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Abstract. The combination of subtyping, conditional constraints and rows yields a
powerful constraint-based type inference system. We illustrate this claim by propos-
ing solutions to three delicate type inference problems: “accurate” pattern match-
ings, record concatenation, and first-class messages. Previously known solutions
involved a different technique in each case; our theoretical contribution is in using
only a single set of tools. On the practical side, this allows all three problems to ben-
efit from a common set of constraint simplification techniques, a formal description
of which is given in an appendix.

CR Classification: F.3.3 [Logics and Meanings of Programs]: Studies of Program
Constructs—Type Structure.

Key words: Constraint-based type inference. Subtyping. Rows. Conditional
constraints.

1. Introduction

Type inference is the task of examining a program which lacks some (or
even all) type annotations, and recovering enough type information to make
it acceptable by a type checker. Its original, and most obvious, application
is to free the programmer from the burden of manually providing these an-
notations, thus making static typing a less dreary discipline. However, type
inference has also seen heavy use as a simple, modular way of formulating
program analyses.

The design of a type inference system can be influenced by its purpose.
When used as a user-visible way of enforcing a coding discipline, it might
be desirable to make it simple and somewhat rigid. When used invisibly
as part of a compiler’s optimization process, on the other hand, maximum
precision may be desired. Regardless of this distinction, however, power-
ful type inference techniques are often made a necessity by the advanced
features found in many recent programming languages.

This paper presents a common solution to several seemingly unrelated type
inference problems, using an existing framework for subtyping-constraint-
based type inference [14], equipped with conditional constraints inspired by
Aiken, Wimmers and Lakshman [2] and with rows & la Rémy [19, 21].
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Constraint-Based Type Inference

Subtyping is a partial order on types, defined so that an object of a subtype
may safely be supplied wherever an object of a supertype is expected. Type
inference in the presence of subtyping reflects this basic principle. Every
time a piece of data is passed from a producer to a consumer, the former’s
output type is required to be a subtype of the latter’s input type. This re-
quirement is explicitly recorded by creating a symbolic subtyping constraint
between these types. Thus, each potential data flow discovered in the pro-
gram yields one constraint. This fact allows viewing a constraint set as a
directed approximation of the program’s data flow graph — regardless of our
particular definition of subtyping.

Various type inference systems based on subtyping constraints exist. One
may cite works by Aiken et al. [1, 2, 5], the present author [16, 17], Trifonov
and Smith [29], as well as Odersky et al.’s abstract framework HM (X)) [14,
28, 27]. Related systems include set-based analysis [9, 6] and type inference
systems based on feature constraints [11, 12] or predicate constraints [10].

Conditional Constraints

In many constraint-based systems, the expression if ey then e; else eo
is, at best, described by

a<a N as<a«

where «; stands for e;’s type, and « stands for the whole expression’s type.
This amounts to stating that “the value of e; (resp. es) may become the
value of the whole expression”, regardless of the test’s outcome. A more
precise description — “if ey may evaluate to true (resp. false), then the
value of e; (resp es) may become the value of the whole expression” — can
be given using conditional constraints:

true<agp?a; <a A false<ap?as <«

Introducing tests into constraints allows keeping track of some of the pro-
gram’s control flow — that is, mirroring, at the level of types, the way eval-
uation is affected by the outcome of a test.

Conditional set expressions were introduced by Reynolds [25] as a means
of solving set constraints involving strict type constructors and destructors.
Heintze [9] uses them to formulate an analysis which ignores “dead code”.
He also introduces case constraints, which allow ignoring the effect of a
branch, in a case construct, unless it is actually liable to be taken. Aiken,
Wimmers and Lakshman [2] use conditional types, together with intersection
types, for this purpose.

In the present paper, we suggest a single notion of conditional constraint,
which is comparable in expressive power to the above constructs, and lends
itself to a simple and efficient implementation. (A similar choice was made
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independently by Fahndrich [5].) We emphasize its use as a way not only of
introducing some control into types, but also of delaying type computations,
thus introducing some “laziness” into type inference.

Rows

Designing a type system for a programming language with records, or ob-
jects, requires some way of expressing labelled products of types, where
labels are field or method names. Dually, if the language allows manipulat-
ing structured data, then its type system is likely to require labelled sums,
where labels are names of data constructors.

Wand [30] and Rémy [19, 21] elegantly deal with both problems at once
by introducing notation to express denumerable, indexed families of types,
called rows:

pr=a,f,...,00,...la:T; p|OT

(Here, 7 ranges over types, and a,b,... range over indices.) An unknown
row may be represented by a row wvariable, exactly as in the case of types.
(By lack of symbols, we will not syntactically distinguish plain type variables
and row variables.) The term a : 7; p represents a row whose element at
index a is 7, and whose other elements are given by p. The term 07 stands
for a row whose element at any index is 7. These statements are given
formal meaning by interpreting rows in a logical model where the following
equations hold:

a:7q; (b:m; p)=0b:my; (a:7e; p)
Oor=a:T1; 0T

If desired, some type constructors may be lifted to the level of rows, i.e.
viewed as row constructors as well. For instance, to lift the type constructor
—, we extend the syntax of rows:

pu=...p—p

The term p — p is logically interpreted as the row obtained by applying
the type constructor —, point-wise, to the rows p and p'. As a result, the
logical model satisfies the following equations:

(a:75p) = (a:75 p)=a:(r =7 (p—p)
or - or' =0(r —» 1)

More details are given in Section 2.

Rows offer a particularly straightforward way of describing operations
which treat all labels (except possibly a finite number thereof) uniformly.
Because every facility available at the level of types (e.g. constructors, con-
straints) can also be made available at the level of rows, a description of the
operation’s effect on a single label, written using types, can also be read as
a description of the entire operation, written using rows. This interesting
point will be developed further in the paper.
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Putting It All Together

Our point is to show that the combination of the three concepts discussed
above yields a very expressive system, which allows type inference for a
number of advanced language features. Among these, “accurate” pattern
matching constructs, record concatenation, and first-class messages will
be discussed in this paper. Our system allows performing type inference
for all of these features at once. Furthermore, efficiency issues concerning
constraint-based type inference systems have already been studied [5, 17].
This existing knowledge benefits our system, which may thus be used to
efficiently perform type inference for all of the above features.

In this paper, we focus on applications of our type system, i.e. we show
how it allows solving each of the problems mentioned above. Formal defi-
nitions of our constraint resolution and simplification algorithms appear in
Appendix A. Furthermore, a robust prototype implementation is publicly
available [18]. We do not prove that the types given to the three problem-
atic operations discussed in this paper are sound, but we believe this is a
straightforward task.

The paper is organized as follows. Section 2 gives a detailed technical
presentation of the type system. Section 3 gives an informal explanation
of the potential costs and benefits of using conditional constraints. Sec-
tions 4, 5, and 6 discuss type inference for “accurate” pattern matchings,
record concatenation, and first-class messages, respectively, within our sys-
tem. Section 7 gives several examples, which show what inferred types look
like in practice. Section 8 sums up our contribution. Lastly, Appendix A
gives definitions and proofs for several constraint manipulation algorithms.

2. Formal Presentation of the System

This section gives an in-depth formal presentation of our type system, in
its most general form. Much of it may be skipped on a first reading — the
following sections describe the system in a more gentle fashion. The reader
may wish to come back to this section at a later stage.

We define our type system as an instance of the parametric framework
HM(X) [14, 28, 27]. To do so, we simply define a constraint system, called
SRC (for subtyping-rows-conditionals), giving rise to HM(SRC). By re-using
existing material, we save definitions and proofs, and emphasize the fact that
our approach is standard.

In order to retain a measure of generality, SRC is itself parameterized by
a ground signature, which is a succinct description of a type algebra and of
its intended subtype ordering. Ground signatures are defined in Section 2.1.
Given such a ground signature, we explicitly define the syntax of types
and constraints (Section 2.2), a logical model within which they may be
interpreted (Section 2.3), and the interpretation itself (Section 2.4).



A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 5)

2.1 Assumptions

A ground signature consists of three components: a series of symbol lattices,
indexed by kinds, a set of parameter labels (each of which is either co- or
contra-variant, describes either a row or a plain type parameter, and has
a fixed kind), and a description of each symbol’s arity as a finite set of
parameter labels.

DEFINITION 1. Let I be a finite set of kinds. For every kind k € K, let
Sy be a lattice of symbols, with operations 1., Ty, <k, Ux and M. Define
S = wnEICSn-

Let L' and L~ be denumerable sets of parameter labels. Define L =
LTWL™. Let Liow C L be a distinguished subset of row parameter labels.
Let kind be a total mapping of L into K.

Let a be a total mapping from S to finite subsets of L, such that:

o for all sy, s1,82 € Sk, So <x $1 <k S2 implies a(sg) Na(s2) C a(s1);

o for any finite subset S of Sk, a(UyS) and a(MxS) are subsets of Ua(S).
Note that this implies a(L,) = a(Tx) = @.
The information described above forms a ground signature.

The first condition bearing on ¢ is necessary to guarantee that the orderings
<x do give rise to an ordering on ground types (defined in Section 2.3). The
second one makes the definition of some constraint manipulation algorithms
more convenient (see Definition 23 in Appendix A).

