
Nordi Journal of Computing

A Versatile Constraint-Based Type Inferene System

Fran�ois Pottier

�

Franois.Pottier�inria.fr

Abstrat. The ombination of subtyping, onditional onstraints and rows yields a

powerful onstraint-based type inferene system. We illustrate this laim by propos-

ing solutions to three deliate type inferene problems: \aurate" pattern math-

ings, reord onatenation, and �rst-lass messages. Previously known solutions

involved a di�erent tehnique in eah ase; our theoretial ontribution is in using

only a single set of tools. On the pratial side, this allows all three problems to ben-

e�t from a ommon set of onstraint simpli�ation tehniques, a formal desription

of whih is given in an appendix.

CR Classi�ation: F.3.3 [Logis and Meanings of Programs℄: Studies of Program

Construts|Type Struture.

Key words: Constraint-based type inferene. Subtyping. Rows. Conditional

onstraints.

1. Introdution

Type inferene is the task of examining a program whih laks some (or

even all) type annotations, and reovering enough type information to make

it aeptable by a type heker. Its original, and most obvious, appliation

is to free the programmer from the burden of manually providing these an-

notations, thus making stati typing a less dreary disipline. However, type

inferene has also seen heavy use as a simple, modular way of formulating

program analyses.

The design of a type inferene system an be inuened by its purpose.

When used as a user-visible way of enforing a oding disipline, it might

be desirable to make it simple and somewhat rigid. When used invisibly

as part of a ompiler's optimization proess, on the other hand, maximum

preision may be desired. Regardless of this distintion, however, power-

ful type inferene tehniques are often made a neessity by the advaned

features found in many reent programming languages.

This paper presents a ommon solution to several seemingly unrelated type

inferene problems, using an existing framework for subtyping-onstraint-

based type inferene [14℄, equipped with onditional onstraints inspired by

Aiken, Wimmers and Lakshman [2℄ and with rows �a la R�emy [19, 21℄.

�

INRIA Roquenourt, BP 105, 78153 Le Chesnay Cedex, Frane.

Reeived 20th November 2000.

2 FRANC�OIS POTTIER

Constraint-Based Type Inferene

Subtyping is a partial order on types, de�ned so that an objet of a subtype

may safely be supplied wherever an objet of a supertype is expeted. Type

inferene in the presene of subtyping reets this basi priniple. Every

time a piee of data is passed from a produer to a onsumer, the former's

output type is required to be a subtype of the latter's input type. This re-

quirement is expliitly reorded by reating a symboli subtyping onstraint

between these types. Thus, eah potential data ow disovered in the pro-

gram yields one onstraint. This fat allows viewing a onstraint set as a

direted approximation of the program's data ow graph { regardless of our

partiular de�nition of subtyping.

Various type inferene systems based on subtyping onstraints exist. One

may ite works by Aiken et al. [1, 2, 5℄, the present author [16, 17℄, Trifonov

and Smith [29℄, as well as Odersky et al.'s abstrat framework HM(X) [14,

28, 27℄. Related systems inlude set-based analysis [9, 6℄ and type inferene

systems based on feature onstraints [11, 12℄ or prediate onstraints [10℄.

Conditional Constraints

In many onstraint-based systems, the expression if e

0

then e

1

else e

2

is, at best, desribed by

�

1

� � ^ �

2

� �

where �

i

stands for e

i

's type, and � stands for the whole expression's type.

This amounts to stating that \the value of e

1

(resp. e

2

) may beome the

value of the whole expression", regardless of the test's outome. A more

preise desription { \if e

0

may evaluate to true (resp. false), then the

value of e

1

(resp e

2

) may beome the value of the whole expression" { an

be given using onditional onstraints:

true � �

0

?�

1

� � ^ false � �

0

?�

2

� �

Introduing tests into onstraints allows keeping trak of some of the pro-

gram's ontrol ow { that is, mirroring, at the level of types, the way eval-

uation is a�eted by the outome of a test.

Conditional set expressions were introdued by Reynolds [25℄ as a means

of solving set onstraints involving strit type onstrutors and destrutors.

Heintze [9℄ uses them to formulate an analysis whih ignores \dead ode".

He also introdues ase onstraints, whih allow ignoring the e�et of a

branh, in a ase onstrut, unless it is atually liable to be taken. Aiken,

Wimmers and Lakshman [2℄ use onditional types, together with intersetion

types, for this purpose.

In the present paper, we suggest a single notion of onditional onstraint,

whih is omparable in expressive power to the above onstruts, and lends

itself to a simple and eÆient implementation. (A similar hoie was made

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 3

independently by F�ahndrih [5℄.) We emphasize its use as a way not only of

introduing some ontrol into types, but also of delaying type omputations,

thus introduing some \laziness" into type inferene.

Rows

Designing a type system for a programming language with reords, or ob-

jets, requires some way of expressing labelled produts of types, where

labels are �eld or method names. Dually, if the language allows manipulat-

ing strutured data, then its type system is likely to require labelled sums,

where labels are names of data onstrutors.

Wand [30℄ and R�emy [19, 21℄ elegantly deal with both problems at one

by introduing notation to express denumerable, indexed families of types,

alled rows:

� ::= �; �; : : : ; '; ; : : : j a : � ; � j ��

(Here, � ranges over types, and a; b; : : : range over indies.) An unknown

row may be represented by a row variable, exatly as in the ase of types.

(By lak of symbols, we will not syntatially distinguish plain type variables

and row variables.) The term a : � ; � represents a row whose element at

index a is � , and whose other elements are given by �. The term �� stands

for a row whose element at any index is � . These statements are given

formal meaning by interpreting rows in a logial model where the following

equations hold:

a : �

a

; (b : �

b

; �) = b : �

b

; (a : �

a

; �)

�� = a : � ; ��

If desired, some type onstrutors may be lifted to the level of rows, i.e.

viewed as row onstrutors as well. For instane, to lift the type onstrutor

!, we extend the syntax of rows:

� ::= : : : j �! �

The term � ! �

0

is logially interpreted as the row obtained by applying

the type onstrutor !, point-wise, to the rows � and �

0

. As a result, the

logial model satis�es the following equations:

(a : � ; �)! (a : �

0

; �

0

) = a : (� ! �

0

); (�! �

0

)

�� ! ��

0

= �(� ! �

0

)

More details are given in Setion 2.

Rows o�er a partiularly straightforward way of desribing operations

whih treat all labels (exept possibly a �nite number thereof) uniformly.

Beause every faility available at the level of types (e.g. onstrutors, on-

straints) an also be made available at the level of rows, a desription of the

operation's e�et on a single label, written using types, an also be read as

a desription of the entire operation, written using rows. This interesting

point will be developed further in the paper.

4 FRANC�OIS POTTIER

Putting It All Together

Our point is to show that the ombination of the three onepts disussed

above yields a very expressive system, whih allows type inferene for a

number of advaned language features. Among these, \aurate" pattern

mathing onstruts, reord onatenation, and �rst-lass messages will

be disussed in this paper. Our system allows performing type inferene

for all of these features at one. Furthermore, eÆieny issues onerning

onstraint-based type inferene systems have already been studied [5, 17℄.

This existing knowledge bene�ts our system, whih may thus be used to

eÆiently perform type inferene for all of the above features.

In this paper, we fous on appliations of our type system, i.e. we show

how it allows solving eah of the problems mentioned above. Formal de�-

nitions of our onstraint resolution and simpli�ation algorithms appear in

Appendix A. Furthermore, a robust prototype implementation is publily

available [18℄. We do not prove that the types given to the three problem-

ati operations disussed in this paper are sound, but we believe this is a

straightforward task.

The paper is organized as follows. Setion 2 gives a detailed tehnial

presentation of the type system. Setion 3 gives an informal explanation

of the potential osts and bene�ts of using onditional onstraints. Se-

tions 4, 5, and 6 disuss type inferene for \aurate" pattern mathings,

reord onatenation, and �rst-lass messages, respetively, within our sys-

tem. Setion 7 gives several examples, whih show what inferred types look

like in pratie. Setion 8 sums up our ontribution. Lastly, Appendix A

gives de�nitions and proofs for several onstraint manipulation algorithms.

2. Formal Presentation of the System

This setion gives an in-depth formal presentation of our type system, in

its most general form. Muh of it may be skipped on a �rst reading { the

following setions desribe the system in a more gentle fashion. The reader

may wish to ome bak to this setion at a later stage.

We de�ne our type system as an instane of the parametri framework

HM(X) [14, 28, 27℄. To do so, we simply de�ne a onstraint system, alled

SRC (for subtyping-rows-onditionals), giving rise to HM(SRC). By re-using

existing material, we save de�nitions and proofs, and emphasize the fat that

our approah is standard.

In order to retain a measure of generality, SRC is itself parameterized by

a ground signature, whih is a suint desription of a type algebra and of

its intended subtype ordering. Ground signatures are de�ned in Setion 2.1.

Given suh a ground signature, we expliitly de�ne the syntax of types

and onstraints (Setion 2.2), a logial model within whih they may be

interpreted (Setion 2.3), and the interpretation itself (Setion 2.4).

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 5

2.1 Assumptions

A ground signature onsists of three omponents: a series of symbol latties,

indexed by kinds, a set of parameter labels (eah of whih is either o- or

ontra-variant, desribes either a row or a plain type parameter, and has

a �xed kind), and a desription of eah symbol's arity as a �nite set of

parameter labels.

Definition 1. Let K be a �nite set of kinds. For every kind � 2 K, let

S

�

be a lattie of symbols, with operations ?

�

, >

�

, �

�

, t

�

and u

�

. De�ne

S = ℄

�2K

S

�

.

Let L

+

and L

�

be denumerable sets of parameter labels. De�ne L =

L

+

℄ L

�

. Let L

row

� L be a distinguished subset of row parameter labels.

Let kind be a total mapping of L into K.

Let a be a total mapping from S to �nite subsets of L, suh that:

Æ for all s

0

; s

1

; s

2

2 S

�

, s

0

�

�

s

1

�

�

s

2

implies a(s

0

) \ a(s

2

) � a(s

1

);

Æ for any �nite subset S of S

�

, a(t

�

S) and a(u

�

S) are subsets of [a(S).

Note that this implies a(?

�

) = a(>

�

) = ?.

The information desribed above forms a ground signature.

The �rst ondition bearing on a is neessary to guarantee that the orderings

�

�

do give rise to an ordering on ground types (de�ned in Setion 2.3). The

seond one makes the de�nition of some onstraint manipulation algorithms

more onvenient (see De�nition 23 in Appendix A).

Example 1. Assume there is only one kind ?. De�ne S

?

= f?;!;>g,

where ? �

?

! �

?

>. Let L

�

= fdomg, L

+

= frng g and L

row

= ?. De�ne

a(?) = a(>) = ? and a(!) = fdom; rng g. This de�nes a ground signature,

whih allows typing the pure �-alulus.

