
A Constraint-Based Presentation and Generalization of Rows

François Pottier

INRIA

Abstract

We study the combination of possibly conditional non-
structural subtyping constraints with rows. We give a new
presentation of rows, where row terms disappear; instead,
we annotate constraints withfilters. We argue that, in the
presence of subtyping, this approach is simpler and more
general. In the case where filters are finite or cofinite sets
of row labels, we give a constraint solving algorithm whose
complexity isO(n

3

m logm), wheren is the size of the con-
straint andm is the number of row labels that appear in
it. We point out that this allows efficient type inference for
record concatenation. Furthermore, by varying the nature
of filters, we obtain several natural generalizations of rows.

1 Introduction

Recordsare an important feature of programming lan-
guages, not only because of their ubiquitous use in defining
data structures, but also because they form a basic layer on
top of which other features, such as objects and modules,
may be built. Records are finite associations of values to la-
bels; typical primitive operations on records are access (ex-
tracting the contents of a field), update (modifying the con-
tents of an existing field), extension (adding a new field),
restriction (removing an existing field), and concatenation
(merging two existing records into a new one) [1].

Rows[16, 14] offer syntax to describe infinite families
of types, indexed by labels. Rows offer random access to
any single component. Furthermore, they offer uniform
access toeverycomponent at once; that is, by imposing
a constraint on rows, one effectively imposes a family of
constraints, point-wise, on their components. Equality con-
straints on rows allow assigning accurate types to record
access, update, extension, and restriction.

Subtypingis a common way of increasing a type sys-
tem’s expressiveness. In the presence of record types, sub-
typing is usuallynon-structural—that is, a type and its sub-
types may not have the same shape—because it allows for-
getting whether certain fields are present in a record. In
the presence of rows, this phenomenon occurs at the level

of field types. Indeed, typical field types areAbs (the field
does not exist in this record),Pre � (the field exists and con-
tains a value of type�) and>field (the field may or may not
exist). The definition of subtyping typically involves ax-
ioms such asPre � � >field andAbs � >field, the first of
which is non-structural.

From a type-theoretic perspective, concatenation is the
most challenging operation on records, because the type of
its result cannot be related to the types of its arguments us-
ing subtyping constraints only. Consider, for instance,sym-
metricconcatenation, which requires its arguments to have
disjoint sets of fields. For every field̀, the result type at̀
is Pre � if one argument has typePre � at ` and the other
has typeAbs at `; it is Abs if both arguments have typeAbs
at `; the operation is ill-typed otherwise. The difficulty is
not in the quantification over̀, which is dealt with by rows,
but in the fact that this definition isby cases. In [10], I sug-
gested addressing this issue usingconditional constraints, a
concept whose origin can be traced back to Reynolds [15].

Non-structural subtyping constraints can be solved in cu-
bic time [6]. In fact, McAllester’s theorem [4] allows estab-
lishing that possibly conditional subtyping constraints can
be solved in cubic time as well. However, the combina-
tion of such constraints with rows, which is implemented
in [9], has never been studied from a complexity-theoretic
point of view. Taking advantage of this fact, Palsberg and
Zhao [7] recently claimed to have developed the first poly-
nomial time type inference algorithm for symmetric record
concatenation. Their algorithm runs in timeO(n

5

), where
n is the size of the program. It is not compositional, that
is, it must analyze a whole program at once, which makes it
rather impractical.

The contribution of this paper is two-fold. First, we give
a new presentation of rows, where rowtermsdisappear; in-
stead, we annotateconstraintswith filters, which, in the
simplest case, are finite or cofinite sets of row labels. We ar-
gue that this presentation is simpler and more general. Sec-
ond, we give a solver for this new constraint language, and
establish that it runs in timeO(n

3

m logm), wheren is the
size of the constraint andm is the number of row labels that
appear in it. As an application, we show that type inference
for symmetric record concatenation can be reduced to solv-

1

ing a constraint whose size is linear in the program’s size.
Thus, this approach outperforms Palsberg and Zhao’s. It is,
furthermore, compositional.

Why a new account of rows? In existing presentations,
rows areterms. In particular, if` is a row label,� is a type
and� is a row, then the term(` : � ; �) is a row as well. In
type systemswithout subtyping, this allows reducing type
inference to first-order unification in an equational theory,
whose axioms allow e.g. commuting the order of row la-
bels in a row term. This is crucial, because unification is
extremely efficient. One disadvantage, however, is that row
unification sometimes allocates fresh type variables, mak-
ing termination and complexity arguments more delicate.
Type systemswith subtyping, on the other hand, replace
unification with a more costly constraint solving procedure.
The key insight, then, is that there is no longer a point in us-
ing row terms. One may instead annotateconstraintswith
filters, which carry information about row labels. This has
two consequences. First, it becomes possible to solve con-
straints without allocating fresh type variables. This sim-
plifies the complexity analysis, and was our original moti-
vation. Second, even though we initially define filters as fi-
nite or cofinite sets of row labels, most of our development
(in fact, all of it but the complexity analysis) is indepen-
dent of the nature of filters, as long as they are preserved by
Boolean operations and enjoy a decidable emptiness test.
Thus, by varying the nature of filters, we obtain several nat-
ural generalizations of rows.

The paper is laid out as follows. Section 2 presents the
syntax, as well as the meaning, of types and constraints.
Section 3 describes a satisfiability test for constraints, based
on a closure computation, and assesses its theoretical com-
plexity. Section 4 explains how type inference for record
operations, including symmetric concatenation, reduces to
constraint solving. Section 5 discusses a few extensions of
the framework. Due to space restrictions, most proofs have
been moved to the full version of this paper [12]. The com-
plexity analysis does appear in the present paper.