EXAMPLE 1. Assume there is only one kind x. Define &, = {L1,—, T},
where L <, — <, T. Let L= = {dom}, LT = {rng} and Lo = &. Define
a(l) =a(T) =@ and a(—) = {dom, rng }. This defines a ground signature,
which allows typing the pure A-calculus.

ExXAMPLE 2. Define three kinds N, R and V, corresponding to normal,
record field and wvariant field types, respectively. Let Sy be the flat lat-
tice whose elements other than | and T are —, {-} and [-]. Let Sgr
be the lattice with least element Bot, greatest element Any, and whose
other elements are Abs, Pre and Either, ordered by Abs <gr Either and
Pre <y Either. Let Sy be the lattice with least element Abs, greatest el-
ement Any, and whose only other element is Pre. (By abuse of language,
we are giving identical names to symbols in Sg and in Sy. This remains
non-ambiguous as long as all terms considered have known kinds.) Let
L~ = {dom}, LT = {content, contents,rng } and Lo = {contents }. Define
a(—) = {dom,rng}, a({-}) = a([-]) = {contents}, a(Pre) = a(Either) =
{content }, and a(L) = a(T) = a(Bot) = a(Abs) = a(Any) = &. This defines
a ground signature, which is expressive enough to describe all programming
language features considered in this paper. In particular, all of its expressive
power will be exploited to describe first-class messages in Section 6.
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Ti=ao,B,0,1,. .. | S(Tl)lEa(s) | rieT T | or
Cu=true |CAC|3Fa.C|7<7|s<7?7 <7 (sprimein Sy)

Figure 1: Syntax of types and constraints

In the rest of this formal presentation, we assume given a fixed, arbi-
trary ground signature. In Sections 4-7, we will use the ground signature
described in Example 2 above, but we will re-introduce it step by step.

2.2 Syntaz of Types and Constraints

The (raw) syntax of types and constraints is given in Fig. 1. «, 5, 9,9, ...
denote type variables. A type term s(7) can be formed by picking a symbol
s € § and a family of type parameters 7, indexed according to the arity of s,
i.e. 7 must be of the form (7;),cq(5). Lastly, types may also be rows, which
denote families of types indexed by a denumerable set of row labels R. The
term 7 : 7; 7' (where 7 € R) represents a row whose element at index r is
7, and whose other elements are given by the row 7/. The term Ot stands
for a row whose element at any index is 7.

The constraint language offers standard constructs (truth, conjunction,
projection [14]), subtyping constraints, and conditional constraints. The
latter are of the form s < 777 < 7, where s must satisfy the following
condition: for any finite subset S of S,;, s < (UxS) impliess’ € § s <, &
In other words, s must be a prime element of its symbol lattice Si. This
ensures that a conditional constraint bearing on the least upper bound of a
set of variables, e.g. (s < a; U...Uay,) ¢, is equivalent to a conjunction
of conditional constraints bearing on its members: A (s < «;7¢). It is a
necessary condition for the correctness of the garbage collection algorithm
(see Theorem 3 in Appendix A).

Our definition of conditional constraints is dissymmetric. Indeed, condi-
tions must be of the form s < 7; conditions of the form 7 < s are disallowed.
The motivation for this decision is to allow the constraint solving algorithm
to ignore conditional constraints unless their condition must be satisfied (see
Definition 19 in Appendix A). If both forms of conditions were allowed to co-
exist, the language would become expressive enough to encode disjunctions
of constraints, making constraint solving more costly.

To ensure that only meaningful types and constraints can be built, we
equip them with kinding and sorting rules. The grammar of sorts is defined
by ¢ ::= Type | Row(R), where R ranges over finite subsets of R. For every
kind x and every sort ¢, we assume given a distinct, denumerable set V;, of
type variables. We define judgements of the form F 7 : k (resp. F 7 : ¢),
meaning that the type 7 has kind x (resp. sort ¢), and judgements of the
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s €Sk Frik
a €V Vi€ a(s) F 7 :kind(l) Fmik Frik
F true
Fa:k F s(T)icas) 1 K F(r:m; m) ik FOor:k
F1iik
FC, FCs FC Fmik s €S8y 1ok Fr <
FCiNC: F3Jda.C Fr <t Fs<m?7n <m
Figure 2: Kinding rules
a(s) N Lrow # &
a(s) N Lrow = & Vi€ a(s)\ Lrow F 7 : Type
a €V Viea(s) Fm:s Vi€ a(s) N Lrow F 7: Row(D)
Fa:g Fs(m)icas) : S F s(7)ica(s) - Type
F 7 Type F 7 Row(RW {r}) 7 Type - FCh FCo
rue _—
F (r:71; 72) : Row(R) F Ot : Row(R) FC1AC
FC Frig Frig Fro:g Fricg Fraig
Fda.C Fr < I—SSTo?TlgTz

Figure 3: Sorting rules

form  C, meaning that the constraint C is well-kinded (resp. well-sorted).
The kinding rules, given in Fig. 2, simply enforce the kind discipline required
by the ground signature. The sorting rules, displayed in Fig. 3, ensure that
only meaningful row terms are built. Intuitively, the sort Type describes
plain types, while the sort Row(R) describes families of types indexed by
R\ R. In other words, a row of sort Row(R) gives information about all
row labels ezcept those in R. For more details, we refer the reader to [21]
or to [20, section 5].

Before moving on, let us point out that a term may have several sorts, for
two distinct reasons. First, a uniform row d7 may be viewed as describing
any (co-finite) number of entries, i.e. it may have any sort Row(R). As a
result, the row term 7y : 795 ...; 7, : T,; OT may have any sort Row(R),
provided {ry,...,r,} N R = @. Such a term will be required to have sort
Row(2) only when used as the [-parameter of a type constructor s expecting
a full row in [-position (i.e. | € a(s) N Lrow). Second, a type constructor
s with non-row parameters (i.e. a(s) N Low = &) can be used at any
sort ¢. For instance, if r : 79; 7 and r : 7; 7 have sort Row(R), then
(r:7o; 7)) = (r: 71; 71) has sort Row(R) as well. Its logical interpretation
will be the same as that of r: 79 — 715 7 = 79.

This point makes the logical interpretation of terms, given in Section 2.4,
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slightly more subtle: the meaning of a term depends on the sort at which it
is viewed. Fortunately, the meaning of a constraint will remain independent
of the sort of its components.

2.3 Logical Model

We now define the logical model within which our constraints are inter-
preted. Informally speaking, it is the term algebra generated by the ground
signature at hand. However, things are made more complex by our desire
to have recursive types' and by the presence of rows.

DEFINITION 2. Let A be the alphabet formed of all letters | € L\ Lyow and
all composite letters [ - r, where | € Liow and r € R. To every |l € L, we
associate a subset A; of the alphabet, defined by Ay = {l} if | € L\ Liow,
and Ay ={l-r;r € R} otherwise.

A path p is a finite string over the alphabet A, i.e. an element of A*. The
letter € denotes the empty path. A ground tree t is a partial function from
A* into S, whose domain is non-empty and prefiz-closed, such that, for all
paths p € dom(t) and for all labels | € L,

o if I € a(t(p)), then p.A; is a subset of dom(t), whose image through t
is a subset of Sk, where k = kind(l);

o otherwise, p.A; lies outside of dom(t).

The head constructor of a ground term t, written hd(t), is t(e). Given
p € dom(t), the subtree of t rooted at p, written t.p, is the tree q — t(p.q).
Given p, | such that | € a(t(p)) N Lyow, the subrow of ¢ rooted at (p,l) is
the function r € R — t(p.(l-r)). A function is said to be quasi-constant iff
its co-restriction to some finite set is a constant function. A ground tree is
regular iff it has a finite number of subtrees. A ground tree t is a ground
type iff it is regular and all of its subrows are quasi-constant. We denote the
set of ground types by T. A ground type t has kind & if and only if t(e) € S.
We denote the set of ground types of kind k by Ty.

Then, we equip every T, with an ordering <. Because ground types are
infinite trees, < cannot be defined easily by structural induction; instead, it
is defined as the limit of a decreasing sequence of pre-orders.

DEFINITION 3. A family of pre-orders over every T, is defined as follows.
Let <g be uniformly true over every T,. Then, for any k € N and t,t' € Ty,
define t <gy1 t' as the conjunction of the following conditions:

o t(e) <x t'(e);

o VI € a(t(e)) Na(t'(e)) \ Lrow t.I <L t.1;

oVli€a(t(e)Nalt'(e) N Lrwow VreR t.(l-r)<tt.(I-7).
! The presence of recursive types removes the need to check whether all solutions of

a constraint are cyclic, which, in the presence of subtyping relationships between type
constructors of different arities, may be difficult.
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(We let t Sﬁg t' stand for t <p t' when | € LT and t' <, t whenl € L .)
Subtyping, denoted by <, is the intersection of these pre-orders; it is a lattice
on every T,.

The subtyping relationship is structural: t and ' are related if and only
if their head constructors #(¢) and t'(¢) are related in the lattice of symbols
and, for every label | defined by both ¢ and #, their [-sub-terms are related
(either co- or contra-variantly, depending on the variance of [). It is, in
general, non-atomic: type constructors of different arities may be related.

