
A few lessons from the Mezzo project
François Pottier1 and Jonathan Protzenko2

1 INRIA
francois.pottier@inria.fr

2 Microsoft Research Redmond
jonathan.protzenko@ens-lyon.org

Abstract
With Mezzo, we set out to design a new, better programming language. In this modest document,
we recount our adventure: what worked, and what did not; the decisions that appear in hindsight
to have been good, and the design mistakes that cost us; the things that we are happy with in
the end, and the frustrating aspects we wish we had handled better.

Keywords and phrases static type systems; side effects; aliasing; ownership

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 A word about Mezzo

Mezzo is a programming language in the tradition of ML, whose type system incorporates
a notion of ownership. The type system is close to separation logic: at each program point,
a set of permissions describe what fragment of the heap “we” (the current procedure on
the current thread) have access to and in what ways we can affect this fragment without
violating what “others” (the callers of the current procedure on the current thread, as well
as concurrently executing threads) assume about it. The type system of Mezzo has been
mechanically proved sound [4, 1]: well-typed Mezzo programs are memory-safe and data-race
free. A comprehensive paper about Mezzo is in submission [2]; bold and daring readers may
also wish to read the second author’s thesis [14].

Mezzo enables new programming patterns: thanks to its powerful ownership discipline,
type-changing updates are permitted. This yields great flexibility: for instance, typestate,
which is usually expressed using extra predicates that refine types [6], is now seen as a
particular case of type-changing updates. Furthermore, a combination of singleton types
and structural types allows the type system to track local aliasing relations. To keep the
complexity of the type system under control, we deliberately do not support certain advanced
ownership disciplines (such as static regions with multi-focusing; fractional permissions;
etc.). In order to partially make up for the lack of these advanced features, we encourage the
programmer to rely on dynamic tests when dealing with complex aliasing of mutable data.
To that effect, Mezzo provides a novel adoption/abandon mechanism that allows a dynamic
test to yield a static permission. Mezzo also provides locks, which are another dynamic
mechanism for (temporarily) obtaining a static permission. In practice, adoption/abandon
and locks are typically used in concert.

Mezzo does not just live on paper: one very explicit goal was to design a language for
programmers, not just a stack of Greek symbols in a conference paper. To that effect, we split
the language in several layers (one for the programmer, a lower-level one for the type-checker,
and a kernel one for the proof of soundness). Furthermore, we designed type inference
algorithms and wrote an implementation, which can be tried out online [15]. Finally, the
Mezzo repository [13] contains several thousand lines of examples, made up mostly of data
structures and algorithms.

© François Pottier and Jonathan Protzenko;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 A few lessons from the Mezzo project

2 Some fundamental design decisions

The Mezzo project started with the PhD of the second author, whose title was “towards
better static control of side-effects”. Our first decision was to design a new language, rather
than build upon an existing one. A related decision was to focus exclusively on the surface
language and on its type system. After type erasure, Mezzo is essentially a subset of OCaml,
so a (well-typed) Mezzo program can be compiled and executed by translation to untyped
OCaml (i.e., OCaml with unsafe type casts).

Starting afresh offers many benefits. The feature set of a fresh language is minimal.
We did not have to adapt our type discipline to deal with objects, modules, or GADTs, to
cite only a few of OCaml’s features. The implementation of a fresh language is simple: we
did not have to implement Mezzo’s type-checker as an extension of OCaml’s type-checker,
which would have been technically very difficult. The design of a fresh language can be
radical: we did not have to retain compatibility with an existing code base. In fact, we
were at liberty to deeply alter the way programmers think about types. Instead of viewing
types as descriptive (and unalterable), we incorporate ideas from separation logic, we think
of types as descriptive and prescriptive at the same time (and allow them to change as the
program runs). Thus, we must abandon Hindley-Milner type inference, and replace it with a
type-checking and type inference algorithm which in many ways resembles forward symbolic
execution [5] and abstract interpretation.

Focusing on a functional core influenced the design of the language. In Mezzo, algebraic
data types are fundamental. They can express state change, temporarily broken invariants,
refined predicates, aliasing relationships. . . Had we chosen to construct an object-oriented
language, the core building blocks of the language would have been objects instead.

Starting anew also has several drawbacks. Perhaps the biggest one is the absence of
a conversion path from OCaml to Mezzo. Even though untyped Mezzo is (a subset of)
untyped OCaml, there is no gradual way of porting a program from OCaml to Mezzo: the
entire program must be altered so as to abide by Mezzo’s type discipline. Furthermore, we do
not have a good way of allowing interoperability between OCaml and Mezzo. Although the
function type and the ref type in OCaml and in Mezzo look superficially similar, they have
different meaning: it is unsafe to naively let a mutable object (or a function that accesses a
mutable object) cross the boundary. Perhaps one could restore safety by inserting dynamic
checks at the boundary; this seems nontrivial and was left as future work.

For a research project that lacks the resources to go mainstream, the lack of interoper-
ability is perhaps tolerable. We do feel, however, that providing a conversion path would
have helped us write more examples and receive more user feedback. New programming
languages that aim at seizing a market share do deal with interoperability: TypeScript has
“definitions” for adding a typed interface on top of existing JavaScript code; Rust can be
made ABI-compatible with C libraries, as long as suitable Rust types are provided for C
functions.

3 Growing the language

One of our starting points was theoretical work by Charguéraud and by the first author [7].
We originally focused on the type system of a core language, leaving the design of a surface
language to a later stage. This approach turned out to be flawed. Lacking any impetus
from sample programs, we had a hard time figuring out where to push the design of the core
language. Lacking any connection with the surface, we had an even harder time figuring out

F. Pottier and J. Protzenko 3

how inference could possibly work. We ended up entangled in technicalities and unable to
form a grander vision of where we should go.

