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Abstra
t

This paper presents a type-based information 
ow analysis

for a 
all-by-value �-
al
ulus equipped with referen
es, ex-


eptions and let-polymorphism, whi
h we refer to as Core

ML. The type system is 
onstraint-based and has de
idable

type inferen
e. Its non-interferen
e proof is reasonably light-

weight, thanks to the use of a number of orthogonal te
h-

niques. First, a synta
ti
 segregation between values and

expressions allows a lighter formulation of the type system.

Se
ond, non-interferen
e is redu
ed to subje
t redu
tion for

a non-standard language extension. Lastly, a semi-synta
ti


approa
h to type soundness allows dealing with 
onstraint-

based polymorphism separately.

1 Introdu
tion

Information 
ow analysis 
onsists in stati
ally determining

how a program's outputs are related to its inputs, i.e. how

the former depend, dire
tly or indire
tly, on the latter. This

allows establishing se
re
y and integrity properties of a pro-

gram, i.e. proving that some aspe
ts of its behavior 
onvey

no information about those of its inputs deemed \se
ret",

or remain independent of those deemed \unreliable". These

properties are instan
es of non-interferen
e [7℄: they state

the absen
e of 
ertain dependen
ies.

Be
ause information 
ow analysis is 
omplex and error-

prone, it must be automated. During the past few years,

several resear
hers have advo
ated its formulation as a type

system. Then, existing type inferen
e te
hniques provide

automation, while type signatures provide 
on
ise, formal

se
urity spe
i�
ations.

Our interest is in designing { and proving 
orre
t { a

type-based information 
ow analysis for (the kernel of) a

realisti
 sequential programming language. (In the presen
e

of 
on
urren
y, the termination of a pro
ess is observable by

other pro
esses, 
reating new ways to leak information and

requiring more restri
tive type systems. Hen
e, it appears

reasonable to �rst experiment with information 
ow 
ontrol

in a sequential setting.) To date, most formal results ob-

tained in this area 
on
ern extremely redu
ed programming
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languages. Several papers address pure �-
al
uli [8, 1, 16℄.

Volpano et al. [22, 21℄ study a 
ore imperative program-

ming language, where all variables store integers. Standing

in sharp 
ontrast, Myers [10, 11℄ 
onsiders the full Java lan-

guage, in
luding obje
ts, ex
eptions, parameterized 
lasses,

et
. However, he does not give a formal proof of 
orre
tness;

indeed, our formal approa
h un
overed a 
ouple of 
aws in

his type system (see se
tion 7.3).

In an attempt to bridge the gap between these ap-

proa
hes, we 
onsider a 
all-by-value �-
al
ulus equipped

with referen
es, ex
eptions and let-polymorphism, whi
h we

refer to as Core ML. (Presentation set aside, it is identi
al

to Wright and Felleisen's Core ML [24℄, ex
ept our ex
ep-

tion names have global s
ope and are not �rst-
lass val-

ues.) Su
h a 
al
ulus 
an be viewed as the 
ore of the

fun
tional programming language Caml-Light [9℄. We en-

dow it with a polymorphi
, 
onstraint-based type system,


alled mlif, whi
h has de
idable type inferen
e and guaran-

tees non-interferen
e.

A (monomorphi
) treatment of referen
es in a higher-

order language 
an be found in [25℄. Ex
eptions have been

studied by Myers [10, 11℄ for Java. However, Myers' treat-

ment relies on Java's expli
it, monomorphi
 throws 
lauses,

whereas our type system uses a more 
exible, polymorphi


e�e
t analysis, giving rise to issues dis
ussed in se
tion 10.

The 
ombination of referen
es, ex
eptions and 
onstrained

let-polymorphism, as well as our use of a standard subje
t

redu
tion te
hnique to establish non-interferen
e, are novel.

Our treatment of un-annotated tuple types and of polymor-

phi
 equality form an
illary 
ontributions.

2 Overview

Type systems are typi
ally used to establish safety prop-

erties, i.e. prove that a 
ertain invariant holds throughout

the exe
ution of a program. Type safety is su
h a property.

However, non-interferen
e [7℄ requires two independent pro-

gram runs, given di�erent inputs, to yield the same output.

As a result, its proof is often more deli
ate.

Abadi et al. [2℄ devised a labelled operational semanti
s of

the �-
al
ulus, where the labels atta
hed to a term indi
ate

how mu
h information it 
arries. Exe
uting a program un-

der su
h a semanti
s amounts to performing a dynami
 de-

penden
y analysis along with the a
tual 
omputation. Pot-

tier and Con
hon [16℄ later showed how stati
, type-based

dependen
y analyses 
ould be systemati
ally derived, and

proven safe, from su
h a labelled semanti
s.

Unfortunately, in a programming language with side ef-



fe
ts, it is possible to leak information through the absen
e

of a 
ertain e�e
t. Indeed, 
onsider the program fragment

\if x = 1 then y := 1". If, after exe
uting this statement, y

isn't 1, then x 
annot be 1 either. Thus, in that 
ase, exe-


ution transfers information about x to y, even though no

assignment takes pla
e, sin
e the statement y :=1 is skipped.

It appears diÆ
ult for a labelled semanti
s to a

ount for the

e�e
t of 
ode that is not exe
uted; so, the approa
h must

be re
onsidered.

Dire
t non-interferen
e proofs, although straightforward

for simple programming languages [22℄, be
ome in
reasingly


omplex in ri
her languages, requiring 
umbersome invari-

ants to be manipulated [25℄. To avoid this pitfall, we break

our proof down into several independent steps. First, we

de�ne a spe
ial-purpose extension of the language, whi
h

allows expli
it reasoning about the 
ommonalities and dif-

feren
es between two arbitrary program 
on�gurations, and

prove it adequate in a 
ertain sense. Then, we de�ne a

type system for this extended language, and prove that it

enjoys a subje
t redu
tion property. Lastly, we show that

non-interferen
e for the base language is a 
onsequen
e of

these results. In other words, we redu
e the initial problem

to subje
t redu
tion { a safety property { for our spe
ial-

purpose language. The invariant preserved by redu
tion is

thus expressed in the type system itself, making it easier to

reason about.

In keeping with the ML tradition, our type system has

let-polymorphism and type inferen
e. In addition to stru
-

ture, our types des
ribe e�e
ts and se
urity levels; polymor-

phism allows writing 
ode that is generi
 with respe
t to all

three. Type inferen
e is an indispensable help, be
ause our

types are verbose and information 
ow is often un-intuitive.

Be
ause we employ subtyping (as well as other forms of


onstraints), our type inferen
e system is 
onstraint-based.

Yet, if generalization, instantiation, and 
onstraint manip-

ulation were part of the type system from the outset, our

subje
t redu
tion proof would be signi�
antly obfus
ated.

To work around this problem, we adopt a semi-synta
ti


approa
h [15℄, whi
h again 
onsists in breaking down the


onstru
tion into two steps. First, we present a system

equipped with an extensional form of polymorphism, whose

formal treatment is remarkably un-intrusive. Then, we build

a 
onstraint-based system in the style of HM(X) [12℄, whi
h

we prove 
orre
t with respe
t to the former.

We will now pro
eed as follows. We �rst present the

syntax of Core ML (se
tion 3). Then, we introdu
e our

te
hni
al extension of it, whi
h we refer to as \Core ML

2

",

give an operational semanti
s to both languages at on
e, and

show how they relate to ea
h other (se
tion 4). Se
tion 5

introdu
es mlif

0

, a type system for Core ML

2

, and estab-

lishes subje
t redu
tion. Combining these results, we obtain

a non-interferen
e property for Core ML (se
tion 6). In se
-

tion 7, we digress and dis
uss a few language extensions.

Culminating our development, se
tion 8 presents mlif, a


onstraint-based type system whi
h we prove 
orre
t with

respe
t to mlif

0

, allowing type inferen
e. Se
tions 9 and 10

give some examples and 
on
lude.

3 Core ML

Let k range over integers; let x, m, " range over disjoint

denumerable sets of program variables, memory lo
ations,

and ex
eption names, respe
tively. Then, values, out
omes,

expressions and evaluation 
ontexts are de�ned as follows:

v ::= x j �x f:�x:e j k j () j m j " v

o ::= v j raise (" v)

e ::= o

j v v

j ref v j v := v j ! v

j raise v

j let x = v in e

j E[e℄

E ::= bind x = [ ℄ in e

j [ ℄ handle " x � e

j [ ℄ handle x � e

Our values in
lude variables, �-abstra
tions, integers, a

unit 
onstant, memory lo
ations, and ex
eptions. An ab-

stra
tion �x f:�x:e may re
ursively refer to itself through

the program variable f . (This is done merely to avoid deal-

ing with re
ursion separately.) Every ex
eption name " 
an

be used as a data 
onstru
tor to build ex
eption values of

the form " v. Out
omes, known as answers in [24℄, represent

ina
tive 
omputations; they are either values or unhandled

ex
eptions of the form raise (" v). An expression is an out-


ome, a so-
alled basi
 expression, a let 
onstru
t, or another

expression en
losed within an evaluation 
ontext.

Basi
 expressions in
lude fun
tion appli
ations as well as

instan
es of four primitive operations, whi
h allow allo
at-

ing, updating, dereferen
ing memory 
ells, and raising ex-


eptions. They are built out of values, rather than out of ar-

bitrary sub-expressions. This synta
ti
 restri
tion, whi
h is

reminis
ent of Flanagan et al.'s A-normal forms [6℄, o�ers a

number of advantages. First, it enables a lighter formulation

of our type-and-e�e
t system. Indeed, be
ause values have

no 
omputational e�e
t, a basi
 expression's sub-expressions

do not 
ontribute to its e�e
t. Furthermore, it allows our

system to remain independent of the evaluation strategy, i.e.

of the 
hoi
e of left-to-right vs. right-to-left evaluation order.

User programs, expressed in a more liberal syntax, must be

translated down into our restri
ted syntax before they 
an

be analyzed; di�erent evaluation strategies will simply 
or-

respond to di�erent translation s
hemes (see se
tion 5.7).

The let 
onstru
t let x = v in e has the same mean-

ing as the basi
 expression (�x f:�x:e) v (where f is not free

in e). However, as usual in ML [24℄, the let keyword di-

re
ts the type 
he
ker to give x polymorphi
 type. Follow-

ing Wright [23℄, we require the binding to 
ontain a value

v, rather than an arbitrary sub-expression, so as to avoid

unsoundness in the presen
e of imperative features. As a

result, let 
onstru
ts do not appear among evaluation 
on-

texts.

Evaluation 
ontexts provide glue to 
ombine expres-

sions and spe
ify their evaluation order. The expression

bind x = e

1

in e

2

evaluates e

1

, binds its value (if any) to x,

then evaluates e

2

. The bind keyword does not request type

generalization; it merely expresses sequentiality. Our de
i-

sion of making let and bind separate 
onstru
ts emphasizes

this distin
tion. The handle 
onstru
ts are dual to bind: they

spe
ify what happens after the expression under s
rutiny

raises an ex
eption, rather than after it returns a value.

The meaning of the memory lo
ations whi
h o

ur in a

Core ML expression is given by a store �, i.e. a partial map

from memory lo
ations to values. We write �[m 7! v℄ and

�� [m 7! v℄ for the store whi
h maps m to v and otherwise

agrees with �; the latter is de�ned only if m 62 dom(�).