Example 2. De�ne three kinds N, R and V, orresponding to normal,

reord �eld and variant �eld types, respetively. Let S

N

be the at lat-

tie whose elements other than ? and > are !, f�g and [� ℄. Let S

R

be the lattie with least element Bot, greatest element Any, and whose

other elements are Abs, Pre and Either, ordered by Abs �

R

Either and

Pre �

R

Either. Let S

V

be the lattie with least element Abs, greatest el-

ement Any, and whose only other element is Pre. (By abuse of language,

we are giving idential names to symbols in S

R

and in S

V

. This remains

non-ambiguous as long as all terms onsidered have known kinds.) Let

L

�

= fdomg, L

+

= fontent; ontents; rng g and L

row

= fontents g. De�ne

a(!) = fdom; rng g, a(f�g) = a([� ℄) = fontents g, a(Pre) = a(Either) =

fontent g, and a(?) = a(>) = a(Bot) = a(Abs) = a(Any) = ?. This de�nes

a ground signature, whih is expressive enough to desribe all programming

language features onsidered in this paper. In partiular, all of its expressive

power will be exploited to desribe �rst-lass messages in Setion 6.

6 FRANC�OIS POTTIER

� ::= �; �; '; ; : : : j s(�

l

)

l2a(s)

j r : � ; � j ��

C ::= true j C ^C j 9��:C j � � � j s � � ? � � � (s prime in S

�

)

Figure 1: Syntax of types and onstraints

In the rest of this formal presentation, we assume given a �xed, arbi-

trary ground signature. In Setions 4{7, we will use the ground signature

desribed in Example 2 above, but we will re-introdue it step by step.

2.2 Syntax of Types and Constraints

The (raw) syntax of types and onstraints is given in Fig. 1. �; �; '; ; : : :

denote type variables. A type term s(��) an be formed by piking a symbol

s 2 S and a family of type parameters �� , indexed aording to the arity of s,

i.e. �� must be of the form (�

l

)

l2a(s)

. Lastly, types may also be rows, whih

denote families of types indexed by a denumerable set of row labels R. The

term r : � ; �

0

(where r 2 R) represents a row whose element at index r is

� , and whose other elements are given by the row �

0

. The term �� stands

for a row whose element at any index is � .

The onstraint language o�ers standard onstruts (truth, onjuntion,

projetion [14℄), subtyping onstraints, and onditional onstraints. The

latter are of the form s � � ? � � � , where s must satisfy the following

ondition: for any �nite subset S of S

�

, s �

�

(t

�

S) implies 9s

0

2 S s �

�

s

0

.

In other words, s must be a prime element of its symbol lattie S

�

. This

ensures that a onditional onstraint bearing on the least upper bound of a

set of variables, e.g. (s � �

1

t : : : t �

n

) ? , is equivalent to a onjuntion

of onditional onstraints bearing on its members:

V

n

i=1

(s � �

i

?). It is a

neessary ondition for the orretness of the garbage olletion algorithm

(see Theorem 3 in Appendix A).

Our de�nition of onditional onstraints is dissymmetri. Indeed, ondi-

tions must be of the form s � � ; onditions of the form � � s are disallowed.

The motivation for this deision is to allow the onstraint solving algorithm

to ignore onditional onstraints unless their onditionmust be satis�ed (see

De�nition 19 in Appendix A). If both forms of onditions were allowed to o-

exist, the language would beome expressive enough to enode disjuntions

of onstraints, making onstraint solving more ostly.

To ensure that only meaningful types and onstraints an be built, we

equip them with kinding and sorting rules. The grammar of sorts is de�ned

by & ::= Type j Row(R), where R ranges over �nite subsets of R. For every

kind � and every sort &, we assume given a distint, denumerable set V

&

�

of

type variables. We de�ne judgements of the form ` � : � (resp. ` � : &),

meaning that the type � has kind � (resp. sort &), and judgements of the

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 7

� 2 V

�

` � : �

s 2 S

�

8l 2 a(s) ` �

l

: kind(l)

` s(�

l

)

l2a(s)

: �

` �

1

: �

` �

2

: �

` (r : �

1

; �

2

) : �

` � : �

` �� : �

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9��:C

` �

1

: �

` �

2

: �

` �

1

� �

2

s 2 S

�

` �

0

: � ` �

1

� �

2

` s � �

0

? �

1

� �

2

Figure 2: Kinding rules

� 2 V

&

` � : &

a(s) \ L

row

= ?

8l 2 a(s) ` �

l

: &

` s(�

l

)

l2a(s)

: &

a(s) \ L

row

6= ?

8l 2 a(s) n L

row

` �

l

: Type

8l 2 a(s) \ L

row

` �

l

: Row(?)

` s(�

l

)

l2a(s)

: Type

` �

1

: Type ` �

2

: Row(R ℄ frg)

` (r : �

1

; �

2

) : Row(R)

` � : Type

` �� : Row(R)

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9��:C

` �

1

: & ` �

2

: &

` �

1

� �

2

` �

0

: & ` �

1

: & ` �

2

: &

` s � �

0

? �

1

� �

2

Figure 3: Sorting rules

form ` C, meaning that the onstraint C is well-kinded (resp. well-sorted).

The kinding rules, given in Fig. 2, simply enfore the kind disipline required

by the ground signature. The sorting rules, displayed in Fig. 3, ensure that

only meaningful row terms are built. Intuitively, the sort Type desribes

plain types, while the sort Row(R) desribes families of types indexed by

R n R. In other words, a row of sort Row(R) gives information about all

row labels exept those in R. For more details, we refer the reader to [21℄

or to [20, setion 5℄.

Before moving on, let us point out that a term may have several sorts, for

two distint reasons. First, a uniform row �� may be viewed as desribing

any (o-�nite) number of entries, i.e. it may have any sort Row(R). As a

result, the row term r

1

: �

1

; : : : ; r

n

: �

n

; �� may have any sort Row(R),

provided fr

1

; : : : ; r

n

g \ R = ?. Suh a term will be required to have sort

Row(?) only when used as the l-parameter of a type onstrutor s expeting

a full row in l-position (i.e. l 2 a(s) \ L

row

). Seond, a type onstrutor

s with non-row parameters (i.e. a(s) \ L

row

= ?) an be used at any

sort &. For instane, if r : �

0

; �

0

0

and r : �

1

; �

0

1

have sort Row(R), then

(r : �

0

; �

0

0

)! (r : �

1

; �

0

1

) has sort Row(R) as well. Its logial interpretation

will be the same as that of r : �

0

! �

1

; �

0

0

! �

0

1

.

This point makes the logial interpretation of terms, given in Setion 2.4,

8 FRANC�OIS POTTIER

slightly more subtle: the meaning of a term depends on the sort at whih it

is viewed. Fortunately, the meaning of a onstraint will remain independent

of the sort of its omponents.

2.3 Logial Model

We now de�ne the logial model within whih our onstraints are inter-

preted. Informally speaking, it is the term algebra generated by the ground

signature at hand. However, things are made more omplex by our desire

to have reursive types

1

and by the presene of rows.

Definition 2. Let A be the alphabet formed of all letters l 2 L n L

row

and

all omposite letters l � r, where l 2 L

row

and r 2 R. To every l 2 L, we

assoiate a subset A

l

of the alphabet, de�ned by A

l

= flg if l 2 L n L

row

,

and A

l

= fl � r ; r 2 Rg otherwise.

A path p is a �nite string over the alphabet A, i.e. an element of A

�

. The

letter � denotes the empty path. A ground tree t is a partial funtion from

A

�

into S, whose domain is non-empty and pre�x-losed, suh that, for all

paths p 2 dom(t) and for all labels l 2 L,

Æ if l 2 a(t(p)), then p:A

l

is a subset of dom(t), whose image through t

is a subset of S

�

, where � = kind(l);

Æ otherwise, p:A

l

lies outside of dom(t).

The head onstrutor of a ground term t, written hd(t), is t(�). Given

p 2 dom(t), the subtree of t rooted at p, written t:p, is the tree q 7! t(p:q).

Given p, l suh that l 2 a(t(p)) \ L

row

, the subrow of t rooted at (p; l) is

the funtion r 2 R 7! t(p:(l � r)). A funtion is said to be quasi-onstant i�

its o-restrition to some �nite set is a onstant funtion. A ground tree is

regular i� it has a �nite number of subtrees. A ground tree t is a ground

type i� it is regular and all of its subrows are quasi-onstant. We denote the

set of ground types by T. A ground type t has kind � if and only if t(�) 2 S

�

.

We denote the set of ground types of kind � by T

�

.

Then, we equip every T

�

with an ordering �. Beause ground types are

in�nite trees, � annot be de�ned easily by strutural indution; instead, it

is de�ned as the limit of a dereasing sequene of pre-orders.

Definition 3. A family of pre-orders over every T

�

is de�ned as follows.

Let �

0

be uniformly true over every T

�

. Then, for any k 2 N and t; t

0

2 T

�

,

de�ne t �

k+1

t

0

as the onjuntion of the following onditions:

Æ t(�) �

�

t

0

(�);

Æ 8l 2 a(t(�)) \ a(t

0

(�)) n L

row

t:l �

l

k

t

0

:l;

Æ 8l 2 a(t(�)) \ a(t

0

(�)) \ L

row

8r 2 R t:(l � r) �

l

k

t

0

:(l � r).

1

The presene of reursive types removes the need to hek whether all solutions of

a onstraint are yli, whih, in the presene of subtyping relationships between type

onstrutors of di�erent arities, may be diÆult.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 9

(We let t �

l

k

t

0

stand for t �

k

t

0

when l 2 L

+

and t

0

�

k

t when l 2 L

�

.)

Subtyping, denoted by �, is the intersetion of these pre-orders; it is a lattie

on every T

�

.

The subtyping relationship is strutural : t and t

0

are related if and only

if their head onstrutors t(�) and t

0

(�) are related in the lattie of symbols

and, for every label l de�ned by both t and t

0

, their l-sub-terms are related

(either o- or ontra-variantly, depending on the variane of l). It is, in

general, non-atomi: type onstrutors of di�erent arities may be related.

2.4 Logial Interpretation

There remains to give an interpretation of types and onstraints within the

model. It is parameterized by a ground substitution, whih gives meaning to

any free type variables. It maps types to ground types, or to families thereof

(aording to their sort), and onstraints to Boolean values.

Definition 4. A ground substitution � is a funtion of domain V, whih

maps V

Type

�

into T

�

, and whih maps V

Row(R)

�

into the set of quasi-onstant

funtions of R n R into T

�

.

Definition 5. The interpretation of a type � of sort &, under a ground

substitution �, written �(�

&

), or simply �(�) when & an be determined from

the ontext, is de�ned as follows.

Æ If � is a type variable �, then �(�

&

) is the image of � through �.

Æ If � is of the form s(�

l

)

l2a(s)

and & = Type, then �(�

&

) is the ground

type t suh that t(�) = s, t:l = �(�

l

) whenever l 2 a(s) n L

row

and

t:(l � r) = �(�

l

)(r) whenever l 2 a(s) \ L

row

and r 2 R.

Æ If � is of the form s(�

l

)

l2a(s)

and & = Row(R), then, for every r 2 RnR,

�(�

&

)(r) is the ground type t suh that t(�) = s and t:l = �(�

l

)(r)

whenever l 2 a(s).