Things improved when we decided to drop this approach and instead work on the surface
language first. One of the best steps we took at this point was to write several sample
programs, even before the language existed. Designing a new language is a broad, ill-defined
task. Writing fictitious programs, finding out exactly how we would like them to look and
feel, and understanding what guarantees we would like the type system to provide, proved
highly beneficial. This activity allowed us to understand early on that some of the features
that we had in mind (such as static regions) were not practical; it also allowed us to imagine
several novel features, such as adoption/abandon, a more flexible replacement for static
regions.

3.1 Syntax, syntax, syntax
We spent a surprising amount of time working out the details of the syntax. This may seem
futile; yet, a concise and natural syntax is a requisite for wide adoption, and a sign that the
underlying concepts are simple.

Consider the type of the list length function. This type must express that the caller
loses ownership of the list while the length function operates over it and, once the function
returns, the caller regains ownership. Here is what this type looks like in the internal
language of the type-checker:

∀(a : type),∀(l : value), (=l | l@ list a) → (int | l@ list a)

Thanks to our syntactic sugar, the user simply writes:

val length: [a] list a -> int

This simplification is obtained in two steps. First, in the surface syntax, we adopt the
convention that a permission that appears in the domain of a function type also appears
(implicitly) in its codomain. This means that l@ list a can be omitted in the right-hand side
of the arrow. Second, because the right-hand side no longer refers to the name l, it is no
longer necessary to introduce this name. The universal quantification over l disappears, and
the left-hand side of the arrow becomes just list a.

In contrast, the type of list concatenation must express the fact that this function con-
sumes the ownership of its two arguments. In the surface syntax, this can be done in any
one of the following ways:

val append: [a] (consumes (list a, list a)) -> list a
val append: [a] (consumes list a, consumes list a) -> list a
val append: [a] (consumes xs: list a, consumes ys: list a) -> zs: list a

To allow the user to express fine-grained control over which arguments are lost and which
are preserved, the consumes annotation can be nested arbitrarily deep within structural
(tuple and data) types. The carefully-chosen convention that “permissions are preserved
unless otherwise specified” has proven, in our experience, to save a lot of annotations.

Our last example is the iter function on lists. Its type differs from its classic OCaml
counterpart in that the client function f may impose a type-changing update on the list
elements. This type illustrates the flexibility of the consumes keyword: here, the permission
for xs is consumed, while the permission for f is preserved. This type also illustrates a
situation where the function’s codomain (| xs @ list b) refers to xs, a name for the first

4 A few lessons from the Mezzo project

component of the function’s argument. This exploits the “name introduction” construct
x: a, which again can be nested at arbitrary depth within a structural type.

val iter : [a, b] (
consumes xs: list a,
f: (consumes x: a) -> (| x @ b)

) -> (| xs @ list b)

The type of f says: “Give me exclusive control over my argument x at type a. I will
return to you a unit value, along with exclusive control of x, now at type b”. The type of
iter has a similar reading: it requires unique ownership of xs at type list a and returns
unique ownership of xs at type list b.

We did not come up with this all at once, naturally. Our functions initially took multiple
arguments. While trying to work out the translation of our conventions for function types
into more atomic constructs, we realized that we could replace multiple-argument functions
with single-argument functions and simplify the whole translation process. The functions
append and iter above expect just one argument, which is a pair. This view is made possible
by the fact that the consumes annotation and the name introduction construct xs: ... can
appear inside a structural type. This design simplified the translation from surface syntax
to internal syntax, made the surface syntax more regular, and augmented the expressive
power of our function and structural types.

Incidentally, the tuple type (x: t, y: u) is not a primitive dependent tuple. It is an
ordinary tuple whose components contain name introduction constructs. It is desugared
using existential quantification and singleton types. The desugaring is symmetric, so both
t and u may refer to both x and y. There is no left-to-right bias.

3.2 Algebraic data types are central
One thing that we believe is a strength of our type system is the unified vision of struc-
ture and ownership that it provides. For instance, we do not need to distinguish a type
environment and a state environment that would store information such as “this list cell is
uninitialized” or “this cell is initialized and will no longer be mutated”. Instead, everything
is expressed in the type. A typical way to encode state information about a memory block
is to exploit algebraic data types, as follows.

data mutable cell =
Cell { head: (); tail: () }

data list a =
Cons { head: a; tail: list a } | Nil

val () =
let x = Cell { head = (); tail = () } in
(* x is uninitialized and has type: Cell { head: (); tail: () } *)
x.head <- 0;
x.tail <- Nil;
(* x has been mutated and has type: Cell { head: int; tail: Nil } *)
tag of x <- Cons;
(* x has been frozen and has type: Cons { head: int; tail: Nil } *)
(* which may be folded back to: Cons { head: int; tail: list int } *)
(* which may be folded back to: list int *)

F. Pottier and J. Protzenko 5

Structural types provide a natural, integrated mechanism for tracking the state of a
memory block, via its tag, or data constructor. By referring to the data type definitions,
the type-checker knows that a memory block whose type is Cell { ... } is mutable (and
uniquely owned), while a memory block whose type is Cons { ... } is immutable (and
shared). In a structural type, the types of the fields are arbitrary: they need not match
the types that appear in the data type definition. However, a structural type can be folded
back to a nominal type, as in the last line above, only if the types of the fields do match the
definition.