2 Formal Presentation of the System

In order to achieve a good measure of generality, our pre-
sentation is parameterized with respect to aground signa-
ture, which specifies a type algebra and a subtype ordering;
it is defined in Section 2.1. Given a fixed ground signa-
ture, Section 2.2 defines the algebra of ground terms and its
ordering. The syntax of types and constraints is given in
Section 2.3 and their logical interpretation in Section 2.4.

2.1 Assumptions

Definition 1 Let asort& be one offType;Rowg.

A ground signature consists of three components: a fam-
ily of symbollattices, indexed bykinds, a set ofparameter
labels, each of which is co- or contra-variant and has fixed
sort and kind, and a description of each symbol’sarity as a
set of parameter labels.

Definition 2 LetK be a finite set ofkinds. For every kind
� 2 K, let S

�

be a finite lattice ofsymbols, with opera-
tions?

�

, >
�

, �
�

, t
�

andu
�

. We writeS for the set of
all symbols. LetP+ andP� be disjoint finite sets ofpa-
rameter labels. We writeP for P+

℄ P

�. With every pa-
rameter labelp 2 P , associate a sort and a kind, written
sort(p) andkind(p), respectively. With every symbols 2 S ,
associate a subset ofP, called thearity of s and written
a(s). We require that, for all� 2 K and s

0

; s

1

; s

2

2 S

�

,
s

0

�

�

s

1

�

�

s

2

implya(s
0

) \ a(s

2

) � a(s

1

).

The last requirement is used in the proof of Theorem 1
to ensure that the orderings�

�

do give rise to an order-
ing on ground terms. The information described in Defini-
tion 2 forms aground signature. We now assume that some
ground signature is fixed.

Example 1 Let K be ftype; fieldg. Let Stype be the flat
lattice whose elements other than?type and>type are!
and f�g. Let Sfield be the flat lattice whose elements
other than?field and>field areAbs andPre. Let P� =

fdomg andP+

= frng; fields; contentg. Let kind(dom) =

kind(rng) = kind(content) = typeand kind(fields) = field.
Let sort(dom) = sort(rng) = sort(content) = Typeand
sort(fields) = Row. Let a(!) = fdom; rngg anda(f�g) =

ffieldsg anda(Pre) = fcontentg. Let the arity of all other
symbols be?.

This ground signature defines two kinds of types, plain
types and field types. The record type constructorf�g forms
a plain type out of a row of field types. The constructor
Pre forms a field type out of a plain type.Abs andPre

are made incomparable, because that is required to assign a
sound type to record concatenation [1, 10], but they do have
a common supertype>field, sowidth subtypingis present.

If we take a look ahead at the syntax of terms and at the
sorting and kinding restrictions, defined in Section 2.3, we
find that this ground signature gives rise to the following
grammar of terms, where� ranges over terms of sortType
and kind type, � ranges over terms of sortRow and kind
field, and' ranges over terms of sortTypeand kindfield:

� ::= � j ?type j >type j � ! � j f�g

� ::= � j �'

' ::= � j ?field j >field j Pre � j Abs

This concrete style of definition is standard [14, 10]. Pa-
rameterizing our development with respect to a ground sig-
nature allows us to accommodate a whole family of defini-
tions in this style.

2

2.2 Logical Model

We now define the universe of ground terms, which
forms the model within which types and constraints are in-
terpreted. As in [11, 7], we allow types to be recursive,
that is, we define ground terms as infinite trees. We do not
restrict our attention to regular trees, because that would
not affect constraint satisfiability or entailment. Since the
model contains infinite trees, its definition is naturally coin-
ductive. We cannot devote space to establishing the exis-
tence of the fixed points mentioned below; a detailed treat-
ment of a similar construction can be found in [3].

Let L be a denumerable set ofrow labels. Let ` range
over row labels.

For the sake of brevity, let us writes(�t
p

) for s(t
p

)

p2a(s)

and (

�

t

`

) for (t

`

)

`2L

. The former is a ground type whose
head symbol iss and whose sub-terms are thet

p

, wherep
ranges over the arity ofs. The latter is a ground row, that
is, a family of ground types indexed by row labels. This is
made precise by the following definition:

Definition 3 The family of modelsT&
�

is the greatest solu-
tion to the following equations:

T

Type
�

= fs(

�

t

p

) ; s 2 S

�

^ 8p 2 a(s) t

p

2 T

sort(p)
kind(p)g

T

Row
�

= f(

�

t

`

) ; 8` 2 L t

`

2 T

Type
�

g

An elementt ofT&
�

is aground termof sort& and kind�.

Two ground types are comparable if and only if they
have comparable head symbols and their sub-terms at ev-
ery common parameter labelp are comparable as well—in
the reverse direction, ifp is contravariant. Ground rows are
compared point-wise and covariantly.

Definition 4 Let t p�&

�

t

0 stand fort �&

�

t

0 if p is a member
of P+, and for t0 �&

�

t otherwise. The family of relations
�

&

�

is the greatest solution to the following equivalences:

s(

�

t

p

) �

Type
�

s

0

(

�

t

0

p

)

() s �

�

s

0

^ 8p 2 a(s) \ a(s

0

) t

p

p

�

sort(p)
kind(p) t

0

p

(

�

t

`

) �

Row
�

(

�

t

0

`

)

() 8` 2 L t

`

�

Type
�

t

0

`

This definition may be made more explicit by viewing�&
�

as the intersection of the denumerable family(

k

�

&

�

)

k�0

,
where every

0

�

&

�

is the full binary relation and
k+1

�

&

�

is
given by

s(

�

t

p

)

k+1

�

Type
�

s

0

(

�

t

0

p

)

() s �

�

s

0

^ 8p 2 a(s) \ a(s

0

) t

p

p

k

�

sort(p)
kind(p) t

0

p

(

�

t

`

)

k

�

Row
�

(

�

t

0

`

)

() 8` 2 L t

` k

�

Type
�

t

0

`

Theorem 1 Every(T&
�

;�

&

�

) forms a lattice.

