
Nordi
 Journal of Computing

A Versatile Constraint-Based Type Inferen
e System

Fran�
ois Pottier

�

Fran
ois.Pottier�inria.fr

Abstra
t. The 
ombination of subtyping, 
onditional 
onstraints and rows yields a

powerful 
onstraint-based type inferen
e system. We illustrate this 
laim by propos-

ing solutions to three deli
ate type inferen
e problems: \a

urate" pattern mat
h-

ings, re
ord 
on
atenation, and �rst-
lass messages. Previously known solutions

involved a di�erent te
hnique in ea
h 
ase; our theoreti
al 
ontribution is in using

only a single set of tools. On the pra
ti
al side, this allows all three problems to ben-

e�t from a 
ommon set of 
onstraint simpli�
ation te
hniques, a formal des
ription

of whi
h is given in an appendix.

CR Classi�
ation: F.3.3 [Logi
s and Meanings of Programs℄: Studies of Program

Constru
ts|Type Stru
ture.

Key words: Constraint-based type inferen
e. Subtyping. Rows. Conditional


onstraints.

1. Introdu
tion

Type inferen
e is the task of examining a program whi
h la
ks some (or

even all) type annotations, and re
overing enough type information to make

it a

eptable by a type 
he
ker. Its original, and most obvious, appli
ation

is to free the programmer from the burden of manually providing these an-

notations, thus making stati
 typing a less dreary dis
ipline. However, type

inferen
e has also seen heavy use as a simple, modular way of formulating

program analyses.

The design of a type inferen
e system 
an be in
uen
ed by its purpose.

When used as a user-visible way of enfor
ing a 
oding dis
ipline, it might

be desirable to make it simple and somewhat rigid. When used invisibly

as part of a 
ompiler's optimization pro
ess, on the other hand, maximum

pre
ision may be desired. Regardless of this distin
tion, however, power-

ful type inferen
e te
hniques are often made a ne
essity by the advan
ed

features found in many re
ent programming languages.

This paper presents a 
ommon solution to several seemingly unrelated type

inferen
e problems, using an existing framework for subtyping-
onstraint-

based type inferen
e [14℄, equipped with 
onditional 
onstraints inspired by

Aiken, Wimmers and Lakshman [2℄ and with rows �a la R�emy [19, 21℄.

�
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Constraint-Based Type Inferen
e

Subtyping is a partial order on types, de�ned so that an obje
t of a subtype

may safely be supplied wherever an obje
t of a supertype is expe
ted. Type

inferen
e in the presen
e of subtyping re
e
ts this basi
 prin
iple. Every

time a pie
e of data is passed from a produ
er to a 
onsumer, the former's

output type is required to be a subtype of the latter's input type. This re-

quirement is expli
itly re
orded by 
reating a symboli
 subtyping 
onstraint

between these types. Thus, ea
h potential data 
ow dis
overed in the pro-

gram yields one 
onstraint. This fa
t allows viewing a 
onstraint set as a

dire
ted approximation of the program's data 
ow graph { regardless of our

parti
ular de�nition of subtyping.

Various type inferen
e systems based on subtyping 
onstraints exist. One

may 
ite works by Aiken et al. [1, 2, 5℄, the present author [16, 17℄, Trifonov

and Smith [29℄, as well as Odersky et al.'s abstra
t framework HM(X) [14,

28, 27℄. Related systems in
lude set-based analysis [9, 6℄ and type inferen
e

systems based on feature 
onstraints [11, 12℄ or predi
ate 
onstraints [10℄.

Conditional Constraints

In many 
onstraint-based systems, the expression if e

0

then e

1

else e

2

is, at best, des
ribed by

�

1

� � ^ �

2

� �

where �

i

stands for e

i

's type, and � stands for the whole expression's type.

This amounts to stating that \the value of e

1

(resp. e

2

) may be
ome the

value of the whole expression", regardless of the test's out
ome. A more

pre
ise des
ription { \if e

0

may evaluate to true (resp. false), then the

value of e

1

(resp e

2

) may be
ome the value of the whole expression" { 
an

be given using 
onditional 
onstraints:

true � �

0

?�

1

� � ^ false � �

0

?�

2

� �

Introdu
ing tests into 
onstraints allows keeping tra
k of some of the pro-

gram's 
ontrol 
ow { that is, mirroring, at the level of types, the way eval-

uation is a�e
ted by the out
ome of a test.

Conditional set expressions were introdu
ed by Reynolds [25℄ as a means

of solving set 
onstraints involving stri
t type 
onstru
tors and destru
tors.

Heintze [9℄ uses them to formulate an analysis whi
h ignores \dead 
ode".

He also introdu
es 
ase 
onstraints, whi
h allow ignoring the e�e
t of a

bran
h, in a 
ase 
onstru
t, unless it is a
tually liable to be taken. Aiken,

Wimmers and Lakshman [2℄ use 
onditional types, together with interse
tion

types, for this purpose.

In the present paper, we suggest a single notion of 
onditional 
onstraint,

whi
h is 
omparable in expressive power to the above 
onstru
ts, and lends

itself to a simple and eÆ
ient implementation. (A similar 
hoi
e was made
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independently by F�ahndri
h [5℄.) We emphasize its use as a way not only of

introdu
ing some 
ontrol into types, but also of delaying type 
omputations,

thus introdu
ing some \laziness" into type inferen
e.

Rows

Designing a type system for a programming language with re
ords, or ob-

je
ts, requires some way of expressing labelled produ
ts of types, where

labels are �eld or method names. Dually, if the language allows manipulat-

ing stru
tured data, then its type system is likely to require labelled sums,

where labels are names of data 
onstru
tors.

Wand [30℄ and R�emy [19, 21℄ elegantly deal with both problems at on
e

by introdu
ing notation to express denumerable, indexed families of types,


alled rows:

� ::= �; �; : : : ; ';  ; : : : j a : � ; � j ��

(Here, � ranges over types, and a; b; : : : range over indi
es.) An unknown

row may be represented by a row variable, exa
tly as in the 
ase of types.

(By la
k of symbols, we will not synta
ti
ally distinguish plain type variables

and row variables.) The term a : � ; � represents a row whose element at

index a is � , and whose other elements are given by �. The term �� stands

for a row whose element at any index is � . These statements are given

formal meaning by interpreting rows in a logi
al model where the following

equations hold:

a : �

a

; (b : �

b

; �) = b : �

b

; (a : �

a

; �)

�� = a : � ; ��

If desired, some type 
onstru
tors may be lifted to the level of rows, i.e.

viewed as row 
onstru
tors as well. For instan
e, to lift the type 
onstru
tor

!, we extend the syntax of rows:

� ::= : : : j �! �

The term � ! �

0

is logi
ally interpreted as the row obtained by applying

the type 
onstru
tor !, point-wise, to the rows � and �

0

. As a result, the

logi
al model satis�es the following equations:

(a : � ; �)! (a : �

0

; �

0

) = a : (� ! �

0

); (�! �

0

)

�� ! ��

0

= �(� ! �

0

)

More details are given in Se
tion 2.

Rows o�er a parti
ularly straightforward way of des
ribing operations

whi
h treat all labels (ex
ept possibly a �nite number thereof) uniformly.

Be
ause every fa
ility available at the level of types (e.g. 
onstru
tors, 
on-

straints) 
an also be made available at the level of rows, a des
ription of the

operation's e�e
t on a single label, written using types, 
an also be read as

a des
ription of the entire operation, written using rows. This interesting

point will be developed further in the paper.



4 FRANC�OIS POTTIER

Putting It All Together

Our point is to show that the 
ombination of the three 
on
epts dis
ussed

above yields a very expressive system, whi
h allows type inferen
e for a

number of advan
ed language features. Among these, \a

urate" pattern

mat
hing 
onstru
ts, re
ord 
on
atenation, and �rst-
lass messages will

be dis
ussed in this paper. Our system allows performing type inferen
e

for all of these features at on
e. Furthermore, eÆ
ien
y issues 
on
erning


onstraint-based type inferen
e systems have already been studied [5, 17℄.

This existing knowledge bene�ts our system, whi
h may thus be used to

eÆ
iently perform type inferen
e for all of the above features.

In this paper, we fo
us on appli
ations of our type system, i.e. we show

how it allows solving ea
h of the problems mentioned above. Formal de�-

nitions of our 
onstraint resolution and simpli�
ation algorithms appear in

Appendix A. Furthermore, a robust prototype implementation is publi
ly

available [18℄. We do not prove that the types given to the three problem-

ati
 operations dis
ussed in this paper are sound, but we believe this is a

straightforward task.

The paper is organized as follows. Se
tion 2 gives a detailed te
hni
al

presentation of the type system. Se
tion 3 gives an informal explanation

of the potential 
osts and bene�ts of using 
onditional 
onstraints. Se
-

tions 4, 5, and 6 dis
uss type inferen
e for \a

urate" pattern mat
hings,

re
ord 
on
atenation, and �rst-
lass messages, respe
tively, within our sys-

tem. Se
tion 7 gives several examples, whi
h show what inferred types look

like in pra
ti
e. Se
tion 8 sums up our 
ontribution. Lastly, Appendix A

gives de�nitions and proofs for several 
onstraint manipulation algorithms.

2. Formal Presentation of the System

This se
tion gives an in-depth formal presentation of our type system, in

its most general form. Mu
h of it may be skipped on a �rst reading { the

following se
tions des
ribe the system in a more gentle fashion. The reader

may wish to 
ome ba
k to this se
tion at a later stage.

We de�ne our type system as an instan
e of the parametri
 framework

HM(X) [14, 28, 27℄. To do so, we simply de�ne a 
onstraint system, 
alled

SRC (for subtyping-rows-
onditionals), giving rise to HM(SRC). By re-using

existing material, we save de�nitions and proofs, and emphasize the fa
t that

our approa
h is standard.

In order to retain a measure of generality, SRC is itself parameterized by

a ground signature, whi
h is a su

in
t des
ription of a type algebra and of

its intended subtype ordering. Ground signatures are de�ned in Se
tion 2.1.

Given su
h a ground signature, we expli
itly de�ne the syntax of types

and 
onstraints (Se
tion 2.2), a logi
al model within whi
h they may be

interpreted (Se
tion 2.3), and the interpretation itself (Se
tion 2.4).
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2.1 Assumptions

A ground signature 
onsists of three 
omponents: a series of symbol latti
es,

indexed by kinds, a set of parameter labels (ea
h of whi
h is either 
o- or


ontra-variant, des
ribes either a row or a plain type parameter, and has

a �xed kind), and a des
ription of ea
h symbol's arity as a �nite set of

parameter labels.

Definition 1. Let K be a �nite set of kinds. For every kind � 2 K, let

S

�

be a latti
e of symbols, with operations ?

�

, >

�

, �

�

, t

�

and u

�

. De�ne

S = ℄

�2K

S

�

.

Let L

+

and L

�

be denumerable sets of parameter labels. De�ne L =

L

+

℄ L

�

. Let L

row

� L be a distinguished subset of row parameter labels.

Let kind be a total mapping of L into K.

Let a be a total mapping from S to �nite subsets of L, su
h that:

Æ for all s

0

; s

1

; s

2

2 S

�

, s

0

�

�

s

1

�

�

s

2

implies a(s

0

) \ a(s

2

) � a(s

1

);

Æ for any �nite subset S of S

�

, a(t

�

S) and a(u

�

S) are subsets of [ a(S).