Æ If � is of the form r : �

1

; �

2

and & = Row(R), then �(�

&

)(r) = �(�

1

)

and, for every r

0

2 R n (R [frg), �(�

&

)(r

0

) = �(�

2

)(r

0

).

Æ If � is of the form ��

0

and & = Row(R), then, for every r 2 R n R,

�(�

&

)(r) = �(�

0

).

Definition 6. The onstraint satisfation prediate `, whose arguments

are a ground substitution � and a well-sorted onstraint C, is de�ned as

follows.

Æ � ` true holds.

Æ � ` C

1

^ C

2

holds i� � ` C

1

and � ` C

2

hold.

Æ � ` 9��:C holds i� there exists a ground substitution �

0

, whih oinides

with � outside of ��, suh that �

0

` C holds.

Æ If ` �

1

; �

2

: Type, then � ` �

1

� �

2

holds i� �(�

1

) � �(�

2

) holds.

10 FRANC�OIS POTTIER

Æ If ` �

1

; �

2

: Row(R), then � ` �

1

� �

2

holds i�, for every r 2 R n R,

�(�

1

)(r) � �(�

2

)(r) holds.

Æ If ` �

0

; �

1

; �

2

: Type, then � ` s � �

0

? �

1

� �

2

holds i� s �

S

�(�

0

)(�)

implies �(�

1

) � �(�

2

).

Æ If ` �

0

; �

1

; �

2

: Row(R), then � ` s � �

0

? �

1

� �

2

holds i�, for every

r 2 R n R, s �

S

�(�

0

)(r)(�) implies �(�

1

)(r) � �(�

2

)(r).

This de�nition is well-formed beause, even though the types whih appear

in a onstraint may have several admissible sorts, all of them give rise to the

same interpretation.

Lastly, onstraint entailment is given its usual de�nition: C C

0

holds if

and only if, for every ground substitution �, � ` C implies � ` C

0

.

2.5 The Type System HM(SRC)

We refer to the onstraint logi de�ned in Setions 2.1{2.4 as SRC. It is a

sound onstraint system in the sense of [14℄; thus, it gives rise to a type

system, namely HM(SRC), for the �-alulus with let.

We do not repeat the typing rules of HM(X) in this paper. For our

purposes, suÆe it to reall that type shemes are of the form � ::= 8��[C℄:� .

When all of a type sheme's variables are universally quanti�ed, we usually

write \� where C".

The �-alulus with let is a limited programming language. To extend it,

we will de�ne new primitive operations, equipped with operational semantis

and appropriate type shemes. However, no extension to the type system

itself will be neessary. This explains why we do not desribe it further.

Instead, we will fous our interest on writing expressive type shemes.

3. About Conditional Constraints

The ontent of this setion is informal. It shows how onditional onstraints

an be used to gain extra typing exibility, and why we might want to use

them only sparingly.

In a all-by-value language, if an expression e

2

diverges, then so does any

appliation (e

1

e

2

). In partiular, if e

2

has type ?, then (e

1

e

2

) may safely

be given type ? as well. In other words, if it an be proven that e

1

will

never be alled, then its return type an be disarded.

It is possible to make a type system aware of this fat. To do so, one

merely introdues a new typing rule:

C; (�;x : ?) ` e : �

C;� ` �x:e : ? ! ?

As a result, the type system is no longer syntax-direted: typing a �-

abstration involves a hoie between this rule and the usual �-abstration

rule. However, a pratial type inferene algorithm must not explore both

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 11

ases separately, sine that would have exponential ost. Instead, a natu-

ral solution is to use a single type inferene rule, whih emits a onditional

onstraint, along the lines of

C; (�;x : �) `

I

e : � �; � fresh

(? < � ? � � �) ^ C;� `

I

�x:e : �! �

As long as the funtion isn't invoked, ? remains an admissible solution for its

argument type �. So, the onditional onstraint has no e�et, and � remains

unonstrained, meaning that the funtion produes no result. However, if a

all to this funtion is later disovered, then � will be onstrained to some

value greater than ?. This will trigger the onditional onstraint, and �! �

will beome a lower bound for the funtion's type, meaning that the funtion

produes a result of type � .

This tehnique allows designing a \lazy" type inferene system, whih

ignores the type of an expression unless it appears liable to be evaluated.

Heintze [9℄ uses onditional types for this very purpose. In fat, it is possible

to arry this idea even further, and to ignore not only the expression's type,

but also its e�et on the typing environment. This would involve replaing

(? < � ? � � �)^C above with ? < � ? (� � �^C); thus, the onstraint C,

whih desribes the requirements of the funtion onerning its environment,

would also be subjet to the ondition ? < �. This idea appears, under a

di�erent formulation, in e.g. [26℄.

Despite their theoretial appeal, though, these proposals seem a bit ex-

treme. They produe a large number of onditional onstraints, making type

inferene less eÆient, beause potential onstraint simpli�ations are de-

layed. Thus, in a pratial system, \laziness" should be used only sparingly.

We propose to build it into the types of a few primitive operations, rather

than to hard-wire it into the typing rules. We will illustrate this priniple

in the following setions.

4. Aurate Analysis of Pattern Mathings

When faed with a pattern mathing onstrut, most existing type inferene

systems adopt a simple, onservative approah: assuming that eah branh

may be taken, they let it ontribute to the whole expression's type. A more

aurate system should use types to prove that ertain branhes annot be

taken, and prevent them from ontributing.

In this setion, we desribe suh a system. The essential idea { introdu-

ing a onditional onstrut at the level of types { is due to [9, 2℄. Some

novelty resides in our two-step presentation, whih we believe helps isolate

independent onepts. First, we onsider the ase where only one data on-

strutor exists. Then, we easily move to the general ase, by enrihing the

type algebra with rows.

12 FRANC�OIS POTTIER

4.1 The Basi Case

We assume the language allows building and aessing tagged values.

e ::= : : : j Pre j Pre

�1

A single data onstrutor, Pre, allows building tagged values, while the de-

strutor Pre

�1

allows aessing their ontents. This relationship is expressed

by the following redution rule:

Pre

�1

v

1

(Pre v

2

) redues to (v

1

v

2

)

The rule states that Pre

�1

�rst takes the tag o� the value v

2

, then passes

it to the funtion v

1

.

At the level of types, we introdue a (unary) variant type onstrutor [� ℄.

Also, we establish a distintion between so-alled \normal types," written

� , and \�eld types," written �.

� ::= �; �; ; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j Abs j Pre � j Any

A subtype ordering over �eld types is de�ned straightforwardly: Abs is its

least element, Any is its greatest, and Pre is a ovariant type onstrutor.

The data onstrutor Pre is given the following type sheme:

Pre : �! [Pre � ℄

Notie that there is no way of building a value of type [Abs ℄. Thus, if an

expression has this type, then it must diverge. This explains our hoie of

names. If an expression has type [Abs ℄, then its value must be \absent"; if

it has type [Pre � ℄, then some value of type � may be \present".

The data destrutor Pre

�1

is desribed as follows:

Pre

�1

: (�! �)! [' ℄!

where ' � Pre �

Pre � ' ?� �

The onditional onstraint allows (Pre

�1

e

1

e

2

) to reeive type ? when e

2

has type [Abs ℄, reeting the fat that Pre

�1

isn't invoked until e

2

produes

some value. Indeed, as long as ' equals Abs, the onstraint is vauously

satis�ed, so is unonstrained and assumes its most preise value, namely

?. However, as soon as Pre � ' holds, � � must be satis�ed as well.

Then, Pre

�1

's type beomes equivalent to (� ! �) ! [Pre � ℄ ! �, whih

is its usual ML type.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 13

4.2 The General Case

We now move to a language with a denumerable set of data onstrutors.

e ::= : : : j K j K

�1

j lose

(We let K, L; : : : stand for data onstrutors.) An expression may be

tagged, as before, by applying a data onstrutor to it. Aessing tagged

values beomes slightly more omplex, beause multiple tags exist. The

semantis of the elementary data destrutor, K

�1

, is given by the following

redution rules:

K

�1

v

1

v

2

(K v

3

) redues to (v

1

v

3

)

K

�1

v

1

v

2

(L v

3

) redues to (v

2

(Lv

3

)) when K 6= L

Aording to these rules, if the value v

3

arries the expeted tag, then it is

passed to the funtion v

1

. Otherwise, the value { still arrying its tag { is

passed to the funtion v

2

. Lastly, a speial value, lose, is added to the

language, but no additional redution rule is de�ned for it.

How do we modify our type algebra to aommodate multiple data on-

strutors? In Setion 4.1, we used �eld types to enode information about

a tagged value's presene or absene. Here, we need exatly the same infor-

mation, but this time about every tag. So, we need to manipulate a family of

�eld types, indexed by tags. To do so, we add one layer to the type algebra:

rows of �eld types.

� ::= �; �; ; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j K : �; � j ��

� ::= '; ; : : : j Abs j Pre � j Any

We an now extend the previous setion's proposal, as follows:

K : �! [K : Pre �; �Abs ℄

K

�1

: (�! �)! ([K : Abs; ℄!)! [K : '; ℄!

where ' � Pre �

Pre � ' ?� �

lose : [�Abs ℄! ?

K

�1

's type sheme involves the same onstraints as in the basi ase. Using

a single row variable, namely , in two distint positions allows expressing

the fat that values arrying any tag other thanK will be passed unmodi�ed

to K

�1

's seond argument.

lose's argument type is [�Abs ℄, whih prevents it from ever being in-

voked. This aords with the fat that lose does not have an assoiated

redution rule. It plays the role of a funtion de�ned by zero ases.

This system o�ers extensible pattern mathings: any k-ary ase onstrut

an be written in terms of k nested destrutor appliations, terminated by

14 FRANC�OIS POTTIER

lose; it will reeive the desired, aurate type. (This fat is illustrated

by Example 3 in Setion 7.) Thus, no spei� language onstrut or type

inferene rule is needed to deal with them.

5. Reord Conatenation

Stati typing for reord operations is a widely studied problem [4, 15℄. Com-

mon operations inlude seletion, extension, restrition, and onatenation.

The latter omes in two avors: symmetri and asymmetri. The former

requires its arguments to have disjoint sets of �elds, whereas the latter gives

preedene to the seond one when a onit ours.

Of these operations, onatenation is probably the most diÆult to deal

with, beause its behavior varies aording to the presene or absene of

eah �eld in its two arguments. This has led many authors to restrit

their attention to type heking, and to not address the issue of type in-

ferene [8℄. An inferene algorithm for asymmetri onatenation was sug-

gested by Wand [30℄. He uses disjuntions of onstraints, however, whih

gives his system exponential omplexity. R�emy [22℄ suggests an enoding

of onatenation into �-abstration and reord extension, whene an infer-

ene algorithm may be derived. Unfortunately, its power is somewhat de-

reased by subtle interations with ML's restrited polymorphism; further-

more, the enoding is exposed to the user. In later work [23℄, R�emy suggests

a diret, onstraint-based algorithm, whih involves a speial form of on-

straints. Sulzmann [27℄ follows a similar route and reates a ustom instane

of HM(X), again involving speial-purpose onatenation onstraints. Our

approah is inspired from R�emy's later paper, but re-formulated in terms of

onditional onstraints, thus showing that no ad ho onstraint forms are

neessary.