In the following, we write� instead of�&

�

when& and
� are irrelevant or can be inferred from the context. If
t 2 T

Type
�

is of the forms(

�

t

p

), then we lett:p denotet
p

.
Similarly, if t 2 TRow

�

is of the form(

�

t

`

), then we lett:`
denotet

`

. If s 2 S
�

andt 2 TType
�

is of the forms0(�t
p

), then
we lets � t stand fors �

�

s

0.

2.3 Syntax of Terms and Constraints

For every sort& and every kind�, let V&
�

be a distinct
denumerable set ofvariables. Let � range over variables.
Let afilter L be a finite or cofinite subset ofL. Filters are
machine representable and are preserved by finitary union,
intersection, and complement. The syntax oftermsandcon-
straintsis as follows:

� ::= � j s(��

p

) j ��

C ::= 9�:C j C ^ C j true j false
j � � �

j L : � � �

j L : s � � ? � � �

Terms are built out of variables, symbols, and the construc-
tor �, which defines constant rows [13]. Constraint forms
include existential quantification, conjunction, andelemen-
taryconstraints, namely truth, falsity, subtyping constraints,
and conditional subtyping constraints.

Figure 1 (resp. 2) defines the judgements` � : & (resp.̀
� : �), which means that the term� has sort& (resp. kind�),
and`OK

C (resp.̀ OK C), which means that the constraintC

is well-sorted (resp. well-kinded). We restrict our attention
to well-sorted and well-kinded terms and constraints.

� 2 V

&

�

` � : &

8p 2 a(s) ` �

p

: sort(p)

` s(��

p

) : Type

` � : Type

` �� : Row

`

OK
C

`

OK
9�:C

`

OK
C

1

`

OK
C

2

`

OK
C

1

^ C

2

`

OK true
`

OK false

` �

1

; �

2

: Type

`

OK
�

1

� �

2

` �

0

; �

1

; �

2

: Row

`

OK
L : �

1

� �

2

`

OK
L : s � �

0

? �

1

� �

2

Figure 1. Well-sorted terms and constraints

If �
1

and�
2

aretypes, then the (standard) subtyping con-
straint�

1

� �

2

may be understood as a requirement for�

1

to be a subtype of�
2

. Constraints that involverows, how-
ever, must be annotated with a filter. That is, if�

1

and�
2

3

� 2 V

&

�

` � : �

s 2 S

�

8p 2 a(s) ` �

p

: kind(p)

` s(��

p

) : �

` � : �

` �� : �

`OK C

`OK 9�:C

`OK C1

`OK C2

`OK C1

^ C

2

`OK true
`OK false

` �

1

; �

2

: �

`OK �1 � �

2

`OK L : �

1

� �

2

s is aprimeelement ofS
�

` �

0

; �

1

; �

2

: �

`OK L : s � �

0

? �

1

� �

2

Figure 2. Well-kinded terms and constraints

are rows, then the constraintL : �

1

� �

2

may be under-
stood as a requirement for�

1

:` to be a subtype of�
2

:` for
every row label̀ 2 L. The introduction of filters compen-
sates the omission of the standard row constructor(` : � ; �)

by offering a way ofnot treating all row labels uniformly.
Our conditional constraints are exactly those studied

in [10], extended with filters. Conditions must be of the
form s � � ; this restriction allows our solver to delay in-
specting a conditional constraint’s conclusion until its con-
dition must be satisfied, and is key to the algorithm’s poly-
nomial time complexity.

A symbol s 2 S
�

is prime if and only if, for any finite
subsetS of S

�

, s �
�

(t

�

S) implies9s0 2 S s �

�

s

0.
The requirement thats be prime in Figure 2 slightly sim-
plifies the constraint solver and leads to more aggressive
constraint simplification algorithms, not discussed here;
see [10]. It could be relaxed if required by some applica-
tion.

2.4 Logical Interpretation

Terms and constraints are interpreted within the model
under aground assignmentthat gives meaning to their free
variables.

Definition 5 A ground assignment� is a total sort- and
kind-preserving mapping from the variables into the model,
that is, a total mapping from everyV&

�

into T&
�

.

Definition 6 Ground assignments are extended to terms by

�(s(��

p

)) = s(�(�

p

))

�(��) = (�(�))

The first clause of this definition is standard. The second
clause interprets�� under� as the row that maps every row
label to�(�). If ` � : & and` � : � hold, then�(�) is a
member ofT&

�

.

�[� 7! t℄ ` C

� ` 9�:C

� ` C

1

� ` C

2

� ` C

1

^ C

2

� ` true

�(�

1

) � �(�

2

)

� ` �

1

� �

2

8` 2 L �(�

1

):` � �(�

2

):`

� ` L : �

1

� �

2

8` 2 L s � �(�

0

):`) �(�

1

):` � �(�

2

):`

� ` L : s � �

0

? �

1

� �

2

Figure 3. Constraint satisfaction

Definition 7 Figure 3 defines the judgement� ` C (read:
� satisfiesC). The assertionC

1

 C

2

(read:C
1

entailsC
2

)
holds if and only if, for every ground assignment�, � ` C

1

implies� ` C
2

. Two constraints arelogically equivalentif
and only if they entail each other.

The interpretation of constraints is straightforward. A con-
straint on rows is interpreted point-wise within its filter.A
conditional constraint is interpreted as an implication.

The reader may notice that the constraints�

1

� �

2

and
L : ��

1

� ��

2

are logically equivalent whenL is nonempty.
So, it would be possible to suppress subtyping constraints
on types altogether and to encode them as subtyping con-
straints on rows. It is convenient, however, to keep both;
our constraint solver simplifies the latter into the former.In
the case of conditional constraints, only constraints on rows
were kept. These choices are somewhat arbitrary; other pre-
sentations would be possible.

