � e e j let x = v in e j E[e℄

E ::= bind x = [℄ in e j [℄ handle " x � e j [℄ handle e done j [℄ handle e raise j [℄ �nally e

Fig. 1. The syntax of Core ML

an operational semantis for both languages at one, and show how they relate to

eah other (Setion 4). Setion 5 introdues mlif

0

, a type system for Core ML

2

, and

establishes subjet redution. Combining these results, we obtain a noninterferene

property for Core ML (Setion 6). In Setion 7, we extend the language with

generi primitive operations. Culminating our development, Setion 8 presents

mlif, a onstraint-based type system whih we prove orret with respet to mlif

0

.

We show that onstraint solving is deidable, allowing type inferene. Setion 9

lists some example programs with their types. Lastly, we disuss a few design

alternatives in Setion 10.

3. CORE ML

Let k range over integers; let x, m range over disjoint denumerable sets of program

variables, and memory loations, respetively; let j range over f1; 2g. Let " range

over a denumerable set E of exeption names. Then, values, answers, expressions

and evaluation ontexts are de�ned as in �gure 1.

Values inlude variables, a unit onstant, integers, �-abstrations, memory lo-

ations, pairs, and appliations of an injetion. An abstration �x f:�x:e may re-

ursively refer to itself through the program variable f . (This is done merely to

avoid introduing a separate �x-point ombinator. We write �x:e when f does

not appear free in e.) Answers represent ompleted omputations; they are either

values or unhandled exeptions of the form raise " v. An expression is an answer, a

so-alled basi expression, a let onstrut, or another expression enlosed within an

evaluation ontext.

Basi expressions inlude funtion appliations, instanes of three primitive op-

erations, whih allow alloating, updating, and dereferening memory ells, pair

projetions, and sum elimination (ase) onstruts. They are built out of values,

rather than out of arbitrary sub-expressions. This syntati restrition, whih is

reminisent of Flanagan et al.'s A-normal forms [Flanagan et al. 1993℄, o�ers a

number of advantages. First and foremost, it enables a muh lighter formulation of

our type-and-e�et system. Indeed, beause values have no omputational e�et, a

basi expression's omponents now ontribute nothing to its e�et. Furthermore,

it allows our system to remain independent of the evaluation strategy, i.e. of the

hoie of left-to-right vs. right-to-left evaluation order. User programs, expressed

in a more liberal syntax, must be translated down into our restrited syntax be-

fore they an be analyzed. Di�erent evaluation strategies are then implemented by

di�erent translation shemes. We will ome bak to this point in setion 5.6.

The let onstrut let x = v in e has the same meaning as the basi expression

(�x f:�x:e) v (where f is not free in e). However, as usual in ML [Wright and

Felleisen 1994℄, the let keyword direts the type heker to give x polymorphi

type. Following Wright [Wright 1995℄, we require the binding to ontain a value v,

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 5

rather than an arbitrary sub-expression, so as to avoid unsoundness in the presene

of imperative features. As a result, let onstruts do not appear among evaluation

ontexts.

Evaluation ontexts provide glue to ombine expressions and speify their evalua-

tion order. The expression bind x = e

1

in e

2

evaluates e

1

, binds x to its value, then

evaluates e

2

. The bind keyword does not request type generalization; it merely

expresses sequentiality. Our deision of making let and bind separate onstruts

emphasizes this distintion. We write e

1

; e

2

for bind x = e

1

in e

2

, where x does not

our in e

2

.

The remaining evaluation ontexts o�er a variety of ways of handling exeptions.

If the expression in the hole redues to raise " v, then [℄ handle " x � e binds x

to v and evaluates e; otherwise, it has no e�et. The ontext [℄ handle e done

is analogous, but athes every exeption, regardless of its name. It does not

bind a variable, beause exeptions are not values. The ontext [℄ handle e raise

also athes every exeption, and exeutes the handler e; then, however, it lets

the answer raise " v esape, instead of ompleting normally. Lastly, the ontext

[℄ �nally e always exeutes e, regardless of the answer produed by the expression

in the hole, before proeeding; it is similar to Lisp's unwind-protet and Java's

try-�nally onstruts.

Why do we provide so many distint ways of handling exeptions? The expla-

nation lies in our deision to make exeptions seond-lass entities: an exeption

is not a value, so a variable annot be bound to an exeption, and raising an ex-

eption requires its name " to be statially spei�ed. This design hoie will be

motivated in setion 5.4. To mitigate the loss in expressiveness, we must provide

enough ontext forms to over all ommon programming idioms.

We do not yet give an operational semantis for Core ML, beause we view it as

a fragment of Core ML

2

, whih we de�ne in the next setion.

4. CORE ML

2

4.1 Presentation

Non-interferene requires reasoning about two programs and proving that they

share some sub-terms throughout exeution. To make suh reasoning easier, we

hoose to represent them as a single term of an extended language, alled Core

ML

2

, rather than as a pair of Core ML terms. The extension is as follows:

v ::= : : : j hv j vi j void

a ::= : : : j ha j ai

e ::= : : : j he j ei

The Core ML

2

term he

1

j e

2

i is intended to enode the pair of Core ML terms

(e

1

; e

2

). It is important to note that brakets an appear at an arbitrary depth

within a term. For instane, if v is a Core ML value, then hv

1

j v

2

i v and hv

1

v j v

2

vi

both enode the pair (v

1

v; v

2

v). The former, however, is more informative, beause

it expliitly reords the fat that the appliation node and its argument v are shared,

while the latter doesn't. We do not allow nesting h� j �i onstruts, beause that

would not make sense given our intended interpretation; so, the sub-terms of suh

a onstrut must be Core ML terms.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

6 � F. Pottier and V. Simonet

The orrespondene between Core ML and Core ML

2

is made expliit by means

of two projetion funtions b�

i

, where i ranges over f1; 2g. These funtions satisfy

bhe

1

j e

2

i

i

= e

i

and are homomorphisms on other expression forms.

Before giving more de�nitions, let us give a hint of how Core ML

2

allows keeping

trak of the di�erenes between two Core ML programs throughout exeution. For

instane, let us onsider the funtion �x:0. Clearly, its result does not reveal any

information about its argument, sine it is a onstant. Indeed, the type system

whih we will present in the following laims that this funtion maps \seret"

inputs to \publi" outputs. Now, in order to prove that the type system is orret,

we must establish a noninterferene result: for all integers k

1

and k

2

, the programs

e

1

= (�x:0) k

1

and e

2

= (�x:0) k

2

yield the same value. To do so, we enode these

two programs into a single Core ML

2

term, namely e = (�x:0) hk

1

j k

2

i. Its two

projetions are the original Core ML programs: for i 2 f1; 2g, be

i

is e

i

. Note

that the \seret" inputs k

1

and k

2

appear under brakets in e, while the struture

ommon to e

1

and e

2

, namely the appliation of �x:0, is shared|that is, it appears

outside the brakets. Aording to Core ML

2

's operational semantis, whih we

will desribe further on, the omposite term (�x:0) hk

1

j k

2

i redues to the Core

ML

2

term 0. The fat that this term does not ontain any brakets is suÆient to

ensure that its two projetions oinide, that is, the original programs e

1

and e

2

both produe the same result. The noninterferene proof developed in this paper

(Theorem 15) is based on the same approah: we will prove that, under appropriate

typing hypotheses, the result of a Core ML

2

redution sequene does not ontain

any brakets.

The redution sequene (�x:0) hk

1

j k

2

i ! 0, whih we desribed above, is ex-

tremely simple. In general, however, redutions in Core ML

2

an be muh more

omplex: several of its redution rules must lift brakets when they blok redution.

For instane, beause the appliation h�x:x j �x:0i 1 is not a �-redex, it must be

taken are of by a redution rule other than (�). We introdue a new rule, (lift-app),

whih redues it to h(�x:x) 1 j (�x:0) 1i. Note that this step a�ets neither proje-

tion, so it has no omputational ontent: by moving brakets, it only keeps trak of

information ow. Eah side of the new term is now a �-redex, allowing redution

to proeed: we obtain h(�x:x) 1 j (�x:0) 1i !

?

h1 j 0i.

4.2 Stores and on�gurations

The meaning of memory loations is given by a store �, i.e. a partial map from

memory loations to values. We write �[m 7! v℄ and � � [m 7! v℄ for the store

whih maps m to v and otherwise agrees with �; the latter is de�ned only if m 62

dom(�). We need to keep trak of sharing not only between expressions, but also

between stores. However, distint stores may have distint domains. To aount

for this fat, we introdue a speial onstant void. By reating bindings of the form

m 7! hv j voidi and m 7! hvoid j vi in the store, we represent situations where

a memory loation m is bound within only one of the two Core ML expressions

enoded by a Core ML

2

term.

A on�guration e =

i

� is a triple of an expression e, a store �, and an index

i 2 f�; 1; 2g, whose purpose is explained in Setion 4.3. It is stuk if it is irreduible

and e isn't an answer. It is suessful if e is an answer. We write e = � for e =

�

�.

To guarantee that brakets annot beome nested during redution and that void is

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 7

used exlusively in store bindings, as desribed above, we must introdue a ouple

of tehnial notions, whose de�nitions one may wish to skip upon �rst reading. A

on�guration e =

i

� is well-formed if the following onditions hold:

|e does not ontain void; furthermore, if i 2 f1; 2g, then e is a Core ML expression;

|for every m 2 dom(�), �(m) is of the form v, hv j voidi or hvoid j vi, where v

does not ontain void.

Furthermore, we onsider a memory loation m to be bound within e and � aord-

ing to the following rules:

|if �(m) is of the form hv j voidi (resp. hvoid j vi), then:

|m is in sope within the left (resp. right) branh of every h� j �i onstrut in �;

|if i = �, then m is in sope within the left (resp. right) branh of every h� j �i

onstrut in e; if i = 1 (resp. i = 2), then m is in sope within e;

|otherwise, m is in sope everywhere within e and �.

A on�guration e =

i

� is losed if all ourrenes of memory loations in it are

in sope. We restrit our attention to well-formed, losed on�gurations. (We

let the interested reader hek that this subset of on�gurations is stable under

the redution rules introdued in Setion 4.3.) We identify on�gurations up to

onsistent renamings of memory loations.

The projetion funtions are extended to stores as follows: b�

i

maps m to

b�(m)

i

if and only if the latter is de�ned and isn't void. Lastly, the projetion of

a on�guration is de�ned by be = �

i

= be

i

= b�

i

.

4.3 Semantis

The small-step operational semantis of Core ML

2

is given in Figure 2. The �rst

two groups of redution rules are those of Core ML, with a few tehnial twists

explained below. The rules in the third group are spei� to Core ML

2

; they allow

disarding sharing information if redution annot otherwise take plae. The rules

in the fourth group allow redution under a ontext.

The rules are designed so that the image of any redution step through a pro-

jetion funtion is again a valid redution step. Redution may take plae out-

side brakets, ausing both projetions to perform the same redution step; inside

brakets, letting one projetion progress independently, while the other remains

stationary; or lift up the braket boundary, disarding some sharing information,

while leaving both projetions unhanged.

The apture-free substitution of v for x in e, written e[x (v℄, is de�ned in the

usual way, exept at h� j �i nodes, where we must use an appropriate projetion of

v in eah branh: he

1

j e

2

i[x(v℄ is he

1

[x(bv

1

℄ j e

2

[x(bv

2

℄i.

Roughly speaking, the rules in the �rst two groups are appliable under any

ontext. However, (ref), (assign) and (deref) need a small amount of ontextual

information. Indeed, the store must be aessed in a ontext-dependent manner:

redutions whih take plae inside a h� j �i onstrut must use or a�et only one

projetion of the store. The index i arried by on�gurations is used for this

purpose. Its value is � when dealing with top-level redution steps; it is made 1

(resp. 2) by rule (braket) when reduing within the left (resp. right) branh of a

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

8 � F. Pottier and V. Simonet

Basi redutions

(�x f:�x:e) v =

i

� ! e[x(v℄[f (�x f:�x:e℄ =

i

� (�)

ref v =

i

� ! m =

i

� � [m 7! new

i

v℄ (ref)

m := v =

i

� ! () =

i

�[m 7! update

i

�(m) v℄ (assign)

!m =

i

� ! read

i

�(m) =

i

� (deref)

proj

j

(v

1

; v

2

) =

i

� ! v

j

=

i

� (proj)

(inj

j

v) ase x � e

1

e

2

=

i

� ! e

j

[x(v℄ =

i

� (ase)

let x = v in e =

i

� ! e[x(v℄ =

i

� (let)

Sequening

bind x = v in e =

i

� ! e[x(v℄ =

i

� (bind)

raise " v handle " x � e =

i

� ! e[x(v℄ =

i

� (handle)

raise " v handle e done =

i

� ! e =

i

� (handle-done)

raise " v handle e raise =

i

� ! e; raise " v =

i

� (handle-raise)

a �nally e =

i

� ! e; a =

i

� (�nally)

E[a℄ =

i

� ! a =

i

� (pop)

if E handles neither ba

1

nor ba

2

Lifting

hv

1

j v

2

i v = � ! hv

1

bv

1

j v

2

bv

2

i = � (lift-app)

hv

1

j v

2

i := v = � ! hv

1

:= bv

1

j v

2

:= bv

2

i = � (lift-assign)

! hv

1

j v

2

i = � ! h ! v

1

j ! v

2

i = � (lift-deref)

proj

j

hv

1

j v

2

i =� ! hproj

j

v

1

j proj

j

v

2

i =� (lift-proj)

hv

1

j v

2

i ase x � e

1

e

2

=� ! hv

1

ase x � be

1

1

be

2

1

j

v

2

ase x � be

1

2

be

2

2

i =� (lift-ase)

E[ha

1

j a

2

i℄ = � ! hbE

1

[a

1

℄ j bE

2

[a

2

℄i = � (lift-ontext)

if none of the sequening rules applies

Redution under a ontext

e =

i

�! e

0

=

i

�

0

E[e℄ =

i

�! E[e

0

℄ =

i

�

0

(ontext)

e

i

=

i

�! e

0

i

=

i

�

0

e

j

= e

0

j

fi; jg = f1; 2g

he

1

j e

2

i = � ! he

0

1

j e

0

2

i = �

0

(braket)

Auxiliary funtions

new

�

v = v update

�

v v

0

= v

0

read

�

v = v

new

1

v = hv j voidi update

1

v v

0

= hv

0

j bv

2

i read

1

v = bv

1

new

2

v = hvoid j vi update

2

v v

0

= hbv

1

j v

0

i read

2

v = bv

2

Fig. 2. Operational semantis of Core ML

2

h� j �i onstrut. It is used in the auxiliary funtions new

i

, update

i

and read

i

to

aess the store in an appropriate way.

The rules in the seond group desribe how answers (i.e. values and exeptions)

are handled or propagated by evaluation ontexts. We say that E handles a if and

only if E[a℄ an be redued via a sequening rule other than (pop).