The above example shows a variety of features that we believe are novel. (1) We conflate
products and sums in data type definitions. This comes at no runtime cost (in the OCaml
heap, every block carries a tag anyway) and in our experience improves readability. (In
contrast, OCaml does not allow naming the arguments of a data constructor.) (2) The tag
update instruction adds a little bit of low-level expressive power (at the surface level, OCaml
does not allow mutating the tag of a memory block). (3) Furthermore, as shown above, tag
update can express freezing: by definition, the tag Cell implies mutability, while the tag
Cons implies immutability. (4) Structural types allow keeping precise track of field updates:
the type of a field can change at every update. This is sound because mutable memory
blocks are uniquely owned. (5) A match construct refines a nominal type to a structural
type, henceforth allowing field access. For instance, if xs has type list t, then a Mezzo
programmer may choose to write:

match xs with Cons -> f xs.tail | Nil -> ... end

In contrast, an OCaml programmer would have to bind the tail of xs to a fresh variable
as part of the pattern: match xs with Cons (_, tail) -> f tail | Nil -> ... end.
In Mezzo, both styles are permitted.

Separation logic [16] and alias types [17] have shown that it is important to keep track
of must-alias relationships in order to get an accurate description of the heap. Consider a
variable x which has type Cons { head: a; tail: list a }. If one reads the head field
by writing let y = x.head in ..., who “owns” the first list element at type a? Is it still
owned by x, so to speak, or is it now owned by y? Rather than introduce a concept of “data
type with a hole in it”, or a concept of “borrowing”, we choose to rely on singleton types. A
singleton type =x has only one inhabitant, namely x itself. In the above situation, the Mezzo
type-checker automatically introduces two auxiliary names h and t and makes the following
statements:

x @ Cons { head: =h; tail: =t }
h @ a
t @ list a

Then, upon finding the definition of y, the type-checker adds the statement that y has
type =h, which one may write either y @ =h or in the form of an equation:

y = h

The above four statements, or permissions, imply that x.head and y are aliases and can
be used interchangeably. Furthermore, permissions are ownership assertions. The permission
h @ a represents the ownership of a heap fragment whose root is h and whose extent is
described by the type a. Similarly, t @ list a represents the ownership of a heap fragment
rooted at t. Because a singleton type implies no ownership, the equation y = h claims
no ownership. For the same reason, the permission x @ Cons { head = h; tail = t }

6 A few lessons from the Mezzo project

represents the ownership of just one block of memory, at address x, and describes its contents
in an exact way. In short, types and permissions have both layout and ownership readings.

All of this shows that structural types and singleton types are central concepts in Mezzo:
together they convey not only shape information (“x is the address of a Cons cell”), but also
must-alias information (“its head is h”) and ownership information (“we own the memory
block at address x”). Naturally, these ideas are inspired by Alias Types [17] and by Separa-
tion Logic [16]. We mesh them with algebraic data types, so that they integrate well with
the language and allow expressing a variety of key programming patterns in a natural way.

For this approach to work, the system must have rules to decompose and recompose
types, so as to switch back and forth between a coarser view where “x has type list a”
and a lower-level, finer-grained description in terms of singleton types. Furthermore, the
type-checker must be able to transparently apply these rules whenever necessary. During
the implementation of the type-checker, we found this a challenge.

3.3 Ownership is central

Mezzo must support type-changing updates, not only because we are interested in typestate-
checking as a high-level goal, but also because (as shown above) the manner in which we
exploit singleton types essentially leads every update to be a type-changing update. How-
ever, a strong update is sound only if the modified object is uniquely owned. Therefore, an
ownership discipline is required.

Turning this argument around, one may accept ownership as the primary concept, and
view mutability as a consequence of it. Because we have exclusive access to a memory area,
it is safe to change its contents in an arbitrary way. This cannot break what others assume
about this area, because in fact they cannot assume anything about it; and this cannot
cause a race condition, because they cannot access this area.

One way of understanding ownership is in terms of permissions. “We” are granted the
right to perform certain operations (“we own this data structure exclusively, hence we may
read and write it”) whereas “others” are denied the right to perform certain operations
(“we own this block exclusively, hence others cannot read or write it”). Another way of
understanding ownership is in terms of knowledge. Exclusive ownership of a data structure
means “we” know that this data structure exists, whereas “others” don’t; shared ownership
means “we” know about this data structure and “others” may know about it too. Naturally,
the two views are dual, and either of them defines the other. If one thinks primarily in terms
of permissions, then our “knowledge” is whatever assertion is stable in the face of permitted
interference by others. Conversely, if one thinks primarily in terms of knowledge, then we
have “permission” to perform whatever action preserves the knowledge of others. This dual
understanding of ownership is reminiscent of rely-guarantee [10]. The classic type disciplines
of C, Java, OCaml, etc., are a special case where every object is considered potentially shared
and (as a consequence) every update must be type-preserving.

Anecdotal evidence suggests that ownership is a good concept for users, as it helps them
have a mental model of what’s legal and what’s not, of what may happen and what may not
happen, but also for language designers, as it helps figure out at an intuitive level whether
a proposed typing rule makes sense in terms of ownership. One such mechanism is adoption
and abandon.

F. Pottier and J. Protzenko 7

3.4 Flexible ownership via adoption and abandon
Adoption/abandon works, in essence, as follows. If one owns an object x at type t, one may
relinquish ownership of x and give it to an adopter y. One can think of y as maintaining a
runtime list of its adoptees, which it owns. (Our implementation uses a more efficient scheme,
where an adoptee points to its adopter). Adoption consumes the unique permission x @ t:
the type system no longer keeps individual track of x. (It also consumes x @ unadopted: this
guarantees that every object has at most one adopter, a condition that our implementation
scheme requires.) Instead, the aggregate permission y @ adopts t represents the ownership
of all adoptees of y as a group. While x is adopted, it no longer has type t. Still, it has
type adoptable, which means it is a valid address. The address x can be copied without
restriction: this allows mutable data to become aliased, and still remain usable, as described
now. When one wishes to regain ownership of x, one may attempt to take x from y. This
operation checks, at runtime, that x currently appears in the list of adoptees of y, and takes
it out of this list. This yields the permissions x @ t and x @ unadopted again. The point
of the runtime check is to prevent the duplication of these permissions.

x has type We know that. . . Others know that. . . mode
adoptable x is a valid heap address x is a valid heap address duplicable
unadopted x is a valid heap address

x is not currently adopted
x is a valid heap address affine

adopts t every adoptee of x has type t – affine

The ownership hierarchy was, initially, a purely static concept that was expressed in the
types. Adoption and abandon allow part of this hierarchy to exist (and to be queried and
modified) at runtime. The give and take operations allow move between the static and
dynamic regimes of ownership.

