A Constraint-Based Presentation and Generalization of Row

Francois Pottier
INRIA

Abstract of field types. Indeed, typical field types ahbs (the field
does not exist in this record}ye 7 (the field exists and con-
We study the combination of possibly conditional non- tains a value of type) and Treiq (the field may or may not
structural subtyping constraints with rows. We give a new exist). The definition of subtyping typically involves ax-
presentation of rows, where row terms disappear; instead, ioms such aPret < Tyelg andAbs < Treq, the first of
we annotate constraints witfilters. We argue that, in the which is non-structural.

presence of subtyping, this approach is simpler and more From g type-theoretic perspective, concatenation is the
general. In the case where filters are finite or cofinite sets post challenging operation on records, because the type of
of row labels, Wegg|ve a constraint solving algorithm whose s result cannot be related to the types of its arguments us-
complexity iSO (n"m log m), wheren is the size of the con- jng subtyping constraints only. Consider, for instarsgen-
straint andm is the number of row labels that appear in - metric concatenation, which requires its arguments to have
it. We point out thgt this allows efficient type_ inference for disjoint sets of fields. For every fiel] the result type af
record concatenation. Furthermore, by varying the nature s pre + if one argument has typRre 7 at ¢ and the other
of filters, we obtain several natural generalizations of sow p5g typeAbs at/; it is Abs if both arguments have typkbs
at ¢; the operation is ill-typed otherwise. The difficulty is
not in the quantification ovet, which is dealt with by rows,
1 Introduction but in the fact that thi; Qefinition. isy c_:gsesln [11], I.sug—
gested addressing this issue ustogditional constraintsa

Recordsare an important feature of programming lan- concept whose origin can be traced back to Reynolds [15].

guages, not only because of their ubiquitous use in defining Non-structural subtyping constraints can be solved in cu-
data structures, but also because they form a basic layer oRiC time [6]. In fact, McAllester’s theorem [4] allows estab
top of which other features, such as objects and modulesishing that possibly conditional subtyping constraings c
may be built. Records are finite associations of values to la-P€ solved in cubic time as well. However, the combina-
be|s; typ|ca| pr|m|t|ve Operations on records are access (e tion of such constraints with rows, which is implemented
tracting the contents of a field), update (modifying the con- in [10], has never been studied from a complexity-theoretic
tents of an existing field), extension (adding a new field), Point of view. Taking advantage of this fact, Palsberg and
restriction (removing an existing field), and concatermatio Zhao [7] recently claimed to have developed the first poly-
(merging two existing records into a new one) [1]. nomial time type inference algorithm for symmetric record
Rows[16, 14] offer syntax to describe infinite families Cconcatenation. Their algorithm runs in tirG¥n°), where
of types, indexed by labels. Rows offer random access to” iS the size of the program. It is not compositional, that
any single component. Furthermore, they offer uniform 1S: |tmgst analyze a whole program at once, which makes it
access teeverycomponent at once; that is, by imposing ratherimpractical.
a constraint on rows, one effectively imposes a family of ~ The contribution of this paper is two-fold. First, we give
constraints, point-wise, on their components. Equality-co a new presentation of rows, where reevmsdisappear; in-
straints on rows allow assigning accurate types to recordstead, we annotateonstraintswith filters, which, in the
access, update, extension, and restriction. simplest case, are finite or cofinite sets of row labels. We ar-
Subtypingis a common way of increasing a type sys- gue that this presentation is simpler and more general. Sec-
tem’s expressiveness. In the presence of record types, suband, we give a solver for this new constraint language, and
typing is usuallynon-structurat—that is, a type and its sub- establish that it runs in tim@ (n3m logm), wheren is the
types may not have the same shape—because it allows forsize of the constraint and is the number of row labels that
getting whether certain fields are present in a record. Inappear init. As an application, we show that type inference
the presence of rows, this phenomenon occurs at the levefor symmetric record concatenation can be reduced to solv-

ing a constraint whose size is linear in the program’s size. labels each of which is co- or contra-variant and has fixed
Thus, this approach outperforms Palsberg and Zhao's. Itis,sort and kind, and a description of each symbatity as a
furthermore, compositional. set of parameter labels.