The rules in the third group have no omputational ontent: they leave both

projetions unhanged. Their purpose is to prevent h� j �i onstruts from bloking

redution, whih is done by lifting them up, thus ausing some sub-terms to be

dupliated, but allowing redution to proeed independently within eah branh.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 9

For instane, the left-hand expression in (lift-app) is not a �-redex. In its redut,

the appliation node and the sub-term v are dupliated, allowing two �-redexes

to appear. A somewhat analogous rule appears in the semantis of Abadi et al.'s

labeled �-alulus [Abadi et al. 1996℄. To understand the signi�ane of the \lift"

rules, one must bear in mind that the ontents of every h� j �i onstrut will be

viewed as \seret". By ausing new sub-terms to beome seret during redution,

these rules atually provide an expliit desription of information ow.

The h� j �i onstrut is reminisent of the fork node introdued by Field and

Teitelbaum to perform inremental redution of �-terms [Field and Teitelbaum

1990℄. In fat, (lift-app) is one of their redution rules. However, the details di�er;

in partiular, we work with terms, whereas Field and Teitelbaum onsider graphs,

allowing a redex to be shared between two projetions of a term.

Our design attempts to disard as little sharing information as possible; indeed,

replaing all of the \lift" rules with the single rule e! hbe

1

j be

2

i, while omputa-

tionally orret, would ause the type system to view every expression as \seret".

Yet, the redution rules of Core ML

2

are not anonial: we have imagined a num-

ber of slight variations that work equally well. This is a ommon defet of purely

syntati proof tehniques. This point should not be taken too seriously: Core ML

2

is a tehnial devie, whose sole purpose is to prove a partiular type system sound.

One may wonder how general this syntati approah is. We do not have a de�nite

answer, although we have used it suessfully in di�erent settings [Pottier 2002;

Simonet 2002℄.

4.4 Relating Core ML

2

to Core ML

We now show that Core ML

2

is an appropriate tool to reason simultaneously about

the exeution of two Core ML programs. This is expressed by two properties. First,

as explained above, the image of a valid redution through projetion remains a

valid redution. Conversely, if both projetions of a term an be redued to a

suessful on�guration, then so an the term itself.

Lemma 1. Let i 2 f1; 2g. If e =

i

�! e

0

=

i

�

0

, then e = b�

i

! e

0

= b�

0

i

.

Proof. By inspetion of (ref), (assign) and (deref).

Lemma 2 (Soundness). Let i 2 f1; 2g. If e=�! e

0

=�

0

, then be=�

i

! be

0

=�

0

i

.

Proof. By inspetion of the redution rules and by Lemma 1.

Lemma 3. If e = � is stuk, then be = �

i

is stuk for some i 2 f1; 2g.

Proof. By indution on the struture of e.

Æ Cases e = v, e = ref v, e = (let x = v in e

0

), e = raise " v. e = � is not stuk.

Æ Case e = v

1

v

2

. Beause neither (�) nor (lift-app) is appliable, v

1

annot be

of the form hv

11

j v

12

i or �x f:�x:e

0

. As a result, for any i 2 f1; 2g, bv

1

i

annot be

of the form �x f:�x:e

0

. It follows that be = �

i

is stuk.

Æ Cases e = (v

1

:= v

2

), e = ! v, e = proj

j

v, e = v ase x � e

1

e

2

are similar to

the previous ase.

Æ Case e = E[e

1

℄. e

1

=� must be irreduible, otherwise, by (ontext), e =� would

be reduible. Let us temporarily assume that e

1

is an answer a. Then, E does not

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

10 � F. Pottier and V. Simonet

handle a, otherwise E[a℄ would be reduible via one of the sequening rules. If a

were of the form ha

1

j a

2

i, then learly E[a℄ would be reduible via either one of the

sequening rules or (lift-ontext). So, a must be of the form v or raise " v, whih,

onsidering that E does not handle a, implies that E handles neither ba

1

nor ba

2

.

As a result, (pop) must be appliable, a ontradition.

So, e

1

is not an answer, whih implies that e

1

=� is stuk. By indution hypothesis,

be

1

= �

i

is stuk, for some i 2 f1; 2g. By inspetion of the redution rules, so is

F [be

1

i

℄=b�

i

, for any Core ML evaluation ontext F ; in partiular, so is bE[e

1

℄

i

=

b�

i

, whih is be = �

i

.

Æ Case e = he

1

j e

2

i. Assume e =� is stuk. By (braket), both e

1

=

1

� and e

2

=

2

�

are irreduible. Beause e isn't an answer, there exists i 2 f1; 2g suh that e

i

isn't

an answer. As a result, e

i

=

i

� is stuk. It follows that e

i

= b�

i

is stuk as well.

Lemma 4 (Completeness). Assume be=�

i

!

?

a

i

=�

0

i

for all i 2 f1; 2g. Then,

there exists a on�guration a = �

0

suh that e = �!

?

a = �

0

.

Proof. To begin, let us establish that e=� does not admit an in�nite redution

sequene. We �rst notie that no in�nite redution sequene an onsist exlusively

of instanes of the \lift" redution rules. (Indeed, eah of these rules moves some

h� j �i onstrutor stritly loser to the term's root.) Furthermore, these are the

only rules whih leave both projetions of a on�guration unhanged. In light of

this remark, if e = � admits an in�nite redution sequene, then Lemma 2 yields

an in�nite redution sequene out of be = �

i

, for some i 2 f1; 2g. However, this is

impossible, beause both be=�

1

and be=�

2

an be redued to normal forms, and

the semantis of the Core ML fragment is deterministi.

So, e =� redues to an irreduible on�guration. Let us temporarily assume that

it is stuk. Then, by Lemma 3, at least one of its projetions is stuk, whih implies,

by Lemma 2, that be = �

i

redues to a stuk on�guration, for some i 2 f1; 2g|a

ontradition. Thus, e = � redues to a suessful on�guration.

Our ompleteness result requires both projetions to onverge; it is not appliable

if one of them diverges. Indeed, de�ne e as bind x = h
 j 0i in 0, where
 is a

nonterminating expression. Its right projetion is bind x = 0 in 0, whih redues

to 0; yet, e annot be redued to any term whose right projetion is 0, beause e

only redues to itself. Suh a formulation of ompleteness will naturally lead us to

establish a weak noninterferene result, whereby two programs an be guaranteed

to yield the same result only if they both terminate. We do not aim at a strong

noninterferene result, beause it would make little sense to plug information leaks

related to termination without attaking timing leaks in general. Furthermore, suh

a result might require a muh more restritive type system.

In essene, the ompleteness lemma guarantees that we have provided enough

\lift" rules to allow reduing all meaningful Core ML

2

expressions. In the next

setion, eah of these rules will add one ase to our subjet redution proof, foring

us to ensure that our type system aounts for all possible kinds of information

ow.

5. TYPING CORE ML

2

We now give a type system, alled mlif

0

, for Core ML

2

. It is a ground type system:

it has no type variables and deals with polymorphism in a simple, abstrat way. As

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 11

a result, it does not desribe an algorithm; we address this issue in Setion 8.

Throughout the paper, every ourrene of � stands for a distint anonymous

meta-variable of appropriate kind.

5.1 Types

Let (L;�) be a lattie whose elements, denoted by ` and p, represent seurity

levels. (Following Denning [Denning 1982℄, we typially use the meta-variable p,

rather than `, when onsidering information obtained by observing the value of

the \program ounter".) We write ? and > for L's least and greatest elements,

respetively. Types and rows are then de�ned as follows:

t ::= unit j int

`

j (t

p [r℄

���! t)

`

j t ref

`

j t� t j (t+ t)

`

r ::= f" 7! pg

"2E

These are the types of ML's type system, deorated with extra seurity annotations.

A row r is an in�nite, quasi-onstant family of seurity levels, indexed by E . (A

family is quasi-onstant if all but a �nite number of its entries are equal.) We write

(" : p; r) for the row whose element at index " is p and whose other elements are

given by the sub-row r, whih is indexed by E n f"g. We write �p for the onstant

row whih maps every exeption name to p. We write t r for t

"2E

r(").

The type int

`

desribes integer expressions whose value may reet information

of seurity level `.

Funtion types arry several seurity annotations. The annotation ` represents

information about the funtion's identity. When the funtion is applied, part of

this information may be reeted in its result or in other aspets of its behavior

(i.e. in its e�et); as a result, their seurity level will be made ` or greater. The

annotation p tells how muh information is assoiated with the knowledge that

this funtion gains ontrol. To avoid leaking this information, the funtion will

be allowed to write into memory ells, or to raise exeptions, only at level p or

greater. In other words, the annotation p represents a lower bound on the level

of the funtion's e�ets. The annotations ` and p are standard, and an be found

(under di�erent names) e.g. in Heintze and Rieke's work [Heintze and Rieke 1998℄.

We orret a slight oversight on their part, however, by notiing that p an be made

ontravariant, rather than invariant (see Setion 5.2). In Setion 10, we will suggest

merging the annotations ` and p; we keep them distint in the bulk of the paper.

In addition, every funtion type arries an e�et [r ℄. For every exeption name ",

the seurity level r(") indiates how muh information is gained by observing that

the funtion raises an exeption named ". Following Myers [Myers 1999a; 1999b℄,

we assoiate a distint seurity level with every exeption name, so as to obtain

better preision. Our rows are losely related to Myers' sets of path labels X ; see

Setion 10 for more details. The reader may notie that rows do not reord the

type of exeption arguments. Indeed, as in ML, we make exeptions monomorphi

by assuming given a �xed mapping typexn from exeption names to types. This

deision makes funtion types muh more ompat.

Referene types arry one annotation `, whih represents information about the

referene's identity, i.e. about its address. Information about its ontents is found

within the parameter t.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

12 � F. Pottier and V. Simonet

int

�

(

	 [�℄

����! �)

�

� ref

�

��� (�+ �)

�

f" 7! �g

"2E

Fig. 3. Subtyping

` C unit

` � `

0

` C int

`

0

` � `

0

` C (�

� [�℄

���! �)

`

0

` � `

0

` C � ref

`

0

` C t

1

` C t

2

` C t

1

� t

2

` � `

0

` C (�+ �)

`

0

Fig. 4. Guards

Beause there is only one value of type unit, the value of a unit expression yields no

information whatsoever. As a result, it would be superuous for the unit type on-

strutor to arry a seurity level. Similarly, produt types arry no seurity anno-

tation, beause, in the absene of a physial equality operator suh as Caml-Light's

==, all of the information arried by a tuple is in fat arried by its omponents.

Thus, we break the onvention, established in a number of previous papers [Heintze

and Rieke 1998; Pottier and Conhon 2000℄, that all types should be of the form

�

`

. This design deision, whih we expet to help redue verbosity, has impliations

on onstraint solving, as explained in Setion 5.2.

Sum types arry a seurity annotation `, whih reets how muh information

the tag arries, i.e. how muh information is obtained by determining whether the

value was built using a left or right injetion.

5.2 Subtyping and guards

We equip types and rows with a subtyping relation �, whih extends the partial

order (L;�). It is de�ned by the axioms in Figure 3. The axiom int

�

is a ompat

version of the assertion int

`

1

� int

`

2

() `

1

� `

2

. In other words, it states that

int's parameter is ovariant. The other axioms are to be understood similarly; �,

	 and � represent ovariant, ontravariant and invariant parameters, respetively.

The last axiom extends subtyping to rows, point-wise and ovariantly. The use

of subtyping in information ow ontrol is ubiquitous [Bell and LaPadula 1975;

Denning 1982; Volpano and Smith 1997b; Heintze and Rieke 1998℄ and appears

essential, beause it allows building a direted view of the program's information

ow graph, yielding better preision than a uni�ation-based analysis.

Figure 4 de�nes the binary prediate C, whih relates a seurity level and a type.

In short, the assertion ` C t (read: ` guards t) requires t to have seurity level `

or greater, and is used to reord a potential information ow. This is similar to

Abadi et al.'s \t is proteted at level `" [Abadi et al. 1999℄. In systems where every

type onstrutor arries a seurity annotation [Heintze and Rieke 1998; Pottier

and Conhon 2000℄, C would be syntati sugar for �. Indeed, every instane of

it would then be of the form ` C �

`

0

and equivalent to ` � `

0

. Here, the situation

is more omplex, beause unit and produt types arry no annotation. As a result,

C onstraints must reeive a treatment of their own during onstraint solving; see

Setion 8.5.

For any given ` and t, there exists a (minimal) supertype t

0

of t suh that ` C t

0

holds. Thus, the presene of ` C t among a typing rule's premises usually annot

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 13

irremediably prevent the appliation of that rule: the premise an be satis�ed by

�rst promoting t to t

0

using the subtyping rule. One exeption is e-Assign (see

Figure 6), where t annot be promoted to a supertype beause it appears as an

invariant argument to the ref type onstrutor.

The prediate C interats niely with subtyping:

Lemma 5. If `

0

� ` and ` C t and t � t

0

then `

0

C t

0

.

Proof. ` C t is equivalent to ` � level (t), for an appropriate funtion level,

whose de�ning lauses inlude level (unit) = > and level (t

1

� t

2

) = level (t

1

) u

level (t

2

). Furthermore, level is ovariant in its argument. The result follows.

5.3 Typing judgements

A polytype s is a nonempty set of types. By abuse of notation, a type t may be

viewed as a polytype ftg. A polytype environment � is a partial mapping from

program variables to polytypes. A memory environment M is a partial mapping

from memory loations to types.

We distinguish two forms of typing judgements: one deals with values only, the

other with arbitrary expressions. Beause values are normal forms, they have no

side e�ets, so the �rst judgement form is quite simple:

�;M ` v : t

(We write �;M ` v : s if and only if �;M ` v : t holds for all t 2 s.) On the other

hand, expressions do produe side e�ets, so the seond judgement form is more

elaborate:

p;�;M ` e : t [r ℄

The assumption p again tells how muh information is assoiated with the knowl-

edge that e is evaluated; it is a lower bound on the level of its e�ets. It is stan-

dard [Volpano and Smith 1997b; Heintze and Rieke 1998℄. The row r tells how

muh information one obtains by observing exeptions esape out of e.

Two extra judgement forms are employed to reason about stores: M ` � and

on�gurations: � ` e=

i

� : t [r ℄. These are analogous to those found in e.g. [Pottier

2001℄. We omit � and M in a judgement when they are empty.

Even though the seurity lattie (L;�) is arbitrary, we wish to establish a tem-

porary dihotomy between \low" and \high" seurity levels. (This distintion will

be eliminated in Setion 6.) In the present setion, we assume H is a �xed, upward-

losed subset of L, and view levels inside (resp. outside) H as \high" (resp. \low").

Beause noninterferene is about two expressions that di�er only in \high"-level

sub-terms, our type system will require expressions of the form he

1

j e

2

i, whih we

use to enode the di�erenes between two Core ML expressions, to have \high"-

seurity result and side e�ets. (See v-Braket and e-Braket in Figures 5

and 6.) This will be our only use of H in this setion.