Note that this implies a(?

�

) = a(>

�

) = ?.

The information des
ribed above forms a ground signature.

The �rst 
ondition bearing on a is ne
essary to guarantee that the orderings

�

�

do give rise to an ordering on ground types (de�ned in Se
tion 2.3). The

se
ond one makes the de�nition of some 
onstraint manipulation algorithms

more 
onvenient (see De�nition 23 in Appendix A).

Example 1. Assume there is only one kind ?. De�ne S

?

= f?;!;>g,

where ? �

?

! �

?

>. Let L

�

= fdomg, L

+

= frng g and L

row

= ?. De�ne

a(?) = a(>) = ? and a(!) = fdom; rng g. This de�nes a ground signature,

whi
h allows typing the pure �-
al
ulus.

Example 2. De�ne three kinds N, R and V, 
orresponding to normal,

re
ord �eld and variant �eld types, respe
tively. Let S

N

be the 
at lat-

ti
e whose elements other than ? and > are !, f�g and [ � ℄. Let S

R

be the latti
e with least element Bot, greatest element Any, and whose

other elements are Abs, Pre and Either, ordered by Abs �

R

Either and

Pre �

R

Either. Let S

V

be the latti
e with least element Abs, greatest el-

ement Any, and whose only other element is Pre. (By abuse of language,

we are giving identi
al names to symbols in S

R

and in S

V

. This remains

non-ambiguous as long as all terms 
onsidered have known kinds.) Let

L

�

= fdomg, L

+

= f
ontent; 
ontents; rng g and L

row

= f
ontents g. De�ne

a(!) = fdom; rng g, a(f�g) = a([ � ℄) = f
ontents g, a(Pre) = a(Either) =

f
ontent g, and a(?) = a(>) = a(Bot) = a(Abs) = a(Any) = ?. This de�nes

a ground signature, whi
h is expressive enough to des
ribe all programming

language features 
onsidered in this paper. In parti
ular, all of its expressive

power will be exploited to des
ribe �rst-
lass messages in Se
tion 6.
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� ::= �; �; ';  ; : : : j s(�

l

)

l2a(s)

j r : � ; � j ��

C ::= true j C ^C j 9��:C j � � � j s � � ? � � � (s prime in S

�

)

Figure 1: Syntax of types and 
onstraints

In the rest of this formal presentation, we assume given a �xed, arbi-

trary ground signature. In Se
tions 4{7, we will use the ground signature

des
ribed in Example 2 above, but we will re-introdu
e it step by step.

2.2 Syntax of Types and Constraints

The (raw) syntax of types and 
onstraints is given in Fig. 1. �; �; ';  ; : : :

denote type variables. A type term s(��) 
an be formed by pi
king a symbol

s 2 S and a family of type parameters �� , indexed a

ording to the arity of s,

i.e. �� must be of the form (�

l

)

l2a(s)

. Lastly, types may also be rows, whi
h

denote families of types indexed by a denumerable set of row labels R. The

term r : � ; �

0

(where r 2 R) represents a row whose element at index r is

� , and whose other elements are given by the row �

0

. The term �� stands

for a row whose element at any index is � .

The 
onstraint language o�ers standard 
onstru
ts (truth, 
onjun
tion,

proje
tion [14℄), subtyping 
onstraints, and 
onditional 
onstraints. The

latter are of the form s � � ? � � � , where s must satisfy the following


ondition: for any �nite subset S of S

�

, s �

�

(t

�

S) implies 9s

0

2 S s �

�

s

0

.

In other words, s must be a prime element of its symbol latti
e S

�

. This

ensures that a 
onditional 
onstraint bearing on the least upper bound of a

set of variables, e.g. (s � �

1

t : : : t �

n

) ? 
, is equivalent to a 
onjun
tion

of 
onditional 
onstraints bearing on its members:

V

n

i=1

(s � �

i

? 
). It is a

ne
essary 
ondition for the 
orre
tness of the garbage 
olle
tion algorithm

(see Theorem 3 in Appendix A).

Our de�nition of 
onditional 
onstraints is dissymmetri
. Indeed, 
ondi-

tions must be of the form s � � ; 
onditions of the form � � s are disallowed.

The motivation for this de
ision is to allow the 
onstraint solving algorithm

to ignore 
onditional 
onstraints unless their 
onditionmust be satis�ed (see

De�nition 19 in Appendix A). If both forms of 
onditions were allowed to 
o-

exist, the language would be
ome expressive enough to en
ode disjun
tions

of 
onstraints, making 
onstraint solving more 
ostly.

To ensure that only meaningful types and 
onstraints 
an be built, we

equip them with kinding and sorting rules. The grammar of sorts is de�ned

by & ::= Type j Row(R), where R ranges over �nite subsets of R. For every

kind � and every sort &, we assume given a distin
t, denumerable set V

&

�

of

type variables. We de�ne judgements of the form ` � : � (resp. ` � : &),

meaning that the type � has kind � (resp. sort &), and judgements of the
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� 2 V

�

` � : �

s 2 S

�

8l 2 a(s) ` �

l

: kind(l)

` s(�

l

)

l2a(s)

: �

` �

1

: �

` �

2

: �

` (r : �

1

; �

2

) : �

` � : �

` �� : �

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9��:C

` �

1

: �

` �

2

: �

` �

1

� �

2

s 2 S

�

` �

0

: � ` �

1

� �

2

` s � �

0

? �

1

� �

2

Figure 2: Kinding rules

� 2 V

&

` � : &

a(s) \ L

row

= ?

8l 2 a(s) ` �

l

: &

` s(�

l

)

l2a(s)

: &

a(s) \ L

row

6= ?

8l 2 a(s) n L

row

` �

l

: Type

8l 2 a(s) \ L

row

` �

l

: Row(?)

` s(�

l

)

l2a(s)

: Type

` �

1

: Type ` �

2

: Row(R ℄ frg)

` (r : �

1

; �

2

) : Row(R)

` � : Type

` �� : Row(R)

` true

` C

1

` C

2

` C

1

^ C

2

` C

` 9��:C

` �

1

: & ` �

2

: &

` �

1

� �

2

` �

0

: & ` �

1

: & ` �

2

: &

` s � �

0

? �

1

� �

2

Figure 3: Sorting rules

form ` C, meaning that the 
onstraint C is well-kinded (resp. well-sorted).

The kinding rules, given in Fig. 2, simply enfor
e the kind dis
ipline required

by the ground signature. The sorting rules, displayed in Fig. 3, ensure that

only meaningful row terms are built. Intuitively, the sort Type des
ribes

plain types, while the sort Row(R) des
ribes families of types indexed by

R n R. In other words, a row of sort Row(R) gives information about all

row labels ex
ept those in R. For more details, we refer the reader to [21℄

or to [20, se
tion 5℄.

Before moving on, let us point out that a term may have several sorts, for

two distin
t reasons. First, a uniform row �� may be viewed as des
ribing

any (
o-�nite) number of entries, i.e. it may have any sort Row(R). As a

result, the row term r

1

: �

1

; : : : ; r

n

: �

n

; �� may have any sort Row(R),

provided fr

1

; : : : ; r

n

g \ R = ?. Su
h a term will be required to have sort

Row(?) only when used as the l-parameter of a type 
onstru
tor s expe
ting

a full row in l-position (i.e. l 2 a(s) \ L

row

). Se
ond, a type 
onstru
tor

s with non-row parameters (i.e. a(s) \ L

row

= ?) 
an be used at any

sort &. For instan
e, if r : �

0

; �

0

0

and r : �

1

; �

0

1

have sort Row(R), then

(r : �

0

; �

0

0

)! (r : �

1

; �

0

1

) has sort Row(R) as well. Its logi
al interpretation

will be the same as that of r : �

0

! �

1

; �

0

0

! �

0

1

.

This point makes the logi
al interpretation of terms, given in Se
tion 2.4,
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slightly more subtle: the meaning of a term depends on the sort at whi
h it

is viewed. Fortunately, the meaning of a 
onstraint will remain independent

of the sort of its 
omponents.

2.3 Logi
al Model

We now de�ne the logi
al model within whi
h our 
onstraints are inter-

preted. Informally speaking, it is the term algebra generated by the ground

signature at hand. However, things are made more 
omplex by our desire

to have re
ursive types

1

and by the presen
e of rows.

Definition 2. Let A be the alphabet formed of all letters l 2 L n L

row

and

all 
omposite letters l � r, where l 2 L

row

and r 2 R. To every l 2 L, we

asso
iate a subset A

l

of the alphabet, de�ned by A

l

= flg if l 2 L n L

row

,

and A

l

= fl � r ; r 2 Rg otherwise.

A path p is a �nite string over the alphabet A, i.e. an element of A

�

. The

letter � denotes the empty path. A ground tree t is a partial fun
tion from

A

�

into S, whose domain is non-empty and pre�x-
losed, su
h that, for all

paths p 2 dom(t) and for all labels l 2 L,

Æ if l 2 a(t(p)), then p:A

l

is a subset of dom(t), whose image through t

is a subset of S

�

, where � = kind(l);

Æ otherwise, p:A

l

lies outside of dom(t).

The head 
onstru
tor of a ground term t, written hd(t), is t(�). Given

p 2 dom(t), the subtree of t rooted at p, written t:p, is the tree q 7! t(p:q).

Given p, l su
h that l 2 a(t(p)) \ L

row

, the subrow of t rooted at (p; l) is

the fun
tion r 2 R 7! t(p:(l � r)). A fun
tion is said to be quasi-
onstant i�

its 
o-restri
tion to some �nite set is a 
onstant fun
tion. A ground tree is

regular i� it has a �nite number of subtrees. A ground tree t is a ground

type i� it is regular and all of its subrows are quasi-
onstant. We denote the

set of ground types by T. A ground type t has kind � if and only if t(�) 2 S

�

.

We denote the set of ground types of kind � by T

�

.

Then, we equip every T

�

with an ordering �. Be
ause ground types are

in�nite trees, � 
annot be de�ned easily by stru
tural indu
tion; instead, it

is de�ned as the limit of a de
reasing sequen
e of pre-orders.

Definition 3. A family of pre-orders over every T

�

is de�ned as follows.

Let �

0

be uniformly true over every T

�

. Then, for any k 2 N and t; t

0

2 T

�

,

de�ne t �

k+1

t

0

as the 
onjun
tion of the following 
onditions:

Æ t(�) �

�

t

0

(�);

Æ 8l 2 a(t(�)) \ a(t

0

(�)) n L

row

t:l �

l

k

t

0

:l;

Æ 8l 2 a(t(�)) \ a(t

0

(�)) \ L

row

8r 2 R t:(l � r) �

l

k

t

0

:(l � r).

1

The presen
e of re
ursive types removes the need to 
he
k whether all solutions of

a 
onstraint are 
y
li
, whi
h, in the presen
e of subtyping relationships between type


onstru
tors of di�erent arities, may be diÆ
ult.



A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 9

(We let t �

l

k

t

0

stand for t �

k

t

0

when l 2 L

+

and t

0

�

k

t when l 2 L

�

.)

Subtyping, denoted by �, is the interse
tion of these pre-orders; it is a latti
e

on every T

�

.