2.4 Logical Interpretation

There remains to give an interpretation of types and constraints within the
model. It is parameterized by a ground substitution, which gives meaning to
any free type variables. It maps types to ground types, or to families thereof
(according to their sort), and constraints to Boolean values.

DEFINITION 4. A ground substitution ¢ is a function of domain V, which
maps ngpe mnto Ty, and which maps V,Ijow(R)

functions of R\ R into Ty.

into the set of quasi-constant

DEFINITION 5. The interpretation of a type T of sort ¢, under a ground
substitution ¢, written ¢(7°), or simply ¢(7) when ¢ can be determined from
the context, is defined as follows.

o If T is a type variable o, then ¢(7°) is the image of a through ¢.

o If 7 is of the form s(7)ica(s) and s = Type, then ¢(7°) is the ground
type t such that t(e) = s, t.l = ¢(m) whenever | € a(s) \ Liow and
t.(I-r) = ¢(n)(r) wheneverl € a(s) N Liow and r € R.

o If T is of the form s(7))icq(s) and s = Row(R), then, for everyr € R\R,
d(7¢)(r) is the ground type t such that t(e) = s and t.l = ¢(7)(r)
whenever | € a(s).

o If 7 is of the form r : 71; T2 and ¢ = Row(R), then ¢(7°)(r) = ¢(71)
and, for every ' € R\ (RU{r}), ¢(7%)(r") = ¢(12)(r').

o If T is of the form 01y and ¢ = Row(R), then, for every r € R\ R,
$(7°)(r) = ¢(70).

DEFINITION 6. The constraint satisfaction predicate -, whose arguments
are a ground substitution ¢ and a well-sorted constraint C, is defined as
follows.

o ¢ I true holds.
o ¢ FCy ACy holds iff p = C1 and ¢ = Cy hold.

o ¢ F Ja.C holds iff there exists a ground substitution ¢', which coincides
with ¢ outside of &, such that ¢' = C holds.

o If 7,19 : Type, then ¢ = 11 < 19 holds iff ¢(m1) < P(72) holds.
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o If F 11,19 : Row(R), then ¢ = 11 < 79 holds iff, for everyr € R\ R,
¢(11)(r) < ¢(12)(r) holds.

o If - 19, 71,72 : Type, then ¢ = s < 19?711 < 79 holds iff s <s ¢(70)(€)
implies ¢p(11) < d(12).

o If b 70, 71,72 ¢ Row(R), then ¢ = s < 79771 < 7 holds iff, for every
r € R\ R, s <s ¢(70)(r)(€) implies $(11)(r) < ¢(72)(r).

This definition is well-formed because, even though the types which appear
in a constraint may have several admissible sorts, all of them give rise to the
same interpretation.

Lastly, constraint entailment is given its usual definition: C I+ C’ holds if
and only if, for every ground substitution ¢, ¢ - C implies ¢ - C”.

2.5 The Type System HM(SRC)

We refer to the constraint logic defined in Sections 2.1-2.4 as SRC. It is a
sound constraint system in the sense of [14]; thus, it gives rise to a type
system, namely HM(SRC), for the A-calculus with let.

We do not repeat the typing rules of HM(X) in this paper. For our
purposes, suffice it to recall that type schemes are of the form o ::= Va&[C].T.
When all of a type scheme’s variables are universally quantified, we usually
write “7 where C”.

The A-calculus with let is a limited programming language. To extend it,
we will define new primitive operations, equipped with operational semantics
and appropriate type schemes. However, no extension to the type system
itself will be necessary. This explains why we do not describe it further.
Instead, we will focus our interest on writing expressive type schemes.

3. About Conditional Constraints

The content of this section is informal. It shows how conditional constraints
can be used to gain extra typing flexibility, and why we might want to use
them only sparingly.

In a call-by-value language, if an expression ey diverges, then so does any
application (ej e2). In particular, if ey has type L, then (ej eo) may safely
be given type L as well. In other words, if it can be proven that e; will
never be called, then its return type can be discarded.

It is possible to make a type system aware of this fact. To do so, one
merely introduces a new typing rule:

C,(Tszx:L)kFe:T
C.l'FAze: L — 1L

As a result, the type system is no longer syntax-directed: typing a A-
abstraction involves a choice between this rule and the usual A-abstraction
rule. However, a practical type inference algorithm must not explore both
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cases separately, since that would have exponential cost. Instead, a natu-
ral solution is to use a single type inference rule, which emits a conditional
constraint, along the lines of

C,(lsz:a)Fre:T a, 3 fresh
(L<a?r<B)AC,TF Aze:a—f

As long as the function isn’t invoked, 1 remains an admissible solution for its
argument type a. So, the conditional constraint has no effect, and g remains
unconstrained, meaning that the function produces no result. However, if a
call to this function is later discovered, then a will be constrained to some
value greater than 1. This will trigger the conditional constraint, and o — 7
will become a lower bound for the function’s type, meaning that the function
produces a result of type 7.

This technique allows designing a “lazy” type inference system, which
ignores the type of an expression unless it appears liable to be evaluated.
Heintze [9] uses conditional types for this very purpose. In fact, it is possible
to carry this idea even further, and to ignore not only the expression’s type,
but also its effect on the typing environment. This would involve replacing
(L<a?r <B)AC above with L < a? (7 < BAC); thus, the constraint C,
which describes the requirements of the function concerning its environment,
would also be subject to the condition | < «. This idea appears, under a
different formulation, in e.g. [26].

Despite their theoretical appeal, though, these proposals seem a bit ex-
treme. They produce a large number of conditional constraints, making type
inference less efficient, because potential constraint simplifications are de-
layed. Thus, in a practical system, “laziness” should be used only sparingly.
We propose to build it into the types of a few primitive operations, rather
than to hard-wire it into the typing rules. We will illustrate this principle
in the following sections.

4. Accurate Analysis of Pattern Matchings

When faced with a pattern matching construct, most existing type inference
systems adopt a simple, conservative approach: assuming that each branch
may be taken, they let it contribute to the whole expression’s type. A more
accurate system should use types to prove that certain branches cannot be
taken, and prevent them from contributing.

In this section, we describe such a system. The essential idea — introduc-
ing a conditional construct at the level of types — is due to [9, 2]. Some
novelty resides in our two-step presentation, which we believe helps isolate
independent concepts. First, we consider the case where only one data con-
structor exists. Then, we easily move to the general case, by enriching the
type algebra with rows.
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4.1 The Basic Case
We assume the language allows building and accessing tagged values.

ex=...|Pre|Pre !

A single data constructor, Pre, allows building tagged values, while the de-
structor Pre™! allows accessing their contents. This relationship is expressed
by the following reduction rule:

Pre v, (Prewy) reduces to (v vy)

The rule states that Pre™! first takes the tag off the value vy, then passes
it to the function v.

At the level of types, we introduce a (unary) variant type constructor [-].
Also, we establish a distinction between so-called “normal types,” written
7, and “field types,” written ¢.

Tuo=o,0,7... | L|T|7—=7][¢]
¢ == ,,... | Abs | Pre 7 | Any

A subtype ordering over field types is defined straightforwardly: Abs is its
least element, Any is its greatest, and Pre is a covariant type constructor.
The data constructor Pre is given the following type scheme:

Pre : « — [Pre «]

Notice that there is no way of building a value of type [Abs]. Thus, if an
expression has this type, then it must diverge. This explains our choice of
names. If an expression has type [Abs ], then its value must be “absent”; if
it has type [Pre 7], then some value of type 7 may be “present”.

The data destructor Pre~! is described as follows:

-1

Pre (= pB) =[] =7

where ¢ < Pre «
Pre < p?f <7y

The conditional constraint allows (Pre*1 e1 e2) to receive type L when e
has type [ Abs ], reflecting the fact that Pre™! isn’t invoked until e produces
some value. Indeed, as long as ¢ equals Abs, the constraint is vacuously
satisfied, so 7 is unconstrained and assumes its most precise value, namely
1. However, as soon as Pre < ¢ holds, # < v must be satisfied as well.
Then, Pre !’s type becomes equivalent to (o — ) — [Pre a] — 3, which
is its usual ML type.
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4.2 The General Case

We now move to a language with a denumerable set of data constructors.
ex=...| K| K|close

(We let K, L, ... stand for data constructors.) An expression may be
tagged, as before, by applying a data constructor to it. Accessing tagged
values becomes slightly more complex, because multiple tags exist. The
semantics of the elementary data destructor, K !, is given by the following
reduction rules:

K= 'v vy (Kv3) reduces to (v v3)
K~ 'vivy (L v3) reduces to (vp(Lwvs)) when K # L

According to these rules, if the value v carries the expected tag, then it is
passed to the function v;. Otherwise, the value — still carrying its tag — is
passed to the function vo. Lastly, a special value, close, is added to the
language, but no additional reduction rule is defined for it.

How do we modify our type algebra to accommodate multiple data con-
structors? In Section 4.1, we used field types to encode information about
a tagged value’s presence or absence. Here, we need exactly the same infor-
mation, but this time about every tag. So, we need to manipulate a family of
field types, indexed by tags. To do so, we add one layer to the type algebra:
rows of field types.

