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Abstrat

This paper presents a type-based information ow analysis

for a all-by-value �-alulus equipped with referenes, ex-

eptions and let-polymorphism, whih we refer to as Core

ML. The type system is onstraint-based and has deidable

type inferene. Its non-interferene proof is reasonably light-

weight, thanks to the use of a number of orthogonal teh-

niques. First, a syntati segregation between values and

expressions allows a lighter formulation of the type system.

Seond, non-interferene is redued to subjet redution for

a non-standard language extension. Lastly, a semi-syntati

approah to type soundness allows dealing with onstraint-

based polymorphism separately.

1 Introdution

Information ow analysis onsists in statially determining

how a program's outputs are related to its inputs, i.e. how

the former depend, diretly or indiretly, on the latter. This

allows establishing serey and integrity properties of a pro-

gram, i.e. proving that some aspets of its behavior onvey

no information about those of its inputs deemed \seret",

or remain independent of those deemed \unreliable". These

properties are instanes of non-interferene [7℄: they state

the absene of ertain dependenies.

Beause information ow analysis is omplex and error-

prone, it must be automated. During the past few years,

several researhers have advoated its formulation as a type

system. Then, existing type inferene tehniques provide

automation, while type signatures provide onise, formal

seurity spei�ations.

Our interest is in designing { and proving orret { a

type-based information ow analysis for (the kernel of) a

realisti sequential programming language. (In the presene

of onurreny, the termination of a proess is observable by

other proesses, reating new ways to leak information and

requiring more restritive type systems. Hene, it appears

reasonable to �rst experiment with information ow ontrol

in a sequential setting.) To date, most formal results ob-

tained in this area onern extremely redued programming
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languages. Several papers address pure �-aluli [8, 1, 16℄.

Volpano et al. [22, 21℄ study a ore imperative program-

ming language, where all variables store integers. Standing

in sharp ontrast, Myers [10, 11℄ onsiders the full Java lan-

guage, inluding objets, exeptions, parameterized lasses,

et. However, he does not give a formal proof of orretness;

indeed, our formal approah unovered a ouple of aws in

his type system (see setion 7.3).

In an attempt to bridge the gap between these ap-

proahes, we onsider a all-by-value �-alulus equipped

with referenes, exeptions and let-polymorphism, whih we

refer to as Core ML. (Presentation set aside, it is idential

to Wright and Felleisen's Core ML [24℄, exept our exep-

tion names have global sope and are not �rst-lass val-

ues.) Suh a alulus an be viewed as the ore of the

funtional programming language Caml-Light [9℄. We en-

dow it with a polymorphi, onstraint-based type system,

alled mlif, whih has deidable type inferene and guaran-

tees non-interferene.

A (monomorphi) treatment of referenes in a higher-

order language an be found in [25℄. Exeptions have been

studied by Myers [10, 11℄ for Java. However, Myers' treat-

ment relies on Java's expliit, monomorphi throws lauses,

whereas our type system uses a more exible, polymorphi

e�et analysis, giving rise to issues disussed in setion 10.

The ombination of referenes, exeptions and onstrained

let-polymorphism, as well as our use of a standard subjet

redution tehnique to establish non-interferene, are novel.

Our treatment of un-annotated tuple types and of polymor-

phi equality form anillary ontributions.

2 Overview

Type systems are typially used to establish safety prop-

erties, i.e. prove that a ertain invariant holds throughout

the exeution of a program. Type safety is suh a property.

However, non-interferene [7℄ requires two independent pro-

gram runs, given di�erent inputs, to yield the same output.

As a result, its proof is often more deliate.

Abadi et al. [2℄ devised a labelled operational semantis of

the �-alulus, where the labels attahed to a term indiate

how muh information it arries. Exeuting a program un-

der suh a semantis amounts to performing a dynami de-

pendeny analysis along with the atual omputation. Pot-

tier and Conhon [16℄ later showed how stati, type-based

dependeny analyses ould be systematially derived, and

proven safe, from suh a labelled semantis.

Unfortunately, in a programming language with side ef-



fets, it is possible to leak information through the absene

of a ertain e�et. Indeed, onsider the program fragment

\if x = 1 then y := 1". If, after exeuting this statement, y

isn't 1, then x annot be 1 either. Thus, in that ase, exe-

ution transfers information about x to y, even though no

assignment takes plae, sine the statement y :=1 is skipped.

It appears diÆult for a labelled semantis to aount for the

e�et of ode that is not exeuted; so, the approah must

be reonsidered.

Diret non-interferene proofs, although straightforward

for simple programming languages [22℄, beome inreasingly

omplex in riher languages, requiring umbersome invari-

ants to be manipulated [25℄. To avoid this pitfall, we break

our proof down into several independent steps. First, we

de�ne a speial-purpose extension of the language, whih

allows expliit reasoning about the ommonalities and dif-

ferenes between two arbitrary program on�gurations, and

prove it adequate in a ertain sense. Then, we de�ne a

type system for this extended language, and prove that it

enjoys a subjet redution property. Lastly, we show that

non-interferene for the base language is a onsequene of

these results. In other words, we redue the initial problem

to subjet redution { a safety property { for our speial-

purpose language. The invariant preserved by redution is

thus expressed in the type system itself, making it easier to

reason about.

In keeping with the ML tradition, our type system has

let-polymorphism and type inferene. In addition to stru-

ture, our types desribe e�ets and seurity levels; polymor-

phism allows writing ode that is generi with respet to all

three. Type inferene is an indispensable help, beause our

types are verbose and information ow is often un-intuitive.

Beause we employ subtyping (as well as other forms of

onstraints), our type inferene system is onstraint-based.

Yet, if generalization, instantiation, and onstraint manip-

ulation were part of the type system from the outset, our

subjet redution proof would be signi�antly obfusated.

To work around this problem, we adopt a semi-syntati

approah [15℄, whih again onsists in breaking down the

onstrution into two steps. First, we present a system

equipped with an extensional form of polymorphism, whose

formal treatment is remarkably un-intrusive. Then, we build

a onstraint-based system in the style of HM(X) [12℄, whih

we prove orret with respet to the former.

We will now proeed as follows. We �rst present the

syntax of Core ML (setion 3). Then, we introdue our

tehnial extension of it, whih we refer to as \Core ML

2

",

give an operational semantis to both languages at one, and

show how they relate to eah other (setion 4). Setion 5

introdues mlif

0

, a type system for Core ML

2

, and estab-

lishes subjet redution. Combining these results, we obtain

a non-interferene property for Core ML (setion 6). In se-

tion 7, we digress and disuss a few language extensions.

Culminating our development, setion 8 presents mlif, a

onstraint-based type system whih we prove orret with

respet to mlif

0

, allowing type inferene. Setions 9 and 10

give some examples and onlude.

3 Core ML

Let k range over integers; let x, m, " range over disjoint

denumerable sets of program variables, memory loations,

and exeption names, respetively. Then, values, outomes,

expressions and evaluation ontexts are de�ned as follows:

v ::= x j �x f:�x:e j k j () j m j " v

o ::= v j raise (" v)

e ::= o

j v v

j ref v j v := v j ! v

j raise v

j let x = v in e

j E[e℄

E ::= bind x = [ ℄ in e

j [ ℄ handle " x � e

j [ ℄ handle x � e

Our values inlude variables, �-abstrations, integers, a

unit onstant, memory loations, and exeptions. An ab-

stration �x f:�x:e may reursively refer to itself through

the program variable f . (This is done merely to avoid deal-

ing with reursion separately.) Every exeption name " an

be used as a data onstrutor to build exeption values of

the form " v. Outomes, known as answers in [24℄, represent

inative omputations; they are either values or unhandled

exeptions of the form raise (" v). An expression is an out-

ome, a so-alled basi expression, a let onstrut, or another

expression enlosed within an evaluation ontext.

Basi expressions inlude funtion appliations as well as

instanes of four primitive operations, whih allow alloat-

ing, updating, dereferening memory ells, and raising ex-

eptions. They are built out of values, rather than out of ar-

bitrary sub-expressions. This syntati restrition, whih is

reminisent of Flanagan et al.'s A-normal forms [6℄, o�ers a

number of advantages. First, it enables a lighter formulation

of our type-and-e�et system. Indeed, beause values have

no omputational e�et, a basi expression's sub-expressions

do not ontribute to its e�et. Furthermore, it allows our

system to remain independent of the evaluation strategy, i.e.

of the hoie of left-to-right vs. right-to-left evaluation order.

User programs, expressed in a more liberal syntax, must be

translated down into our restrited syntax before they an

be analyzed; di�erent evaluation strategies will simply or-

respond to di�erent translation shemes (see setion 5.7).

The let onstrut let x = v in e has the same mean-

ing as the basi expression (�x f:�x:e) v (where f is not free

in e). However, as usual in ML [24℄, the let keyword di-

rets the type heker to give x polymorphi type. Follow-

ing Wright [23℄, we require the binding to ontain a value

v, rather than an arbitrary sub-expression, so as to avoid

unsoundness in the presene of imperative features. As a

result, let onstruts do not appear among evaluation on-

texts.

Evaluation ontexts provide glue to ombine expres-

sions and speify their evaluation order. The expression

bind x = e

1

in e

2

evaluates e

1

, binds its value (if any) to x,

then evaluates e

2

. The bind keyword does not request type

generalization; it merely expresses sequentiality. Our dei-

sion of making let and bind separate onstruts emphasizes

this distintion. The handle onstruts are dual to bind: they

speify what happens after the expression under srutiny

raises an exeption, rather than after it returns a value.

The meaning of the memory loations whih our in a

Core ML expression is given by a store �, i.e. a partial map

from memory loations to values. We write �[m 7! v℄ and

�� [m 7! v℄ for the store whih maps m to v and otherwise

agrees with �; the latter is de�ned only if m 62 dom(�).

2



Basi redutions (�x f:�x:e) v =

i

� ! e[x( v℄[f ( �x f:�x:e℄ =

i

� (�)

ref v =

i

� ! m =

i

�� [m 7! new

i

v℄ (ref)

m := v =

i

� ! () =

i

�[m 7! update

i

�(m) v℄ (assign)

!m =

i

� ! read

i

�(m) =

i

� (deref)

let x = v in e =

i

� ! e[x( v℄ =

i

� (let)

Sequening bind x = v in e =

i

� ! e[x( v℄ =

i

� (bind)

raise (" v) handle " x � e =

i

� ! e[x( v℄ =

i

� (handle)

raise (" v) handle x � e =

i

� ! e[x( " v℄ =

i

� (handle-all)

E[o℄ =

i

� ! o =

i

� (throw-ontext)

if :(E handles bo

1

_ E handles bo

2

)

Lifting E[ho

1

j o

2

i℄ = � ! hbE

1

[o

1

℄ j bE

2

[o

2

℄i = � (lift-ontext)

if none of the sequening rules applies

hv

1

j v

2

i v = � ! hv

1

bv

1

j v

2

bv

2

i = � (lift-app)

hv

1

j v

2

i := v = � ! hv

1

:= bv

1

j v

2

:= bv

2

i = � (lift-assign)

! hv

1

j v

2

i = � ! h ! v

1

j ! v

2

i = � (lift-deref)

raise h"

1

v

1

j "

2

v

2

i = � ! hraise ("

1

v

1

) j raise ("

2

v

2

)i = � (lift-raise)

Redution under a ontext

e =

i

�! e

0

=

i

�

0

E[e℄ =

i

�! E[e

0

℄ =

i

�

0

(ontext)

e

i

=

i

�! e

0

i

=

i

�

0

e

j

= e

0

j

fi; jg = f1; 2g

he

1

j e

2

i = �! he

0

1

j e

0

2

i = �

0

(braket)

Auxiliary funtions

new

�

v = v update

�

v v

0

= v

0

read

�

v = v

new

1

v = hv j voidi update

1

v v

0

= hv

0

j bv

2

i read

1

v = bv

1

new

2

v = hvoid j vi update

2

v v

0

= hbv

1

j v

0

i read

2

v = bv

2

Figure 1: Operational semantis of Core ML

2

4 Core ML

2

4.1 Presentation

Non-interferene requires reasoning about two programs and

proving that they share some sub-terms throughout exeu-

tion. To make suh reasoning easier, we hoose to represent

them as a single term of an extended language, alled Core

ML

2

, rather than as a pair of Core ML terms. The extension

is as follows:

v ::= : : : j hv j vi j void

o ::= : : : j ho j oi

e ::= : : : j he j ei

The Core ML

2

term he

1

j e

2

i is intended to enode the pair

of Core ML terms (e

1

; e

2

). It is important to note that it an

appear at an arbitrary depth within a term. For instane,

assuming v is a Core ML value, the terms hv

1

j v

2

i v and

hv

1

v j v

2

vi both enode the pair (v

1

v; v

2

v). The former,

however, is more informative, beause it expliitly reords

the fat that the appliation node and its argument v are

shared, while the latter doesn't. We do not allow nesting

h� j �i onstruts.