5.4 Typing rules

We now omment on the typing rules, given in Figures 5 and 6. v-Unit and v-Int

assign base types to onstants. v-Void allows typing values of the form hv j voidi or

hvoid j vi by pretending void has the same type as v. v-Lo and v-Var assign types

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

14 � F. Pottier and V. Simonet

v-Unit

�;M ` () : unit

v-Int

�;M ` k : int

�

v-Void

�;M ` void : �

v-Lo

�;M ` m :M(m) ref

�

v-Var

t 2 �(x)

�;M ` x : t

v-Abs

p;�[x 7! t

0

℄[f 7! (t

0

p [r℄

����! t)

`

℄;M ` e : t [r ℄

�;M ` �x f:�x:e : (t

0

p [r℄

����! t)

`

v-Pair

�;M ` v

1

: t

1

�;M ` v

2

: t

2

�;M ` (v

1

; v

2

) : t

1

� t

2

v-Inj

�;M ` v : t

�;M ` inj

j

v : (t+

j

�)

�

v-Braket

�;M ` v

1

: t �;M ` v

2

: t

p

0

2 H p

0

C t

�;M ` hv

1

j v

2

i : t

v-Sub

�;M ` v : t

0

t

0

� t

�;M ` v : t

Fig. 5. The type system mlif

0

(values)

to memory loations and to variables by looking up the appropriate environment.

Note that �(x) is a polytype, of whih v-Var selets an arbitrary instane. As

usual in type-and-e�et systems, v-Abs reords, on top of the ! type onstrutor,

information about the funtion's side e�ets. v-Pair is entirely standard. In v-Inj,

(t

1

+

j

t

2

)

`

stands for (t

j

+ t

i

)

`

, where i and j are 1 and 2, not neessarily in that

order, i.e. fi; jg = f1; 2g. v-Braket requires the omponents of a h� j �i onstrut

to have a ommon type, whih must have \high" seurity level, i.e. be guarded by

some (arbitrary) element of H . v-Sub is standard.

e-Value allows viewing a value as an expression, and reets the fat that values

have no side e�et.

e-Raise's premise heks that the exeption's argument v has an appropriate

type, as determined by the �xed mapping typexn and the exeption name ". Its

onlusion ensures that the expression's e�et is a row that maps " to p. In

onjuntion with e-Bind, e-Handle, e-HandleDone and e-HandleRaise, this

guarantees that any ode fragment whih observes this exeption must run at level

p or greater.

e-App governs funtion appliation. The seurity level p, whih is an assumption

in the onlusion, appears on top of the ! type onstrutor in the premise. It

represents information that ows from aller to allee, as a result of the invoation

itself. Furthermore, beause a funtion's side e�ets may reveal information about

its identity, their level must equal or exeed the funtion's own seurity level, namely

`. As a result of these remarks, the funtion's body must be typeheked at level

p t `. Lastly, the funtion's result, too, may reveal information about its identity,

so we require its type to be guarded by `.

e-Ref and e-Assign require p C t to ensure that p is indeed a lower bound

on the seurity level of the memory ell that is written. e-Assign and e-Deref

require ` C t to reet the fat that writing or reading a ell may indiretly reveal

information about its identity.

In e-Proj, both p and r are unonstrained, beause pair projetion has no side

e�et. In e-Case, the branh e

j

, by being exeuted, gains information about the

sum's tag, whose seurity level is `. As a result, it must be typeheked under the

striter seurity assumption pt `, and its result type t must be guarded by `. This

rule is a straightforward generalization of the treatment of if onstruts in previous

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 15

e-Value

�;M ` v : t

�;�;M ` v : t [� ℄

e-Raise

�;M ` v : typexn(")

p;�;M ` raise " v : � [" : p; � ℄

e-App

�;M ` v

1

: (t

0

pt` [r℄

�����! t)

`

�;M ` v

2

: t

0

` C t

p;�;M ` v

1

v

2

: t [r ℄

e-Ref

�;M ` v : t p C t

p;�;M ` ref v : t ref

�

[� ℄

e-Assign

�;M ` v

1

: t ref

`

�;M ` v

2

: t p t ` C t

p;�;M ` v

1

:= v

2

: unit [� ℄

e-Deref

�;M ` v : t

0

ref

`

t

0

� t ` C t

p;�;M ` ! v : t [� ℄

e-Proj

�;M ` v : t

1

� t

2

�;�;M ` proj

j

v : t

j

[� ℄

e-Case

�;M ` v : (t

1

+ t

2

)

`

8j 2 f1; 2g p t `;�[x 7! t

j

℄;M ` e

j

: t [r ℄ ` C t

p;�;M ` v ase x � e

1

e

2

: t [r ℄

e-Let

�;M ` v : s p;�[x 7! s℄;M ` e : t [r ℄

p;�;M ` let x = v in e : t [r ℄

e-Bind

p;�;M ` e

1

: t

0

[r

1

℄

p t (t r

1

);�[x 7! t

0

℄;M ` e

2

: t [r

2

℄

p;�;M ` bind x = e

1

in e

2

: t [r

1

t r

2

℄

e-Handle

p;�;M ` e

1

: t [" : p

"

; r ℄

p t p

"

;�[x 7! typexn(")℄;M ` e

2

: t [" : p

0

; r ℄ p

"

C t

p;�;M ` e

1

handle " x � e

2

: t [" : p

0

; r ℄

e-HandleDone

p;�;M ` e

1

: t [r

1

℄

p t (t r

1

);�;M ` e

2

: t [r

2

℄ (t r

1

) C t

p;�;M ` e

1

handle e

2

done : t [r

2

℄

e-HandleRaise

p;�;M ` e

1

: t [r ℄

p t (t r);�;M ` e

2

: � [�? ℄

p;�;M ` e

1

handle e

2

raise : t [r ℄

e-Finally

p;�;M ` e

1

: t [r ℄

p;�;M ` e

2

: � [�?℄

p;�;M ` e

1

�nally e

2

: t [r ℄

e-Braket

p t p

0

;�;M ` e

1

: t [r ℄ p t p

0

;�;M ` e

2

: t [r ℄

p

0

2 H (p

0

C t) _ (e

1

*) _ (e

2

*)

p;�;M ` he

1

j e

2

i : t [r ℄

e-Sub

p;�;M ` e : t

0

[r

0

℄ t

0

� t r

0

� r

p;�;M ` e : t [r ℄

Store

dom(M) = dom(�)

8m 2 dom(�) M ` �(m) :M(m)

M ` �

Conf

p;�;M ` e : t [r ℄ M ` �

� ` e = � : t [r ℄

Fig. 6. The type system mlif

0

(expressions and on�gurations)

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

16 � F. Pottier and V. Simonet

information ow analyses for imperative languages [Denning 1982; Volpano and

Smith 1997b℄.

Beause let only binds values, e-Let is nearly as simple as in ML. Note that v

an be given a polytype s, allowing x to be used at di�erent types within e.

In a binding onstrut bind x = e

1

in e

2

, the expression e

2

observes, if it reeives

ontrol, that no exeption was raised by e

1

. To aount for this information hannel,

e-Bind typeheks e

2

at a seurity level augmented with t r

1

, the ombined level of

all exeptions whih e

1

an potentially raise. This is a onservative approximation,

whih works well in the ommon ase where e

1

is statially known never to raise

exeptions; see Setion 10 for more details.

Like e-Bind, e-Handle typeheks e

2

at an inreased seurity level, reeting

the fat that, by gaining ontrol, e

2

observes that e

1

raised an exeption named ".

The inrement is exatly p

"

, the seurity level assoiated with " in e

1

's e�et, so the

analysis is, in this ase, quite aurate. Beause the result of the handle onstrut

may also allow determining whether the handler was exeuted, we require p

"

C t.

e-HandleDone is analogous; however, beause this onstrut allows observing any

exeption, regardless of its name, we again use t r

1

as a onservative approximation

of how muh information is gained. Myers [Myers 1999a; 1999b℄ performs the same

approximation. Like e-HandleDone, e-HandleRaise typeheks the handler e

2

at an inreased level. e-Finally, on the other hand, typeheks e

1

and e

2

at the

same level p. Indeed, beause e

2

's invoation must our, regardless of the answer

produed by e

1

, no information is assoiated with it.

Both e-HandleRaise and e-Finally require e

2

not to leak any information

through exeptions. (This is done by requiring its e�et to be the onstant row

�?.) This design hoie may seem restritive, but we believe it strikes a good

balane between expressiveness and simpliity. In the onferene version of this

paper [Pottier and Simonet 2002a; 2002b℄, we presented more general versions of

these rules, whereby e

2

was allowed to raise arbitrary exeptions. This, however,

required adding a third premise, of the form t r

2

� u r

1

, reeting the fat that, if

an exeption raised by e

1

esapes, then e

2

must have ompleted suessfully. This

additional premise involved a form of onditional onstraint, making onstraint

solving more intriate and yielding more omplex inferred types, whih is why we

propose simpler versions of these rules here.

In e-HandleRaise, the e�et of the whole expression, namely r, is exatly

e

1

's e�et, beause it is known that any informative exeption that esapes out

of e

1

handle e

2

raise was originally raised by e

1

. (By \informative" exeption, we

mean one whose seurity level is stritly greater than ?.) This is more preise

than we ould hope to ahieve if this idiom was emulated in a language with �rst-

lass exeptions, by writing, say, e

1

handle x � (e

2

; raise x). Indeed, in the

type system given in the onferene version of this paper [Pottier and Simonet

2002a℄, the sub-expression raise x would be typeheked at an inreased seurity

level pt (t r). As a result, every exeption " liable to esape out of e

1

would be re-

raised at level t r, instead of its original level r("), whih would defeat the purpose

of disriminating between exeption names. This explains why, in this paper, we

rely solely on speial-purpose onstruts, suh as handle� raise, and abandon �rst-

lass exeptions. (Again, in the onferene paper, e-Raise involved a onditional

onstraint, whih is no longer neessary here, beause every raise form expliitly

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 17

spei�es an exeption name ".)

As explained earlier, e-Braket requires both omponents of a h� j �i expression

to have a ommon type, and demands that its side e�ets and its result be of

\high" seurity level, i.e. guarded by an arbitrary p

0

2 H. The fourth premise,

however, is slightly more general than that of v-Braket. By de�nition, the

auxiliary prediate e* holds if and only if the Core ML expression e is of the form

raise " v or bind x = raise " v in e

0

or raise " v handle e

0

raise or e

0

; raise " v. This

syntati riterion, whih is preserved by substitution and by redution, ensures

that e annot redue to a value, that is, e must diverge or redue to a raise form.

There is no way, in the syntax of typing judgements, to express the knowledge

that the expression at hand annot possibly return a value; yet, the ability to

keep trak of suh knowledge is needed, in a small number of plaes, for subjet

redution to hold. The use of the prediate �* in e-Braket's last premise an be

viewed as a heap way of a�ording this expressiveness. In short, e-Braket's last

premise requires t to have a \high" seurity level, unless it is known that one of the

expressions at hand will never produe a value. This is in aordane with the fat

that our noninterferene result, to be given in Setion 6, requires both expressions

to produe values.

Rules e-Sub, Store and Conf are standard.

5.5 Subjet redution

We now give a subjet redution proof for Core ML

2

.

Lemma 6 (Weakening). p

0

� p and p;�;M ` e : t [r ℄ imply p

0

;�;M `

e : t [r ℄.

Proof. By indution on the derivation of p;�;M ` e : t [r ℄. By monotoniity

of t, ontravariane of ! with respet to its p parameter, rule v-Sub, Lemma 5,

and the indution hypothesis, it is easy to hek that every premise remains valid

when p dereases. The result follows.

Lemma 7 (Projetion). Let i 2 f1; 2g. If �;M ` v : t then �;M ` bv

i

: t. If

p;�;M ` e : t [r ℄ then p;�;M ` be

i

: t [r ℄.

Proof. By indution on the input derivation. The only ase of interest is that

of e-Braket, where the expression at hand is he

1

j e

2

i. Then, one of the �rst

two premises is p t p

0

;�;M ` e

i

: t [r ℄. Lemma 6 yields p;�;M ` e

i

: t [r ℄, as

required.

Lemma 8 (Guard). If �;M ` hv

1

j v

2

i : t then there exists p

0

2 H s.t. p

0

C t.

Proof. Thanks to Lemma 5, we may assume, w.l.o.g., that the derivation of

�;M ` hv

1

j v

2

i : t does not end with an instane of v-Sub. Thus, it must end with

an instane of v-Braket, among whose premises we �nd p

0

C t and p

0

2 H .

Lemma 9 (Store aess). Let i be in f�; 1; 2g. Assume �;M ` v : t and

�;M ` v

0

: t. Then, �;M ` read

i

v : t holds. Moreover, if i 2 f1; 2g, assume

there exists some p

0

2 H suh that p

0

C t. Then, �;M ` new

i

v : t and �;M `

update

i

v v

0

: t hold.

Proof. By de�nition of the funtions new, update and read (Figure 2), by

Lemma 7, by v-Void and v-Braket.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

18 � F. Pottier and V. Simonet

Lemma 10 (Substitution). Assume M ` v : s. Then, �[x 7! s℄;M ` v

0

: t

implies �;M ` v

0

[x (v℄ : t. Also, p;�[x 7! s℄;M ` e : t [r ℄ implies p;�;M `

e[x(v℄ : t [r ℄.

Proof. Both statements are proved simultaneously, by indution.

Æ Case v-Var. If v

0

is x, then the premise is t 2 s. Thus, the hypothesisM ` v : s

implies M ` v : t, and, a fortiori, �;M ` v : t. Considering v

0

[x (v℄ = v,

this was the goal. If, on the other hand, v

0

isn't x, then the result stems from

�[x 7! s℄(v

0

) = �(v

0

) and v

0

[x(v℄ = v

0

.

Æ Case v-Abs. Then, the premise must be of the form p

0

;�[x 7! s℄[y 7! t

0

℄[f 7!

t

f

℄;M ` e

0

: t

00

[r

0

℄. Beause typing judgements are stable under �-onversion, we

will assume, w.l.o.g., that x, f and y are distint. Then, �[x 7! s℄[y 7! t

0

℄[f 7! t

f

℄

oinides with �[y 7! t

0

℄[f 7! t

f

℄[x 7! s℄. We onlude by applying the indution

hypothesis, followed by an instane of v-Abs.

Æ Case v-Braket. The �rst premise is of the form �[x 7! s℄;M ` v

0

1

: t. By

Lemma 7, the hypothesis M ` v : s implies M ` bv

1

: s. Thus, by indution

hypothesis, �;M ` v

0

1

[x (bv

1

℄ : t holds. The seond premise is dealt with

similarly. By v-Braket, we obtain �;M ` hv

0

1

[x (bv

1

℄ j v

0

2

[x (bv

2

℄i : t,

whih, onsidering our de�nition of substitution (Setion 4.3), was our goal.

Æ Case e-Braket. Similar to the ase of v-Braket. We use the fat that �*

is preserved by substitution, i.e. e* implies e[x(v℄*.

The other ases are immediate or analogous to one of those above.

Lemma 11 (Value). p;M ` v : t [r ℄ implies M ` v : t.