Again, our presentation is in two steps. The basi ase, where reords only

have one �eld, is takled using subtyping and onditional onstraints. Then,

rows allow us to easily transfer our results to the ase of multiple �elds.

5.1 The Basi Case

We assume a language equipped with one-�eld reords, whose unique �eld

may be either \absent" or \present". More preisely, we assume a onstant

data onstrutor Abs, and a unary data onstrutor Pre; a \reord" is a

value built with one of these onstrutors. A data destrutor, Pre

�1

, allows

aessing the ontents of a non-empty reord. Lastly, the language o�ers

asymmetri and symmetri onatenation primitives, written � and ��,

respetively.

e ::= : : : j Abs j Pre j Pre

�1

j � j ��

The relationship between reord reation and reord aess is expressed by

a simple redution rule:

Pre

�1

(Pre v) redues to v

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 15

The semantis of asymmetri reord onatenation is given as follows:

v

1

� Abs redues to v

1

v

1

�(Pre v

2

) redues to Pre v

2

(In eah of these rules, the value v

1

is required to be a reord.) Lastly,

symmetri onatenation is de�ned by

Abs�� v

2

redues to v

2

v

1

�� Abs redues to v

1

(In these two rules, v

1

and v

2

are required to be reords.)

The onstrution of our type algebra is similar to the one performed in

Setion 4.1. We introdue a (unary) reord type onstrutor, as well as a

distintion between normal types and �eld types:

� ::= �; �; ; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

Let us explain, step by step, our de�nition of �eld types. Our �rst, natural

step is to introdue type onstrutors Abs and Pre, whih allow desrib-

ing values built with the data onstrutors Abs and Pre. The former is a

onstant type onstrutor, while the latter is unary and ovariant.

Many type systems for reord languages de�ne Pre � to be a subtype of

Abs. This allows a reord whose �eld is present to pretend it is not, leading

to a lassi theory of reords whose �elds may be \forgotten" via subtyping.

However, when the language o�ers reord onatenation, suh a de�nition

isn't appropriate. Why? Conatenation { asymmetri or symmetri { in-

volves a hoie between two redution rules, whih is performed by mathing

one, or both, of the arguments against the data onstrutors Abs and Pre.

If, at the level of types, we allow a non-empty reord to masquerade as an

empty one, then it beomes impossible, based on the arguments' types, to

�nd out whih rule applies, and to determine the type of the operation's

result. In summary, in the presene of reord onatenation, no subtyp-

ing relationship must exist between Pre � and Abs. (This problem is well

desribed { although not solved { in [4℄.)

This leads us to making Abs and Pre inomparable. One this hoie has

been made, ompleting the de�nition of �eld types is rather straightforward.

Beause our system requires type onstrutors to form a lattie, we de�ne

a least element Bot, and a greatest element Any. Lastly, we introdue a

unary, ovariant type onstrutor, Either, whih we de�ne as the least

upper bound of Abs and Pre, so that Abs t (Pre �) equals Either � . This

optional re�nement allows us to keep trak of a �eld's type, even when its

presene is not asertained. (These ideas are due to R�emy, who arries

them further in the ase of objets [24℄.) The lattie of �eld types is shown

in Fig. 4.

16 FRANC�OIS POTTIER

Any

Either �

OO

Abs

77ooooo

Pre �

hhPPPPP

Bot

ggOOOOO

66nnnnn

Figure 4: The lattie of reord �eld types

Let us now assign types to the primitive operations o�ered by the language.

Reord reation and aess reeive their usual types:

Abs : fAbsg

Pre : �! fPre �g

Pre

�1

: fPre �g ! �

There remains to ome up with orret, preise types for both avors of

reord onatenation. The key idea is simple. As shown by its operational

semantis, (either avor of) reord onatenation is really a funtion de-

�ned by ases over the data onstrutors Abs and Pre { and Setion 4 has

shown how to aurately desribe suh a funtion. Let us begin, then, with

asymmetri onatenation:

� : f'

1

g ! f'

2

g ! f'

3

g

where '

2

� Either �

2

Abs � '

2

?'

1

� '

3

Pre � '

2

? Pre �

2

� '

3

Clearly, eah onditional onstraint mirrors one of the redution rules. In

the seond onditional onstraint, we assume �

2

is the type of the seond

reord's �eld { if it has one. The �rst subtyping onstraint represents this

assumption. Notie that we use Pre �

2

, rather than '

2

, as the seond

branh's result type; this is stritly more preise, beause '

2

may be of the

form Either �

2

.

Lastly, we turn to symmetri onatenation:

�� : f'

1

g ! f'

2

g ! f'

3

g

where Abs � '

1

?'

2

� '

3

Abs � '

2

?'

1

� '

3

Pre � '

1

?'

2

� Abs

Pre � '

2

?'

1

� Abs

Again, eah of the �rst two onstraints mirrors a redution rule. The last two

onstraints disallow the ase where both arguments are non-empty reords.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 17

(The areful reader will notie that any one of these two onstraints would

in fat suÆe; both are kept for symmetry.)

In both ases, the operation's desription in terms of onstraints losely

resembles its operational de�nition. Automatially deriving the former from

the latter seems possible; this is an area for future researh.

5.2 The General Case

We now move to a language with a denumerable set of reord labels, written

l, m, et. The language allows reating the empty reord, as well as any one-

�eld reord; it also o�ers seletion and onatenation operations. Extension

and restrition an be easily added, if desired.

e ::= ? j fl = eg j e:l j � j ��

We do not give the semantis of the language, whih should hopefully be

lear enough.

At the level of types, we again introdue rows of �eld types, denoted by �.

Furthermore, we introdue rows of normal types, denoted by %. Lastly, we

lift the �ve �eld type onstrutors to the level of rows.

� ::= �; �; ; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

% ::= �; �; ; : : : j l : � ; % j ��

� ::= '; ; : : : j l : �; � j �� j Bot j Abs j Pre % j Either % j Any

This allows writing omplex onstraints between rows, suh as ' � Pre �,

where ' and � are row variables. A onstraint between rows is interpreted as

an in�nite family of onstraints between types, obtained omponent-wise.

That is, (l : '

0

; '

00

) � Pre (l : �

0

; �

00

) has the same logial meaning as

('

0

� Pre �

0

) ^ ('

00

� Pre �

00

). (See Setion 2 for details.)

We may now give types to the primitive reord operations. Creation and

seletion are easily dealt with:

? : f�Absg

fl = �g : �! fl : Pre �; �Absg

�:l : fl : Pre �; �Anyg ! �

Interestingly, the types of both onatenation operations are unhanged from

the previous setion { at least, syntatially. (We do not repeat them here.)

A subtle di�erene lies in the fat that all variables involved must now be

read as row variables, rather than as type variables. In short, the previous

setion exhibited onstraints whih desribe onatenation, at the level of

a single reord �eld; here, the row mahinery allows us to repliate these

onstraints over an in�nite set of labels. This inrease in power omes almost

for free: it does not add any omplexity to our notion of subtyping.

18 FRANC�OIS POTTIER

6. First-Class Messages

In many urrent objet-oriented languages, messages do not have �rst-lass

status. That is, whenever a message is sent to an objet, its name is �xed and

must be expliitly mentioned; only the message parameters and the reeiver

objet are allowed to vary dynamially. Some languages, however, allow

�rst-lass (also known as \dynami") messages. That is, they allow messages

to exist as autonomous entities, whih may be omputed in arbitrary ways

before being sent to an objet.

We will view objets as reords of funtions, and messages as tagged values,

made up of a label and a parameter. Indeed, this simple view suÆes to

exhibit the type inferene problem we are interested in. Thus, we onsider

a language with reords and data onstrutors, as desribed in Setions 4.2

and 5.2. Furthermore, we let reord labels and data onstrutors range

over a single name spae, that of message labels. A primitive message-send

operation, written #, is de�ned as follows:

fm = v

1

; : : : g (mv

2

) redues to (v

1

v

2

)

In plain words, # examines its seond argument, whih must be some mes-

sage m with parameter v

2

. It then looks up the method named m in the

reeiver objet, and applies the method's ode, v

1

, to the message param-

eter. Put another way, if r is a reord of funtions, then (# r) ats as a

funtion de�ned by ases. Thus, # is nothing but a witness of the well-

known isomorphism whih exists between these representations.

6.1 The Problem

In a language without �rst-lass messages, every message-send operation

must involve a �xed message label. So, instead of a single, generi opera-

tion suh as #, the language provides a family of primitive message-send

operations, indexed by message labels.

In our view of objets as reords of funtions, these operations are de�n-

able within the language. Indeed, the operation #m, whih allows send-

ing the message m to the objet o with parameter p, may be de�ned as

�o:�p:(o:m p). Then, type inferene yields

#m : fm : Pre (�! �); �Anyg ! �! �

Beause the message label m is statially known, it an be expliitly men-

tioned in the type sheme, making it easy to require the reeiver objet to

arry an appropriate method.

In a language with �rst-lass messages, on the other hand, m is no longer

known. As a result of this diÆulty, muh of the initial work on typed objet-

oriented languages has ignored the issue of �rst-lass messages. Gaster [7,

hapter 7℄ studies a stati type system where # (under the name of sumE-

lim) is a primitive operation. However, in his system, (# r) is well-typed

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 19

only if all funtions stored in r have the same return type. This ondition is

learly too restritive for our purposes: an objet must be allowed to on-

tain methods with di�erent return types. Nishimura [13℄ suggests a type

inferene system for an objet-oriented language with �rst-lass messages,

in the style of Ohori's seond-order typed reord alulus [15℄. It is later

re-formulated by M�uller and Nishimura [12℄. The new presentation is based

on feature onstraints, inluding a new form of onstraints, spei�ally in-

tended to model the behavior of a generi message-send operation. Bugliesi

and Crafa [3℄ also attempt to present a simpli�ed view of Nishimura's original

work. However, they hoose a higher-order type system, thus abandoning

type inferene.

6.2 A Solution

We said above that, given a reord r, the partial appliation (# r) yields a

funtion de�ned by ases. Indeed, given a tagged value (mv), it will invoke

an appropriate piee of ode, seleted aording to the label m. Good point

{ this paper is preisely onerned with ways of giving aurate types to

funtions de�ned by ases. We have shown how onditional onstraints allow

ignoring (the return type of) a branh, unless it is liable to be taken. In

objet-oriented terms, they allow ignoring (the return type of) any method

whih is provably unrelated with the message at hand. This solves the

ruial problem with �rst-lass messages.

Here, we hoose to deal diretly with the ase of multiple message labels,

even though the two-step presentation adopted in Setions 4 and 5 would

still make sense here. Therefore, we propose:

: f'g ! [℄! �

where � Pre �

Pre � ?' � Pre (�! ��)

(Here, all variables exept � are row variables.) The operation's �rst (resp.

seond) argument is required to be an objet (resp. a message), whose

ontents (resp. possible values) are desribed by the row variable ' (resp.