3 Checking Satisfiability of Constraints

3.1 Representing Constraints

Thanks to�-conversion of existentially bound variables
and to scope extrusion, which allows rewriting(9�:C

1

) ^

C

2

to9�:(C
1

^C

2

) when� does not appear free withinC
2

,
every constraint can be put in prenex form. Given that9��:C

is satisfiable if and only ifC is, it is in fact sufficient to de-
velop a satisfiability test for constraints that do not involve
existential quantifiers.

We consider the conjunction operator^ commutative,
associative and idempotent, which allows viewing every
constraint as a set of elementary constraints. This is not
quite satisfactory, however, because such a representation
could be very redundant. Indeed, given fixed rows�

1

and
�

2

, a constraint set might contain several—in fact, exponen-
tially many—elementary constraints of the formL : �

1

�

�

2

. To remedy this problem, we identify constraints up to

4

(TRANS) �

1

� � ^ � � �

2

! �

1

� �

2

(PROP) s

1

(��

1

p

) � s

2

(��

2

p

) ! �

1

p

p

� �

2

p

if s
1

� s

2

andp 2 a(s
1

) \ a(s

2

) andsort(p) = Type
(FAIL) s

1

(��

1

p

) � s

2

(��

2

p

) ! false
if s

1

6� s

2

(TRANS-ROW) L

1

: �

1

� � ^ L

2

: � � �

2

! L

1

\ L

2

: �

1

� �

2

(PROP-TYPE-ROW) s

1

(��

1

p

) � s

2

(��

2

p

) ! L : �

1

p

p

� �

2

p

if s
1

� s

2

andp 2 a(s
1

) \ a(s

2

) andsort(p) = Row
(PROP-ROW-TYPE) L : ��

1

� ��

2

! �

1

� �

2

if L 6= ?

(TRANS-CD-ROW) L

1

: s � � ? �

1

� �

2

^ L

2

: �� � � ! L

1

\ L

2

: s � �� ? �

1

� �

2

(TRANS-CD-TYPE) L : s � �� ? �

1

� �

2

^ � � � ! L : s � �� ? �

1

� �

2

(FIRE) L : s

1

� �s

2

(��

p

) ? �

1

� �

2

! L : �

1

� �

2

if s
1

� s

2

Figure 4. Constraint resolution

the followingfusionlaws:

(L

1

: �

1

� �

2

) ^ (L

2

: �

1

� �

2

)

� (L

1

[L

2

) : �

1

� �

2

(L

1

: s � �

0

? �

1

� �

2

) ^ (L

2

: s � �

0

? �

1

� �

2

)

� (L

1

[L

2

) : s � �

0

? �

1

� �

2

It is clear from Figure 3 that these laws preserve the mean-
ing of constraints, which thus remains well-defined. Under
these laws, a constraintC may be viewed as a mapping from
edgesto weights, where an edgee is

� one offalseor �
1

� �

2

, where` �
1

; �

2

: Type; then, its
weightC(e) must be 0 or 1; or

� one of�
1

� �

2

ors � �

0

? �

1

� �

2

, wherè �

0

; �

1

; �

2

:

Row; then, its weightC(e) must be a filterL.

We writeC
1

� C

2

if and only if some representatives of the
constraintsC

1

andC
2

, viewed as sets of elementary con-
straints, are within the subset relation. Equivalently, view-
ing constraints as mappings from edges to weights,� is the
pointwise ordering on mappings, provided weights are or-
dered by0 � 1 and set-theoretic inclusion of filters. If
is an elementary constraint, the notation 2 C stands for
fg � C ; in particular, if is of the form, say,L : �

1

� �

2

,
then 2 C is equivalent toL � C(�

1

� �

2

), that is, the
edge�

1

� �

2

has weightL at leastin C.

3.2 Closing Constraints

We now define a procedure for determining whether a
constraint is satisfiable. Following standard practice, itis

presented as a closure computation, defined by the rules in
Figure 4.

The first three rules deal with subtyping constraints be-
tween types; they implement transitive closure, structural
decomposition, and failure, respectively. These rules are
standard [6, 11].

The next three rules deal with subtyping constraints be-
tween rows. (TRANS-ROW) extends the usual transitivity
rule by keeping track of filters: quite naturally, if�

1

� �

holds at every row label̀ 2 L

1

and if � � �

2

holds at
every row label̀ 2 L

2

, then transitivity applies at every
row label` 2 L

1

\ L

2

. (Recall that constraints between
rows are interpreted pointwise.) (PROP-TYPE-ROW) ex-
tends (PROP) to the case where the sub-terms atp of the
types being decomposed are rows. The full filterL is used,
because these rows should be comparable at every row la-
bel. (PROP-ROW-TYPE) decomposes a constraint between
two uniform rows. Through these two rules, constraints be-
tween types may give rise to constraints between rows, and
vice versa. These three rules are a key novelty of this paper.
In particular, (TRANS-ROW) is a very natural generalization
of (TRANS). None of the rules requires fresh variables to be
allocated, contrary to the standard rules for row unification
(see e.g. [14, appendix A]).

The last three rules deal with conditional constraints.
(TRANS-CD-ROW) and (TRANS-CD-TYPE) are transitivity
rules. They cause the lower bounds of the variable on which
the condition bears (namely�) to be examined. (FIRE) re-
leases the conclusion into the pool as soon as it becomes
evident that the condition is satisfied. These rules are a gen-
eralization of the standard closure rules for conditional con-

5

straints [10, appendix A] with filters.
Formally speaking, the closure rules define a monotonic

function from constraints to constraints. This is made pre-
cise by the following definition.

Definition 8 Given a constraintC, letlose(C) be the least
(w.r.t.�) constraint such that:

� C � lose(C); and

� if C
1

� C andC
1

! C

2

is an instance of one of the
rules in Figure 4, thenC

2

� lose(C).

