
Nordi
 Journal of Computing

A Versatile Constraint-Based Type Inferen
e System

Fran�
ois Pottier

�

Fran
ois.Pottier�inria.fr

Abstra
t. The
ombination of subtyping,
onditional
onstraints and rows yields a

powerful
onstraint-based type inferen
e system. We illustrate this
laim by propos-

ing solutions to three deli
ate type inferen
e problems: \a

urate" pattern mat
h-

ings, re
ord
on
atenation, and �rst-
lass messages. Previously known solutions

involved a di�erent te
hnique in ea
h
ase; our theoreti
al
ontribution is in using

only a single set of tools. On the pra
ti
al side, this allows all three problems to ben-

e�t from a
ommon set of
onstraint simpli�
ation te
hniques, a formal des
ription

of whi
h is given in an appendix.

CR Classi�
ation: F.3.3 [Logi
s and Meanings of Programs℄: Studies of Program

Constru
ts|Type Stru
ture.

Key words: Constraint-based type inferen
e. Subtyping. Rows. Conditional

onstraints.

1. Introdu
tion

Type inferen
e is the task of examining a program whi
h la
ks some (or

even all) type annotations, and re
overing enough type information to make

it a

eptable by a type
he
ker. Its original, and most obvious, appli
ation

is to free the programmer from the burden of manually providing these an-

notations, thus making stati
 typing a less dreary dis
ipline. However, type

inferen
e has also seen heavy use as a simple, modular way of formulating

program analyses.

The design of a type inferen
e system
an be in
uen
ed by its purpose.

When used as a user-visible way of enfor
ing a
oding dis
ipline, it might

be desirable to make it simple and somewhat rigid. When used invisibly

as part of a
ompiler's optimization pro
ess, on the other hand, maximum

pre
ision may be desired. Regardless of this distin
tion, however, power-

ful type inferen
e te
hniques are often made a ne
essity by the advan
ed

features found in many re
ent programming languages.

This paper presents a
ommon solution to several seemingly unrelated type

inferen
e problems, using an existing framework for subtyping-
onstraint-

based type inferen
e [14℄, equipped with
onditional
onstraints inspired by

Aiken, Wimmers and Lakshman [2℄ and with rows �a la R�emy [19, 21℄.

�

INRIA Ro
quen
ourt, BP 105, 78153 Le Chesnay Cedex, Fran
e.

Re
eived 20th November 2000.

2 FRANC�OIS POTTIER

Constraint-Based Type Inferen
e

Subtyping is a partial order on types, de�ned so that an obje
t of a subtype

may safely be supplied wherever an obje
t of a supertype is expe
ted. Type

inferen
e in the presen
e of subtyping re
e
ts this basi
 prin
iple. Every

time a pie
e of data is passed from a produ
er to a
onsumer, the former's

output type is required to be a subtype of the latter's input type. This re-

quirement is expli
itly re
orded by
reating a symboli
 subtyping
onstraint

between these types. Thus, ea
h potential data
ow dis
overed in the pro-

gram yields one
onstraint. This fa
t allows viewing a
onstraint set as a

dire
ted approximation of the program's data
ow graph { regardless of our

parti
ular de�nition of subtyping.

Various type inferen
e systems based on subtyping
onstraints exist. One

may
ite works by Aiken et al. [1, 2, 5℄, the present author [16, 17℄, Trifonov

and Smith [29℄, as well as Odersky et al.'s abstra
t framework HM(X) [14,

28, 27℄. Related systems in
lude set-based analysis [9, 6℄ and type inferen
e

systems based on feature
onstraints [11, 12℄ or predi
ate
onstraints [10℄.

Conditional Constraints

In many
onstraint-based systems, the expression if e

0

then e

1

else e

2

is, at best, des
ribed by

�

1

� � ^ �

2

� �

where �

i

stands for e

i

's type, and � stands for the whole expression's type.

This amounts to stating that \the value of e

1

(resp. e

2

) may be
ome the

value of the whole expression", regardless of the test's out
ome. A more

pre
ise des
ription { \if e

0

may evaluate to true (resp. false), then the

value of e

1

(resp e

2

) may be
ome the value of the whole expression" {
an

be given using
onditional
onstraints:

true � �

0

?�

1

� � ^ false � �

0

?�

2

� �

Introdu
ing tests into
onstraints allows keeping tra
k of some of the pro-

gram's
ontrol
ow { that is, mirroring, at the level of types, the way eval-

uation is a�e
ted by the out
ome of a test.

Conditional set expressions were introdu
ed by Reynolds [25℄ as a means

of solving set
onstraints involving stri
t type
onstru
tors and destru
tors.

Heintze [9℄ uses them to formulate an analysis whi
h ignores \dead
ode".

He also introdu
es
ase
onstraints, whi
h allow ignoring the e�e
t of a

bran
h, in a
ase
onstru
t, unless it is a
tually liable to be taken. Aiken,

Wimmers and Lakshman [2℄ use
onditional types, together with interse
tion

types, for this purpose.

In the present paper, we suggest a single notion of
onditional
onstraint,

whi
h is
omparable in expressive power to the above
onstru
ts, and lends

itself to a simple and eÆ
ient implementation. (A similar
hoi
e was made

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 3

independently by F�ahndri
h [5℄.) We emphasize its use as a way not only of

introdu
ing some
ontrol into types, but also of delaying type
omputations,

thus introdu
ing some \laziness" into type inferen
e.

Rows

Designing a type system for a programming language with re
ords, or ob-

je
ts, requires some way of expressing labelled produ
ts of types, where

labels are �eld or method names. Dually, if the language allows manipulat-

ing stru
tured data, then its type system is likely to require labelled sums,

where labels are names of data
onstru
tors.

Wand [30℄ and R�emy [19, 21℄ elegantly deal with both problems at on
e

by introdu
ing notation to express denumerable, indexed families of types,

alled rows:

� ::= �; �; : : : ; '; ; : : : j a : � ; � j ��

(Here, � ranges over types, and a; b; : : : range over indi
es.) An unknown

row may be represented by a row variable, exa
tly as in the
ase of types.

(By la
k of symbols, we will not synta
ti
ally distinguish plain type variables

and row variables.) The term a : � ; � represents a row whose element at

index a is � , and whose other elements are given by �. The term �� stands

for a row whose element at any index is � . These statements are given

formal meaning by interpreting rows in a logi
al model where the following

equations hold:

a : �

a

; (b : �

b

; �) = b : �

b

; (a : �

a

; �)

�� = a : � ; ��

If desired, some type
onstru
tors may be lifted to the level of rows, i.e.

viewed as row
onstru
tors as well. For instan
e, to lift the type
onstru
tor

!, we extend the syntax of rows:

� ::= : : : j �! �

The term � ! �

0

is logi
ally interpreted as the row obtained by applying

the type
onstru
tor !, point-wise, to the rows � and �

0

. As a result, the

logi
al model satis�es the following equations:

(a : � ; �)! (a : �

0

; �

0

) = a : (� ! �

0

); (�! �

0

)

�� ! ��

0

= �(� ! �

0

)

More details are given in Se
tion 2.

Rows o�er a parti
ularly straightforward way of des
ribing operations

whi
h treat all labels (ex
ept possibly a �nite number thereof) uniformly.

Be
ause every fa
ility available at the level of types (e.g.
onstru
tors,
on-

straints)
an also be made available at the level of rows, a des
ription of the

operation's e�e
t on a single label, written using types,
an also be read as

a des
ription of the entire operation, written using rows. This interesting

point will be developed further in the paper.

4 FRANC�OIS POTTIER

Putting It All Together

Our point is to show that the
ombination of the three
on
epts dis
ussed

above yields a very expressive system, whi
h allows type inferen
e for a

number of advan
ed language features. Among these, \a

urate" pattern

mat
hing
onstru
ts, re
ord
on
atenation, and �rst-
lass messages will

be dis
ussed in this paper. Our system allows performing type inferen
e

for all of these features at on
e. Furthermore, eÆ
ien
y issues
on
erning

onstraint-based type inferen
e systems have already been studied [5, 17℄.

This existing knowledge bene�ts our system, whi
h may thus be used to

eÆ
iently perform type inferen
e for all of the above features.

In this paper, we fo
us on appli
ations of our type system, i.e. we show

how it allows solving ea
h of the problems mentioned above. Formal de�-

nitions of our
onstraint resolution and simpli�
ation algorithms appear in

Appendix A. Furthermore, a robust prototype implementation is publi
ly

available [18℄. We do not prove that the types given to the three problem-

ati
 operations dis
ussed in this paper are sound, but we believe this is a

straightforward task.

The paper is organized as follows. Se
tion 2 gives a detailed te
hni
al

presentation of the type system. Se
tion 3 gives an informal explanation

of the potential
osts and bene�ts of using
onditional
onstraints. Se
-

tions 4, 5, and 6 dis
uss type inferen
e for \a

urate" pattern mat
hings,

re
ord
on
atenation, and �rst-
lass messages, respe
tively, within our sys-

tem. Se
tion 7 gives several examples, whi
h show what inferred types look

like in pra
ti
e. Se
tion 8 sums up our
ontribution. Lastly, Appendix A

gives de�nitions and proofs for several
onstraint manipulation algorithms.

2. Formal Presentation of the System

This se
tion gives an in-depth formal presentation of our type system, in

its most general form. Mu
h of it may be skipped on a �rst reading { the

following se
tions des
ribe the system in a more gentle fashion. The reader

may wish to
ome ba
k to this se
tion at a later stage.

We de�ne our type system as an instan
e of the parametri
 framework

HM(X) [14, 28, 27℄. To do so, we simply de�ne a
onstraint system,
alled

SRC (for subtyping-rows-
onditionals), giving rise to HM(SRC). By re-using

existing material, we save de�nitions and proofs, and emphasize the fa
t that

our approa
h is standard.

In order to retain a measure of generality, SRC is itself parameterized by

a ground signature, whi
h is a su

in
t des
ription of a type algebra and of

its intended subtype ordering. Ground signatures are de�ned in Se
tion 2.1.

Given su
h a ground signature, we expli
itly de�ne the syntax of types

and
onstraints (Se
tion 2.2), a logi
al model within whi
h they may be

interpreted (Se
tion 2.3), and the interpretation itself (Se
tion 2.4).

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 5

2.1 Assumptions

A ground signature
onsists of three
omponents: a series of symbol latti
es,

indexed by kinds, a set of parameter labels (ea
h of whi
h is either
o- or

ontra-variant, des
ribes either a row or a plain type parameter, and has

a �xed kind), and a des
ription of ea
h symbol's arity as a �nite set of

parameter labels.

Definition 1. Let K be a �nite set of kinds. For every kind � 2 K, let

S

�

be a latti
e of symbols, with operations ?

�

, >

�

, �

�

, t

�

and u

�

. De�ne

S = ℄

�2K

S

�

.

Let L

+

and L

�

be denumerable sets of parameter labels. De�ne L =

L

+

℄ L

�

. Let L

row

� L be a distinguished subset of row parameter labels.

Let kind be a total mapping of L into K.

Let a be a total mapping from S to �nite subsets of L, su
h that:

Æ for all s

0

; s

1

; s

2

2 S

�

, s

0

�

�

s

1

�

�

s

2

implies a(s

0

) \ a(s

2

) � a(s

1

);

Æ for any �nite subset S of S

�

, a(t

�

S) and a(u

�

S) are subsets of [a(S).

Note that this implies a(?

�

) = a(>

�

) = ?.

The information des
ribed above forms a ground signature.

The �rst
ondition bearing on a is ne
essary to guarantee that the orderings

�

�

do give rise to an ordering on ground types (de�ned in Se
tion 2.3). The

se
ond one makes the de�nition of some
onstraint manipulation algorithms

more
onvenient (see De�nition 23 in Appendix A).

Example 1. Assume there is only one kind ?. De�ne S

?

= f?;!;>g,

where ? �

?

! �

?