Proof. By indution on the proof of p;M ` v : t [r ℄.

Æ Case e-Value. Immediate.

Æ Case e-Sub. The result follows from the indution hypothesis and v-Sub.

Æ Case e-Braket. The prediate �* is never true of a value, so p

0

C t must

hold. The result follows from the indution hypothesis and v-Braket.

Lemma 12 (Subjet redution). Let e =

i

� ! e

0

=

i

�

0

. Assume p;M ` e :

t [r ℄ and M ` �. If i 2 f1; 2g, assume p 2 H. Then, there exists a memory

environment M

0

, whih extends M , suh that p;M

0

` e

0

: t [r ℄ and M

0

` �

0

.

Proof. By indution on the derivation of e =

i

�! e

0

=

i

�

0

. We assume, w.l.o.g.,

that the derivation of p;M ` e : t [r ℄ does not end with an instane of e-Sub.

As a result, it must end with an instane of the single syntax-direted rule that

mathes e's struture.

Æ Case (�). e is (�x f:�x:e

0

) v. Let � stand for (t

0

pt` [r℄

�����! t)

`

. In e-App's

premises, we have M ` �x f:�x:e

0

: � and M ` v : t

0

. The former's derivation

must end with an instane of v-Abs, followed by a number of instanes of v-Sub.

Beause ! is ontravariant (resp. ovariant) in its �rst and seond (resp. third

and fourth) parameters, applying Lemma 6 and e-Sub to v-Abs's premise yields

p; (x 7! t

00

; f 7! �

0

);M ` e

0

: t [r ℄, for some t

00

and �

0

suh that t

0

� t

00

and

� � �

0

. By v-Sub, M ` v : t

00

and M ` �x f:�x:e

0

: �

0

hold. Then, Lemma 10

yields p;M ` e

0

[x(v℄[f (�x f:�x:e

0

℄ : t [r ℄.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 19

Æ Case (ref). e is ref v, e

0

is m and �

0

is � � [m 7! new

i

v℄. e-Ref's premises

are M ` v : t

0

and p C t

0

, provided t = t

0

ref

�

. By Lemma 9, these imply

M ` new

i

v : t

0

. De�ne M

0

= M [m 7! t

0

℄. Aording to Store, M ` � implies

dom(M) = dom(�). Beause � � [m 7! new

i

v℄ is de�ned, m isn't a member of

dom(�). So, M

0

extends M . Beause M

0

(m) = t

0

, v-Lo and e-Value yield

p;M

0

` e

0

: t [r ℄. Lastly, M ` � and M ` new

i

v : t

0

entail M

0

` �

0

.

Æ Case (assign). e is m := v and e

0

is (). e-Assign's premises are M ` m :

t

0

ref

�

and M ` v : t

0

and p C t

0

. Furthermore, t must be unit, whih implies

p;M ` e

0

: t [r ℄. By v-Lo, v-Sub and by invariane of the ref type onstrutor,

M ` m : t

0

ref

�

implies M(m) = t

0

. Thus, M ` � entails M ` �(m) : t

0

. By

Lemma 9, we have M ` update

i

�(m) v : t

0

, whih yields M ` �

0

.

Æ Case (deref). e is !m. e-Deref's �rst two premises are M ` m : t

0

ref

�

and

t

0

� t. As above, the former entails M ` �(m) : t

0

. By Lemma 9, M ` read

i

�(m) :

t

0

follows. Conlude with v-Sub and e-Value.

Æ Case (proj). e is proj

j

(v

1

; v

2

) and e

0

is v

j

. e-Proj's premise is M ` (v

1

; v

2

) :

t

1

� t

2

, where t

j

is t. Aording to v-Pair and v-Sub, this implies M ` v

j

: t

j

.

Æ Case (ase). e is (inj

j

v) ase x � e

1

e

2

and e

0

is e

j

[x (v℄. e-Case's �rst

premise is M ` inj

j

v : (t

1

+ t

2

)

`

. Aording to v-Inj and v-Sub, this implies

M ` v : t

j

. This allows applying Lemma 10 to e-Case's seond premise, yielding

p t `;M ` e

j

[x(v℄ : t [r ℄. The result follows by Lemma 6.

Æ Case (let). By e-Let and Lemma 10.

Æ Case (bind). e is bind x = v in e

2

and e

0

is e

2

[x (v℄. e-Bind's premises are

p;M ` v : t

0

[r

1

℄ and p t (t r

1

); (x 7! t

0

);M ` e

2

: t [r

2

℄, where r

2

� r. By

Lemma 11, the former implies M ` v : t

0

. By Lemma 6, the latter implies p; (x 7!

t

0

);M ` e

2

: t [r

2

℄. By Lemma 10 and e-Sub, we obtain p;M ` e

2

[x(v℄ : t [r ℄.

Æ Case (handle). e is raise " v handle " x � e

2

and e

0

is e

2

[x (v℄. e-Handle's

�rst two premises are of the form p;M ` raise " v : t [� ℄ and p t �; (x 7!

typexn("));M ` e

2

: t [r ℄. Aording to e-Sub and e-Raise, the former implies

M ` v : typexn("). By Lemmas 10 and 6, this yields p;M ` e

2

[x(v℄ : t [r ℄.

Æ Case (handle-done). e is a handle e

2

done and e

0

is e

2

. e-HandleDone's

seond premise is p t �;M ` e

2

: t [r ℄. Lemma 6 yields p;M ` e

2

: t [r ℄.

Æ Cases (handle-raise), (�nally). e is of the form a handle e

2

raise or a �nally e

2

,

while e

0

is (e

2

; a). e-HandleRaise or e-Finally's �rst premise is p;M ` a :

t [r ℄. Its seond premise, modulo an appliation of Lemma 6, is p;M ` e

2

:

� [�? ℄. Given the identities pt (t(�?)) = pt? = p and rt (�?) = r, e-Bind

yields p;M ` (e

2

; a) : t [r ℄.

Æ Case (pop). e is E[a℄ and e

0

is a. Several sub-ases arise.

Sub-ase E = bind x = [℄ in e

2

. e-Bind's �rst premise is p;M ` a : t

0

[r

1

℄,

where r

1

� r. Beause E does not handle a, a must be of the form raise " v or

hraise "

1

v

1

j raise "

2

v

2

i. So, this judgement must be a onsequene of e-Raise,

e-Braket and e-Sub. A derivation of idential shape an be built to establish

p;M ` a : t [r

1

℄. (In the ase of e-Braket, the fourth premise is satis�ed,

though its �rst disjunt may be false, beause the other two hold.) The result

follows by e-Sub.

Sub-ase E = [℄ handle " x � e

2

. e-Handle's �rst premise is p;M ` a : t [" :

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

20 � F. Pottier and V. Simonet

�; r

0

℄. a must be of the form v or raise "

0

v or hv

1

j raise "

2

v

2

i or hraise "

1

v

1

j v

2

i

or hraise "

1

v

1

j raise "

2

v

2

i, where "

0

, "

1

and "

2

are distint from ". As a result, a

derivation of idential shape an be built to establish p;M ` a : t [" : p

0

; r

0

℄, that

is, p;M ` a : t [r ℄.

Sub-ase E = [℄ handle e

2

done. e-HandleDone's �rst premise is of the form

p;M ` a : t [� ℄. Beause a must be a value, Lemma 11 and e-Value yield

p;M ` a : t [r ℄.

Sub-ase E = [℄ handle e

2

raise. e-HandleRaise's �rst premise is the goal.

Æ Case (lift-app). e is hv

1

j v

2

i v. Let � stand for (t

0

pt` [r℄

�����! t)

`

. e-App's

premises are M ` hv

1

j v

2

i : � and M ` v : t

0

and ` C t. Lemma 7 yields M ` v

i

: �

and M ` bv

i

: t

0

, for i 2 f1; 2g. Then, e-App yields p t `;M ` v

i

bv

i

: t [r ℄.

Furthermore, applying Lemma 8 to the �rst premise above and realling that H is

upward-losed yields ` 2 H . Beause ` C t, e-Braket is appliable and yields

p;M ` e

0

: t [r ℄.

Æ Case (lift-assign). e is hv

1

j v

2

i := v. e-Assign's premises are M ` hv

1

j v

2

i :

t

0

ref

`

and M ` v : t

0

and p t ` C t

0

. As above, applying Lemma 7 and building

new instanes of e-Assign, we obtain p t `;M ` v

i

:= bv

i

: t [r ℄, for i 2 f1; 2g.

Similarly, Lemma 8 allows establishing ` 2 H . The result follows by e-Braket.

Æ Case (lift-deref). e is ! hv

1

j v

2

i. e-Deref's premises are M ` hv

1

j v

2

i : t

0

ref

`

and t

0

� t and ` C t. As above, applying Lemma 7 and building new instanes

of e-Deref, we obtain p t `;M ` ! v

i

: t [r ℄, for i 2 f1; 2g. Similarly, Lemma 8

yields ` 2 H . Lastly, by e-Braket, we obtain p;M ` h ! v

1

j ! v

2

i : t [r ℄.

Æ Case (lift-proj). e is proj

j

hv

1

j v

2

i. e-Proj's premise is M ` hv

1

j v

2

i : t

1

� t

2

,

where t

j

is t. By Lemma 8, there exists p

0

2 H suh that p

0

C t

1

� t

2

, whih

implies, in partiular, p

0

C t

j

. Furthermore, by Lemma 7, we have M ` v

i

: t

1

�t

2

,

for all i 2 f1; 2g. By e-Proj, this implies p t p

0

;M ` proj

j

v

i

: t

j

[r ℄. Lastly, by

e-Braket, we obtain p;M ` hproj

j

v

1

j proj

j

v

2

i : t

j

[r ℄.

Æ Case (lift-ase). e is hv

1

j v

2

i ase x � e

1

e

2

. Lemma 8, applied to e-Case's

�rst premise, yields ` 2 H . By applying Lemma 7 to e-Case's �rst two premises

and re-building new instanes of e-Case, we obtain p t `;M ` v

i

ase x �

be

1

i

be

2

i

: t [r ℄, for all i 2 f1; 2g. e-Case's third premise is ` C t, whih

allows applying e-Braket, yielding the goal.

Æ Case (lift-ontext). e is E[ha

1

j a

2

i℄. If E is a bind ontext, then, beause

e annot be redued by (bind), ha

1

j a

2

i annot be a value. If, on the other

hand, E is a handle ontext, then, beause (pop) isn't appliable, E must handle

a

1

or a

2

. In either ase, we onlude that a

j

is of the form raise " v, for some j 2

f1; 2g. Now, e's typing derivation must end with an instane of e-Bind, e-Handle,

e-HandleDone or e-HandleRaise, whose �rst premise is of the form p;M `

ha

1

j a

2

i : t

0

[r

1

℄. Beause ha

1

j a

2

i isn't a value, this must be a onsequene of

e-Sub and e-Braket, whih yields p t `;M ` a

i

: t

0

[r

1

℄, for some ` 2 H and

for all i 2 f1; 2g. In partiular, taking i = j and aording to e-Sub and e-Raise,

this implies ` � r

1

("), whene ` � t r

1

. Thus, the seurity assumption in e-Bind,

e-Handle, e-HandleDone or e-HandleRaise's seond premise is greater than

or equal to `. As a result, by applying Lemma 7 to that premise, then building new

instanes of e-Bind, e-Handle, e-HandleDone or e-HandleRaise, we obtain

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 21

p t `;M ` bE

i

[a

i

℄ : t [r ℄, for all i 2 f1; 2g. There remains to apply e-Braket.

If E is a bind or handle� raise ontext, then bE

j

[a

j

℄* holds. If, on the other

hand, E is some other handle ontext, then ` C t holds, aording to e-Handle

or e-HandleDone's third premise. In either ase, e-Braket's fourth premise

holds.

Æ Case (braket). e is he

1

j e

2

i and e

0

is he

0

1

j e

0

2

i. We have e

i

=

i

� ! e

0

i

=

i

�

0

and e

j

= e

0

j

, where fi; jg = f1; 2g. Beause he

1

j e

2

i isn't a value, its typing

derivation must end with an instane of e-Braket, whose �rst two premises are

pt p

0

;M ` e

i

: t [r ℄ and pt p

0

;M ` e

j

: t [r ℄. Beause p

0

2 H , the indution

hypothesis is appliable, yielding a memory environment M

0

, whih extends M ,

suh that p t p

0

;M

0

` e

0

i

: t [r ℄ and M

0

` �

0

. Beause M

0

extends M , the

judgement ptp

0

;M

0

` e

j

: t [r ℄ holds as well. The result follows by e-Braket,

whose fourth premise is preserved beause �* is preserved by redution, i.e. for all

i 2 f1; 2g, e

i

* implies e

0

i

*.

Æ Case (ontext). e is E[e

0

℄ and e

0

is E[e

0

0

℄, where e

0

=

i

�! e

0

0

=

i

�

0

. Applying the

indution hypothesis to e-Bind, e-Handle, e-HandleDone, e-HandleRaise or

e-Finally's �rst premise yields a version of it withM and e

0

replaed withM

0

and

e

0

0

, where M

0

extends M and M

0

` �

0

holds. Beause M extends M

0

, the seond

premise remains valid when the former is replaed with the latter. Build a new

instane of e-Bind, e-Handle, e-HandleDone, e-HandleRaise or e-Finally

to onlude.

The previous lemma entails the following, more abstrat statement:

Theorem 13 (Subjet redution). If ` e =� : t [r ℄ and e =�! e

0

=�

0

then

` e

0

=�

0

: t [r ℄.

Proof. By Conf and Lemma 12.

We do not give a progress statement (i.e. \no well-typed on�guration is stuk")

beause it is unrelated to our onerns; that is, it would be of no use in the nonin-

terferene proof. If desired, progress for Core ML an be established via a straight-

forward ase analysis.

5.6 On evaluation order

As explained in Setion 3, our restrited syntax is fully expliit about evaluation

order. In pratie, it is possible to allow a more permissive syntax, provided some

evaluation strategy is �xed. For instane, if left-to-right evaluation order is hosen,

then e

1

e

2

(the appliation of an expression to another expression) is syntati sugar

for bind x

1

= e

1

in bind x

2

= e

2

in x

1

x

2

. This gives rise to the following derived

typing rule:

p;�;M ` e

1

: (t

0

pt`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[r

1

℄

p t (t r

1

);�;M ` e

2

: t

0

[r

2

℄ ` C t

p;�;M ` e

1

e

2

: t [r t r

1

t r

2

℄

Conversely, under a right-to-left evaluation strategy, the appliation e

1

e

2

is enoded

as bind x

2

= e

2

in bind x

1

= e

1

in x

1

x

2

, yielding another derived rule, that di�ers

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

22 � F. Pottier and V. Simonet

in the seurity assumptions of the premises:

p t (t r

2

);�;M ` e

1

: (t

0

pt`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[r

1

℄

p;�;M ` e

2

: t

0

[r

2

℄ ` C t

p;�;M ` e

1

e

2

: t [r t r

1

t r

2

℄

In either ase, the expression that is evaluated last is typeheked at an inreased

seurity level, reeting the fat that, if it reeives ontrol, then the other expression

must have ompleted normally.