If C is well-sorted and well-kinded, then so islose(C).
Furthermore, the closure rules are compatible with fusion
equivalence: ifC

1

� C

2

, then lose(C

1

) � lose(C

2

).
This allows us to keep reasoning up to fusion equivalence.

Let us say that a row label̀ is apparentin a setL iff
eitherL is finite and` 2 L, orL is cofinite and̀ 62 L. Let
us say that̀ is apparent in a constraintC iff ` is apparent in
someL that appears inC . Because the row labels apparent
in L

1

[L

2

are those apparent inL
1

or L
2

, this definition
is compatible with fusion equivalence. The number of row
labels apparent in a constraintC is finite.

Theorem 2 Given a constraintC, the functionlose has a
least fixed point containingC, called theclosureofC.

The following theorem implies that a constraint and its
closure are logically equivalent.

Theorem 3 C andlose(C) are logically equivalent.

A constraintC is closedif and only if C � lose(C). The
following theorem shows that a closed constraint is satisfi-
able if and only if it does not containfalse.

Theorem 4 If C is closed and does not containfalse, then
C is satisfiable.

Together, these results show that constraint satisfiability
is decidable: a constraint is satisfiable if and only if its clo-
sure (which may be computed in a finite number of steps)
does not containfalse.

Theorem 3 shows that a constraint and its closure arelog-
ically equivalent, whereas proving that they aresatisfaction
equivalent (i.e. one is satisfiable if and only if the other is
satisfiable) would suffice to establish decidability. The lat-
ter approach is followed by Palsberg and Zhao [7, Lemma
5.4]. It is, however, much weaker, because it leads to anon-
compositionaltype inference system. Indeed, constraint
generation and constraint resolution can be interleaved only
if the latter preserves the meaning of constraints, that is,
the set of their solutions. If it doesn’t, then resolution must
be performedafter generation is complete, that is, after the

whole program has been analyzed. A compositional ap-
proach, where constraint generation may be freely inter-
leaved with resolution and simplification, is much more de-
sirable, for efficiency and modularity reasons.

Palsberg and Zhao’s notion of “esat-closure” eagerly
simplifies constraints of the formV � V

0

� [` : U ℄

! into
eitherV � [` : U ℄

! or V 0 � [` : U ℄

!. When the con-
text does not allow determining which of these two choices
is right, an arbitrary decision is made. However, in such a
situation, there is no principal choice—that is, each of the
two possible choices rules out some solutions—so the solu-
tion set is not preserved. Our approach, on the other hand,
is to delay this choice until it can be safely resolved. We
achieve this via conditional constraints; see the type scheme
ascribed to symmetric record concatenation in Section 4.

3.3 Description of the Algorithm

We now describe an algorithm that, given a constraint
C

0

, fails if it is unsatisfiable, and computes its closure oth-
erwise. The algorithm uses an unorderedqueueQ of pend-
ing elementary constraints. It also maintains acurrent con-
straintC, represented as an association table from edges to
weights, as suggested in Section 3.1.C is initially true, that
is, every edge has weight0 or?, as appropriate.

if is e andC(e) = 0

then
�

C(e) 1

Q Q;

else if isL : e

then

8

>

>

<

>

>

:

let L
1

= L n C(e)

if L
1

6= ?

then
�

C(e) L [C(e)

Q Q;L

1

: e

Figure 5. Algorithm INSERT()

Pseudocode for the procedure INSERT(), which inserts
an elementary constraint into C andQ, is given in Fig-
ure 5. In “if is patternthen command”, the meta-variables
that occur within the pattern are bound in the command. If
 is a constraint on types, INSERTadds it toC andQ, unless
it has already been processed before. If, on the other hand,
 is a constraint on rows, of the formL : e, then it is first
rewritten toL

1

: e, whereL
1

is L n C(e), that is,L minus
the edge’s current weight. The rewritten constraint is then
added toC andQ if it is nontrivial. The point of rewriting
the constraint in such a way is to avoid any duplication of
effort; the complexity analysis (Section 3.5) relies on this
optimization.

Using INSERT, we define the procedure PROCESS(),
given in Figure 6, whose purpose is to enumerate and in-

6

if is �
1

� � (1)
then for each�

2

such thatC(� � �

2

) = 1

do INSERT(�
1

� �

2

)

if is � � �

2

(2)
then for each�

1

such thatC(�

1

� �) = 1

do INSERT(�
1

� �

2

)

if isL
1

: �

1

� � (3)
then for each�

2

do
�

let L
2

= C(� � �

2

)

INSERT(L
1

\ L

2

: �

1

� �

2

)

if isL
2

: � � �

2

(4)
then for each�

1

do
�

let L
1

= C(�

1

� �)

INSERT(L
1

\ L

2

: �

1

� �

2

)

if is s
1

(��

1

p

) � s

2

(��

2

p

) (5)

then

8

>

>

>

>

<

>

>

>

>

:

if s
1

6� s

2

then fail
else for eachp 2 a(s

1

) \ a(s

2

)

do

8

<

:

if sort(p) = Type
then INSERT(� 1

p

p

� �

2

p

)

elseINSERT(L : �

1

p

p

� �

2

p

)

if isL : ��

1

� ��

2

(6)
then INSERT(�

1

� �

2

)

if isL
1

: s � � ? �

1

� �

2

(7)
then for each�

do
�

let L
2

= C(�� � �)

INSERT(L
1

\ L

2

: s � �� ? �

1

� �

2

)

if isL
2

: �� � � (8)
then for eachs; �

1

; �

2

do
�

let L
1

= C(s � � ? �

1

� �

2

)

INSERT(L
1

\ L

2

: s � �� ? �

1

� �

2

)

if isL : s � �� ? �

1

� �

2

(9)
then for each�

do
�

let L = C(� � �)

INSERT(L : s � �� ? �

1

� �

2

)

if is � � � (10)
then for eachs; �

1

; �

2

do
�

let L = C(s � �� ? �

1

� �

2

)

INSERT(L : s � �� ? �

1

� �

2

)

if isL : s

1

� �s

2

(��

p

) ? �

1

� �

2

and s
1

� s

2

(11)
then INSERT(L : �

1

� �

2

)

Figure 6. Algorithm PROCESS()

sert the immediate consequences of a newly discovered con-
straint. The procedure explores all new manners in which
a closure rule may become applicable due to the addition of
. It is mostly a paraphrase of Figure 4.