We need to keep trak of sharing not only between ex-

pressions, but also between stores. However, distint stores

may have distint domains. To aount for this fat, we in-

trodue a speial onstant void. By reating bindings of the

form m 7! hv j voidi and m 7! hvoid j vi in the store, we

represent situations where a memory loation m is bound

within only one of the two Core ML expressions enoded by

a Core ML

2

term.

A on�guration e=

i

� is a triple of an expression e, a store

�, and an index i 2 f�; 1; 2g, whose purpose is explained in

setion 4.2. We write e = � for e =

�

�.

A on�guration e =

i

� is well-formed if the following on-

ditions hold:

� e does not ontain void; furthermore, if i 2 f1; 2g, then

e is a Core ML expression;

� for eah m 2 dom(�), �(m) is of the form v, hv j voidi

or hvoid j vi, where v does not ontain void.

Furthermore, we onsider a memory loationm to be bound

within e and � aording to the following rules:

� if �(m) is of the form v, then m is in sope everywhere

within e and �;

� if �(m) is of the form hv j voidi (resp. hvoid j vi), then:

{ m is in sope within the left (resp. right) branh

of every h� j �i onstrut in �;

{ if i = �, then m is in sope within the left (resp.

right) branh of every h� j �i onstrut in e; if i = 1

(resp. i = 2), then m is in sope within e.

A on�guration e =

i

� is losed if all ourrenes of memory

loations in it are in sope. We restrit our attention to

well-formed, losed on�gurations. (These tehnial notions

are preserved by redution and guarantee that void is used

exlusively in store bindings, as desribed above.) Further-

more, we identify on�gurations up to onsistent renamings

of memory loations.

3



The orrespondene between Core ML and Core ML

2

is made expliit by means of two projetion funtions b�

i

,

where i ranges over f1; 2g. They satisfy bhe

1

j e

2

i

i

= e

i

and are homomorphisms on other expression forms. They

are extended to stores as follows: b�

i

maps m to b�(m)

i

if and only if the latter is de�ned and isn't void. Lastly,

the projetion of a on�guration is de�ned by be = �

i

=

be

i

= b�

i

.

4.2 Semantis

The small-step operational semantis of Core ML

2

is given in

�gure 1. The �rst two groups of redution rules are those of

Core ML, with a few tehnial twists explained below. The

rules in the third group are spei� to Core ML

2

; they allow

disarding sharing information if redution annot otherwise

take plae. The rules in the fourth group allow redution

under a ontext.

The rules are designed so that the image of any redution

step through a projetion funtion is again a valid redution

step. Redution may take plae outside brakets, ausing

both projetions to perform the same redution step; in-

side brakets, letting one projetion ompute independently,

while the other remains stationary; or lift up the braket

boundary, disarding some sharing information, while leav-

ing both projetions unhanged.

The apture-free substitution of v for x in e, written

e[x( v℄, is de�ned in the usual way, exept at h� j �i nodes,

where we must use an appropriate projetion of v in eah

branh: he

1

j e

2

i[x( v℄ is he

1

[x( bv

1

℄ j e

2

[x( bv

2

℄i.

We would like the rules in the �rst two groups to be

appliable under any ontext. However, (ref), (assign) and

(deref) need a small amount of ontextual information. In-

deed, the store must be aessed in a ontext-dependent

manner: operations whih take plae inside a h� j �i on-

strut must use or a�et only one projetion of the store.

The index i arried by on�gurations is used for this pur-

pose. Its value is � when dealing with top-level redution

steps; it is made 1 (resp. 2) by rule (braket) when reduing

within the left (resp. right) branh of a h� j �i onstrut. It

is used in the auxiliary funtions new

i

, update

i

and read

i

to aess the store in an appropriate way.

The rules in the seond group desribe how values and

exeptions are bound (i.e. handled) or propagated. We say

that E handles o if and only if E[o℄ is reduible through

(bind), (handle) or (handle-all).

The rules in the third group have no omputational on-

tent: they leave both projetions unhanged. Their purpose

is to prevent h� j �i onstruts from bloking redution, whih

is done by lifting them up, thus ausing some sub-terms to be

dupliated, but allowing redution to proeed independently

within eah branh. For instane, the left-hand expression

in (lift-app) is not a �-redex. In its redut, the appliation

node and the sub-term v are dupliated, allowing two �-

redexes to appear. A somewhat analogous rule an be found

in Abadi et al.'s labelled semantis of the �-alulus [2℄. To

understand the signi�ane of the \lift" rules, one must bear

in mind that the ontents of every h� j �i onstrut will be

viewed as \seret". By ausing new sub-terms to beome

seret during redution, these rules atually provide an ex-

pliit desription of information ow. Our design attempts

to disard as little sharing information as possible; indeed,

replaing all of these rules with e! hbe

1

j be

2

i, while om-

putationally orret, would ause the type system to view

every expression as \seret".

Our \lift" rules are not optimal, beause there are situ-

ations where they disard sharing information whih ould

oneivably be preserved, and beause they never re-reate

sharing information; however, they are preise enough for

our purposes, whih is to prove a partiular type system

sound.

We remark that, beause of rule (braket), redutions

under a braket may be interleaved in an arbitrary order,

ausing non-determinism to arise. However, onuene is

preserved, as stated below.

Lemma 4.1 (Conuene) If e = �! e

0

1

= �

0

1

and e = �!

e

0

2

= �

0

2

, then there exists a on�guration e

0

= �

0

suh that

e

0

1

= �

0

1

!

=

e

0

= �

0

and e

0

2

= �

0

2

!

=

e

0

= �

0

.

The semantis of Core ML an be obtained as a fragment

of that of Core ML

2

.

4.3 Relating Core ML

2

to Core ML

We now show that Core ML

2

is an appropriate tool to rea-

son simultaneously about the exeution of two Core ML

programs. This is expressed by two properties. First, as

explained above, the image of a valid redution through

projetion remains a valid redution. Conversely, if both

projetions of a term an be redued to an outome, then

so an the term itself.

Lemma 4.2 Let i 2 f1; 2g. If e=

i

�! e

0

=

i

�

0

, then e=b�

i

!

e

0

= b�

0



i

.

Proof. By inspetion of (ref), (assign) and (deref). �

Lemma 4.3 (Soundness) Let i 2 f1; 2g. If e=�! e

0

=�

0

,

then be = �

i

!

=

be

0

= �

0



i

.

Proof. By inspetion of the redution rules and appeal to

lemma 4.2. �

A on�guration e =

i

� is stuk if it is irreduible and e

isn't an outome. It is suessful if e is an outome. The

following lemma will be used in the proof of the ompleteness

property.

Lemma 4.4 (Stuk Con�gurations) If e = � is stuk,

then be = �

i

is stuk for some i 2 f1; 2g.

Proof. By indution on the struture of e.

Æ Case e = v

1

v

2

. Beause neither (�) nor (lift-app) is

appliable, v

1

annot be of the form hv

11

j v

12

i or �x f:�x:e

0

.

As a result, for any i 2 f1; 2g, bv

1



i

annot be of the form

�x f:�x:e

0

. It follows that be = �

i

is stuk.

Æ Case e = (v

1

:= v

2

), e = ! v. Similar to the previous

ase.

Æ Case e = ref v, e = (let x = v in e

0

). e = � is not stuk.

Æ Case e = raise v. Beause e isn't an outome, v isn't of

the form " v

0

. Beause (lift-raise) isn't appliable, v isn't of

the form h"

1

v

1

j "

2

v

2

i. As a result, for some i 2 f1; 2g, bv

i

annot be of the form " v

0

. It follows that be = �

i

is stuk.

Æ Case e = E[e

1

℄. By inspetion of (bind), (handle),

(handle-all) and (throw-ontext), one determines that if e

1

is an outome, then E[e

1

℄ is reduible. So, e

1

is not an

outome, whih implies that e

1

= � is stuk. By indution

hypothesis, be

1

= �

i

is stuk, for some i 2 f1; 2g. By in-

spetion of the redution rules, so is F [be

1



i

℄ = b�

i

, for any

4



evaluation ontext F ; in partiular, so is bE[e

1

℄

i

= b�

i

,

whih is be = �

i

.

Æ Case e = he

1

j e

2

i. Assume e=� is stuk. By (braket),

both e

1

=

1

� and e

2

=

2

� are irreduible. Beause e isn't

an outome, there exists i 2 f1; 2g suh that e

i

isn't an

outome. As a result, e

i

=

i

� is stuk. It follows that e

i

=b�

i

is stuk as well. �

Lemma 4.5 (Completeness) Assume be = �

i

!

?

o

i

= �

0

i

for all i 2 f1; 2g. Then, there exists a on�guration o = �

0

suh that e = � !

?

o = �

0

and, for all i 2 f1; 2g, bo = �

0



i

=

o

i

= �

0

i

.

Proof. Let us �rst establish that e=� does not admit an in�-

nite redution sequene. To this end, let us �rst notie that

no in�nite redution sequene an onsist exlusively of in-

stanes of the \lift" redution rules. (Indeed, eah of these

rules moves some h� j �i onstrutor stritly loser to the

term's root.) Furthermore, these are the only rules whih

leave both projetions of a on�guration unhanged. In light

of this remark, if e=� admits an in�nite redution sequene,

then lemma 4.3 yields an in�nite redution sequene out of

be = �

i

, for some i 2 f1; 2g. However, this is impossible,

beause both be = �

1

and be = �

2

an be redued to nor-

mal forms, and the semantis of the Core ML fragment is

deterministi.

As a result, e = � an be redued to an irreduible on-

�guration. Let us now reason by indution on the number

of steps in this redution sequene.

First, assume the sequene is empty. Then, e = � is irre-

duible. If e =� is stuk, then so is one of its projetions, by

lemma 4.4. However, this is impossible, sine both be = �

1

and be=�

2

an be redued to suessful on�gurations. So,

e = � must be suessful. Then, so must its projetions; the

result follows.