>. Let L

�

= fdomg, L

+

= frng g and L

row

= ?. De�ne

a(?) = a(>) = ? and a(!) = fdom; rng g. This de�nes a ground signature,

whi
h allows typing the pure �-
al
ulus.

Example 2. De�ne three kinds N, R and V,
orresponding to normal,

re
ord �eld and variant �eld types, respe
tively. Let S

N

be the
at lat-

ti
e whose elements other than ? and > are !, f�g and [� ℄. Let S

R

be the latti
e with least element Bot, greatest element Any, and whose

other elements are Abs, Pre and Either, ordered by Abs �

R

Either and

Pre �

R

Either. Let S

V

be the latti
e with least element Abs, greatest el-

ement Any, and whose only other element is Pre. (By abuse of language,

we are giving identi
al names to symbols in S

R

and in S

V

. This remains

non-ambiguous as long as all terms
onsidered have known kinds.) Let

L

�

= fdomg, L

+

= f
ontent;
ontents; rng g and L

row

= f
ontents g. De�ne

a(!) = fdom; rng g, a(f�g) = a([� ℄) = f
ontents g, a(Pre) = a(Either) =

f
ontent g, and a(?) = a(>) = a(Bot) = a(Abs) = a(Any) = ?. This de�nes

a ground signature, whi
h is expressive enough to des
ribe all programming

language features
onsidered in this paper. In parti
ular, all of its expressive

power will be exploited to des
ribe �rst-
lass messages in Se
tion 6.

6 FRANC�OIS POTTIER

� ::= �; �; '; ; : : : j s(�

l

)

l2a(s)

j r : � ; � j ��

C ::= true j C ^C j 9��:C j � � � j s � � ? � � � (s prime in S

�

)

Figure 1: Syntax of types and
onstraints

In the rest of this formal presentation, we assume given a �xed, arbi-

trary ground signature. In Se
tions 4{7, we will use the ground signature

des
ribed in Example 2 above, but we will re-introdu
e it step by step.

2.2 Syntax of Types and Constraints

The (raw) syntax of types and
onstraints is given in Fig. 1. �; �; '; ; : : :

denote type variables. A type term s(��)
an be formed by pi
king a symbol

s 2 S and a family of type parameters �� , indexed a

ording to the arity of s,

i.e. �� must be of the form (�

l

)

l2a(s)

. Lastly, types may also be rows, whi
h

denote families of types indexed by a denumerable set of row labels R. The

term r : � ; �

0

(where r 2 R) represents a row whose element at index r is

� , and whose other elements are given by the row �

0

. The term �� stands

for a row whose element at any index is � .

The
onstraint language o�ers standard
onstru
ts (truth,
onjun
tion,

proje
tion [14℄), subtyping
onstraints, and
onditional
onstraints. The

latter are of the form s � � ? � � � , where s must satisfy the following

ondition: for any �nite subset S of S

�

, s �

�

(t

�

S) implies 9s

0

2 S s �

�

s

0

.

In other words, s must be a prime element of its symbol latti
e S

�

. This

ensures that a
onditional
onstraint bearing on the least upper bound of a

set of variables, e.g. (s � �

1

t : : : t �

n

) ?
, is equivalent to a
onjun
tion

of
onditional
onstraints bearing on its members:

V

n

i=1

(s � �

i

?
). It is a

ne
essary
ondition for the
orre
tness of the garbage
olle
tion algorithm

(see Theorem 3 in Appendix A).

Our de�nition of
onditional
onstraints is dissymmetri
. Indeed,
ondi-

tions must be of the form s � � ;
onditions of the form � � s are disallowed.

The motivation for this de
ision is to allow the
onstraint solving algorithm

to ignore
onditional
onstraints unless their
onditionmust be satis�ed (see

De�nition 19 in Appendix A). If both forms of
onditions were allowed to
o-

exist, the language would be
ome expressive enough to en
ode disjun
tions

of
onstraints, making
onstraint solving more
ostly.

To ensure that only meaningful types and
onstraints
an be built, we

equip them with kinding and sorting rules. The grammar of sorts is de�ned

by & ::= Type j Row(R), where R ranges over �nite subsets of R. For every

kind � and every sort &, we assume given a distin
t, denumerable set V

&

�

of

type variables. We de�ne judgements of the form ` � : � (resp. ` � : &),

meaning that the type � has kind � (resp. sort &), and judgements of the

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 7

� 2 V

�

` � : �

s 2 S

�

8l 2 a(s) ` �

l

: kind(l)

` s(�

l

)

l2a(s)

: �

` �

1

: �

` �

2

: �

` (r : �

1

; �

2

) : �

` � : �

` �� : �

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9��:C

` �

1

: �

` �

2

: �

` �

1

� �

2

s 2 S

�

` �

0

: � ` �

1

� �

2

` s � �

0

? �

1

� �

2

Figure 2: Kinding rules

� 2 V

&

` � : &

a(s) \ L

row

= ?

8l 2 a(s) ` �

l

: &

` s(�

l

)

l2a(s)

: &

a(s) \ L

row

6= ?

8l 2 a(s) n L

row

` �

l

: Type

8l 2 a(s) \ L

row

` �

l

: Row(?)

` s(�

l

)

l2a(s)

: Type

` �

1

: Type ` �

2

: Row(R ℄ frg)

` (r : �

1

; �

2

) : Row(R)

` � : Type

` �� : Row(R)

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9��:C

` �

1

: & ` �

2

: &

` �

1

� �

2

` �

0

: & ` �

1

: & ` �

2

: &

` s � �

0

? �

1

� �

2

Figure 3: Sorting rules

form ` C, meaning that the
onstraint C is well-kinded (resp. well-sorted).

The kinding rules, given in Fig. 2, simply enfor
e the kind dis
ipline required

by the ground signature. The sorting rules, displayed in Fig. 3, ensure that

only meaningful row terms are built. Intuitively, the sort Type des
ribes

plain types, while the sort Row(R) des
ribes families of types indexed by

R n R. In other words, a row of sort Row(R) gives information about all

row labels ex
ept those in R. For more details, we refer the reader to [21℄

or to [20, se
tion 5℄.

Before moving on, let us point out that a term may have several sorts, for

two distin
t reasons. First, a uniform row �� may be viewed as des
ribing

any (
o-�nite) number of entries, i.e. it may have any sort Row(R). As a

result, the row term r

1

: �

1

; : : : ; r

n

: �

n

; �� may have any sort Row(R),

provided fr

1

; : : : ; r

n

g \ R = ?. Su
h a term will be required to have sort

Row(?) only when used as the l-parameter of a type
onstru
tor s expe
ting

a full row in l-position (i.e. l 2 a(s) \ L

row

). Se
ond, a type
onstru
tor

s with non-row parameters (i.e. a(s) \ L

row

= ?)
an be used at any

sort &. For instan
e, if r : �

0

; �

0

0

and r : �

1

; �

0

1

have sort Row(R), then

(r : �

0

; �

0

0

)! (r : �

1

; �

0

1

) has sort Row(R) as well. Its logi
al interpretation

will be the same as that of r : �

0

! �

1

; �

0

0

! �

0

1

.

This point makes the logi
al interpretation of terms, given in Se
tion 2.4,

8 FRANC�OIS POTTIER

slightly more subtle: the meaning of a term depends on the sort at whi
h it

is viewed. Fortunately, the meaning of a
onstraint will remain independent

of the sort of its
omponents.

2.3 Logi
al Model

We now de�ne the logi
al model within whi
h our
onstraints are inter-

preted. Informally speaking, it is the term algebra generated by the ground

signature at hand. However, things are made more
omplex by our desire

to have re
ursive types

1

and by the presen
e of rows.

Definition 2. Let A be the alphabet formed of all letters l 2 L n L

row

and

all
omposite letters l � r, where l 2 L

row

and r 2 R. To every l 2 L, we

asso
iate a subset A

l

of the alphabet, de�ned by A

l

= flg if l 2 L n L

row

,

and A

l

= fl � r ; r 2 Rg otherwise.

A path p is a �nite string over the alphabet A, i.e. an element of A

�

. The

letter � denotes the empty path. A ground tree t is a partial fun
tion from

A

�

into S, whose domain is non-empty and pre�x-
losed, su
h that, for all

paths p 2 dom(t) and for all labels l 2 L,

Æ if l 2 a(t(p)), then p:A

l

is a subset of dom(t), whose image through t

is a subset of S

�

, where � = kind(l);

Æ otherwise, p:A

l

lies outside of dom(t).

The head
onstru
tor of a ground term t, written hd(t), is t(�). Given

p 2 dom(t), the subtree of t rooted at p, written t:p, is the tree q 7! t(p:q).

Given p, l su
h that l 2 a(t(p)) \ L

row

, the subrow of t rooted at (p; l) is

the fun
tion r 2 R 7! t(p:(l � r)). A fun
tion is said to be quasi-
onstant i�

its
o-restri
tion to some �nite set is a
onstant fun
tion. A ground tree is

regular i� it has a �nite number of subtrees. A ground tree t is a ground

type i� it is regular and all of its subrows are quasi-
onstant. We denote the

set of ground types by T. A ground type t has kind � if and only if t(�) 2 S

�

.

We denote the set of ground types of kind � by T

�

.

Then, we equip every T

�

with an ordering �. Be
ause ground types are

in�nite trees, �
annot be de�ned easily by stru
tural indu
tion; instead, it

is de�ned as the limit of a de
reasing sequen
e of pre-orders.

Definition 3. A family of pre-orders over every T

�

is de�ned as follows.

Let �

0

be uniformly true over every T

�

. Then, for any k 2 N and t; t

0

2 T

�

,

de�ne t �

k+1

t

0

as the
onjun
tion of the following
onditions:

Æ t(�) �

�

t

0

(�);

Æ 8l 2 a(t(�)) \ a(t

0

(�)) n L

row

t:l �

l

k

t

0

:l;

Æ 8l 2 a(t(�)) \ a(t

0

(�)) \ L

row

8r 2 R t:(l � r) �

l

k

t

0

:(l � r).

1

The presen
e of re
ursive types removes the need to
he
k whether all solutions of

a
onstraint are
y
li
, whi
h, in the presen
e of subtyping relationships between type

onstru
tors of di�erent arities, may be diÆ
ult.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 9

(We let t �

l

k

t

0

stand for t �

k

t

0

when l 2 L

+

and t

0

�

k

t when l 2 L

�

.)

Subtyping, denoted by �, is the interse
tion of these pre-orders; it is a latti
e

on every T

�

.

The subtyping relationship is stru
tural : t and t

0

are related if and only

if their head
onstru
tors t(�) and t

0

(�) are related in the latti
e of symbols

and, for every label l de�ned by both t and t

0

, their l-sub-terms are related

(either
o- or
ontra-variantly, depending on the varian
e of l). It is, in

general, non-atomi
: type
onstru
tors of di�erent arities may be related.

2.4 Logi
al Interpretation

There remains to give an interpretation of types and
onstraints within the

model. It is parameterized by a ground substitution, whi
h gives meaning to

any free type variables. It maps types to ground types, or to families thereof

(a

ording to their sort), and
onstraints to Boolean values.

Definition 4. A ground substitution � is a fun
tion of domain V, whi
h

maps V

Type

�

into T

�

, and whi
h maps V

Row(R)

�

into the set of quasi-
onstant

fun
tions of R n R into T

�

.

Definition 5. The interpretation of a type � of sort &, under a ground

substitution �, written �(�

&

), or simply �(�) when &
an be determined from

the
ontext, is de�ned as follows.

Æ If � is a type variable �, then �(�

&

) is the image of � through �.

Æ If � is of the form s(�

l

)

l2a(s)

and & = Type, then �(�

&

) is the ground

type t su
h that t(�) = s, t:l = �(�

l

) whenever l 2 a(s) n L

row

and

t:(l � r) = �(�

l

)(r) whenever l 2 a(s) \ L

row

and r 2 R.

Æ If � is of the form s(�

l

)

l2a(s)

and & = Row(R), then, for every r 2 RnR,

�(�

&

)(r) is the ground type t su
h that t(�) = s and t:l = �(�

l

)(r)

whenever l 2 a(s).