). The �rst onstraint merely lets � stand for the type of the message

parameter. The onditional onstraint, whih involves three rows, should

again be understood as a family, indexed by message labels, of onditional

onstraints between �eld types. The onditional onstraint assoiated with

some label m will be triggered only if 's element at index m is of the form

Pre , i.e. only if the message's label may be m. When it is triggered, its

right-hand side beomes ative, with a three-fold e�et. First, ''s element

at index m must be of the form Pre (!), i.e. the reeiver objet must

arry a method labeled m. Seond, the method's argument type must be

(a supertype of) �'s element at label m, i.e. the method must be able to

aept the message's parameter. Third, the method's result type must be (a

subtype of) �, i.e. the result type of the whole operation will be (at least)

the join of the return types of all potentially invoked methods.

20 FRANC�OIS POTTIER

This proposal shows that type inferene for �rst-lass messages an be

performed using existing tools, with no need for dediated theoretial ma-

hinery. It also shows that �rst-lass messages are naturally ompatible

with all operations on reords, inluding onatenation { a question left

unanswered by Nishimura [13℄.

7. Examples

This setion illustrates the proposals made in the previous setions with

short examples.

Example 3. We onsider lists built out of two data onstrutors, N and C.

The funtion ar, whih returns the �rst element of a list, if it exists, and

E otherwise (where E is another data onstrutor, standing for error), is

de�ned as follows:

ar = (N

�1

E

(C

�1

(�(x; r):x)

lose))

Then, ar's inferred type sheme is

ar : [N : '; C : ; �Abs ℄!

where ' � Pre �

Pre � ' ? [E : Pre �; �Abs ℄ �

 � Pre (� �>)

Pre � ?� �

(Beause the language only o�ers unary onstrutors, N and E must arry

some argument, whih remains unspei�ed here; � stands for its type. Usu-

ally, one identi�es � with some unit type.) The �rst onditional onstraint

above tells that the �rst branh of ar's de�nition { namely E { will not

be taken unless ' is \present", i.e. unless ar's argument is tagged N . The

next one tells that the seond branh { namely �(x; r):x { will not be taken

unless it is tagged C. No other tags are allowed, beause ar's argument

type involves the row (N : '; C : ; �Abs), whose projetion on any tag

other than N and C is Abs.

What happens when applying ar? The type inferred for the expression

ar (C (1; C (true; N ()))), where it is passed a heterogeneous, 2-element list,

is int. In other words, this expression is statially found not to produe E,

beause the �rst onditional onstraint is not triggered.

Example 4. We de�ne a funtion whih reads the �eld l out of a reord r

and returns a default value d if r has no suh �eld. It is given by extrat =

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 21

�d:�r:(fl = dg� r):l. In our system, extrat's inferred type is

extrat : �! fl : '; g !

where ' � Either � � Either �

Abs � ' ?� � Abs � ? Abs � Any

Pre � ' ?� � Pre � ? Pre � � Any

The �rst onstraint retrieves r:l's type and names it �, regardless of the

�eld's presene. (If the �eld turns out to be absent, � will be unonstrained.)

The left-hand onditional onstraints learly speify the dependeny be-

tween the �eld's presene and the funtion's result.

The right-hand onditional onstraints have tautologous onlusions {

therefore, they are superuous. They remain only beause our urrent on-

straint simpli�ation algorithms are \lazy" and ignore any onditional on-

straints whose ondition has not yet been ful�lled. This problem ould be

�xed by making the simpli�ation algorithm slightly more aggressive, i.e.

by allowing it to hek whether the onlusion of a onditional onstraint is

redundant, regardless of its ondition.

The type inferred for extrat 0 fl = 1g and extrat 0 fm = 1g is int.

Thus, in many ases, one need not be aware of the omplexity hidden in

extrat's type.

Example 5. We assume given an objet o, of the following type:

o : f getText : Pre (unit! string);

setText : Pre (string! unit);

selet : Pre (int� int! unit);

�Abs g

omay represent, for instane, an editable text �eld in a graphi user interfae

system. Its methods allow programmatially getting and setting its ontents,

as well as seleting a portion of text.

Next, we assume a list data struture, equipped with a simple iterator:

iter : (�! unit)! � list! unit

The following expression reates a list of messages, and uses iter to send

eah of them in turn to o:

iter (# o) [setText \Hello!"; selet (0; 5) ℄

This expression is well-typed, beause o ontains appropriate methods to

deal with eah of these messages, and beause these methods return unit,

as expeted by iter. The expression's type is of ourse unit, iter's return

type.

Here is a similar expression, whih involves a getText message:

iter (# o) [setText \Hello!"; getText () ℄

22 FRANC�OIS POTTIER

This time, it is ill-typed. Indeed, sending a setText message to o produes

a result of type unit, while sending it a getText message produes a result

of type string. Thus, (# o)'s result type must be >, the join of these types.

This makes (# o) an unaeptable argument for iter, sine the latter expets

a funtion whose return type is unit.

8. Conlusion

In this paper, we have advoated the use of a onstraint-based type inferene

system equipped with subtyping, rows and onditional onstraints. This

provides a ommon solution to several diÆult type inferene problems,

whih, so far, had been addressed using speial forms of onstraints. From

a pratial point of view, it allows them to bene�t from known onstraint

simpli�ation tehniques (see Appendix A), leading to an eÆient inferene

algorithm [18℄.

Our system subsumes R�emy's proposal for reord onatenation [23℄, as

well as M�uller and Nishimura's view of �rst-lass messages [12℄. Aiken,

Wimmers and Lakshman's \soft" type system [2℄ is more preise than ours,

beause it interprets onstraints in a riher logial model, but otherwise

o�ers similar features.

The design of a type inferene system involves two orthogonal omponents:

a set of typing rules and a onstraint language (together with its logial

interpretation). As to the former, we have suggested using HM(X) [14, 28,

27℄, whose formulation appears most elegant, but other hoies would be

possible (see e.g. [10, 17℄). The fous of the paper is really on the latter:

our aim was to �nd a onstraint language expressive enough to aurately

desribe the features of the programming language at hand. One should

emphasize the fat that we do not, a priori, view the onstraint system

SRC as better (simpler, more elementary, more anonial, et.) than its

ompetitors. We merely take its wide appliability as evidene of the fat

that it is omparatively more general-purpose (less ad ho) than some of its

predeessors.

To onlude, we hope this paper illustrates how a small number of well-

understood logi mehanisms allow building an advaned type inferene sys-

tem.

Aknowledgements

Thanks to Jaques Garrigue, Martin M�uller, Didier R�emy and Martin Sulz-

mann for stimulating disussions. Didier R�emy also proof-read a version of

the manusript. Lastly, I would like to thank the anonymous referees for

their suggestions.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 23

Appendix A. Algorithms and Proofs

This appendix ontains a formal desription of onstraint resolution and

simpli�ation algorithms, in the presene of atomi and onditional subtyp-

ing onstraints. Resolution is required in determining whether a program is

type-orret; simpli�ation is key to ahieving reasonable eÆieny.

The system desribed in this appendix does not have rows, or a separation

of types into distint kinds, but otherwise has all features presented in the

body of this paper. Adding rows to this formal desription would require

work, but should not pose any foreseeable diÆulty, sine the onept of row

is essentially orthogonal to the notion of subtyping. Adding kinds should be

routine. A referene implementation of the full system, inluding rows and

kinds, is available [18℄.

This appendix desribes an extension of [17℄ with onditional onstraints.

Thus, most proofs presented here are partial, and desribe only the mod-

i�ations required to aommodate onditional onstraints. However, all

de�nitions and statements are omplete.

This appendix is laid out as follows. First, we review all neessary on-

epts, inluding ground types, types, onstraints, and type shemes. Then,

we give a onstraint resolution algorithm, and three onstraint simpli�ation

algorithms.

Throughout this appendix, we use a ouple of notational shortuts. If P

is a logi prediate, then

8� ` C P (�) stands for 8� (� ` C)) P (�)

9� ` C P (�) stands for 9� (� ` C) ^ P (�)

Appendix A.1 Ground Types

As in Setion 2, our formal development is parameterized with an arbitrary

ground signature (see De�nition 1). We assume that it de�nes only one

kind, so we write S and T instead of S

�

and T

�

. We write ?

S

, >

S

, �

S

, t

S

and u

S

instead of ?

�

, >

�

, �

�

, t

�

and u

�

. We also assume L

row

= ?. The

model (T;�), is de�ned as in De�nitions 2 and 3.

In this appendix, we use the letter � to denote either a ground type, or

a type, and sometimes both at the same time (see e.g. De�nition 17 and

Theorem 2). We will try to preserve a lear distintion whenever possible.

Theorem 1. T, equipped with �, is a lattie. Its lattie operations, denoted

by t and u, are haraterized by the following identities:

(�

1

2 �

2

)(�) = �

1

(�) 2

S

�

2

(�)

8l 2 dom(�

1

2 �

2

) (�

1

2 �

2

):l = �

1

:l 2

l

�

2

:l

where 2 may stand for t or u. (We let 2

l

stand for 2 when l 2 L

+

; when

l 2 L

�

, t

l

stands for u and u

l

stands for t.) In the right-hand side of the

24 FRANC�OIS POTTIER

seond equation, �

1

:l (resp. �

2

:l) may be unde�ned; in suh a ase, it should

be read as the neutral element of 2

l

.

Note that, beause of the last requirement of De�nition 1, at least one of

�

1

:l and �

2

:l must be de�ned in the seond equation above.

We let ? (resp. >) stand for the ground type � suh that dom(�) = f�g

and �(�) = ?

S

(resp. >

S

).

Appendix A.2 Types

Types are de�ned as in Setion 2.2, exept row terms are disallowed.

Definition 7. Let V be a denumerable set of type variables, denoted by �,

�, et. The set of types, denoted by T , is the term algebra T (�;V). In

other words, a type � is either a type variable, or a onstruted term, of the

form s(�

l

)

l2a(s)

, where s 2 S is � 's head onstrutor, also written hd(�).

Definition 8. A ground substitution � is a total mapping from type vari-

ables to ground types. Ground substitutions are straightforwardly extended

to types.

Appendix A.3 Constraints and Type Shemes

We now give syntax and semantis for three kinds of onstraints: atomi

onstraints, onditions and onditional onstraints. In eah ase, the nota-

tion � `

k

 means that the ground substitution � k-satis�es the onstraint

. The notation � ` means that � satis�es , and holds, by de�nition, if

and only if � `

k

 holds for all k 2 N

+

.

Definition 9. An atomi onstraint is a pair of types, written �

1

� �

2

. A

ground substitution � k-satis�es it i� �(�

1

) �

k

�(�

2

).

Definition 10. A ondition is a pair of a symbol s 2 S and of a type � ,

written s � � , where s must be a prime element of S. A ground substitution

� satis�es s � � i� s �

S

hd(�(�)).