Next, assume the sequene begins with e = � ! e

0

= �

0

.

By lemma 4.3, be = �

i

! be

0

= �

0



i

holds for all i 2 f1; 2g.

By lemma 4.1, this implies be

0

= �

0



i

!

?

o

i

= �

0

i

. Thus, we

may apply the indution hypothesis to e

0

=�

0

, showing that

it redues to some o = �

0

suh that bo = �

0



i

= o

i

= �

0

i

holds

for all i 2 f1; 2g. The result follows. �

Our ompleteness result requires both projetions to on-

verge; it is not appliable if one of them diverges. Indeed, de-

�ne e as bind x = h
 j 0i in 0, where 
 is a non-terminating

expression. Its right projetion is bind x = 0 in 0, whih

redues to 0; yet, e annot be redued to any term whose

right projetion is 0, beause e only redues to itself. Suh a

formulation of ompleteness will naturally lead us to estab-

lish a weak non-interferene result, whereby two programs

an be guaranteed to yield the same result only if they both

terminate. We do not aim at a strong non-interferene re-

sult, beause it would make little sense to plug information

leaks related to termination without attaking timing leaks

in general. Furthermore, suh a result would require a muh

more restritive type system.

In essene, the ompleteness lemma guarantees that we

have provided enough \lift" rules to allow reduing all mean-

ingful Core ML

2

expressions. In the next setion, eah of

these rules will add one ase to our subjet redution proof,

foring us to ensure that our type system aounts for all

possible kinds of information ow.

5 Typing Core ML

2

We now give a type system, alled mlif

0

, for Core ML

2

. It

is a ground type system: it has no type variables and deals

with polymorphism in a simple, abstrat way. As a result,

it does not desribe an algorithm; we will address this issue

in setion 8.

Throughout the paper, every ourrene of � stands for

a distint anonymous meta-variable of appropriate kind.

5.1 Types

Let (L;�) be a lattie whose elements, denoted by ` and p,

represent seurity levels. (Following Denning [4℄, we typ-

ially use the meta-variable p, rather than `, when on-

sidering information obtained by observing the value of the

\program ounter".) Types, rows and alternatives are de-

�ned as follows:

t ::= unit

j int

`

j (t

p [r℄

���! t)

`

j t ref

`

j r exn

`

r ::= f" 7! ag

"2E

a ::= Abs

j Pre p

A row r is an in�nite, quasi-onstant family of alternatives

indexed by E. (A family is quasi-onstant if all but a �nite

number of its entries are equal.) We write (" : a; r) for the

row whose element at index " is a and whose other elements

are given by the sub-row r, whih is indexed by E n f"g. We

write a 2 r to indiate that a is a member of r's odomain.

Our types are those of ML's type system, deorated with

extra annotations of two kinds.

First, we employ rows to keep trak of exeptions, as

in existing type-and-e�et systems, suh as Pessaux and

Leroy's [13℄. If an exeption value has type r exn

�

, then

the row r ontains information about the exeption's name.

Spei�ally, for every " 2 E, if r(") is Abs, then the exep-

tion's name annot be "; if, on the other hand, it is Pre �,

then the exeption may be named ". Furthermore, fun-

tion types arry an e�et [ r ℄. It is also a row, and gives a

onservative desription of all exeptions possibly raised by

exeuting the funtion.

Seond, we use seurity levels to keep trak of how muh

information an be obtained by looking up integer values,

exeuting funtions, dereferening memory loations, and

handling exeptions. The remainder of this setion desribes

their meaning.

Beause there is only one value of type unit, the value

of a unit expression yields no information whatsoever. As a

result, it would be superuous for the unit type onstrutor

to arry a seurity level. Immutable tuple and reord types

an be dealt with similarly; see setion 7.1. Thus, we break

the onvention set forth in a number of previous papers [8,

16℄ that all types be of the form �

`

. We expet this feature

to help redue verbosity in pratie.

The type int

`

desribes integer expressions whose value

may reet information of seurity level `.

Funtion types arry two seurity annotations. The ex-

ternal annotation ` represents information about the fun-

tion's identity. When the funtion is applied, part of this

information may be reeted in its result or in other aspets

5



int

�

(	

	 [�℄

���! �)

�

� ref

�

� exn

�

f" 7! �g

"2E

Pre � Abs � Pre �

Figure 2: Subtyping

of the funtion's behavior (i.e. in its e�et); as a result, their

seurity level will be made ` or greater. The annotation p,

found above the ! symbol, tells how muh information the

funtion obtains merely by gaining ontrol { indeed, observ-

ing that a partiular funtion is alled may allow telling

whih branhes were previously taken. p an be thought

of as an extra parameter to the funtion, and indeed it is

ontravariant (see setion 5.2). To avoid leaking this infor-

mation, the funtion will be allowed to write into memory

ells, or to raise exeptions, only at level p or greater. This

explains why the annotation p is sometimes desribed as a

lower bound on the level of the funtion's e�ets [8℄.

Referene types arry one annotation `, whih represents

information about the referene's identity, i.e. about its ad-

dress. Information about the referene's ontents is found

within the parameter t.

Exeptions are desribed by rows, within whih every

non-Abs entry, of the form " 7! Pre p, arries an annota-

tion p, telling how muh information will be obtained by

observing (i.e. handling) the exeption, if it is named ". We

follow Myers [10, 11℄ and assoiate a distint seurity level

with every exeption name, so as to obtain better preision.

Our rows are losely related to Myers' sets of path labels

X , whih map every exeption name to either a speial on-

stant ; or a seurity level; ompare these with our alterna-

tives Abs and Pre p. (See setion 10 for further omparison

with [10, 11℄.)

In addition to a row, exeption types also arry an ex-

ternal annotation `. It is, in fat, redundant with the row

r. That is, manipulating an exeption as a �rst-lass value

auses its external level ` to inrease, leaving the row r un-

hanged; when the exeption is later raised, every non-Abs

entry in r is raised to level ` or greater. It would be possi-

ble to suppress the external annotation, at the ost of some

extra implementation omplexity. Another reasonable ap-

proah would be to restrit the language so that exeptions

are no longer �rst-lass values; this would allow us to do

away with exn entirely.

The reader may notie that rows do not reord the type

of exeption arguments, i.e. the onstrutor Pre has no type

parameter. Indeed, as in ML, we make exeptions monomor-

phi by assuming given a �xed mapping typexn from exep-

tion names to types. This deision is useful in two ways.

First, it should make funtion types (whih inlude a row)

muh more ompat. Seond, it makes our subtyping re-

lation atomi (see setion 5.2), whih we believe opens the

way to simpler and (in pratie) more eÆient onstraint

solving tehniques.

5.2 Subtyping

We equip types, rows and alternatives with a subtyping rela-

tion �, whih extends the partial order (L;�). It is de�ned

by the axioms in �gure 2. The axiom int

�

is a ompat

version of the assertion int

`

1

� int

`

2

() `

1

� `

2

. In

other words, it states that int's parameter is ovariant. The

other axioms are to be understood similarly; �, 	 and �

represent ovariant, ontravariant and invariant parameters,

respetively. The �fth axiom extends subtyping to rows,

point-wise and ovariantly.

The last axiom is the only one whih relates two on-

strutors of di�erent arities, apparently making the subtyp-

ing relation non-atomi. However, it is only super�ially so.

Indeed, it is possible to give a presentation of the system

where the set of alternatives is merely the disjoint union

fAbsg [ L, ausing the expliit injetion Pre to disappear,

beause seurity levels beome a subset of alternatives. In

this presentation, subtyping is atomi [18℄: alternatives form

a set of atoms.

The use of subtyping in information ow ontrol is ubiq-

uitous [3, 4, 21, 8℄ and appears essential, beause it al-

lows building a direted view of the program's information

ow graph, yielding better preision than a uni�ation-based

analysis.

5.3 Additional notation

A polytype s is a nonempty, upward-losed set of types. A

polytype environment � is a partial mapping from program

variables to polytypes. �[x 7! s℄ denotes the environment

whih maps x to s and agrees with � otherwise. A memory

environment M is a partial mapping from memory loations

to types.

We de�ne ` C t (read: ` guards t) as follows:

` � `

0

` C unit ` C int

`

0

` C (�

� [�℄

���! �)

`

0

` C � ref

`

0

` C � exn

`

0

The assertion ` C t requires t to have seurity level ` or

greater, and is used to reord a potential information ow.

Note that, for any given ` and t, there exists a supertype

t

0

of t suh that ` C t

0

holds. Thus, the presene of ` C t

as a premise typially never prevents the appliation of a

typing rule: indeed, preeding that rule with a subtyping

step will satisfy the premise. One exeption is e-Assign,

where t annot be promoted to a supertype beause it ap-

pears as an invariant argument to the ref type onstrutor.

The prediate C has transitive behavior:

Lemma 5.1 If `

0

� ` and ` C t and t � t

0

then `

0

C t

0

.

Proof. It is easy to see that ` C t is equivalent to ` � level(t)

for some appropriately de�ned funtion level. The result

follows. �

To every row r, we assoiate two seurity levels, de�ned

by t r = tfp j Pre p 2 rg and u r = ufp j Pre p 2 rg.

Note that Abs entries in r do not ontribute to these levels.

5.4 Typing judgements

We distinguish two forms of typing judgements: one deals

with values only, the other with arbitrary expressions. Be-

ause values are normal forms, they have no side e�ets, so

the former look quite simple:

�;M ` v : t

(We also write �;M ` v : s when �;M ` v : t holds for

all t 2 s.) On the other hand, expressions do produe side

e�ets, so the latter are more elaborate:

p;�;M ` v : t [ r ℄
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The p parameter again tells how muh information the ex-

pression may aquire by gaining ontrol; it is a lower bound

on the level of the expression's e�ets. Previous works [21, 8℄

employ a similar parameter. The row r approximates the set

of exeptions whih the expression may raise.

Two extra judgement forms are employed to type stores:

M ` � and on�gurations: � ` e =

i

� : t [ r ℄.

In typing judgements, we omit � and M when they are

empty; we sometimes omit p and r when they are unspei-

�ed (i.e. when they ould be written �).

Even though the seurity lattie (L;�) is arbitrary, it

is desirable to establish a simple dihotomy between \low"

and \high" seurity levels. Suh a distintion simpli�es our

proofs; full generality will be reovered in setion 6. In the

present setion, we assume H is a �xed, upward-losed sub-

set of L. We will view levels inside (resp. outside) H as

\high" (resp. \low").

Non-interferene demands that two expressions whih

di�er only in high-level sub-terms have idential low-level

behavior. To ahieve this, our type system requires ex-

pressions of the form he

1

j e

2

i { whih we use to enode

the di�erenes between two Core ML expressions { to have

high-seurity result and side e�ets. (See v-Braket and

e-Braket in �gure 3.) This will be our only use of H in

this setion.

5.5 Typing rules

We now omment on the typing rules, given in �gure 3.

v-Unit and v-Int assign base types to onstants. v-Void

allows typing values of the form hv j voidi or hvoid j vi

by pretending void has the same type as v. v-Lo and

v-Var assign types to memory loations and to variables

by looking up the appropriate environment. Note that �(x)

is a polytype, of whih v-Var selets an arbitrary instane.