Æ If � is of the form r : �

1

; �

2

and & = Row(R), then �(�

&

)(r) = �(�

1

)

and, for every r

0

2 R n (R [frg), �(�

&

)(r

0

) = �(�

2

)(r

0

).

Æ If � is of the form ��

0

and & = Row(R), then, for every r 2 R n R,

�(�

&

)(r) = �(�

0

).

Definition 6. The
onstraint satisfa
tion predi
ate `, whose arguments

are a ground substitution � and a well-sorted
onstraint C, is de�ned as

follows.

Æ � ` true holds.

Æ � ` C

1

^ C

2

holds i� � ` C

1

and � ` C

2

hold.

Æ � ` 9��:C holds i� there exists a ground substitution �

0

, whi
h
oin
ides

with � outside of ��, su
h that �

0

` C holds.

Æ If ` �

1

; �

2

: Type, then � ` �

1

� �

2

holds i� �(�

1

) � �(�

2

) holds.

10 FRANC�OIS POTTIER

Æ If ` �

1

; �

2

: Row(R), then � ` �

1

� �

2

holds i�, for every r 2 R n R,

�(�

1

)(r) � �(�

2

)(r) holds.

Æ If ` �

0

; �

1

; �

2

: Type, then � ` s � �

0

? �

1

� �

2

holds i� s �

S

�(�

0

)(�)

implies �(�

1

) � �(�

2

).

Æ If ` �

0

; �

1

; �

2

: Row(R), then � ` s � �

0

? �

1

� �

2

holds i�, for every

r 2 R n R, s �

S

�(�

0

)(r)(�) implies �(�

1

)(r) � �(�

2

)(r).

This de�nition is well-formed be
ause, even though the types whi
h appear

in a
onstraint may have several admissible sorts, all of them give rise to the

same interpretation.

Lastly,
onstraint entailment is given its usual de�nition: C
 C

0

holds if

and only if, for every ground substitution �, � ` C implies � ` C

0

.

2.5 The Type System HM(SRC)

We refer to the
onstraint logi
 de�ned in Se
tions 2.1{2.4 as SRC. It is a

sound
onstraint system in the sense of [14℄; thus, it gives rise to a type

system, namely HM(SRC), for the �-
al
ulus with let.

We do not repeat the typing rules of HM(X) in this paper. For our

purposes, suÆ
e it to re
all that type s
hemes are of the form � ::= 8��[C℄:� .

When all of a type s
heme's variables are universally quanti�ed, we usually

write \� where C".

The �-
al
ulus with let is a limited programming language. To extend it,

we will de�ne new primitive operations, equipped with operational semanti
s

and appropriate type s
hemes. However, no extension to the type system

itself will be ne
essary. This explains why we do not des
ribe it further.

Instead, we will fo
us our interest on writing expressive type s
hemes.

3. About Conditional Constraints

The
ontent of this se
tion is informal. It shows how
onditional
onstraints

an be used to gain extra typing
exibility, and why we might want to use

them only sparingly.

In a
all-by-value language, if an expression e

2

diverges, then so does any

appli
ation (e

1

e

2

). In parti
ular, if e

2

has type ?, then (e

1

e

2

) may safely

be given type ? as well. In other words, if it
an be proven that e

1

will

never be
alled, then its return type
an be dis
arded.

It is possible to make a type system aware of this fa
t. To do so, one

merely introdu
es a new typing rule:

C; (�;x : ?) ` e : �

C;� ` �x:e : ? ! ?

As a result, the type system is no longer syntax-dire
ted: typing a �-

abstra
tion involves a
hoi
e between this rule and the usual �-abstra
tion

rule. However, a pra
ti
al type inferen
e algorithm must not explore both

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 11

ases separately, sin
e that would have exponential
ost. Instead, a natu-

ral solution is to use a single type inferen
e rule, whi
h emits a
onditional

onstraint, along the lines of

C; (�;x : �) `

I

e : � �; � fresh

(? < � ? � � �) ^ C;� `

I

�x:e : �! �

As long as the fun
tion isn't invoked, ? remains an admissible solution for its

argument type �. So, the
onditional
onstraint has no e�e
t, and � remains

un
onstrained, meaning that the fun
tion produ
es no result. However, if a

all to this fun
tion is later dis
overed, then � will be
onstrained to some

value greater than ?. This will trigger the
onditional
onstraint, and �! �

will be
ome a lower bound for the fun
tion's type, meaning that the fun
tion

produ
es a result of type � .

This te
hnique allows designing a \lazy" type inferen
e system, whi
h

ignores the type of an expression unless it appears liable to be evaluated.

Heintze [9℄ uses
onditional types for this very purpose. In fa
t, it is possible

to
arry this idea even further, and to ignore not only the expression's type,

but also its e�e
t on the typing environment. This would involve repla
ing

(? < � ? � � �)^C above with ? < � ? (� � �^C); thus, the
onstraint C,

whi
h des
ribes the requirements of the fun
tion
on
erning its environment,

would also be subje
t to the
ondition ? < �. This idea appears, under a

di�erent formulation, in e.g. [26℄.

Despite their theoreti
al appeal, though, these proposals seem a bit ex-

treme. They produ
e a large number of
onditional
onstraints, making type

inferen
e less eÆ
ient, be
ause potential
onstraint simpli�
ations are de-

layed. Thus, in a pra
ti
al system, \laziness" should be used only sparingly.

We propose to build it into the types of a few primitive operations, rather

than to hard-wire it into the typing rules. We will illustrate this prin
iple

in the following se
tions.

4. A

urate Analysis of Pattern Mat
hings

When fa
ed with a pattern mat
hing
onstru
t, most existing type inferen
e

systems adopt a simple,
onservative approa
h: assuming that ea
h bran
h

may be taken, they let it
ontribute to the whole expression's type. A more

a

urate system should use types to prove that
ertain bran
hes
annot be

taken, and prevent them from
ontributing.

In this se
tion, we des
ribe su
h a system. The essential idea { introdu
-

ing a
onditional
onstru
t at the level of types { is due to [9, 2℄. Some

novelty resides in our two-step presentation, whi
h we believe helps isolate

independent
on
epts. First, we
onsider the
ase where only one data
on-

stru
tor exists. Then, we easily move to the general
ase, by enri
hing the

type algebra with rows.

12 FRANC�OIS POTTIER

4.1 The Basi
 Case

We assume the language allows building and a

essing tagged values.

e ::= : : : j Pre j Pre

�1

A single data
onstru
tor, Pre, allows building tagged values, while the de-

stru
tor Pre

�1

allows a

essing their
ontents. This relationship is expressed

by the following redu
tion rule:

Pre

�1

v

1

(Pre v

2

) redu
es to (v

1

v

2

)

The rule states that Pre

�1

�rst takes the tag o� the value v

2

, then passes

it to the fun
tion v

1

.

At the level of types, we introdu
e a (unary) variant type
onstru
tor [� ℄.

Also, we establish a distin
tion between so-
alled \normal types," written

� , and \�eld types," written �.

� ::= �; �;
; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j Abs j Pre � j Any

A subtype ordering over �eld types is de�ned straightforwardly: Abs is its

least element, Any is its greatest, and Pre is a
ovariant type
onstru
tor.

The data
onstru
tor Pre is given the following type s
heme:

Pre : �! [Pre � ℄

Noti
e that there is no way of building a value of type [Abs ℄. Thus, if an

expression has this type, then it must diverge. This explains our
hoi
e of

names. If an expression has type [Abs ℄, then its value must be \absent"; if

it has type [Pre � ℄, then some value of type � may be \present".

The data destru
tor Pre

�1

is des
ribed as follows:

Pre

�1

: (�! �)! [' ℄!

where ' � Pre �

Pre � ' ?� �

The
onditional
onstraint allows (Pre

�1

e

1

e

2

) to re
eive type ? when e

2

has type [Abs ℄, re
e
ting the fa
t that Pre

�1

isn't invoked until e

2

produ
es

some value. Indeed, as long as ' equals Abs, the
onstraint is va
uously

satis�ed, so
 is un
onstrained and assumes its most pre
ise value, namely

?. However, as soon as Pre � ' holds, � �
 must be satis�ed as well.

Then, Pre

�1

's type be
omes equivalent to (� ! �) ! [Pre � ℄ ! �, whi
h

is its usual ML type.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 13

4.2 The General Case

We now move to a language with a denumerable set of data
onstru
tors.

e ::= : : : j K j K

�1

j
lose

(We let K, L; : : : stand for data
onstru
tors.) An expression may be

tagged, as before, by applying a data
onstru
tor to it. A

essing tagged

values be
omes slightly more
omplex, be
ause multiple tags exist. The

semanti
s of the elementary data destru
tor, K

�1

, is given by the following

redu
tion rules:

K

�1

v

1

v

2

(K v

3

) redu
es to (v

1

v

3

)

K

�1

v

1

v

2

(L v

3

) redu
es to (v

2

(Lv

3

)) when K 6= L

A

ording to these rules, if the value v

3

arries the expe
ted tag, then it is

passed to the fun
tion v

1

. Otherwise, the value { still
arrying its tag { is

passed to the fun
tion v

2

. Lastly, a spe
ial value,
lose, is added to the

language, but no additional redu
tion rule is de�ned for it.

How do we modify our type algebra to a

ommodate multiple data
on-

stru
tors? In Se
tion 4.1, we used �eld types to en
ode information about

a tagged value's presen
e or absen
e. Here, we need exa
tly the same infor-

mation, but this time about every tag. So, we need to manipulate a family of

�eld types, indexed by tags. To do so, we add one layer to the type algebra:

rows of �eld types.

� ::= �; �;
; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j K : �; � j ��

� ::= '; ; : : : j Abs j Pre � j Any

We
an now extend the previous se
tion's proposal, as follows:

K : �! [K : Pre �; �Abs ℄

K

�1

: (�! �)! ([K : Abs; ℄!
)! [K : '; ℄!

where ' � Pre �

Pre � ' ?� �

lose : [�Abs ℄! ?

K

�1

's type s
heme involves the same
onstraints as in the basi

ase. Using

a single row variable, namely , in two distin
t positions allows expressing

the fa
t that values
arrying any tag other thanK will be passed unmodi�ed

to K

�1

's se
ond argument.

lose's argument type is [�Abs ℄, whi
h prevents it from ever being in-

voked. This a

ords with the fa
t that
lose does not have an asso
iated

redu
tion rule. It plays the role of a fun
tion de�ned by zero
ases.

This system o�ers extensible pattern mat
hings: any k-ary
ase
onstru
t

an be written in terms of k nested destru
tor appli
ations, terminated by

14 FRANC�OIS POTTIER

lose; it will re
eive the desired, a

urate type. (This fa
t is illustrated

by Example 3 in Se
tion 7.) Thus, no spe
i�
 language
onstru
t or type

inferen
e rule is needed to deal with them.

5. Re
ord Con
atenation

Stati
 typing for re
ord operations is a widely studied problem [4, 15℄. Com-

mon operations in
lude sele
tion, extension, restri
tion, and
on
atenation.

The latter
omes in two
avors: symmetri
 and asymmetri
. The former

requires its arguments to have disjoint sets of �elds, whereas the latter gives

pre
eden
e to the se
ond one when a
on
i
t o

urs.

Of these operations,
on
atenation is probably the most diÆ
ult to deal

with, be
ause its behavior varies a

ording to the presen
e or absen
e of

ea
h �eld in its two arguments. This has led many authors to restri
t

their attention to type
he
king, and to not address the issue of type in-

feren
e [8℄. An inferen
e algorithm for asymmetri

on
atenation was sug-

gested by Wand [30℄. He uses disjun
tions of
onstraints, however, whi
h

gives his system exponential
omplexity. R�emy [22℄ suggests an en
oding

of
on
atenation into �-abstra
tion and re
ord extension, when
e an infer-

en
e algorithm may be derived. Unfortunately, its power is somewhat de-

reased by subtle intera
tions with ML's restri
ted polymorphism; further-

more, the en
oding is exposed to the user. In later work [23℄, R�emy suggests

a dire
t,
onstraint-based algorithm, whi
h involves a spe
ial form of
on-

straints. Sulzmann [27℄ follows a similar route and
reates a
ustom instan
e

of HM(X), again involving spe
ial-purpose
on
atenation
onstraints. Our

approa
h is inspired from R�emy's later paper, but re-formulated in terms of

onditional
onstraints, thus showing that no ad ho

onstraint forms are

ne
essary.