This mechanism is perhaps one of the main contributions of Mezzo: it provides an escape
hatch out of the purely static discipline. This allowed us to keep the type system relatively
simple. If we had tried to statically keep track of complex ownership patterns, we would
have exceeded our complexity budget.

Throughout the course of the Mezzo project, we had to navigate between two conflicting
goals. On the one hand, we wanted a language that was more than a research project. For
instance, a traditional affine (or linear) type system is not expressive enough for real-world
programming: we had to allow, one way or another, a certain degree of aliasing. On the
other hand, we wanted the system to remain usable by (skilled) programmers: we had to
reject proposed features of the type system that we deemed too technical. Abandon and
adoption was judged a good compromise.

3.5 Beyond duplicable versus affine?
The various modes of ownership were the topic of much discussion. For simplicity, Mezzo as
it stands distinguishes only two modes, or two kinds of permissions, namely duplicable (i.e.,
shared) permissions and affine (i.e., non-duplicable, or exclusive) permissions. A duplicable
permission can be viewed as affine; the converse is not permitted. Every permission is in
fact affine.

One may think of classifying types using kinds, where a kind is “duplicable” or “affine”.
However, in order to type-check list length, one would then need kind polymorphism:

val length: ∀κ,∀(α : κ),∀(l : value), (=l | l@ list a) → . . .

8 A few lessons from the Mezzo project

This additional layer of quantification seems too much of a burden. We prefer to view modes
as predicates over types, much like type classes. Thus, the user can explicitly request that
a type satisfy a certain mode:

val f: [a] duplicable a => (x: a) -> ...
val g: [a] affine a => (x: a) -> ...

Because every type is affine, the constraint affine a can in fact be omitted. This gives
rise to concise types in many situations.

In theory, one could add other modes, such as “linear”. Viewing an affine permission as
linear would be permitted; the converse would be forbidden. In principle, this could help
programmers ensure that resources (e.g., file descriptors) are properly freed. In practice,
though, this would make the system more verbose: the constraint affine a would no longer
be a tautology and might have to appear in many places. Furthermore, in order to prove a
“complete collection” theorem (i.e., a linear object is never lost), one would have to impose a
restriction: a resource guarded by a lock must be affine. (This is necessary because locks are
never de-allocated.) This makes the idea less attractive: for instance, a lock cannot guard a
file descriptor. Furthermore, even if “complete collection” holds, in practice, it seems that
there are still (admittedly contrived) ways of getting rid of a linear object without properly
freeing it; e.g., by converting it to the existential type {a} (a | linear a) and “giving”
it to a “black hole” adopter that one threads through the entire program. For all these
reasons, we left the exploration of “linear” (and other modes) to future work.

4 Looking at some code

Some programs can be expressed in a palatable manner using Mezzo. This is less true of
some other programs. While there is no theorem classifying easy-to-write and hard-to-write
programs, we have a few examples that are representative of the typical experience of writing
Mezzo code.

4.1 Example #1: one-shot functions
A programming pattern that pops up quite often is that of “one-shot functions”. Also known
as linear arrows, these functions may only be called once. In Mezzo, by default, a function
can only capture duplicable permissions, and is itself duplicable. Therefore, every Mezzo
function may be called as many times as one wishes, provided of course that the caller is
able to supply the permissions that this function requires. Nevertheless, one can simulate a
one-shot function in Mezzo, as follows.

alias osf a b = {p: perm} (((consumes (a | p)) -> b) | p)

val promote [a, b, p: perm] (f: (consumes (a | p)) -> b | consumes p) :
(| f @ osf a b) = ()

A one-shot function of a to b (where a and b are types) is a package of a function of
a | p to b along with a single copy of p, where p is an opaque permission. That is, in order
to invoke this function, one must supply not only an actual argument of type a, but also
the permission p. Because p is existentially quantified (as indicated by the curly brackets),
it is regarded as affine: that is, it cannot be duplicated. Because the first invocation of the
function consumes p, any further invocation is forbidden. Thus, a function of type osf a b
may be called at most once.

F. Pottier and J. Protzenko 9

Creating a one-shot function should incur no run-time penalty. One can either use the
promote function above, whose net effect is to perform an existential packing, and assume
that the compiler will get rid of what is actually a no-op; or, one can write a pack instruction
that bypasses the function call and performs the existential packing directly.

This encoding of one-shot functions may seem heavy, and the reader may wonder whether
one could instead view affine functions as a primitive notion. We note that our approach is
more general, as it allows encoding other related concepts, such an affine choice between two
functions, e.g., “you may invoke either the success continuation or the failure continuation,
but only one of them, and at most once”.

The version of the one-shot function above takes and returns a run-time argument. We
can define a restricted version of one-shot functions that only operates over permissions.
The type below implements the “magic wand” of separation logic, written p(q.

alias wand (pre: perm) (post: perm) = osf (| pre) (| post)

In this restricted version, the function takes and returns at run-time the unit value, but
statically transforms the permission pre passed along with the argument into post.

These programming patterns would qualify as “easy to express” in Mezzo. They do
sometimes require annotations, which can be made cumbersome by the fact that we need
a let flex construct to refer to anonymous, existentially-quantified variables. That being
said, we’ve been happy that these can be defined in the language, and don’t have to be
built-in features.

4.2 Example #2: strong updates
Code that performs strong updates is, in general, well-suited to the static discipline of Mezzo.
A representative example is our implementation of “futures” (also known as “promises”, or
suspended computations).