2



Basi
 redu
tions (�x f:�x:e) v =

i

� ! e[x( v℄[f ( �x f:�x:e℄ =

i

� (�)

ref v =

i

� ! m =

i

�� [m 7! new

i

v℄ (ref)

m := v =

i

� ! () =

i

�[m 7! update

i

�(m) v℄ (assign)

!m =

i

� ! read

i

�(m) =

i

� (deref)

let x = v in e =

i

� ! e[x( v℄ =

i

� (let)

Sequen
ing bind x = v in e =

i

� ! e[x( v℄ =

i

� (bind)

raise (" v) handle " x � e =

i

� ! e[x( v℄ =

i

� (handle)

raise (" v) handle x � e =

i

� ! e[x( " v℄ =

i

� (handle-all)

E[o℄ =

i

� ! o =

i

� (throw-
ontext)

if :(E handles bo


1

_ E handles bo


2

)

Lifting E[ho

1

j o

2

i℄ = � ! hbE


1

[o

1

℄ j bE


2

[o

2

℄i = � (lift-
ontext)

if none of the sequen
ing rules applies

hv

1

j v

2

i v = � ! hv

1

bv


1

j v

2

bv


2

i = � (lift-app)

hv

1

j v

2

i := v = � ! hv

1

:= bv


1

j v

2

:= bv


2

i = � (lift-assign)

! hv

1

j v

2

i = � ! h ! v

1

j ! v

2

i = � (lift-deref)

raise h"

1

v

1

j "

2

v

2

i = � ! hraise ("

1

v

1

) j raise ("

2

v

2

)i = � (lift-raise)

Redu
tion under a 
ontext

e =

i

�! e

0

=

i

�

0

E[e℄ =

i

�! E[e

0

℄ =

i

�

0

(
ontext)

e

i

=

i

�! e

0

i

=

i

�

0

e

j

= e

0

j

fi; jg = f1; 2g

he

1

j e

2

i = �! he

0

1

j e

0

2

i = �

0

(bra
ket)

Auxiliary fun
tions

new

�

v = v update

�

v v

0

= v

0

read

�

v = v

new

1

v = hv j voidi update

1

v v

0

= hv

0

j bv


2

i read

1

v = bv


1

new

2

v = hvoid j vi update

2

v v

0

= hbv


1

j v

0

i read

2

v = bv


2

Figure 1: Operational semanti
s of Core ML

2

4 Core ML

2

4.1 Presentation

Non-interferen
e requires reasoning about two programs and

proving that they share some sub-terms throughout exe
u-

tion. To make su
h reasoning easier, we 
hoose to represent

them as a single term of an extended language, 
alled Core

ML

2

, rather than as a pair of Core ML terms. The extension

is as follows:

v ::= : : : j hv j vi j void

o ::= : : : j ho j oi

e ::= : : : j he j ei

The Core ML

2

term he

1

j e

2

i is intended to en
ode the pair

of Core ML terms (e

1

; e

2

). It is important to note that it 
an

appear at an arbitrary depth within a term. For instan
e,

assuming v is a Core ML value, the terms hv

1

j v

2

i v and

hv

1

v j v

2

vi both en
ode the pair (v

1

v; v

2

v). The former,

however, is more informative, be
ause it expli
itly re
ords

the fa
t that the appli
ation node and its argument v are

shared, while the latter doesn't. We do not allow nesting

h� j �i 
onstru
ts.

We need to keep tra
k of sharing not only between ex-

pressions, but also between stores. However, distin
t stores

may have distin
t domains. To a

ount for this fa
t, we in-

trodu
e a spe
ial 
onstant void. By 
reating bindings of the

form m 7! hv j voidi and m 7! hvoid j vi in the store, we

represent situations where a memory lo
ation m is bound

within only one of the two Core ML expressions en
oded by

a Core ML

2

term.

A 
on�guration e=

i

� is a triple of an expression e, a store

�, and an index i 2 f�; 1; 2g, whose purpose is explained in

se
tion 4.2. We write e = � for e =

�

�.

A 
on�guration e =

i

� is well-formed if the following 
on-

ditions hold:

� e does not 
ontain void; furthermore, if i 2 f1; 2g, then

e is a Core ML expression;

� for ea
h m 2 dom(�), �(m) is of the form v, hv j voidi

or hvoid j vi, where v does not 
ontain void.

Furthermore, we 
onsider a memory lo
ationm to be bound

within e and � a

ording to the following rules:

� if �(m) is of the form v, then m is in s
ope everywhere

within e and �;

� if �(m) is of the form hv j voidi (resp. hvoid j vi), then:

{ m is in s
ope within the left (resp. right) bran
h

of every h� j �i 
onstru
t in �;

{ if i = �, then m is in s
ope within the left (resp.

right) bran
h of every h� j �i 
onstru
t in e; if i = 1

(resp. i = 2), then m is in s
ope within e.

A 
on�guration e =

i

� is 
losed if all o

urren
es of memory

lo
ations in it are in s
ope. We restri
t our attention to

well-formed, 
losed 
on�gurations. (These te
hni
al notions

are preserved by redu
tion and guarantee that void is used

ex
lusively in store bindings, as des
ribed above.) Further-

more, we identify 
on�gurations up to 
onsistent renamings

of memory lo
ations.

3



The 
orresponden
e between Core ML and Core ML

2

is made expli
it by means of two proje
tion fun
tions b�


i

,

where i ranges over f1; 2g. They satisfy bhe

1

j e

2

i


i

= e

i

and are homomorphisms on other expression forms. They

are extended to stores as follows: b�


i

maps m to b�(m)


i

if and only if the latter is de�ned and isn't void. Lastly,

the proje
tion of a 
on�guration is de�ned by be = �


i

=

be


i

= b�


i

.

4.2 Semanti
s

The small-step operational semanti
s of Core ML

2

is given in

�gure 1. The �rst two groups of redu
tion rules are those of

Core ML, with a few te
hni
al twists explained below. The

rules in the third group are spe
i�
 to Core ML

2

; they allow

dis
arding sharing information if redu
tion 
annot otherwise

take pla
e. The rules in the fourth group allow redu
tion

under a 
ontext.

The rules are designed so that the image of any redu
tion

step through a proje
tion fun
tion is again a valid redu
tion

step. Redu
tion may take pla
e outside bra
kets, 
ausing

both proje
tions to perform the same redu
tion step; in-

side bra
kets, letting one proje
tion 
ompute independently,

while the other remains stationary; or lift up the bra
ket

boundary, dis
arding some sharing information, while leav-

ing both proje
tions un
hanged.

The 
apture-free substitution of v for x in e, written

e[x( v℄, is de�ned in the usual way, ex
ept at h� j �i nodes,

where we must use an appropriate proje
tion of v in ea
h

bran
h: he

1

j e

2

i[x( v℄ is he

1

[x( bv


1

℄ j e

2

[x( bv


2

℄i.

We would like the rules in the �rst two groups to be

appli
able under any 
ontext. However, (ref), (assign) and

(deref) need a small amount of 
ontextual information. In-

deed, the store must be a

essed in a 
ontext-dependent

manner: operations whi
h take pla
e inside a h� j �i 
on-

stru
t must use or a�e
t only one proje
tion of the store.

The index i 
arried by 
on�gurations is used for this pur-

pose. Its value is � when dealing with top-level redu
tion

steps; it is made 1 (resp. 2) by rule (bra
ket) when redu
ing

within the left (resp. right) bran
h of a h� j �i 
onstru
t. It

is used in the auxiliary fun
tions new

i

, update

i

and read

i

to a

ess the store in an appropriate way.

The rules in the se
ond group des
ribe how values and

ex
eptions are bound (i.e. handled) or propagated. We say

that E handles o if and only if E[o℄ is redu
ible through

(bind), (handle) or (handle-all).

The rules in the third group have no 
omputational 
on-

tent: they leave both proje
tions un
hanged. Their purpose

is to prevent h� j �i 
onstru
ts from blo
king redu
tion, whi
h

is done by lifting them up, thus 
ausing some sub-terms to be

dupli
ated, but allowing redu
tion to pro
eed independently

within ea
h bran
h. For instan
e, the left-hand expression

in (lift-app) is not a �-redex. In its redu
t, the appli
ation

node and the sub-term v are dupli
ated, allowing two �-

redexes to appear. A somewhat analogous rule 
an be found

in Abadi et al.'s labelled semanti
s of the �-
al
ulus [2℄. To

understand the signi�
an
e of the \lift" rules, one must bear

in mind that the 
ontents of every h� j �i 
onstru
t will be

viewed as \se
ret". By 
ausing new sub-terms to be
ome

se
ret during redu
tion, these rules a
tually provide an ex-

pli
it des
ription of information 
ow. Our design attempts

to dis
ard as little sharing information as possible; indeed,

repla
ing all of these rules with e! hbe


1

j be


2

i, while 
om-

putationally 
orre
t, would 
ause the type system to view

every expression as \se
ret".

Our \lift" rules are not optimal, be
ause there are situ-

ations where they dis
ard sharing information whi
h 
ould


on
eivably be preserved, and be
ause they never re-
reate

sharing information; however, they are pre
ise enough for

our purposes, whi
h is to prove a parti
ular type system

sound.

We remark that, be
ause of rule (bra
ket), redu
tions

under a bra
ket may be interleaved in an arbitrary order,


ausing non-determinism to arise. However, 
on
uen
e is

preserved, as stated below.

Lemma 4.1 (Con
uen
e) If e = �! e

0

1

= �

0

1

and e = �!

e

0

2

= �

0

2

, then there exists a 
on�guration e

0

= �

0

su
h that

e

0

1

= �

0

1

!

=

e

0

= �

0

and e

0

2

= �

0

2

!

=

e

0

= �

0

.

The semanti
s of Core ML 
an be obtained as a fragment

of that of Core ML

2

.

4.3 Relating Core ML

2

to Core ML

We now show that Core ML

2

is an appropriate tool to rea-

son simultaneously about the exe
ution of two Core ML

programs. This is expressed by two properties. First, as

explained above, the image of a valid redu
tion through

proje
tion remains a valid redu
tion. Conversely, if both

proje
tions of a term 
an be redu
ed to an out
ome, then

so 
an the term itself.

Lemma 4.2 Let i 2 f1; 2g. If e=

i

�! e

0

=

i

�

0

, then e=b�


i

!

e

0

= b�

0




i

.

Proof. By inspe
tion of (ref), (assign) and (deref). �

Lemma 4.3 (Soundness) Let i 2 f1; 2g. If e=�! e

0

=�

0

,

then be = �


i

!

=

be

0

= �

0




i

.

Proof. By inspe
tion of the redu
tion rules and appeal to

lemma 4.2. �

A 
on�guration e =

i

� is stu
k if it is irredu
ible and e

isn't an out
ome. It is su

essful if e is an out
ome. The

following lemma will be used in the proof of the 
ompleteness

property.

Lemma 4.4 (Stu
k Con�gurations) If e = � is stu
k,

then be = �


i

is stu
k for some i 2 f1; 2g.

Proof. By indu
tion on the stru
ture of e.

Æ Case e = v

1

v

2

. Be
ause neither (�) nor (lift-app) is

appli
able, v

1


annot be of the form hv

11

j v

12

i or �x f:�x:e

0

.

As a result, for any i 2 f1; 2g, bv

1




i


annot be of the form

�x f:�x:e

0

. It follows that be = �


i

is stu
k.

Æ Case e = (v

1

:= v

2

), e = ! v. Similar to the previous


ase.

Æ Case e = ref v, e = (let x = v in e

0

). e = � is not stu
k.

Æ Case e = raise v. Be
ause e isn't an out
ome, v isn't of

the form " v

0

. Be
ause (lift-raise) isn't appli
able, v isn't of

the form h"

1

v

1

j "

2

v

2

i. As a result, for some i 2 f1; 2g, bv


i


annot be of the form " v

0

. It follows that be = �


i

is stu
k.

Æ Case e = E[e

1

℄. By inspe
tion of (bind), (handle),

(handle-all) and (throw-
ontext), one determines that if e

1

is an out
ome, then E[e

1

℄ is redu
ible. So, e

1

is not an

out
ome, whi
h implies that e

1

= � is stu
k. By indu
tion

hypothesis, be

1

= �


i

is stu
k, for some i 2 f1; 2g. By in-

spe
tion of the redu
tion rules, so is F [be

1




i

℄ = b�


i

, for any

4



evaluation 
ontext F ; in parti
ular, so is bE[e

1

℄


i

= b�


i

,

whi
h is be = �


i

.

Æ Case e = he

1

j e

2

i. Assume e=� is stu
k. By (bra
ket),

both e

1

=

1

� and e

2

=

2

� are irredu
ible. Be
ause e isn't

an out
ome, there exists i 2 f1; 2g su
h that e

i

isn't an

out
ome. As a result, e

i

=

i

� is stu
k. It follows that e

i

=b�


i

is stu
k as well. �

Lemma 4.5 (Completeness) Assume be = �


i

!

?

o

i

= �

0

i

for all i 2 f1; 2g. Then, there exists a 
on�guration o = �

0

su
h that e = � !

?

o = �

0

and, for all i 2 f1; 2g, bo = �

0




i

=

o

i

= �

0

i

.

Proof. Let us �rst establish that e=� does not admit an in�-

nite redu
tion sequen
e. To this end, let us �rst noti
e that

no in�nite redu
tion sequen
e 
an 
onsist ex
lusively of in-

stan
es of the \lift" redu
tion rules. (Indeed, ea
h of these

rules moves some h� j �i 
onstru
tor stri
tly 
loser to the

term's root.) Furthermore, these are the only rules whi
h

leave both proje
tions of a 
on�guration un
hanged. In light

of this remark, if e=� admits an in�nite redu
tion sequen
e,

then lemma 4.3 yields an in�nite redu
tion sequen
e out of

be = �


i

, for some i 2 f1; 2g. However, this is impossible,

be
ause both be = �


1

and be = �


2


an be redu
ed to nor-

mal forms, and the semanti
s of the Core ML fragment is

deterministi
.