Ti=o,0,7,... | L|T|7—=71]|[p]
pu=@, ... | K:¢; p| 0
¢ =,1,... | Abs | Pre 7 | Any
We can now extend the previous section’s proposal, as follows:
K : a— [K :Prea; OAbs]
K™ (a=p) = ([K:hbs; ] = 7) = [K:g; ] =

where ¢ < Pre«
Pre <78 <7y
close : [JAbs]— L

K~"s type scheme involves the same constraints as in the basic case. Using
a single row variable, namely %, in two distinct positions allows expressing
the fact that values carrying any tag other than K will be passed unmodified
to K~ ’s second argument.

close’s argument type is [ 0Abs ], which prevents it from ever being in-
voked. This accords with the fact that close does not have an associated
reduction rule. It plays the role of a function defined by zero cases.

This system offers extensible pattern matchings: any k-ary case construct
can be written in terms of k£ nested destructor applications, terminated by
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close; it will receive the desired, accurate type. (This fact is illustrated
by Example 3 in Section 7.) Thus, no specific language construct or type
inference rule is needed to deal with them.

5. Record Concatenation

Static typing for record operations is a widely studied problem [4, 15]. Com-
mon operations include selection, extension, restriction, and concatenation.
The latter comes in two flavors: symmetric and asymmetric. The former
requires its arguments to have disjoint sets of fields, whereas the latter gives
precedence to the second one when a conflict occurs.

Of these operations, concatenation is probably the most difficult to deal
with, because its behavior varies according to the presence or absence of
each field in its two arguments. This has led many authors to restrict
their attention to type checking, and to not address the issue of type in-
ference [8]. An inference algorithm for asymmetric concatenation was sug-
gested by Wand [30]. He uses disjunctions of constraints, however, which
gives his system exponential complexity. Rémy [22] suggests an encoding
of concatenation into A-abstraction and record extension, whence an infer-
ence algorithm may be derived. Unfortunately, its power is somewhat de-
creased by subtle interactions with ML’s restricted polymorphism; further-
more, the encoding is exposed to the user. In later work [23], Rémy suggests
a direct, constraint-based algorithm, which involves a special form of con-
straints. Sulzmann [27] follows a similar route and creates a custom instance
of HM(X), again involving special-purpose concatenation constraints. Our
approach is inspired from Rémy’s later paper, but re-formulated in terms of
conditional constraints, thus showing that no ad hoc constraint forms are
necessary.

Again, our presentation is in two steps. The basic case, where records only
have one field, is tackled using subtyping and conditional constraints. Then,
rows allow us to easily transfer our results to the case of multiple fields.

5.1 The Basic Case

We assume a language equipped with one-field records, whose unique field
may be either “absent” or “present”. More precisely, we assume a constant
data constructor Abs, and a unary data constructor Pre; a “record” is a
value built with one of these constructors. A data destructor, Pre™!, allows
accessing the contents of a non-empty record. Lastly, the language offers
asymmetric and symmetric concatenation primitives, written @ and @QQ,
respectively.
e:=...|Abs |Pre |Pre ! | @ | QQ

The relationship between record creation and record access is expressed by
a simple reduction rule:

Pre ! (Prew) reducesto v
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The semantics of asymmetric record concatenation is given as follows:

v; @Abs reduces to v

v] @ (Prewg) reduces to Prews

(In each of these rules, the value vy is required to be a record.) Lastly,
symmetric concatenation is defined by

Abs @Q vy reduces to v9
v @QQ Abs reduces to vy

(In these two rules, v; and vy are required to be records.)

The construction of our type algebra is similar to the one performed in
Section 4.1. We introduce a (unary) record type constructor, as well as a
distinction between normal types and field types:

Tuo=o,0,7,... | L|T|7—=71]{d}
¢ = ,1,... | Bot | Abs | Pre 7 | Either 7 | Any

Let us explain, step by step, our definition of field types. Our first, natural
step is to introduce type constructors Abs and Pre, which allow describ-
ing values built with the data constructors Abs and Pre. The former is a
constant type constructor, while the latter is unary and covariant.

Many type systems for record languages define Pre 7 to be a subtype of
Abs. This allows a record whose field is present to pretend it is not, leading
to a classic theory of records whose fields may be “forgotten” via subtyping.
However, when the language offers record concatenation, such a definition
isn’t appropriate. Why? Concatenation — asymmetric or symmetric — in-
volves a choice between two reduction rules, which is performed by matching
one, or both, of the arguments against the data constructors Abs and Pre.
If, at the level of types, we allow a non-empty record to masquerade as an
empty one, then it becomes impossible, based on the arguments’ types, to
find out which rule applies, and to determine the type of the operation’s
result. In summary, in the presence of record concatenation, no subtyp-
ing relationship must exist between Pre 7 and Abs. (This problem is well
described — although not solved — in [4].)

This leads us to making Abs and Pre incomparable. Once this choice has
been made, completing the definition of field types is rather straightforward.
Because our system requires type constructors to form a lattice, we define
a least element Bot, and a greatest element Any. Lastly, we introduce a
unary, covariant type constructor, Either, which we define as the least
upper bound of Abs and Pre, so that Abs U (Pre 7) equals Either 7. This
optional refinement allows us to keep track of a field’s type, even when its
presence is not ascertained. (These ideas are due to Rémy, who carries
them further in the case of objects [24].) The lattice of field types is shown
in Fig. 4.
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Figure 4: The lattice of record field types

Let us now assign types to the primitive operations offered by the language.
Record creation and access receive their usual types:

Abs : {Abs}
Pre : «a — {Prea}
Pre! {Prea} — «

There remains to come up with correct, precise types for both flavors of
record concatenation. The key idea is simple. As shown by its operational
semantics, (either flavor of) record concatenation is really a function de-
fined by cases over the data constructors Abs and Pre — and Section 4 has
shown how to accurately describe such a function. Let us begin, then, with
asymmetric concatenation:

Q@ : {p1} = {2} = {es}
where w9 < Either ao
Abs < 271 < @3
Pre < 9 7Pre ag < 3

Clearly, each conditional constraint mirrors one of the reduction rules. In
the second conditional constraint, we assume «y is the type of the second
record’s field — if it has one. The first subtyping constraint represents this
assumption. Notice that we use Pre a9, rather than s, as the second
branch’s result type; this is strictly more precise, because @2 may be of the
form Either as.

Lastly, we turn to symmetric concatenation:

Q@@ : {p1} = {p2} = {ps}
where Abs < 1 72 < 3
Abs < 9271 < 3
Pre < 1 7o < Abs
Pre < 371 < Abs

Again, each of the first two constraints mirrors a reduction rule. The last two
constraints disallow the case where both arguments are non-empty records.



A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 17

(The careful reader will notice that any one of these two constraints would
in fact suffice; both are kept for symmetry.)

In both cases, the operation’s description in terms of constraints closely
resembles its operational definition. Automatically deriving the former from
the latter seems possible; this is an area for future research.

5.2 The General Case

We now move to a language with a denumerable set of record labels, written
[, m, etc. The language allows creating the empty record, as well as any one-
field record; it also offers selection and concatenation operations. Extension
and restriction can be easily added, if desired.

ex=0|{l=¢}|el|@|@Q

We do not give the semantics of the language, which should hopefully be
clear enough.

At the level of types, we again introduce rows of field types, denoted by p.
Furthermore, we introduce rows of normal types, denoted by p. Lastly, we
lift the five field type constructors to the level of rows.

Tu=ao,0,y,... | L|T|7—=71]|{p}
¢ = ,1,... | Bot | Abs | Pre 7 | Either 7 | Any
o

=a,B,7... L7 0|07
pu=@,,...|1:¢; p| Op|Bot | Abs | Pre g | Either p | Any

This allows writing complex constraints between rows, such as ¢ < Pre «,
where ¢ and a are row variables. A constraint between rows is interpreted as
an infinite family of constraints between types, obtained component-wise.
That is, (I : ¢'; ") < Pre (I : /; &) has the same logical meaning as
(¢ <Pred) A (¢" <Pred”). (See Section 2 for details.)

We may now give types to the primitive record operations. Creation and
selection are easily dealt with:

%) {OAbs}
{l=-} : a—{l:Prea; OAbs}
-1 {l : Pre a; OAny} — «

Interestingly, the types of both concatenation operations are unchanged from
the previous section — at least, syntactically. (We do not repeat them here.)
A subtle difference lies in the fact that all variables involved must now be
read as row variables, rather than as type variables. In short, the previous
section exhibited constraints which describe concatenation, at the level of
a single record field; here, the row machinery allows us to replicate these
constraints over an infinite set of labels. This increase in power comes almost
for free: it does not add any complexity to our notion of subtyping.
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6. First-Class Messages

In many current object-oriented languages, messages do not have first-class
status. That is, whenever a message is sent to an object, its name is fixed and
must be explicitly mentioned; only the message parameters and the receiver
object are allowed to vary dynamically. Some languages, however, allow
first-class (also known as “dynamic”) messages. That is, they allow messages
to exist as autonomous entities, which may be computed in arbitrary ways
before being sent to an object.