Again, our presentation is in two steps. The basi

ase, where re
ords only

have one �eld, is ta
kled using subtyping and
onditional
onstraints. Then,

rows allow us to easily transfer our results to the
ase of multiple �elds.

5.1 The Basi
 Case

We assume a language equipped with one-�eld re
ords, whose unique �eld

may be either \absent" or \present". More pre
isely, we assume a
onstant

data
onstru
tor Abs, and a unary data
onstru
tor Pre; a \re
ord" is a

value built with one of these
onstru
tors. A data destru
tor, Pre

�1

, allows

a

essing the
ontents of a non-empty re
ord. Lastly, the language o�ers

asymmetri
 and symmetri

on
atenation primitives, written � and ��,

respe
tively.

e ::= : : : j Abs j Pre j Pre

�1

j � j ��

The relationship between re
ord
reation and re
ord a

ess is expressed by

a simple redu
tion rule:

Pre

�1

(Pre v) redu
es to v

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 15

The semanti
s of asymmetri
 re
ord
on
atenation is given as follows:

v

1

� Abs redu
es to v

1

v

1

�(Pre v

2

) redu
es to Pre v

2

(In ea
h of these rules, the value v

1

is required to be a re
ord.) Lastly,

symmetri

on
atenation is de�ned by

Abs�� v

2

redu
es to v

2

v

1

�� Abs redu
es to v

1

(In these two rules, v

1

and v

2

are required to be re
ords.)

The
onstru
tion of our type algebra is similar to the one performed in

Se
tion 4.1. We introdu
e a (unary) re
ord type
onstru
tor, as well as a

distin
tion between normal types and �eld types:

� ::= �; �;
; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

Let us explain, step by step, our de�nition of �eld types. Our �rst, natural

step is to introdu
e type
onstru
tors Abs and Pre, whi
h allow des
rib-

ing values built with the data
onstru
tors Abs and Pre. The former is a

onstant type
onstru
tor, while the latter is unary and
ovariant.

Many type systems for re
ord languages de�ne Pre � to be a subtype of

Abs. This allows a re
ord whose �eld is present to pretend it is not, leading

to a
lassi
 theory of re
ords whose �elds may be \forgotten" via subtyping.

However, when the language o�ers re
ord
on
atenation, su
h a de�nition

isn't appropriate. Why? Con
atenation { asymmetri
 or symmetri
 { in-

volves a
hoi
e between two redu
tion rules, whi
h is performed by mat
hing

one, or both, of the arguments against the data
onstru
tors Abs and Pre.

If, at the level of types, we allow a non-empty re
ord to masquerade as an

empty one, then it be
omes impossible, based on the arguments' types, to

�nd out whi
h rule applies, and to determine the type of the operation's

result. In summary, in the presen
e of re
ord
on
atenation, no subtyp-

ing relationship must exist between Pre � and Abs. (This problem is well

des
ribed { although not solved { in [4℄.)

This leads us to making Abs and Pre in
omparable. On
e this
hoi
e has

been made,
ompleting the de�nition of �eld types is rather straightforward.

Be
ause our system requires type
onstru
tors to form a latti
e, we de�ne

a least element Bot, and a greatest element Any. Lastly, we introdu
e a

unary,
ovariant type
onstru
tor, Either, whi
h we de�ne as the least

upper bound of Abs and Pre, so that Abs t (Pre �) equals Either � . This

optional re�nement allows us to keep tra
k of a �eld's type, even when its

presen
e is not as
ertained. (These ideas are due to R�emy, who
arries

them further in the
ase of obje
ts [24℄.) The latti
e of �eld types is shown

in Fig. 4.

16 FRANC�OIS POTTIER

Any

Either �

OO

Abs

77ooooo

Pre �

hhPPPPP

Bot

ggOOOOO

66nnnnn

Figure 4: The latti
e of re
ord �eld types

Let us now assign types to the primitive operations o�ered by the language.

Re
ord
reation and a

ess re
eive their usual types:

Abs : fAbsg

Pre : �! fPre �g

Pre

�1

: fPre �g ! �

There remains to
ome up with
orre
t, pre
ise types for both
avors of

re
ord
on
atenation. The key idea is simple. As shown by its operational

semanti
s, (either
avor of) re
ord
on
atenation is really a fun
tion de-

�ned by
ases over the data
onstru
tors Abs and Pre { and Se
tion 4 has

shown how to a

urately des
ribe su
h a fun
tion. Let us begin, then, with

asymmetri

on
atenation:

� : f'

1

g ! f'

2

g ! f'

3

g

where '

2

� Either �

2

Abs � '

2

?'

1

� '

3

Pre � '

2

? Pre �

2

� '

3

Clearly, ea
h
onditional
onstraint mirrors one of the redu
tion rules. In

the se
ond
onditional
onstraint, we assume �

2

is the type of the se
ond

re
ord's �eld { if it has one. The �rst subtyping
onstraint represents this

assumption. Noti
e that we use Pre �

2

, rather than '

2

, as the se
ond

bran
h's result type; this is stri
tly more pre
ise, be
ause '

2

may be of the

form Either �

2

.

Lastly, we turn to symmetri

on
atenation:

�� : f'

1

g ! f'

2

g ! f'

3

g

where Abs � '

1

?'

2

� '

3

Abs � '

2

?'

1

� '

3

Pre � '

1

?'

2

� Abs

Pre � '

2

?'

1

� Abs

Again, ea
h of the �rst two
onstraints mirrors a redu
tion rule. The last two

onstraints disallow the
ase where both arguments are non-empty re
ords.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 17

(The
areful reader will noti
e that any one of these two
onstraints would

in fa
t suÆ
e; both are kept for symmetry.)

In both
ases, the operation's des
ription in terms of
onstraints
losely

resembles its operational de�nition. Automati
ally deriving the former from

the latter seems possible; this is an area for future resear
h.

5.2 The General Case

We now move to a language with a denumerable set of re
ord labels, written

l, m, et
. The language allows
reating the empty re
ord, as well as any one-

�eld re
ord; it also o�ers sele
tion and
on
atenation operations. Extension

and restri
tion
an be easily added, if desired.

e ::= ? j fl = eg j e:l j � j ��

We do not give the semanti
s of the language, whi
h should hopefully be

lear enough.

At the level of types, we again introdu
e rows of �eld types, denoted by �.

Furthermore, we introdu
e rows of normal types, denoted by %. Lastly, we

lift the �ve �eld type
onstru
tors to the level of rows.

� ::= �; �;
; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

% ::= �; �;
; : : : j l : � ; % j ��

� ::= '; ; : : : j l : �; � j �� j Bot j Abs j Pre % j Either % j Any

This allows writing
omplex
onstraints between rows, su
h as ' � Pre �,

where ' and � are row variables. A
onstraint between rows is interpreted as

an in�nite family of
onstraints between types, obtained
omponent-wise.

That is, (l : '

0

; '

00

) � Pre (l : �

0

; �

00

) has the same logi
al meaning as

('

0

� Pre �

0

) ^ ('

00

� Pre �

00

). (See Se
tion 2 for details.)

We may now give types to the primitive re
ord operations. Creation and

sele
tion are easily dealt with:

? : f�Absg

fl = �g : �! fl : Pre �; �Absg

�:l : fl : Pre �; �Anyg ! �

Interestingly, the types of both
on
atenation operations are un
hanged from

the previous se
tion { at least, synta
ti
ally. (We do not repeat them here.)

A subtle di�eren
e lies in the fa
t that all variables involved must now be

read as row variables, rather than as type variables. In short, the previous

se
tion exhibited
onstraints whi
h des
ribe
on
atenation, at the level of

a single re
ord �eld; here, the row ma
hinery allows us to repli
ate these

onstraints over an in�nite set of labels. This in
rease in power
omes almost

for free: it does not add any
omplexity to our notion of subtyping.

18 FRANC�OIS POTTIER

6. First-Class Messages

In many
urrent obje
t-oriented languages, messages do not have �rst-
lass

status. That is, whenever a message is sent to an obje
t, its name is �xed and

must be expli
itly mentioned; only the message parameters and the re
eiver

obje
t are allowed to vary dynami
ally. Some languages, however, allow

�rst-
lass (also known as \dynami
") messages. That is, they allow messages

to exist as autonomous entities, whi
h may be
omputed in arbitrary ways

before being sent to an obje
t.

We will view obje
ts as re
ords of fun
tions, and messages as tagged values,

made up of a label and a parameter. Indeed, this simple view suÆ
es to

exhibit the type inferen
e problem we are interested in. Thus, we
onsider

a language with re
ords and data
onstru
tors, as des
ribed in Se
tions 4.2

and 5.2. Furthermore, we let re
ord labels and data
onstru
tors range

over a single name spa
e, that of message labels. A primitive message-send

operation, written #, is de�ned as follows:

fm = v

1

; : : : g (mv

2

) redu
es to (v

1

v

2

)

In plain words, # examines its se
ond argument, whi
h must be some mes-

sage m with parameter v

2

. It then looks up the method named m in the

re
eiver obje
t, and applies the method's
ode, v

1

, to the message param-

eter. Put another way, if r is a re
ord of fun
tions, then (# r) a
ts as a

fun
tion de�ned by
ases. Thus, # is nothing but a witness of the well-

known isomorphism whi
h exists between these representations.

6.1 The Problem

In a language without �rst-
lass messages, every message-send operation

must involve a �xed message label. So, instead of a single, generi
 opera-

tion su
h as #, the language provides a family of primitive message-send

operations, indexed by message labels.

In our view of obje
ts as re
ords of fun
tions, these operations are de�n-

able within the language. Indeed, the operation #m, whi
h allows send-

ing the message m to the obje
t o with parameter p, may be de�ned as

�o:�p:(o:m p). Then, type inferen
e yields

#m : fm : Pre (�! �); �Anyg ! �! �

Be
ause the message label m is stati
ally known, it
an be expli
itly men-

tioned in the type s
heme, making it easy to require the re
eiver obje
t to

arry an appropriate method.

In a language with �rst-
lass messages, on the other hand, m is no longer

known. As a result of this diÆ
ulty, mu
h of the initial work on typed obje
t-

oriented languages has ignored the issue of �rst-
lass messages. Gaster [7,

hapter 7℄ studies a stati
 type system where # (under the name of sumE-

lim) is a primitive operation. However, in his system, (# r) is well-typed

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 19

only if all fun
tions stored in r have the same return type. This
ondition is

learly too restri
tive for our purposes: an obje
t must be allowed to
on-

tain methods with di�erent return types. Nishimura [13℄ suggests a type

inferen
e system for an obje
t-oriented language with �rst-
lass messages,

in the style of Ohori's se
ond-order typed re
ord
al
ulus [15℄. It is later

re-formulated by M�uller and Nishimura [12℄. The new presentation is based

on feature
onstraints, in
luding a new form of
onstraints, spe
i�
ally in-

tended to model the behavior of a generi
 message-send operation. Bugliesi

and Crafa [3℄ also attempt to present a simpli�ed view of Nishimura's original

work. However, they
hoose a higher-order type system, thus abandoning

type inferen
e.

6.2 A Solution

We said above that, given a re
ord r, the partial appli
ation (# r) yields a

fun
tion de�ned by
ases. Indeed, given a tagged value (mv), it will invoke

an appropriate pie
e of
ode, sele
ted a

ording to the label m. Good point

{ this paper is pre
isely
on
erned with ways of giving a

urate types to

fun
tions de�ned by
ases. We have shown how
onditional
onstraints allow

ignoring (the return type of) a bran
h, unless it is liable to be taken. In

obje
t-oriented terms, they allow ignoring (the return type of) any method

whi
h is provably unrelated with the message at hand. This solves the

ru
ial problem with �rst-
lass messages.