As usual in type-and-e�et systems, v-Abs reords, on top

of the ! type onstrutor, information about a funtion's

side e�ets. v-Exn assoiates to the exeption value " v

a row whih maps the name " to Pre � and leaves other

entries unonstrained, allowing them to be Abs. v-Braket

requires the omponents of a h� j �i onstrut to have a

ommon type, whih must have \high" seurity level, i.e.

be guarded by some (arbitrary) element of H. v-Sub is

standard.

e-Value allows viewing a value as an expression, and

reets the fat that values have no side e�et.

e-App governs funtion appliation. Beause the e�et of

a funtion appliation is exatly the funtion's latent e�et,

the seurity level p, whih should represent a lower bound

on the level of the former, must also be a lower bound on the

latter's. Beause a funtion's side e�ets may reveal infor-

mation about its identity, their level must equal or exeed

the funtion's own seurity level, namely `. As a result of

these remarks, the funtion's body must run at level p t `.

Beause the funtion's result, too, may reveal information

about its identity, we require its type to be guarded by `.

e-Ref and e-Assign require p C t to ensure that p is

indeed a lower bound on the seurity level of the memory

ell that is written. e-Assign and e-Deref require ` C t to

reet the fat that writing or reading a ell may indiretly

reveal information about its identity.

e-Raise requires p � u r, ensuring that p is a lower

bound on the level of every non-Abs entry in the row r. Thus,

any ode fragment able to observe this expression's side ef-

fet must run at level p or greater (see e-Bind, e-Handle

and e-HandleAll). The seurity level `, whih reets ad-

ditional, exeption-name-independent information, is dealt

with similarly.

Beause let only binds values, e-Let is nearly as simple

as in ML. Note that v an be given a polytype s, allowing x

to be used at di�erent types within e.

In a binding onstrut bind x = e

1

in e

2

, the expres-

sion e

2

observes, if it reeives ontrol, that no exeption

was raised by e

1

. To aount for this information hannel,

e-Bind typeheks e

2

at a seurity level augmented with

t r

1

, the ombined level of all exeptions whih e

1

an po-

tentially raise. This is a onservative approximation, whih

works well in the ommon ase where e

1

is statially known

never to raise exeptions; see setion 10 for details. r

1

t r

2

denotes the least ommon supertype of r

1

and r

2

.

Like e-Bind, e-Handle typeheks e

2

at an inreased

seurity level, reeting the fat that, by gaining ontrol, e

2

observes that e

1

raised an exeption named ". The inre-

ment is exatly p

0

, the seurity level assoiated with " in

e

1

's e�et, so the analysis is, in this ase, quite aurate.

Beause the result of the handle onstrut may also allow

determining whether the handler was exeuted, we require

p

0

C t. e-HandleAll is analogous; however, beause the

onstrut allows observing any exeption, regardless of its

name, we again use t r

1

as a onservative approximation of

how muh information is gained. Myers [10, 11℄ performs

the same approximation.

As explained earlier, e-Braket requires both ompo-

nents of a h� j �i expression to have a ommon type, and

demands that its side e�ets and its result be of \high"

seurity level, i.e. guarded by an arbitrary p

0

2 H. The

auxiliary prediate e* holds if and only if e is of the form

E

1

[ : : : E

n

[raise (" v)℄ : : : ℄ where n � 0 and none of the E

i

handles raise (" v). The use of this prediate in e-Braket's

last premise is tehnial; it is required for subjet redution

to hold.

5.6 Subjet redution

Let us �rst state a few auxiliary lemmas, whose proofs are

straightforward.

Lemma 5.2 (Subsumption) p

0

� p and p;�;M ` e :

t [ r ℄ imply p

0

;�;M ` e : t [ r ℄.

Proof. By indution on the derivation of p;�;M ` e : t [ r ℄.

By monotoniity of t, ontravariane of ! with respet to

its p parameter, rule v-Sub, lemma 5.1, and the indution

hypothesis, it is easy to hek that every premise remains

valid when p dereases. The result follows. �

Lemma 5.3 (Projetion) Let i 2 f1; 2g. If �;M ` v : t

then �;M ` bv

i

: t. If p;�;M ` e : t [ r ℄ then p;�;M `

be

i

: t [ r ℄.

Proof. By indution on the input derivation. The only ase

of interest is that of e-Braket, where the expression at

hand is he

1

j e

2

i. Then, one of the �rst two premises is

p t p

0

;�;M ` e

i

: t [ r ℄. Lemma 5.2 yields p;�;M ` e

i

:

t [ r ℄, as required. �

Lemma 5.4 (Guard) If �;M ` hv

1

j v

2

i : t then there

exists p

0

2 H suh that p

0

C t.

Proof. Thanks to lemma 5.1, we may assume, w.l.o.g., that

the derivation of �;M ` hv

1

j v

2

i : t does not end with

7



Values

v-Unit

�;M ` () : unit

v-Int

�;M ` k : int

�

v-Void

�;M ` void : �

v-Lo

�;M ` m : M(m) ref

�

v-Var

t 2 �(x)

�;M ` x : t

v-Abs

p;�[x 7! t

0

℄[f 7! (t

0

p [r℄

���! t)

`

℄;M ` e : t [ r ℄

�;M ` �x f:�x:e : (t

0

p [r℄

���! t)

`

v-Exn

�;M ` v : typexn(")

�;M ` " v : (" : Pre �; �) exn

�

v-Braket

�;M ` v

1

: t �;M ` v

2

: t

p

0

2 H p

0

C t

�;M ` hv

1

j v

2

i : t

v-Sub

�;M ` v : t

0

t

0

� t

�;M ` v : t

Expressions

e-Value

�;M ` v : t

�;�;M ` v : t [� ℄

e-App

�;M ` v

1

: (t

0

pt` [r℄

�����! t)

`

�;M ` v

2

: t

0

` C t

p;�;M ` v

1

v

2

: t [ r ℄

e-Ref

�;M ` v : t p C t

p;�;M ` ref v : t ref

�

[� ℄

e-Assign

�;M ` v

1

: t ref

`

�;M ` v

2

: t

p t ` C t

p;�;M ` v

1

:= v

2

: unit [� ℄

e-Deref

�;M ` v : t

0

ref

`

t

0

� t ` C t

p;�;M ` ! v : t [� ℄

e-Raise

�;M ` v : r exn

`

p t ` � u r

p;�;M ` raise v : � [ r ℄

e-Let

�;M ` v : s p;�[x 7! s℄;M ` e : t [ r ℄

p;�;M ` let x = v in e : t [ r ℄

e-Bind

p;�;M ` e

1

: t

0

[ r

1

℄

p t (t r

1

);�[x 7! t

0

℄;M ` e

2

: t [ r

2

℄

p;�;M ` bind x = e

1

in e

2

: t [ r

1

t r

2

℄

e-Handle

p;�;M ` e

1

: t [ " : Pre p

0

; r ℄

p t p

0

;�[x 7! typexn(")℄;M ` e

2

: t [ " : a; r ℄ p

0

C t

p;�;M ` e

1

handle " x � e

2

: t [ " : a; r ℄

e-HandleAll

p;�;M ` e

1

: t [ r

1

℄

p t (t r

1

);�[x 7! r

1

exn

�

℄;M ` e

2

: t [ r

2

℄ (t r

1

) C t

p;�;M ` e

1

handle x � e

2

: t [ r

2

℄

e-Braket

p t p

0

;�;M ` e

1

: t [ r ℄ p t p

0

;�;M ` e

2

: t [ r ℄

p

0

2 H (p

0

C t) _ (e

1

*) _ (e

2

*)

p;�;M ` he

1

j e

2

i : t [ r ℄

e-Sub

p;�;M ` e : t

0

[ r

0

℄ t

0

� t r

0

� r

p;�;M ` e : t [ r ℄

Con�gurations

Store

dom(M) = dom(�)

8m 2 dom(�) M ` �(m) : M (m)

M ` �

Conf

p;�;M ` e : t [ r ℄ M ` �

� ` e = � : t [ r ℄

Figure 3: The type system mlif

0
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an instane of v-Sub. Thus, it must end with an instane

of v-Braket, among whose premises we �nd p

0

C t and

p

0

2 H. �

Lemma 5.5 (Store aess) Let i be in f�; 1; 2g. Assume

�;M ` v : t and �;M ` v

0

: t. Then, �;M ` read

i

v : t

holds. Moreover, if i 2 f1; 2g, assume there exists some

p

0

2 H suh that p

0

C t. Then, �;M ` new

i

v : t and

�;M ` update

i

v v

0

: t hold.

Proof. By de�nition of the funtions new, update and read

(�gure 1), by lemma 5.3, by v-Void and v-Braket. �

Lemma 5.6 (Substitution) Assume M ` v : s. Then,

�[x 7! s℄;M ` v

0

: t implies �;M ` v

0

[x ( v℄ : t. Also,

p;�[x 7! s℄;M ` e : t [ r ℄ implies p;�;M ` e[x ( v℄ :

t [ r ℄.

Proof. By indution on the input derivation.

Æ Case v-Var. If v

0

is x, then the premise is t 2 s. Thus,

the hypothesis M ` v : s implies M ` v : t, and, a fortiori,

�;M ` v : t. Considering v

0

[x ( v℄ = v, this was the goal.

If, on the other hand, v

0

isn't x, then the result stems from

�[x 7! s℄(v

0

) = �(v

0

) and v

0

[x( v℄ = v

0

.

Æ Case v-Abs. Then, the premise must be of the form

p

0

;�[x 7! s℄[y 7! t

0

℄[f 7! t

f

℄;M ` e

0

: t

00

[ r

0

℄. Beause

typing judgements are stable under �-onversion, we will

assume, w.l.o.g., that x, f and y are distint. Then, �[x 7!

s℄[y 7! t

0

℄[f 7! t

f

℄ oinides with �[y 7! t

0

℄[f 7! t

f

℄[x 7! s℄.

We onlude by applying the indution hypothesis, followed

by an instane of v-Abs.

Æ Case v-Braket. The �rst premise is of the form

�[x 7! s℄;M ` v

0

1

: t. By lemma 5.3, the hypothesis M `

v : s implies M ` bv

1

: s. Thus, by indution hypothesis,

�;M ` v

0

1

[x ( bv

1

℄ : t holds. The seond premise is dealt

with similarly. By v-Braket, we obtain �;M ` hv

0

1

[x (

bv

1

℄ j v

0

2

[x( bv

2

℄i : t, whih, onsidering our de�nition of

substitution (setion 4.2), was our goal.

Other ases are either immediate or analogous to those

above. �

Lemma 5.7 (Value) p;�;M ` v : t [ r ℄ implies �;M `

v : t.

Proof. By indution on the proof of p;�;M ` v : t [ r ℄.

Æ Case e-Value. Immediate.

Æ Case e-Sub. The result follows from the indution

hypothesis and v-Sub.

Æ Case e-Braket. The prediate �* is never true of

a value, so p

0

C t must hold. The result follows from the

indution hypothesis and v-Braket. �

We an now state our main lemma:

Lemma 5.8 (Subjet redution) Let e =

i

� ! e

0

=

i

�

0

.

Assume p;M ` e : t [ r ℄ and M ` �. If i 2 f1; 2g, assume

p 2 H. Then, there exists a memory environment M

0

,

whih extends M , suh that p;M

0

` e

0

: t [ r ℄ and M

0

` �

0

.

Proof. By indution on the derivation of e =

i

� ! e

0

=

i

�

0

.