As a result, e = � 
an be redu
ed to an irredu
ible 
on-

�guration. Let us now reason by indu
tion on the number

of steps in this redu
tion sequen
e.

First, assume the sequen
e is empty. Then, e = � is irre-

du
ible. If e =� is stu
k, then so is one of its proje
tions, by

lemma 4.4. However, this is impossible, sin
e both be = �


1

and be=�


2


an be redu
ed to su

essful 
on�gurations. So,

e = � must be su

essful. Then, so must its proje
tions; the

result follows.

Next, assume the sequen
e begins with e = � ! e

0

= �

0

.

By lemma 4.3, be = �


i

! be

0

= �

0




i

holds for all i 2 f1; 2g.

By lemma 4.1, this implies be

0

= �

0




i

!

?

o

i

= �

0

i

. Thus, we

may apply the indu
tion hypothesis to e

0

=�

0

, showing that

it redu
es to some o = �

0

su
h that bo = �

0




i

= o

i

= �

0

i

holds

for all i 2 f1; 2g. The result follows. �

Our 
ompleteness result requires both proje
tions to 
on-

verge; it is not appli
able if one of them diverges. Indeed, de-

�ne e as bind x = h
 j 0i in 0, where 
 is a non-terminating

expression. Its right proje
tion is bind x = 0 in 0, whi
h

redu
es to 0; yet, e 
annot be redu
ed to any term whose

right proje
tion is 0, be
ause e only redu
es to itself. Su
h a

formulation of 
ompleteness will naturally lead us to estab-

lish a weak non-interferen
e result, whereby two programs


an be guaranteed to yield the same result only if they both

terminate. We do not aim at a strong non-interferen
e re-

sult, be
ause it would make little sense to plug information

leaks related to termination without atta
king timing leaks

in general. Furthermore, su
h a result would require a mu
h

more restri
tive type system.

In essen
e, the 
ompleteness lemma guarantees that we

have provided enough \lift" rules to allow redu
ing all mean-

ingful Core ML

2

expressions. In the next se
tion, ea
h of

these rules will add one 
ase to our subje
t redu
tion proof,

for
ing us to ensure that our type system a

ounts for all

possible kinds of information 
ow.

5 Typing Core ML

2

We now give a type system, 
alled mlif

0

, for Core ML

2

. It

is a ground type system: it has no type variables and deals

with polymorphism in a simple, abstra
t way. As a result,

it does not des
ribe an algorithm; we will address this issue

in se
tion 8.

Throughout the paper, every o

urren
e of � stands for

a distin
t anonymous meta-variable of appropriate kind.

5.1 Types

Let (L;�) be a latti
e whose elements, denoted by ` and p
,

represent se
urity levels. (Following Denning [4℄, we typ-

i
ally use the meta-variable p
, rather than `, when 
on-

sidering information obtained by observing the value of the

\program 
ounter".) Types, rows and alternatives are de-

�ned as follows:

t ::= unit

j int

`

j (t

p
 [r℄

���! t)

`

j t ref

`

j r exn

`

r ::= f" 7! ag

"2E

a ::= Abs

j Pre p


A row r is an in�nite, quasi-
onstant family of alternatives

indexed by E. (A family is quasi-
onstant if all but a �nite

number of its entries are equal.) We write (" : a; r) for the

row whose element at index " is a and whose other elements

are given by the sub-row r, whi
h is indexed by E n f"g. We

write a 2 r to indi
ate that a is a member of r's 
odomain.

Our types are those of ML's type system, de
orated with

extra annotations of two kinds.

First, we employ rows to keep tra
k of ex
eptions, as

in existing type-and-e�e
t systems, su
h as Pessaux and

Leroy's [13℄. If an ex
eption value has type r exn

�

, then

the row r 
ontains information about the ex
eption's name.

Spe
i�
ally, for every " 2 E, if r(") is Abs, then the ex
ep-

tion's name 
annot be "; if, on the other hand, it is Pre �,

then the ex
eption may be named ". Furthermore, fun
-

tion types 
arry an e�e
t [ r ℄. It is also a row, and gives a


onservative des
ription of all ex
eptions possibly raised by

exe
uting the fun
tion.

Se
ond, we use se
urity levels to keep tra
k of how mu
h

information 
an be obtained by looking up integer values,

exe
uting fun
tions, dereferen
ing memory lo
ations, and

handling ex
eptions. The remainder of this se
tion des
ribes

their meaning.

Be
ause there is only one value of type unit, the value

of a unit expression yields no information whatsoever. As a

result, it would be super
uous for the unit type 
onstru
tor

to 
arry a se
urity level. Immutable tuple and re
ord types


an be dealt with similarly; see se
tion 7.1. Thus, we break

the 
onvention set forth in a number of previous papers [8,

16℄ that all types be of the form �

`

. We expe
t this feature

to help redu
e verbosity in pra
ti
e.

The type int

`

des
ribes integer expressions whose value

may re
e
t information of se
urity level `.

Fun
tion types 
arry two se
urity annotations. The ex-

ternal annotation ` represents information about the fun
-

tion's identity. When the fun
tion is applied, part of this

information may be re
e
ted in its result or in other aspe
ts

5



int

�

(	

	 [�℄

���! �)

�

� ref

�

� exn

�

f" 7! �g

"2E

Pre � Abs � Pre �

Figure 2: Subtyping

of the fun
tion's behavior (i.e. in its e�e
t); as a result, their

se
urity level will be made ` or greater. The annotation p
,

found above the ! symbol, tells how mu
h information the

fun
tion obtains merely by gaining 
ontrol { indeed, observ-

ing that a parti
ular fun
tion is 
alled may allow telling

whi
h bran
hes were previously taken. p
 
an be thought

of as an extra parameter to the fun
tion, and indeed it is


ontravariant (see se
tion 5.2). To avoid leaking this infor-

mation, the fun
tion will be allowed to write into memory


ells, or to raise ex
eptions, only at level p
 or greater. This

explains why the annotation p
 is sometimes des
ribed as a

lower bound on the level of the fun
tion's e�e
ts [8℄.

Referen
e types 
arry one annotation `, whi
h represents

information about the referen
e's identity, i.e. about its ad-

dress. Information about the referen
e's 
ontents is found

within the parameter t.

Ex
eptions are des
ribed by rows, within whi
h every

non-Abs entry, of the form " 7! Pre p
, 
arries an annota-

tion p
, telling how mu
h information will be obtained by

observing (i.e. handling) the ex
eption, if it is named ". We

follow Myers [10, 11℄ and asso
iate a distin
t se
urity level

with every ex
eption name, so as to obtain better pre
ision.

Our rows are 
losely related to Myers' sets of path labels

X , whi
h map every ex
eption name to either a spe
ial 
on-

stant ; or a se
urity level; 
ompare these with our alterna-

tives Abs and Pre p
. (See se
tion 10 for further 
omparison

with [10, 11℄.)

In addition to a row, ex
eption types also 
arry an ex-

ternal annotation `. It is, in fa
t, redundant with the row

r. That is, manipulating an ex
eption as a �rst-
lass value


auses its external level ` to in
rease, leaving the row r un-


hanged; when the ex
eption is later raised, every non-Abs

entry in r is raised to level ` or greater. It would be possi-

ble to suppress the external annotation, at the 
ost of some

extra implementation 
omplexity. Another reasonable ap-

proa
h would be to restri
t the language so that ex
eptions

are no longer �rst-
lass values; this would allow us to do

away with exn entirely.

The reader may noti
e that rows do not re
ord the type

of ex
eption arguments, i.e. the 
onstru
tor Pre has no type

parameter. Indeed, as in ML, we make ex
eptions monomor-

phi
 by assuming given a �xed mapping typexn from ex
ep-

tion names to types. This de
ision is useful in two ways.

First, it should make fun
tion types (whi
h in
lude a row)

mu
h more 
ompa
t. Se
ond, it makes our subtyping re-

lation atomi
 (see se
tion 5.2), whi
h we believe opens the

way to simpler and (in pra
ti
e) more eÆ
ient 
onstraint

solving te
hniques.

5.2 Subtyping

We equip types, rows and alternatives with a subtyping rela-

tion �, whi
h extends the partial order (L;�). It is de�ned

by the axioms in �gure 2. The axiom int

�

is a 
ompa
t

version of the assertion int

`

1

� int

`

2

() `

1

� `

2

. In

other words, it states that int's parameter is 
ovariant. The

other axioms are to be understood similarly; �, 	 and �

represent 
ovariant, 
ontravariant and invariant parameters,

respe
tively. The �fth axiom extends subtyping to rows,

point-wise and 
ovariantly.

The last axiom is the only one whi
h relates two 
on-

stru
tors of di�erent arities, apparently making the subtyp-

ing relation non-atomi
. However, it is only super�
ially so.

Indeed, it is possible to give a presentation of the system

where the set of alternatives is merely the disjoint union

fAbsg [ L, 
ausing the expli
it inje
tion Pre to disappear,

be
ause se
urity levels be
ome a subset of alternatives. In

this presentation, subtyping is atomi
 [18℄: alternatives form

a set of atoms.

The use of subtyping in information 
ow 
ontrol is ubiq-

uitous [3, 4, 21, 8℄ and appears essential, be
ause it al-

lows building a dire
ted view of the program's information


ow graph, yielding better pre
ision than a uni�
ation-based

analysis.

5.3 Additional notation

A polytype s is a nonempty, upward-
losed set of types. A

polytype environment � is a partial mapping from program

variables to polytypes. �[x 7! s℄ denotes the environment

whi
h maps x to s and agrees with � otherwise. A memory

environment M is a partial mapping from memory lo
ations

to types.

We de�ne ` C t (read: ` guards t) as follows:

` � `

0

` C unit ` C int

`

0

` C (�

� [�℄

���! �)

`

0

` C � ref

`

0

` C � exn

`

0

The assertion ` C t requires t to have se
urity level ` or

greater, and is used to re
ord a potential information 
ow.

Note that, for any given ` and t, there exists a supertype

t

0

of t su
h that ` C t

0

holds. Thus, the presen
e of ` C t

as a premise typi
ally never prevents the appli
ation of a

typing rule: indeed, pre
eding that rule with a subtyping

step will satisfy the premise. One ex
eption is e-Assign,

where t 
annot be promoted to a supertype be
ause it ap-

pears as an invariant argument to the ref type 
onstru
tor.

The predi
ate C has transitive behavior:

Lemma 5.1 If `

0

� ` and ` C t and t � t

0

then `

0

C t

0

.

Proof. It is easy to see that ` C t is equivalent to ` � level(t)

for some appropriately de�ned fun
tion level. The result

follows. �

To every row r, we asso
iate two se
urity levels, de�ned

by t r = tfp
 j Pre p
 2 rg and u r = ufp
 j Pre p
 2 rg.

Note that Abs entries in r do not 
ontribute to these levels.

5.4 Typing judgements

We distinguish two forms of typing judgements: one deals

with values only, the other with arbitrary expressions. Be-


ause values are normal forms, they have no side e�e
ts, so

the former look quite simple:

�;M ` v : t

(We also write �;M ` v : s when �;M ` v : t holds for

all t 2 s.) On the other hand, expressions do produ
e side

e�e
ts, so the latter are more elaborate:

p
;�;M ` v : t [ r ℄

6



The p
 parameter again tells how mu
h information the ex-

pression may a
quire by gaining 
ontrol; it is a lower bound

on the level of the expression's e�e
ts. Previous works [21, 8℄

employ a similar parameter. The row r approximates the set

of ex
eptions whi
h the expression may raise.

Two extra judgement forms are employed to type stores:

M ` � and 
on�gurations: � ` e =

i

� : t [ r ℄.

In typing judgements, we omit � and M when they are

empty; we sometimes omit p
 and r when they are unspe
i-

�ed (i.e. when they 
ould be written �).

Even though the se
urity latti
e (L;�) is arbitrary, it

is desirable to establish a simple di
hotomy between \low"

and \high" se
urity levels. Su
h a distin
tion simpli�es our

proofs; full generality will be re
overed in se
tion 6. In the

present se
tion, we assume H is a �xed, upward-
losed sub-

set of L. We will view levels inside (resp. outside) H as

\high" (resp. \low").