We will view objects as records of functions, and messages as tagged values,
made up of a label and a parameter. Indeed, this simple view suffices to
exhibit the type inference problem we are interested in. Thus, we consider
a language with records and data constructors, as described in Sections 4.2
and 5.2. Furthermore, we let record labels and data constructors range
over a single name space, that of message labels. A primitive message-send
operation, written #, is defined as follows:

#{m =wvy;...} (mwvy) reducesto (vjvy)

In plain words, # examines its second argument, which must be some mes-
sage m with parameter vo. It then looks up the method named m in the
receiver object, and applies the method’s code, v1, to the message param-
eter. Put another way, if = is a record of functions, then (#r) acts as a
function defined by cases. Thus, # is nothing but a witness of the well-
known isomorphism which exists between these representations.

6.1 The Problem

In a language without first-class messages, every message-send operation
must involve a fixed message label. So, instead of a single, generic opera-
tion such as #, the language provides a family of primitive message-send
operations, indexed by message labels.

In our view of objects as records of functions, these operations are defin-
able within the language. Indeed, the operation #m, which allows send-
ing the message m to the object o with parameter p, may be defined as
Ao.Ap.(o.m p). Then, type inference yields

#m : {m:Pre (o — f); OAny} = a — f

Because the message label m is statically known, it can be explicitly men-
tioned in the type scheme, making it easy to require the receiver object to
carry an appropriate method.

In a language with first-class messages, on the other hand, m is no longer
known. As a result of this difficulty, much of the initial work on typed object-
oriented languages has ignored the issue of first-class messages. Gaster [7,
chapter 7] studies a static type system where # (under the name of sumE-
lim) is a primitive operation. However, in his system, (#r) is well-typed
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only if all functions stored in r have the same return type. This condition is
clearly too restrictive for our purposes: an object must be allowed to con-
tain methods with different return types. Nishimura [13] suggests a type
inference system for an object-oriented language with first-class messages,
in the style of Ohori’s second-order typed record calculus [15]. It is later
re-formulated by Miiller and Nishimura [12]. The new presentation is based
on feature constraints, including a new form of constraints, specifically in-
tended to model the behavior of a generic message-send operation. Bugliesi
and Crafa [3] also attempt to present a simplified view of Nishimura’s original
work. However, they choose a higher-order type system, thus abandoning
type inference.

6.2 A Solution

We said above that, given a record r, the partial application (# ) yields a
function defined by cases. Indeed, given a tagged value (mv), it will invoke
an appropriate piece of code, selected according to the label m. Good point
— this paper is precisely concerned with ways of giving accurate types to
functions defined by cases. We have shown how conditional constraints allow
ignoring (the return type of) a branch, unless it is liable to be taken. In
object-oriented terms, they allow ignoring (the return type of) any method
which is provably unrelated with the message at hand. This solves the
crucial problem with first-class messages.

Here, we choose to deal directly with the case of multiple message labels,
even though the two-step presentation adopted in Sections 4 and 5 would
still make sense here. Therefore, we propose:

# o ey =2yl =8
where 1) < Pre «
Pre <4 7¢p < Pre (o — 9B)

(Here, all variables except /3 are row variables.) The operation’s first (resp.
second) argument is required to be an object (resp. a message), whose
contents (resp. possible values) are described by the row variable ¢ (resp.
). The first constraint merely lets « stand for the type of the message
parameter. The conditional constraint, which involves three rows, should
again be understood as a family, indexed by message labels, of conditional
constraints between field types. The conditional constraint associated with
some label m will be triggered only if 9’s element at index m is of the form
Pre _, i.e. only if the message’s label may be m. When it is triggered, its
right-hand side becomes active, with a three-fold effect. First, ¢’s element
at index m must be of the form Pre (_ — _), i.e. the receiver object must
carry a method labeled m. Second, the method’s argument type must be
(a supertype of) a’s element at label m, i.e. the method must be able to
accept the message’s parameter. Third, the method’s result type must be (a
subtype of) 3, i.e. the result type of the whole operation will be (at least)
the join of the return types of all potentially invoked methods.
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This proposal shows that type inference for first-class messages can be
performed using existing tools, with no need for dedicated theoretical ma-
chinery. It also shows that first-class messages are naturally compatible
with all operations on records, including concatenation — a question left
unanswered by Nishimura [13].

7. Examples

This section illustrates the proposals made in the previous sections with
short examples.

ExAMPLE 3. We counsider lists built out of two data constructors, NV and C.
The function car, which returns the first element of a list, if it exists, and
E otherwise (where E is another data constructor, standing for error), is
defined as follows:

car = (N7'E
(C~Y (A&, r).x)

close))
Then, car’s inferred type scheme is

car : [N :p; C:; Ohbs| — v
where ¢ < Pre
Pre < ¢ 7[FE :Pre a; OAbs]| <~
 <Pre (B xT)
Pre <¢ 7[5 <7y

(Because the language only offers unary constructors, N and E must carry
some argument, which remains unspecified here; a stands for its type. Usu-
ally, one identifies @ with some unit type.) The first conditional constraint
above tells that the first branch of car’s definition — namely E — will not
be taken unless ¢ is “present”, i.e. unless car’s argument is tagged N. The
next one tells that the second branch — namely A(z,r).z — will not be taken
unless it is tagged C. No other tags are allowed, because car’s argument
type involves the row (N : ¢; C : 1; OAbs), whose projection on any tag
other than N and C is Abs.

What happens when applying car? The type inferred for the expression
car (C (1,C (true, N ()))), where it is passed a heterogeneous, 2-element list,
is int. In other words, this expression is statically found not to produce F,
because the first conditional constraint is not triggered.

ExXAMPLE 4. We define a function which reads the field [ out of a record r
and returns a default value d if r has no such field. It is given by extract =
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AdAr.({l = d} @Qr).l. In our system, extract’s inferred type is

extract : a—{l:p; P} =
where ¢ < Either 3 1y < Either e
Abs < p?a <7y Abs < 1) 7 Abs < Any
Pre < p?78 <7 Pre < ¢ ?Pre € < Any

The first constraint retrieves r.l’s type and names it [, regardless of the
field’s presence. (If the field turns out to be absent, 8 will be unconstrained.)
The left-hand conditional constraints clearly specify the dependency be-
tween the field’s presence and the function’s result.

The right-hand conditional constraints have tautologous conclusions —
therefore, they are superfluous. They remain only because our current con-
straint simplification algorithms are “lazy” and ignore any conditional con-
straints whose condition has not yet been fulfilled. This problem could be
fixed by making the simplification algorithm slightly more aggressive, i.e.
by allowing it to check whether the conclusion of a conditional constraint is
redundant, regardless of its condition.

The type inferred for extract 0 {I{ = 1} and extract 0 {m = 1} is int.
Thus, in many cases, one need not be aware of the complexity hidden in
extract’s type.

ExaMPLE 5. We assume given an object o, of the following type:

o: { getText:Pre (unit — string);
setText : Pre (string — unit);
select : Pre (int X int — unit);
OAbs }

o may represent, for instance, an editable text field in a graphic user interface
system. Its methods allow programmatically getting and setting its contents,
as well as selecting a portion of text.

Next, we assume a list data structure, equipped with a simple iterator:

iter : (¢ — unit) — a list — unit

The following expression creates a list of messages, and uses iter to send
each of them in turn to o:

iter (# o) [ setText “Hello!”; select (0,5) ]

This expression is well-typed, because o contains appropriate methods to
deal with each of these messages, and because these methods return unit,
as expected by iter. The expression’s type is of course unit, iter’s return

type.
Here is a similar expression, which involves a getText message:

iter (# o) [ setText “Hello!”; getText ()]
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This time, it is ill-typed. Indeed, sending a setText message to o produces
a result of type unit, while sending it a getText message produces a result
of type string. Thus, (# 0)’s result type must be T, the join of these types.
This makes (# 0) an unacceptable argument for iter, since the latter expects
a function whose return type is unit.

8. Conclusion

In this paper, we have advocated the use of a constraint-based type inference
system equipped with subtyping, rows and conditional constraints. This
provides a common solution to several difficult type inference problems,
which, so far, had been addressed using special forms of constraints. From
a practical point of view, it allows them to benefit from known constraint
simplification techniques (see Appendix A), leading to an efficient inference
algorithm [18].

Our system subsumes Rémy’s proposal for record concatenation [23], as
well as Miiller and Nishimura’s view of first-class messages [12]. Aiken,
Wimmers and Lakshman’s “soft” type system [2] is more precise than ours,
because it interprets constraints in a richer logical model, but otherwise
offers similar features.

The design of a type inference system involves two orthogonal components:
a set of typing rules and a constraint language (together with its logical
interpretation). As to the former, we have suggested using HM(X) [14, 28,
27], whose formulation appears most elegant, but other choices would be
possible (see e.g. [10, 17]). The focus of the paper is really on the latter:
our aim was to find a constraint language expressive enough to accurately
describe the features of the programming language at hand. One should
emphasize the fact that we do not, a priori, view the constraint system
SRC as better (simpler, more elementary, more canonical, etc.) than its
competitors. We merely take its wide applicability as evidence of the fact
that it is comparatively more general-purpose (less ad hoc) than some of its
predecessors.