We assume, w.l.o.g., that the derivation of p;M ` e : t [ r ℄

does not end with an instane of e-Sub. As a result, it must

end with an instane of the single syntax-direted rule that

mathes e's struture.

Æ Case (�). e is (�x f:�x:e

0

) v. Let � = (t

0

pt` [r℄

�����!

t)

`

. By e-App, we have M ` �x f:�x:e

0

: � and M ` v :

t

0

. The former's derivation must end with an instane of

v-Abs, followed by a number of instanes of v-Sub. Beause

! is ontravariant (resp. ovariant) in its �rst and seond

(resp. third and fourth) parameters, applying lemma 5.2 and

e-Sub to v-Abs's premise yields p; (x 7! t

00

; f 7! �

0

);M `

e

0

: t [ r ℄, for some t

00

and �

0

suh that t

0

� t

00

and � � �

0

.

By v-Sub, M ` v : t

00

and M ` �x f:�x:e

0

: �

0

hold. Then,

lemma 5.6 yields p;M ` e

0

[x( v℄[f ( �x f:�x:e

0

℄ : t [ r ℄.

Æ Case (ref). e is ref v, e

0

is m and �

0

is � � [m 7!

new

i

v℄. By e-Ref, we have M ` v : t

0

and p C t

0

and t =

t

0

ref

�

. By lemma 5.5, these imply M ` new

i

v : t

0

. De�ne

M

0

= M [m 7! t

0

℄. By Store, M ` � yields dom(M) =

dom(�). Beause �� [m 7! v℄ is de�ned, m isn't a member

of dom(�). So, M

0

extends M . Beause M

0

(m) = t

0

, v-Lo

and e-Value yield p;M

0

` e

0

: t [ r ℄. Lastly, M ` � and

M ` new

i

v : t

0

entail M

0

` �

0

.

Æ Case (assign). e is m := v and e

0

is (). By e-Assign,

we must have M ` m : t

0

ref

�

and M ` v : t

0

and p C t

0

.

Furthermore, t must be unit, whih implies p;M ` e

0

:

t [ r ℄. By v-Lo, v-Sub and by invariane of the ref type

onstrutor, M ` m : t

0

ref

�

implies M(m) = t

0

. Thus,

M ` � entails M ` �(m) : t

0

. By lemma 5.5, we have

M ` update

i

�(m) v : t

0

, whih yields M ` �

0

.

Æ Case (deref). e is !m. By e-Deref, we have M ` m :

t

0

ref

�

, where t

0

� t. As above, this entails M ` �(m) : t

0

.

By lemma 5.5, M ` read

i

�(m) : t

0

follows. Conlude with

v-Sub and e-Value.

Æ Case (let). By e-Let and lemma 5.6.

Æ Case (bind). e is bind x = v in e

2

and e

0

is e

2

[x ( v℄.

By e-Bind, we have p;M ` v : t

0

[ r

1

℄ and pt(t r

1

); (x 7!

t

0

);M ` e

2

: t [ r

2

℄, where r

2

� r. By lemma 5.7, the

former implies M ` v : t

0

. By lemma 5.2, the latter implies

p; (x 7! t

0

);M ` e

2

: t [ r

2

℄. By lemma 5.6 and e-Sub, we

obtain p;M ` e

2

[x( v℄ : t [ r ℄.

Æ Case (handle). e is raise (" v) handle " x � e

2

and e

0

is e

2

[x ( v℄. By e-Handle, we have p;M ` raise (" v) :

t [ " : Pre p

0

; r

0

℄ and p t p

0

; (x 7! typexn("));M ` e

2

:

t [ " : a; r

0

℄, where r equals (" : a; r

0

). By e-Sub, e-Raise,

v-Sub and v-Exn, the former yields M ` v : typexn("). By

lemmas 5.6 and 5.2, this yields p;M ` e

2

[x( v℄ : t [ r ℄.

Æ Case (handle-all). e is raise (" v) handle x � e

2

and e

0

is

e

2

[x ( " v℄. By e-HandleAll, p;M ` raise (" v) : t [ r

1

℄

and p t (t r

1

); (x 7! r

1

exn

`

);M ` e

2

: t [ r ℄ hold. By

e-Sub, e-Raise, v-Sub and v-Exn, and by ovariane of the

exn type onstrutor, the former yields M ` " v : r

1

exn

`

.

Lemmas 5.6 and 5.2 yield p;M ` e

2

[x( " v℄ : t [ r ℄.

Æ Case (throw-ontext). e is E[o℄ and e

0

is o. Several

sub-ases arise.

Sub-ase E = bind x = [ ℄ in e

2

. By e-Bind, we must

have p;M ` o : t

0

[ r

1

℄, where r

1

� r. Beause o must be

of the form raise (" v) or hraise ("

1

v

1

) j raise ("

2

v

2

)i, this

judgement must be a onsequene of e-Raise, e-Braket

and e-Sub. A derivation of idential shape an be built to

establish p;M ` o : t [ r

1

℄. (In the ase of e-Braket,

the fourth premise is satis�ed, though its �rst disjunt may

be false, beause the other two hold.) The result follows by

e-Sub.

Sub-ase E = [ ℄ handle " x � e

2

. By e-Handle, we

have p;M ` o : t [ " : Pre �; r

0

℄. o must be of the form v

or raise ("

0

v) or hv

1

j raise ("

2

v

2

)i or hraise ("

1

v

1

) j v

2

i or

hraise ("

1

v

1

) j raise ("

2

v

2

)i, where "

0

, "

1

and "

2

are distint

9



from ". As a result, a derivation of idential shape an be

built to establish p;M ` o : t [ " : a; r

0

℄, that is, p;M `

o : t [ r ℄.

Sub-ase E = [ ℄ handle x � e

2

. By e-HandleAll,

p;M ` o : t [ r

1

℄ holds. Beause o must be a value, a

derivation of idential shape yields p;M ` o : t [ r ℄.

Æ Case (lift-app). e is hv

1

j v

2

i v. Let � = (t

0

pt` [r℄

�����! t)

`

.

e-App's premises are M ` hv

1

j v

2

i : � and M ` v : t

0

and

` C t. Lemma 5.3 yields M ` v

i

: � and M ` bv

i

: t

0

, for

i 2 f1; 2g. Then, e-App yields p t `;M ` v

i

bv

i

: t [ r ℄.

Furthermore, applying lemma 5.4 to the �rst premise above

and realling that H is upward-losed yields ` 2 H. Beause

` C t, e-Braket is appliable and yields p;M ` e

0

: t [ r ℄.

Æ Case (lift-assign). e is hv

1

j v

2

i := v. e-Assign's

premises are M ` hv

1

j v

2

i : t

0

ref

`

and M ` v : t

0

and

pt ` C t

0

. As above, applying lemma 5.3 and building new

instanes of e-Assign, we obtain pt`;M ` v

i

:=bv

i

: t [ r ℄,

for i 2 f1; 2g. Similarly, lemma 5.4 allows establishing

` 2 H. The result follows by e-Braket.

Æ Case (lift-deref). e is ! hv

1

j v

2

i. e-Deref's premises

are M ` hv

1

j v

2

i : t

0

ref

`

and t

0

� t and ` C t. As above,

applying lemma 5.3 and building new instanes of e-Deref,

we obtain p t `;M ` ! v

i

: t [ r ℄, for i 2 f1; 2g. Similarly,

lemma 5.4 yields ` 2 H. Lastly, by e-Braket, we obtain

p;M ` h ! v

1

j ! v

2

i : t [ r ℄.

Æ Case (lift-raise). e is raise h"

1

v

1

j "

2

v

2

i. e-Raise's

premises are M ` h"

1

v

1

j "

2

v

2

i : r exn

`

and pt ` � u r. As

above, lemma 5.3 and e-Raise yield pt`;M ` raise ("

i

v

i

) :

t [ r ℄, for i 2 f1; 2g, while lemma 5.4 yields ` 2 H. The

result follows by e-Braket, whose fourth premise is satis-

�ed, though ` C t may be false, beause the other disjunts

hold.

Æ Case (lift-ontext). e is E[ho

1

j o

2

i℄. If E is a bind on-

text, then, beause e annot be redued by (bind), ho

1

j o

2

i

annot be a value. If, on the other hand, E is a handle

ontext, then, beause (throw-ontext) isn't appliable, E

must handle o

1

or o

2

. In either ase, we onlude that

o

i

is of the form raise (" v), for some i 2 f1; 2g. Now,

e's typing derivation must end with an instane of e-Bind,

e-Handle or e-HandleAll, whose �rst premise is of the

form p;M ` ho

1

j o

2

i : t

0

[ r

1

℄. Beause ho

1

j o

2

i isn't a

value, this must be a onsequene of e-Sub and e-Braket,

whih yields p t `;M ` o

i

: t

0

[ r

1

℄, for some ` 2 H and

for i 2 f1; 2g. By e-Raise, v-Sub and v-Exn, this im-

plies Pre ` � r

1

(") and ` � t r

1

; thus, the seurity as-

sumption in e-Bind, e-Handle or e-HandleAll's seond

premise is greater than or equal to `. As a result, by ap-

plying lemma 5.3 to that premise, then building new in-

stanes of e-Bind, e-Handle or e-HandleAll, we obtain

p t `;M ` bE

i

[o

i

℄ : t [ r ℄, for i 2 f1; 2g. There remains

to apply e-Braket. If E is a bind ontext, then bE

i

[o

i

℄*

holds for some i 2 f1; 2g; if, on the other hand, E is a

handle ontext, then ` C t holds, aording to e-Handle or

e-HandleAll's third premise. In either ase, e-Braket's

fourth premise holds.

Æ Case (braket). e is he

1

j e

2

i and e

0

is he

0

1

j e

0

2

i. We

have e

i

=

i

� ! e

0

i

=

i

�

0

and e

j

= e

0

j

, where fi; jg = f1; 2g.

Beause he

1

j e

2

i isn't a value, its typing derivation must end

with an instane of e-Braket, whose �rst two premises are

pt p

0

;M ` e

i

: t [ r ℄ and pt p

0

;M ` e

j

: t [ r ℄. Beause

p

0

2 H, the indution hypothesis is appliable, yielding

a memory environment M

0

, whih extends M , suh that

p t p

0

;M

0

` e

0

i

: t [ r ℄ and M

0

` �

0

. Beause M

0

extends

M , pt p

0

;M

0

` e

j

: t [ r ℄ holds as well. The result follows

by e-Braket.

Æ Case (ontext). e is E[e

0

℄ and e

0

is E[e

0

0

℄, where e

0

=

i

�! e

0

0

=

i

�

0

. Applying the indution hypothesis to e-Bind,

e-Handle or e-HandleAll's �rst premise yields a version

of it with M and e

0

replaed with M

0

and e

0

0

, where M

0

extends M and M

0

` �

0

holds. Beause M extends M

0

, the

seond premise remains valid when the former is replaed

with the latter. Build a new instane of e-Bind, e-Handle

or e-HandleAll to onlude. �

The previous lemma entails the following, more abstrat

statement:

Theorem 5.1 (Subjet redution) If ` e=� : t [ r ℄ and

e =�! e

0

=�

0

then ` e

0

=�

0

: t [ r ℄.

Proof. By Conf and lemma 5.8. �

We do not establish progress (i.e. \no well-typed on�g-

uration is stuk"), even though it does hold, beause it is

unrelated to our onerns.