The subtyping relationship is stru
tural : t and t

0

are related if and only

if their head 
onstru
tors t(�) and t

0

(�) are related in the latti
e of symbols

and, for every label l de�ned by both t and t

0

, their l-sub-terms are related

(either 
o- or 
ontra-variantly, depending on the varian
e of l). It is, in

general, non-atomi
: type 
onstru
tors of di�erent arities may be related.

2.4 Logi
al Interpretation

There remains to give an interpretation of types and 
onstraints within the

model. It is parameterized by a ground substitution, whi
h gives meaning to

any free type variables. It maps types to ground types, or to families thereof

(a

ording to their sort), and 
onstraints to Boolean values.

Definition 4. A ground substitution � is a fun
tion of domain V, whi
h

maps V

Type

�

into T

�

, and whi
h maps V

Row(R)

�

into the set of quasi-
onstant

fun
tions of R n R into T

�

.

Definition 5. The interpretation of a type � of sort &, under a ground

substitution �, written �(�

&

), or simply �(�) when & 
an be determined from

the 
ontext, is de�ned as follows.

Æ If � is a type variable �, then �(�

&

) is the image of � through �.

Æ If � is of the form s(�

l

)

l2a(s)

and & = Type, then �(�

&

) is the ground

type t su
h that t(�) = s, t:l = �(�

l

) whenever l 2 a(s) n L

row

and

t:(l � r) = �(�

l

)(r) whenever l 2 a(s) \ L

row

and r 2 R.

Æ If � is of the form s(�

l

)

l2a(s)

and & = Row(R), then, for every r 2 RnR,

�(�

&

)(r) is the ground type t su
h that t(�) = s and t:l = �(�

l

)(r)

whenever l 2 a(s).

Æ If � is of the form r : �

1

; �

2

and & = Row(R), then �(�

&

)(r) = �(�

1

)

and, for every r

0

2 R n (R [ frg), �(�

&

)(r

0

) = �(�

2

)(r

0

).

Æ If � is of the form ��

0

and & = Row(R), then, for every r 2 R n R,

�(�

&

)(r) = �(�

0

).

Definition 6. The 
onstraint satisfa
tion predi
ate `, whose arguments

are a ground substitution � and a well-sorted 
onstraint C, is de�ned as

follows.

Æ � ` true holds.

Æ � ` C

1

^ C

2

holds i� � ` C

1

and � ` C

2

hold.

Æ � ` 9��:C holds i� there exists a ground substitution �

0

, whi
h 
oin
ides

with � outside of ��, su
h that �

0

` C holds.

Æ If ` �

1

; �

2

: Type, then � ` �

1

� �

2

holds i� �(�

1

) � �(�

2

) holds.



10 FRANC�OIS POTTIER

Æ If ` �

1

; �

2

: Row(R), then � ` �

1

� �

2

holds i�, for every r 2 R n R,

�(�

1

)(r) � �(�

2

)(r) holds.

Æ If ` �

0

; �

1

; �

2

: Type, then � ` s � �

0

? �

1

� �

2

holds i� s �

S

�(�

0

)(�)

implies �(�

1

) � �(�

2

).

Æ If ` �

0

; �

1

; �

2

: Row(R), then � ` s � �

0

? �

1

� �

2

holds i�, for every

r 2 R n R, s �

S

�(�

0

)(r)(�) implies �(�

1

)(r) � �(�

2

)(r).

This de�nition is well-formed be
ause, even though the types whi
h appear

in a 
onstraint may have several admissible sorts, all of them give rise to the

same interpretation.

Lastly, 
onstraint entailment is given its usual de�nition: C 
 C

0

holds if

and only if, for every ground substitution �, � ` C implies � ` C

0

.

2.5 The Type System HM(SRC)

We refer to the 
onstraint logi
 de�ned in Se
tions 2.1{2.4 as SRC. It is a

sound 
onstraint system in the sense of [14℄; thus, it gives rise to a type

system, namely HM(SRC), for the �-
al
ulus with let.

We do not repeat the typing rules of HM(X) in this paper. For our

purposes, suÆ
e it to re
all that type s
hemes are of the form � ::= 8��[C℄:� .

When all of a type s
heme's variables are universally quanti�ed, we usually

write \� where C".

The �-
al
ulus with let is a limited programming language. To extend it,

we will de�ne new primitive operations, equipped with operational semanti
s

and appropriate type s
hemes. However, no extension to the type system

itself will be ne
essary. This explains why we do not des
ribe it further.

Instead, we will fo
us our interest on writing expressive type s
hemes.

3. About Conditional Constraints

The 
ontent of this se
tion is informal. It shows how 
onditional 
onstraints


an be used to gain extra typing 
exibility, and why we might want to use

them only sparingly.

In a 
all-by-value language, if an expression e

2

diverges, then so does any

appli
ation (e

1

e

2

). In parti
ular, if e

2

has type ?, then (e

1

e

2

) may safely

be given type ? as well. In other words, if it 
an be proven that e

1

will

never be 
alled, then its return type 
an be dis
arded.

It is possible to make a type system aware of this fa
t. To do so, one

merely introdu
es a new typing rule:

C; (�;x : ?) ` e : �

C;� ` �x:e : ? ! ?

As a result, the type system is no longer syntax-dire
ted: typing a �-

abstra
tion involves a 
hoi
e between this rule and the usual �-abstra
tion

rule. However, a pra
ti
al type inferen
e algorithm must not explore both
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ases separately, sin
e that would have exponential 
ost. Instead, a natu-

ral solution is to use a single type inferen
e rule, whi
h emits a 
onditional


onstraint, along the lines of

C; (�;x : �) `

I

e : � �; � fresh

(? < � ? � � �) ^ C;� `

I

�x:e : �! �

As long as the fun
tion isn't invoked, ? remains an admissible solution for its

argument type �. So, the 
onditional 
onstraint has no e�e
t, and � remains

un
onstrained, meaning that the fun
tion produ
es no result. However, if a


all to this fun
tion is later dis
overed, then � will be 
onstrained to some

value greater than ?. This will trigger the 
onditional 
onstraint, and �! �

will be
ome a lower bound for the fun
tion's type, meaning that the fun
tion

produ
es a result of type � .

This te
hnique allows designing a \lazy" type inferen
e system, whi
h

ignores the type of an expression unless it appears liable to be evaluated.

Heintze [9℄ uses 
onditional types for this very purpose. In fa
t, it is possible

to 
arry this idea even further, and to ignore not only the expression's type,

but also its e�e
t on the typing environment. This would involve repla
ing

(? < � ? � � �)^C above with ? < � ? (� � �^C); thus, the 
onstraint C,

whi
h des
ribes the requirements of the fun
tion 
on
erning its environment,

would also be subje
t to the 
ondition ? < �. This idea appears, under a

di�erent formulation, in e.g. [26℄.

Despite their theoreti
al appeal, though, these proposals seem a bit ex-

treme. They produ
e a large number of 
onditional 
onstraints, making type

inferen
e less eÆ
ient, be
ause potential 
onstraint simpli�
ations are de-

layed. Thus, in a pra
ti
al system, \laziness" should be used only sparingly.

We propose to build it into the types of a few primitive operations, rather

than to hard-wire it into the typing rules. We will illustrate this prin
iple

in the following se
tions.

4. A

urate Analysis of Pattern Mat
hings

When fa
ed with a pattern mat
hing 
onstru
t, most existing type inferen
e

systems adopt a simple, 
onservative approa
h: assuming that ea
h bran
h

may be taken, they let it 
ontribute to the whole expression's type. A more

a

urate system should use types to prove that 
ertain bran
hes 
annot be

taken, and prevent them from 
ontributing.

In this se
tion, we des
ribe su
h a system. The essential idea { introdu
-

ing a 
onditional 
onstru
t at the level of types { is due to [9, 2℄. Some

novelty resides in our two-step presentation, whi
h we believe helps isolate

independent 
on
epts. First, we 
onsider the 
ase where only one data 
on-

stru
tor exists. Then, we easily move to the general 
ase, by enri
hing the

type algebra with rows.



12 FRANC�OIS POTTIER

4.1 The Basi
 Case

We assume the language allows building and a

essing tagged values.

e ::= : : : j Pre j Pre

�1

A single data 
onstru
tor, Pre, allows building tagged values, while the de-

stru
tor Pre

�1

allows a

essing their 
ontents. This relationship is expressed

by the following redu
tion rule:

Pre

�1

v

1

(Pre v

2

) redu
es to (v

1

v

2

)

The rule states that Pre

�1

�rst takes the tag o� the value v

2

, then passes

it to the fun
tion v

1

.

At the level of types, we introdu
e a (unary) variant type 
onstru
tor [ � ℄.

Also, we establish a distin
tion between so-
alled \normal types," written

� , and \�eld types," written �.

� ::= �; �; 
; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j Abs j Pre � j Any

A subtype ordering over �eld types is de�ned straightforwardly: Abs is its

least element, Any is its greatest, and Pre is a 
ovariant type 
onstru
tor.

The data 
onstru
tor Pre is given the following type s
heme:

Pre : �! [ Pre � ℄

Noti
e that there is no way of building a value of type [ Abs ℄. Thus, if an

expression has this type, then it must diverge. This explains our 
hoi
e of

names. If an expression has type [ Abs ℄, then its value must be \absent"; if

it has type [ Pre � ℄, then some value of type � may be \present".

The data destru
tor Pre

�1

is des
ribed as follows:

Pre

�1

: (�! �)! [' ℄! 


where ' � Pre �

Pre � ' ?� � 


The 
onditional 
onstraint allows (Pre

�1

e

1

e

2

) to re
eive type ? when e

2

has type [ Abs ℄, re
e
ting the fa
t that Pre

�1

isn't invoked until e

2

produ
es

some value. Indeed, as long as ' equals Abs, the 
onstraint is va
uously

satis�ed, so 
 is un
onstrained and assumes its most pre
ise value, namely

?. However, as soon as Pre � ' holds, � � 
 must be satis�ed as well.

Then, Pre

�1

's type be
omes equivalent to (� ! �) ! [ Pre � ℄ ! �, whi
h

is its usual ML type.
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4.2 The General Case

We now move to a language with a denumerable set of data 
onstru
tors.

e ::= : : : j K j K

�1

j 
lose

(We let K, L; : : : stand for data 
onstru
tors.) An expression may be

tagged, as before, by applying a data 
onstru
tor to it. A

essing tagged

values be
omes slightly more 
omplex, be
ause multiple tags exist. The

semanti
s of the elementary data destru
tor, K

�1

, is given by the following

redu
tion rules:

K

�1

v

1

v

2

(K v

3

) redu
es to (v

1

v

3

)

K

�1

v

1

v

2

(L v

3

) redu
es to (v

2

(Lv

3

)) when K 6= L

A

ording to these rules, if the value v

3


arries the expe
ted tag, then it is

passed to the fun
tion v

1

. Otherwise, the value { still 
arrying its tag { is

passed to the fun
tion v

2

. Lastly, a spe
ial value, 
lose, is added to the

language, but no additional redu
tion rule is de�ned for it.

How do we modify our type algebra to a

ommodate multiple data 
on-

stru
tors? In Se
tion 4.1, we used �eld types to en
ode information about

a tagged value's presen
e or absen
e. Here, we need exa
tly the same infor-

mation, but this time about every tag. So, we need to manipulate a family of

�eld types, indexed by tags. To do so, we add one layer to the type algebra:

rows of �eld types.