Here, we
hoose to deal dire
tly with the
ase of multiple message labels,

even though the two-step presentation adopted in Se
tions 4 and 5 would

still make sense here. Therefore, we propose:

: f'g ! [℄! �

where � Pre �

Pre � ?' � Pre (�! ��)

(Here, all variables ex
ept � are row variables.) The operation's �rst (resp.

se
ond) argument is required to be an obje
t (resp. a message), whose

ontents (resp. possible values) are des
ribed by the row variable ' (resp.

). The �rst
onstraint merely lets � stand for the type of the message

parameter. The
onditional
onstraint, whi
h involves three rows, should

again be understood as a family, indexed by message labels, of
onditional

onstraints between �eld types. The
onditional
onstraint asso
iated with

some label m will be triggered only if 's element at index m is of the form

Pre , i.e. only if the message's label may be m. When it is triggered, its

right-hand side be
omes a
tive, with a three-fold e�e
t. First, ''s element

at index m must be of the form Pre (!), i.e. the re
eiver obje
t must

arry a method labeled m. Se
ond, the method's argument type must be

(a supertype of) �'s element at label m, i.e. the method must be able to

a

ept the message's parameter. Third, the method's result type must be (a

subtype of) �, i.e. the result type of the whole operation will be (at least)

the join of the return types of all potentially invoked methods.

20 FRANC�OIS POTTIER

This proposal shows that type inferen
e for �rst-
lass messages
an be

performed using existing tools, with no need for dedi
ated theoreti
al ma-

hinery. It also shows that �rst-
lass messages are naturally
ompatible

with all operations on re
ords, in
luding
on
atenation { a question left

unanswered by Nishimura [13℄.

7. Examples

This se
tion illustrates the proposals made in the previous se
tions with

short examples.

Example 3. We
onsider lists built out of two data
onstru
tors, N and C.

The fun
tion
ar, whi
h returns the �rst element of a list, if it exists, and

E otherwise (where E is another data
onstru
tor, standing for error), is

de�ned as follows:

ar = (N

�1

E

(C

�1

(�(x; r):x)

lose))

Then,
ar's inferred type s
heme is

ar : [N : '; C : ; �Abs ℄!

where ' � Pre �

Pre � ' ? [E : Pre �; �Abs ℄ �

 � Pre (� �>)

Pre � ?� �

(Be
ause the language only o�ers unary
onstru
tors, N and E must
arry

some argument, whi
h remains unspe
i�ed here; � stands for its type. Usu-

ally, one identi�es � with some unit type.) The �rst
onditional
onstraint

above tells that the �rst bran
h of
ar's de�nition { namely E { will not

be taken unless ' is \present", i.e. unless
ar's argument is tagged N . The

next one tells that the se
ond bran
h { namely �(x; r):x { will not be taken

unless it is tagged C. No other tags are allowed, be
ause
ar's argument

type involves the row (N : '; C : ; �Abs), whose proje
tion on any tag

other than N and C is Abs.

What happens when applying
ar? The type inferred for the expression

ar (C (1; C (true; N ()))), where it is passed a heterogeneous, 2-element list,

is int. In other words, this expression is stati
ally found not to produ
e E,

be
ause the �rst
onditional
onstraint is not triggered.

Example 4. We de�ne a fun
tion whi
h reads the �eld l out of a re
ord r

and returns a default value d if r has no su
h �eld. It is given by extra
t =

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 21

�d:�r:(fl = dg� r):l. In our system, extra
t's inferred type is

extra
t : �! fl : '; g !

where ' � Either � � Either �

Abs � ' ?� �
 Abs � ? Abs � Any

Pre � ' ?� �
 Pre � ? Pre � � Any

The �rst
onstraint retrieves r:l's type and names it �, regardless of the

�eld's presen
e. (If the �eld turns out to be absent, � will be un
onstrained.)

The left-hand
onditional
onstraints
learly spe
ify the dependen
y be-

tween the �eld's presen
e and the fun
tion's result.

The right-hand
onditional
onstraints have tautologous
on
lusions {

therefore, they are super
uous. They remain only be
ause our
urrent
on-

straint simpli�
ation algorithms are \lazy" and ignore any
onditional
on-

straints whose
ondition has not yet been ful�lled. This problem
ould be

�xed by making the simpli�
ation algorithm slightly more aggressive, i.e.

by allowing it to
he
k whether the
on
lusion of a
onditional
onstraint is

redundant, regardless of its
ondition.

The type inferred for extra
t 0 fl = 1g and extra
t 0 fm = 1g is int.

Thus, in many
ases, one need not be aware of the
omplexity hidden in

extra
t's type.

Example 5. We assume given an obje
t o, of the following type:

o : f getText : Pre (unit! string);

setText : Pre (string! unit);

sele
t : Pre (int� int! unit);

�Abs g

omay represent, for instan
e, an editable text �eld in a graphi
 user interfa
e

system. Its methods allow programmati
ally getting and setting its
ontents,

as well as sele
ting a portion of text.

Next, we assume a list data stru
ture, equipped with a simple iterator:

iter : (�! unit)! � list! unit

The following expression
reates a list of messages, and uses iter to send

ea
h of them in turn to o:

iter (# o) [setText \Hello!"; sele
t (0; 5) ℄

This expression is well-typed, be
ause o
ontains appropriate methods to

deal with ea
h of these messages, and be
ause these methods return unit,

as expe
ted by iter. The expression's type is of
ourse unit, iter's return

type.

Here is a similar expression, whi
h involves a getText message:

iter (# o) [setText \Hello!"; getText () ℄

22 FRANC�OIS POTTIER

This time, it is ill-typed. Indeed, sending a setText message to o produ
es

a result of type unit, while sending it a getText message produ
es a result

of type string. Thus, (# o)'s result type must be >, the join of these types.

This makes (# o) an una

eptable argument for iter, sin
e the latter expe
ts

a fun
tion whose return type is unit.

8. Con
lusion

In this paper, we have advo
ated the use of a
onstraint-based type inferen
e

system equipped with subtyping, rows and
onditional
onstraints. This

provides a
ommon solution to several diÆ
ult type inferen
e problems,

whi
h, so far, had been addressed using spe
ial forms of
onstraints. From

a pra
ti
al point of view, it allows them to bene�t from known
onstraint

simpli�
ation te
hniques (see Appendix A), leading to an eÆ
ient inferen
e

algorithm [18℄.

Our system subsumes R�emy's proposal for re
ord
on
atenation [23℄, as

well as M�uller and Nishimura's view of �rst-
lass messages [12℄. Aiken,

Wimmers and Lakshman's \soft" type system [2℄ is more pre
ise than ours,

be
ause it interprets
onstraints in a ri
her logi
al model, but otherwise

o�ers similar features.

The design of a type inferen
e system involves two orthogonal
omponents:

a set of typing rules and a
onstraint language (together with its logi
al

interpretation). As to the former, we have suggested using HM(X) [14, 28,

27℄, whose formulation appears most elegant, but other
hoi
es would be

possible (see e.g. [10, 17℄). The fo
us of the paper is really on the latter:

our aim was to �nd a
onstraint language expressive enough to a

urately

des
ribe the features of the programming language at hand. One should

emphasize the fa
t that we do not, a priori, view the
onstraint system

SRC as better (simpler, more elementary, more
anoni
al, et
.) than its

ompetitors. We merely take its wide appli
ability as eviden
e of the fa
t

that it is
omparatively more general-purpose (less ad ho
) than some of its

prede
essors.

To
on
lude, we hope this paper illustrates how a small number of well-

understood logi
 me
hanisms allow building an advan
ed type inferen
e sys-

tem.

A
knowledgements

Thanks to Ja
ques Garrigue, Martin M�uller, Didier R�emy and Martin Sulz-

mann for stimulating dis
ussions. Didier R�emy also proof-read a version of

the manus
ript. Lastly, I would like to thank the anonymous referees for

their suggestions.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 23

Appendix A. Algorithms and Proofs

This appendix
ontains a formal des
ription of
onstraint resolution and

simpli�
ation algorithms, in the presen
e of atomi
 and
onditional subtyp-

ing
onstraints. Resolution is required in determining whether a program is

type-
orre
t; simpli�
ation is key to a
hieving reasonable eÆ
ien
y.

The system des
ribed in this appendix does not have rows, or a separation

of types into distin
t kinds, but otherwise has all features presented in the

body of this paper. Adding rows to this formal des
ription would require

work, but should not pose any foreseeable diÆ
ulty, sin
e the
on
ept of row

is essentially orthogonal to the notion of subtyping. Adding kinds should be

routine. A referen
e implementation of the full system, in
luding rows and

kinds, is available [18℄.

This appendix des
ribes an extension of [17℄ with
onditional
onstraints.

Thus, most proofs presented here are partial, and des
ribe only the mod-

i�
ations required to a

ommodate
onditional
onstraints. However, all

de�nitions and statements are
omplete.

This appendix is laid out as follows. First, we review all ne
essary
on-

epts, in
luding ground types, types,
onstraints, and type s
hemes. Then,

we give a
onstraint resolution algorithm, and three
onstraint simpli�
ation

algorithms.

Throughout this appendix, we use a
ouple of notational short
uts. If P

is a logi
 predi
ate, then

8� ` C P (�) stands for 8� (� ` C)) P (�)

9� ` C P (�) stands for 9� (� ` C) ^ P (�)

Appendix A.1 Ground Types

As in Se
tion 2, our formal development is parameterized with an arbitrary

ground signature (see De�nition 1). We assume that it de�nes only one

kind, so we write S and T instead of S

�

and T

�

. We write ?

S

, >

S

, �

S

, t

S

and u

S

instead of ?

�

, >

�

, �

�

, t

�

and u

�

. We also assume L

row

= ?. The

model (T;�), is de�ned as in De�nitions 2 and 3.

In this appendix, we use the letter � to denote either a ground type, or

a type, and sometimes both at the same time (see e.g. De�nition 17 and

Theorem 2). We will try to preserve a
lear distin
tion whenever possible.

Theorem 1. T, equipped with �, is a latti
e. Its latti
e operations, denoted

by t and u, are
hara
terized by the following identities:

(�

1

2 �

2

)(�) = �

1

(�) 2

S

�

2

(�)

8l 2 dom(�

1

2 �

2

) (�

1

2 �

2

):l = �

1

:l 2

l

�

2

:l

where 2 may stand for t or u. (We let 2

l

stand for 2 when l 2 L

+

; when

l 2 L

�

, t

l

stands for u and u

l

stands for t.) In the right-hand side of the

24 FRANC�OIS POTTIER

se
ond equation, �

1

:l (resp. �

2

:l) may be unde�ned; in su
h a
ase, it should

be read as the neutral element of 2

l

.

Note that, be
ause of the last requirement of De�nition 1, at least one of

�

1

:l and �

2

:l must be de�ned in the se
ond equation above.

We let ? (resp. >) stand for the ground type � su
h that dom(�) = f�g

and �(�) = ?

S

(resp. >

S

).

Appendix A.2 Types

Types are de�ned as in Se
tion 2.2, ex
ept row terms are disallowed.

Definition 7. Let V be a denumerable set of type variables, denoted by �,

�, et
. The set of types, denoted by T , is the term algebra T (�;V). In

other words, a type � is either a type variable, or a
onstru
ted term, of the

form s(�

l

)

l2a(s)

, where s 2 S is � 's head
onstru
tor, also written hd(�).

Definition 8. A ground substitution � is a total mapping from type vari-

ables to ground types. Ground substitutions are straightforwardly extended

to types.

Appendix A.3 Constraints and Type S
hemes

We now give syntax and semanti
s for three kinds of
onstraints: atomi

onstraints,
onditions and
onditional
onstraints. In ea
h
ase, the nota-

tion � `

k

 means that the ground substitution � k-satis�es the
onstraint

. The notation � `
 means that � satis�es
, and holds, by de�nition, if

and only if � `

k

 holds for all k 2 N

+

.