Non-interferen
e demands that two expressions whi
h

di�er only in high-level sub-terms have identi
al low-level

behavior. To a
hieve this, our type system requires ex-

pressions of the form he

1

j e

2

i { whi
h we use to en
ode

the di�eren
es between two Core ML expressions { to have

high-se
urity result and side e�e
ts. (See v-Bra
ket and

e-Bra
ket in �gure 3.) This will be our only use of H in

this se
tion.

5.5 Typing rules

We now 
omment on the typing rules, given in �gure 3.

v-Unit and v-Int assign base types to 
onstants. v-Void

allows typing values of the form hv j voidi or hvoid j vi

by pretending void has the same type as v. v-Lo
 and

v-Var assign types to memory lo
ations and to variables

by looking up the appropriate environment. Note that �(x)

is a polytype, of whi
h v-Var sele
ts an arbitrary instan
e.

As usual in type-and-e�e
t systems, v-Abs re
ords, on top

of the ! type 
onstru
tor, information about a fun
tion's

side e�e
ts. v-Exn asso
iates to the ex
eption value " v

a row whi
h maps the name " to Pre � and leaves other

entries un
onstrained, allowing them to be Abs. v-Bra
ket

requires the 
omponents of a h� j �i 
onstru
t to have a


ommon type, whi
h must have \high" se
urity level, i.e.

be guarded by some (arbitrary) element of H. v-Sub is

standard.

e-Value allows viewing a value as an expression, and

re
e
ts the fa
t that values have no side e�e
t.

e-App governs fun
tion appli
ation. Be
ause the e�e
t of

a fun
tion appli
ation is exa
tly the fun
tion's latent e�e
t,

the se
urity level p
, whi
h should represent a lower bound

on the level of the former, must also be a lower bound on the

latter's. Be
ause a fun
tion's side e�e
ts may reveal infor-

mation about its identity, their level must equal or ex
eed

the fun
tion's own se
urity level, namely `. As a result of

these remarks, the fun
tion's body must run at level p
 t `.

Be
ause the fun
tion's result, too, may reveal information

about its identity, we require its type to be guarded by `.

e-Ref and e-Assign require p
 C t to ensure that p
 is

indeed a lower bound on the se
urity level of the memory


ell that is written. e-Assign and e-Deref require ` C t to

re
e
t the fa
t that writing or reading a 
ell may indire
tly

reveal information about its identity.

e-Raise requires p
 � u r, ensuring that p
 is a lower

bound on the level of every non-Abs entry in the row r. Thus,

any 
ode fragment able to observe this expression's side ef-

fe
t must run at level p
 or greater (see e-Bind, e-Handle

and e-HandleAll). The se
urity level `, whi
h re
e
ts ad-

ditional, ex
eption-name-independent information, is dealt

with similarly.

Be
ause let only binds values, e-Let is nearly as simple

as in ML. Note that v 
an be given a polytype s, allowing x

to be used at di�erent types within e.

In a binding 
onstru
t bind x = e

1

in e

2

, the expres-

sion e

2

observes, if it re
eives 
ontrol, that no ex
eption

was raised by e

1

. To a

ount for this information 
hannel,

e-Bind type
he
ks e

2

at a se
urity level augmented with

t r

1

, the 
ombined level of all ex
eptions whi
h e

1


an po-

tentially raise. This is a 
onservative approximation, whi
h

works well in the 
ommon 
ase where e

1

is stati
ally known

never to raise ex
eptions; see se
tion 10 for details. r

1

t r

2

denotes the least 
ommon supertype of r

1

and r

2

.

Like e-Bind, e-Handle type
he
ks e

2

at an in
reased

se
urity level, re
e
ting the fa
t that, by gaining 
ontrol, e

2

observes that e

1

raised an ex
eption named ". The in
re-

ment is exa
tly p


0

, the se
urity level asso
iated with " in

e

1

's e�e
t, so the analysis is, in this 
ase, quite a

urate.

Be
ause the result of the handle 
onstru
t may also allow

determining whether the handler was exe
uted, we require

p


0

C t. e-HandleAll is analogous; however, be
ause the


onstru
t allows observing any ex
eption, regardless of its

name, we again use t r

1

as a 
onservative approximation of

how mu
h information is gained. Myers [10, 11℄ performs

the same approximation.

As explained earlier, e-Bra
ket requires both 
ompo-

nents of a h� j �i expression to have a 
ommon type, and

demands that its side e�e
ts and its result be of \high"

se
urity level, i.e. guarded by an arbitrary p


0

2 H. The

auxiliary predi
ate e* holds if and only if e is of the form

E

1

[ : : : E

n

[raise (" v)℄ : : : ℄ where n � 0 and none of the E

i

handles raise (" v). The use of this predi
ate in e-Bra
ket's

last premise is te
hni
al; it is required for subje
t redu
tion

to hold.

5.6 Subje
t redu
tion

Let us �rst state a few auxiliary lemmas, whose proofs are

straightforward.

Lemma 5.2 (Subsumption) p


0

� p
 and p
;�;M ` e :

t [ r ℄ imply p


0

;�;M ` e : t [ r ℄.

Proof. By indu
tion on the derivation of p
;�;M ` e : t [ r ℄.

By monotoni
ity of t, 
ontravarian
e of ! with respe
t to

its p
 parameter, rule v-Sub, lemma 5.1, and the indu
tion

hypothesis, it is easy to 
he
k that every premise remains

valid when p
 de
reases. The result follows. �

Lemma 5.3 (Proje
tion) Let i 2 f1; 2g. If �;M ` v : t

then �;M ` bv


i

: t. If p
;�;M ` e : t [ r ℄ then p
;�;M `

be


i

: t [ r ℄.

Proof. By indu
tion on the input derivation. The only 
ase

of interest is that of e-Bra
ket, where the expression at

hand is he

1

j e

2

i. Then, one of the �rst two premises is

p
 t p


0

;�;M ` e

i

: t [ r ℄. Lemma 5.2 yields p
;�;M ` e

i

:

t [ r ℄, as required. �

Lemma 5.4 (Guard) If �;M ` hv

1

j v

2

i : t then there

exists p


0

2 H su
h that p


0

C t.

Proof. Thanks to lemma 5.1, we may assume, w.l.o.g., that

the derivation of �;M ` hv

1

j v

2

i : t does not end with

7



Values

v-Unit

�;M ` () : unit

v-Int

�;M ` k : int

�

v-Void

�;M ` void : �

v-Lo


�;M ` m : M(m) ref

�

v-Var

t 2 �(x)

�;M ` x : t

v-Abs

p
;�[x 7! t

0

℄[f 7! (t

0

p
 [r℄

���! t)

`

℄;M ` e : t [ r ℄

�;M ` �x f:�x:e : (t

0

p
 [r℄

���! t)

`

v-Exn

�;M ` v : typexn(")

�;M ` " v : (" : Pre �; �) exn

�

v-Bra
ket

�;M ` v

1

: t �;M ` v

2

: t

p


0

2 H p


0

C t

�;M ` hv

1

j v

2

i : t

v-Sub

�;M ` v : t

0

t

0

� t

�;M ` v : t

Expressions

e-Value

�;M ` v : t

�;�;M ` v : t [� ℄

e-App

�;M ` v

1

: (t

0

p
t` [r℄

�����! t)

`

�;M ` v

2

: t

0

` C t

p
;�;M ` v

1

v

2

: t [ r ℄

e-Ref

�;M ` v : t p
 C t

p
;�;M ` ref v : t ref

�

[� ℄

e-Assign

�;M ` v

1

: t ref

`

�;M ` v

2

: t

p
 t ` C t

p
;�;M ` v

1

:= v

2

: unit [� ℄

e-Deref

�;M ` v : t

0

ref

`

t

0

� t ` C t

p
;�;M ` ! v : t [� ℄

e-Raise

�;M ` v : r exn

`

p
 t ` � u r

p
;�;M ` raise v : � [ r ℄

e-Let

�;M ` v : s p
;�[x 7! s℄;M ` e : t [ r ℄

p
;�;M ` let x = v in e : t [ r ℄

e-Bind

p
;�;M ` e

1

: t

0

[ r

1

℄

p
 t (t r

1

);�[x 7! t

0

℄;M ` e

2

: t [ r

2

℄

p
;�;M ` bind x = e

1

in e

2

: t [ r

1

t r

2

℄

e-Handle

p
;�;M ` e

1

: t [ " : Pre p


0

; r ℄

p
 t p


0

;�[x 7! typexn(")℄;M ` e

2

: t [ " : a; r ℄ p


0

C t

p
;�;M ` e

1

handle " x � e

2

: t [ " : a; r ℄

e-HandleAll

p
;�;M ` e

1

: t [ r

1

℄

p
 t (t r

1

);�[x 7! r

1

exn

�

℄;M ` e

2

: t [ r

2

℄ (t r

1

) C t

p
;�;M ` e

1

handle x � e

2

: t [ r

2

℄

e-Bra
ket

p
 t p


0

;�;M ` e

1

: t [ r ℄ p
 t p


0

;�;M ` e

2

: t [ r ℄

p


0

2 H (p


0

C t) _ (e

1

*) _ (e

2

*)

p
;�;M ` he

1

j e

2

i : t [ r ℄

e-Sub

p
;�;M ` e : t

0

[ r

0

℄ t

0

� t r

0

� r

p
;�;M ` e : t [ r ℄

Con�gurations

Store

dom(M) = dom(�)

8m 2 dom(�) M ` �(m) : M (m)

M ` �

Conf

p
;�;M ` e : t [ r ℄ M ` �

� ` e = � : t [ r ℄

Figure 3: The type system mlif

0
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an instan
e of v-Sub. Thus, it must end with an instan
e

of v-Bra
ket, among whose premises we �nd p


0

C t and

p


0

2 H. �

Lemma 5.5 (Store a

ess) Let i be in f�; 1; 2g. Assume

�;M ` v : t and �;M ` v

0

: t. Then, �;M ` read

i

v : t

holds. Moreover, if i 2 f1; 2g, assume there exists some

p


0

2 H su
h that p


0

C t. Then, �;M ` new

i

v : t and

�;M ` update

i

v v

0

: t hold.

Proof. By de�nition of the fun
tions new, update and read

(�gure 1), by lemma 5.3, by v-Void and v-Bra
ket. �

Lemma 5.6 (Substitution) Assume M ` v : s. Then,

�[x 7! s℄;M ` v

0

: t implies �;M ` v

0

[x ( v℄ : t. Also,

p
;�[x 7! s℄;M ` e : t [ r ℄ implies p
;�;M ` e[x ( v℄ :

t [ r ℄.

Proof. By indu
tion on the input derivation.

Æ Case v-Var. If v

0

is x, then the premise is t 2 s. Thus,

the hypothesis M ` v : s implies M ` v : t, and, a fortiori,

�;M ` v : t. Considering v

0

[x ( v℄ = v, this was the goal.

If, on the other hand, v

0

isn't x, then the result stems from

�[x 7! s℄(v

0

) = �(v

0

) and v

0

[x( v℄ = v

0

.

Æ Case v-Abs. Then, the premise must be of the form

p


0

;�[x 7! s℄[y 7! t

0

℄[f 7! t

f

℄;M ` e

0

: t

00

[ r

0

℄. Be
ause

typing judgements are stable under �-
onversion, we will

assume, w.l.o.g., that x, f and y are distin
t. Then, �[x 7!

s℄[y 7! t

0

℄[f 7! t

f

℄ 
oin
ides with �[y 7! t

0

℄[f 7! t

f

℄[x 7! s℄.

We 
on
lude by applying the indu
tion hypothesis, followed

by an instan
e of v-Abs.

Æ Case v-Bra
ket. The �rst premise is of the form

�[x 7! s℄;M ` v

0

1

: t. By lemma 5.3, the hypothesis M `

v : s implies M ` bv


1

: s. Thus, by indu
tion hypothesis,

�;M ` v

0

1

[x ( bv


1

℄ : t holds. The se
ond premise is dealt

with similarly. By v-Bra
ket, we obtain �;M ` hv

0

1

[x (

bv


1

℄ j v

0

2

[x( bv


2

℄i : t, whi
h, 
onsidering our de�nition of

substitution (se
tion 4.2), was our goal.

Other 
ases are either immediate or analogous to those

above. �

Lemma 5.7 (Value) p
;�;M ` v : t [ r ℄ implies �;M `

v : t.

Proof. By indu
tion on the proof of p
;�;M ` v : t [ r ℄.

Æ Case e-Value. Immediate.

Æ Case e-Sub. The result follows from the indu
tion

hypothesis and v-Sub.