� ::= �; �; 
; : : : j ? j > j � ! � j [ � ℄

� ::= '; ; : : : j K : �; � j ��

� ::= '; ; : : : j Abs j Pre � j Any

We 
an now extend the previous se
tion's proposal, as follows:

K : �! [K : Pre �; �Abs ℄

K

�1

: (�! �)! ([K : Abs;  ℄! 
)! [K : ';  ℄! 


where ' � Pre �

Pre � ' ?� � 



lose : [ �Abs ℄! ?

K

�1

's type s
heme involves the same 
onstraints as in the basi
 
ase. Using

a single row variable, namely  , in two distin
t positions allows expressing

the fa
t that values 
arrying any tag other thanK will be passed unmodi�ed

to K

�1

's se
ond argument.


lose's argument type is [ �Abs ℄, whi
h prevents it from ever being in-

voked. This a

ords with the fa
t that 
lose does not have an asso
iated

redu
tion rule. It plays the role of a fun
tion de�ned by zero 
ases.

This system o�ers extensible pattern mat
hings: any k-ary 
ase 
onstru
t


an be written in terms of k nested destru
tor appli
ations, terminated by
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lose; it will re
eive the desired, a

urate type. (This fa
t is illustrated

by Example 3 in Se
tion 7.) Thus, no spe
i�
 language 
onstru
t or type

inferen
e rule is needed to deal with them.

5. Re
ord Con
atenation

Stati
 typing for re
ord operations is a widely studied problem [4, 15℄. Com-

mon operations in
lude sele
tion, extension, restri
tion, and 
on
atenation.

The latter 
omes in two 
avors: symmetri
 and asymmetri
. The former

requires its arguments to have disjoint sets of �elds, whereas the latter gives

pre
eden
e to the se
ond one when a 
on
i
t o

urs.

Of these operations, 
on
atenation is probably the most diÆ
ult to deal

with, be
ause its behavior varies a

ording to the presen
e or absen
e of

ea
h �eld in its two arguments. This has led many authors to restri
t

their attention to type 
he
king, and to not address the issue of type in-

feren
e [8℄. An inferen
e algorithm for asymmetri
 
on
atenation was sug-

gested by Wand [30℄. He uses disjun
tions of 
onstraints, however, whi
h

gives his system exponential 
omplexity. R�emy [22℄ suggests an en
oding

of 
on
atenation into �-abstra
tion and re
ord extension, when
e an infer-

en
e algorithm may be derived. Unfortunately, its power is somewhat de-


reased by subtle intera
tions with ML's restri
ted polymorphism; further-

more, the en
oding is exposed to the user. In later work [23℄, R�emy suggests

a dire
t, 
onstraint-based algorithm, whi
h involves a spe
ial form of 
on-

straints. Sulzmann [27℄ follows a similar route and 
reates a 
ustom instan
e

of HM(X), again involving spe
ial-purpose 
on
atenation 
onstraints. Our

approa
h is inspired from R�emy's later paper, but re-formulated in terms of


onditional 
onstraints, thus showing that no ad ho
 
onstraint forms are

ne
essary.

Again, our presentation is in two steps. The basi
 
ase, where re
ords only

have one �eld, is ta
kled using subtyping and 
onditional 
onstraints. Then,

rows allow us to easily transfer our results to the 
ase of multiple �elds.

5.1 The Basi
 Case

We assume a language equipped with one-�eld re
ords, whose unique �eld

may be either \absent" or \present". More pre
isely, we assume a 
onstant

data 
onstru
tor Abs, and a unary data 
onstru
tor Pre; a \re
ord" is a

value built with one of these 
onstru
tors. A data destru
tor, Pre

�1

, allows

a

essing the 
ontents of a non-empty re
ord. Lastly, the language o�ers

asymmetri
 and symmetri
 
on
atenation primitives, written � and ��,

respe
tively.

e ::= : : : j Abs j Pre j Pre

�1

j � j ��

The relationship between re
ord 
reation and re
ord a

ess is expressed by

a simple redu
tion rule:

Pre

�1

(Pre v) redu
es to v
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The semanti
s of asymmetri
 re
ord 
on
atenation is given as follows:

v

1

� Abs redu
es to v

1

v

1

�(Pre v

2

) redu
es to Pre v

2

(In ea
h of these rules, the value v

1

is required to be a re
ord.) Lastly,

symmetri
 
on
atenation is de�ned by

Abs�� v

2

redu
es to v

2

v

1

�� Abs redu
es to v

1

(In these two rules, v

1

and v

2

are required to be re
ords.)

The 
onstru
tion of our type algebra is similar to the one performed in

Se
tion 4.1. We introdu
e a (unary) re
ord type 
onstru
tor, as well as a

distin
tion between normal types and �eld types:

� ::= �; �; 
; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

Let us explain, step by step, our de�nition of �eld types. Our �rst, natural

step is to introdu
e type 
onstru
tors Abs and Pre, whi
h allow des
rib-

ing values built with the data 
onstru
tors Abs and Pre. The former is a


onstant type 
onstru
tor, while the latter is unary and 
ovariant.

Many type systems for re
ord languages de�ne Pre � to be a subtype of

Abs. This allows a re
ord whose �eld is present to pretend it is not, leading

to a 
lassi
 theory of re
ords whose �elds may be \forgotten" via subtyping.

However, when the language o�ers re
ord 
on
atenation, su
h a de�nition

isn't appropriate. Why? Con
atenation { asymmetri
 or symmetri
 { in-

volves a 
hoi
e between two redu
tion rules, whi
h is performed by mat
hing

one, or both, of the arguments against the data 
onstru
tors Abs and Pre.

If, at the level of types, we allow a non-empty re
ord to masquerade as an

empty one, then it be
omes impossible, based on the arguments' types, to

�nd out whi
h rule applies, and to determine the type of the operation's

result. In summary, in the presen
e of re
ord 
on
atenation, no subtyp-

ing relationship must exist between Pre � and Abs. (This problem is well

des
ribed { although not solved { in [4℄.)

This leads us to making Abs and Pre in
omparable. On
e this 
hoi
e has

been made, 
ompleting the de�nition of �eld types is rather straightforward.

Be
ause our system requires type 
onstru
tors to form a latti
e, we de�ne

a least element Bot, and a greatest element Any. Lastly, we introdu
e a

unary, 
ovariant type 
onstru
tor, Either, whi
h we de�ne as the least

upper bound of Abs and Pre, so that Abs t (Pre �) equals Either � . This

optional re�nement allows us to keep tra
k of a �eld's type, even when its

presen
e is not as
ertained. (These ideas are due to R�emy, who 
arries

them further in the 
ase of obje
ts [24℄.) The latti
e of �eld types is shown

in Fig. 4.
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Any
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Figure 4: The latti
e of re
ord �eld types

Let us now assign types to the primitive operations o�ered by the language.

Re
ord 
reation and a

ess re
eive their usual types:

Abs : fAbsg

Pre : �! fPre �g

Pre

�1

: fPre �g ! �

There remains to 
ome up with 
orre
t, pre
ise types for both 
avors of

re
ord 
on
atenation. The key idea is simple. As shown by its operational

semanti
s, (either 
avor of) re
ord 
on
atenation is really a fun
tion de-

�ned by 
ases over the data 
onstru
tors Abs and Pre { and Se
tion 4 has

shown how to a

urately des
ribe su
h a fun
tion. Let us begin, then, with

asymmetri
 
on
atenation:

� : f'

1

g ! f'

2

g ! f'

3

g

where '

2

� Either �

2

Abs � '

2

?'

1

� '

3

Pre � '

2

? Pre �

2

� '

3

Clearly, ea
h 
onditional 
onstraint mirrors one of the redu
tion rules. In

the se
ond 
onditional 
onstraint, we assume �

2

is the type of the se
ond

re
ord's �eld { if it has one. The �rst subtyping 
onstraint represents this

assumption. Noti
e that we use Pre �

2

, rather than '

2

, as the se
ond

bran
h's result type; this is stri
tly more pre
ise, be
ause '

2

may be of the

form Either �

2

.

Lastly, we turn to symmetri
 
on
atenation:

�� : f'

1

g ! f'

2

g ! f'

3

g

where Abs � '

1

?'

2

� '

3

Abs � '

2

?'

1

� '

3

Pre � '

1

?'

2

� Abs

Pre � '

2

?'

1

� Abs

Again, ea
h of the �rst two 
onstraints mirrors a redu
tion rule. The last two


onstraints disallow the 
ase where both arguments are non-empty re
ords.
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(The 
areful reader will noti
e that any one of these two 
onstraints would

in fa
t suÆ
e; both are kept for symmetry.)

In both 
ases, the operation's des
ription in terms of 
onstraints 
losely

resembles its operational de�nition. Automati
ally deriving the former from

the latter seems possible; this is an area for future resear
h.

5.2 The General Case

We now move to a language with a denumerable set of re
ord labels, written

l, m, et
. The language allows 
reating the empty re
ord, as well as any one-

�eld re
ord; it also o�ers sele
tion and 
on
atenation operations. Extension

and restri
tion 
an be easily added, if desired.

e ::= ? j fl = eg j e:l j � j ��

We do not give the semanti
s of the language, whi
h should hopefully be


lear enough.

At the level of types, we again introdu
e rows of �eld types, denoted by �.

Furthermore, we introdu
e rows of normal types, denoted by %. Lastly, we

lift the �ve �eld type 
onstru
tors to the level of rows.

� ::= �; �; 
; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

% ::= �; �; 
; : : : j l : � ; % j ��

� ::= '; ; : : : j l : �; � j �� j Bot j Abs j Pre % j Either % j Any

This allows writing 
omplex 
onstraints between rows, su
h as ' � Pre �,

where ' and � are row variables. A 
onstraint between rows is interpreted as

an in�nite family of 
onstraints between types, obtained 
omponent-wise.

That is, (l : '

0

; '

00

) � Pre (l : �

0

; �

00

) has the same logi
al meaning as

('

0

� Pre �

0

) ^ ('

00

� Pre �

00

). (See Se
tion 2 for details.)

We may now give types to the primitive re
ord operations. Creation and

sele
tion are easily dealt with:

? : f�Absg

fl = �g : �! fl : Pre �; �Absg

�:l : fl : Pre �; �Anyg ! �

Interestingly, the types of both 
on
atenation operations are un
hanged from

the previous se
tion { at least, synta
ti
ally. (We do not repeat them here.)

A subtle di�eren
e lies in the fa
t that all variables involved must now be

read as row variables, rather than as type variables. In short, the previous

se
tion exhibited 
onstraints whi
h des
ribe 
on
atenation, at the level of

a single re
ord �eld; here, the row ma
hinery allows us to repli
ate these


onstraints over an in�nite set of labels. This in
rease in power 
omes almost

for free: it does not add any 
omplexity to our notion of subtyping.



18 FRANC�OIS POTTIER

6. First-Class Messages

In many 
urrent obje
t-oriented languages, messages do not have �rst-
lass

status. That is, whenever a message is sent to an obje
t, its name is �xed and

must be expli
itly mentioned; only the message parameters and the re
eiver

obje
t are allowed to vary dynami
ally. Some languages, however, allow

�rst-
lass (also known as \dynami
") messages. That is, they allow messages

to exist as autonomous entities, whi
h may be 
omputed in arbitrary ways

before being sent to an obje
t.