Definition 11. A onditional onstraint is a pair of a ondition and of

an atomi onstraint, written s � � ? �

1

� �

2

. A ground substitution �

k-satis�es it i� � ` s � � implies � `

k

�

1

� �

2

.

Having de�ned onstraints, we may de�ne notions of satisfation and en-

tailment on onstraint sets. They are de�ned in the usual way. We also

introdue a non-standard notion of pre-satisfation (resp. pre-entailment),

whih is logially weaker (resp. stronger) than its standard ounterpart, be-

ause it ignores onditional onstraints. These notions are purely tehnial;

they are used only within our proofs.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 25

Definition 12. Let C be a set of onstraints, both atomi and onditional.

A ground substitution � is a pre-solution of C i� � ` holds for all atomi

 2 C. � is a solution of C i� � ` holds for all 2 C. We write � `

pre

C

in the former ase, and � ` C in the latter.

Let be a onstraint. C pre-entails , whih we write C

pre

, i� 8� `

pre

C � ` . C entails , whih we write C , i� 8� ` C � ` .

We now de�ne type shemes. They are onstrained polymorphi types, i.e.

types ontaining variables whose possible instantiations are restrited by a

onstraint set. For simpliity, we only onsider losed type shemes, i.e. type

shemes whih have no free type variables. Although somewhat unommon,

type systems exist whih respet this restrition (see [29, 17℄). It should also

be possible to extend our results to the ase of arbitrary type shemes.

Definition 13. A type sheme is a pair of a type � and of a onstraint set

C, written 8C: � .

A type sheme � represents a set of ground types, whih we all its denota-

tion. Eah of these ground types represent one possible orret behavior of

the program desribed by �. A type sheme whose denotation is empty (i.e.

whose onstraint set has no solution) thus represents an ill-typed program.

Definition 14. The denotation J�K of a type sheme � is the union of the

upper ones generated by its ground instanes with respet to �. That is,

J8C: �K = f�

0

; 9� ` C �(�) � �

0

g

A type sheme whose denotation is bigger represents a larger set of possible

behaviors; thus, it is more general. This notion allows omparing type

shemes, while aounting for polymorphism and subtyping at the same

time. It was introdued in [29℄, where it was written �

8

; we denote it 4.

Definition 15. Given two type shemes �

1

and �

2

, the former is said to

be more general than the latter i� J�

1

K � J�

2

K; we shall then write �

1

4 �

2

.

In other words, �

1

is more general than �

2

i� for any ground instane of �

2

,

there exists a smaller ground instane of �

1

. Formally,

(8C

1

: �

1

) 4 (8C

2

: �

2

)

is thus equivalent to

8�

2

` C

2

9�

1

` C

1

�

1

(�

1

) � �

2

(�

2

)

We write �

1

� �

2

when �

1

4 �

2

and �

2

4 �

1

.

The relation � o�ers a spei�ation of onstraint simpli�ation. Indeed, a

type sheme � an be simpli�ed into a type sheme �

0

only if � � �

0

. One

would also expet �

0

to have a smaller textual representation than �, but

26 FRANC�OIS POTTIER

that is not a requirement; it is rather to be viewed as an implementation

detail.

We onlude this setion with a de�nition of what it means for a type

sheme to be made up of small terms. All of the algorithms de�ned here

will expet this property to hold, and will preserve it, making it a global

invariant. This hoie simpli�es de�nitions and proofs. Furthermore, from

a pratial point of view, it allows enforing maximum sharing, sine it

requires every sub-term to be \named" by a type variable, allowing our

minimization algorithm to identify sub-terms.

Definition 16. A small term is a onstruted type term whose strit sub-

terms are type variables. A type sheme 8C: � is made up of small terms i�

it satis�es the following onditions:

Æ � is a type variable;

Æ for all (�

1

� �

2

) 2 C, either �

1

and �

2

are type variables, or one is a

variable and the other is a small term.

Æ for all (s � � ? �

1

� �

2

) 2 C, � , �

1

and �

2

are type variables.

Every type sheme an be turned into an equivalent type sheme whih is

made up of small terms. (In pratie, this would be done when onverting

type shemes input by the user into some internal representation.)

Appendix A.4 Solving Constraints

We begin with a fundamental tehnial result, whih desribes a weak, suÆ-

ient ondition for a onstraint set to have a solution. It shall form the basis

for the proof of the losure algorithm. We prove a fairly powerful version

of this result, allowing ground onstants to appear in onstraints. (If these

onstraints were to be written, some �nite representation of these onstants

would be required; however, suh is not the ase here.) Thanks to this gen-

eralization, this result will also form the basis for the proof of the garbage

olletion algorithm.

Definition 17. A onstraint set with ground onstants is a onstraint set

C, where atomi onstraints may involve either two variables, one variable

and a small term, or one variable and a ground type, and where onditional

onstraints have their usual form. De�ne the assertion C

+1

�

1

� �

2

to

mean

8k � 0 8� `

pre

k

C � `

k+1

�

1

� �

2

De�ne C

#

(�) = f� ; � 62 V ^ � � � 2 Cg and C

"

(�) = f� ; � 62 V ^ � � � 2

Cg. C is said to be weakly losed i� the following onditions are met:

(1) � � � 2 C and � � 2 C imply � � 2 C;

(2) � � � 2 C and � 2 C

#

(�) imply 9�

0

2 C

#

(�) C

+1

� � �

0

;

(3) � � � 2 C and �

0

2 C

"

(�) imply 9� 2 C

"

(�) C

+1

� � �

0

;

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 27

(4) � 2 C

#

(�) and �

0

2 C

"

(�) imply C

+1

� � �

0

;

(5) � � � 2 C and s � � ? 2 C imply s � � ? 2 C;

(6) s � � ? 2 C, � 2 C

#

(�) and s �

S

hd(�) imply C

pre

.

C

#

(�) ontains all lower bounds of � whih are not type variables; thus,

every � 2 C

#

(�) must be either a small type term, or a ground type. A

similar remark holds onerning C

"

(�).

Conditions 1 and 5 above are purely syntati transitivity onditions. Con-

ditions 2 to 4 also involve transitivity, but the use of

+1

allows expressing

these onditions in a logial, rather than syntati, way, making them less

restritive.

Theorem 2. Let C be a onstraint set with ground onstants. If C is weakly

losed, then C has a solution.

Proof. Note that this proof only uses Conditions 2, 4 and 6 of De�ni-

tion 17. The other onditions shall be required by further theorems, suh

as the orretness proof of garbage olletion.

The �rst step of the proof onsists in exhibiting a ground substitution �

suh that, for all � 2 fv(C), �(�) equals tf�(�) ; � 2 C

#

(�)g, and proving

that � is a pre-solution of C. In fat, this step oinides with the lassi

proof performed in the absene of onditional onstraints [17℄; we shall not

repeat it here.

The seond step onsists in proving that � is a full solution of C. Pik a

onditional onstraint s � � ? 2 C. Assume � ` s � �. By de�nition of �,

this statement an be written

s �

S

hd(�(�)) = hd(tf�(�) ; � 2 C

#

(�)g)

= t

S

fhd(�(�)) ; � 2 C

#

(�)g

= t

S

fhd(�) ; � 2 C

#

(�)g

(The identity hd(�(�)) = hd(�) stems from the fat that � is either a small

term, or a ground onstant, with a �xed head onstrutor.) Considering that

s is prime (see De�nition 10), this entails s �

S

hd(�) for some � 2 C

#

(�).

We an then apply Condition 6 of De�nition 17, whih yields C

pre

.

Sine � is a pre-solution of C, this implies � ` . We have thus veri�ed

� ` s � � ? , proving that � is a solution of C.

2

Equippedwith this tehnial result, we are now ready to de�ne a onstraint

resolution algorithm. It is based on a simple losure omputation. We begin

by de�ning an auxiliary onstraint deomposition funtion, whih breaks a

onstraint down into a set of equivalent onstraints.

Definition 18. Given types �

1

and �

2

, sub(�

1

� �

2

) is de�ned as

Æ f�

1

� �

2

g, if �

1

or �

2

is a variable;

28 FRANC�OIS POTTIER

Æ f�

1

:l �

l

�

2

:l ; l 2 dom(�

1

) \ dom(�

2

)g, if �

1

and �

2

are onstruted

terms suh that hd(�

1

) �

S

hd(�

2

).

Note that sub(�

1

� �

2

) is unde�ned when hd(�

1

) 6�

S

hd(�

2

); indeed, suh

a onstraint is learly unsatis�able.

Using this auxiliary funtion, we an now desribe the losure onditions:

Definition 19. Let C be a onstraint set, made up of small terms. C is

said to be losed i�

(1) � � � 2 C and � � �

0

2 C imply sub(� � �

0

) � C;

(2) � � � 2 C and s � � ? 2 C imply s � � ? 2 C;

(3) s � � ? 2 C, � 2 C

#

(�) and s �

S

hd(�) imply 2 C.

Condition 1 is the lassi losure ondition, found e.g. in [17℄; it involves

transitivity and strutural deomposition. Condition 2 is a transitivity on-

dition onerning onditional onstraints. Condition 3 requires that the

onlusion of a onditional onstraint whose ondition must be satis�ed be

disharged into the onstraint set.

It is easy to hek that losure implies weak losure [17℄. This yields an

algorithm to deide whether a onstraint set C has a solution: attempt to

ompute the smallest losed set C

�

ontaining it, by repeated appliation of

the above three rules. Eah rule preserves the set's solution spae. So, if the

omputation sueeds, then C has a solution; if, on the other hand, it fails

(beause sub is applied outside of its domain), then C has no solution.

Consider a onditional onstraint s � � ? . Aording to the losure rules

above, the atomi onstraint will have no e�et on the onstraint resolu-

tion proess until it is disharged by rule 3. That is, will be ignored until

the algorithm disovers some evidene that the ondition s � � must be sat-

is�ed. This explains why onditional onstraints delay type omputations,

as mentioned in the body of this paper. The algorithm will not speulate

about the onsequene of the onditional onstraint, should its ondition be

satis�ed; rather, it waits until it has no hoie but satisfy .

Appendix A.5 Polarity

We now de�ne how to assoiate a polarity with eah type variable in a type

sheme whose onstraint set if (weakly) losed. This notion will be used in

the de�nition of all three onstraint simpli�ation algorithms.

Definition 20. Consider a type sheme � = 8C: Æ, made up of small terms,

where C is weakly losed. The set of positive variables of �, and the set of

negative variables of �, respetively denoted by fv

+

(�) and fv

�

(�), are the

smallest subsets P and N of fv(�) suh that

Æ Æ 2 P ;

Æ 8� 2 P 8� 2 C

#

(�) split(�) � (N;P);

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 29

Æ 8� 2 N 8� 2 C

"

(�) split(�) � (P;N);

Æ 8� 2 N s � � ?� � 2 C) � 2 P ^ 2 N .

where the auxiliary funtion split maps a small term � to an element of

2

V

� 2

V

, as follows:

split(�) = (f�:l ; l 2 L

�

g; f�:l ; l 2 L

+

g)

A type variable is said to be bipolar if it is positive and negative, and neutral

if it is neither. fv

+

(�) and fv

�

(�) an be omputed in time linear in the size

of �, using a simple �x-point alulation. Every type sheme is equivalent

to a type sheme with no bipolar variables; we do not prove this result here.