5.7 On evaluation order

As explained in setion 3, our restrited syntax is fully ex-

pliit about evaluation order. In pratie, it is possible to use

more permissive syntax, provided some evaluation strategy

is �xed. For instane, if left-to-right evaluation order is ho-

sen, then e

1

e

2

(the appliation of an expression to another

expression) is syntati sugar for bind x

1

= e

1

in bind x

2

=

e

2

in x

1

x

2

. This gives rise to the following derived typing

rule:

p;�;M ` e

1

: (t

0

pt`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[ r

1

℄

p t (t r

1

);�;M ` e

2

: t

0

[ r

2

℄ ` C t

p;�;M ` e

1

e

2

: t [ r t r

1

t r

2

℄

Conversely, under right-to-left evaluation order, e

1

e

2

is en-

oded as bind x

2

= e

2

in bind x

1

= e

1

in x

1

x

2

, yielding a

di�erent derived rule:

p t (t r

2

);�;M ` e

1

: (t

0

pt`t(t r

1

)t(t r

2

) [r℄

��������������! t)

`

[ r

1

℄

p;�;M ` e

2

: t

0

[ r

2

℄ ` C t

p;�;M ` e

1

e

2

: t [ r t r

1

t r

2

℄

In either ase, the seond expression to be evaluated is type-

heked at an inreased seurity level, reeting the fat

that, by reeiving ontrol, it is able to observe that the ex-

pression whih was exeuted �rst terminated normally.

Caml-Light [9℄ does not speify its evaluation order. It

is possible to give a onservative typing rule whih is safe

with respet to both left-to-right and right-to-left evalua-

tion orders. Suh a rule typeheks e

i

under p t (t r

j

), for

fi; jg = f1; 2g. Beause exeptions are annotated with the

value of p at the point where they are raised, and beause p

an only inrease within sub-expressions, this typially en-

tails t r

j

� u r

i

. Furthermore, for every row r with at least

one non-Abs entry, u r � t r holds. As a result, if e

i

is li-

able to raise some exeption, then all exeptions in r

j

must

have the same seurity level. Thus, under-speifying the

evaluation order auses an important loss of preision in our

analysis. Caml-Light's urrent implementation uses a right-

to-left evaluation strategy; for our purposes, this should be

made part of its spei�ation.
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6 Non-interferene

From here on, the set H is no longer �xed. We introdue

it expliitly when needed, writing `

H

instead of ` in Core

ML

2

typing judgements. (This is not neessary for those

judgements whih involve plain Core ML expressions, be-

ause H is used only in v-Braket and e-Braket.) We

write e!

?

o if there exists a store � suh that e=?!

?

o=�,

where ? is the empty store.

Our type system keeps trak of h� j �i onstruts by as-

signing them \high" seurity levels (i.e. levels inH). By sub-

jet redution, any expression whih may evaluate to suh a

onstrut must also arry a \high" annotation. Conversely,

no expression with a \low" annotation an evaluate to suh

a onstrut, as stated, in the partiular ase of integers, by

the following lemma:

Lemma 6.1 Let H be an upward-losed subset of L. Let

` 62 H. If `

H

e : int

`

and e!

?

v then bv

1

= bv

2

.

Proof. By theorem 5.1 and Conf, there exists a memory

environment M suh that M `

H

v : int

`

[� ℄ holds. A value

of type int

�

must be of the form k or hk

1

j k

2

i. If the latter,

then, by v-Braket or e-Braket, there exists p

0

2 H

suh that p

0

� `, whih implies ` 2 H, a ontradition.

Thus, we must have v = k = bv

1

= bv

2

. �

We an now use the orrespondene between Core ML

and Core ML

2

developed in setion 4.3 to reformulate this

result in a Core ML setting:

Theorem 6.1 (Non-interferene) Choose `; h 2 L suh

that h 6� `. Let h C t. Assume (x 7! t) ` e : int

`

, where e is

a Core ML expression. If ` v

i

: t and e[x ( v

i

℄ !

?

v

0

i

, for

i 2 f1; 2g, then v

0

1

= v

0

2

.

Proof. Let H = "fhg. De�ne v = hv

1

j v

2

i. By v-Braket,

`

H

v : t holds. Lemma 5.6 yields `

H

e[x ( v℄ : int

`

. Now,

be[x ( v℄

i

is e[x ( v

i

℄, whih, by hypothesis, redues to

v

0

i

. Aording to lemma 4.5, there exists an outome o suh

that e[x ( v℄ !

?

o and, for i 2 f1; 2g, bo

i

= v

0

i

. Beause

of the latter, o must be a value. Lastly, h 6� ` yields ` 62 H.

The result follows by lemma 6.1. �

In words, h and ` are seurity levels suh that infor-

mation ow from h to ` is disallowed by the seurity lattie.

Assuming the hole x has a \high"-level type t, the expression

e an be given the \low"-level type int

`

. Then, no matter

whih value (of type t) is plaed in the hole, e will ompute

the same value (that is, if it does produe a value at all).

7 Extensions

In this setion, we desribe a number of language extensions.

Some are standard programming failities whih we have left

out so far, namely produts, sums, and primitive operations.

Others are new language onstruts whih apture ommon

idioms, so as to make them more amenable to analysis. We

omit all proofs in this setion; they an be found in [17℄.

7.1 Produts and sums

Extending our system with produts and sums is straight-

forward. We extend values and expressions with standard

onstruts:

v ::= : : : j (v; v) j inj

j

v j 2 f1; 2g

e ::= : : : j proj

j

v j v ase v v j 2 f1; 2g

The semantis of Core ML

2

is extended with the redution

rules given in �gure 4. Rules (proj) and (ase) are standard.

(lift-proj) and (lift-ase) handle the situation where the de-

sired struture is found under a h� j �i onstrut; the brakets

are then lifted up, as usual, ausing some sub-terms to be

dupliated. The grammar of types is extended as follows:

t ::= : : : j t� t j (t+ t)

`

Our treatment of sums is similar to that of [8℄. ` C (�+ �)

`

0

is, by de�nition, equivalent to ` � `

0

. Produts arry no

seurity annotation beause, in the absene of a physial

equality operator, all of the information arried by a tuple

is in fat arried by its omponents. To reet this, we de�ne

` C t

1

� t

2

as ` C t

1

^ ` C t

2

. The typing rules for produts

and sums are given in �gure 5. In v-Inj, (t

1

+

j

t

2

)

`

stands

for (t

j

+ t

i

)

`

, where fi; jg = f1; 2g.

Our treatment of produts is slightly innovative, and has

impliations on onstraint solving. Indeed, if every type

arried a seurity annotation, as in previous works [8, 1, 16℄,

then ` C �

m

would be syntati sugar for ` � m. Beause

it is not the ase here, onstraints involving C must reeive

speial treatment by the onstraint solver (see setion 8.4).

7.2 Primitive operations

Pratial programming languages usually provide many

primitive operations, suh as integer arithmeti operators.

Some languages, suh as Caml-Light [9℄, provide generi (i.e.

polymorphi) omparison, hashing or marshalling funtions.

In the following, we present a way of assigning types to suh

primitive operations, without knowledge of their semantis,

i.e. by onsidering them as \blak boxes" whih potentially

use all of the information ontent of their arguments.

Semantis Assuming given a set F of primitive opera-

tions f , we extend the syntax of expressions as follows:

e ::= : : : j f v

(We only onsider unary operations; multiple arguments

must be passed in a tuple.) The semantis of every primi-

tive operation f is a partial funtion JfK whih maps losed

Core ML on�gurations v = � to losed Core ML outomes.

Let jv = �j denote the on�guration obtained from v = � by

removing all bindings in � whih are not aessible through

v. The semantis of Core ML

2

is extended as follows:

f v =

i

� ! JfK(jv = read

i

�j) =

i

� (prim)

f v =� ! hf bv

1

j f bv

2

i =� (lift-prim)

if (prim) isn't appliable

Rule (prim) gives the basi semantis of f . It uses the aux-

iliary funtion read

i

to aess the store; ompare to (deref).

Its use of j�j models the fat that the primitive operation an

aess the store only through v. The operation annot af-

fet the store; it may, however, raise an exeption, sine JfK

ranges over outomes, rather than values. Rule (lift-prim)

must be applied whenever the on�guration jv = �j ontains

at least one h� j �i onstrutor; indeed, JfK is de�ned on Core

ML on�gurations only. In that ase, we lift all brakets to

the toplevel. This is quite rude, but good enough given our

intended typing.
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Basi redutions proj

j

(v

1

; v

2

) =

i

� ! v

j

=

i

� (proj)

(inj

j

v) ase v

1

v

2

=

i

� ! v

j

v =

i

� (ase)

Lifting proj

j

hv

1

j v

2

i =� ! hproj

j

v

1

j proj

j

v

2

i =� (lift-proj)

hv

1

j v

2

i ase v

0

1

v

0

2

=� ! hv

1

ase bv

0

1



1

bv

0

2



1

j v

2

ase bv

0

1



2

bv

0

2



2

i =� (lift-ase)

Figure 4: Semantis of produts and sums

v-Pair

�;M ` v

1

: t

1

�;M ` v

2

: t

2

�;M ` (v

1

; v

2

) : t

1

� t

2

v-Inj

�;M ` v : t

�;M ` inj

j

v : (t+

j

�)

�

e-Proj

�;M ` v : t

1

� t

2

�;�;M ` proj

j

v : t

j

[� ℄

e-Math

�;M ` v : (t

1

+ t

2

)

`

8j 2 f1; 2g �;M ` v

j

: (t

j

pt`

j

t` [r℄

�������! t)

`

j

` t `

1

t `

2

C t

p;�;M ` v ase v

1

v

2

: t [ r ℄

Figure 5: Typing produts and sums

unit J `

`

0

� `

int

`

0

J `

t

1

J ` t

2

J `

t

1

� t

2

J `

`

0

� ` t

1

J ` t

2

J `

(t

1

+ t

2

)

`

0

J `

t J ` `

0

� `

t ref

`

0

J `

Figure 6: Colleting seurity annotations

Typing In the following, �r denotes a row ranging over

fAbs;Preg. We write �r � p for the row de�ned as follows:

�r � p(") equals Pre p if �r(") is Pre; it equals Abs otherwise.

The typing of primitive operations, like their semantis,

is de�ned in two steps. First, we assume given, for every f 2

F , a set typeof (f) suh that, for every (t

0

; t; �r) 2 typeof (f),

M ` v : t

0

and M ` � imply p;M ` JfK(jv = �j) : t [ �r � p ℄.

This amounts to assuming subjet redution for (prim); so

far, no seurity onerns need be taken into aount.

Then, to enfore seurity, we de�ne a two-plae prediate

J, whose arguments are a type and a seurity level (�gure 6).

In short, t J ` requires all of the seurity annotations whih

appear in t and its sub-terms to be less than (or equal to) `.

It also requires t to have no funtion or exeption types in its

sub-terms. (Funtions are not valid arguments to the poly-

morphi omparison operators; exeptions must be ruled out

beause exn is, in pratie, an extensible type, i.e. the map-

ping typexn is never fully known.) The prediate J enjoys

the following property:

Lemma 7.1 Assume `

H

v = � : t [� ℄ and t J `. If jv = �j

isn't a Core ML on�guration, then ` 2 H.