Æ Case e-Bra
ket. The predi
ate �* is never true of

a value, so p


0

C t must hold. The result follows from the

indu
tion hypothesis and v-Bra
ket. �

We 
an now state our main lemma:

Lemma 5.8 (Subje
t redu
tion) Let e =

i

� ! e

0

=

i

�

0

.

Assume p
;M ` e : t [ r ℄ and M ` �. If i 2 f1; 2g, assume

p
 2 H. Then, there exists a memory environment M

0

,

whi
h extends M , su
h that p
;M

0

` e

0

: t [ r ℄ and M

0

` �

0

.

Proof. By indu
tion on the derivation of e =

i

� ! e

0

=

i

�

0

.

We assume, w.l.o.g., that the derivation of p
;M ` e : t [ r ℄

does not end with an instan
e of e-Sub. As a result, it must

end with an instan
e of the single syntax-dire
ted rule that

mat
hes e's stru
ture.

Æ Case (�). e is (�x f:�x:e

0

) v. Let � = (t

0

p
t` [r℄

�����!

t)

`

. By e-App, we have M ` �x f:�x:e

0

: � and M ` v :

t

0

. The former's derivation must end with an instan
e of

v-Abs, followed by a number of instan
es of v-Sub. Be
ause

! is 
ontravariant (resp. 
ovariant) in its �rst and se
ond

(resp. third and fourth) parameters, applying lemma 5.2 and

e-Sub to v-Abs's premise yields p
; (x 7! t

00

; f 7! �

0

);M `

e

0

: t [ r ℄, for some t

00

and �

0

su
h that t

0

� t

00

and � � �

0

.

By v-Sub, M ` v : t

00

and M ` �x f:�x:e

0

: �

0

hold. Then,

lemma 5.6 yields p
;M ` e

0

[x( v℄[f ( �x f:�x:e

0

℄ : t [ r ℄.

Æ Case (ref). e is ref v, e

0

is m and �

0

is � � [m 7!

new

i

v℄. By e-Ref, we have M ` v : t

0

and p
 C t

0

and t =

t

0

ref

�

. By lemma 5.5, these imply M ` new

i

v : t

0

. De�ne

M

0

= M [m 7! t

0

℄. By Store, M ` � yields dom(M) =

dom(�). Be
ause �� [m 7! v℄ is de�ned, m isn't a member

of dom(�). So, M

0

extends M . Be
ause M

0

(m) = t

0

, v-Lo


and e-Value yield p
;M

0

` e

0

: t [ r ℄. Lastly, M ` � and

M ` new

i

v : t

0

entail M

0

` �

0

.

Æ Case (assign). e is m := v and e

0

is (). By e-Assign,

we must have M ` m : t

0

ref

�

and M ` v : t

0

and p
 C t

0

.

Furthermore, t must be unit, whi
h implies p
;M ` e

0

:

t [ r ℄. By v-Lo
, v-Sub and by invarian
e of the ref type


onstru
tor, M ` m : t

0

ref

�

implies M(m) = t

0

. Thus,

M ` � entails M ` �(m) : t

0

. By lemma 5.5, we have

M ` update

i

�(m) v : t

0

, whi
h yields M ` �

0

.

Æ Case (deref). e is !m. By e-Deref, we have M ` m :

t

0

ref

�

, where t

0

� t. As above, this entails M ` �(m) : t

0

.

By lemma 5.5, M ` read

i

�(m) : t

0

follows. Con
lude with

v-Sub and e-Value.

Æ Case (let). By e-Let and lemma 5.6.

Æ Case (bind). e is bind x = v in e

2

and e

0

is e

2

[x ( v℄.

By e-Bind, we have p
;M ` v : t

0

[ r

1

℄ and p
t(t r

1

); (x 7!

t

0

);M ` e

2

: t [ r

2

℄, where r

2

� r. By lemma 5.7, the

former implies M ` v : t

0

. By lemma 5.2, the latter implies

p
; (x 7! t

0

);M ` e

2

: t [ r

2

℄. By lemma 5.6 and e-Sub, we

obtain p
;M ` e

2

[x( v℄ : t [ r ℄.

Æ Case (handle). e is raise (" v) handle " x � e

2

and e

0

is e

2

[x ( v℄. By e-Handle, we have p
;M ` raise (" v) :

t [ " : Pre p


0

; r

0

℄ and p
 t p


0

; (x 7! typexn("));M ` e

2

:

t [ " : a; r

0

℄, where r equals (" : a; r

0

). By e-Sub, e-Raise,

v-Sub and v-Exn, the former yields M ` v : typexn("). By

lemmas 5.6 and 5.2, this yields p
;M ` e

2

[x( v℄ : t [ r ℄.

Æ Case (handle-all). e is raise (" v) handle x � e

2

and e

0

is

e

2

[x ( " v℄. By e-HandleAll, p
;M ` raise (" v) : t [ r

1

℄

and p
 t (t r

1

); (x 7! r

1

exn

`

);M ` e

2

: t [ r ℄ hold. By

e-Sub, e-Raise, v-Sub and v-Exn, and by 
ovarian
e of the

exn type 
onstru
tor, the former yields M ` " v : r

1

exn

`

.

Lemmas 5.6 and 5.2 yield p
;M ` e

2

[x( " v℄ : t [ r ℄.

Æ Case (throw-
ontext). e is E[o℄ and e

0

is o. Several

sub-
ases arise.

Sub-
ase E = bind x = [ ℄ in e

2

. By e-Bind, we must

have p
;M ` o : t

0

[ r

1

℄, where r

1

� r. Be
ause o must be

of the form raise (" v) or hraise ("

1

v

1

) j raise ("

2

v

2

)i, this

judgement must be a 
onsequen
e of e-Raise, e-Bra
ket

and e-Sub. A derivation of identi
al shape 
an be built to

establish p
;M ` o : t [ r

1

℄. (In the 
ase of e-Bra
ket,

the fourth premise is satis�ed, though its �rst disjun
t may

be false, be
ause the other two hold.) The result follows by

e-Sub.

Sub-
ase E = [ ℄ handle " x � e

2

. By e-Handle, we

have p
;M ` o : t [ " : Pre �; r

0

℄. o must be of the form v

or raise ("

0

v) or hv

1

j raise ("

2

v

2

)i or hraise ("

1

v

1

) j v

2

i or

hraise ("

1

v

1

) j raise ("

2

v

2

)i, where "

0

, "

1

and "

2

are distin
t

9



from ". As a result, a derivation of identi
al shape 
an be

built to establish p
;M ` o : t [ " : a; r

0

℄, that is, p
;M `

o : t [ r ℄.

Sub-
ase E = [ ℄ handle x � e

2

. By e-HandleAll,

p
;M ` o : t [ r

1

℄ holds. Be
ause o must be a value, a

derivation of identi
al shape yields p
;M ` o : t [ r ℄.

Æ Case (lift-app). e is hv

1

j v

2

i v. Let � = (t

0

p
t` [r℄

�����! t)

`

.

e-App's premises are M ` hv

1

j v

2

i : � and M ` v : t

0

and

` C t. Lemma 5.3 yields M ` v

i

: � and M ` bv


i

: t

0

, for

i 2 f1; 2g. Then, e-App yields p
 t `;M ` v

i

bv


i

: t [ r ℄.

Furthermore, applying lemma 5.4 to the �rst premise above

and re
alling that H is upward-
losed yields ` 2 H. Be
ause

` C t, e-Bra
ket is appli
able and yields p
;M ` e

0

: t [ r ℄.

Æ Case (lift-assign). e is hv

1

j v

2

i := v. e-Assign's

premises are M ` hv

1

j v

2

i : t

0

ref

`

and M ` v : t

0

and

p
t ` C t

0

. As above, applying lemma 5.3 and building new

instan
es of e-Assign, we obtain p
t`;M ` v

i

:=bv


i

: t [ r ℄,

for i 2 f1; 2g. Similarly, lemma 5.4 allows establishing

` 2 H. The result follows by e-Bra
ket.

Æ Case (lift-deref). e is ! hv

1

j v

2

i. e-Deref's premises

are M ` hv

1

j v

2

i : t

0

ref

`

and t

0

� t and ` C t. As above,

applying lemma 5.3 and building new instan
es of e-Deref,

we obtain p
 t `;M ` ! v

i

: t [ r ℄, for i 2 f1; 2g. Similarly,

lemma 5.4 yields ` 2 H. Lastly, by e-Bra
ket, we obtain

p
;M ` h ! v

1

j ! v

2

i : t [ r ℄.

Æ Case (lift-raise). e is raise h"

1

v

1

j "

2

v

2

i. e-Raise's

premises are M ` h"

1

v

1

j "

2

v

2

i : r exn

`

and p
t ` � u r. As

above, lemma 5.3 and e-Raise yield p
t`;M ` raise ("

i

v

i

) :

t [ r ℄, for i 2 f1; 2g, while lemma 5.4 yields ` 2 H. The

result follows by e-Bra
ket, whose fourth premise is satis-

�ed, though ` C t may be false, be
ause the other disjun
ts

hold.

Æ Case (lift-
ontext). e is E[ho

1

j o

2

i℄. If E is a bind 
on-

text, then, be
ause e 
annot be redu
ed by (bind), ho

1

j o

2

i


annot be a value. If, on the other hand, E is a handle


ontext, then, be
ause (throw-
ontext) isn't appli
able, E

must handle o

1

or o

2

. In either 
ase, we 
on
lude that

o

i

is of the form raise (" v), for some i 2 f1; 2g. Now,

e's typing derivation must end with an instan
e of e-Bind,

e-Handle or e-HandleAll, whose �rst premise is of the

form p
;M ` ho

1

j o

2

i : t

0

[ r

1

℄. Be
ause ho

1

j o

2

i isn't a

value, this must be a 
onsequen
e of e-Sub and e-Bra
ket,

whi
h yields p
 t `;M ` o

i

: t

0

[ r

1

℄, for some ` 2 H and

for i 2 f1; 2g. By e-Raise, v-Sub and v-Exn, this im-

plies Pre ` � r

1

(") and ` � t r

1

; thus, the se
urity as-

sumption in e-Bind, e-Handle or e-HandleAll's se
ond

premise is greater than or equal to `. As a result, by ap-

plying lemma 5.3 to that premise, then building new in-

stan
es of e-Bind, e-Handle or e-HandleAll, we obtain

p
 t `;M ` bE


i

[o

i

℄ : t [ r ℄, for i 2 f1; 2g. There remains

to apply e-Bra
ket. If E is a bind 
ontext, then bE


i

[o

i

℄*

holds for some i 2 f1; 2g; if, on the other hand, E is a

handle 
ontext, then ` C t holds, a

ording to e-Handle or

e-HandleAll's third premise. In either 
ase, e-Bra
ket's

fourth premise holds.

Æ Case (bra
ket). e is he

1

j e

2

i and e

0

is he

0

1

j e

0

2

i. We

have e

i

=

i

� ! e

0

i

=

i

�

0

and e

j

= e

0

j

, where fi; jg = f1; 2g.

Be
ause he

1

j e

2

i isn't a value, its typing derivation must end

with an instan
e of e-Bra
ket, whose �rst two premises are

p
t p


0

;M ` e

i

: t [ r ℄ and p
t p


0

;M ` e

j

: t [ r ℄. Be
ause

p


0

2 H, the indu
tion hypothesis is appli
able, yielding

a memory environment M

0

, whi
h extends M , su
h that

p
 t p


0

;M

0

` e

0

i

: t [ r ℄ and M

0

` �

0

. Be
ause M

0

extends

M , p
t p


0

;M

0

` e

j

: t [ r ℄ holds as well. The result follows

by e-Bra
ket.

Æ Case (
ontext). e is E[e

0

℄ and e

0

is E[e

0

0

℄, where e

0

=

i

�! e

0

0

=

i

�

0

. Applying the indu
tion hypothesis to e-Bind,

e-Handle or e-HandleAll's �rst premise yields a version

of it with M and e

0

repla
ed with M

0

and e

0

0

, where M

0

extends M and M

0

` �

0

holds. Be
ause M extends M

0

, the

se
ond premise remains valid when the former is repla
ed

with the latter. Build a new instan
e of e-Bind, e-Handle

or e-HandleAll to 
on
lude. �

The previous lemma entails the following, more abstra
t

statement:

Theorem 5.1 (Subje
t redu
tion) If ` e=� : t [ r ℄ and

e =�! e

0

=�

0

then ` e

0

=�

0

: t [ r ℄.