A suspended computation works as follows: we allocate a mutable reference in the heap;
we evaluate the computation and write its result into the reference; we freeze the reference
(make it immutable) to express the fact that no further mutations shall occur.

In its initial state, a suspension is thus a standard Mezzo reference, defined as follows.

data mutable ref a =
Ref { contents: a }

By performing a tag-update from Ref to R we can freeze a suspension into its final state,
that is, into a result a.

data result a =
R { result: a }

(From a more general perspective, tag mutations in Mezzo allow checking more invariants,
as our type system is able to statically track this “freezing” pattern, where a data structure
starts mutable, then is made immutable.)

There is a catch, however: we initially allocate a mutable reference, which is affine, hence
not shareable. We do want to share it, however, as multiple clients will want to wait for the
computation to finish in the background. We thus define the type future a. It is duplicable;
this is the type the client manipulates, and that we export as abstract future a in the
module’s interface.

10 A few lessons from the Mezzo project

alias future a = (s: unknown, lock (s @ result a))

The type definition above is relatively concise: thanks to our binding rules, the name
s may appear anywhere in the tuple. Quite surprisingly, the lock protects a duplicable
permission, which may seem counter-intuitive. One way to intuitively understand the type
future a is to think of it as a promise that, by the time the client acquires the lock, the
reference will be frozen with the result of the computation.

The permission s @ result a is, naturally, not available initially; actually, we use the
lock as a semaphore, as the code sample below demonstrates.

(* Creating a future from a one-shot function [k]. *)
val new [a] duplicable a => (consumes k: osf () a) : future a =

(* The suspension starts out as a reference,
* whose contents does not matter. *)

let s = newref () in
(* The lock is created in the [locked] state; the permission
* [s @ result a] is *not* available yet! *)

let l : (l: lock (s @ result a) | l @ locked) = new_locked () in
(* The computation that is spawned in the background. *)
let compute (| consumes (k @ osf () a * s @ ref () * l @ locked)) : () =

s := k();
(* Turn [s @ Ref { contents: () }] into [s @ R { result: a }], that is,
* into [s @ result a]. *)

tag of s <- R;
(* We can now release the lock for the first time. *)
release l

in
(* Concurrently compute and return the future: *)
spawn compute; (s, l)

Reading the result of the computation is then a mere matter of acquiring the lock; the
first read will occur after the transition of the “semaphore” from a reference to a result a.

This flavor of programming, where a uniquely-owned data structure is mutated, then
frozen, tends to work well in Mezzo. We have some flagship examples on lists: we can define
tail-recursive versions of map and concat, where a new list cell is temporarily mutable, and
is frozen (i.e., becomes immutable) once it has been fully initialized.

We also have the example of lazy thunks, where a combination of subtyping witnesses
and existential quantification allows implementing thunks in Mezzo while ensuring that the
type lazy a is covariant1.

We agree that the suspensions example is somewhat technical; it seems to us, though,
that it is still a strength of Mezzo that we can explain these precise mutations and ownership
transfers within the type system. Doing the same in ML would require unsafe casts or heavy
run-time checks.

1 Unlike suspensions, the details are truly technical; the curious reader can read the stdlib/lazy.mz
file in the source repository; it is heavily commented.

F. Pottier and J. Protzenko 11

4.3 Example #3: mutable trees
Another kind of code that we have found to work well in Mezzo is imperative code without
aliasing. Our implementation of mutable balanced binary search trees is representative of
that class of programs, which in general includes all list-like and tree-like mutable data
structures.

Our module for mutable trees represents about a thousand lines of Mezzo code. It adapts
OCaml’s tree library so as to allow in-place mutation. It does not use adoption/abandon.

data tree k a =
| Empty
| mutable Node {

left: tree k a; key: k; value: a; right: tree k a; height: int
}

We never mutate the Empty constructor; therefore, only the Node constructor needs to
be mutable. Allowing Empty to remain immutable allows one to allocate a single value and
use it subsequently in all places where an Empty constructor is required, thus acting like a
null pointer.

The tree module features several internal functions; an interesting one is the function
that re-balances a tree.

val bal: [k, a] (
consumes t: Node {

left: tree k a; key: k; value: a; right: tree k a; height: unknown
}

) -> tree k a

This function type is interesting in several ways. First, it demands that the argument t be
not just a tree k a, but specifically a Node. This kind of pre-condition would be expressed
in OCaml as a comment; Mezzo enforces it via the static type-checking discipline. This
pattern is one that we’ve come to use frequently.

Second, because the function writes the height field but does not read it, it does not
need any hypothesis about the type of this field. We therefore document in the function
type that the function will not read the height field.

Most of the functions in this module require a comparison function. Rather than requir-
ing the user to provide a comparison function for each call to, say, find, we defined a new
dependent type that bolts a specific comparison function onto the tree type.

data mutable treeMap k (cmp : value) a =
TreeMap { tree: tree k a; cmp | cmp @ (k, k) -> int }

This is not a radically new theoretical feature, but rather another programming pattern
that we have found convenient in many situations. In OCaml, one would either risk mixing
a tree with an unrelated comparison function, or one would have to use functors. Mezzo
offers a more light-weight mechanism for that.

4.4 Example #4: borrowing
Borrowing is a term that covers multiple issues. Let us tackle a specific one: assigning a
type to the find function for lists. This raises a difficulty in terms of ownership: because

12 A few lessons from the Mezzo project

find returns a pointer to a list element, it duplicates this element. (That is, the element is
now accessible both via the list and as the result of find.) Hence, find must be restricted
to lists of duplicable elements. How can one work around this restriction?