Some variants of ML, suh as Caml-Light [Leroy et al. 1997℄ and Objetive

Caml [Leroy et al. 2002℄, leave the evaluation order unspei�ed. It is possible

to give a onservative typing rule whih is safe with respet to both left-to-right

and right-to-left evaluation orders. Suh a rule typeheks e

i

under p t (t r

j

), for

all fi; jg = f1; 2g. However, there is a ath. Let us assume that e

i

(resp. e

j

)

potentially raises an exeption "

i

(resp. "

j

). Then, beause e-Raise annotates

every exeption with the urrent p, and beause p an only inrease within sub-

expressions, we must have t r

i

� r

j

("

j

) and t r

j

� r

i

("

i

). Of ourse, by de�nition,

we also have r

j

("

j

) � t r

j

and r

i

("

i

) � t r

i

. As a result, all four inequalities must

be equalities. In other words, if both e

i

and e

j

are liable to raise at least one

exeption, then all exeptions in r

i

and r

j

must reeive the same seurity level.

Thus, under-speifying the evaluation order auses an important loss of preision

in our analysis. Caml-Light's urrent implementation uses a right-to-left evaluation

strategy; for our purposes, this should be made part of its spei�ation.

6. NON-INTERFERENCE

In this setion, we omit p and r in typing judgements when they are unspei�ed,

i.e. when they ould be written �.

From here on, the set H is no longer �xed. We introdue it expliitly when

needed, writing `

H

instead of ` in Core ML

2

typing judgements. (This is not

neessary for the judgements that involve Core ML expressions, beause H is used

only in v-Braket and e-Braket.) We write e !

?

a if there exists a store �

suh that e =?!

?

a =�, where ? is the empty store.

Our type system assigns \high" seurity levels (i.e. levels in H) to values of the

form hv

1

j v

2

i. By subjet redution, any expression whih may redue to suh a

value must also arry a \high" annotation. Conversely, no expression with a \low"

annotation an produe suh a value, as stated, in the partiular ase of integers,

by the following lemma:

Lemma 14. Let H be an upward-losed subset of L. Let ` 62 H. If `

H

e : int

`

and e!

?

v then bv

1

= bv

2

.

Proof. By Theorem 13, by Conf and Lemma 11, there exists a memory en-

vironment M suh that M `

H

v : int

`

holds. A value of type int

�

must be of

the form k or hk

1

j k

2

i. If the latter, then, by v-Braket, there exists p

0

2 H

suh that p

0

� `, whih implies ` 2 H, a ontradition. Thus, we must have

v = k = bv

1

= bv

2

.

We an now use the orrespondene between Core ML and Core ML

2

established

in Setion 4.4 to reformulate this result in a Core ML setting:

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 23

Theorem 15 (Non-interferene). Choose `; h 2 L suh that h 6� `. Let

h C t. Assume (x 7! t) ` e : int

`

, where e is a Core ML expression. If, for all

i 2 f1; 2g, ` v

i

: t and e[x(v

i

℄!

?

v

0

i

hold, then v

0

1

= v

0

2

.

Proof. Let H be the upward losure of fhg. De�ne v = hv

1

j v

2

i. By

v-Braket, `

H

v : t holds. Lemma 10 yields `

H

e[x(v℄ : int

`

. Now, be[x(v℄

i

is e[x (v

i

℄, whih, by hypothesis, redues to v

0

i

. Aording to Lemma 4, there

exists an answer a suh that e[x (v℄ !

?

a. Then, Lemma 2 yields ba

i

= v

0

i

for

all i 2 f1; 2g, whih implies that a is a value. Lastly, h 6� ` yields ` 62 H . The result

follows by Lemma 14.

In words, h and ` are seurity levels suh that information ow from h to ` is

disallowed by the seurity lattie. Assuming the hole x in the expression e has a

\high"-level type t, e admits the \low"-level type int

`

. Then, no matter whih value

(of type t) is plaed in the hole, e will ompute the same value (that is, if it does

produe a value at all). Beause both programs are assumed to terminate, this is a

weak noninterferene statement; see the disussion in Setion 4.4. For simpliity, we

have restrited our attention to the ase of integer results, whih may be ompared

using equality. It would be possible to give a more general statement, expressed in

terms of a notion of observational equivalene, as a orollary of Theorem 15. As

another orollary, one may allow several holes, instead of the single hole x. This

essentially amounts to speializing Theorem 15 to the ase where t is a tuple type.

7. GENERIC PRIMITIVE OPERATIONS

Pratial programming languages usually provide many primitive operations, suh

as integer arithmeti operators. Some languages, suh as Caml-Light [Leroy et al.

1997℄, Objetive Caml [Leroy et al. 2002℄ or SML [Milner et al. 1997℄, provide

generi (i.e. polymorphi) omparison, hashing or marshalling funtions. In the

following, we present a way of assigning types to suh generi primitive operations,

without knowledge of their semantis, i.e. by onsidering them as \blak boxes"

whih potentially use all of the information ontent of their arguments.

7.1 Semantis

Let o range over a set of operation names, and extend the syntax of expressions as

follows:

e ::= : : : j o v

We assume that the semantis of every operation o is given as a partial funtion JoK

whih maps losed Core ML on�gurations v = � to losed Core ML answers. As

a result, operations may aess the store and raise exeptions; however, we do not

allow them to modify the store. For simpliity, we only onsider unary operations;

multiple arguments must be passed in a tuple.

Let aessibility with respet to a (Core ML) store � be the smallest transitive

relation between (Core ML) values suh that, for every value v, every sub-term

of v that is not found under a �-abstration is aessible through v and, for every

memory loation m, �(m) is aessible through m. If v

0

is aessible through v with

respet to �, we also say that v

0

is aessible through v = �. If no �-abstration is

aessible through v =�, then let �

v

be the restrition of � to the memory loations

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

24 � F. Pottier and V. Simonet

unit J `

`

0

� `

int

`

0

J `

t J ` `

0

� `

t ref

`

0

J `

t

1

J ` t

2

J `

t

1

� t

2

J `

`

0

� ` t

1

J ` t

2

J `

(t

1

+ t

2

)

`

0

J `

Fig. 7. Colleting seurity annotations

aessible through v = �, and let jv = �j stand for v = �

v

. In words, when jv = �j is

de�ned, it represents the whole data struture aessible through v within the store

�. Below, we use this notion to fore operations to aess data only through v.

This prevents them from being stateful, e.g. by maintaining a pointer to a private,

mutable data struture, and is neessary for our typing rule to be sound.

The semantis of Core ML

2

is extended as follows:

o v =

i

� ! JoK(jv = b�

i

j) =

i

� (op)

if i 2 f1; 2g

o v = � ! JoK(jbv = �

1

j) = � (op

�

)

if jbv = �

1

j = jbv = �

2

j

o v =� ! ho bv

1

j o bv

2

i =� (lift-op)

if jbv = �

1

j 6= jbv = �

2

j

(op) and (op

�

) are the basi redution rules assoiated with primitive operations. It

would be possible to merge them in a single rule, but we believe this formulation is

somewhat learer. (op) aesses the store through its projetion b�

i

, as done e.g.

by (deref) in Setion 4.3. As explained above, the semanti funtion JoK is applied

to jv =b�

i

j, rather than v =b�

i

, whih makes it impossible for the operation to use

any data but that aessible through v itself. The rule is inappliable if jv = b�

i

j is

unde�ned, i.e. if a �-abstration is aessible through v. Indeed, it is illegal to apply

a generi primitive operation to a data struture that ontains a �-abstration; our

typing rule will prevent this situation from arising.

(op) applies only when i 2 f1; 2g, i.e. when performing redution under brakets.

When i is �, i.e. when reduing outside brakets, exatly one of (op

�

) and (lift-op)

applies. If the argument to o is the same under both projetions, then (op

�

) is

appliable, and performs a shared redution step. Otherwise, (lift-op) applies, and

introdues brakets at the top level, so as to allow redution via (op). We let the

reader hek that the results of Setion 4.4 are preserved by this extension.

7.2 Typing

We introdue a two-plae prediate J, whih relates a type and a seurity level, and

whose de�nition appears in Figure 7. In short, t J ` holds if and only if all of the

seurity annotations whih appear within t, inluding its sub-terms, are less than or

equal to `. It also requires t to have no funtion type as a sub-term. This de�nition

mimis the behavior of generi primitive operations, suh as Caml-Light's generi

omparison or hashing operations, whih traverse data strutures reursively, and

fail upon enountering a losure. The prediate J enjoys the following property:

Lemma 16. Assume `

H

v = � : t and t J `. If a sub-term of the form hv

1

j v

2

i

is aessible through v = �, with v

1

6= v

2

, then ` 2 H.

Proof. By indution on the path that leads to hv

1

j v

2

i.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 25

Æ Case v is hv

1

j v

2

i. Then, `

H

v = � : t implies p C t, for some p 2 H . By

Lemma 7, both v

1

and v

2

have type t; so, onsidering that these values di�er, t

annot be built solely out of produts and unit. (Types that are built solely out of

produts and unit are inhabited by a single value.) In that ase, p C t and t J `

imply p � `, whene ` 2 H .

Æ Case v is (v

0

1

; v

0

2

), and hv

1

j v

2

i is aessible through v

0

j

=�, for some j 2 f1; 2g.

Then, we must have `

H

v

0

j

=� : t

j

, where t = t

1

� t

2

, and t

j

J `. The result follows

by indution hypothesis.

Æ Case v is inj

j

v

0

, and hv

1

j v

2

i is aessible through v

0

= �, for some j 2 f1; 2g.

Then, we must have `

H

v

0

= � : t

0

, where t = (t

0

+

j

�)

�

, and t

0

J `. The result

follows by indution hypothesis.

Æ Case v is m, and hv

1

j v

2

i is aessible through �(m) = �. Then, we must have

`

H

�(m) = � : t

0

, where t = t

0

ref

�

and t

0

J `. The result follows by indution

hypothesis.

We wish to give a typing rule for primitive operations that is independent of

their semantis. To ahieve this, we will assume that every primitive operation

omes with a typing rule whih is suÆient to ensure type safety in the usual sense,

and we will show how to re�ne it with information ow analysis in mind. In the

following, R denotes a �nite set of exeption names. We write R : p for the row

whih maps " to p if " 2 R and to ? otherwise. For every operation o, we assume

a ternary relation typeof (o) suh that, if (t

0

; t; R) 2 typeof (o), then M ` v : t

0

and

M ` � imply p;M ` JoK(jv = �j) : t [R : p ℄ for all p 2 L. Roughly speaking, this

amounts to assuming subjet redution for (op) and (op

�

). Then, we augment the

type system with the following rule:

e-Primitive

�;M ` v : t

0

(t

0

; t; R) 2 typeof (o)

t

0

J ` ` C t

p;�;M ` o v : t [R : p t ` ℄

e-Primitive requires the seurity level of the result type t to dominate all of the

seurity levels whih appear in the argument type t

0

. Indeed, beause nothing

is known about the semantis of o, no better approximation an be given: the

result may depend on any value aessible through v within the urrent store. Any

exeption that is liable to be raised by o is marked similarly.

In short, given a typing rule for o that does not know about seurity, enoded

by the ternary relation typeof (o), our approah produes a re�ned version, whih

guarantees noninterferene, regardless of o's semantis. Of ourse, we must hek

that the new redution rules satisfy subjet redution under the extended type

system. This is done by adding new ases to the proof of Lemma 12, as follows:

Æ Case (op). Aording to Conf and e-Primitive, we have (t

0

; t; R) 2 typeof (o)

and M ` v : t

0

and M ` �. The latter implies M ` b�

i

. Aording to our

assumption about typeof (�), this implies p;M ` JoK(jv = b�

i

j) : t [R : p ℄. The

result follows by e-Sub and Conf.

Æ Case (op

�

). Analogous; the rule's side-ondition is unused.

Æ Case (lift-op). Beause jbv = �

1

j and jbv = �

2

j di�er, a sub-term of the form

hv

1

j v

2

i, where v

1

6= v

2

, must be aessible through v = �. Aording to Conf and

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

26 � F. Pottier and V. Simonet

e-Primitive, we may then apply Lemma 16, yielding ` 2 H . Applying Lemma 7

and building a new instane of e-Primitive, we obtain p t `;M ` o bv

i

: t [R :

p t ` ℄ for all i 2 f1; 2g. Realling ` C t, we onlude with e-Braket.

7.3 Appliations

Let us now illustrate the use of this general mehanism. We give typing rules for sev-

eral onrete primitive operations and prove that they are instanes of e-Primitive.

To begin, let us onsider a binary integer arithmeti operation, suh as addition.

The meaning of addition is, of ourse, given by J+K((k

1

; k

2

) = �) = k

1

+ k

2

. Its

treatment is in fat quite simple, beause it is monomorphi: it maps a pair of

integers to an integer. For this reason, it would be easy to deal with it diretly.

Nevertheless, let us proeed. De�ne typeof (+) by setting (int

�

� int

�

; int

�

;?) 2

typeof (+). We let the reader hek that this de�nition satis�es the requirement

stated in Setion 7.2. Then, e-Primitive may be speialized as follows:

e-Add

�;M ` v : int

`

� int

`

�;�;M ` + v : int

`

[� ℄

This rule e�etively makes the sum's seurity the least upper bound of the operands'

levels. Most operations on primitive data an be dealt with in a similar manner.

In some ases, a diret treatment is preferable; in the ase of division, for instane,

an exeption is raised only if the seond argument is zero, so the seurity level

assoiated with the exeption should be that of the seond argument alone, not the

union of both arguments' levels, as we would obtain by speializing e-Primitive.

The treatment of Caml-Light's generi (i.e. polymorphi) omparison operators

is more interesting, and is the true motivation for developing our generi approah.

Let bool

`

stand for (unit + unit)

`

. De�ne typeof (=) by setting (t � t; bool

�

;?) 2

typeof (=) for every type t. We do not de�ne J=K, beause that would require a

somewhat lengthy o-indutive de�nition, whih is irrelevant here; let us simply say

that it always produes a Boolean value, so the requirement stated in Setion 7.2

is satis�ed. Then, speializing e-Primitive yields

�;M ` v : t� t t J `

�;�;M ` = v : bool

`

[� ℄

All of Caml-Light's generi omparison operators (namely, =, <>, <, >) an be dealt

with in the same manner. (One exeption is physial equality ==, whih annot be

de�ned in our framework, sine only mutable values have addresses in our semantis.

Anyway, it would be diÆult to give it a preise type, sine produts do not arry a

seurity annotation.) Beause these operators traverse data strutures reursively,

the result of a omparison may reveal information about any sub-term. The premise

t J ` reets this fat by requiring ` to dominate all seurity annotations whih

appear in t.