Proof. By Conf and lemma 5.8. �

We do not establish progress (i.e. \no well-typed 
on�g-

uration is stu
k"), even though it does hold, be
ause it is

unrelated to our 
on
erns.

5.7 On evaluation order

As explained in se
tion 3, our restri
ted syntax is fully ex-

pli
it about evaluation order. In pra
ti
e, it is possible to use

more permissive syntax, provided some evaluation strategy

is �xed. For instan
e, if left-to-right evaluation order is 
ho-

sen, then e

1

e

2

(the appli
ation of an expression to another

expression) is synta
ti
 sugar for bind x

1

= e

1

in bind x

2

=

e

2

in x

1

x

2

. This gives rise to the following derived typing

rule:

p
;�;M ` e

1

: (t

0

p
t`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[ r

1

℄

p
 t (t r

1

);�;M ` e

2

: t

0

[ r

2

℄ ` C t

p
;�;M ` e

1

e

2

: t [ r t r

1

t r

2

℄

Conversely, under right-to-left evaluation order, e

1

e

2

is en-


oded as bind x

2

= e

2

in bind x

1

= e

1

in x

1

x

2

, yielding a

di�erent derived rule:

p
 t (t r

2

);�;M ` e

1

: (t

0

p
t`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[ r

1

℄

p
;�;M ` e

2

: t

0

[ r

2

℄ ` C t

p
;�;M ` e

1

e

2

: t [ r t r

1

t r

2

℄

In either 
ase, the se
ond expression to be evaluated is type-


he
ked at an in
reased se
urity level, re
e
ting the fa
t

that, by re
eiving 
ontrol, it is able to observe that the ex-

pression whi
h was exe
uted �rst terminated normally.

Caml-Light [9℄ does not spe
ify its evaluation order. It

is possible to give a 
onservative typing rule whi
h is safe

with respe
t to both left-to-right and right-to-left evalua-

tion orders. Su
h a rule type
he
ks e

i

under p
 t (t r

j

), for

fi; jg = f1; 2g. Be
ause ex
eptions are annotated with the

value of p
 at the point where they are raised, and be
ause p



an only in
rease within sub-expressions, this typi
ally en-

tails t r

j

� u r

i

. Furthermore, for every row r with at least

one non-Abs entry, u r � t r holds. As a result, if e

i

is li-

able to raise some ex
eption, then all ex
eptions in r

j

must

have the same se
urity level. Thus, under-spe
ifying the

evaluation order 
auses an important loss of pre
ision in our

analysis. Caml-Light's 
urrent implementation uses a right-

to-left evaluation strategy; for our purposes, this should be

made part of its spe
i�
ation.

10



6 Non-interferen
e

From here on, the set H is no longer �xed. We introdu
e

it expli
itly when needed, writing `

H

instead of ` in Core

ML

2

typing judgements. (This is not ne
essary for those

judgements whi
h involve plain Core ML expressions, be-


ause H is used only in v-Bra
ket and e-Bra
ket.) We

write e!

?

o if there exists a store � su
h that e=?!

?

o=�,

where ? is the empty store.

Our type system keeps tra
k of h� j �i 
onstru
ts by as-

signing them \high" se
urity levels (i.e. levels inH). By sub-

je
t redu
tion, any expression whi
h may evaluate to su
h a


onstru
t must also 
arry a \high" annotation. Conversely,

no expression with a \low" annotation 
an evaluate to su
h

a 
onstru
t, as stated, in the parti
ular 
ase of integers, by

the following lemma:

Lemma 6.1 Let H be an upward-
losed subset of L. Let

` 62 H. If `

H

e : int

`

and e!

?

v then bv


1

= bv


2

.

Proof. By theorem 5.1 and Conf, there exists a memory

environment M su
h that M `

H

v : int

`

[� ℄ holds. A value

of type int

�

must be of the form k or hk

1

j k

2

i. If the latter,

then, by v-Bra
ket or e-Bra
ket, there exists p


0

2 H

su
h that p


0

� `, whi
h implies ` 2 H, a 
ontradi
tion.

Thus, we must have v = k = bv


1

= bv


2

. �

We 
an now use the 
orresponden
e between Core ML

and Core ML

2

developed in se
tion 4.3 to reformulate this

result in a Core ML setting:

Theorem 6.1 (Non-interferen
e) Choose `; h 2 L su
h

that h 6� `. Let h C t. Assume (x 7! t) ` e : int

`

, where e is

a Core ML expression. If ` v

i

: t and e[x ( v

i

℄ !

?

v

0

i

, for

i 2 f1; 2g, then v

0

1

= v

0

2

.

Proof. Let H = "fhg. De�ne v = hv

1

j v

2

i. By v-Bra
ket,

`

H

v : t holds. Lemma 5.6 yields `

H

e[x ( v℄ : int

`

. Now,

be[x ( v℄


i

is e[x ( v

i

℄, whi
h, by hypothesis, redu
es to

v

0

i

. A

ording to lemma 4.5, there exists an out
ome o su
h

that e[x ( v℄ !

?

o and, for i 2 f1; 2g, bo


i

= v

0

i

. Be
ause

of the latter, o must be a value. Lastly, h 6� ` yields ` 62 H.

The result follows by lemma 6.1. �

In words, h and ` are se
urity levels su
h that infor-

mation 
ow from h to ` is disallowed by the se
urity latti
e.

Assuming the hole x has a \high"-level type t, the expression

e 
an be given the \low"-level type int

`

. Then, no matter

whi
h value (of type t) is pla
ed in the hole, e will 
ompute

the same value (that is, if it does produ
e a value at all).

7 Extensions

In this se
tion, we des
ribe a number of language extensions.

Some are standard programming fa
ilities whi
h we have left

out so far, namely produ
ts, sums, and primitive operations.

Others are new language 
onstru
ts whi
h 
apture 
ommon

idioms, so as to make them more amenable to analysis. We

omit all proofs in this se
tion; they 
an be found in [17℄.

7.1 Produ
ts and sums

Extending our system with produ
ts and sums is straight-

forward. We extend values and expressions with standard


onstru
ts:

v ::= : : : j (v; v) j inj

j

v j 2 f1; 2g

e ::= : : : j proj

j

v j v 
ase v v j 2 f1; 2g

The semanti
s of Core ML

2

is extended with the redu
tion

rules given in �gure 4. Rules (proj) and (
ase) are standard.

(lift-proj) and (lift-
ase) handle the situation where the de-

sired stru
ture is found under a h� j �i 
onstru
t; the bra
kets

are then lifted up, as usual, 
ausing some sub-terms to be

dupli
ated. The grammar of types is extended as follows:

t ::= : : : j t� t j (t+ t)

`

Our treatment of sums is similar to that of [8℄. ` C (�+ �)

`

0

is, by de�nition, equivalent to ` � `

0

. Produ
ts 
arry no

se
urity annotation be
ause, in the absen
e of a physi
al

equality operator, all of the information 
arried by a tuple

is in fa
t 
arried by its 
omponents. To re
e
t this, we de�ne

` C t

1

� t

2

as ` C t

1

^ ` C t

2

. The typing rules for produ
ts

and sums are given in �gure 5. In v-Inj, (t

1

+

j

t

2

)

`

stands

for (t

j

+ t

i

)

`

, where fi; jg = f1; 2g.

Our treatment of produ
ts is slightly innovative, and has

impli
ations on 
onstraint solving. Indeed, if every type


arried a se
urity annotation, as in previous works [8, 1, 16℄,

then ` C �

m

would be synta
ti
 sugar for ` � m. Be
ause

it is not the 
ase here, 
onstraints involving C must re
eive

spe
ial treatment by the 
onstraint solver (see se
tion 8.4).

7.2 Primitive operations

Pra
ti
al programming languages usually provide many

primitive operations, su
h as integer arithmeti
 operators.

Some languages, su
h as Caml-Light [9℄, provide generi
 (i.e.

polymorphi
) 
omparison, hashing or marshalling fun
tions.

In the following, we present a way of assigning types to su
h

primitive operations, without knowledge of their semanti
s,

i.e. by 
onsidering them as \bla
k boxes" whi
h potentially

use all of the information 
ontent of their arguments.

Semanti
s Assuming given a set F of primitive opera-

tions f , we extend the syntax of expressions as follows:

e ::= : : : j f v

(We only 
onsider unary operations; multiple arguments

must be passed in a tuple.) The semanti
s of every primi-

tive operation f is a partial fun
tion JfK whi
h maps 
losed

Core ML 
on�gurations v = � to 
losed Core ML out
omes.

Let jv = �j denote the 
on�guration obtained from v = � by

removing all bindings in � whi
h are not a

essible through

v. The semanti
s of Core ML

2

is extended as follows:

f v =

i

� ! JfK(jv = read

i

�j) =

i

� (prim)

f v =� ! hf bv


1

j f bv


2

i =� (lift-prim)

if (prim) isn't appli
able

Rule (prim) gives the basi
 semanti
s of f . It uses the aux-

iliary fun
tion read

i

to a

ess the store; 
ompare to (deref).

Its use of j�j models the fa
t that the primitive operation 
an

a

ess the store only through v. The operation 
annot af-

fe
t the store; it may, however, raise an ex
eption, sin
e JfK

ranges over out
omes, rather than values. Rule (lift-prim)

must be applied whenever the 
on�guration jv = �j 
ontains

at least one h� j �i 
onstru
tor; indeed, JfK is de�ned on Core

ML 
on�gurations only. In that 
ase, we lift all bra
kets to

the toplevel. This is quite 
rude, but good enough given our

intended typing.
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Basi
 redu
tions proj

j

(v

1

; v

2

) =

i

� ! v

j

=

i

� (proj)

(inj

j

v) 
ase v

1

v

2

=

i

� ! v

j

v =

i

� (
ase)

Lifting proj

j

hv

1

j v

2

i =� ! hproj

j

v

1

j proj

j

v

2

i =� (lift-proj)

hv

1

j v

2

i 
ase v

0

1

v

0

2

=� ! hv

1


ase bv

0

1




1

bv

0

2




1

j v

2


ase bv

0

1




2

bv

0

2




2

i =� (lift-
ase)

Figure 4: Semanti
s of produ
ts and sums

v-Pair

�;M ` v

1

: t

1

�;M ` v

2

: t

2

�;M ` (v

1

; v

2

) : t

1

� t

2

v-Inj

�;M ` v : t

�;M ` inj

j

v : (t+

j

�)

�

e-Proj

�;M ` v : t

1

� t

2

�;�;M ` proj

j

v : t

j

[� ℄

e-Mat
h

�;M ` v : (t

1

+ t

2

)

`

8j 2 f1; 2g �;M ` v

j

: (t

j

p
t`

j

t` [r℄

�������! t)

`

j

` t `

1

t `

2

C t

p
;�;M ` v 
ase v

1

v

2

: t [ r ℄

Figure 5: Typing produ
ts and sums

unit J `

`

0

� `

int

`

0

J `

t

1

J ` t

2

J `

t

1

� t

2

J `

`

0

� ` t

1

J ` t

2

J `

(t

1

+ t

2

)

`

0

J `

t J ` `

0

� `

t ref

`

0

J `

Figure 6: Colle
ting se
urity annotations

Typing In the following, �r denotes a row ranging over

fAbs;Preg. We write �r � p
 for the row de�ned as follows:

�r � p
(") equals Pre p
 if �r(") is Pre; it equals Abs otherwise.

The typing of primitive operations, like their semanti
s,

is de�ned in two steps. First, we assume given, for every f 2

F , a set typeof (f) su
h that, for every (t

0

; t; �r) 2 typeof (f),

M ` v : t

0

and M ` � imply p
;M ` JfK(jv = �j) : t [ �r � p
 ℄.

This amounts to assuming subje
t redu
tion for (prim); so

far, no se
urity 
on
erns need be taken into a

ount.

Then, to enfor
e se
urity, we de�ne a two-pla
e predi
ate

J, whose arguments are a type and a se
urity level (�gure 6).

In short, t J ` requires all of the se
urity annotations whi
h

appear in t and its sub-terms to be less than (or equal to) `.

It also requires t to have no fun
tion or ex
eption types in its

sub-terms. (Fun
tions are not valid arguments to the poly-

morphi
 
omparison operators; ex
eptions must be ruled out

be
ause exn is, in pra
ti
e, an extensible type, i.e. the map-

ping typexn is never fully known.) The predi
ate J enjoys

the following property:

Lemma 7.1 Assume `

H

v = � : t [� ℄ and t J `. If jv = �j

isn't a Core ML 
on�guration, then ` 2 H.