Definition 9. An atomi

onstraint is a pair of types, written �

1

� �

2

. A

ground substitution � k-satis�es it i� �(�

1

) �

k

�(�

2

).

Definition 10. A
ondition is a pair of a symbol s 2 S and of a type � ,

written s � � , where s must be a prime element of S. A ground substitution

� satis�es s � � i� s �

S

hd(�(�)).

Definition 11. A
onditional
onstraint is a pair of a
ondition and of

an atomi

onstraint, written s � � ? �

1

� �

2

. A ground substitution �

k-satis�es it i� � ` s � � implies � `

k

�

1

� �

2

.

Having de�ned
onstraints, we may de�ne notions of satisfa
tion and en-

tailment on
onstraint sets. They are de�ned in the usual way. We also

introdu
e a non-standard notion of pre-satisfa
tion (resp. pre-entailment),

whi
h is logi
ally weaker (resp. stronger) than its standard
ounterpart, be-

ause it ignores
onditional
onstraints. These notions are purely te
hni
al;

they are used only within our proofs.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 25

Definition 12. Let C be a set of
onstraints, both atomi
 and
onditional.

A ground substitution � is a pre-solution of C i� � `
 holds for all atomi

 2 C. � is a solution of C i� � `
 holds for all
 2 C. We write � `

pre

C

in the former
ase, and � ` C in the latter.

Let
 be a
onstraint. C pre-entails
, whi
h we write C

pre

, i� 8� `

pre

C � `
. C entails
, whi
h we write C

, i� 8� ` C � `
.

We now de�ne type s
hemes. They are
onstrained polymorphi
 types, i.e.

types
ontaining variables whose possible instantiations are restri
ted by a

onstraint set. For simpli
ity, we only
onsider
losed type s
hemes, i.e. type

s
hemes whi
h have no free type variables. Although somewhat un
ommon,

type systems exist whi
h respe
t this restri
tion (see [29, 17℄). It should also

be possible to extend our results to the
ase of arbitrary type s
hemes.

Definition 13. A type s
heme is a pair of a type � and of a
onstraint set

C, written 8C: � .

A type s
heme � represents a set of ground types, whi
h we
all its denota-

tion. Ea
h of these ground types represent one possible
orre
t behavior of

the program des
ribed by �. A type s
heme whose denotation is empty (i.e.

whose
onstraint set has no solution) thus represents an ill-typed program.

Definition 14. The denotation J�K of a type s
heme � is the union of the

upper
ones generated by its ground instan
es with respe
t to �. That is,

J8C: �K = f�

0

; 9� ` C �(�) � �

0

g

A type s
heme whose denotation is bigger represents a larger set of possible

behaviors; thus, it is more general. This notion allows
omparing type

s
hemes, while a

ounting for polymorphism and subtyping at the same

time. It was introdu
ed in [29℄, where it was written �

8

; we denote it 4.

Definition 15. Given two type s
hemes �

1

and �

2

, the former is said to

be more general than the latter i� J�

1

K � J�

2

K; we shall then write �

1

4 �

2

.

In other words, �

1

is more general than �

2

i� for any ground instan
e of �

2

,

there exists a smaller ground instan
e of �

1

. Formally,

(8C

1

: �

1

) 4 (8C

2

: �

2

)

is thus equivalent to

8�

2

` C

2

9�

1

` C

1

�

1

(�

1

) � �

2

(�

2

)

We write �

1

� �

2

when �

1

4 �

2

and �

2

4 �

1

.

The relation � o�ers a spe
i�
ation of
onstraint simpli�
ation. Indeed, a

type s
heme �
an be simpli�ed into a type s
heme �

0

only if � � �

0

. One

would also expe
t �

0

to have a smaller textual representation than �, but

26 FRANC�OIS POTTIER

that is not a requirement; it is rather to be viewed as an implementation

detail.

We
on
lude this se
tion with a de�nition of what it means for a type

s
heme to be made up of small terms. All of the algorithms de�ned here

will expe
t this property to hold, and will preserve it, making it a global

invariant. This
hoi
e simpli�es de�nitions and proofs. Furthermore, from

a pra
ti
al point of view, it allows enfor
ing maximum sharing, sin
e it

requires every sub-term to be \named" by a type variable, allowing our

minimization algorithm to identify sub-terms.

Definition 16. A small term is a
onstru
ted type term whose stri
t sub-

terms are type variables. A type s
heme 8C: � is made up of small terms i�

it satis�es the following
onditions:

Æ � is a type variable;

Æ for all (�

1

� �

2

) 2 C, either �

1

and �

2

are type variables, or one is a

variable and the other is a small term.

Æ for all (s � � ? �

1

� �

2

) 2 C, � , �

1

and �

2

are type variables.

Every type s
heme
an be turned into an equivalent type s
heme whi
h is

made up of small terms. (In pra
ti
e, this would be done when
onverting

type s
hemes input by the user into some internal representation.)

Appendix A.4 Solving Constraints

We begin with a fundamental te
hni
al result, whi
h des
ribes a weak, suÆ-

ient
ondition for a
onstraint set to have a solution. It shall form the basis

for the proof of the
losure algorithm. We prove a fairly powerful version

of this result, allowing ground
onstants to appear in
onstraints. (If these

onstraints were to be written, some �nite representation of these
onstants

would be required; however, su
h is not the
ase here.) Thanks to this gen-

eralization, this result will also form the basis for the proof of the garbage

olle
tion algorithm.

Definition 17. A
onstraint set with ground
onstants is a
onstraint set

C, where atomi

onstraints may involve either two variables, one variable

and a small term, or one variable and a ground type, and where
onditional

onstraints have their usual form. De�ne the assertion C

+1

�

1

� �

2

to

mean

8k � 0 8� `

pre

k

C � `

k+1

�

1

� �

2

De�ne C

#

(�) = f� ; � 62 V ^ � � � 2 Cg and C

"

(�) = f� ; � 62 V ^ � � � 2

Cg. C is said to be weakly
losed i� the following
onditions are met:

(1) � � � 2 C and � �
 2 C imply � �
 2 C;

(2) � � � 2 C and � 2 C

#

(�) imply 9�

0

2 C

#

(�) C

+1

� � �

0

;

(3) � � � 2 C and �

0

2 C

"

(�) imply 9� 2 C

"

(�) C

+1

� � �

0

;

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 27

(4) � 2 C

#

(�) and �

0

2 C

"

(�) imply C

+1

� � �

0

;

(5) � � � 2 C and s � � ?
 2 C imply s � � ?
 2 C;

(6) s � � ?
 2 C, � 2 C

#

(�) and s �

S

hd(�) imply C

pre

.

C

#

(�)
ontains all lower bounds of � whi
h are not type variables; thus,

every � 2 C

#

(�) must be either a small type term, or a ground type. A

similar remark holds
on
erning C

"

(�).

Conditions 1 and 5 above are purely synta
ti
 transitivity
onditions. Con-

ditions 2 to 4 also involve transitivity, but the use of

+1

allows expressing

these
onditions in a logi
al, rather than synta
ti
, way, making them less

restri
tive.

Theorem 2. Let C be a
onstraint set with ground
onstants. If C is weakly

losed, then C has a solution.

Proof. Note that this proof only uses Conditions 2, 4 and 6 of De�ni-

tion 17. The other
onditions shall be required by further theorems, su
h

as the
orre
tness proof of garbage
olle
tion.

The �rst step of the proof
onsists in exhibiting a ground substitution �

su
h that, for all � 2 fv(C), �(�) equals tf�(�) ; � 2 C

#

(�)g, and proving

that � is a pre-solution of C. In fa
t, this step
oin
ides with the
lassi

proof performed in the absen
e of
onditional
onstraints [17℄; we shall not

repeat it here.

The se
ond step
onsists in proving that � is a full solution of C. Pi
k a

onditional
onstraint s � � ?
 2 C. Assume � ` s � �. By de�nition of �,

this statement
an be written

s �

S

hd(�(�)) = hd(tf�(�) ; � 2 C

#

(�)g)

= t

S

fhd(�(�)) ; � 2 C

#

(�)g

= t

S

fhd(�) ; � 2 C

#

(�)g

(The identity hd(�(�)) = hd(�) stems from the fa
t that � is either a small

term, or a ground
onstant, with a �xed head
onstru
tor.) Considering that

s is prime (see De�nition 10), this entails s �

S

hd(�) for some � 2 C

#

(�).

We
an then apply Condition 6 of De�nition 17, whi
h yields C

pre

.

Sin
e � is a pre-solution of C, this implies � `
. We have thus veri�ed

� ` s � � ?
, proving that � is a solution of C.

2

Equippedwith this te
hni
al result, we are now ready to de�ne a
onstraint

resolution algorithm. It is based on a simple
losure
omputation. We begin

by de�ning an auxiliary
onstraint de
omposition fun
tion, whi
h breaks a

onstraint down into a set of equivalent
onstraints.

Definition 18. Given types �

1

and �

2

, sub
(�

1

� �

2

) is de�ned as

Æ f�

1

� �

2

g, if �

1

or �

2

is a variable;

28 FRANC�OIS POTTIER

Æ f�

1

:l �

l

�

2

:l ; l 2 dom(�

1

) \ dom(�

2

)g, if �

1

and �

2

are
onstru
ted

terms su
h that hd(�

1

) �

S

hd(�

2

).

Note that sub
(�

1

� �

2

) is unde�ned when hd(�

1

) 6�

S

hd(�

2

); indeed, su
h

a
onstraint is
learly unsatis�able.

Using this auxiliary fun
tion, we
an now des
ribe the
losure
onditions:

Definition 19. Let C be a
onstraint set, made up of small terms. C is

said to be
losed i�

(1) � � � 2 C and � � �

0

2 C imply sub
(� � �

0

) � C;

(2) � � � 2 C and s � � ?
 2 C imply s � � ?
 2 C;

(3) s � � ?
 2 C, � 2 C

#

(�) and s �

S

hd(�) imply
 2 C.

Condition 1 is the
lassi

losure
ondition, found e.g. in [17℄; it involves

transitivity and stru
tural de
omposition. Condition 2 is a transitivity
on-

dition
on
erning
onditional
onstraints. Condition 3 requires that the

on
lusion of a
onditional
onstraint whose
ondition must be satis�ed be

dis
harged into the
onstraint set.

It is easy to
he
k that
losure implies weak
losure [17℄. This yields an

algorithm to de
ide whether a
onstraint set C has a solution: attempt to

ompute the smallest
losed set C

�

ontaining it, by repeated appli
ation of

the above three rules. Ea
h rule preserves the set's solution spa
e. So, if the

omputation su

eeds, then C has a solution; if, on the other hand, it fails

(be
ause sub
 is applied outside of its domain), then C has no solution.

Consider a
onditional
onstraint s � � ?
. A

ording to the
losure rules

above, the atomi

onstraint
 will have no e�e
t on the
onstraint resolu-

tion pro
ess until it is dis
harged by rule 3. That is,
 will be ignored until

the algorithm dis
overs some eviden
e that the
ondition s � � must be sat-

is�ed. This explains why
onditional
onstraints delay type
omputations,

as mentioned in the body of this paper. The algorithm will not spe
ulate

about the
onsequen
e of the
onditional
onstraint, should its
ondition be

satis�ed; rather, it waits until it has no
hoi
e but satisfy
.

Appendix A.5 Polarity

We now de�ne how to asso
iate a polarity with ea
h type variable in a type

s
heme whose
onstraint set if (weakly)
losed. This notion will be used in

the de�nition of all three
onstraint simpli�
ation algorithms.