Lastly, generi hashing and marshalling operations an be dealt with similarly,

yielding the following typing rules:

�;M ` v : t t J `

�;�;M ` hash v : int

`

[� ℄

�;M ` v : t t J `

�;�;M ` marshal v : int

`

[� ℄

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 27

By ontrast, in Myers' Java-based framework [Myers 1999a; 1999b℄, hashing is done

by having every lass override the standard hashCode method, whih is delared in

lass Objet with signature intfthisg hashCode (). A re-implementation of hashCode

by a sub-lass of Objetmust also satisfy this signature. As a result, it may only rely

on �elds labeled this. The parametri lass Vetor[L℄, for instane, must ompute

a hash ode in a way that does not depend upon the vetor's length or ontents,

beause their label is L. Of ourse, this severely limits hashCode's usefulness.

8. A CONSTRAINT-BASED TYPE SYSTEM

We now give a more algorithmi presentation of our type system, alled mlif. It

di�ers from mlif

0

mainly by introduing variables, onstraints, and using them to

form universally quanti�ed, onstrained type shemes, in the style of HM(X) [Oder-

sky et al. 1999℄. Like HM(X), it has prinipal types and deidable type inferene.

Beause the onstrution is not the entral topi of this paper, we will desribe it

only suintly. For more details about the proof of orrespondene between mlif

0

and mlif, the reader is referred to [Pottier 2001℄. For information about deriving

a set of type inferene rules from the typing rules given in this setion, see [Oder-

sky et al. 1999; Sulzmann et al. 1999; Sulzmann 2000℄. In this setion, we will

onentrate mainly on onstraint solving, beause C and J onstraints are new.

8.1 Types and onstraints

In mlif, the grammar of types, rows and levels is extended with type, row and level

variables, written �, and Æ, respetively. We write � for a variable of arbitrary

kind. Furthermore, R�emy's [R�emy 1993℄ row syntax is introdued, turning rows

into �nite lists of bindings from exeption names to levels, terminated with a row

variable or with a uniform row ��.

� ::= � j unit j int

�

j (�

� [�℄

���! �)

�

j � ref

�

j � � � j (� + �)

�

� ::= j (" : �; �) j ��

�; � ::= Æ j `

(� and � are level meta-variables, just as ` and p were ground level meta-variables.)

The variable-free types (resp. rows, levels) of mlif are isomorphi to the types

(resp. rows, levels) of mlif

0

; we identify them and refer to them as ground. Then,

onstraints are de�ned as follows:

C ::= true j false j C ^ C j 9�:C

j � � � j � � � j � � �

j � C � j � J �

The onstraint forms on the �rst line are standard [Odersky et al. 1999℄. Those on

the seond line are subtyping onstraints. We will use �

1

= �

2

as syntati sugar for

�

1

� �

2

^ �

2

� �

1

. The third line lists ustom onstraint forms, whih orrespond to

the notions developed in Setions 5 and 7. We will say that a onstraint C involves

types (resp. rows, resp. levels) if it is of the form � � � , � C � or � J � (resp.

� � �, resp. � � �). We omit the sorting rules neessary to ensure that terms and

onstraints whih ontain rows are well-formed; see [R�emy 1993℄. Let us simply

reall that these rules assoiate a o�nite subset of E , written dom(�) and alled

the domain of �, with every row �.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

28 � F. Pottier and V. Simonet

Let a ground assignment � map every variable � to a ground type, row or level,

aording to its kind. The meaning of terms and onstraints under an assignment

� is de�ned in the obvious way; we write � ` C if and only if � satis�es C . A

onstraint C is satis�able if and only if there exists an assignment � suh that

� ` C . We write C C

0

(read: C entails C

0

) if and only if every assignment �

whih satis�es C satis�es C

0

as well. We write C � C

0

if and only if satis�ability

of C and satis�ability of C

0

are equivalent.

Let a type sheme be a triple of a set of quanti�ers ��, a onstraint C and a

type � ; we write � = 8��[C ℄:� . The variables in �� are bound in �; type shemes

are onsidered equal modulo �-onversion. By abuse of notation, a type � may be

viewed as a type sheme 8?[true℄:� . An environment � is a partial mapping from

program variables to type shemes.

8.2 Typing rules

The typing rules for mlif are given in Figures 8 and 9. They look very similar to

those of mlif

0

; let us briey disuss the di�erenes. We restrit our attention to

soure expressions, i.e. Core ML expressions whih do not ontain memory loa-

tions; this is enough for our purposes. Thus, typing judgements no longer ontain

a memory environment M . Every judgement begins with a onstraint C whih

represents an assumption about its free variables; for the judgement to be valid,

C must be satis�able. (We omit C when it is true.) Constrained type shemes

are introdued by e-Let, whih performs generalization, and eliminated by v-Var,

whih performs instantiation. For the sake of oniseness, some rules use the binary

operator t on levels and on rows, as well as the unary operator t on rows, as if

they were part of our term syntax. We let the reader hek that these notations

an be de-sugared into extra meta-variables and onstraints. In partiular, every

term of the form t � may be replaed with a fresh level variable Æ, together with

the onstraint � � �Æ.

8.3 Non-interferene

We prove the following statement by indution on type derivations, along the lines

of [Pottier 2001℄.

Lemma 17 (Soundness). Assume C; �;� ` e : � [� ℄. Let � be an arbitrary

ground assignment whih satis�es C. Then, �(�); �(�);? ` e : �(�) [�(�) ℄ holds

in mlif

0

.

(We do not de�ne �(�) here; see [Pottier 2001℄.) In partiular, every ground typing

judgement in mlif is also a valid judgement in mlif

0

. This allows us to lift our

noninterferene result to mlif. That is, the statement of Theorem 15 remains valid

if (x 7! t) ` e : int

`

and ` v

i

: t are read as mlif typing judgements.

8.4 Type inferene

It is easy to hek that there exists a type inferene algorithm whih omputes

prinipal types for mlif. Sulzmann [Sulzmann 2000℄ shows how to derive a set of

type inferene rules from a set of typing rules similar to ours. The main point that

remains to be settled is whether onstraint solving is deidable.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 29

v-Unit

C;� ` () : unit

v-Int

C;� ` k : int

�

v-Var

�(x) = 8��[D℄:� C 9��:D

C ^ D;� ` x : �

v-Abs

C; �;�[x 7! �

0

℄[f 7! (�

0

� [�℄

���! �)

�

℄ ` e : � [� ℄

C;� ` �x f:�x:e : (�

0

� [�℄

���! �)

�

v-Pair

C;� ` v

1

: �

1

C;� ` v

2

: �

2

C;� ` (v

1

; v

2

) : �

1

� �

2

v-Inj

C;� ` v : �

C;� ` inj

j

v : (� +

j

�)

�

v-Sub

C;� ` v : �

0

C �

0

� �

C;� ` v : �

Fig. 8. The type system mlif (values)

e-Value

C;� ` v : �

C; �;� ` v : � [� ℄

e-Raise

C;� ` v : typexn(")

C;�;� ` raise " v : � [" : �; � ℄

e-App

C;� ` v

1

: (�

0

�t� [�℄

�����! �)

�

C;� ` v

2

: �

0

C � C �

C; �;� ` v

1

v

2

: � [� ℄

e-Ref

C;� ` v : � C � C �

C; �;� ` ref v : � ref

�

[� ℄

e-Assign

C;� ` v

1

: � ref

�

C;� ` v

2

: � C � t � C �

C; �;� ` v

1

:= v

2

: unit [� ℄

e-Deref

C;� ` v : �

0

ref

�

C �

0

� � C � C �

C; �;� ` ! v : � [� ℄

e-Proj

C;� ` v : �

1

� �

2

C; �;� ` proj

j

v : �

j

[� ℄

e-Case

C;� ` v : (�

1

+ �

2

)

�

8j 2 f1; 2g C;� t �;�[x 7! �

j

℄ ` e

j

: � [� ℄ C � C �

C; �;� ` v ase x � e

1

e

2

: � [� ℄

e-Let

C ^ D;� ` v : �

0

�� \ fv(C;�) = ?

C;�;�[x 7! 8��[D℄:�

0

℄ ` e : � [� ℄

C ^ 9��:D; �;� ` let x = v in e : � [� ℄

e-Bind

C; �;� ` e

1

: �

0

[�

1

℄

C;� t (t �

1

);�[x 7! �

0

℄ ` e

2

: � [�

2

℄

C; �;� ` bind x = e

1

in e

2

: � [�

1

t �

2

℄

e-Handle

C;�;� ` e

1

: � [" : �

"

; � ℄ C; � t �

"

;�[x 7! typexn(")℄ ` e

2

: � [" : �

0

; � ℄ C �

"

C �

C; �;� ` e

1

handle " x � e

2

: � [" : �

0

; � ℄

e-HandleDone

C;�;� ` e

1

: � [�

1

℄

C;� t (t �

1

);� ` e

2

: � [�

2

℄ C t �

1

C �

C; �;� ` e

1

handle e

2

done : � [�

2

℄

e-HandleRaise

C;�;� ` e

1

: � [� ℄

C;� t (t �);� ` e

2

: � [�? ℄

C; �;� ` e

1

handle e

2

raise : � [� ℄

e-Finally

C;�;� ` e

1

: � [� ℄

C;�;� ` e

2

: � [�? ℄

C;�;� ` e

1

�nally e

2

: � [� ℄

e-Sub

C;�;� ` e : �

0

[�

0

℄ C �

0

� � C �

0

� �

C; �;� ` e : � [� ℄

Fig. 9. The type system mlif (expressions)

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

30 � F. Pottier and V. Simonet

� �

C

�

�

1

�

C

�

2

�

2

�

C

�

1

�

1

�

C

�

2

�

2

�

C

�

3

�

1

�

C

�

3

�

1

� �

2

A C

�

1

�

C

�

2

(�

0

1

� [�℄

���! �

1

)

�

�

C

(�

0

2

� [�℄

���! �

2

)

�

�

0

1

�

C

�

0

2

�

1

�

C

�

2

�

1

ref

�

�

C

�

2

ref

�

�

1

�

C

�

2

�

1

� �

0

1

�

C

�

2

� �

0

2

�

1

�

C

�

2

�

0

1

�

C

�

0

2

(�

1

+ �

0

1

)

�

�

C

(�

2

+ �

0

2

)

�

�

1

�

C

�

2

�

0

1

�

C

�

0

2

Fig. 10. Strutural equivalene indued by a onstraint

8.5 Constraint solving

Our subtyping relation is strutural (a.k.a. atomi); that is, two ground types whih

are in the subtyping relation must have the same struture, and may di�er only

in their seurity annotations. Constraint solving for atomi subtyping is deidable

and well understood [Rehof 1997℄. The introdution of rows is essentially orthogo-

nal to other onstraint solving issues [F�ahndrih 1999; Pottier 2000℄. There mainly

remains to show that the the ustom onstraint forms employed by mlif preserve

the deidability of onstraint solving. In the following, we do so by giving a sim-

ple algorithm that determines whether a onstraint is satis�able. We do not aim

at eÆieny, beause that would require more advaned rewriting strategies and

onstraint simpli�ation tehniques, whih we will study in a later paper.

By �-onversion and sope extrusion, any onstraint C an be written 9��:C

0

,

where C

0

does not employ existential quanti�ation. Moreover, the onstraint C is

satis�able if and only if C

0

is satis�able. Thus, from here on, we will onsider solely

onstraints that do not make use of existential quantitiation. As a result, every

onstraint C an be viewed as a onjuntion

1

^ : : : ^

n

, where every elementary

onstraint

i

is of the form true, false, � � �, � C � or � J �. We identify suh

onjuntions modulo permutations and repetitions of elementary onstraints. We

write C

0

A C (read: C

0

appears in C) if and only if C = � ^ C

0

.

Beause ground types are �nite, our algorithm must perform an our hek in

order to verify that the onstraint at hand does not impose a yle on type struture.

For this purpose, given a onstraint C, we introdue an equivalene relation �

C

between types, de�ned in Figure 10. The rightmost rule in the �gure states that

any two types whih are related by a subtyping onstraint should be struturally

equivalent; the next rules propagate strutural equivalene from terms to sub-terms.

Let us write �

1

� � if and only if �

1

is a strit subterm of � . Then, we de�ne the

domination relation indued by C as follows: �

1

�

C

� holds if and only if there

exist �

0

1

and �

0

suh that �

1

�

C

�

0

1

and �

0

1

� �

0

and �

0

�

C

� . Let �

+

C

denote the

transitive losure of �

C

. A onstraint C satis�es the our hek if and only if

there exists no type � suh that � �

+

C

� .

Lemma 18 (Our hek). If C fails the our hek, then C is not satis�able.

Proof. De�ne the height of a ground type by h((t

0

� [�℄

���! t)

�

) = h(t � t

0

) =

h((t + t

0

)

�

) = 1 + max(h(t); h(t

0

)), h(t ref

�

) = 1 + h(t) and h(unit) = h(int

�

) = 0.

If � ` C, then � �

C

�

0

implies h(�(�)) = h(�(�

0

)) and � � �

0

implies �(�) < �(�

0

).

Thus, � �

+

C

� implies h(�) < h(�). The result follows.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 31

Types

int

�

1

� int

�

2

� �

1

� �

2

(�

0

1

�

1

[�

1

℄

�����! �

1

)

�

1

� (�

0

2

�

2

[�

2

℄

�����! �

2

)

�

2

� �

0

2

� �

0

1

^ �

2

� �

1

^ �

1

� �

2

^ �

1

� �

2

^ �

1

� �

2

�

1

ref

�

1

� �

2

ref

�

2

� �

1

= �

2

^ �

1

� �

2

�

1

� �

0

1

� �

2

� �

0

2

� �

1

� �

2

^ �

0

1

� �

0

2

(�

1

+ �

0

1

)

�

1

� (�

2

+ �

0

2

)

�

2

� �

1

� �

2

^ �

0

1

� �

0

2

^ �

1

� �

2

Rows

(" : �

1

; �

1

) � (" : �

2

; �

2

) � �

1

� �

2

^ �

1

� �

2

(" : �; �) � ��

0

� � � �

0

^ � � ��

0

��

0

� (" : �; �) � �

0

� � ^ ��

0

� �

��

1

�

1

� � � � �

n

� ��

2

� �

1

� �

2

Guards

�

0

C int

�

� �

0

� �

�

0

C (�

� [�℄

���! �)

�

� �

0

� �

�

0

C � ref

�

� �

0

� �

�

0

C �

1

� �

2

� �

0

C �

1

^ �

0

C �

2

�

0

C (�+ �)

�

� �

0

� �

int

�

J �

0

� � � �

0

� ref

�

J �

0

� � J �

0

^ � � �

0

� � �

0

J �

0

� � J �

0

^ �

0

J �

0

(� + �

0

)

�

J �

0

� � J �

0

^ �

0

J �

0

^ � � �

0

Errors

`

1

� Æ

1

� � � � � Æ

n

� `

2

� false if `

1

6�

L

`

2

�

1

� �

2

� false if �

1

� �

2

(�

� [�℄

���! �)

�

J � � false

Context

� ^ C � C

0

if C � C

0

Fig. 11. Syntati onstraint impliation

Roughly speaking, one it is known that the onstraint passes the our hek,

the bulk of the onstraint solving proedure onsists in expanding types and rows

and deomposing onstraints, so as to obtain onstraints that bear on variables or

on atoms only. The absene of yles in the type struture guarantees that the

expansion proess terminates.