To conclude, we hope this paper illustrates how a small number of well-
understood logic mechanisms allow building an advanced type inference sys-
tem.
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Appendix A. Algorithms and Proofs

This appendix contains a formal description of constraint resolution and
simplification algorithms, in the presence of atomic and conditional subtyp-
ing constraints. Resolution is required in determining whether a program is
type-correct; simplification is key to achieving reasonable efficiency.

The system described in this appendix does not have rows, or a separation
of types into distinct kinds, but otherwise has all features presented in the
body of this paper. Adding rows to this formal description would require
work, but should not pose any foreseeable difficulty, since the concept of row
is essentially orthogonal to the notion of subtyping. Adding kinds should be
routine. A reference implementation of the full system, including rows and
kinds, is available [18].

This appendix describes an extension of [17] with conditional constraints.
Thus, most proofs presented here are partial, and describe only the mod-
ifications required to accommodate conditional constraints. However, all
definitions and statements are complete.

This appendix is laid out as follows. First, we review all necessary con-
cepts, including ground types, types, constraints, and type schemes. Then,
we give a constraint resolution algorithm, and three constraint simplification
algorithms.

Throughout this appendix, we use a couple of notational shortcuts. If P
is a logic predicate, then

Vot C P(p) stands for Vo (pF C)= P(p)
dpEC P(p) stands for dp (pF C)A P(p)

Appendiz A.1 Ground Types

As in Section 2, our formal development is parameterized with an arbitrary
ground signature (see Definition 1). We assume that it defines only one
kind, so we write S and T instead of S and T,. We write Ls, Tgs, <s, Us
and Mg instead of L, T, <., U, and M,. We also assume L., = &. The
model (T, <), is defined as in Definitions 2 and 3.

In this appendix, we use the letter 7 to denote either a ground type, or
a type, and sometimes both at the same time (see e.g. Definition 17 and
Theorem 2). We will try to preserve a clear distinction whenever possible.

THEOREM 1. T, equipped with <, is a lattice. Its lattice operations, denoted
by U and M, are characterized by the following identities:

(11 O 72)(e) = 71(€) Os T2(€)
Vi e dom(ry O7y) (1 O7).l=m.1 0 7.1

where O may stand for U or M. (We let O' stand for O when | € L*; when
1 € L=, U stands for 1 and M stands for U.) In the right-hand side of the
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second equation, 1.l (resp. To.1) may be undefined; in such a case, it should
be read as the neutral element of O,

Note that, because of the last requirement of Definition 1, at least one of
71.1 and 9.l must be defined in the second equation above.

We let L (resp. T) stand for the ground type 7 such that dom(7) = {e}
and 7(e) = Lg (resp. Tg).

Appendiz A.2 Types

Types are defined as in Section 2.2, except row terms are disallowed.

DEFINITION 7. Let V be a denumerable set of type variables, denoted by «,
B, etc. The set of types, denoted by T, is the term algebra T(3,V). In
other words, a type T is either a type variable, or a constructed term, of the
form s(71)ica(s), where s € S is 7’s head constructor, also written hd(r).

DEFINITION 8. A ground substitution p is a total mapping from type vari-
ables to ground types. Ground substitutions are straightforwardly extended
to types.

Appendiz A.3 Constraints and Type Schemes

We now give syntax and semantics for three kinds of constraints: atomic
constraints, conditions and conditional constraints. In each case, the nota-
tion p ki ¢ means that the ground substitution p k-satisfies the constraint
c. The notation p F ¢ means that p satisfies ¢, and holds, by definition, if
and only if p F, ¢ holds for all k£ € NT.

DEFINITION 9. An atomic constraint is a pair of types, written 71 < 7o. A
ground substitution p k-satisfies it iff p(m1) <k p(T2).

DEFINITION 10. A condition is a pair of a symbol s € S and of a type T,
written s < T, where s must be a prime element of S. A ground substitution
p satisfies s < 7 iff s <g hd(p(7)).

DEFINITION 11. A conditional constraint is a pair of a condition and of
an atomic constraint, written s < 7771 < 1. A ground substitution p
k-satisfies it iff p s < 7 implies p b, 71 < To.

Having defined constraints, we may define notions of satisfaction and en-
tailment on constraint sets. They are defined in the usual way. We also
introduce a non-standard notion of pre-satisfaction (resp. pre-entailment),
which is logically weaker (resp. stronger) than its standard counterpart, be-
cause it ignores conditional constraints. These notions are purely technical,
they are used only within our proofs.
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DEFINITION 12. Let C be a set of constraints, both atomic and conditional.
A ground substitution p is a pre-solution of C iff p - ¢ holds for all atomic
c e C. p s a solution of C iff p = c holds for all c € C. We write p FP™ C
in the former case, and p = C in the latter.

Let ¢ be a constraint. C' pre-entails ¢, which we write C IFP™ ¢, iff Vp P
C plkec. C entails ¢, which we write C'I-c, iff VpEC phkec.

We now define type schemes. They are constrained polymorphic types, i.e.
types containing variables whose possible instantiations are restricted by a
constraint set. For simplicity, we only consider closed type schemes, i.e. type
schemes which have no free type variables. Although somewhat uncommon,
type systems exist which respect this restriction (see [29, 17]). It should also
be possible to extend our results to the case of arbitrary type schemes.

DEFINITION 13. A type scheme is a pair of a type T and of a constraint set
C, written VC. 7.

A type scheme o represents a set of ground types, which we call its denota-
tion. Each of these ground types represent one possible correct behavior of
the program described by o. A type scheme whose denotation is empty (i.e.
whose constraint set has no solution) thus represents an ill-typed program.

DEFINITION 14. The denotation [o] of a type scheme o is the union of the
upper cones generated by its ground instances with respect to <. That is,

VC.7r]={r";3p+C p(r) <7}

A type scheme whose denotation is bigger represents a larger set of possible
behaviors; thus, it is more general. This notion allows comparing type
schemes, while accounting for polymorphism and subtyping at the same
time. It was introduced in [29], where it was written <"; we denote it <.

DEFINITION 15. Given two type schemes o1 and o2, the former is said to
be more general than the latter iff [o1] D [o2]; we shall then write o1 X 09.
In other words, o1 is more general than oo iff for any ground instance of o9,
there exists a smaller ground instance of 1. Formally,

(VCy.11) < (VO5.72)
is thus equivalent to
Vpo = Cy 3pi = C1 o pi(1) < pa(72)
We write o1 = 09 when o1 < 09 and o9 < 07.

The relation = offers a specification of constraint simplification. Indeed, a
type scheme o can be simplified into a type scheme ¢’ only if o =~ ¢’. One
would also expect ¢’ to have a smaller textual representation than o, but
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that is not a requirement; it is rather to be viewed as an implementation
detail.

We conclude this section with a definition of what it means for a type
scheme to be made up of small terms. All of the algorithms defined here
will expect this property to hold, and will preserve it, making it a global
invariant. This choice simplifies definitions and proofs. Furthermore, from
a practical point of view, it allows enforcing maximum sharing, since it
requires every sub-term to be “named” by a type variable, allowing our
minimization algorithm to identify sub-terms.

DEFINITION 16. A small term is a constructed type term whose strict sub-
terms are type variables. A type scheme YC. T 4s made up of small terms iff
it satisfies the following conditions:

o T 18 a type variable;

o for all (11 < 1) € C, either 71 and T2 are type variables, or one is a
variable and the other is a small term.

o forall (s <771 <m) €C, 7,7 and 1o are type variables.

Every type scheme can be turned into an equivalent type scheme which is
made up of small terms. (In practice, this would be done when converting
type schemes input by the user into some internal representation.)

Appendiz A.J Solving Constraints

We begin with a fundamental technical result, which describes a weak, suffi-
cient condition for a constraint set to have a solution. It shall form the basis
for the proof of the closure algorithm. We prove a fairly powerful version
of this result, allowing ground constants to appear in constraints. (If these
constraints were to be written, some finite representation of these constants
would be required; however, such is not the case here.) Thanks to this gen-
eralization, this result will also form the basis for the proof of the garbage
collection algorithm.

DEFINITION 17. A constraint set with ground constants is a constraint set
C, where atomic constraints may involve either two variables, one variable
and a small term, or one variable and a ground type, and where conditional
constraints have their usual form. Define the assertion C IFt1 1 < 7y to
mean

Vk Z 0 Vp l_gre C P |_k+1 T1 S T2

Define C¥(a) = {r;7 ¢ VAT <a€C} and CM(a) ={T;T¢VAa<TE
C}. C is said to be weakly closed iff the following conditions are met:

(1) a<pBeC and B<vyeC implya<~yeC;

(2) a < B EC and T € C¥a) imply IT' € CH(B) C I+ <7/;

(3) @« < BeC and 7' € CN(B) imply Ir € CT(a) CIFH 7 < 7;
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(4) 7 € CHa) and 7' € CT(a) imply C IFH1 7 < 7/;
(5) a<peCands<plceC implys<a?ceC;
(6) s<alceC, e C¥a) and s <s hd(r) imply C IFP™ c.

C*(a) contains all lower bounds of a which are not type variables; thus,
every 7 € C*(a) must be either a small type term, or a ground type. A
similar remark holds concerning C(c).