We will view obje
ts as re
ords of fun
tions, and messages as tagged values,

made up of a label and a parameter. Indeed, this simple view suÆ
es to

exhibit the type inferen
e problem we are interested in. Thus, we 
onsider

a language with re
ords and data 
onstru
tors, as des
ribed in Se
tions 4.2

and 5.2. Furthermore, we let re
ord labels and data 
onstru
tors range

over a single name spa
e, that of message labels. A primitive message-send

operation, written #, is de�ned as follows:

# fm = v

1

; : : : g (mv

2

) redu
es to (v

1

v

2

)

In plain words, # examines its se
ond argument, whi
h must be some mes-

sage m with parameter v

2

. It then looks up the method named m in the

re
eiver obje
t, and applies the method's 
ode, v

1

, to the message param-

eter. Put another way, if r is a re
ord of fun
tions, then (# r) a
ts as a

fun
tion de�ned by 
ases. Thus, # is nothing but a witness of the well-

known isomorphism whi
h exists between these representations.

6.1 The Problem

In a language without �rst-
lass messages, every message-send operation

must involve a �xed message label. So, instead of a single, generi
 opera-

tion su
h as #, the language provides a family of primitive message-send

operations, indexed by message labels.

In our view of obje
ts as re
ords of fun
tions, these operations are de�n-

able within the language. Indeed, the operation #m, whi
h allows send-

ing the message m to the obje
t o with parameter p, may be de�ned as

�o:�p:(o:m p). Then, type inferen
e yields

#m : fm : Pre (�! �); �Anyg ! �! �

Be
ause the message label m is stati
ally known, it 
an be expli
itly men-

tioned in the type s
heme, making it easy to require the re
eiver obje
t to


arry an appropriate method.

In a language with �rst-
lass messages, on the other hand, m is no longer

known. As a result of this diÆ
ulty, mu
h of the initial work on typed obje
t-

oriented languages has ignored the issue of �rst-
lass messages. Gaster [7,


hapter 7℄ studies a stati
 type system where # (under the name of sumE-

lim) is a primitive operation. However, in his system, (# r) is well-typed
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only if all fun
tions stored in r have the same return type. This 
ondition is


learly too restri
tive for our purposes: an obje
t must be allowed to 
on-

tain methods with di�erent return types. Nishimura [13℄ suggests a type

inferen
e system for an obje
t-oriented language with �rst-
lass messages,

in the style of Ohori's se
ond-order typed re
ord 
al
ulus [15℄. It is later

re-formulated by M�uller and Nishimura [12℄. The new presentation is based

on feature 
onstraints, in
luding a new form of 
onstraints, spe
i�
ally in-

tended to model the behavior of a generi
 message-send operation. Bugliesi

and Crafa [3℄ also attempt to present a simpli�ed view of Nishimura's original

work. However, they 
hoose a higher-order type system, thus abandoning

type inferen
e.

6.2 A Solution

We said above that, given a re
ord r, the partial appli
ation (# r) yields a

fun
tion de�ned by 
ases. Indeed, given a tagged value (mv), it will invoke

an appropriate pie
e of 
ode, sele
ted a

ording to the label m. Good point

{ this paper is pre
isely 
on
erned with ways of giving a

urate types to

fun
tions de�ned by 
ases. We have shown how 
onditional 
onstraints allow

ignoring (the return type of) a bran
h, unless it is liable to be taken. In

obje
t-oriented terms, they allow ignoring (the return type of) any method

whi
h is provably unrelated with the message at hand. This solves the


ru
ial problem with �rst-
lass messages.

Here, we 
hoose to deal dire
tly with the 
ase of multiple message labels,

even though the two-step presentation adopted in Se
tions 4 and 5 would

still make sense here. Therefore, we propose:

# : f'g ! [ ℄! �

where  � Pre �

Pre �  ?' � Pre (�! ��)

(Here, all variables ex
ept � are row variables.) The operation's �rst (resp.

se
ond) argument is required to be an obje
t (resp. a message), whose


ontents (resp. possible values) are des
ribed by the row variable ' (resp.

 ). The �rst 
onstraint merely lets � stand for the type of the message

parameter. The 
onditional 
onstraint, whi
h involves three rows, should

again be understood as a family, indexed by message labels, of 
onditional


onstraints between �eld types. The 
onditional 
onstraint asso
iated with

some label m will be triggered only if  's element at index m is of the form

Pre , i.e. only if the message's label may be m. When it is triggered, its

right-hand side be
omes a
tive, with a three-fold e�e
t. First, ''s element

at index m must be of the form Pre ( ! ), i.e. the re
eiver obje
t must


arry a method labeled m. Se
ond, the method's argument type must be

(a supertype of) �'s element at label m, i.e. the method must be able to

a

ept the message's parameter. Third, the method's result type must be (a

subtype of) �, i.e. the result type of the whole operation will be (at least)

the join of the return types of all potentially invoked methods.



20 FRANC�OIS POTTIER

This proposal shows that type inferen
e for �rst-
lass messages 
an be

performed using existing tools, with no need for dedi
ated theoreti
al ma-


hinery. It also shows that �rst-
lass messages are naturally 
ompatible

with all operations on re
ords, in
luding 
on
atenation { a question left

unanswered by Nishimura [13℄.

7. Examples

This se
tion illustrates the proposals made in the previous se
tions with

short examples.

Example 3. We 
onsider lists built out of two data 
onstru
tors, N and C.

The fun
tion 
ar, whi
h returns the �rst element of a list, if it exists, and

E otherwise (where E is another data 
onstru
tor, standing for error), is

de�ned as follows:


ar = (N

�1

E

(C

�1

(�(x; r):x)


lose))

Then, 
ar's inferred type s
heme is


ar : [N : '; C :  ; �Abs ℄! 


where ' � Pre �

Pre � ' ? [E : Pre �; �Abs ℄ � 


 � Pre (� �>)

Pre �  ?� � 


(Be
ause the language only o�ers unary 
onstru
tors, N and E must 
arry

some argument, whi
h remains unspe
i�ed here; � stands for its type. Usu-

ally, one identi�es � with some unit type.) The �rst 
onditional 
onstraint

above tells that the �rst bran
h of 
ar's de�nition { namely E { will not

be taken unless ' is \present", i.e. unless 
ar's argument is tagged N . The

next one tells that the se
ond bran
h { namely �(x; r):x { will not be taken

unless it is tagged C. No other tags are allowed, be
ause 
ar's argument

type involves the row (N : '; C :  ; �Abs), whose proje
tion on any tag

other than N and C is Abs.

What happens when applying 
ar? The type inferred for the expression


ar (C (1; C (true; N ()))), where it is passed a heterogeneous, 2-element list,

is int. In other words, this expression is stati
ally found not to produ
e E,

be
ause the �rst 
onditional 
onstraint is not triggered.

Example 4. We de�ne a fun
tion whi
h reads the �eld l out of a re
ord r

and returns a default value d if r has no su
h �eld. It is given by extra
t =



A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 21

�d:�r:(fl = dg� r):l. In our system, extra
t's inferred type is

extra
t : �! fl : ';  g ! 


where ' � Either �  � Either �

Abs � ' ?� � 
 Abs �  ? Abs � Any

Pre � ' ?� � 
 Pre �  ? Pre � � Any

The �rst 
onstraint retrieves r:l's type and names it �, regardless of the

�eld's presen
e. (If the �eld turns out to be absent, � will be un
onstrained.)

The left-hand 
onditional 
onstraints 
learly spe
ify the dependen
y be-

tween the �eld's presen
e and the fun
tion's result.

The right-hand 
onditional 
onstraints have tautologous 
on
lusions {

therefore, they are super
uous. They remain only be
ause our 
urrent 
on-

straint simpli�
ation algorithms are \lazy" and ignore any 
onditional 
on-

straints whose 
ondition has not yet been ful�lled. This problem 
ould be

�xed by making the simpli�
ation algorithm slightly more aggressive, i.e.

by allowing it to 
he
k whether the 
on
lusion of a 
onditional 
onstraint is

redundant, regardless of its 
ondition.

The type inferred for extra
t 0 fl = 1g and extra
t 0 fm = 1g is int.

Thus, in many 
ases, one need not be aware of the 
omplexity hidden in

extra
t's type.

Example 5. We assume given an obje
t o, of the following type:

o : f getText : Pre (unit! string);

setText : Pre (string! unit);

sele
t : Pre (int� int! unit);

�Abs g

omay represent, for instan
e, an editable text �eld in a graphi
 user interfa
e

system. Its methods allow programmati
ally getting and setting its 
ontents,

as well as sele
ting a portion of text.

Next, we assume a list data stru
ture, equipped with a simple iterator:

iter : (�! unit)! � list! unit

The following expression 
reates a list of messages, and uses iter to send

ea
h of them in turn to o:

iter (# o) [ setText \Hello!"; sele
t (0; 5) ℄

This expression is well-typed, be
ause o 
ontains appropriate methods to

deal with ea
h of these messages, and be
ause these methods return unit,

as expe
ted by iter. The expression's type is of 
ourse unit, iter's return

type.

Here is a similar expression, whi
h involves a getText message:

iter (# o) [ setText \Hello!"; getText () ℄
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This time, it is ill-typed. Indeed, sending a setText message to o produ
es

a result of type unit, while sending it a getText message produ
es a result

of type string. Thus, (# o)'s result type must be >, the join of these types.

This makes (# o) an una

eptable argument for iter, sin
e the latter expe
ts

a fun
tion whose return type is unit.

8. Con
lusion

In this paper, we have advo
ated the use of a 
onstraint-based type inferen
e

system equipped with subtyping, rows and 
onditional 
onstraints. This

provides a 
ommon solution to several diÆ
ult type inferen
e problems,

whi
h, so far, had been addressed using spe
ial forms of 
onstraints. From

a pra
ti
al point of view, it allows them to bene�t from known 
onstraint

simpli�
ation te
hniques (see Appendix A), leading to an eÆ
ient inferen
e

algorithm [18℄.

Our system subsumes R�emy's proposal for re
ord 
on
atenation [23℄, as

well as M�uller and Nishimura's view of �rst-
lass messages [12℄. Aiken,

Wimmers and Lakshman's \soft" type system [2℄ is more pre
ise than ours,

be
ause it interprets 
onstraints in a ri
her logi
al model, but otherwise

o�ers similar features.

The design of a type inferen
e system involves two orthogonal 
omponents:

a set of typing rules and a 
onstraint language (together with its logi
al

interpretation). As to the former, we have suggested using HM(X) [14, 28,

27℄, whose formulation appears most elegant, but other 
hoi
es would be

possible (see e.g. [10, 17℄). The fo
us of the paper is really on the latter:

our aim was to �nd a 
onstraint language expressive enough to a

urately

des
ribe the features of the programming language at hand. One should

emphasize the fa
t that we do not, a priori, view the 
onstraint system

SRC as better (simpler, more elementary, more 
anoni
al, et
.) than its


ompetitors. We merely take its wide appli
ability as eviden
e of the fa
t

that it is 
omparatively more general-purpose (less ad ho
) than some of its

prede
essors.