We give the following typing rule for appli
ations of prim-

itive operations:

e-Primitive

(t

0

; t; �r) 2 typeof (f) �;M ` v : t

0

t

0

J ` ` C t

p
;�;M ` f v : t [ �r � (p
 t `) ℄

This is quite 
rude, sin
e we require the se
urity level of the

result type t to dominate all those whi
h appear in the ar-

gument type t

0

. However, as long as nothing is known about

JfK, no better approximation 
an be given; the out
ome may

a
tually depend on any part of f 's argument.

Non-interferen
e We now 
he
k that the new redu
tion

rules satisfy subje
t redu
tion under the extended type sys-

tem.

Æ Case (prim). By Conf and e-Primitive, we have

(t

0

; t; �r) 2 typeof (f) and M ` v : t

0

and M ` �. A

ording

to our assumption 
on
erning typeof (�), this implies p
;M `

JfK(jv = �j) : t [ �r � p
 ℄. The result follows by e-Sub.

Æ Case (lift-prim). Conf and e-Primitive's premises

allow applying lemma 7.1, yielding ` 2 H. Applying

lemma 5.3 and building a new instan
e of e-Primitive, we

get p
t`;M ` f bv


i

: t [ �r �(p
t`) ℄ for i 2 f1; 2g. Re
alling

` C t, we 
on
lude with e-Bra
ket.

Appli
ations Let us now illustrate the use of this general

me
hanism.

The treatment of binary integer arithmeti
 operations

is quite simple, be
ause they are monomorphi
: they map

pairs of integers to integers. This rule e�e
tively makes the

result's se
urity level the union of the arguments' levels:

�;M ` v

1

: int

`

�;M ` v

2

: int

`

�;�;M ` v

1

? v

2

: int

`

[� ℄

? 2 f+;�;�; : : :g

The treatment of the generi
 (i.e. polymorphi
) 
ompar-

ison operators is more interesting.

�;M ` v

1

: t �;M ` v

2

: t t J `

�;�;M ` v

1

? v

2

: bool

`

[� ℄

? 2 f=;�;�; : : :g

(The type bool

`


an be de�ned as (unit + unit)

`

or added

as a primitive type.) Be
ause these operators traverse data

stru
tures re
ursively, the result of a 
omparison may re-

veal information about any sub-term. The premise t J `

re
e
ts this by requiring ` to dominate all se
urity annota-

tions whi
h appear in t.
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Generi
 hashing and marshalling operations 
an be dealt

with similarly:

�;M ` v : t t J `

�;�;M ` hash v : int

`

[� ℄

�;M ` v : t t J `

�;�;M ` marshal v : int

`

[� ℄

By 
ontrast, in Myers' Java-based framework [10, 11℄, hash-

ing is done by having every 
lass override the standard hash-

Code method, whi
h is de
lared in 
lass Obje
t with signa-

ture intfthisg hashCode (). A re-implementation of hashCode

by a sub-
lass of Obje
tmust also satisfy this signature. As a

result, it may only rely on �elds labelled this. The paramet-

ri
 
lass Ve
tor[L℄, for instan
e, must 
ompute hash 
odes

in a way that does not depend upon the ve
tor's length or


ontents, be
ause their label is L. Of 
ourse, this severely

limits hashCode's usefulness.

7.3 Common idioms

Be
ause our type system is quite 
onservative, some 
ommon

programming idioms deserve spe
ial treatment, even though

they are already expressible in the language.

For instan
e, 
onsider the expression form e

1

�nally e

2

,

akin to Lisp's unwind-prote
t and Java's try-�nally 
on-

stru
ts. Su
h an expression 
ould be viewed as synta
ti


sugar for bind x = (e

1

handle y � e

2

; raise y) in e

2

; x.

However, by dupli
ating e

2

, this en
oding prevents the type-


he
ker from dis
overing that e

2

is exe
uted always, i.e. re-

gardless of e

1

's behavior. As a result, e

2

is type
he
ked

under an in
reased se
urity assumption p
. Zdan
ewi
 and

Myers [25℄ show how ordered linear 
ontinuations provide a

general solution to this problem. In our 
ase, it is simpler to

make e

1

�nally e

2

a primitive 
onstru
t, whose typing rule

is given in �gure 7.

Following Myers [10, 11℄, we type
he
k e

1

and e

2

at a


ommon p
. However, we add the premise t r

2

� u r

1

,

whi
h re
e
ts that, by observing an ex
eption thrown by

e

1

, one may dedu
e that e

2

terminated normally. Its ab-

sen
e in Myers' work is a 
aw. Myers' typing rule in fa
t

exhibits a se
ond 
aw: its overall e�e
t should be X

1

�X

2

,

rather than X

1

[n := ;℄�X

2

, be
ause normal termination of

the whole statement implies normal termination of e

1

. This

fa
t is taken into a

ount in our typing rule, even though

we do not expli
itly asso
iate a se
urity level to normal ter-

mination; see se
tion 10. Both 
aws in Myers' framework

were un
overed by our formal approa
h [Andrew C. Myers,

personal 
ommuni
ation, June 2001℄.

Another 
ommon idiom whi
h seems to require spe
ial

treatment is the one whi
h 
onsists in anonymously handling

an ex
eption, then raising it again, to be handled further

up the 
all 
hain. This is typi
ally written e

1

handle x �

(e

2

; raise x). In our type system, the handler e

2

; raise x

is type
he
ked at a se
urity level in
reased by t r

1

, where

the row r

1

des
ribes the ex
eption x. Then, the se
ond

premise of e-Raise requires t r

1

� u r

1

, i.e. the se
urity

levels asso
iated with all ex
eption names in r

1

must be


on
ated, leading to a loss of pre
ision. If, on the other

hand, we introdu
e a new expression form e

1

handle x �

e

2

reraise with the same meaning, then we 
an safely give it

a more pre
ise type; see �gure 7.

Non-interferen
e The syntax of evaluation 
ontexts and

the semanti
s of Core ML

2

are extended as des
ribed in

�gure 8. (Making new evaluation 
ontexts and new se-

quen
ing rules available e�e
tively extends (throw-
ontext),

e-Finally

p
;�;M ` e

1

: t [ r

1

℄

p
;�;M ` e

2

: � [ r

2

℄ t r

2

� u r

1

p
;�;M ` e

1

�nally e

2

: t [ r

1

t r

2

℄

e-Reraise

p
;�;M ` e

1

: t [ r

1

℄

p
 t (t r

1

);�[x 7! r

1

exn

�

℄;M ` e

2

: � [ r

2

℄ t r

2

� u r

1

p
;�;M ` e

1

handle x � e

2

reraise : t [ r

1

t r

2

℄

Figure 7: Typing �nally and reraise

(lift-
ontext) and (
ontext) as well.) Sequential 
omposi-

tion e

1

; e

2

is de�ned as synta
ti
 sugar for bind x = e

1

in e

2

,

where x doesn't appear free in e

2

.

We begin by establishing the following simple lemma:

Lemma 7.2 p
;M ` o : t [ r ℄ and p


0

� u r imply p
 t

p


0

;M ` o : t [ r ℄.

Proof. If o is a value, the result is a 
onsequen
e of

lemma 5.7 and e-Value. If o is of the form raise (" v),

then (dis
arding, w.l.o.g., any instan
es of e-Sub) the type

derivation ends with an instan
e of e-Raise, whose premises

remain valid if p
 is repla
ed with p
tp


0

, thanks to the hy-

pothesis p


0

� u r. If o is ho

1

j o

2

i, the result follows by

e-Bra
ket and the indu
tion hypothesis. �

We now 
he
k that the new redu
tion rules satisfy sub-

je
t redu
tion under the extended type system.

Æ Case (�nally). e is o �nally e

2

and e

0

is (e

2

; o). By

e-Finally, we have p
;M ` o : t [r

1

℄ and p
;M ` e

2

:

� [ r

2

℄ where t r

2

� u r

1

. By lemma 7.2, the former yields

p
 t (t r

2

);M ` o : t [ r

1

℄. By e-Bind, we obtain p
;M `

e

0

: t [ r

1

t r

2

℄.

Æ Case (reraise). e is raise (" v) handle x � e

2

reraise

and e

0

is (e

2

[x ( " v℄; raise (" v)). By e-Reraise and

lemma 5.2, we have p
;M ` raise (" v) : t [ r

1

℄ and

p
; (x 7! r

1

exn

`

);M ` e

2

: � [ r

2

℄ where t r

2

� u r

1

. By

lemma 7.2, the former yields p
 t (t r

2

);M ` raise (" v) :

t [ r

1

℄. By e-Sub, e-Raise, v-Sub and v-Exn, it also

yields M ` " v : r

1

exn

`

. By lemma 5.6, the latter then

yields p
;M ` e

2

[x ( " v℄ : � [ r

2

℄. Then, by e-Bind,

p
;M ` e

0

: t [ r

1

t r

2

℄ holds.

Æ Case (throw-
ontext), sub-
ase E = [ ℄ handle x �

e

2

reraise. e is E[o℄ and e

0

is o. By e-Reraise, p
;M ` o :

t [ r

1

℄ holds. By e-Sub, so does p
;M ` o : t [ r

1

t r

2

℄.

Æ Case (lift-
ontext), (
ontext). The des
riptions in the

proof of lemma 5.8 still apply.

8 A 
onstraint-based type system

We now give a more algorithmi
 presentation of our type

system, 
alled mlif. It di�ers from mlif

0

mainly by intro-

du
ing type variables, 
onstraints, and using them to form

universally quanti�ed, 
onstrained type s
hemes, in the style

of HM(X) [12℄. Like HM(X), it has prin
ipal types and de-


idable type inferen
e. Be
ause the 
onstru
tion is not the


entral topi
 of this paper, we will des
ribe it only su

in
tly;

the reader is referred to [12, 15℄ for more details.
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E ::= : : : j [ ℄ �nally e j [ ℄ handle x � e reraise

o �nally e =

i

� ! e; o =

i

� (�nally)

raise (" v) handle x � e reraise =

i

� ! e[x( " v℄; raise (" v) =

i

� (reraise)

Figure 8: Syntax and semanti
s of �nally and reraise

8.1 Types and 
onstraints

In mlif, the grammar of types, rows, alternatives and lev-

els is extended with type variables. (We let � range over

type variables of all four kinds; no ambiguity will arise.)

Furthermore, R�emy's [19℄ row syntax is introdu
ed, turning

rows into �nite lists of bindings from ex
eption names to

alternatives, terminated with a row variable.

� ::= � j unit j int

�

j (�

� [�℄

���! �)

�

j � ref

�

j � exn

�

� ::= � j (" : �; �)

� ::= � j Abs j Pre �

�; � ::= � j `

The variable-free types (resp. rows, alternatives, levels) of

mlif are isomorphi
 to the types (resp. rows, alternatives,

levels) of mlif

0

; we identify them and refer to them as

ground. Then, 
onstraints are de�ned as follows:

C ::= true j C ^ C j 9�:C

j � � � j � � � j � � � j � � �

j � C � j t � � � j � � u � j � J �

The 
onstraint forms on the �rst line are standard [12℄.

Those on the se
ond line are subtyping 
onstraints; those

on the third line are 
ustom 
onstraint forms, whi
h 
orre-

spond to the notions developed in se
tions 5 and 7.2. We

omit the sorting rules ne
essary to ensure that terms and


onstraints involving rows are well-formed; see [19℄.

Let a ground assignment �map every type variable � to a

ground type, row, alternative, or level, a

ording to its kind.

The meaning of terms and 
onstraints under an assignment

� is de�ned in the obvious way. We write C 
 C

0

(read: C

entails C

0

) if and only if every assignment � whi
h satis�es

C satis�es C

0

as well.

Let a type s
heme be a triple of a set of quanti�ers ��, a


onstraint C and a type � ; we write � = 8��[C℄:� . The type

variables in �� are bound in �; type s
hemes are 
onsidered

equal modulo �-
onversion. By abuse of notation, a type �

may be viewed as a type s
heme 8?[true℄:� . An environ-

ment � is a partial mapping from program variables to type

s
hemes.

8.2 Typing rules

The typing rules for mlif are given in �gure 9. They look

very similar to those of mlif

0

; let us brie
y dis
uss the dif-

feren
es. We restri
t our attention to sour
e expressions,

i.e. Core ML expressions whi
h do not 
ontain memory lo-


ations; this is enough for our purposes. Thus, typing judge-

ments no longer 
ontain a memory environment M . Every

judgement begins with a 
onstraint C whi
h represents an

assumption about its free type variables; for the judgement

to be valid, C must be satis�able. (We omit C when it is

true.) Constrained type s
hemes are introdu
ed by e-Let,

whi
h performs generalization, and eliminated by v-Var,

whi
h performs instantiation. For the sake of 
on
iseness,

some rules use the binary operator t on levels and on rows,

as well as the unary operator t on rows, as if they were

part of our term syntax; we let the reader 
he
k that these

notations 
an be de-sugared into extra meta-variables and


onstraints.