Appendix A.6 Garbage Colletion

Knowing the polarity of eah variable allows us to throw away many redun-

dant onstraints, as shown by the following de�nition and theorem.

Definition 21. Consider � as in De�nition 20. The image of � through

garbage olletion, denoted by GC(�), is the type sheme 8D: Æ, where D is

a subset of C de�ned as follows:

Æ � � � 2 D i� � � � 2 C, � 2 fv

�

(�) and � 2 fv

+

(�);

Æ D

#

(�) equals C

#

(�) if � 2 fv

+

(�), and ? otherwise;

Æ D

"

(�) equals C

"

(�) if � 2 fv

�

(�), and ? otherwise;

Æ s � � ?� � 2 D i� s � � ?� � 2 C and � 2 fv

�

(�).

This de�nition is mostly idential to the one in [17℄; only the fourth point

is new, and spei�es that a onditional onstraint is redundant unless it

bears on a negative variable. In operational terms, a onditional onstraint

s � � ? an be triggered only if � reeives a lower bound whih exeeds

s. Considering that only negative variables an reeive new lower bounds in

the future, this onstraint has no e�et unless � is negative.

Theorem 3. Consider � as in De�nition 21. Then � � GC(�).

Proof. Write �

0

= GC(�). Sine �

0

has fewer onstraints, it is lear that

�

0

4 �. So, we need to prove � 4 �

0

. Aording to De�nition 15, this is

equivalent to

8�

0

` D 9� ` C �(Æ) � �

0

(Æ)

Pik some �

0

` D. We now wish to prove that C[fÆ � �

0

(Æ)g admits a solu-

tion. This is a onstraint set with ground onstants, as per De�nition 17. We

shall meet our goal by proving that the following onstraint set|a superset

of the previous one|is weakly losed:

C [f�

0

(�) � � ; � 2 fv

�

(�) ^ � � � 2 C

r

g

[f� � �

0

(�) ; � 2 fv

+

(�) ^ � � � 2 C

r

g

30 FRANC�OIS POTTIER

(C

r

denotes the reexive losure of C, i.e. � � � 2 C

r

i� � = � or

� � � 2 C.) Let E denote this set.

That E should satisfy Conditions 1 to 4 of De�nition 17 is a lassi result,

proved in [17℄. The novelty, in the presene of onditional onstraints, is to

hek that E also satis�es Conditions 5 and 6.

To hek Condition 5, assume � � � 2 E and s � � ? 2 E. Considering

the de�nition of E, these onstraints must in fat belong to C. Sine C itself

is weakly losed, s � � ? belongs to C, whih is a subset of E.

To hek Condition 6, assume s � � ? 2 E, � 2 E

#

(�) and s �

S

hd(�).

As above, s � � ? must in fat belong to C. Furthermore, if � 2 C

#

(�),

then it is again easy to onlude, onsidering that C itself is weakly losed.

Thus, let us assume � 62 C

#

(�). Considering the de�nition of E, we must

have � = �

0

(�), � 2 fv

�

(�) and � � � 2 C

r

, for some �; � 2 fv(C).

We have s � � ? 2 C and � � � 2 C

r

. Beause C satis�es Condition 5

of De�nition 17, this entails s � � ? 2 C. Furthermore, sine � 2 fv

�

(�),

this onstraint is preserved by garbage olletion; formally, De�nition 21

states that s � � ? 2 D. Sine �

0

is a solution of D, we have �

0

` s � � ? .

Finally, reall that s �

S

hd(�) = hd(�

0

(�)), whih an be written �

0

` s � �.

By bringing both results together, we obtain �

0

` .

Let us now write

1

(resp.

2

) for the left-hand (resp. right-hand) side of

. The assertion �

0

` an be re-stated �

0

(

1

) � �

0

(

2

). Besides, we have

� 2 fv

�

(�) and s � � ?

1

�

2

2 C; aording to De�nition 20, this entails

1

2 fv

+

(�) and

2

2 fv

�

(�). Then, aording to the de�nition of E, the

onstraints

1

� �

0

(

1

) and �

0

(

2

) �

2

must appear in E. It follows that

any pre-solution of E satis�es

1

�

2

. In other words, E

pre

.

2

Appendix A.7 Canonization

Definition 22. A onstraint set C is in anonial form i� eah variable

� 2 fv(C) has exatly one onstruted lower (resp. upper) bound, i.e. i�

C

#

(�) and C

"

(�) are singletons.

We now de�ne an algorithm whih turns an arbitrary type sheme � into

an equivalent type sheme in anonial form.

Definition 23. Let � = 8C: Æ be a type sheme, made up of small terms,

with no bipolar variables, suh that � = GC(�).

Let V (resp. W) range over non-empty subsets of fv

�

(�) (resp. fv

+

(�)).

For eah suh V (resp. W) of ardinality greater than 1, pik a fresh vari-

able

V

(resp. �

W

). (By fresh variables, we mean that these variables are

pairwise distint, and distint from �'s variables.)

De�ne the rewriting funtions r

�

and r

+

aording to Fig. 5. The �rst

three lines de�ne r

�

(resp. r

+

) over non-empty sets of negative (resp. posi-

tive) variables; the next two extend them to sets of negative (resp. positive)

small terms, ranged over by T . v stands for either + or �; t

v

S

stands for

t

S

when v = +, and for u

S

when v = �; v

l

stands for v when l 2 L

+

, and

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 31

r

v

(f�g) = �

r

+

(W) = �

W

when jW j > 1

r

�

(V) =

V

when jV j > 1

hd(r

v

(T)) = t

v

S

hd(T)

8l 2 a(t

v

S

hd(T)) r

v

(T):l = r

v

l

(T:l)

Figure 5: De�nition of the rewriting funtions

r

�

(V) � r

+

(W) 2 D i� 9� 2 V 9� 2W � � � 2 C

D

#

(�) = fr

+

(C

#

(�))g D

"

(�) = fr

�

(C

"

(�))g

D

#

(

V

) = f?g D

"

(

V

) = fr

�

([C

"

(V))g

D

#

(�

W

) = fr

+

([C

#

(W))g D

"

(�

W

) = f>g

s � r

�

(V) ? 2 D i� 9� 2 V s � � ? 2 C

Figure 6: Canonization

for the opposite of v when l 2 L

�

. On the last line of Fig. 5, T:l stands

for f�:l ; � 2 Tg. The expression r

v

l

(T:l) is well-de�ned, beause T:l is a

non-empty set of variables. Indeed, l belongs to a(t

v

S

hd(T)). Aording to

the last ondition of De�nition 1, this must be a subset of [a(hd(T)); that

is, there must exist some � 2 T suh that �:l is de�ned.

The image of � through anonization, denoted by Can(�), is 8D: Æ, where

the onstraint set D is given by Fig. 6. It is lear that Can(�) is in anonial

form.

Considering our strong hypotheses on �, one easily proves that Can(�) is

losed. One an also give a onservative approximation of the polarity of

eah variable in Can(�). Indeed, if a variable � is positive (resp. negative,

neutral) in �, then it is at most positive (resp. negative, neutral) in Can(�).

Furthermore, any �

W

(resp.

V

) is at most positive (resp. negative) in

Can(�).

Theorem 4. Consider � as in De�nition 23. Then � � Can(�).

32 FRANC�OIS POTTIER

Proof. Let us use the notations of De�nition 23. We �rst show that

Can(�) 4 �, i.e.

8� ` C 9�

0

` D �

0

(Æ) � �(Æ)

Pik some � ` C. De�ne �

0

by

�

0

(�) = �(�) �

0

(

V

) = u �(V) �

0

(�

W

) = t �(W)

Clearly, for any W , �

0

(r

+

(W)) = t �(W). Similarly, �

0

(r

�

(V)) = u �(V).

Extending these assertions to sets of small terms, rather than sets of vari-

ables, is straightforward. Using these results, it is a matter of routine to

asertain that �

0

satis�es D. Here, we shall only hek that all onditional

onstraints of D are satis�ed by �

0

. Consider suh a onstraint; it must be

of the form s � r

�

(V) ? , where s � � ? 2 C for some � 2 V . Assume

�

0

` s � r

�

(V). This an be written

s �

S

hd(�

0

(r

�

(V)))

= hd(u �(V))

= u

S

hd(�(V))

�

S

hd(�(�)) sine � 2 V

So, � ` s � � holds. Beause s � � ? appears in C, and beause � satis�es

C, we must then have � ` . However, � and �

0

oinide over fv(�); so,

�

0

` holds as well. Thus, we have heked that �

0

satis�es s � r

�

(V) ? ,

as desired.

The other diretion of the proof is slightly more diÆult, beause D does

not entail C; in fat, our de�nition of anonization ontains a built-in

garbage olletion step. We introdue an intermediate type sheme �

0

=

8E: Æ, where E is de�ned by

E = D [f� � �

W

; � 2Wg [f

V

� � ; � 2 V g

This time, thanks to the added onstraints, it is easy enough to prove that E

entails C, whih implies � 4 �

0

. There remains to prove that �

0

4 Can(�).

We shall do so by notiing that the onstraints in E n D are superuous,

aording to garbage olletion. The result shall then follow from Theorem 3.

Our �rst objetive is to prove that E is weakly losed, whih entitles us to

apply garbage olletion to �

0

.

Proving that E satis�es Conditions 1 to 4 of De�nition 17 is (tedious)

routine; we refer the interested reader to [17℄.

To hek that E satis�es Condition 5, assume s � ? 2 E and � � 2

E. Considering the form of the onditional onstraints whih appear in E

(see Fig. 6), must be the image of some set of negative variables through

r

�

. But then, onsidering the form of the onstraints between variables in

E, � � must be of the form

V

� �, where � 2 V . So, oinides with

�. Thus, s � � ? appears in E; aording to Fig. 6, it also appears in C.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 33

Sine � 2 V , another look at Fig. 6 indiates that s �

V

? appears in D,

hene in E. This was our goal, sine

V

is none other than �.

To hek that E satis�es Condition 6, assume s � r

�

(V) ? 2 E, � 2

E

#

(r

�

(V)) and s �

S

hd(�).

First, we prove that jV j = 1. Indeed, if jV j > 1 were true, then r

�

(V)

would be

V

. Then, we would have � 2 E

#

(

V

) = f?g, so � = ?. Sine

s �

S

hd(�), it would follow that s = ?

S

, whih is forbidden by De�nition 10:

?

S

is not a prime element of S.

So, V must be a singleton set, say f�g. Then, E

#

(�) = fr

+

(C

#

(�))g, so

� oinides with r

+

(C

#

(�)). Thus,

s �

S

hd(�) = t

S

hd(C

#

(�))

by de�nition of r

+

(see Fig. 5). Beause s is prime (see De�nition 10),

this implies s �

S

hd(�

0

) for some �

0

2 C

#

(�). Besides, sine V = f�g,

s � � ? appears in E, hene also in C. In light of the fat that C itself

satis�es Condition 6 of De�nition 17, all this implies C

pre

. However,

by de�nition of E, every pre-solution of E is also a pre-solution of C. So,

E

pre

 also holds. This was our goal.