We give the following typing rule for appliations of prim-

itive operations:

e-Primitive

(t

0

; t; �r) 2 typeof (f) �;M ` v : t

0

t

0

J ` ` C t

p;�;M ` f v : t [ �r � (p t `) ℄

This is quite rude, sine we require the seurity level of the

result type t to dominate all those whih appear in the ar-

gument type t

0

. However, as long as nothing is known about

JfK, no better approximation an be given; the outome may

atually depend on any part of f 's argument.

Non-interferene We now hek that the new redution

rules satisfy subjet redution under the extended type sys-

tem.

Æ Case (prim). By Conf and e-Primitive, we have

(t

0

; t; �r) 2 typeof (f) and M ` v : t

0

and M ` �. Aording

to our assumption onerning typeof (�), this implies p;M `

JfK(jv = �j) : t [ �r � p ℄. The result follows by e-Sub.

Æ Case (lift-prim). Conf and e-Primitive's premises

allow applying lemma 7.1, yielding ` 2 H. Applying

lemma 5.3 and building a new instane of e-Primitive, we

get pt`;M ` f bv

i

: t [ �r �(pt`) ℄ for i 2 f1; 2g. Realling

` C t, we onlude with e-Braket.

Appliations Let us now illustrate the use of this general

mehanism.

The treatment of binary integer arithmeti operations

is quite simple, beause they are monomorphi: they map

pairs of integers to integers. This rule e�etively makes the

result's seurity level the union of the arguments' levels:

�;M ` v

1

: int

`

�;M ` v

2

: int

`

�;�;M ` v

1

? v

2

: int

`

[� ℄

? 2 f+;�;�; : : :g

The treatment of the generi (i.e. polymorphi) ompar-

ison operators is more interesting.

�;M ` v

1

: t �;M ` v

2

: t t J `

�;�;M ` v

1

? v

2

: bool

`

[� ℄

? 2 f=;�;�; : : :g

(The type bool

`

an be de�ned as (unit + unit)

`

or added

as a primitive type.) Beause these operators traverse data

strutures reursively, the result of a omparison may re-

veal information about any sub-term. The premise t J `

reets this by requiring ` to dominate all seurity annota-

tions whih appear in t.
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Generi hashing and marshalling operations an be dealt

with similarly:

�;M ` v : t t J `

�;�;M ` hash v : int

`

[� ℄

�;M ` v : t t J `

�;�;M ` marshal v : int

`

[� ℄

By ontrast, in Myers' Java-based framework [10, 11℄, hash-

ing is done by having every lass override the standard hash-

Code method, whih is delared in lass Objet with signa-

ture intfthisg hashCode (). A re-implementation of hashCode

by a sub-lass of Objetmust also satisfy this signature. As a

result, it may only rely on �elds labelled this. The paramet-

ri lass Vetor[L℄, for instane, must ompute hash odes

in a way that does not depend upon the vetor's length or

ontents, beause their label is L. Of ourse, this severely

limits hashCode's usefulness.

7.3 Common idioms

Beause our type system is quite onservative, some ommon

programming idioms deserve speial treatment, even though

they are already expressible in the language.

For instane, onsider the expression form e

1

�nally e

2

,

akin to Lisp's unwind-protet and Java's try-�nally on-

struts. Suh an expression ould be viewed as syntati

sugar for bind x = (e

1

handle y � e

2

; raise y) in e

2

; x.

However, by dupliating e

2

, this enoding prevents the type-

heker from disovering that e

2

is exeuted always, i.e. re-

gardless of e

1

's behavior. As a result, e

2

is typeheked

under an inreased seurity assumption p. Zdanewi and

Myers [25℄ show how ordered linear ontinuations provide a

general solution to this problem. In our ase, it is simpler to

make e

1

�nally e

2

a primitive onstrut, whose typing rule

is given in �gure 7.

Following Myers [10, 11℄, we typehek e

1

and e

2

at a

ommon p. However, we add the premise t r

2

� u r

1

,

whih reets that, by observing an exeption thrown by

e

1

, one may dedue that e

2

terminated normally. Its ab-

sene in Myers' work is a aw. Myers' typing rule in fat

exhibits a seond aw: its overall e�et should be X

1

�X

2

,

rather than X

1

[n := ;℄�X

2

, beause normal termination of

the whole statement implies normal termination of e

1

. This

fat is taken into aount in our typing rule, even though

we do not expliitly assoiate a seurity level to normal ter-

mination; see setion 10. Both aws in Myers' framework

were unovered by our formal approah [Andrew C. Myers,

personal ommuniation, June 2001℄.

Another ommon idiom whih seems to require speial

treatment is the one whih onsists in anonymously handling

an exeption, then raising it again, to be handled further

up the all hain. This is typially written e

1

handle x �

(e

2

; raise x). In our type system, the handler e

2

; raise x

is typeheked at a seurity level inreased by t r

1

, where

the row r

1

desribes the exeption x. Then, the seond

premise of e-Raise requires t r

1

� u r

1

, i.e. the seurity

levels assoiated with all exeption names in r

1

must be

onated, leading to a loss of preision. If, on the other

hand, we introdue a new expression form e

1

handle x �

e

2

reraise with the same meaning, then we an safely give it

a more preise type; see �gure 7.

Non-interferene The syntax of evaluation ontexts and

the semantis of Core ML

2

are extended as desribed in

�gure 8. (Making new evaluation ontexts and new se-

quening rules available e�etively extends (throw-ontext),

e-Finally

p;�;M ` e

1

: t [ r

1

℄

p;�;M ` e

2

: � [ r

2

℄ t r

2

� u r

1

p;�;M ` e

1

�nally e

2

: t [ r

1

t r

2

℄

e-Reraise

p;�;M ` e

1

: t [ r

1

℄

p t (t r

1

);�[x 7! r

1

exn

�

℄;M ` e

2

: � [ r

2

℄ t r

2

� u r

1

p;�;M ` e

1

handle x � e

2

reraise : t [ r

1

t r

2

℄

Figure 7: Typing �nally and reraise

(lift-ontext) and (ontext) as well.) Sequential omposi-

tion e

1

; e

2

is de�ned as syntati sugar for bind x = e

1

in e

2

,

where x doesn't appear free in e

2

.

We begin by establishing the following simple lemma:

Lemma 7.2 p;M ` o : t [ r ℄ and p

0

� u r imply p t

p

0

;M ` o : t [ r ℄.

Proof. If o is a value, the result is a onsequene of

lemma 5.7 and e-Value. If o is of the form raise (" v),

then (disarding, w.l.o.g., any instanes of e-Sub) the type

derivation ends with an instane of e-Raise, whose premises

remain valid if p is replaed with ptp

0

, thanks to the hy-

pothesis p

0

� u r. If o is ho

1

j o

2

i, the result follows by

e-Braket and the indution hypothesis. �

We now hek that the new redution rules satisfy sub-

jet redution under the extended type system.

Æ Case (�nally). e is o �nally e

2

and e

0

is (e

2

; o). By

e-Finally, we have p;M ` o : t [r

1

℄ and p;M ` e

2

:

� [ r

2

℄ where t r

2

� u r

1

. By lemma 7.2, the former yields

p t (t r

2

);M ` o : t [ r

1

℄. By e-Bind, we obtain p;M `

e

0

: t [ r

1

t r

2

℄.

Æ Case (reraise). e is raise (" v) handle x � e

2

reraise

and e

0

is (e

2

[x ( " v℄; raise (" v)). By e-Reraise and

lemma 5.2, we have p;M ` raise (" v) : t [ r

1

℄ and

p; (x 7! r

1

exn

`

);M ` e

2

: � [ r

2

℄ where t r

2

� u r

1

. By

lemma 7.2, the former yields p t (t r

2

);M ` raise (" v) :

t [ r

1

℄. By e-Sub, e-Raise, v-Sub and v-Exn, it also

yields M ` " v : r

1

exn

`

. By lemma 5.6, the latter then

yields p;M ` e

2

[x ( " v℄ : � [ r

2

℄. Then, by e-Bind,

p;M ` e

0

: t [ r

1

t r

2

℄ holds.

Æ Case (throw-ontext), sub-ase E = [ ℄ handle x �

e

2

reraise. e is E[o℄ and e

0

is o. By e-Reraise, p;M ` o :

t [ r

1

℄ holds. By e-Sub, so does p;M ` o : t [ r

1

t r

2

℄.

Æ Case (lift-ontext), (ontext). The desriptions in the

proof of lemma 5.8 still apply.

8 A onstraint-based type system

We now give a more algorithmi presentation of our type

system, alled mlif. It di�ers from mlif

0

mainly by intro-

duing type variables, onstraints, and using them to form

universally quanti�ed, onstrained type shemes, in the style

of HM(X) [12℄. Like HM(X), it has prinipal types and de-

idable type inferene. Beause the onstrution is not the

entral topi of this paper, we will desribe it only suintly;

the reader is referred to [12, 15℄ for more details.
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E ::= : : : j [ ℄ �nally e j [ ℄ handle x � e reraise

o �nally e =

i

� ! e; o =

i

� (�nally)

raise (" v) handle x � e reraise =

i

� ! e[x( " v℄; raise (" v) =

i

� (reraise)

Figure 8: Syntax and semantis of �nally and reraise

8.1 Types and onstraints

In mlif, the grammar of types, rows, alternatives and lev-

els is extended with type variables. (We let � range over

type variables of all four kinds; no ambiguity will arise.)

Furthermore, R�emy's [19℄ row syntax is introdued, turning

rows into �nite lists of bindings from exeption names to

alternatives, terminated with a row variable.

� ::= � j unit j int

�

j (�

� [�℄

���! �)

�

j � ref

�

j � exn

�

� ::= � j (" : �; �)

� ::= � j Abs j Pre �

�; � ::= � j `

The variable-free types (resp. rows, alternatives, levels) of

mlif are isomorphi to the types (resp. rows, alternatives,

levels) of mlif

0

; we identify them and refer to them as

ground. Then, onstraints are de�ned as follows:

C ::= true j C ^ C j 9�:C

j � � � j � � � j � � � j � � �

j � C � j t � � � j � � u � j � J �

The onstraint forms on the �rst line are standard [12℄.

Those on the seond line are subtyping onstraints; those

on the third line are ustom onstraint forms, whih orre-

spond to the notions developed in setions 5 and 7.2. We

omit the sorting rules neessary to ensure that terms and

onstraints involving rows are well-formed; see [19℄.

Let a ground assignment �map every type variable � to a

ground type, row, alternative, or level, aording to its kind.

The meaning of terms and onstraints under an assignment

� is de�ned in the obvious way. We write C  C

0

(read: C

entails C

0

) if and only if every assignment � whih satis�es

C satis�es C

0

as well.

Let a type sheme be a triple of a set of quanti�ers ��, a

onstraint C and a type � ; we write � = 8��[C℄:� . The type

variables in �� are bound in �; type shemes are onsidered

equal modulo �-onversion. By abuse of notation, a type �

may be viewed as a type sheme 8?[true℄:� . An environ-

ment � is a partial mapping from program variables to type

shemes.

8.2 Typing rules

The typing rules for mlif are given in �gure 9. They look

very similar to those of mlif

0

; let us briey disuss the dif-

ferenes. We restrit our attention to soure expressions,

i.e. Core ML expressions whih do not ontain memory lo-

ations; this is enough for our purposes. Thus, typing judge-

ments no longer ontain a memory environment M . Every

judgement begins with a onstraint C whih represents an

assumption about its free type variables; for the judgement

to be valid, C must be satis�able. (We omit C when it is

true.) Constrained type shemes are introdued by e-Let,

whih performs generalization, and eliminated by v-Var,

whih performs instantiation. For the sake of oniseness,

some rules use the binary operator t on levels and on rows,

as well as the unary operator t on rows, as if they were

part of our term syntax; we let the reader hek that these

notations an be de-sugared into extra meta-variables and

onstraints.