8.3 Non-interferen
e

We prove the following statement by indu
tion on type

derivations, along the lines of [15℄.

Lemma 8.1 (Soundness) Assume C; �;� ` e : � [� ℄.

Let � be an arbitrary ground assignment whi
h satis�es C.

Then, �(�); �(�);? ` e : �(�) [�(�) ℄ holds in mlif

0

.

(We do not de�ne �(�) here; see [15℄.) In parti
ular, every

ground typing judgement in mlif is also a valid judgement

in mlif

0

. This allows us to lift our non-interferen
e result to

mlif. That is, the statement of theorem 6.1 remains valid

if (x 7! t) ` e : int

`

and ` v

i

: t are read as mlif typing

judgements.

The typing rules given in �gure 9 do not ne
essarily allow

deriving ground typing judgements about every expression.

However, it is easy to enri
h the system with rules similar

to HM(X)'s 9-Intro and Weaken [20, 15℄, whi
h allow

spe
ializing a non-ground judgement to any of its ground

instan
es.

8.4 Type inferen
e

It is easy to 
he
k that there exists a type inferen
e algo-

rithm whi
h 
omputes prin
ipal types for mlif. Sulzmann

et al. [20℄ show how to derive a set of type inferen
e rules

from a set of typing rules similar to ours. The main point

that remains to be settled is whether 
onstraint solving is

de
idable.

As explained in se
tion 5.2, our subtyping relation is

atomi
; 
onstraint solving for atomi
 subtyping is de
idable

and well understood [18℄. The introdu
tion of rows is essen-

tially orthogonal to other 
onstraint solving issues [5, 14℄.

Lastly, our 
ustom 
onstraint forms 
an be solved in a \lazy"

manner. That is, a 
onstraint of the form � C �, � J �,

t� � � or � � u� remains suspended as long as nothing

is known about �, and is de
omposed into a number of sub-


onstraints only when � is uni�ed with a non-variable term

� or row �. Further details, in
luding proofs and algorithms,

will be given in a later paper.

9 Examples

We intend to integrate mlif into a realisti
 programming

language, su
h as Caml-Light [9℄. In this se
tion, we give

a taste of that by des
ribing the prin
ipal type s
hemes in-

ferred for some library fun
tions by our prototype imple-

mentation. We use Caml-Light syntax, whi
h 
an be easily

de-sugared into Core ML.

We omit type annotations on top of ! when they are

un
onstrained, anonymous type variables. Be
ause none of

14



Values

v-Unit

C;� ` () : unit

v-Int

C;� ` k : int

�

v-Var

�(x) = 8��[D℄:� C 
 9��:D

C ^D;� ` x : �

v-Abs

C; �;�[x 7! �

0

℄[f 7! (�

0

� [�℄

���! �)

�

℄ ` e : � [� ℄

C;� ` �x f:�x:e : (�

0

� [�℄

���! �)

�

v-Exn

C;� ` v : typexn(")

C;� ` " v : (" : Pre �; �) exn

�

v-Sub

C;� ` v : �

0

C 
 �

0

� �

C;� ` v : �

Expressions

e-Value

C;� ` v : �

C; �;� ` v : � [� ℄

e-App

C;� ` v

1

: (�

0

�t� [�℄

�����! �)

�

C;� ` v

2

: �

0

C 
 � C �

C; �;� ` v

1

v

2

: � [� ℄

e-Ref

C;� ` v : � C 
 � C �

C; �;� ` ref v : � ref

�

[� ℄

e-Assign

C;� ` v

1

: � ref

�

C;� ` v

2

: �

C 
 � t � C �

C; �;� ` v

1

:= v

2

: unit [� ℄

e-Deref

C;� ` v : �

0

ref

�

C 
 �

0

� � C 
 � C �

C; �;� ` ! v : � [� ℄

e-Raise

C;� ` v : � exn

�

C 
 � t � � u �

C; �;� ` raise v : � [� ℄

e-Let

C ^D;� ` v : �

0

C; �;�[x 7! 8��[D℄:�

0

℄ ` e : � [� ℄ �� \ fv(C;�) = ?

C ^ 9��:D; �;� ` let x = v in e : � [� ℄

e-Bind

C; �;� ` e

1

: �

0

[�

1

℄

C; � t (t �

1

);�[x 7! �

0

℄ ` e

2

: � [�

2

℄

C; �;� ` bind x = e

1

in e

2

: � [�

1

t �

2

℄

e-Handle

C; �;� ` e

1

: � [ " : Pre �

0

; � ℄

C; � t �

0

;�[x 7! typexn(")℄ ` e

2

: � [ " : �; � ℄ C 
 �

0

C �

C; �;� ` e

1

handle " x � e

2

: � [ " : �; � ℄

e-HandleAll

C; �;� ` e

1

: � [�

1

℄

C; � t (t �

1

);�[x 7! �

1

exn

�

℄ ` e

2

: � [�

2

℄ C 
 (t �

1

) C �

C; �;� ` e

1

handle x � e

2

: � [�

2

℄

e-Sub

C; �;� ` e : �

0

[�

0

℄ C 
 �

0

� � C 
 �

0

� �

C; �;� ` e : � [� ℄

Figure 9: The type system mlif

the type s
hemes below has free type variables, we omit the

universally quanti�ed variables after 8.

We have not explained how to in
lude datatype de
lara-

tions in the language. Sin
e we already have produ
t and

sum types, this should be straightforward. Let us assume

the type 
onstru
tor list is de
lared as follows:

type ('a, 'b) list = <'b>

| [℄

| (::) of 'a * ('a, 'b) list

In � list

�

, the parameter � is the type of the list's elements,

as usual, while � is a se
urity level. The annotation <'b> on

the right-hand side is meant to indi
ate that � is the se
u-

rity annotation 
arried by the sum type. Our �rst example

fun
tion 
omputes the length of a list:

let re
 length = fun
tion

| [℄ -> 0

| _ :: l -> 1 + length l

A valid type s
heme for length is 8[� � �℄: � list

�

�! int

�

.

As expe
ted, the result's se
urity annotation � does not

depend on the type of the list's elements. The 
onstraint

� � � des
ribes the information 
ow indu
ed by the fun
-

tion: the length of a list 
ontains some information about

its stru
ture. This type s
heme is in fa
t equivalent to

8[℄: � list

�

�! int

�

, a simpli�
ation whi
h our implemen-

tation performs automati
ally.

let re
 iter f = fun
tion

| [℄ -> ()

| x :: l -> f x; iter f l

iter applies f su

essively to every element of a list. Its

inferred type s
heme is

8[t 
 � �℄:(�

� [
℄

���! �)

�

�! � list

�

� [
℄

���! unit

Here, 
 represents f's e�e
t. Be
ause iter does not throw

any ex
eptions of its own, 
 is also iter's e�e
t. � is f's p


parameter. It must dominate iter's own p
 parameter (be-


ause f is invoked by iter), the list's se
urity level (be
ause

gaining 
ontrol tells f that the list is nonempty) and t 


(be
ause gaining 
ontrol tells f that its previous invo
ation

terminated normally).
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let in
r r =

r := !r + 1

in
r has 8[℄:int

�

ref

�

� [�℄

���! unit as prin
ipal type s
heme.

Indeed, by e-Assign, the se
urity level of the referen
e's


ontents must dominate both in
r's p
 parameter and the

referen
e's own se
urity level. We now re-implement length

in imperative style:

let length' l =

let 
ount = ref 0 in

iter (fun () -> in
r 
ount) l;

!
ount

We obtain 8[℄: � list

�

� [�℄

���! int

�

. This appears more restri
-

tive than length's type s
heme: the result's se
urity level

must now be greater than or equal to the fun
tion's p
 pa-

rameter. However, the di�eren
e is only super�
ial; it 
an

be 
he
ked that both types in fa
t have the same expressive

power. Formalizing this 
laim, and understanding its 
on-

sequen
es, are left for future work. We 
ontinue with a few

library fun
tions whi
h deal with asso
iation lists.

let re
 mem_asso
 x = fun
tion

| [℄ -> false

| (y, _) :: l ->

if x = y then true else mem_asso
 x l

Be
ause mem asso
's result reveals information about both

the stru
ture of the list and the keys stored in it, we obtain:

8[� J �℄:� �! (�� �) list

�

�! bool

�

The 
onstraint � J �, whi
h arises due to the use of poly-

morphi
 equality, spe
i�es that � must be an upper bound

for all se
urity annotations whi
h o

ur in the type of the

keys.

let re
 asso
 x = fun
tion

| [℄ -> raise Not_found

| (y, d) :: l -> if x = y then d else asso
 x l

asso
 returns the pie
e of data asso
iated with a given key.

If no su
h key exists, Not found is raised, as re
e
ted in

asso
's e�e
t:

8[� J �; � C 
; � � Æ℄:� �! (�� 
) list

�

Æ [Not found: Æ; �℄

����������! 


Here, as in mem asso
, � represents the information asso
i-

ated with the list's stru
ture and keys. Be
ause this infor-

mation is re
e
ted both in asso
's normal and ex
eptional

results, the type system requires � C 
 and � � Æ.

Lastly, we re-implement mem asso
 in terms of asso
,

using an ex
eption handler:

let mem_asso
' x l =

try

let _ = asso
 x l in

true

with Not_found ->

false

As in the 
ase of length vs. length', the new type s
heme

requires the result's se
urity level to be greater than or equal

to the fun
tion's p
 parameter:

8[� J �℄:� �! (�� �) list

�

� [�℄

���! bool

�

This betrays the fa
t that the fun
tion's implementation

uses e�e
ts, but does not otherwise restri
t its appli
ability.

10 Dis
ussion

The reader may noti
e that normal and ex
eptional results

are not dealt with in a symmetri
 way by our type system.

Indeed, in a typing judgement p
;�;M ` e : t [ r ℄, the row

r asso
iates a se
urity level with every ex
eption name, so

as to re
ord how mu
h information is gained by observing

that parti
ular ex
eption. However, no information level is

expli
itly asso
iated with normal termination. Instead, the

typing rule for sequential 
omposition, namely e-Bind, uses

t r as an approximation of it.

Myers' [10, 11℄ sets of path labels X , on the other hand,

re
ord the se
urity level asso
iated with normal termination

under a spe
ial label n, whi
h is then used in the sequential


omposition rule. It is, however, typi
ally an upper bound

for the value rea
hed by p
 inside every sub-expression of

the expression at hand, so this design alone would make the

type system very restri
tive. To prevent that, Myers adds a

non-syntax-dire
ted rule, the single-path rule, stating that

X[n℄ 
an be reset to ; if the expression at hand 
an be shown

to always terminate normally.

Our system doesn't need the single-path rule: indeed,

when all entries in r

1

are Abs, then t r

1

is the least ele-

ment of L, and e-Bind type
he
ks e

1

and e

2

at a 
ommon

p
, as desired. Myers' system is more pre
ise than ours

in a few 
ases, whi
h involve expressions that never termi-

nate normally; experien
e will tell how 
ommon they are.

The single-path rule requires 
ounting the number of non-

Abs entries in a row; in the presen
e of row variables, this

requires new (and quite heavy) 
onstraint forms, whi
h is

why we avoid it. This diÆ
ulty does not arise in Myers'

framework be
ause it relies on Java's expli
it, monomorphi


throws 
lauses.

There exists a simple monadi
 en
oding of ex
eptions

into sums. Thus, it is possible, in prin
iple, to derive a

type system for ex
eptions out of a type system that 
an

handle sums. This approa
h sounds interesting, be
ause it

is systemati
 and promises to yield a symmetri
 treatment of

normal vs. ex
eptional results. However, some experiments

show that, in order to obtain a

eptable pre
ision in the end,

the treatment of sums that is 
hosen as a starting point must

be very a

urate (mu
h more so than the one given in this

paper). We leave it as a topi
 of future resear
h.

Our main dire
tion for future work is to 
reate a full

implementation of the system on top of Caml-Light and to

assess its usability through a number of 
ase studies. We

also plan to study a variant of Core ML where ex
eptions

are se
ond-
lass 
itizens, i.e. where raise x is disallowed. In

ex
hange for this slight loss of expressive power, we hope to

be able to use a simpler type and 
onstraint language.
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