C true
Q empty
for each 2 C

0

do if is false then fail elseINSERT()

while Q is nonempty

do
�

extract out ofQ
PROCESS()

Figure 7. Algorithm CLOSURE(C
0

)

Figure 7 defines the main procedure. Starting with an
empty current constraintC and an empty queueQ, the func-
tion uses INSERT to schedule every element ofC

0

for con-
sideration. Then, as long as some constraint remains in the
queue, it is processed, causing its consequences to be in-
serted into the queue, unless they were known already. The
algorithm stops when INSERT fails or when the queue be-
comes empty.

3.4 Properties of the Algorithm

Theorem 5 (Soundness)The mainwhile loop has invari-
ant propertyC

0

� C � lose

1

(C

0

).

Theorem 6 (Completeness)The mainwhile loop has in-
variant propertylose(C nQ) � C.

When the algorithm succeeds,Q is empty, so, by Theo-
rem 6,lose(C) � C holds—that is,C is closed. Together
with Theorem 5, this shows thatC is then the closure of the
initial constraintC

0

. Conversely, when the algorithm fails,
lose(C) containsfalse, so, by Theorem 5, the closure of
C

0

containsfalseas well. Thus, the algorithm succeeds if
and only if the closure ofC

0

does not containfalse, that
is—according to Theorems 3 and 4—if and only ifC

0

is
satisfiable.

3.5 Complexity Analysis

We assess the algorithm’s time and space complexity in
terms of two parameters, namelyn, the size ofC

0

, andm,
the number of row labels apparent inC

0

. Note that, for
n to be properly defined, we must viewC

0

as a multiset
of elementary constraints; we donot apply the fusion laws
to it. The parameterm is bounded byn, but is typically
much smaller in practice; hence, it is worth distinguishing
between them.

7

By examination of the closure rules (Figure 4), one finds
that the number of edges whose weight may become non-
null at some point is onlyO(n

2

). The crucial point is that
even though new conditional constraints of the formL :

s � �

0

? �

1

� �

2

may be created, no new triples(s; �
1

; �

2

)

appear, so the number of distinct such triples remainsO(n).
Given that the number of choices for�

0

is alsoO(n), this
leads us to a quadratic number of edges of the forms �

�

0

? �

1

� �

2

. Subtyping edges are clearly at most quadratic
in number as well.

The association table from edges to weights is imple-
mented as an array, whose space usage is thusO(n

2

). Ac-
cess and update operations haveO(1) time complexity. We
conduct our analysis based on these assumptions, although
it would be desirable, in practice, to use a more space-
efficient data structure, possibly at the expense of an ad-
ditionalO(logn) time penalty. Insertion and removal inQ
are performed in constant time.

We assume thatL is totally ordered, so filters may be
represented as a pair of a Boolean flag and a balanced binary
tree whose keys are row labels. A filter may be checked for
emptiness in constant time. Furthermore, membership` 2

L and insertionf`g[L haveO(logm) time complexity. As
a result, unionL

1

[L

2

, intersectionL
1

\L

2

and difference
L

1

nL

2

may be computed in timeO(1+ jL

1

j logm), where
jLj stands for the cardinal ofL if L is finite, and for that of
its complement if it is cofinite.

If is a constraint on types, then INSERT() runs in time
O(1). If, on the other hand, is a constraint on rows, of the
formL : e, then it runs in timeO(1 + jLj logm).

A constraint of the forme can appear at most once inQ,
because INSERTchecks whetherC(e) is0 before appending
e toQ. Furthermore, by definition of INSERT, if constraints
of the formL

1

: e; L

2

: e; : : : ; L

k

: e successively appear in
the queue, then the filters(L

i

)

1�i�k

must be non-empty and
pairwise disjoint. This implies, in particular, that at most
oneL

i

is cofinite. All others must be finite, and because
they are pairwise disjoint, there are at mostm of them. As
a result, the sum�

1�i�k

O(1 + jL

i

j logm) is bounded by
O(m logm). This remark will be used shortly.

Let us now examine block 1 in Figure 6, which im-
plements half of (TRANS). The number of distinct con-
straints of the form�

1

� � is O(n

2

), so this block is ex-
ecuted at mostO(n

2

) times. There areO(n) distinct terms
�

2

. Lastly, looking upC and invoking INSERT takes time
O(1) in this case, so the total cost for this block isO(n

3

).
Block 2, which is symmetric and implements the other half
of (TRANS), has the same cost. Indeed,O(n

3

) is the cost
usually associated with transitive closure.

Let us now examine block 3, which implements half of
(TRANS-ROW). What is the cost of its innerdo statement?
If L

1

is finite, thenjL
1

\ L

2

j � jL

1

j holds, so the cost of
the call to INSERT isO(1 + jL

1

j logm), and the cost of the

do statement isO(1 + jL

1

j logm) as well. If, on the other
hand,L

1

is cofinite, then we may bound the statement’s
cost byO(m logm). According to the remark above, if we
now letL

1

vary while�
1

, �
2

and� remain fixed, the state-
ment’s cumulative cost is onlyO(m logm). Lastly, letting
�

1

, �
2

and� vary, we find that the total cost for block 3 is
O(n

3

m logm). Block 4 is symmetric.
We now come to block 5, which implements (PROP) and

(PROP-TYPE-ROW). Assuming that sort(p) may be looked
up in constant time, the cost of the innerdo statement is
O(1). The cardinality of the seta(s