Let us introdue a so-alled syntati impliation prediate between onstraints,

written C � C

0

, de�ned by the rules in Figure 11. This prediate allows deriving

(a �nite number of) logial onsequenes of a onstraint C . The rules in Types

and Guards (see Figure 11) onern onstraints bearing on types whose struture is

known, i.e. non-variable types. Suh onstraints are deomposed into a number of

sub-onstraints bearing on their sub-terms. Similarly, the rules in Rows deompose

onstraints bearing on non-variable rows. The last rule in Rows allows ��

1

and ��

2

to be linked by an arbitrarily long path of row variables. (This is made neessary

by the fat that the existene of a onstraint �� � does not allow expanding

into �Æ, for a fresh Æ. Indeed, �` � r does not imply that r is a onstant row.) The

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

32 � F. Pottier and V. Simonet

Closure

C � C

0

C

0

6A C

C _ C ^ C

0

"

1

6= "

2

 62 fv(C) �� �

1

� ("

2

: �

2

; �) ^ ("

1

: �

1

; �) � �

2

A C

C ^ ("

1

: �

1

; �

1

) � ("

2

: �

2

; �

2

)_ C ^ �

1

� ("

2

: �

2

;) ^ ("

1

: �

1

;) � �

2

Expansion

� 7 unit A C

C _ C[unit=�℄

� 7 int

�

A C Æ 62 fv(C)

C _ C[int

Æ

=�℄

� 7 (�

� [�℄

���! �)

�

A C

�

0

; �

00

; ; Æ; Æ

0

62 fv(C)

C _ C[(�

00

Æ

0

[℄

����! �

0

)

Æ

=�℄

� 7 � ref

�

A C �

0

; Æ 62 fv(C)

C _ C[�

0

ref

Æ

=�℄

� 7 � � � A C �

0

; �

00

62 fv(C)

C _ C[�

0

� �

00

=�℄

� 7 (�+ �)

�

A C �

0

; �

00

; Æ 62 fv(C)

C _ C[(�

0

+ �

00

)

Æ

=�℄

 7 (" : �; �) A C

0

; Æ 62 fv(C)

C _ C[(" : Æ;

0

)=℄

Fig. 12. Rewriting onstraints

�rst rule in Errors disovers paths of the form `

1

� � � � � `

2

, whih are inonsistent

unless `

1

� `

2

holds in L. The seond error rule enodes the fat that any types

whih are in the subtyping relation must have the same head onstrutor. (Let

�

1

� �

2

hold if and only if either one of �

1

, �

2

is a variable or �

1

and �

2

are (non-

variable) types with the same head onstrutor.) The last error rule reets the

fat that an arrow type annot satisfy a J onstraint.

The �nal piee in the puzzle is a redution relation _ on onstraints, de�ned in

Figure 12. The �rst rewriting rule loses the onstraint under syntati impliation.

The seond rule solves subtyping onstraints between rows that do not exhibit the

same head label; in other words, it allows row labels to ommute. It introdues a

new row variable , whih must be fresh with respet to the whole onstraint, as

expressed by its seond premise. The last premise prevents multiple appliations

of the rule, whih would ompromise termination. The remaining rules expand

every type or row variable that is related to a non-variable term. This is ahieved

by substituting for the former, within the whole onstraint, a fresh term whose

struture mirrors the latter. �

1

7 �

2

A C is short for �

1

� �

2

A C _ �

2

� �

1

A C .

The following lemma states that redution preserves satis�ability.

Lemma 19 (Corretness). If C _ C

0

then C � C

0

.

Proof. By inspetion of the de�nitions of � and _.

Redution is strongly normalizing. This property ensures that the onstraint

solving algorithm terminates.

Lemma 20 (Termination). There is no in�nite redution for _ out of a on-

straint that satis�es the our hek.

Proof. Let us �rst remark that, if C passes the our hek, then so does every

redut of C.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 33

Let C be a onstraint that satis�es the our hek. De�ne the height of � with

respet to C, written h

C

(�), as max fn j 9�

1

: : : �

n

�

n

�

C

� � � �

C

�

1

�

C

�g.

Beause C only has a �nite number of sub-terms, any in�nite desending hain for

�

C

must exhibit a yle. However, beause C satis�es the our hek, no suh

yle exists. As a result, h

C

(�) must be �nite.

A row label " is said to be apparent in C if there exists a row variable in

fv(C) suh that " 62 dom(). It is easy to hek that redution preserves the set of

apparent row labels, i.e. it does not ause new labels to appear.

We extend h

C

to elementary onstraints that involve types: let h

C

(�

1

� �

2

) =

max (h

C

(�

1

); h

C

(�

2

)) and h

C

(� J �) = h

C

(� C �) = h

C

(�). The weight of a

row variable is the pair (dom(); 1). The weight of a onstraint �

1

� �

2

is the

pair (dom(�

1

); 0). (Beause the onstraint is well-sorted, dom(�

1

) = dom(�

2

) must

hold.) Lastly, let us say that an elementary onstraint is ative in C if and only

if either (i) there exists C

0

suh that � C

0

and C

0

6A C or (ii) = ("

1

: �

1

; �

1

) �

("

2

: �

2

; �

2

) and �� �

1

� ("

2

: �

2

; �) ^ ("

1

: �

1

; �) � �

2

A C.

Let us now measure a onstraint aording to the following quantities, ordered

lexiographially: (1) the multiset of the heights of its type variables; (2) the mul-

tiset of the heights of its ative elementary onstraints that involve types; (3) the

multiset of the weights of its row variables and of its ative elementary onstraints

that involve rows; (4) the number of paths ��

1

�

1

� � � � �

n

� ��

2

whih

appear in it, while �

1

� �

2

does not; (5) 1 if false appears in the onstraint, 0

otherwise. Given that heights are �nite and the set of apparent exeption names is

�xed, the ordering on measures has no in�nite dereasing hain. We laim that this

measure dereases through every redution step. Indeed, all expansion rules but the

last one eliminate a type variable, while introduing fresh type variables of lesser

height, so they derease (1). The rules in Types and Guards (Figure 11) remove

an ative onstraint that involves types, while possibly introduing onstraints on

types of lesser heights, on rows or on levels, so they derease (2). Similarly, the �rst

three rules in Rows, as well as the seond and last rules in Figure 12, derease (3).

The last rule in Rows dereases (4). Lastly, the error rules derease (5). It follows

that _ terminates.

Cheking for the presene of false provides a omplete satis�ability hek for

onstraints that are normal forms with respet to _.

Lemma 21 (Completeness). Let C be a normal form with respet to _ whih

passes the our hek. C is satis�able if and only if C does not ontain false.

Proof. Clearly, if C ontains false then C is not satis�able. Conversely, assume

C passes the our hek test and does not ontain false.

Let us de�ne a strit ordering � on elementary onstraints as the smallest

transitive relation suh that (i) �

0

1

� �

i

and �

0

2

� �

j

and fi; jg = f1; 2g imply

(�

0

1

� �

0

2

) � (�

1

� �

2

), (ii) �

0

� � implies (�

0

J �) � (� J �) and (� C �

0

) � (� C �),

(iii) dom(�

0

1

) � dom(�

1

) and dom(�

0

2

) � dom(�

2

) imply (�

0

1

� �

0

2

) � (�

1

� �

2

), (iv)

if

0

involves rows and involves types, then

0

� , and (v) if

0

involves labels and

 involves rows, then

0

� . Again, if heights are �nite and the set of apparent

exeption names is �xed, this ordering has no in�nite dereasing hain.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

34 � F. Pottier and V. Simonet

De�ne the assignment � as follows:

�(Æ) = tf` j ` � � � � � Æ A Cg

�() = �(tf�(�) j �� � � � � � A Cg)

�(�) = unit

We will now prove that � ` C; that is, every elementary onstraint suh that A C

is satis�ed by �. The proof is by well-founded indution on �. The meta-variable

_� (resp. _�) denotes a non-variable type (resp. row).

Æ Case = _�

1

� _�

2

. Beause C does not ontain false and beause it is a normal

form, the types _�

1

and _�

2

must have the same head onstrutor. By inspetion

of the �rst group of rules in Figure 11, is entailed by a number of elementary

onstraints, eah of whih appears in C and is less than with respet to �. The

result follows by the indution hypothesis.

Æ Cases = _� J �, = � C _� , = _�

1

� _�

2

. Similar to the previous ase.

Æ Cases = _� � �, = � � _� , = (" : �; �) � and = � (" : �; �). Beause

none of the expansion rules apply, these ases annot arise.

Æ Case = � � �

0

. Immediate.

Æ Cases = � J � and = � C �. Beause �(�) = unit, � ` holds.

Æ Case = ��

1

� ��

2

. Beause C is a normal form, �

1

� �

2

A C must hold. By

indution hypothesis, �(�

1

) � �(�

2

) follows. This yields �(��

1

) � �(��

2

).

Æ Case = �� � . By onstrution, �(�(�)) � �() holds.

Æ Case = � ��. If ��

0

� � � � � A C , then, by transitivity, ��

0

� � � � � �� A

C holds as well. Beause C is a normal form, �

0

� � A C must hold. By indution

hypothesis, �(�

0

) � �(�) follows. As a result, we have �() � �(�(�)).

Æ Case = �

0

. By transitivity, �� � � � � � A C implies �� � � � � �

0

A C .

It follows that f�� j �� � � � � � A Cg � f�� j �� � � � � �

0

A Cg. This yields

�() � �(

0

).

Æ Case = `

1

� `

2

. Beause C does not ontain false and beause it is a normal

form, `

1

� `

2

must hold in L. � ` follows.

Æ Case = ` � Æ. By onstrution, ` � �(Æ) holds.

Æ Case = Æ � `. If `

0

� � � � � Æ A C , then, by transitivity, `

0

� � � � � ` A C

holds as well. Beause C does not ontain false and beause it is a normal form,

`

0

� ` must hold. As a result, we have tf`

0

j `

0

� � � � � Æ A Cg � `, that is,

�(Æ) � `.

Æ Case = Æ � Æ

0

. By transitivity, ` � � � � � Æ A C implies ` � � � � � Æ

0

A C .

It follows that f` j ` � � � � � Æ A Cg � f` j ` � � � � � Æ

0

A Cg. This yields

�(Æ) � �(Æ

0

).

The results developed in this setion may be summarized as follows.

Theorem 22. Constraint solving is deidable.

Proof. Given a onstraint C, determine whether it satis�es the our hek.

If it doesn't, report C is unsatis�able. If it does, normalize it with respet to _,

yielding C

0

. If C

0

ontains false, report C is unsatis�able; otherwise, report it

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 35

is satis�able. Lemma 20 ensures that the algorithm terminates. Lemmas 18, 19

and 21 guarantee that it is orret.

9. EXAMPLES

We intend to integrate mlif into a realisti programming language, suh as Caml-

Light [Leroy et al. 1997℄. In this setion, we give a taste of that by desribing

the prinipal type shemes inferred for some library funtions by our prototype

implementation. We use Caml-Light syntax, whih an be easily de-sugared into

Core ML.

We omit type annotations on top of! when they are unonstrained, anonymous

type variables. Beause none of the type shemes below has free type variables, we

omit the universally quanti�ed variables after 8.

We have not explained how to inlude datatype delarations in the language.

Sine we already have produt and sum types, this should be straightforward. Let

us assume the type onstrutor list is delared as follows:

type ('b, 'd) list = <'d>

| [℄

| (::) of 'b * ('b, 'd) list

In � list

Æ

, the parameter � is the type of the list's elements, as usual, while Æ is a

seurity level. The annotation <'d> on the right-hand side is meant to indiate that

Æ is the seurity annotation arried by the sum type. Our �rst example funtion

omputes the length of a list:

let re length = funtion

| [℄ -> 0

| _ :: l -> 1 + length l

A valid type sheme for length is 8[Æ � Æ

0

℄: � list

Æ

! int

Æ

0

. As expeted, the

result's seurity annotation Æ

0

does not depend on the type of the list's elements.

The onstraint Æ � Æ

0

desribes the information ow indued by the funtion: the

length of a list ontains some information about its struture. This type sheme is

in fat equivalent to 8[℄: � list

Æ

! int

Æ

, a simpli�ation whih our implementation

performs automatially.

let re iter f = funtion

| [℄ -> ()

| x :: l -> f x; iter f l

iter applies f suessively to every element of a list. Its inferred type sheme is

8[t � Æ℄:(�

Æ [℄

���! �)

Æ

! � list

Æ

Æ [℄

���! unit

Here, represents f's e�et. Beause iter does not raise any exeptions of its

own, is also iter's e�et. Æ is f's p parameter. It must dominate iter's own p

parameter (beause f is invoked by iter), the list's seurity level (beause gaining

ontrol tells f that the list is nonempty) and t (beause gaining ontrol tells f

that its previous invoation terminated normally).

let inr r =

r := !r + 1

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

36 � F. Pottier and V. Simonet

inr has 8[℄:int

Æ

ref

Æ

Æ [�℄

���! unit as prinipal type sheme. Indeed, by e-Assign, the

seurity level of the referene's ontents must dominate both inr's p parameter

and the referene's own seurity level. We now re-implement length in imperative

style:

let length' l =

let ount = ref 0 in

iter (fun () -> inr ount) l;

!ount

We obtain 8[℄: � list

Æ

Æ [�℄

���! int

Æ

. This appears more restritive than length's type

sheme: the result's seurity level must now be greater than or equal to the fun-

tion's p parameter. However, the di�erene is only super�ial; it an be heked

that both types in fat have the same expressive power. Formalizing this laim,

and understanding its onsequenes, are left for future work. We ontinue with a

few library funtions whih deal with assoiation lists.

let re mem_asso x = funtion

| [℄ -> false

| (y, _) :: l -> if x = y then true else mem_asso x l

Beause mem asso's result reveals information about both the struture of the list

and the keys stored in it, we obtain:

8[� J Æ℄:� ! (� � �) list

Æ

! bool

Æ

The onstraint � J Æ, whih arises due to the use of polymorphi equality, spei�es

that Æ must be an upper bound for all seurity annotations whih our in the type

of the keys.

let re asso x = funtion

| [℄ -> raise Not_found

| (y, d) :: l -> if x = y then d else asso x l

asso returns the piee of data assoiated with a given key. If no suh key exists,

Not found is raised, as reeted in asso's e�et:

8[� J Æ; Æ C �

0

; Æ � Æ

0

℄:� ! (� � �

0

) list

Æ

Æ

0

[Not found: Æ

0

; �℄

�����������! �

0

Here, as in mem asso, Æ represents the information assoiated with the list's stru-

ture and keys. Beause this information is reeted both in asso's normal and

exeptional results, the type system requires Æ C �

0

and Æ � Æ

0

.