Definition 20. Consider a type s
heme � = 8C: Æ, made up of small terms,

where C is weakly
losed. The set of positive variables of �, and the set of

negative variables of �, respe
tively denoted by fv

+

(�) and fv

�

(�), are the

smallest subsets P and N of fv(�) su
h that

Æ Æ 2 P ;

Æ 8� 2 P 8� 2 C

#

(�) split(�) � (N;P);

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 29

Æ 8� 2 N 8� 2 C

"

(�) split(�) � (P;N);

Æ 8� 2 N s � � ?� �
 2 C) � 2 P ^
 2 N .

where the auxiliary fun
tion split maps a small term � to an element of

2

V

� 2

V

, as follows:

split(�) = (f�:l ; l 2 L

�

g; f�:l ; l 2 L

+

g)

A type variable is said to be bipolar if it is positive and negative, and neutral

if it is neither. fv

+

(�) and fv

�

(�)
an be
omputed in time linear in the size

of �, using a simple �x-point
al
ulation. Every type s
heme is equivalent

to a type s
heme with no bipolar variables; we do not prove this result here.

Appendix A.6 Garbage Colle
tion

Knowing the polarity of ea
h variable allows us to throw away many redun-

dant
onstraints, as shown by the following de�nition and theorem.

Definition 21. Consider � as in De�nition 20. The image of � through

garbage
olle
tion, denoted by GC(�), is the type s
heme 8D: Æ, where D is

a subset of C de�ned as follows:

Æ � � � 2 D i� � � � 2 C, � 2 fv

�

(�) and � 2 fv

+

(�);

Æ D

#

(�) equals C

#

(�) if � 2 fv

+

(�), and ? otherwise;

Æ D

"

(�) equals C

"

(�) if � 2 fv

�

(�), and ? otherwise;

Æ s � � ?� �
 2 D i� s � � ?� �
 2 C and � 2 fv

�

(�).

This de�nition is mostly identi
al to the one in [17℄; only the fourth point

is new, and spe
i�es that a
onditional
onstraint is redundant unless it

bears on a negative variable. In operational terms, a
onditional
onstraint

s � � ?

an be triggered only if � re
eives a lower bound whi
h ex
eeds

s. Considering that only negative variables
an re
eive new lower bounds in

the future, this
onstraint has no e�e
t unless � is negative.

Theorem 3. Consider � as in De�nition 21. Then � � GC(�).

Proof. Write �

0

= GC(�). Sin
e �

0

has fewer
onstraints, it is
lear that

�

0

4 �. So, we need to prove � 4 �

0

. A

ording to De�nition 15, this is

equivalent to

8�

0

` D 9� ` C �(Æ) � �

0

(Æ)

Pi
k some �

0

` D. We now wish to prove that C[fÆ � �

0

(Æ)g admits a solu-

tion. This is a
onstraint set with ground
onstants, as per De�nition 17. We

shall meet our goal by proving that the following
onstraint set|a superset

of the previous one|is weakly
losed:

C [f�

0

(�) � � ; � 2 fv

�

(�) ^ � � � 2 C

r

g

[f� � �

0

(�) ; � 2 fv

+

(�) ^ � � � 2 C

r

g

30 FRANC�OIS POTTIER

(C

r

denotes the re
exive
losure of C, i.e. � � � 2 C

r

i� � = � or

� � � 2 C.) Let E denote this set.

That E should satisfy Conditions 1 to 4 of De�nition 17 is a
lassi
 result,

proved in [17℄. The novelty, in the presen
e of
onditional
onstraints, is to

he
k that E also satis�es Conditions 5 and 6.

To
he
k Condition 5, assume � � � 2 E and s � � ?
 2 E. Considering

the de�nition of E, these
onstraints must in fa
t belong to C. Sin
e C itself

is weakly
losed, s � � ?
 belongs to C, whi
h is a subset of E.

To
he
k Condition 6, assume s � � ?
 2 E, � 2 E

#

(�) and s �

S

hd(�).

As above, s � � ?
 must in fa
t belong to C. Furthermore, if � 2 C

#

(�),

then it is again easy to
on
lude,
onsidering that C itself is weakly
losed.

Thus, let us assume � 62 C

#

(�). Considering the de�nition of E, we must

have � = �

0

(�), � 2 fv

�

(�) and � � � 2 C

r

, for some �; � 2 fv(C).

We have s � � ?
 2 C and � � � 2 C

r

. Be
ause C satis�es Condition 5

of De�nition 17, this entails s � � ?
 2 C. Furthermore, sin
e � 2 fv

�

(�),

this
onstraint is preserved by garbage
olle
tion; formally, De�nition 21

states that s � � ?
 2 D. Sin
e �

0

is a solution of D, we have �

0

` s � � ?
.

Finally, re
all that s �

S

hd(�) = hd(�

0

(�)), whi
h
an be written �

0

` s � �.

By bringing both results together, we obtain �

0

`
.

Let us now write

1

(resp.

2

) for the left-hand (resp. right-hand) side of

. The assertion �

0

`

an be re-stated �

0

(

1

) � �

0

(

2

). Besides, we have

� 2 fv

�

(�) and s � � ?

1

�

2

2 C; a

ording to De�nition 20, this entails

1

2 fv

+

(�) and

2

2 fv

�

(�). Then, a

ording to the de�nition of E, the

onstraints

1

� �

0

(

1

) and �

0

(

2

) �

2

must appear in E. It follows that

any pre-solution of E satis�es

1

�

2

. In other words, E

pre

.

2

Appendix A.7 Canonization

Definition 22. A
onstraint set C is in
anoni
al form i� ea
h variable

� 2 fv(C) has exa
tly one
onstru
ted lower (resp. upper) bound, i.e. i�

C

#

(�) and C

"

(�) are singletons.

We now de�ne an algorithm whi
h turns an arbitrary type s
heme � into

an equivalent type s
heme in
anoni
al form.

Definition 23. Let � = 8C: Æ be a type s
heme, made up of small terms,

with no bipolar variables, su
h that � = GC(�).

Let V (resp. W) range over non-empty subsets of fv

�

(�) (resp. fv

+

(�)).

For ea
h su
h V (resp. W) of
ardinality greater than 1, pi
k a fresh vari-

able

V

(resp. �

W

). (By fresh variables, we mean that these variables are

pairwise distin
t, and distin
t from �'s variables.)

De�ne the rewriting fun
tions r

�

and r

+

a

ording to Fig. 5. The �rst

three lines de�ne r

�

(resp. r

+

) over non-empty sets of negative (resp. posi-

tive) variables; the next two extend them to sets of negative (resp. positive)

small terms, ranged over by T . v stands for either + or �; t

v

S

stands for

t

S

when v = +, and for u

S

when v = �; v

l

stands for v when l 2 L

+

, and

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 31

r

v

(f�g) = �

r

+

(W) = �

W

when jW j > 1

r

�

(V) =

V

when jV j > 1

hd(r

v

(T)) = t

v

S

hd(T)

8l 2 a(t

v

S

hd(T)) r

v

(T):l = r

v

l

(T:l)

Figure 5: De�nition of the rewriting fun
tions

r

�

(V) � r

+

(W) 2 D i� 9� 2 V 9� 2W � � � 2 C

D

#

(�) = fr

+

(C

#

(�))g D

"

(�) = fr

�

(C

"

(�))g

D

#

(

V

) = f?g D

"

(

V

) = fr

�

([C

"

(V))g

D

#

(�

W

) = fr

+

([C

#

(W))g D

"

(�

W

) = f>g

s � r

�

(V) ?
 2 D i� 9� 2 V s � � ?
 2 C

Figure 6: Canonization

for the opposite of v when l 2 L

�

. On the last line of Fig. 5, T:l stands

for f�:l ; � 2 Tg. The expression r

v

l

(T:l) is well-de�ned, be
ause T:l is a

non-empty set of variables. Indeed, l belongs to a(t

v

S

hd(T)). A

ording to

the last
ondition of De�nition 1, this must be a subset of [a(hd(T)); that

is, there must exist some � 2 T su
h that �:l is de�ned.

The image of � through
anonization, denoted by Can(�), is 8D: Æ, where

the
onstraint set D is given by Fig. 6. It is
lear that Can(�) is in
anoni
al

form.

Considering our strong hypotheses on �, one easily proves that Can(�) is

losed. One
an also give a
onservative approximation of the polarity of

ea
h variable in Can(�). Indeed, if a variable � is positive (resp. negative,

neutral) in �, then it is at most positive (resp. negative, neutral) in Can(�).

Furthermore, any �

W

(resp.

V

) is at most positive (resp. negative) in

Can(�).

Theorem 4. Consider � as in De�nition 23. Then � � Can(�).

32 FRANC�OIS POTTIER

Proof. Let us use the notations of De�nition 23. We �rst show that

Can(�) 4 �, i.e.

8� ` C 9�

0

` D �

0

(Æ) � �(Æ)

Pi
k some � ` C. De�ne �

0

by

�

0

(�) = �(�) �

0

(

V

) = u �(V) �

0

(�

W

) = t �(W)

Clearly, for any W , �

0

(r

+

(W)) = t �(W). Similarly, �

0

(r

�

(V)) = u �(V).

Extending these assertions to sets of small terms, rather than sets of vari-

ables, is straightforward. Using these results, it is a matter of routine to

as
ertain that �

0

satis�es D. Here, we shall only
he
k that all
onditional

onstraints of D are satis�ed by �

0

. Consider su
h a
onstraint; it must be

of the form s � r

�

(V) ?
, where s � � ?
 2 C for some � 2 V . Assume

�

0

` s � r

�

(V). This
an be written

s �

S

hd(�

0

(r

�

(V)))

= hd(u �(V))

= u

S

hd(�(V))

�

S

hd(�(�)) sin
e � 2 V

So, � ` s � � holds. Be
ause s � � ?
 appears in C, and be
ause � satis�es

C, we must then have � `
. However, � and �

0

oin
ide over fv(�); so,

�

0

`
 holds as well. Thus, we have
he
ked that �

0

satis�es s � r

�

(V) ?
,

as desired.

The other dire
tion of the proof is slightly more diÆ
ult, be
ause D does

not entail C; in fa
t, our de�nition of
anonization
ontains a built-in

garbage
olle
tion step. We introdu
e an intermediate type s
heme �

0

=

8E: Æ, where E is de�ned by

E = D [f� � �

W

; � 2Wg [f

V

� � ; � 2 V g

This time, thanks to the added
onstraints, it is easy enough to prove that E

entails C, whi
h implies � 4 �

0

. There remains to prove that �

0

4 Can(�).

We shall do so by noti
ing that the
onstraints in E n D are super
uous,

a

ording to garbage
olle
tion. The result shall then follow from Theorem 3.

Our �rst obje
tive is to prove that E is weakly
losed, whi
h entitles us to

apply garbage
olle
tion to �

0

.

Proving that E satis�es Conditions 1 to 4 of De�nition 17 is (tedious)

routine; we refer the interested reader to [17℄.

To
he
k that E satis�es Condition 5, assume s � ?
 2 E and � � 2

E. Considering the form of the
onditional
onstraints whi
h appear in E

(see Fig. 6), must be the image of some set of negative variables through

r

�

. But then,
onsidering the form of the
onstraints between variables in

E, � � must be of the form

V

� �, where � 2 V . So,
oin
ides with

�. Thus, s � � ?
 appears in E; a

ording to Fig. 6, it also appears in C.

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 33

Sin
e � 2 V , another look at Fig. 6 indi
ates that s �

V

?
 appears in D,

hen
e in E. This was our goal, sin
e

V

is none other than �.

To
he
k that E satis�es Condition 6, assume s � r

�

(V) ?
 2 E, � 2

E

#

(r

�

(V)) and s �

S

hd(�).

First, we prove that jV j = 1. Indeed, if jV j > 1 were true, then r

�

(V)

would be

V

. Then, we would have � 2 E

#

(

V

) = f?g, so � = ?. Sin
e

s �

S

hd(�), it would follow that s = ?

S

, whi
h is forbidden by De�nition 10:

?

S

is not a prime element of S.