We have veri�ed that E is weakly losed. Thus, aording to Theorem 3,

we may throw away some of �

0

's onstraints, as allowed by polarity, and

obtain an equivalent type sheme. One disovers, in fat, that all onstraints

in E nD are atually superuous (see [17℄). As a result, �

0

� Can(�). This

onludes the proof.

2

Appendix A.8 Minimization

We now give an algorithm whih separates the variables of a type sheme

into a number of equivalene lasses, in suh a way that all variables in a

single lass an be merged without a�eting the type sheme's denotation.

We begin with a ouple of auxiliary de�nitions:

Definition 24. Let V be a set of type variables. Any equivalene relation

� over V is extended to small terms whose variables are in V , as follows:

�

1

� �

2

() hd(�

1

) = hd(�

2

) ^ (8l 2 a(hd(�

1

)) �

1

:l � �

2

:l)

Definition 25. Let C be a onstraint set. For � 2 V, de�ne

pred

C

(�) = f� ; � � � 2 Cg

su

C

(�) = f� ; � � � 2 Cg

Then, we give a series of requirements about equivalene relations, and show

that they are suÆient to meet our goal.

34 FRANC�OIS POTTIER

Definition 26. Let � = 8C: Æ be a type sheme in anonial form, made

up of small terms, with no bipolar variables, suh that � = GC(�). For any

� 2 fv(�), C

#

(�) (resp. C

"

(�)) is a singleton set; by abuse of language, we

shall use the same notation to refer to its unique element.

An equivalene relation � over fv(�) is ompatible with � i� � � � implies

all of the following:

(1) f�; �g � fv

+

(�) or f�; �g � fv

�

(�);

(2) pred

C

(�) = pred

C

(�) and su

C

(�) = su

C

(�);

(3) C

#

(�) � C

#

(�) and C

"

(�) � C

"

(�);

(4) s � � ?

1

�

2

2 C implies 9Æ

1

�

1

9Æ

2

�

2

s � � ? Æ

1

� Æ

2

2 C.

Definition 27. Consider � as in De�nition 26; let � be a partition om-

patible with �. The quotient

�

=

�

is de�ned|up to a renaming|as �(�),

where � is any mapping of fv(�) into V suh that

8�; � 2 fv(�) � � � () �(�) = �(�)

Theorem 5. Consider � and � as in De�nition 27. Then,

�

=

�

� �.

Proof. The assertion � 4

�

=

�

learly holds, beause the latter is the

image of the former through the substitution �. Reiproally, let us show

that

�

=

�

4 �. Let � be a solution of C. We need to exhibit a solution �

0

of

�(C) suh that �

0

(�(Æ)) � �(Æ).

Consider an equivalene lass of �. Beause of Condition 1 of De�ni-

tion 26, it must be either a subset of fv

�

(�), or a subset of fv

+

(�). We

denote it by V (resp. W) in the former (resp. latter) ase. We denote the

image of its elements through � by '

V

(resp. '

W

). De�ne �

0

by

�

0

('

V

) = t �(V) �

0

('

W

) = u �(W)

We remark that for any � 2 fv

+

(�), �

0

(�(�)) � �(�) holds; symmetrially,

for any � 2 fv

�

(�), we have �(�) � �

0

(�(�)).

There remains to hek that �

0

satis�es �(C) and �(Æ) � �(Æ). This is

straightforward; as before, we shall deal with the ase of onditional on-

straints expliitly, and refer the reader to [17℄ for the other ases. Consider

a onditional onstraint in �(C). It has the form s � �(�) ?�(�) � �(),

where s � � ?� � 2 C. Note that, neessarily, � and belong to

fv

�

(�), while � belongs to fv

+

(�). Let V stand for �'s equivalene lass, i.e.

V = �

�1

(�(�)). Assume �

0

` s � �(�). This an be written

s �

S

hd(�

0

(�(�)))

= hd(t �(V))

= t

S

hd(�(V))

Beause s is prime (see De�nition 10), this implies s �

S

hd(�(�

0

)), for some

�

0

2 V . In other words, � ` s � �

0

holds. Furthermore, we have � � �

0

;

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 35

sine � is ompatible with �, Condition 4 yields s � �

0

?�

0

�

0

2 C, for

some �

0

� � and

0

� . Both fats, ombined, yield � ` �

0

�

0

, beause �

is a solution of C. Next, note that, neessarily,

0

belongs to fv

�

(�), while �

0

belongs to fv

+

(�). Thus, � ` �

0

�

0

implies �

0

` �(�) � �(), by de�nition

of �

0

. We have proved that �

0

satis�es s � �(�) ?�(�) � �().

2

Referenes

[1℄ Aiken, Alexander S. and Wimmers, Edward L. 1993. Type Inlusion Con-

straints and Type Inferene. In Funtional Programming & Computer Arhite-

ture. ACM Press, 31{41.

[2℄ Aiken, Alexander S., Wimmers, Edward L., and Lakshman, T. K. 1994.

Soft Typing with Conditional Types. In Priniples of Programming Languages,

163{173.

[3℄ Bugliesi, Mihele and Crafa, Silvia. 1999. Objet Caluli for Dynami Mes-

sages. In The Sixth International Workshop on Foundations of Objet-Oriented

Languages, FOOL 6, San Antonio, Texas.

[4℄ Cardelli, Lua and Mithell, John. 1991. Operations on Reords. Mathe-

matial Strutures in Computer Siene 1, 3{48.

[5℄ F

�

ahndrih, Manuel. 1999. Bane: A Library for Salable Constraint-Based

Program Analysis. PhD thesis, University of California at Berkeley.

[6℄ Flanagan, Corma and Felleisen, Matthias. 1997. Componential Set-

Based Analysis. In Proeedings of the ACM SIGPLAN '97 Conferene on Pro-

gramming Language Design and Implementation. Las Vegas, Nevada, 235{248.

[7℄ Gaster, Benedit R. 1998. Reords, variants and quali�ed types. PhD thesis,

University of Nottingham.

[8℄ Harper, Robert and Piere, Benjamin. 1991. A Reord Calulus Based

on symmetri Conatenation. In Conferene Reord of the 18th Annual ACM

Symposium on Priniples of Programming Languages (POPL '91). ACM Press,

Orlando, Florida, 131{142.

[9℄ Heintze, Nevin. 1993. Set Based Analysis of ML Programs. Teh. Report

CMU-CS-93-193, Carnegie Mellon University, Shool of Computer Siene.

[10℄ Jones, Mark P. 1994. Quali�ed Types: Theory and Pratie. Cambridge

University Press.

[11℄ M

�

uller, Martin, Niehren, Joahim, and Podelski, Andreas. 2000. Order-

ing Constraints over Feature Trees. Constraints, an International Journal 5, 1{2,

7{42.

[12℄ M

�

uller, Martin and Nishimura, Susumu. 2000. Type Inferene for First-

Class Messages with Feature Constraints. International Journal of Foundations

of Computer Siene 11, 1, 29{63.

[13℄ Nishimura, Susumu. 1998. Stati Typing for Dynami Messages. In Confer-

ene Reord of POPL '98: The 25th ACM SIGPLAN-SIGACT Symposium on

Priniples of Programming Languages. San Diego, California, 266{278.

[14℄ Odersky, Martin, Sulzmann, Martin, and Wehr, Martin. 1999. Type

Inferene with Constrained Types. Theory and Pratie of Objet Systems 5, 1,

35{55.

[15℄ Ohori, Atsushi. 1995. A Polymorphi Reord Calulus and Its Compilation.

ACM Transations on Programming Languages and Systems 17, 6 (Nov.), 844{

895.

[16℄ Pottier, Fran�ois. 1998. Type inferene in the presene of subtyping: from

theory to pratie. Teh. Report 3483, INRIA.

[17℄ Pottier, Fran�ois. 2000. Simplifying subtyping onstraints: a theory.

To appear in Information & Computation. URL: http://pauilla.inria.fr/

~fpottier/publis/fpottier-i-2000.ps.gz.

36 FRANC�OIS POTTIER

[18℄ Pottier, Fran�ois. 2000. Wallae: an eÆient implementation of type infer-

ene with subtyping. URL: http://pauilla.inria.fr/~fpottier/wallae/.

[19℄ R

�

emy, Didier. 1992. Projetive ML. In 1992 ACM Conferene on Lisp and

Funtional Programming. ACM Press, New-York, 66{75.

[20℄ R

�

emy, Didier. 1993. Syntati Theories and the Algebra of Reord Terms.

Researh Report 1869, INRIA.

[21℄ R

�

emy, Didier. 1993. Type Inferene for Reords in a Natural Extension of ML.

In Theoretial Aspets Of Objet-Oriented Programming. Types, Semantis and

Language Design, Gunter, Carl A. and Mithell, John C., Editors. MIT Press.

[22℄ R

�

emy, Didier. 1993. Typing Reord Conatenation for Free. In Theoretial As-

pets Of Objet-Oriented Programming. Types, Semantis and Language Design,

Gunter, Carl A. and Mithell, John C., Editors. MIT Press.

[23℄ R

�

emy, Didier. 1995. A ase study of typeheking with onstrained types: Typ-

ing reord onatenation. Presented at the workshop on Advanes in Types for

Computer Siene at the Newton Institute, Cambridge, UK.

[24℄ R

�

emy, Didier. 1998. From Classes to Objets via Subtyping. In Proeedings

of the 1998 European Symposium On Programming (ESOP'98), Volume 1381 of

Leture Notes in Computer Siene. Springer-Verlag, 200{220.

[25℄ Reynolds, John C. 1969. Automati Computation of Data Set De�nitions. In

Information Proessing 68, Volume 1. North-Holland, Amsterdam, 456{461.

[26℄ Smith, Sott and Wang, Tiejun. 2000. Polyvariant Flow Analysis with Con-

strained Types. In Proeedings of the 2000 European Symposium on Program-

ming (ESOP'00), Volume 1782 of Leture Notes in Computer Siene. Springer

Verlag, 382{396.

[27℄ Sulzmann, Martin. 2000. A general framework for Hindley/Milner type systems

with onstraints. PhD thesis, Yale University, Department of Computer Siene.

[28℄ Sulzmann, Martin, M

�

uller, Martin, and Zenger, Christoph. 1999. Hind-

ley/Milner style type systems in onstraint form. Researh Report ACRC{99{

009, University of South Australia, Shool of Computer and Information Siene.

[29℄ Trifonov, Valery and Smith, Sott. 1996. Subtyping Constrained Types.

In Proeedings of the Third International Stati Analysis Symposium, Volume

1145 of LNCS. SV, 349{365.

[30℄ Wand, Mithell. 1991. Type Inferene for Reord Conatenation and Multiple

Inheritane. Information and Computation 93, 1 (July), 1{15.