Lastly, we re-implement mem asso in terms of asso, using an exeption handler:

let mem_asso' x l =

try

let _ = asso x l in

true

with Not_found ->

false

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 37

As in the ase of length vs. length', the new type sheme requires the result's

seurity level to be greater than or equal to the funtion's p parameter:

8[� J Æ℄:� ! (� � �) list

Æ

Æ [�℄

���! bool

Æ

This betrays the fat that the funtion's implementation uses e�ets, but does not

otherwise restrit its appliability.

10. DISCUSSION

10.1 On exeptions

The reader may notie that normal and exeptional results are not dealt with in

a symmetri way by our type system. Indeed, in a typing judgement p;�;M `

e : t [r ℄, the row r assoiates a seurity level with every exeption name, so as

to reord how muh information is gained by observing that partiular exeption.

However, no information level is expliitly assoiated with normal termination.

Instead, the typing rule for sequential omposition, namely e-Bind, uses t r as an

approximation of it.

Myers' [Myers 1999a; 1999b℄ sets of path labels X, on the other hand, reord

the seurity level assoiated with normal termination under a speial label n, whih

is then used in the sequential omposition rule. It is, however, typially an upper

bound for the value of p inside every sub-expression of the expression at hand, so

this design alone would make the type system very restritive. To prevent that,

Myers adds a non-syntax-direted rule, the single-path rule, stating that X[n℄ an

be reset to ; if the expression at hand an be shown to always terminate normally.

Our system doesn't need the single-path rule: indeed, when r

1

is �?, then t r

1

is ?, and e-Bind typeheks e

1

and e

2

at a ommon p, as desired. Myers' system

is more preise than ours in a few ases, whih involve expressions that never

terminate normally; experiene will tell how ommon they are. The single-path

rule requires a distintion between ; and ? (i.e. between expressions that do not

raise exeptions and expressions that raise only low-seurity exeptions), whih we

have dropped, for simpliity. More importantly, it requires ounting the number

of non-; entries in a row; in the presene of row variables, this requires heavy

onstraint forms, whih is why we avoid it. This diÆulty does not arise in Myers'

framework beause he relies on Java's expliit, monomorphi throws lauses.

There exists a simple monadi enoding of exeptions into sums [Moggi 1989;

Wadler 1992℄. Thus, it is possible, in priniple, to derive a type system for exep-

tions out of a type system that an handle sums. This approah sounds interesting,

beause it is systemati and promises to yield a symmetri treatment of normal vs.

exeptional results. However, we have found that, in order to obtain aeptable

preision in the end, the treatment of sums that is hosen as a starting point must

be very aurate (muh more so than the one given in this paper). For more details,

the reader is referred to a reent paper by the seond author [Simonet 2002℄.

10.2 Variations

In this paper, the type unit arries no seurity annotation, whih is natural, and

�ts well with the onstraint solving algorithm proposed in Setion 8.5, beause unit

an be proposed as a solution for � in every onstraint of the form � C � or � J �

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

38 � F. Pottier and V. Simonet

v-Abs

p;�[x 7! t

0

℄[f 7! t

0

p [r℄

����! t℄;M ` e : t [r ℄

�;M ` �x f:�x:e : t

0

p [r℄

����! t

e-App

�;M ` v

1

: t

0

p

0

[r℄

����! t

�;M ` v

2

: t

0

p � p

0

p;�;M ` v

1

v

2

: t [r ℄

Fig. 13. Modi�ations for an invariant p parameter

(see the proof of Lemma 21). However, as a onsequene of this fat, it is not the

ase that ` C t and t J `

0

imply ` � `

0

. We have found that the lak of suh a

law makes onstraint simpli�ation more intriate and less e�etive. This might

be suÆient motivation to swith bak to a type of the form unit

`

. (Produt types

would remain unannotated.) Then, every type t would ontain at least one seurity

annotation, restoring the above law.

As in previous work [Heintze and Rieke 1998℄, our arrow types arry two anno-

tations p and `, whih are respetively ontravariant and ovariant. These anno-

tations are independent. Yet, the �rst premise of rule e-App (Figure 6), together

with the subtyping rules, show that a funtion annot be applied unless ` � p

holds. So, the urrent type system makes it possible to reate funtions that are

not appliable|a rather undesirable feature. To eliminate this problem, one might

wish to merge the annotations p and `, that is, to use arrow types of the form

t

p [r℄

���! t

0

, where p is invariant. Then, by de�nition, ` C �

p [�℄

���! t

0

would be

equivalent to ` � p ^ ` C t

0

. The typing rules for abstration and appliation

would be modi�ed as desribed in Figure 13. In addition to earlier detetion of

type errors, this modi�ation would perhaps help infer more readable types. We

have experimented with this idea, however, and have run into trouble with reur-

sive de�nitions: the types inferred for some reursive funtions beome less preise,

unless polymorphi reursion [Myroft 1984℄ is added to the type system.

10.3 Future work

Our main diretion for future work is to reate a full implementation of the system

on top of a fragment of Objetive Caml, and to assess its usability through a number

of ase studies. We also intend to publish a more detailed aount of our onstraint

resolution and simpli�ation tehniques. Lastly, the fat that ertain distint types

appear to have the \same" meaning, illustrated in Setion 9 by omparing the types

asribed to length and length', would deserve deeper study.

REFERENCES

Abadi, M., Banerjee, A., Heintze, N., and Rieke, J. G. 1999. A ore alulus of dependeny.

In Conferene Reord of the 26th ACM Symposium on Priniples of Programming Languages.

ACM Press, San Antonio, Texas, 147{160. URL: http://www.soe.us.edu/~abadi/Papers/

flowpopl.ps.

Abadi, M., Lampson, B., and L

�

evy, J.-J. 1996. Analysis and ahing of dependenies. In Proeed-

ings of the 1996 ACM SIGPLAN International Conferene on Funtional Programming. ACM

Press, Philadelphia, Pennsylvania, 83{91. URL: http://www.soe.us.edu/~abadi/Papers/

make-preprint.ps.

Banerjee, A. and Naumann, D. 2002. Seure information ow and pointer on�nement in a Java-

like language. In Proeedings of the 15th IEEE Computer Seurity Foundations Workshop

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

Information Flow Inferene for ML � 39

(CSFW 15). Cape Breton, Nova Sotia, 253{267. URL: http://www.s.stevens-teh.edu/

~naumann/sfw15.ps.

Bell, D. E. and LaPadula, L. J. 1975. Seure omputer systems: Uni�ed exposition and Multis

interpretation. Teh. Rep. MTR-2997, The MITRE Corp., Bedford, Massahusetts. July. URL:

http://www.mitre.org/resoures/enters/infose/infose.html.

Denning, D. E. 1982. Cryptography and Data Seurity. Addison-Wesley, Reading, Massahusetts.

F

�

ahndrih, M. 1999. Bane: A library for salable onstraint-based program analysis. Ph.D. thesis,

University of California at Berkeley. URL: http://researh.mirosoft.om/~maf/diss.ps.

Field, J. and Teitelbaum, T. 1990. Inremental redution in the lambda alulus. In Proeedings

of the 1990 ACM Conferene on Lisp and Funtional Programming. ACM Press, 307{322.

Flanagan, C., Sabry, A., Duba, B. F., and Felleisen, M. 1993. The essene of ompiling

with ontinuations. In Proeedings of the ACM SIGPLAN'93 Conferene on Programming

Language Design and Implementation. ACM Press, Albuquerque, New Mexio, 237{247. URL:

http://www.s.rie.edu/CS/PLT/Publiations/pldi93-fsdf.ps.gz.

Goguen, J. and Meseguer, J. 1982. Seurity poliies and seurity models. In Proeedings of

the 1982 IEEE Symposium on Seurity and Privay. IEEE Computer Soiety Press, Oakland,

California, 11{20.

Heintze, N. and Rieke, J. G. 1998. The SLam alulus: Programming with serey and integrity.

In Conferene Reord of the 25th ACM Symposium on Priniples of Programming Languages.

ACM Press, San Diego, California, 365{377. URL: http://m.bell-labs.om/m/s/who/nh/

slam.ps.

Leroy, X., Doligez, D., et al. 1997. The Caml Light system, release 0.74. URL: http://aml.

inria.fr/.

Leroy, X., Doligez, D., Garrigue, J., R

�

emy, D., and Vouillon, J. 2002. The Objetive Caml

system, release 3.06. URL: http://aml.inria.fr/.

Milner, R., Tofte, M., Harper, R., and MaQueen, D. 1997. The De�nition of Standard ML

(Revised). The MIT Press.

Moggi, E. 1989. An abstrat view of programming languages. Teh. Rep. ECS-LFCS-90-113, Uni-

versity of Edinburgh. June. URL: http://www.disi.unige.it/person/MoggiE/ftp/abs-view.

ps.gz.

Myroft, A. 1984. Polymorphi type shemes and reursive de�nitions. In Proeedings of the

6th International Symposium on Programming, M. Paul and B. Robinet, Eds. Leture Notes

in Computer Siene, vol. 167. Toulouse, Frane, 217{228.

Myers, A. C. 1999a. JFlow: pratial mostly-stati information ow ontrol. In Proeedings of

the 26th ACM SIGPLAN-SIGACT on Priniples of Programming Languages. ACM Press,

San Antonio, Texas, 228{241. URL: http://www.s.ornell.edu/andru/papers/popl99/

myers-popl99.ps.gz.

Myers, A. C. 1999b. Mostly-stati deentralized information ow ontrol. Ph.D. thesis,

Massahusetts Institute of Tehnology. Tehnial Report MIT/LCS/TR-783. URL: http:

//www.s.ornell.edu/andru/release/tr783.ps.gz.

Odersky, M., Sulzmann, M., and Wehr, M. 1999. Type inferene with onstrained types.

Theory and Pratie of Objet Systems 5, 1, 35{55. URL: http://www.s.mu.oz.au/~sulzmann/

publiations/tapos.ps.

Pottier, F. 2000. Wallae: an eÆient implementation of type inferene with subtyping. URL:

http://pauilla.inria.fr/~fpottier/wallae/.

Pottier, F. 2001. A semi-syntati soundness proof for HM(X). Researh Report 4150, INRIA.

Mar. URL: ftp://ftp.inria.fr/INRIA/publiation/RR/RR-4150.ps.gz.

Pottier, F. 2002. A simple view of type-seure information ow in the �-alulus. In Proeedings

of the 15th IEEE Computer Seurity Foundations Workshop. Cape Breton, Nova Sotia, 320{

330. URL: http://pauilla.inria.fr/~fpottier/publis/fpottier-sfw15.ps.gz.

Pottier, F. and Conhon, S. 2000. Information ow inferene for free. In Proeedings of the

the 5th ACM SIGPLAN International Conferene on Funtional Programming (ICFP'00).

ACM Press, Montr�eal, Canada, 46{57. URL: http://pauilla.inria.fr/~fpottier/publis/

fpottier-onhon-ifp00.ps.gz.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

40 � F. Pottier and V. Simonet

Pottier, F. and Simonet, V. 2002a. Information ow inferene for ML. In Proeedings

of the 29th ACM Symposium on Priniples of Programming Languages (POPL'02). ACM

Press, Portland, Oregon, 319{330. URL: http://pauilla.inria.fr/~fpottier/publis/

fpottier-simonet-popl02.ps.gz.

Pottier, F. and Simonet, V. 2002b. Information ow inferene for ML. Full version. URL:

http://pauilla.inria.fr/~fpottier/publis/fpottier-simonet-popl02-long.ps.gz.

Rehof, J. 1997. Minimal typings in atomi subtyping. In Conferene Reord of the 24th ACM

Symposium on Priniples of Programming Languages. ACM Press, Paris, Frane, 278{291.

URL: http://researh.mirosoft.om/~rehof/popl97.ps.

R

�

emy, D. 1993. Type inferene for reords in a natural extension of ML. In Theoretial Aspets

Of Objet-Oriented Programming. Types, Semantis and Language Design, C. A. Gunter and

J. C. Mithell, Eds. MIT Press. URL: ftp://ftp.inria.fr/INRIA/Projets/ristal/Didier.

Remy/taoop1.ps.gz.

Simonet, V. 2002. Fine-grained information ow analysis for a �-alulus with sum types.

In Proeedings of the 15th IEEE Computer Seurity Foundations Workshop (CSFW 15).

Cape Breton, Nova Sotia, 223{237. URL: http://ristal.inria.fr/~simonet/publis/

simonet-sfw-02.ps.gz.

Sulzmann, M. 2000. Completenss of onstraint-based inferene. URL: http://www.s.mu.oz.au/

~sulzmann/publiations/onstraint-inferene.ps.

Sulzmann, M., M

�

uller, M., and Zenger, C. 1999. Hindley/Milner style type systems in on-

straint form. Researh Report ACRC{99{009, University of South Australia, Shool of Com-

puter and Information Siene. July. URL: http://www.ps.uni-sb.de/~mmueller/papers/

hm-onstraints.ps.gz.

Volpano, D. and Smith, G. 1997a. Eliminating overt ows with minimum typings. In 10th

IEEE Computer Seurity Foundations Workshop. Rokport, MA, 156{168. URL: http://www.

s.nps.navy.mil/people/faulty/volpano/papers/sfw97.ps.Z.

Volpano, D. and Smith, G. 1997b. A type-based approah to program seurity. Leture Notes

in Computer Siene 1214, 607{621. URL: http://www.s.nps.navy.mil/people/faulty/

volpano/papers/tapsoft97.ps.Z.

Volpano, D., Smith, G., and Irvine, C. 1996. A sound type system for seure ow analysis.

Journal of Computer Seurity 4, 3, 167{187. URL: http://www.s.nps.navy.mil/people/

faulty/volpano/papers/js96.ps.Z.

Wadler, P. 1992. Comprehending monads. Mathematial Strutures in Computer Siene 2, 461{

493. URL: http://www.researh.avayalabs.om/user/wadler/papers/monads/monads.ps.gz.

Wright, A. K. 1995. Simple imperative polymorphism. Lisp and Symboli Computation 8, 4

(De.), 343{356. URL: http://www.s.rie.edu/CS/PLT/Publiations/las95-w.ps.gz.

Wright, A. K. and Felleisen, M. 1994. A syntati approah to type soundness. Information

and Computation 115, 1 (Nov.), 38{94. URL: http://www.s.rie.edu/CS/PLT/Publiations/

i94-wf.ps.gz.

Zdanewi, S. and Myers, A. C. 2001. Seure information ow and CPS. In Proeedings of

the 2001 European Symposium on Programming (ESOP'01), D. Sands, Ed. Leture Notes in

Computer Siene. Springer Verlag, Genova, Italy. URL: http://www.s.ornell.edu/zdane/

linont.ps.

Zdanewi, S. and Myers, A. C. 2002. Seure information ow via linear ontinuations. Higher

Order and Symboli Computation. To appear. URL: http://www.s.ornell.edu/andru/

papers/hos01.ps.gz.

Doument ompiled August 22, 2002.

ACM Transations on Programming Languages and Systems, Vol. TBD, No. TDB, Month Year.