8.3 Non-interferene

We prove the following statement by indution on type

derivations, along the lines of [15℄.

Lemma 8.1 (Soundness) Assume C; �;� ` e : � [� ℄.

Let � be an arbitrary ground assignment whih satis�es C.

Then, �(�); �(�);? ` e : �(�) [�(�) ℄ holds in mlif

0

.

(We do not de�ne �(�) here; see [15℄.) In partiular, every

ground typing judgement in mlif is also a valid judgement

in mlif

0

. This allows us to lift our non-interferene result to

mlif. That is, the statement of theorem 6.1 remains valid

if (x 7! t) ` e : int

`

and ` v

i

: t are read as mlif typing

judgements.

The typing rules given in �gure 9 do not neessarily allow

deriving ground typing judgements about every expression.

However, it is easy to enrih the system with rules similar

to HM(X)'s 9-Intro and Weaken [20, 15℄, whih allow

speializing a non-ground judgement to any of its ground

instanes.

8.4 Type inferene

It is easy to hek that there exists a type inferene algo-

rithm whih omputes prinipal types for mlif. Sulzmann

et al. [20℄ show how to derive a set of type inferene rules

from a set of typing rules similar to ours. The main point

that remains to be settled is whether onstraint solving is

deidable.

As explained in setion 5.2, our subtyping relation is

atomi; onstraint solving for atomi subtyping is deidable

and well understood [18℄. The introdution of rows is essen-

tially orthogonal to other onstraint solving issues [5, 14℄.

Lastly, our ustom onstraint forms an be solved in a \lazy"

manner. That is, a onstraint of the form � C �, � J �,

t� � � or � � u� remains suspended as long as nothing

is known about �, and is deomposed into a number of sub-

onstraints only when � is uni�ed with a non-variable term

� or row �. Further details, inluding proofs and algorithms,

will be given in a later paper.

9 Examples

We intend to integrate mlif into a realisti programming

language, suh as Caml-Light [9℄. In this setion, we give

a taste of that by desribing the prinipal type shemes in-

ferred for some library funtions by our prototype imple-

mentation. We use Caml-Light syntax, whih an be easily

de-sugared into Core ML.

We omit type annotations on top of ! when they are

unonstrained, anonymous type variables. Beause none of
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Values

v-Unit

C;� ` () : unit

v-Int

C;� ` k : int

�

v-Var

�(x) = 8��[D℄:� C  9��:D

C ^D;� ` x : �

v-Abs

C; �;�[x 7! �

0

℄[f 7! (�

0

� [�℄

���! �)

�

℄ ` e : � [� ℄

C;� ` �x f:�x:e : (�

0

� [�℄

���! �)

�

v-Exn

C;� ` v : typexn(")

C;� ` " v : (" : Pre �; �) exn

�

v-Sub

C;� ` v : �

0

C  �

0

� �

C;� ` v : �

Expressions

e-Value

C;� ` v : �

C; �;� ` v : � [� ℄

e-App

C;� ` v

1

: (�

0

�t� [�℄

�����! �)

�

C;� ` v

2

: �

0

C  � C �

C; �;� ` v

1

v

2

: � [� ℄

e-Ref

C;� ` v : � C  � C �

C; �;� ` ref v : � ref

�

[� ℄

e-Assign

C;� ` v

1

: � ref

�

C;� ` v

2

: �

C  � t � C �

C; �;� ` v

1

:= v

2

: unit [� ℄

e-Deref

C;� ` v : �

0

ref

�

C  �

0

� � C  � C �

C; �;� ` ! v : � [� ℄

e-Raise

C;� ` v : � exn

�

C  � t � � u �

C; �;� ` raise v : � [� ℄

e-Let

C ^D;� ` v : �

0

C; �;�[x 7! 8��[D℄:�

0

℄ ` e : � [� ℄ �� \ fv(C;�) = ?

C ^ 9��:D; �;� ` let x = v in e : � [� ℄

e-Bind

C; �;� ` e

1

: �

0

[�

1

℄

C; � t (t �

1

);�[x 7! �

0

℄ ` e

2

: � [�

2

℄

C; �;� ` bind x = e

1

in e

2

: � [�

1

t �

2

℄

e-Handle

C; �;� ` e

1

: � [ " : Pre �

0

; � ℄

C; � t �

0

;�[x 7! typexn(")℄ ` e

2

: � [ " : �; � ℄ C  �

0

C �

C; �;� ` e

1

handle " x � e

2

: � [ " : �; � ℄

e-HandleAll

C; �;� ` e

1

: � [�

1

℄

C; � t (t �

1

);�[x 7! �

1

exn

�

℄ ` e

2

: � [�

2

℄ C  (t �

1

) C �

C; �;� ` e

1

handle x � e

2

: � [�

2

℄

e-Sub

C; �;� ` e : �

0

[�

0

℄ C  �

0

� � C  �

0

� �

C; �;� ` e : � [� ℄

Figure 9: The type system mlif

the type shemes below has free type variables, we omit the

universally quanti�ed variables after 8.

We have not explained how to inlude datatype delara-

tions in the language. Sine we already have produt and

sum types, this should be straightforward. Let us assume

the type onstrutor list is delared as follows:

type ('a, 'b) list = <'b>

| [℄

| (::) of 'a * ('a, 'b) list

In � list

�

, the parameter � is the type of the list's elements,

as usual, while � is a seurity level. The annotation <'b> on

the right-hand side is meant to indiate that � is the seu-

rity annotation arried by the sum type. Our �rst example

funtion omputes the length of a list:

let re length = funtion

| [℄ -> 0

| _ :: l -> 1 + length l

A valid type sheme for length is 8[� � �℄: � list

�

�! int

�

.

As expeted, the result's seurity annotation � does not

depend on the type of the list's elements. The onstraint

� � � desribes the information ow indued by the fun-

tion: the length of a list ontains some information about

its struture. This type sheme is in fat equivalent to

8[℄: � list

�

�! int

�

, a simpli�ation whih our implemen-

tation performs automatially.

let re iter f = funtion

| [℄ -> ()

| x :: l -> f x; iter f l

iter applies f suessively to every element of a list. Its

inferred type sheme is

8[t  � �℄:(�

� [℄

���! �)

�

�! � list

�

� [℄

���! unit

Here,  represents f's e�et. Beause iter does not throw

any exeptions of its own,  is also iter's e�et. � is f's p

parameter. It must dominate iter's own p parameter (be-

ause f is invoked by iter), the list's seurity level (beause

gaining ontrol tells f that the list is nonempty) and t 

(beause gaining ontrol tells f that its previous invoation

terminated normally).
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let inr r =

r := !r + 1

inr has 8[℄:int

�

ref

�

� [�℄

���! unit as prinipal type sheme.

Indeed, by e-Assign, the seurity level of the referene's

ontents must dominate both inr's p parameter and the

referene's own seurity level. We now re-implement length

in imperative style:

let length' l =

let ount = ref 0 in

iter (fun () -> inr ount) l;

!ount

We obtain 8[℄: � list

�

� [�℄

���! int

�

. This appears more restri-

tive than length's type sheme: the result's seurity level

must now be greater than or equal to the funtion's p pa-

rameter. However, the di�erene is only super�ial; it an

be heked that both types in fat have the same expressive

power. Formalizing this laim, and understanding its on-

sequenes, are left for future work. We ontinue with a few

library funtions whih deal with assoiation lists.

let re mem_asso x = funtion

| [℄ -> false

| (y, _) :: l ->

if x = y then true else mem_asso x l

Beause mem asso's result reveals information about both

the struture of the list and the keys stored in it, we obtain:

8[� J �℄:� �! (�� �) list

�

�! bool

�

The onstraint � J �, whih arises due to the use of poly-

morphi equality, spei�es that � must be an upper bound

for all seurity annotations whih our in the type of the

keys.

let re asso x = funtion

| [℄ -> raise Not_found

| (y, d) :: l -> if x = y then d else asso x l

asso returns the piee of data assoiated with a given key.

If no suh key exists, Not found is raised, as reeted in

asso's e�et:

8[� J �; � C ; � � Æ℄:� �! (�� ) list

�

Æ [Not found: Æ; �℄

����������! 

Here, as in mem asso, � represents the information assoi-

ated with the list's struture and keys. Beause this infor-

mation is reeted both in asso's normal and exeptional

results, the type system requires � C  and � � Æ.

Lastly, we re-implement mem asso in terms of asso,

using an exeption handler:

let mem_asso' x l =

try

let _ = asso x l in

true

with Not_found ->

false

As in the ase of length vs. length', the new type sheme

requires the result's seurity level to be greater than or equal

to the funtion's p parameter:

8[� J �℄:� �! (�� �) list

�

� [�℄

���! bool

�

This betrays the fat that the funtion's implementation

uses e�ets, but does not otherwise restrit its appliability.

10 Disussion

The reader may notie that normal and exeptional results

are not dealt with in a symmetri way by our type system.

Indeed, in a typing judgement p;�;M ` e : t [ r ℄, the row

r assoiates a seurity level with every exeption name, so

as to reord how muh information is gained by observing

that partiular exeption. However, no information level is

expliitly assoiated with normal termination. Instead, the

typing rule for sequential omposition, namely e-Bind, uses

t r as an approximation of it.

Myers' [10, 11℄ sets of path labels X , on the other hand,

reord the seurity level assoiated with normal termination

under a speial label n, whih is then used in the sequential

omposition rule. It is, however, typially an upper bound

for the value reahed by p inside every sub-expression of

the expression at hand, so this design alone would make the

type system very restritive. To prevent that, Myers adds a

non-syntax-direted rule, the single-path rule, stating that

X[n℄ an be reset to ; if the expression at hand an be shown

to always terminate normally.

Our system doesn't need the single-path rule: indeed,

when all entries in r

1

are Abs, then t r

1

is the least ele-

ment of L, and e-Bind typeheks e

1

and e

2

at a ommon

p, as desired. Myers' system is more preise than ours

in a few ases, whih involve expressions that never termi-

nate normally; experiene will tell how ommon they are.

The single-path rule requires ounting the number of non-

Abs entries in a row; in the presene of row variables, this

requires new (and quite heavy) onstraint forms, whih is

why we avoid it. This diÆulty does not arise in Myers'

framework beause it relies on Java's expliit, monomorphi

throws lauses.

There exists a simple monadi enoding of exeptions

into sums. Thus, it is possible, in priniple, to derive a

type system for exeptions out of a type system that an

handle sums. This approah sounds interesting, beause it

is systemati and promises to yield a symmetri treatment of

normal vs. exeptional results. However, some experiments

show that, in order to obtain aeptable preision in the end,

the treatment of sums that is hosen as a starting point must

be very aurate (muh more so than the one given in this

paper). We leave it as a topi of future researh.

Our main diretion for future work is to reate a full

implementation of the system on top of Caml-Light and to

assess its usability through a number of ase studies. We

also plan to study a variant of Core ML where exeptions

are seond-lass itizens, i.e. where raise x is disallowed. In

exhange for this slight loss of expressive power, we hope to

be able to use a simpler type and onstraint language.
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