1

) \ a(s

2

) is bounded
by a constant, because Definition 2 specifies that the set of
symbols in the (fixed) ground signature is finite. Assuming
that this set can be computed in constant time, the cost of
thefor loop is stillO(1). Let us assume that symbols can be
compared in constant time. Because the number of distinct
constraints of the forms

1

(��

1

p

) � s

2

(��

2

p

) isO(n

2

), the total
cost for block 5 isO(n

2

) as well.
Block 6, which implements (PROP-ROW-TYPE), has

costO(mn

2

). This again follows from the fact that, when
L varies, its successive values are, on the one hand, at most
one cofinite filter, and on the other hand, a sequence of pair-
wise disjoint, finite filters; soL may only assumeO(m)

successive values.
The analysis for blocks 7, 8, 9 and 10, which imple-

ment (TRANS-CD-ROW) and (TRANS-CD-TYPE), is sim-
ilar to that for block 3: each of these blocks has total cost
O(n

3

m logm). The analysis for block 11 is analogous to
that for block 6: it has total costO(n

2

m logm). To ob-
tain these bounds, one must recall that the number of triples
(s; �

1

; �

2

) in conditional constraints is bounded byO(n).
So far, we have measured the cost of executing each

block, when theif statement that governs it is taken. There
remains to assess the cumulative cost of going through these
if statements, which is non-null even when the branch is not
taken. It is clear that running one constraint through all
if statements costsO(1) time. Because the number of con-
straints that can be queued isO(mn

2

), the cumulative cost
of going through these statements isO(mn

2

) as well. To
sum up, we have established

Theorem 7 The algorithm runs in timeO(n

3

m logm).

4 Typing Record Operations

In this section, we use the ground signature defined in
Example 1. We instantiate the parametric constraint-based
type inference framework HM(X) [5] with our constraint
language. Then, we extend it with primitive operations on
records, to which we assignconstrained type schemes, as
follows. Let � range over variables of sortTypeand kind
type. Let' range over variables of sortRowand kindfield.
The empty recordhas typef�Absg. Access(:`) has type

8

8�'[f`g : ' � �(Pre�)℄:f'g ! �. Notice how a single-
ton filter is used to extract information about field` alone.
Non-strict extension(+`), which subsumes extension and
update, has type

8�'

1

'

2

[f`g : �(Pre�) � '

2

^ (L n f`g) : '

1

� '

2

℄:

f'

1

g ! �! f'

2

g

Here, the first constraint uses a singleton filter to indicate
that the field` is present with type� in the new record,
while the second constraint uses a cosingleton filter to indi-
cate that all fields other thaǹhave the same status as in the
original record.Symmetric concatenation(+) has type

8'

1

'

2

'

3

[L : Abs � '

1

?'

2

� '

3

^ L : Abs � '

2

?'

1

� '

3

^ L : Pre � '

1

?'

2

� Abs℄:

f'

1

g ! f'

2

g ! f'

3

g

The first two constraints encode the semantics of record
concatenation: if a field is missing from one argument, it
is read from the other. The third constraint prevents a field
from being present in both arguments at once. All con-
straints carry the full filterL, because concatenation be-
haves uniformly with respect to all field labels. Assign-
ing an accurate type toasymmetricrecord concatenation re-
quires a slight extension of our framework; see Section 5.3.

It is straightforward to give a semantics to these opera-
tions and to prove that these types are correct with respect
to it. We omit this step by lack of space.

Our approach presents no novelty with respect to previ-
ous work [14, 10], except in the use of our new constraint
language. Because the types above have bounded size, the
size of a constraint associated with a monomorphic pro-
gram is linear in the size of the program. The row labels
apparent in the constraint are those apparent in the program
text. Thus, we are able to infer types in timeO(n

3

m logm),
wheren is the program size andm is the number of record
labels in the program. The addition oflet-polymorphism
invalidates this result in principle but is known to have lit-
tle practical impact on performance, provided effective con-
straint simplification algorithms are available.

5 Extensions

Sections 3.5 and 4 are based on the assumption that a fil-
ter is encoded as a pair of a Boolean flag and a finite set of
row labels. However, the definition and proof of the con-
straint solving algorithm only require filters to be preserved
by Boolean operations and to enjoy a decidable emptiness
test. Sections 5.1 and 5.2 exploit this remark and suggest
richer filter languages. Section 5.3 suggests another exten-
sion, based on a more liberal sorting discipline.

5.1 Hierarchizing Row Labels

ImagineL is finite and equipped with a partial order
�. Imagine the programmer specifies(L;�), in a mod-
ular manner, by declaring new elements and edges at the
beginning of every program module. Thus,(L;�) forms a
finite butextensiblehierarchy. Let theconegenerated bỳ
be the set of̀ ’s lower bounds with respect to�. Let filter
expressions� consist of singletons, cones (represented by
their generator), and Boolean combinations thereof:

� ::= f`g j # ` j � [� j :�

Every filter expression� may be interpreted as a filter in the
obvious manner. Replace filters with filter expressions in
the definition of constraints: the meaning of constraints is
now parameterized by(L;�).

If (L;�) was known entirely when solving constraints,
there would be little point in this extension, because# `
would be syntactic sugar for a union of singletons. (It would
be more concise, though, which may be interesting in prac-
tice.) However, the row label hierarchy can be specified
modularly, which means that, when a program moduleM

is being examined in isolation,(L;�) is only known to be
someextension of the hierarchy(L

M

;�

M

) declared inM .
Thus, one must ensure that the constraints associated with
M are satisfiable undereveryextension of(L

M

;�

M

). To
this end, one need not modify our algorithm; it suffices to
plug in a test for emptiness that determines whether a given
filter expression is empty under every extension of the cur-
rent hierarchy. For such a test to be decidable, one must
likely restrict the way new elements and edges are declared;
we leave this issue for future work.