Conditions 1 and 5 above are purely syntactic transitivity conditions. Con-
ditions 2 to 4 also involve transitivity, but the use of [F*! allows expressing
these conditions in a logical, rather than syntactic, way, making them less
restrictive.

THEOREM 2. Let C be a constraint set with ground constants. If C is weakly
closed, then C has a solution.

Proor. Note that this proof only uses Conditions 2, 4 and 6 of Defini-
tion 17. The other conditions shall be required by further theorems, such
as the correctness proof of garbage collection.

The first step of the proof counsists in exhibiting a ground substitution p
such that, for all a € fv(C), p(a) equals U{p(7); 7 € C*(a)}, and proving
that p is a pre-solution of C. In fact, this step coincides with the classic
proof performed in the absence of conditional constraints [17]; we shall not
repeat it here.

The second step consists in proving that p is a full solution of C'. Pick a
conditional constraint s < a?c € C. Assume p - s < a. By definition of p,
this statement can be written

s <s hd(p(@)) = hd(L{p(r); 7 € C*(a)})
= Us{hd(p(7)); 7 € CH(a)}
=Ug{hd(r); 7 € Ci(a)}

(The identity hd(p(7)) = hd(7) stems from the fact that 7 is either a small
term, or a ground constant, with a fixed head constructor.) Considering that
s is prime (see Definition 10), this entails s <s hd(7) for some 7 € C+(a).
We can then apply Condition 6 of Definition 17, which yields C IFP™® c.
Since p is a pre-solution of C, this implies p - ¢. We have thus verified
pF s < a?c, proving that p is a solution of C. O

Equipped with this technical result, we are now ready to define a constraint
resolution algorithm. It is based on a simple closure computation. We begin
by defining an auxiliary constraint decomposition function, which breaks a
constraint down into a set of equivalent constraints.

DEFINITION 18. Given types 71 and o, subc(m < 79) is defined as

o {m < 7}, if 71 or T2 is a variable;
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o {r.l <' 7.l1;1 € dom(ry) N dom(7s)}, if 1 and 72 are constructed
terms such that hd(71) <g hd(r2).

Note that subc(r; < 79) is undefined when hd(7) £s hd(72); indeed, such
a constraint is clearly unsatisfiable.
Using this auxiliary function, we can now describe the closure conditions:

DEFINITION 19. Let C be a constraint set, made up of small terms. C 1is
said to be closed iff

(1) T<aeC and a < 1" € C imply sube(r < 7') C C;
(2) a<pBeC and s<pTceCimplys<a?lceCC;
(8) s<a?lceC, 1€ Ca) and s <s hd(r) imply c € C.

Condition 1 is the classic closure condition, found e.g. in [17]; it involves
transitivity and structural decomposition. Condition 2 is a transitivity con-
dition concerning conditional constraints. Condition 3 requires that the
conclusion of a conditional constraint whose condition must be satisfied be
discharged into the constraint set.

It is easy to check that closure implies weak closure [17]. This yields an
algorithm to decide whether a constraint set C' has a solution: attempt to
compute the smallest closed set C* containing it, by repeated application of
the above three rules. Each rule preserves the set’s solution space. So, if the
computation succeeds, then C has a solution; if, on the other hand, it fails
(because subc is applied outside of its domain), then C' has no solution.

Consider a conditional constraint s < a7 ¢. According to the closure rules
above, the atomic constraint ¢ will have no effect on the constraint resolu-
tion process until it is discharged by rule 3. That is, ¢ will be ignored until
the algorithm discovers some evidence that the condition s < « must be sat-
isfied. This explains why conditional constraints delay type computations,
as mentioned in the body of this paper. The algorithm will not speculate
about the consequence of the conditional constraint, should its condition be
satisfied; rather, it waits until it has no choice but satisfy c.

Appendiz A.5 Polarity

We now define how to associate a polarity with each type variable in a type
scheme whose constraint set if (weakly) closed. This notion will be used in
the definition of all three constraint simplification algorithms.

DEFINITION 20. Consider a type scheme o = VC.J, made up of small terms,
where C' is weakly closed. The set of positive variables of o, and the set of
negative variables of o, respectively denoted by fv* (o) and fv~ (o), are the
smallest subsets P and N of tv(o) such that

o d€P;

oVae€P VreCHa) split(r) C (N, P);
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oVae N VreCl(a) split(r) C (P,N);
oVoeN s<a?f<velC = pePAvyEN.

where the auziliary function split maps a small term 7 to an element of
2V x 2V, as follows:

split(7) = ({7.l;1 € L™}, {r.l;1 € LT})

A type variable is said to be bipolar if it is positive and negative, and neutral
if it is neither. fv (o) and fv~ (o) can be computed in time linear in the size
of o, using a simple fix-point calculation. Every type scheme is equivalent
to a type scheme with no bipolar variables; we do not prove this result here.

Appendiz A.6 Garbage Collection

Knowing the polarity of each variable allows us to throw away many redun-
dant constraints, as shown by the following definition and theorem.

DEFINITION 21. Consider o as in Definition 20. The image of o through
garbage collection, denoted by GC(0), is the type scheme VD. 0, where D is
a subset of C defined as follows:

oca<BeDiffa<BeC,actv (o) and B € vt (0);

o D¥(a) equals CH(a) if a € fv1 (o), and @ otherwise;

o D'(a) equals CT(a) if @ € tv (o), and @ otherwise;

os<al?’B<yeDiff s<a?f<yeC and a € v (o).

This definition is mostly identical to the one in [17]; only the fourth point
is new, and specifies that a conditional constraint is redundant unless it
bears on a negative variable. In operational terms, a conditional constraint
s < a?c can be triggered only if « receives a lower bound which exceeds
s. Considering that only negative variables can receive new lower bounds in
the future, this constraint has no effect unless « is negative.

THEOREM 3. Consider o as in Definition 21. Then o = GC(0).

PROOF. Write 0/ = GC(0). Since o' has fewer constraints, it is clear that
o' < 0. So, we need to prove o < o’. According to Definition 15, this is
equivalent to

Vo'ED 3pEC p(6) < p(0)

Pick some p' = D. We now wish to prove that CU{d < p/(d)} admits a solu-
tion. This is a constraint set with ground constants, as per Definition 17. We
shall meet our goal by proving that the following constraint set—a superset
of the previous one—is weakly closed:

CU{p(B)<a;fetv (o) A<acC}
U{a<p(B); Betvi(o)ha<peC}
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(C" denotes the reflexive closure of C, i.e. a < f € C" iff a = 8 or
a < f € C.) Let E denote this set.

That £ should satisfy Conditions 1 to 4 of Definition 17 is a classic result,
proved in [17]. The novelty, in the presence of conditional constraints, is to
check that E also satisfies Conditions 5 and 6.

To check Condition 5, assume aw < f € E and s < f7c¢ € E. Considering
the definition of F, these constraints must in fact belong to C. Since C' itself
is weakly closed, s < a7 ¢ belongs to C, which is a subset of E.

To check Condition 6, assume s < a?c € E, 7 € E*(a) and s <g hd(7).
As above, s < a?c¢ must in fact belong to C. Furthermore, if 7 € C¥(a),
then it is again easy to conclude, considering that C itself is weakly closed.
Thus, let us assume 7 ¢ C+(a). Considering the definition of E, we must
have 7 = p'(B), B € fv (o) and S < a € C", for some «, 8 € fv(C).

We have s < a?c € C and f < a € C". Because C satisfies Condition 5
of Definition 17, this entails s < f7¢ € C. Furthermore, since 8 € fv (o),
this constraint is preserved by garbage collection; formally, Definition 21
states that s < 7c € D. Since p is a solution of D, we have p' s < 87c.
Finally, recall that s <s hd(7) = hd(p'(8)), which can be written p' - s < .
By bringing both results together, we obtain p’ I c.

Let us now write y; (resp. 2) for the left-hand (resp. right-hand) side of
c. The assertion p' | ¢ can be re-stated p/'(v1) < p'(72). Besides, we have
Betv (o) and s < 7 <, € C; according to Definition 20, this entails
y1 € fvt(0) and 72 € fv (). Then, according to the definition of E, the
constraints 1 < p/(71) and p'(y2) < 2 must appear in E. It follows that
any pre-solution of F satisfies y; < 2. In other words, E IFP™ ¢. O

Appendiz A.7 Canonization

DEFINITION 22. A constraint set C' is in canonical form iff each variable
a € tv(C) has exactly one constructed lower (resp. upper) bound, i.e. iff
C¥(a) and Ct(«a) are singletons.

We now define an algorithm which turns an arbitrary type scheme o into
an equivalent type scheme in canonical form.

DEFINITION 23. Let 0 = VC.§ be a type scheme, made up of small terms,
with no bipolar variables, such that o = GC(0).

Let V (resp. W) range over non-empty subsets of fv™ (o) (resp. tvt(o)).
For each such V' (resp. W) of cardinality greater than 1, pick a fresh vari-
able vy (resp. Aw ). (By fresh variables, we mean that these variables are
pairwise distinct, and distinct from o’s variables.)