A higher-order version of find can be easily written, where the caller passes a function
that describes what to do once the element is found.

val find: [a] (
xs: list a,
pred: a -> bool,
f: (x: a) -> ()

) -> ()

This is not satisfactory, however, because it requires the user to change the control-flow.
What we would like is for the caller to get a pointer into the list, and make sure the list is
invalidated as long as the caller holds a pointer to the element. Thus, the element would be
temporarily “borrowed” from the list.

The good news is, this ownership pattern can be expressed in Mezzo. The bad news
is, it requires crafting some “ninja” Mezzo code that is outside the reach of a casual user.
The signature of such a find function is as follows, where we reuse the wand type we saw
earlier:

alias focused a (post: perm) =
(x: a, w: wand (x @ a) post)

val rec find: [a] (consumes xs: list a, pred: a -> bool)
-> either

(| xs @ list a)
(focused a (xs @ list a))

The focused type describes the pair of an element, along with a wand that consumes the
element, in exchange for a certain permission post.

The find function consumes ownership of the list, and either returns it immediately,
meaning that the element was not found, or returns a focused element that, once “surren-
dered”, grants ownership of the original list again. This signature hence expresses faithfully
the protocol for ownership transfer that we outlined earlier.

Quite regrettably, the implementation of find is fairly difficult to comprehend, and
proper explanations are outside the scope of this paper (they can be found in our journal
paper [3]). Let us just mention briefly some ingredients:

the identity function serves as the implementation of the magic-wand – in other words, we
abuse a function that does nothing at run-time to encode invariants in the type system,
for lack of ghost code;
the inference engine of Mezzo cannot figure out how to synthesize the “magic wand” –
therefore, the user must perform a manual pack instruction and provide the existential
witness;
in order do so, the user must be able to name the type variables that are automatically
introduced by the type-checker when it “auto-unpacks” an existentially quantified type or
permission. Currently, this is done by using a let flex construct which allows naming a
type variable after has been introduced. Using this construct requires a rather low-level
understanding of the type-checker.

F. Pottier and J. Protzenko 13

Similar, if only greater difficulties are the heart of our work on iterators [9].
This latter example certainly falls in the category of programs that are harder to express

in Mezzo than they ought to be. In the current state of things, we do not know how to
make these programs with complex ownership protocols easier to write in Mezzo. There is,
of course, the option of restricting find to duplicable elements. This may sound like a very
special use-case, but in Mezzo, one can always convert affine elements to duplicable ones,
using adoption/abandon:

define a global adopter object,
initially give all elements to the adopter,
manipulate elements of type dynamic (duplicable),
wrap every access to an element with a pair of take and give.

Therefore, a container of non-duplicable elements can always be viewed as a pair of a
container of duplicable elements (adoptees) and an adopter. This is not satisfactory, though:
the use of adoption/abandon is never desirable as it has a runtime cost and introduces a
possibility of failures.

Taking a step back, other programming patterns are certainly hard to express in Mezzo,
and if we were to extend the type system with more ad-hoc rules, we would certainly consider
extra candidates. For instance, taking an immutable pointer to a mutable block (C++’s
const modifier) is currently not supported by Mezzo; the right way to support this would
certainly be fractional permissions.

5 Difficulties revealed by the implementation

Implementing Mezzo proved remarkably beneficial. This task allowed us to confirm and
strengthen our basic intuitions about the type discipline. At the same time, it revealed
many difficult problems that we initially did not clearly anticipate.

One particularly thorny issue is the “merge problem”. Consider a match expression where
x has type Nil at the end of one branch, and has type Cons { head = h; tail: Nil } at
the end of the other branch, where h has type a. What is the type of x after the match
expression? list a seems a natural answer. A closer look, though, shows that list (=h)
is also a valid answer, although most certainly not the one the user had in mind! The
problem becomes even more difficult in the presence of exclusively-owned data, and admits
no principal solution in the general case.

Another thorny issue is inference of polymorphic instantiations. Suppose x has type
Cons { head = h; tail: Nil } and h has type a. If one calls identity x, then the
type-checker tries to infer a polymorphic instantiation. Several alternatives arise: list a,
of course, but also Cons { head = h; tail: Nil }, Cons { head: a; tail: Nil }, and
other variations, including the singleton type =x and the “top” type {a} a. Here, the final
decision is innocuous: the identity function, after all, returns the ownership to the caller, so
regardless of the instantiation choice, all is well. One can easily imagine non-trivial cases
where the decision has dramatic consequences on the rest of the type-checking process.

As we saw, Mezzo can express “one-shot functions”. This is nice, and can be extended
to describe more complex situations, such as a one-off choice between several functions, or
a function whose type changes after every call. Unfortunately, after a one-shot function has
been called, its type lingers. The function still has type (a | consumes p) -> b, for some
opaque permission p, and the type-checker cannot see that this makes the function useless.
More generally, a function may have multiple types. Mezzo can express intersection types:

14 A few lessons from the Mezzo project

one can easily state that x has type t and type u. Intersection types can sometimes, but not
always, be simplified. In particular, at a call site, if the function happens to have several
types, it is not easy for the type-checker to determine which one applies; in fact, several of
them could apply, and the choice could have consequences down the road!

Our work on iterators [9] stumbles upon all of the above difficulties. To summarize our
current position: the type system is in theory remarkably powerful and regular, and can (at
least in some cases) express complex protocols of ownership transfer. In practice, however,
using the system requires a great deal of expertise and a non-trivial amount of annotations.

After all, this is not surprising: the Mezzo type-checker needs to somehow perform type
inference in System F (a subset of Mezzo!), decide entailment in separation logic, and solve
the frame inference problem (at function call sites). These problems are hard or undecidable.
The problem is possibly made harder by the presence of (contravariant) function types, which
are absent in first-order separation logics.

5.1 The state of the implementation
Our current implementation relies on heuristics and limited backtracking. The type-checker
does not always terminate. The situations where it diverges are rare, but it is not completely
clear how to rule them out. Most of the time, our heuristics work well. Nevertheless, they
are unsatisfactory in principle, and difficult to maintain. Furthermore, should inference fail,
the user is puzzled, and type errors are difficult to explain.