So, V must be a singleton set, say f�g. Then, E

#

(�) = fr

+

(C

#

(�))g, so

�
oin
ides with r

+

(C

#

(�)). Thus,

s �

S

hd(�) = t

S

hd(C

#

(�))

by de�nition of r

+

(see Fig. 5). Be
ause s is prime (see De�nition 10),

this implies s �

S

hd(�

0

) for some �

0

2 C

#

(�). Besides, sin
e V = f�g,

s � � ?
 appears in E, hen
e also in C. In light of the fa
t that C itself

satis�es Condition 6 of De�nition 17, all this implies C

pre

. However,

by de�nition of E, every pre-solution of E is also a pre-solution of C. So,

E

pre

 also holds. This was our goal.

We have veri�ed that E is weakly
losed. Thus, a

ording to Theorem 3,

we may throw away some of �

0

's
onstraints, as allowed by polarity, and

obtain an equivalent type s
heme. One dis
overs, in fa
t, that all
onstraints

in E nD are a
tually super
uous (see [17℄). As a result, �

0

� Can(�). This

on
ludes the proof.

2

Appendix A.8 Minimization

We now give an algorithm whi
h separates the variables of a type s
heme

into a number of equivalen
e
lasses, in su
h a way that all variables in a

single
lass
an be merged without a�e
ting the type s
heme's denotation.

We begin with a
ouple of auxiliary de�nitions:

Definition 24. Let V be a set of type variables. Any equivalen
e relation

� over V is extended to small terms whose variables are in V , as follows:

�

1

� �

2

() hd(�

1

) = hd(�

2

) ^ (8l 2 a(hd(�

1

)) �

1

:l � �

2

:l)

Definition 25. Let C be a
onstraint set. For � 2 V, de�ne

pred

C

(�) = f� ; � � � 2 Cg

su

C

(�) = f� ; � � � 2 Cg

Then, we give a series of requirements about equivalen
e relations, and show

that they are suÆ
ient to meet our goal.

34 FRANC�OIS POTTIER

Definition 26. Let � = 8C: Æ be a type s
heme in
anoni
al form, made

up of small terms, with no bipolar variables, su
h that � = GC(�). For any

� 2 fv(�), C

#

(�) (resp. C

"

(�)) is a singleton set; by abuse of language, we

shall use the same notation to refer to its unique element.

An equivalen
e relation � over fv(�) is
ompatible with � i� � � � implies

all of the following:

(1) f�; �g � fv

+

(�) or f�; �g � fv

�

(�);

(2) pred

C

(�) = pred

C

(�) and su

C

(�) = su

C

(�);

(3) C

#

(�) � C

#

(�) and C

"

(�) � C

"

(�);

(4) s � � ?

1

�

2

2 C implies 9Æ

1

�

1

9Æ

2

�

2

s � � ? Æ

1

� Æ

2

2 C.

Definition 27. Consider � as in De�nition 26; let � be a partition
om-

patible with �. The quotient

�

=

�

is de�ned|up to a renaming|as �(�),

where � is any mapping of fv(�) into V su
h that

8�; � 2 fv(�) � � � () �(�) = �(�)

Theorem 5. Consider � and � as in De�nition 27. Then,

�

=

�

� �.

Proof. The assertion � 4

�

=

�

learly holds, be
ause the latter is the

image of the former through the substitution �. Re
ipro
ally, let us show

that

�

=

�

4 �. Let � be a solution of C. We need to exhibit a solution �

0

of

�(C) su
h that �

0

(�(Æ)) � �(Æ).

Consider an equivalen
e
lass of �. Be
ause of Condition 1 of De�ni-

tion 26, it must be either a subset of fv

�

(�), or a subset of fv

+

(�). We

denote it by V (resp. W) in the former (resp. latter)
ase. We denote the

image of its elements through � by '

V

(resp. '

W

). De�ne �

0

by

�

0

('

V

) = t �(V) �

0

('

W

) = u �(W)

We remark that for any � 2 fv

+

(�), �

0

(�(�)) � �(�) holds; symmetri
ally,

for any � 2 fv

�

(�), we have �(�) � �

0

(�(�)).

There remains to
he
k that �

0

satis�es �(C) and �(Æ) � �(Æ). This is

straightforward; as before, we shall deal with the
ase of
onditional
on-

straints expli
itly, and refer the reader to [17℄ for the other
ases. Consider

a
onditional
onstraint in �(C). It has the form s � �(�) ?�(�) � �(
),

where s � � ?� �
 2 C. Note that, ne
essarily, � and
 belong to

fv

�

(�), while � belongs to fv

+

(�). Let V stand for �'s equivalen
e
lass, i.e.

V = �

�1

(�(�)). Assume �

0

` s � �(�). This
an be written

s �

S

hd(�

0

(�(�)))

= hd(t �(V))

= t

S

hd(�(V))

Be
ause s is prime (see De�nition 10), this implies s �

S

hd(�(�

0

)), for some

�

0

2 V . In other words, � ` s � �

0

holds. Furthermore, we have � � �

0

;

A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 35

sin
e � is
ompatible with �, Condition 4 yields s � �

0

?�

0

�

0

2 C, for

some �

0

� � and

0

�
. Both fa
ts,
ombined, yield � ` �

0

�

0

, be
ause �

is a solution of C. Next, note that, ne
essarily,

0

belongs to fv

�

(�), while �

0

belongs to fv

+

(�). Thus, � ` �

0

�

0

implies �

0

` �(�) � �(
), by de�nition

of �

0

. We have proved that �

0

satis�es s � �(�) ?�(�) � �(
).

2

Referen
es

[1℄ Aiken, Alexander S. and Wimmers, Edward L. 1993. Type In
lusion Con-

straints and Type Inferen
e. In Fun
tional Programming & Computer Ar
hite
-

ture. ACM Press, 31{41.

[2℄ Aiken, Alexander S., Wimmers, Edward L., and Lakshman, T. K. 1994.

Soft Typing with Conditional Types. In Prin
iples of Programming Languages,

163{173.

[3℄ Bugliesi, Mi
hele and Crafa, Silvia. 1999. Obje
t Cal
uli for Dynami
 Mes-

sages. In The Sixth International Workshop on Foundations of Obje
t-Oriented

Languages, FOOL 6, San Antonio, Texas.

[4℄ Cardelli, Lu
a and Mit
hell, John. 1991. Operations on Re
ords. Mathe-

mati
al Stru
tures in Computer S
ien
e 1, 3{48.

[5℄ F

�

ahndri
h, Manuel. 1999. Bane: A Library for S
alable Constraint-Based

Program Analysis. PhD thesis, University of California at Berkeley.

[6℄ Flanagan, Corma
 and Felleisen, Matthias. 1997. Componential Set-

Based Analysis. In Pro
eedings of the ACM SIGPLAN '97 Conferen
e on Pro-

gramming Language Design and Implementation. Las Vegas, Nevada, 235{248.

[7℄ Gaster, Benedi
t R. 1998. Re
ords, variants and quali�ed types. PhD thesis,

University of Nottingham.

[8℄ Harper, Robert and Pier
e, Benjamin. 1991. A Re
ord Cal
ulus Based

on symmetri
 Con
atenation. In Conferen
e Re
ord of the 18th Annual ACM

Symposium on Prin
iples of Programming Languages (POPL '91). ACM Press,

Orlando, Florida, 131{142.

[9℄ Heintze, Nevin. 1993. Set Based Analysis of ML Programs. Te
h. Report

CMU-CS-93-193, Carnegie Mellon University, S
hool of Computer S
ien
e.

[10℄ Jones, Mark P. 1994. Quali�ed Types: Theory and Pra
ti
e. Cambridge

University Press.

[11℄ M

�

uller, Martin, Niehren, Joa
him, and Podelski, Andreas. 2000. Order-

ing Constraints over Feature Trees. Constraints, an International Journal 5, 1{2,

7{42.

[12℄ M

�

uller, Martin and Nishimura, Susumu. 2000. Type Inferen
e for First-

Class Messages with Feature Constraints. International Journal of Foundations

of Computer S
ien
e 11, 1, 29{63.

[13℄ Nishimura, Susumu. 1998. Stati
 Typing for Dynami
 Messages. In Confer-

en
e Re
ord of POPL '98: The 25th ACM SIGPLAN-SIGACT Symposium on

Prin
iples of Programming Languages. San Diego, California, 266{278.

[14℄ Odersky, Martin, Sulzmann, Martin, and Wehr, Martin. 1999. Type

Inferen
e with Constrained Types. Theory and Pra
ti
e of Obje
t Systems 5, 1,

35{55.

[15℄ Ohori, Atsushi. 1995. A Polymorphi
 Re
ord Cal
ulus and Its Compilation.

ACM Transa
tions on Programming Languages and Systems 17, 6 (Nov.), 844{

895.

[16℄ Pottier, Fran
�ois. 1998. Type inferen
e in the presen
e of subtyping: from

theory to pra
ti
e. Te
h. Report 3483, INRIA.

[17℄ Pottier, Fran
�ois. 2000. Simplifying subtyping
onstraints: a theory.

To appear in Information & Computation. URL: http://pauilla
.inria.fr/

~fpottier/publis/fpottier-i
-2000.ps.gz.

36 FRANC�OIS POTTIER

[18℄ Pottier, Fran
�ois. 2000. Walla
e: an eÆ
ient implementation of type infer-

en
e with subtyping. URL: http://pauilla
.inria.fr/~fpottier/walla
e/.

[19℄ R

�

emy, Didier. 1992. Proje
tive ML. In 1992 ACM Conferen
e on Lisp and

Fun
tional Programming. ACM Press, New-York, 66{75.

[20℄ R

�

emy, Didier. 1993. Synta
ti
 Theories and the Algebra of Re
ord Terms.

Resear
h Report 1869, INRIA.

[21℄ R

�

emy, Didier. 1993. Type Inferen
e for Re
ords in a Natural Extension of ML.

In Theoreti
al Aspe
ts Of Obje
t-Oriented Programming. Types, Semanti
s and

Language Design, Gunter, Carl A. and Mit
hell, John C., Editors. MIT Press.

[22℄ R

�

emy, Didier. 1993. Typing Re
ord Con
atenation for Free. In Theoreti
al As-

pe
ts Of Obje
t-Oriented Programming. Types, Semanti
s and Language Design,

Gunter, Carl A. and Mit
hell, John C., Editors. MIT Press.

[23℄ R

�

emy, Didier. 1995. A
ase study of type
he
king with
onstrained types: Typ-

ing re
ord
on
atenation. Presented at the workshop on Advan
es in Types for

Computer S
ien
e at the Newton Institute, Cambridge, UK.

[24℄ R

�

emy, Didier. 1998. From Classes to Obje
ts via Subtyping. In Pro
eedings

of the 1998 European Symposium On Programming (ESOP'98), Volume 1381 of

Le
ture Notes in Computer S
ien
e. Springer-Verlag, 200{220.

[25℄ Reynolds, John C. 1969. Automati
 Computation of Data Set De�nitions. In

Information Pro
essing 68, Volume 1. North-Holland, Amsterdam, 456{461.

[26℄ Smith, S
ott and Wang, Tiejun. 2000. Polyvariant Flow Analysis with Con-

strained Types. In Pro
eedings of the 2000 European Symposium on Program-

ming (ESOP'00), Volume 1782 of Le
ture Notes in Computer S
ien
e. Springer

Verlag, 382{396.

[27℄ Sulzmann, Martin. 2000. A general framework for Hindley/Milner type systems

with
onstraints. PhD thesis, Yale University, Department of Computer S
ien
e.

[28℄ Sulzmann, Martin, M

�

uller, Martin, and Zenger, Christoph. 1999. Hind-

ley/Milner style type systems in
onstraint form. Resear
h Report ACRC{99{

009, University of South Australia, S
hool of Computer and Information S
ien
e.

[29℄ Trifonov, Valery and Smith, S
ott. 1996. Subtyping Constrained Types.

In Pro
eedings of the Third International Stati
 Analysis Symposium, Volume

1145 of LNCS. SV, 349{365.

[30℄ Wand, Mit
hell. 1991. Type Inferen
e for Re
ord Con
atenation and Multiple

Inheritan
e. Information and Computation 93, 1 (July), 1{15.