How may such an extension be useful? Consider a type
system that gathers information about every object’s actual
class in a Java-like programming language. Let(L;�) re-
flect the class and interface hierarchy. Then, thenew op-
erator may be described using a singleton filter, because it
creates objects of a known class. Theinstanceofoperator
may be described using a cone filter, because it selects ob-
jects whose actual class isany subclass of a known class.
Using this mechanism, uncaught exception analyses based
on rows (see e.g. [8]) could be extended to handle languages
where exceptions form a hierarchy, such as Java, while pre-
serving their ability to analyze program modules in isola-
tion. Naturally, this extension is speculative; its details re-
main to be worked out.

5.2 Structuring Individuals

Let us say that a filter is a set ofindividuals. So far, we
have considered individuals to be row labels, that is, atoms.
What if instead individuals were structured entities?

9

For instance, let individuals bek-tuples of row labels,
for some fixed positive integerk. Let filters be finite unions
of Cartesian products of the formLi �L�L

k�1�i, where
0 � i < k andL is a finite or cofinite subset ofL, as before.
Then, filters are preserved by intersection and complement
and enjoy a decidable emptiness test. Without modifying
the constraint solving procedure, we obtain a constraint lan-
guage that offersk-dimensional rows, a concept previously
studied by Rémy. Rémy suggested using a 2-dimensional
row (that is, a 2-dimensional array of types), indexed on
the one hand by method names and the other hand by class
names, to keep track of the type of every method at every
class in an object-oriented language. Using filters of the
formL�L orL � L, it is possible to update an entire line
or an entire column of the array at once, which allows as-
signing types to the operations that create new methods or
new classes.

As another instance, let individuals betrees; let filters be
some class oftree automatathat is preserved by Boolean
operations and enjoys a decidable emptiness test. We ob-
tain a new flavor of rows, which allows encoding certain
functions from trees into types. This may open an avenue
towards full type inference for programming languages ded-
icated to manipulating XML structures, such as XDuce, that
haveregular expression types[2]. Currently, XDuce only
has some (local) type inference.

Again, an in-depth exploration of these extensions must
be left for future research. Still, we believe it is pleasingand
interesting that the algorithm should exhibit such generality.

5.3 More Row Terms

Figure 1 requires types of the forms(��
p

) to have sort
Type, which means that row terms must be variables or of
the form�� . This is indeed sufficient for many applications.
However, it is sometimes desirable to give meaning to row
terms of the forms(��

p

). Rémy [13] pointed out that every
type constructors of sortTypek) Typemay be viewed, at
the same time, as a row constructor of sortRowk) Row.
In the logical model, the effect ofs on rows is then defined
as the point-wise extension of its effect on types. This ex-
tension yields extra expressiveness, which is useful to infer
types for language features such asasymmetricrecord con-
catenation and so-calledfirst-class messages[10]. We an-
ticipate no difficulty in adapting our results to this more lib-
eral sorting discipline. The algorithm must then be extended
with more closure rules; we have avoided this complication
for the sake of clarity.

References

[1] Luca Cardelli and John Mitchell. Operations on records.In
Carl A. Gunter and John C. Mitchell, editors,Theoretical

Aspects of Object-Oriented Programming: Types, Semantics,
and Language Design. MIT Press, 1994.

[2] Haruo Hosoya and Benjamin C. Pierce. Regular expression
pattern matching for XML.Journal of Functional Program-
ming, 2002. To appear.URL: http://www.kurims.kyoto-u.
a.jp/~hahosoya/papers/tapat-full.ps.

[3] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach.
Efficient recursive subtyping.Mathematical Structures in
Computer Science, 5(1):113–125, 1995.

[4] David McAllester. On the complexity analysis of static anal-
yses.Journal of the ACM, 49(4):512–537, July 2002.

[5] Martin Odersky, Martin Sulzmann, and Martin Wehr. Type
inference with constrained types.Theory and Practice of
Object Systems, 5(1):35–55, 1999.

[6] Jens Palsberg, Mitchell Wand, and Patrick M. O’Keefe. Type
inference with non-structural subtyping.Formal Aspects of
Computing, 9:49–67, 1997.

[7] Jens Palsberg and Tian Zhao. Efficient type inference for
record concatenation and subtyping. InIEEE Symposium
on Logic in Computer Science (LICS), pages 125–136, July
2002.

[8] François Pessaux and Xavier Leroy. Type-based analysis of
uncaught exceptions.ACM Transactions on Programming
Languages and Systems, 22(2):340–377, 2000.

[9] François Pottier.Wallae: an efficient implementation of
type inference with subtyping, February 2000.URL: http:
//pauilla.inria.fr/~fpottier/wallae/.

[10] François Pottier. A versatile constraint-based typeinfer-
ence system.Nordic Journal of Computing, 7(4):312–347,
November 2000.

[11] François Pottier. Simplifying subtyping constraints: a theory.
Information and Computation, 170(2):153–183, November
2001.

[12] François Pottier. A constraint-based presentation and
generalization of rows.URL: http://pauilla.inria.fr/
~fpottier/publis/fpottier-lis03-long.ps.gz, April
2003.

[13] Didier Rémy. Projective ML. InACM Symposium on Lisp
and Functional Programming (LFP), pages 66–75, 1992.

[14] Didier Rémy. Type inference for records in a natural exten-
sion of ML. In Carl A. Gunter and John C. Mitchell, edi-
tors,Theoretical Aspects Of Object-Oriented Programming.
Types, Semantics and Language Design. MIT Press, 1994.

[15] John C. Reynolds. Automatic computation of data set defi-
nitions. In A. J. H. Morrell, editor,Information Processing
68, volume 1, pages 456–461. North Holland, 1969.

[16] Mitchell Wand. Type inference for objects with instance
variables and inheritance. In Carl A. Gunter and John C.
Mitchell, editors, Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design,
pages 97–120. MIT Press, 1994.

10