Perhaps a few examples may illustrate the kind of difficulties that we encounter in the
type-checker. Many difficulties are related to the comparison of function types. For instance,
the type-checker cannot prove that the following type is a subtype of itself.

val f: (| p * q) -> ()

The reason is, the algorithm for deciding subtyping compares functions; it then compares
domains. In the process, the algorithm is faced, on the one-hand, with rigid variables p * q
and, on the other hand, with flexible (unification) variables ?p * ?q. Figuring out that
?p ought to instantiate onto p and ?q onto q amounts to a associativity/commutativity
search. The algorithm does not perform this kind of search. More generally, because of our
translation of external syntax into an internal one, a function may have several, equivalent
types (with or without singleton types, for instance); the type-checking algorithm then needs
to deal with a variety of equivalent representations seamlessly.

Other situations involve finding existential witnesses: a rule of our system allows in-
stantiating a unification variable a into the conjunction of b (a type) and p (a permission),
written b | p.

alias t1 = [a] () -> a
alias t2 = [p: perm] () -> (() | p)

The type t1 is a subtype of t2: it suffices to instantiate a into b | p, then to instantiate
b onto the unit type (). The type-checking algorithm is unable to figure that out, though:
exploring the application of this typing rule would render the search space too big.

The picture depicted above is bleaker than it ought to be. In practice, a syntactic
comparison makes sure that a type is always a subtype of itself (and provides, based on
experimental measurements, a significant performance boost). Furthermore, the algorithm
for comparing function types has been extensively fine-tuned and works most of the time. By
“most of the time”, we mean that over the 7,000 lines of “real” Mezzo that we have written
(this includes blank lines and comments, but excludes files that are just unit test-cases),

F. Pottier and J. Protzenko 15

only 97 type applications appear, meaning roughly one annotation every 70 lines of code.
We believe this to be an acceptable penalty.

Furthermore, after an internal presentation in the C++ group at Microsoft, it turned
out that programmers there were absolutely unfazed at the prospect of a compiler that
may fail, unpredictably, for some unknown reason, and may require them to provide more
annotations. It seems that this is the common lot of a C++ programmer who uses templates,
and the audience was unanimously happy to pay the unpredictability for more expressive
power.

It thus seems that the situation is not as bad: failures of the type-checker are, after all,
rare, and the user can always annotate herself out of a tricky type-checking situation.

6 The proof of Mezzo

The machine-checked definition of Mezzo is organized as a kernel, on top of which sit three
(almost) independent extensions. The kernel calculus can be described as a concurrent
call-by-value λ-calculus, equipped with an affine, polymorphic, value-dependent type-and-
permission system. The extensions are: (a) strong (i.e., affine, uniquely-owned) mutable
references; (b) dynamically-allocated, shareable locks; (c) adoption and abandon. We prove
type soundness (“well-typed programs do not crash”) and data-race freedom (“well-typed
programs are data-race free”).

The definitions and proofs add up to about 14K (non-blank, non-comment) lines of code.
Out of this, a library for working with de Bruijn indices and a library for reasoning about
separation, both of which are reusable, occupy about 2Kloc each. The remaining 10Kloc
are split between the kernel (roughly 4Kloc) and its three extensions (roughly 6Kloc).

The current state of the formalization, with which we are fairly pleased, is the result of
an iterative process. There were three main iterations.

The initial iteration was Pottier’s proof of type soundness for a (sequential) affine type
system with mutable state and hidden state [11].

The second iteration was a first version of the definition and proof of Mezzo. Compared
to the previous iteration, a few important technical simplifications are worth mentioning.
First, whereas the previous type system had (singleton and group) regions and a type for
region inhabitants (e.g., “x has type [ρ]” means that x is an inhabitant of the region ρ),
Mezzo has value-dependent singleton types (thus, “x has type =x”). Second, whereas the
previous system required equi-recursive types (which play a role in the meta-theory of the
anti-frame rule), Mezzo gets away with iso-recursive (i.e., algebraic) data types, whose theory
of equality is significantly simpler. Third, whereas the previous proof relied on two calculi,
connected by a rather tricky proof that “erasure is a simulation”, we were able to work with
just one calculus, where it is clear that permissions do not exist at runtime. A snapshot of
the formalization of Mezzo at this point in time is given by an unpublished paper [12].

In the third and last iteration, we placed greater emphasis on the modularity of the
formalization. In the previous iteration, the treatment of mutable memory blocks and that
of adoption and abandon were intermingled. The type constructor for memory blocks served
also as a type for adopters and as a type for adoptees; this led to a monster typing rule (rule
Block [12, Figure 5]). In this iteration, instead, we introduced two new type constructors,
adopts T and unadopted, which deal with these aspects, independently of the structure of
memory blocks. This made the system more expressive (e.g., give and take can now be viewed
as ordinary polymorphic functions, whereas their types previously could not be expressed).
This also made the proof more modular: mutable references and adoption and abandon are

16 A few lessons from the Mezzo project

now almost independent of one another. (They cannot be entirely independent, as adoption
and abandon requires embedding an adopter pointer within every memory block.) Finally,
we added concurrency and locks, which were not covered by the previous two iterations.

The current proof can be found online [1] and is described by a paper in submission [2].
One unsatisfactory aspect is that, although we would like to think of Mezzo as a kernel
calculus plus three “almost” independent extensions, in reality the current Coq formalization
is monolithic. Achieving true modularity in the syntax of the calculus, in its semantics, in
its typing rules, and in the proofs, is difficult and still a research topic [8].

7 What now?

There remain a lot of open questions about Mezzo itself.