To 
on
lude, we hope this paper illustrates how a small number of well-

understood logi
 me
hanisms allow building an advan
ed type inferen
e sys-

tem.
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Appendix A. Algorithms and Proofs

This appendix 
ontains a formal des
ription of 
onstraint resolution and

simpli�
ation algorithms, in the presen
e of atomi
 and 
onditional subtyp-

ing 
onstraints. Resolution is required in determining whether a program is

type-
orre
t; simpli�
ation is key to a
hieving reasonable eÆ
ien
y.

The system des
ribed in this appendix does not have rows, or a separation

of types into distin
t kinds, but otherwise has all features presented in the

body of this paper. Adding rows to this formal des
ription would require

work, but should not pose any foreseeable diÆ
ulty, sin
e the 
on
ept of row

is essentially orthogonal to the notion of subtyping. Adding kinds should be

routine. A referen
e implementation of the full system, in
luding rows and

kinds, is available [18℄.

This appendix des
ribes an extension of [17℄ with 
onditional 
onstraints.

Thus, most proofs presented here are partial, and des
ribe only the mod-

i�
ations required to a

ommodate 
onditional 
onstraints. However, all

de�nitions and statements are 
omplete.

This appendix is laid out as follows. First, we review all ne
essary 
on-


epts, in
luding ground types, types, 
onstraints, and type s
hemes. Then,

we give a 
onstraint resolution algorithm, and three 
onstraint simpli�
ation

algorithms.

Throughout this appendix, we use a 
ouple of notational short
uts. If P

is a logi
 predi
ate, then

8� ` C P (�) stands for 8� (� ` C)) P (�)

9� ` C P (�) stands for 9� (� ` C) ^ P (�)

Appendix A.1 Ground Types

As in Se
tion 2, our formal development is parameterized with an arbitrary

ground signature (see De�nition 1). We assume that it de�nes only one

kind, so we write S and T instead of S

�

and T

�

. We write ?

S

, >

S

, �

S

, t

S

and u

S

instead of ?

�

, >

�

, �

�

, t

�

and u

�

. We also assume L

row

= ?. The

model (T;�), is de�ned as in De�nitions 2 and 3.

In this appendix, we use the letter � to denote either a ground type, or

a type, and sometimes both at the same time (see e.g. De�nition 17 and

Theorem 2). We will try to preserve a 
lear distin
tion whenever possible.

Theorem 1. T, equipped with �, is a latti
e. Its latti
e operations, denoted

by t and u, are 
hara
terized by the following identities:

(�

1

2 �

2

)(�) = �

1

(�) 2

S

�

2

(�)

8l 2 dom(�

1

2 �

2

) (�

1

2 �

2

):l = �

1

:l 2

l

�

2

:l

where 2 may stand for t or u. (We let 2

l

stand for 2 when l 2 L

+

; when

l 2 L

�

, t

l

stands for u and u

l

stands for t.) In the right-hand side of the
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se
ond equation, �

1

:l (resp. �

2

:l) may be unde�ned; in su
h a 
ase, it should

be read as the neutral element of 2

l

.

Note that, be
ause of the last requirement of De�nition 1, at least one of

�

1

:l and �

2

:l must be de�ned in the se
ond equation above.

We let ? (resp. >) stand for the ground type � su
h that dom(�) = f�g

and �(�) = ?

S

(resp. >

S

).

Appendix A.2 Types

Types are de�ned as in Se
tion 2.2, ex
ept row terms are disallowed.

Definition 7. Let V be a denumerable set of type variables, denoted by �,

�, et
. The set of types, denoted by T , is the term algebra T (�;V). In

other words, a type � is either a type variable, or a 
onstru
ted term, of the

form s(�

l

)

l2a(s)

, where s 2 S is � 's head 
onstru
tor, also written hd(�).

Definition 8. A ground substitution � is a total mapping from type vari-

ables to ground types. Ground substitutions are straightforwardly extended

to types.

Appendix A.3 Constraints and Type S
hemes

We now give syntax and semanti
s for three kinds of 
onstraints: atomi



onstraints, 
onditions and 
onditional 
onstraints. In ea
h 
ase, the nota-

tion � `

k


 means that the ground substitution � k-satis�es the 
onstraint


. The notation � ` 
 means that � satis�es 
, and holds, by de�nition, if

and only if � `

k


 holds for all k 2 N

+

.

Definition 9. An atomi
 
onstraint is a pair of types, written �

1

� �

2

. A

ground substitution � k-satis�es it i� �(�

1

) �

k

�(�

2

).

Definition 10. A 
ondition is a pair of a symbol s 2 S and of a type � ,

written s � � , where s must be a prime element of S. A ground substitution

� satis�es s � � i� s �

S

hd(�(�)).

Definition 11. A 
onditional 
onstraint is a pair of a 
ondition and of

an atomi
 
onstraint, written s � � ? �

1

� �

2

. A ground substitution �

k-satis�es it i� � ` s � � implies � `

k

�

1

� �

2

.

Having de�ned 
onstraints, we may de�ne notions of satisfa
tion and en-

tailment on 
onstraint sets. They are de�ned in the usual way. We also

introdu
e a non-standard notion of pre-satisfa
tion (resp. pre-entailment),

whi
h is logi
ally weaker (resp. stronger) than its standard 
ounterpart, be-


ause it ignores 
onditional 
onstraints. These notions are purely te
hni
al;

they are used only within our proofs.



A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 25

Definition 12. Let C be a set of 
onstraints, both atomi
 and 
onditional.

A ground substitution � is a pre-solution of C i� � ` 
 holds for all atomi



 2 C. � is a solution of C i� � ` 
 holds for all 
 2 C. We write � `

pre

C

in the former 
ase, and � ` C in the latter.

Let 
 be a 
onstraint. C pre-entails 
, whi
h we write C 


pre


, i� 8� `

pre

C � ` 
. C entails 
, whi
h we write C 
 
, i� 8� ` C � ` 
.

We now de�ne type s
hemes. They are 
onstrained polymorphi
 types, i.e.

types 
ontaining variables whose possible instantiations are restri
ted by a


onstraint set. For simpli
ity, we only 
onsider 
losed type s
hemes, i.e. type

s
hemes whi
h have no free type variables. Although somewhat un
ommon,

type systems exist whi
h respe
t this restri
tion (see [29, 17℄). It should also

be possible to extend our results to the 
ase of arbitrary type s
hemes.

Definition 13. A type s
heme is a pair of a type � and of a 
onstraint set

C, written 8C: � .

A type s
heme � represents a set of ground types, whi
h we 
all its denota-

tion. Ea
h of these ground types represent one possible 
orre
t behavior of

the program des
ribed by �. A type s
heme whose denotation is empty (i.e.

whose 
onstraint set has no solution) thus represents an ill-typed program.

Definition 14. The denotation J�K of a type s
heme � is the union of the

upper 
ones generated by its ground instan
es with respe
t to �. That is,

J8C: �K = f�

0

; 9� ` C �(�) � �

0

g

A type s
heme whose denotation is bigger represents a larger set of possible

behaviors; thus, it is more general. This notion allows 
omparing type

s
hemes, while a

ounting for polymorphism and subtyping at the same

time. It was introdu
ed in [29℄, where it was written �

8

; we denote it 4.

Definition 15. Given two type s
hemes �

1

and �

2

, the former is said to

be more general than the latter i� J�

1

K � J�

2

K; we shall then write �

1

4 �

2

.

In other words, �

1

is more general than �

2

i� for any ground instan
e of �

2

,

there exists a smaller ground instan
e of �

1

. Formally,

(8C

1

: �

1

) 4 (8C

2

: �

2

)

is thus equivalent to

8�

2

` C

2

9�

1

` C

1

�

1

(�

1

) � �

2

(�

2

)

We write �

1

� �

2

when �

1

4 �

2

and �

2

4 �

1

.

The relation � o�ers a spe
i�
ation of 
onstraint simpli�
ation. Indeed, a

type s
heme � 
an be simpli�ed into a type s
heme �

0

only if � � �

0

. One

would also expe
t �

0

to have a smaller textual representation than �, but
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that is not a requirement; it is rather to be viewed as an implementation

detail.

We 
on
lude this se
tion with a de�nition of what it means for a type

s
heme to be made up of small terms. All of the algorithms de�ned here

will expe
t this property to hold, and will preserve it, making it a global

invariant. This 
hoi
e simpli�es de�nitions and proofs. Furthermore, from

a pra
ti
al point of view, it allows enfor
ing maximum sharing, sin
e it

requires every sub-term to be \named" by a type variable, allowing our

minimization algorithm to identify sub-terms.

Definition 16. A small term is a 
onstru
ted type term whose stri
t sub-

terms are type variables. A type s
heme 8C: � is made up of small terms i�

it satis�es the following 
onditions:

Æ � is a type variable;

Æ for all (�

1

� �

2

) 2 C, either �

1

and �

2

are type variables, or one is a

variable and the other is a small term.

Æ for all (s � � ? �

1

� �

2

) 2 C, � , �

1

and �

2

are type variables.

Every type s
heme 
an be turned into an equivalent type s
heme whi
h is

made up of small terms. (In pra
ti
e, this would be done when 
onverting

type s
hemes input by the user into some internal representation.)

Appendix A.4 Solving Constraints

We begin with a fundamental te
hni
al result, whi
h des
ribes a weak, suÆ-


ient 
ondition for a 
onstraint set to have a solution. It shall form the basis

for the proof of the 
losure algorithm. We prove a fairly powerful version

of this result, allowing ground 
onstants to appear in 
onstraints. (If these


onstraints were to be written, some �nite representation of these 
onstants

would be required; however, su
h is not the 
ase here.) Thanks to this gen-

eralization, this result will also form the basis for the proof of the garbage


olle
tion algorithm.

Definition 17. A 
onstraint set with ground 
onstants is a 
onstraint set

C, where atomi
 
onstraints may involve either two variables, one variable

and a small term, or one variable and a ground type, and where 
onditional


onstraints have their usual form. De�ne the assertion C 


+1

�

1

� �

2

to

mean

8k � 0 8� `

pre

k

C � `

k+1

�

1

� �

2

De�ne C

#

(�) = f� ; � 62 V ^ � � � 2 Cg and C

"

(�) = f� ; � 62 V ^ � � � 2

Cg. C is said to be weakly 
losed i� the following 
onditions are met:

(1) � � � 2 C and � � 
 2 C imply � � 
 2 C;

(2) � � � 2 C and � 2 C

#

(�) imply 9�

0

2 C

#

(�) C 


+1

� � �

0

;

(3) � � � 2 C and �

0

2 C

"

(�) imply 9� 2 C

"

(�) C 


+1

� � �

0

;
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(4) � 2 C

#

(�) and �

0

2 C

"

(�) imply C 


+1

� � �

0

;

(5) � � � 2 C and s � � ? 
 2 C imply s � � ? 
 2 C;

(6) s � � ? 
 2 C, � 2 C

#

(�) and s �

S

hd(�) imply C 


pre


.

C

#

(�) 
ontains all lower bounds of � whi
h are not type variables; thus,

every � 2 C

#

(�) must be either a small type term, or a ground type. A

similar remark holds 
on
erning C

"

(�).

Conditions 1 and 5 above are purely synta
ti
 transitivity 
onditions. Con-

ditions 2 to 4 also involve transitivity, but the use of 


+1

allows expressing

these 
onditions in a logi
al, rather than synta
ti
, way, making them less

restri
tive.