Define the rewriting functions v~ and r* according to Fig. 5. The first
three lines define r~ (resp. ™) over non-empty sets of negative (resp. posi-
tive) variables; the next two extend them to sets of negative (resp. positive)
small terms, ranged over by T'. v stands for either + or —; U% stands for
Us when v =+, and for Mg when v = —; v stands for v when | € LT, and
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r'({e}) =

(W)—)\then|W|>1

r (V) =9y when |V |>1
)
[

hd(r*(T) LIshcl()
Vi € a(UShd(T)) r¥(T).1 = r¥' (T.1)

Figure 5: Definition of the rewriting functions

r(V)<rt(W)eDiff JacV FBeW a<BeC

D*(e) = {r"(CHw)} D'(a) = {r~ (CN()}
D*(y) = {1} D'(y) = {r-(uC'(V))}
D*(w) = {rF(UCW))} D'(w) ={T}

s<r (V)?ceDif JaeV s<a?ceC

Figure 6: Canonization

for the opposite of v when I € L~. On the last line of Fig. 5, T.l stands
for {r.l; 7 € T}. The expression ' (T.1) is well-defined, because T'.l is a
non-empty set of variables. Indeed, | belongs to a(U%hd(T)). According to
the last condition of Definition 1, this must be a subset of Ua(hd(T)); that
is, there must exist some T € T such that 7.1 is defined.

The image of o through canonization, denoted by Can(o), is VD.§, where
the constraint set D is given by Fig. 6. It is clear that Can(o) is in canonical
form.

Considering our strong hypotheses on o, one easily proves that Can(o) is
closed. One can also give a conservative approximation of the polarity of
each variable in Can(o). Indeed, if a variable « is positive (resp. negative,
neutral) in o, then it is at most positive (resp. negative, neutral) in Can(o).
Furthermore, any Ay (resp. 7y) is at most positive (resp. negative) in

Can(o).

THEOREM 4. Consider o as in Definition 23. Then o ~ Can(o).
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PROOF. Let us use the notations of Definition 23. We first show that
Can(o) < o, i.e.
Vo C 3p'FD p'(9) < p(d)

Pick some p = C. Define p’ by

pla)=pl@)  plw)=0pV)  p'(Aw)=UpW)

Clearly, for any W, p/(r*(W)) = Up(W). Similarly, o'(r=(V)) = Mp(V).
Extending these assertions to sets of small terms, rather than sets of vari-
ables, is straightforward. Using these results, it is a matter of routine to
ascertain that p’ satisfies D. Here, we shall only check that all conditional
constraints of D are satisfied by p’. Consider such a constraint; it must be
of the form s < r (V) ?¢, where s < a?c € C for some o € V. Assume
p' s <r=(V). This can be written

<s hd(p(«)) since ¢ € V

So, p s < « holds. Because s < a? ¢ appears in C, and because p satisfies
C, we must then have p - ¢. However, p and p’ coincide over fv(co); so,
p' F ¢ holds as well. Thus, we have checked that p' satisfies s < r~= (V) ?¢,
as desired.

The other direction of the proof is slightly more difficult, because D does
not entail C; in fact, our definition of canonization contains a built-in
garbage collection step. We introduce an intermediate type scheme o' =
VE.§, where E is defined by

E=DU{a<Aw;aeW}lU{yw <a;acV}

This time, thanks to the added constraints, it is easy enough to prove that £
entails C', which implies 0 5 ¢’. There remains to prove that ¢’ < Can(o).
We shall do so by noticing that the constraints in £ \ D are superfluous,
according to garbage collection. The result shall then follow from Theorem 3.
Our first objective is to prove that E is weakly closed, which entitles us to
apply garbage collection to o.

Proving that E satisfies Conditions 1 to 4 of Definition 17 is (tedious)
routine; we refer the interested reader to [17].

To check that F satisfies Condition 5, assume s < ¢ ?c € F and ¢ < ¢ €
E. Considering the form of the conditional constraints which appear in £
(see Fig. 6), 1 must be the image of some set of negative variables through
r~. But then, considering the form of the constraints between variables in
E, ¢ <1 must be of the form vy < a, where a € V. So, 9 coincides with
«. Thus, s < a?c appears in E; according to Fig. 6, it also appears in C.
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Since « € V, another look at Fig. 6 indicates that s < vy 7 ¢ appears in D,
hence in E. This was our goal, since 7y is none other than ¢.

To check that E satisfies Condition 6, assume s < r=(V)?7c € E, 7 €
E*(r=(V)) and s <g hd(7).

First, we prove that |V | = 1. Indeed, if |V | > 1 were true, then r— (V)
would be 7yy. Then, we would have 7 € E¥(yy) = {L}, so 7 = L. Since
s <s hd(7), it would follow that s = L g, which is forbidden by Definition 10:
L s is not a prime element of S.

So, V must be a singleton set, say {a}. Then, E¥(a) = {r*(C*(a))}, so
7 coincides with r*(C¥()). Thus,

s <s hd(7) = Us hd(C*(a))

by definition of r (see Fig. 5). Because s is prime (see Definition 10),
this implies s <s hd(7') for some 7/ € C*(a). Besides, since V = {a},
s < a?c appears in F, hence also in C. In light of the fact that C itself
satisfies Condition 6 of Definition 17, all this implies C' IFP™ ¢. However,
by definition of E, every pre-solution of E is also a pre-solution of C'. So,
E IFP™® ¢ also holds. This was our goal.

We have verified that E is weakly closed. Thus, according to Theorem 3,
we may throw away some of o'’s constraints, as allowed by polarity, and
obtain an equivalent type scheme. One discovers, in fact, that all constraints
in E'\ D are actually superfluous (see [17]). As a result, o’ &~ Can(c). This
concludes the proof. O

Appendiz A.8 Minimization

We now give an algorithm which separates the variables of a type scheme
into a number of equivalence classes, in such a way that all variables in a
single class can be merged without affecting the type scheme’s denotation.
We begin with a couple of auxiliary definitions:

DEFINITION 24. Let V' be a set of type variables. Any equivalence relation
= over V is extended to small terms whose variables are in V', as follows:

Tl = Ty < hd(Tl) = hd(TQ) A (Vl € a(hd(’rl)) .l = 7’2.l)
DEFINITION 25. Let C be a constraint set. For o € V, define

predc(a) ={B; B < a € C}
succo(a) ={f; a<peC}

Then, we give a series of requirements about equivalence relations, and show
that they are sufficient to meet our goal.
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DEFINITION 26. Let 0 = VC.0 be a type scheme in canonical form, made
up of small terms, with no bipolar variables, such that o = GC(o). For any
a € fv(o), CH(a) (resp. CT(a)) is a singleton set; by abuse of language, we
shall use the same notation to refer to its unique element.

An equivalence relation = over fv(o) is compatible with o iff o = (3 implies
all of the following:

(1) {a, B} C v (0) or {a, B} C v (0);

(2) predc(a) = prede(B) and succe(a) = succa(B);

(3) CHa) = CHB) and CT(a) = CT(B);

(4) s<aly <y € C implies 01 =v1 o=y s< [0 < b €C.

DEFINITION 27. Consider o as in Definition 26; let = be a partition com-
patible with o. The quotient /= is defined—up to a renaming—as w(o),
where T is any mapping of tv(o) into V such that

Va,f € tv(o) a=p < n(a) =r(P)
THEOREM 5. Consider o and = as in Definition 27. Then, /= = o.

PROOF. The assertion o < 9/= clearly holds, because the latter is the
image of the former through the substitution w. Reciprocally, let us show
that 0/= < 0. Let p be a solution of C. We need to exhibit a solution p’ of
7(C) such that p'(7(d)) < p(9).

Consider an equivalence class of =. Because of Condition 1 of Defini-
tion 26, it must be either a subset of fv~ (o), or a subset of fv' (o). We
denote it by V' (resp. W) in the former (resp. latter) case. We denote the
image of its elements through = by ¢y (resp. ¢w). Define p’ by

Plpv) =Up(V)  plew) =Np(W)

We remark that for any a € fv' (o), p'(7(a)) < p(a) holds; symmetrically,
for any « € fv~ (o), we have p(a) < p'(w(a)).

There remains to check that p’ satisfies 7(C) and 7(d) < p(d). This is
straightforward; as before, we shall deal with the case of conditional con-
straints explicitly, and refer the reader to [17] for the other cases. Consider
a conditional constraint in 7(C). It has the form s < w(a)?7(8) < 7w(7),
where s < a?f < v € C. Note that, necessarily, a and v belong to
fv~ (o), while 8 belongs to fv' (c). Let V stand for a’s equivalence class, i.e.
V = r~Y(n(a)). Assume p' s < m(a). This can be written

s <s hd(p/(m(a)))
— nd(Up(V))
— Ushd(p(V))

Because s is prime (see Definition 10), this implies s <gs hd(p(a/)), for some
o € V. In other words, p F s < o holds. Furthermore, we have a = o/;
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since = is compatible with o, Condition 4 yields s < o/ 75" < ' € C, for
some /3 = 3 and 7/ = . Both facts, combined, yield p = 8’ <+, because p
is a solution of C'. Next, note that, necessarily, 7' belongs to fv= (o), while g’
belongs to fvt (o). Thus, p - 8’ <+ implies p' - 7(8) < 7(7), by definition
of p’. We have proved that p' satisfies s < w(a) ?7(8) < w(y). O
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