Can we design, even if just on paper, a type-checking and type inference algorithm that
is sound and complete for a subset of Mezzo?
Can we work out a good mechanism for interacting with existing OCaml code bases?
Can we offer a better user experience, especially in terms of type error messages?
Do we need a wider variety of ownership mechanisms, as shown e.g. by Cyclone [18]?

If we were to re-think Mezzo along different lines, there are several paths we could explore.

One might wish to layer a permission analysis on top of an existing typed language,
such as a subset of OCaml. The system would be less expressive, but the analysis would
be simpler, and violations would be easier to explain. Mezzo’s unification of types and
permissions was more radical and in a sense more elegant, but this simpler approach is
perhaps more reasonable.
We could design a system that is unsound but still pragmatically useful. Take Dart, for
instance; the language features mutable, covariant containers and takes responsibility for
it. Yet, the mere fact that it checks lexical scoping of variables is a massive improvement
over JavaScript. We could imagine a variant of Mezzo that features, for instance, OCaml’s
weak references without additional checks. This would be unsound, but would help
convert existing programs.

Looking back on Mezzo, we remain happy with the design of the type system. We believe
it is expressive, concise, and that the adoption/abandon mechanism strikes a nice balance
between expressiveness and complexity. We also believe that reasoning in terms of ownership
is natural for beginners. We do remain unsatisfied, though, with the shortcomings of our
implementation, and with the lack of interoperability with existing OCaml code.

8 Bibliography

References
1 Thibaut Balabonski and François Pottier. A Coq formalization of Mezzo, take 2, July 2014.

http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz.
2 Thibaut Balabonski, François Pottier, and Jonathan Protzenko. The design and formaliza-

tion of Mezzo, a permission-based programming language. Submitted for publication, July
2014.

3 Thibaut Balabonski, François Pottier, and Jonathan Protzenko. The design and formaliza-
tion of Mezzo, a permission-based programming language. Submitted for publication, July
2014.

http://gallium.inria.fr/~fpottier/mezzo/mezzo-coq.tar.gz
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo-journal.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo-journal.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo-journal.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo-journal.pdf

F. Pottier and J. Protzenko 17

4 Thibaut Balabonski, François Pottier, and Jonathan Protzenko. Type soundness and race
freedom for Mezzo. In Proceedings of the 12th International Symposium on Functional and
Logic Programming (FLOPS 2014), volume 8475 of Lecture Notes in Computer Science,
pages 253–269. Springer, 2014.

5 Josh Berdine, Cristiano Calcagno, and Peter W. O’Hearn. Smallfoot: Modular automatic
assertion checking with separation logic. In Formal Methods for Components and Objects,
volume 4111 of Lecture Notes in Computer Science, pages 115–137. Springer, 2005.

6 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. In
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA), pages
301–320, 2007.

7 Arthur Charguéraud and François Pottier. Functional translation of a calculus of capa-
bilities. In International Conference on Functional Programming (ICFP), pages 213–224,
2008.

8 Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à la carte.
In Principles of Programming Languages (POPL), pages 207–218, 2013.

9 Armaël Guéneau, François Pottier, and Jonathan Protzenko. The ins and outs of iteration
in Mezzo. Higher-Order Programming and Effects (HOPE), 2013. http://goo.gl/NrgKc4.

10 Cliff B Jones. Specification and design of (parallel) programs. In IFIP congress, volume 83,
pages 321–332, 1983.

11 François Pottier. Syntactic soundness proof of a type-and-capability system with hidden
state. Journal of Functional Programming, 23(1):38–144, 2013.

12 François Pottier. Type soundness for Core Mezzo. Unpublished, January 2013.
13 François Pottier and Jonathan Protzenko. Mezzo. http://protz.github.io/mezzo/, July

2014.
14 Jonathan Protzenko. Mezzo: a typed language for safe effectful concurrent programs. PhD

thesis, Université Paris Diderot-Paris 7, 2014.
15 Jonathan Protzenko. Mezzo-web: try Mezzo in your browser, 2014.
16 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic

in Computer Science (LICS), pages 55–74, 2002.
17 Frederick Smith, David Walker, and Greg Morrisett. Alias types. In European Symposium

on Programming (ESOP), volume 1782 of Lecture Notes in Computer Science, pages 366–
381. Springer, 2000.

18 Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. Safe manual
memory management in Cyclone. Science of Computer Programming, 62(2):122–144, 2006.

http://gallium.inria.fr/~fpottier/publis/bpp-mezzo.pdf
http://gallium.inria.fr/~fpottier/publis/bpp-mezzo.pdf
http://research.microsoft.com/pubs/67598/smallfoot.pdf
http://research.microsoft.com/pubs/67598/smallfoot.pdf
http://www.cs.cmu.edu/~kbierhof/papers/typestate-verification.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://gallium.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://people.csail.mit.edu/bendy/MTC/MTC.pdf
http://goo.gl/NrgKc4
http://gallium.inria.fr/~fpottier/publis/fpottier-ssphs.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-ssphs.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-core-mezzo.pdf
http://protz.github.io/mezzo/
https://hal.inria.fr/tel-01086106/document
http://gallium.inria.fr/~protzenk/mezzo-web/
http://www.cs.cmu.edu/~jcr/seplogic.pdf
http://www.cs.cornell.edu/talc/papers/alias.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf
http://www.cs.umd.edu/~mwh/papers/cyc-mm-scp.pdf

	A word about Mezzo
	Some fundamental design decisions
	Growing the language
	Syntax, syntax, syntax
	Algebraic data types are central
	Ownership is central
	Flexible ownership via adoption and abandon
	Beyond duplicable versus affine?

	Looking at some code
	Example #1: one-shot functions
	Example #2: strong updates
	Example #3: mutable trees
	Example #4: borrowing

	Difficulties revealed by the implementation
	The state of the implementation

	The proof of Mezzo
	What now?
	Bibliography