Theorem 2. Let C be a 
onstraint set with ground 
onstants. If C is weakly


losed, then C has a solution.

Proof. Note that this proof only uses Conditions 2, 4 and 6 of De�ni-

tion 17. The other 
onditions shall be required by further theorems, su
h

as the 
orre
tness proof of garbage 
olle
tion.

The �rst step of the proof 
onsists in exhibiting a ground substitution �

su
h that, for all � 2 fv(C), �(�) equals tf�(�) ; � 2 C

#

(�)g, and proving

that � is a pre-solution of C. In fa
t, this step 
oin
ides with the 
lassi


proof performed in the absen
e of 
onditional 
onstraints [17℄; we shall not

repeat it here.

The se
ond step 
onsists in proving that � is a full solution of C. Pi
k a


onditional 
onstraint s � � ? 
 2 C. Assume � ` s � �. By de�nition of �,

this statement 
an be written

s �

S

hd(�(�)) = hd(tf�(�) ; � 2 C

#

(�)g)

= t

S

fhd(�(�)) ; � 2 C

#

(�)g

= t

S

fhd(�) ; � 2 C

#

(�)g

(The identity hd(�(�)) = hd(�) stems from the fa
t that � is either a small

term, or a ground 
onstant, with a �xed head 
onstru
tor.) Considering that

s is prime (see De�nition 10), this entails s �

S

hd(�) for some � 2 C

#

(�).

We 
an then apply Condition 6 of De�nition 17, whi
h yields C 


pre


.

Sin
e � is a pre-solution of C, this implies � ` 
. We have thus veri�ed

� ` s � � ? 
, proving that � is a solution of C.

2

Equippedwith this te
hni
al result, we are now ready to de�ne a 
onstraint

resolution algorithm. It is based on a simple 
losure 
omputation. We begin

by de�ning an auxiliary 
onstraint de
omposition fun
tion, whi
h breaks a


onstraint down into a set of equivalent 
onstraints.

Definition 18. Given types �

1

and �

2

, sub
(�

1

� �

2

) is de�ned as

Æ f�

1

� �

2

g, if �

1

or �

2

is a variable;
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Æ f�

1

:l �

l

�

2

:l ; l 2 dom(�

1

) \ dom(�

2

)g, if �

1

and �

2

are 
onstru
ted

terms su
h that hd(�

1

) �

S

hd(�

2

).

Note that sub
(�

1

� �

2

) is unde�ned when hd(�

1

) 6�

S

hd(�

2

); indeed, su
h

a 
onstraint is 
learly unsatis�able.

Using this auxiliary fun
tion, we 
an now des
ribe the 
losure 
onditions:

Definition 19. Let C be a 
onstraint set, made up of small terms. C is

said to be 
losed i�

(1) � � � 2 C and � � �

0

2 C imply sub
(� � �

0

) � C;

(2) � � � 2 C and s � � ? 
 2 C imply s � � ? 
 2 C;

(3) s � � ? 
 2 C, � 2 C

#

(�) and s �

S

hd(�) imply 
 2 C.

Condition 1 is the 
lassi
 
losure 
ondition, found e.g. in [17℄; it involves

transitivity and stru
tural de
omposition. Condition 2 is a transitivity 
on-

dition 
on
erning 
onditional 
onstraints. Condition 3 requires that the


on
lusion of a 
onditional 
onstraint whose 
ondition must be satis�ed be

dis
harged into the 
onstraint set.

It is easy to 
he
k that 
losure implies weak 
losure [17℄. This yields an

algorithm to de
ide whether a 
onstraint set C has a solution: attempt to


ompute the smallest 
losed set C

�


ontaining it, by repeated appli
ation of

the above three rules. Ea
h rule preserves the set's solution spa
e. So, if the


omputation su

eeds, then C has a solution; if, on the other hand, it fails

(be
ause sub
 is applied outside of its domain), then C has no solution.

Consider a 
onditional 
onstraint s � � ? 
. A

ording to the 
losure rules

above, the atomi
 
onstraint 
 will have no e�e
t on the 
onstraint resolu-

tion pro
ess until it is dis
harged by rule 3. That is, 
 will be ignored until

the algorithm dis
overs some eviden
e that the 
ondition s � � must be sat-

is�ed. This explains why 
onditional 
onstraints delay type 
omputations,

as mentioned in the body of this paper. The algorithm will not spe
ulate

about the 
onsequen
e of the 
onditional 
onstraint, should its 
ondition be

satis�ed; rather, it waits until it has no 
hoi
e but satisfy 
.

Appendix A.5 Polarity

We now de�ne how to asso
iate a polarity with ea
h type variable in a type

s
heme whose 
onstraint set if (weakly) 
losed. This notion will be used in

the de�nition of all three 
onstraint simpli�
ation algorithms.

Definition 20. Consider a type s
heme � = 8C: Æ, made up of small terms,

where C is weakly 
losed. The set of positive variables of �, and the set of

negative variables of �, respe
tively denoted by fv

+

(�) and fv

�

(�), are the

smallest subsets P and N of fv(�) su
h that

Æ Æ 2 P ;

Æ 8� 2 P 8� 2 C

#

(�) split(�) � (N;P );
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Æ 8� 2 N 8� 2 C

"

(�) split(�) � (P;N);

Æ 8� 2 N s � � ?� � 
 2 C ) � 2 P ^ 
 2 N .

where the auxiliary fun
tion split maps a small term � to an element of

2

V

� 2

V

, as follows:

split(�) = (f�:l ; l 2 L

�

g; f�:l ; l 2 L

+

g)

A type variable is said to be bipolar if it is positive and negative, and neutral

if it is neither. fv

+

(�) and fv

�

(�) 
an be 
omputed in time linear in the size

of �, using a simple �x-point 
al
ulation. Every type s
heme is equivalent

to a type s
heme with no bipolar variables; we do not prove this result here.

Appendix A.6 Garbage Colle
tion

Knowing the polarity of ea
h variable allows us to throw away many redun-

dant 
onstraints, as shown by the following de�nition and theorem.

Definition 21. Consider � as in De�nition 20. The image of � through

garbage 
olle
tion, denoted by GC(�), is the type s
heme 8D: Æ, where D is

a subset of C de�ned as follows:

Æ � � � 2 D i� � � � 2 C, � 2 fv

�

(�) and � 2 fv

+

(�);

Æ D

#

(�) equals C

#

(�) if � 2 fv

+

(�), and ? otherwise;

Æ D

"

(�) equals C

"

(�) if � 2 fv

�

(�), and ? otherwise;

Æ s � � ?� � 
 2 D i� s � � ?� � 
 2 C and � 2 fv

�

(�).

This de�nition is mostly identi
al to the one in [17℄; only the fourth point

is new, and spe
i�es that a 
onditional 
onstraint is redundant unless it

bears on a negative variable. In operational terms, a 
onditional 
onstraint

s � � ? 
 
an be triggered only if � re
eives a lower bound whi
h ex
eeds

s. Considering that only negative variables 
an re
eive new lower bounds in

the future, this 
onstraint has no e�e
t unless � is negative.

Theorem 3. Consider � as in De�nition 21. Then � � GC(�).

Proof. Write �

0

= GC(�). Sin
e �

0

has fewer 
onstraints, it is 
lear that

�

0

4 �. So, we need to prove � 4 �

0

. A

ording to De�nition 15, this is

equivalent to

8�

0

` D 9� ` C �(Æ) � �

0

(Æ)

Pi
k some �

0

` D. We now wish to prove that C[fÆ � �

0

(Æ)g admits a solu-

tion. This is a 
onstraint set with ground 
onstants, as per De�nition 17. We

shall meet our goal by proving that the following 
onstraint set|a superset

of the previous one|is weakly 
losed:

C [ f�

0

(�) � � ; � 2 fv

�

(�) ^ � � � 2 C

r

g

[ f� � �

0

(�) ; � 2 fv

+

(�) ^ � � � 2 C

r

g
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(C

r

denotes the re
exive 
losure of C, i.e. � � � 2 C

r

i� � = � or

� � � 2 C.) Let E denote this set.

That E should satisfy Conditions 1 to 4 of De�nition 17 is a 
lassi
 result,

proved in [17℄. The novelty, in the presen
e of 
onditional 
onstraints, is to


he
k that E also satis�es Conditions 5 and 6.

To 
he
k Condition 5, assume � � � 2 E and s � � ? 
 2 E. Considering

the de�nition of E, these 
onstraints must in fa
t belong to C. Sin
e C itself

is weakly 
losed, s � � ? 
 belongs to C, whi
h is a subset of E.

To 
he
k Condition 6, assume s � � ? 
 2 E, � 2 E

#

(�) and s �

S

hd(�).

As above, s � � ? 
 must in fa
t belong to C. Furthermore, if � 2 C

#

(�),

then it is again easy to 
on
lude, 
onsidering that C itself is weakly 
losed.

Thus, let us assume � 62 C

#

(�). Considering the de�nition of E, we must

have � = �

0

(�), � 2 fv

�

(�) and � � � 2 C

r

, for some �; � 2 fv(C).

We have s � � ? 
 2 C and � � � 2 C

r

. Be
ause C satis�es Condition 5

of De�nition 17, this entails s � � ? 
 2 C. Furthermore, sin
e � 2 fv

�

(�),

this 
onstraint is preserved by garbage 
olle
tion; formally, De�nition 21

states that s � � ? 
 2 D. Sin
e �

0

is a solution of D, we have �

0

` s � � ? 
.

Finally, re
all that s �

S

hd(�) = hd(�

0

(�)), whi
h 
an be written �

0

` s � �.

By bringing both results together, we obtain �

0

` 
.

Let us now write 


1

(resp. 


2

) for the left-hand (resp. right-hand) side of


. The assertion �

0

` 
 
an be re-stated �

0

(


1

) � �

0

(


2

). Besides, we have

� 2 fv

�

(�) and s � � ? 


1

� 


2

2 C; a

ording to De�nition 20, this entails




1

2 fv

+

(�) and 


2

2 fv

�

(�). Then, a

ording to the de�nition of E, the


onstraints 


1

� �

0

(


1

) and �

0

(


2

) � 


2

must appear in E. It follows that

any pre-solution of E satis�es 


1

� 


2

. In other words, E 


pre


.

2

Appendix A.7 Canonization

Definition 22. A 
onstraint set C is in 
anoni
al form i� ea
h variable

� 2 fv(C) has exa
tly one 
onstru
ted lower (resp. upper) bound, i.e. i�

C

#

(�) and C

"

(�) are singletons.

We now de�ne an algorithm whi
h turns an arbitrary type s
heme � into

an equivalent type s
heme in 
anoni
al form.

Definition 23. Let � = 8C: Æ be a type s
heme, made up of small terms,

with no bipolar variables, su
h that � = GC(�).

Let V (resp. W ) range over non-empty subsets of fv

�

(�) (resp. fv

+

(�)).

For ea
h su
h V (resp. W ) of 
ardinality greater than 1, pi
k a fresh vari-

able 


V

(resp. �

W

). (By fresh variables, we mean that these variables are

pairwise distin
t, and distin
t from �'s variables.)

De�ne the rewriting fun
tions r

�

and r

+

a

ording to Fig. 5. The �rst

three lines de�ne r

�

(resp. r

+

) over non-empty sets of negative (resp. posi-

tive) variables; the next two extend them to sets of negative (resp. positive)

small terms, ranged over by T . v stands for either + or �; t

v

S

stands for

t

S

when v = +, and for u

S

when v = �; v

l

stands for v when l 2 L

+

, and
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r

v

(f�g) = �

r

+

(W ) = �

W

when jW j > 1

r

�

(V ) = 


V

when jV j > 1

hd(r

v

(T )) = t

v

S

hd(T )

8l 2 a(t

v

S

hd(T )) r

v

(T ):l = r

v

l

(T:l)

Figure 5: De�nition of the rewriting fun
tions

r

�

(V ) � r

+

(W ) 2 D i� 9� 2 V 9� 2W � � � 2 C

D

#

(�) = fr

+

(C

#

(�))g D

"

(�) = fr

�

(C

"

(�))g

D

#

(


V

) = f?g D

"

(


V

) = fr

�

([C

"

(V ))g

D

#

(�

W

) = fr

+

([C

#

(W ))g D

"

(�

W

) = f>g

s � r

�

(V ) ? 
 2 D i� 9� 2 V s � � ? 
 2 C

Figure 6: Canonization

for the opposite of v when l 2 L

�

. On the last line of Fig. 5, T:l stands

for f�:l ; � 2 Tg. The expression r

v

l

(T:l) is well-de�ned, be
ause T:l is a

non-empty set of variables. Indeed, l belongs to a(t

v

S

hd(T )). A

ording to

the last 
ondition of De�nition 1, this must be a subset of [ a(hd(T )); that

is, there must exist some � 2 T su
h that �:l is de�ned.

The image of � through 
anonization, denoted by Can(�), is 8D: Æ, where

the 
onstraint set D is given by Fig. 6. It is 
lear that Can(�) is in 
anoni
al

form.

Considering our strong hypotheses on �, one easily proves that Can(�) is


losed. One 
an also give a 
onservative approximation of the polarity of

ea
h variable in Can(�). Indeed, if a variable � is positive (resp. negative,

neutral) in �, then it is at most positive (resp. negative, neutral) in Can(�).

Furthermore, any �

W

(resp. 


V

) is at most positive (resp. negative) in

Can(�).

Theorem 4. Consider � as in De�nition 23. Then � � Can(�).
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Proof. Let us use the notations of De�nition 23. We �rst show that

Can(�) 4 �, i.e.

8� ` C 9�

0

` D �

0

(Æ) � �(Æ)

Pi
k some � ` C. De�ne �

0

by

�

0

(�) = �(�) �

0

(


V

) = u �(V ) �

0

(�

W

) = t �(W )

Clearly, for any W , �

0

(r

+

(W )) = t �(W ). Similarly, �

0

(r

�

(V )) = u �(V ).

Extending these assertions to sets of small terms, rather than sets of vari-

ables, is straightforward. Using these results, it is a matter of routine to

as
ertain that �

0

satis�es D. Here, we shall only 
he
k that all 
onditional


onstraints of D are satis�ed by �

0

. Consider su
h a 
onstraint; it must be

of the form s � r

�

(V ) ? 
, where s � � ? 
 2 C for some � 2 V . Assume

�

0

` s � r

�

(V ). This 
an be written

s �

S

hd(�

0

(r

�

(V )))

= hd(u �(V ))

= u

S

hd(�(V ))

�

S

hd(�(�)) sin
e � 2 V

So, � ` s � � holds. Be
ause s � � ? 
 appears in C, and be
ause � satis�es

C, we must then have � ` 
. However, � and �

0


oin
ide over fv(�); so,

�

0

` 
 holds as well. Thus, we have 
he
ked that �

0

satis�es s � r

�

(V ) ? 
,

as desired.

The other dire
tion of the proof is slightly more diÆ
ult, be
ause D does

not entail C; in fa
t, our de�nition of 
anonization 
ontains a built-in

garbage 
olle
tion step. We introdu
e an intermediate type s
heme �

0

=

8E: Æ, where E is de�ned by

E = D [ f� � �

W

; � 2Wg [ f


V

� � ; � 2 V g

This time, thanks to the added 
onstraints, it is easy enough to prove that E

entails C, whi
h implies � 4 �

0

. There remains to prove that �

0

4 Can(�).

We shall do so by noti
ing that the 
onstraints in E n D are super
uous,

a

ording to garbage 
olle
tion. The result shall then follow from Theorem 3.

Our �rst obje
tive is to prove that E is weakly 
losed, whi
h entitles us to

apply garbage 
olle
tion to �

0

.

Proving that E satis�es Conditions 1 to 4 of De�nition 17 is (tedious)

routine; we refer the interested reader to [17℄.

To 
he
k that E satis�es Condition 5, assume s �  ? 
 2 E and � �  2

E. Considering the form of the 
onditional 
onstraints whi
h appear in E

(see Fig. 6),  must be the image of some set of negative variables through

r

�

. But then, 
onsidering the form of the 
onstraints between variables in

E, � �  must be of the form 


V

� �, where � 2 V . So,  
oin
ides with

�. Thus, s � � ? 
 appears in E; a

ording to Fig. 6, it also appears in C.



A VERSATILE CONSTRAINT-BASED TYPE INFERENCE SYSTEM 33

Sin
e � 2 V , another look at Fig. 6 indi
ates that s � 


V

? 
 appears in D,

hen
e in E. This was our goal, sin
e 


V

is none other than �.

To 
he
k that E satis�es Condition 6, assume s � r

�

(V ) ? 
 2 E, � 2

E

#

(r

�

(V )) and s �

S

hd(�).

First, we prove that jV j = 1. Indeed, if jV j > 1 were true, then r

�

(V )

would be 


V

. Then, we would have � 2 E

#

(


V

) = f?g, so � = ?. Sin
e

s �

S

hd(�), it would follow that s = ?

S

, whi
h is forbidden by De�nition 10:

?

S

is not a prime element of S.

So, V must be a singleton set, say f�g. Then, E

#

(�) = fr

+

(C

#

(�))g, so

� 
oin
ides with r

+

(C

#

(�)). Thus,

s �

S

hd(�) = t

S

hd(C

#

(�))

by de�nition of r

+

(see Fig. 5). Be
ause s is prime (see De�nition 10),

this implies s �

S

hd(�

0

) for some �

0

2 C

#

(�). Besides, sin
e V = f�g,

s � � ? 
 appears in E, hen
e also in C. In light of the fa
t that C itself

satis�es Condition 6 of De�nition 17, all this implies C 


pre


. However,

by de�nition of E, every pre-solution of E is also a pre-solution of C. So,

E 


pre


 also holds. This was our goal.

We have veri�ed that E is weakly 
losed. Thus, a

ording to Theorem 3,

we may throw away some of �

0

's 
onstraints, as allowed by polarity, and

obtain an equivalent type s
heme. One dis
overs, in fa
t, that all 
onstraints

in E nD are a
tually super
uous (see [17℄). As a result, �

0

� Can(�). This


on
ludes the proof.

2

Appendix A.8 Minimization

We now give an algorithm whi
h separates the variables of a type s
heme

into a number of equivalen
e 
lasses, in su
h a way that all variables in a

single 
lass 
an be merged without a�e
ting the type s
heme's denotation.

We begin with a 
ouple of auxiliary de�nitions:

Definition 24. Let V be a set of type variables. Any equivalen
e relation

� over V is extended to small terms whose variables are in V , as follows:

�

1

� �

2

() hd(�

1

) = hd(�

2

) ^ (8l 2 a(hd(�

1

)) �

1

:l � �

2

:l)

Definition 25. Let C be a 
onstraint set. For � 2 V, de�ne

pred

C

(�) = f� ; � � � 2 Cg

su



C

(�) = f� ; � � � 2 Cg

Then, we give a series of requirements about equivalen
e relations, and show

that they are suÆ
ient to meet our goal.
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Definition 26. Let � = 8C: Æ be a type s
heme in 
anoni
al form, made

up of small terms, with no bipolar variables, su
h that � = GC(�). For any

� 2 fv(�), C

#

(�) (resp. C

"

(�)) is a singleton set; by abuse of language, we

shall use the same notation to refer to its unique element.

An equivalen
e relation � over fv(�) is 
ompatible with � i� � � � implies

all of the following:

(1) f�; �g � fv

+

(�) or f�; �g � fv

�

(�);

(2) pred

C

(�) = pred

C

(�) and su



C

(�) = su



C

(�);

(3) C

#

(�) � C

#

(�) and C

"

(�) � C

"

(�);

(4) s � � ? 


1

� 


2

2 C implies 9Æ

1

� 


1

9Æ

2

� 


2

s � � ? Æ

1

� Æ

2

2 C.

Definition 27. Consider � as in De�nition 26; let � be a partition 
om-

patible with �. The quotient

�

=

�

is de�ned|up to a renaming|as �(�),

where � is any mapping of fv(�) into V su
h that

8�; � 2 fv(�) � � � () �(�) = �(�)

Theorem 5. Consider � and � as in De�nition 27. Then,

�

=

�

� �.

Proof. The assertion � 4

�

=

�


learly holds, be
ause the latter is the

image of the former through the substitution �. Re
ipro
ally, let us show

that

�

=

�

4 �. Let � be a solution of C. We need to exhibit a solution �

0

of

�(C) su
h that �

0

(�(Æ)) � �(Æ).

Consider an equivalen
e 
lass of �. Be
ause of Condition 1 of De�ni-

tion 26, it must be either a subset of fv

�

(�), or a subset of fv

+

(�). We

denote it by V (resp. W ) in the former (resp. latter) 
ase. We denote the

image of its elements through � by '

V

(resp. '

W

). De�ne �

0

by

�

0

('

V

) = t �(V ) �

0

('

W

) = u �(W )

We remark that for any � 2 fv

+

(�), �

0

(�(�)) � �(�) holds; symmetri
ally,

for any � 2 fv

�

(�), we have �(�) � �

0

(�(�)).

There remains to 
he
k that �

0

satis�es �(C) and �(Æ) � �(Æ). This is

straightforward; as before, we shall deal with the 
ase of 
onditional 
on-

straints expli
itly, and refer the reader to [17℄ for the other 
ases. Consider

a 
onditional 
onstraint in �(C). It has the form s � �(�) ?�(�) � �(
),

where s � � ?� � 
 2 C. Note that, ne
essarily, � and 
 belong to

fv

�

(�), while � belongs to fv

+

(�). Let V stand for �'s equivalen
e 
lass, i.e.

V = �

�1

(�(�)). Assume �

0

` s � �(�). This 
an be written

s �

S

hd(�

0

(�(�)))

= hd(t �(V ))

= t

S

hd(�(V ))

Be
ause s is prime (see De�nition 10), this implies s �

S

hd(�(�

0

)), for some

�

0

2 V . In other words, � ` s � �

0

holds. Furthermore, we have � � �

0

;
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sin
e � is 
ompatible with �, Condition 4 yields s � �

0

?�

0

� 


0

2 C, for

some �

0

� � and 


0

� 
. Both fa
ts, 
ombined, yield � ` �

0

� 


0

, be
ause �

is a solution of C. Next, note that, ne
essarily, 


0

belongs to fv

�

(�), while �

0

belongs to fv

+

(�). Thus, � ` �

0

� 


0

implies �

0

` �(�) � �(
), by de�nition

of �

0

. We have proved that �

0

satis�es s � �(�) ?�(�) � �(
).

2
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