Why a new account of rows? In existing presentations,
rows areterms In particular, if¢ is a row label;r is atype ~ Definition 2 Let K be a finite set okinds For every kind
andp is a row, then the terntY : 7;p)isarowaswell. In & € K, letS, be a finite lattice ofsymbols with opera-
type systemsvithout subtyping, this allows reducing type tions L, T, <., U, andn,. We writeS for the set of
inference to first-order unification in an equational theory all symbols. LetP* and P~ be disjoint finite sets opa-
whose axioms allow e.g. commuting the order of row la- rameter labels We write? for P+ v P~. With every pa-
bels in a row term. This is crucial, because unification is rameter labelp € P, associate a sort and a kind, written
extremely efficient. One disadvantage, however, is that rowsort(p) andkind(p), respectively. With every symbok S,
unification sometimes allocates fresh type variables, mak-associate a subset G, called thearity of s and written
ing termination and complexity arguments more delicate. a(s). We require that, for alk. € K and so, s1,s2 € Sk,
Type systemswith subtyping, on the other hand, replace so <x 51 <x s2 iImplya(so) Na(s2) C a(s1).
unification with a more costly constraint solving procedure
The key insight, then, is that there is no longer a point in us- The last requirement is used in the proof of Theorem 1
ing row terms One may instead annotatenstraintswith to ensure that the orderings,, do give rise to an order-
filters, which carry information about row labels. This has ing on ground terms. The information described in Defini-
two consequences. First, it becomes possible to solve contion 2 forms aground signatureWe now assume that some
straints without allocating fresh type variables. This-sim ground signature is fixed.
plifies the complexity analysis, and was our original moti-
vation. Second, even though we initially define filters as fi- Example 1 Let K be {type field}. Let Sype be the flat
nite or cofinite sets of row labels, most of our development lattice whose elements other thanype and Tiype are —

(in fact, all of it but the complexity analysis) is indepen- and {-}. Let Sseiq be the flat lattice whose elements
dent of the nature of filters, as long as they are preserved byother than Lseiq and Treiq are Abs and Pre. Let P~ =
Boolean operations and enjoy a decidable emptiness test{dom} andP* = {rng, fields content. Let kinddom) =
Thus, by varying the nature of filters, we obtain several nat- kind(rng) = kind(conten} = typeand kindfields = field.
ural generalizations of rows. Let sor{fdom) = sort(rng) = sorfcontenj = Typeand

The paper is laid out as follows. Section 2 presents the sort(fields = Row Leta(—) = {domrng} anda({-}) =
syntax, as well as the meaning, of types and constraints {fields} anda(Pre) = {content}. Let the arity of all other
Section 3 describes a satisfiability test for constrairased ~ Symbols bez.
on a closure computation, and assesses its theoretical com- This ground signature defines two kinds of types, plain
plexity. Section 4 explains how type inference for record types and field types. The record type constru¢tpforms
operations, including symmetric concatenation, reduges t a plain type out of a row of field types. The constructor
constraint solving. Section 5 discusses a few extensions ofPre forms a field type out of a plain typeAbs and Pre
the framework. are made incomparable, because that is required to assign a
sound type to record concatenation [1, 11], but they do have
a common supertypé€relg, SOWidth subtypings present.

If we take a look ahead at the syntax of terms and at the
sorting and kinding restrictions, defined in Section 2.3, we
find that this ground signature gives rise to the following
grammar of terms, where ranges over terms of sofype

2 Formal Presentation of the System

In order to achieve a good measure of generality, our pre-
sentation is parameterized with respect tgraund signa-

ture, which specifies a type algebra and a subtype ordering,and kindtype p ranges over terms of soRowand kind

it is defined in Section 2.1. Given a fixed ground sigha- . P
ture, Section 2.2 defines the algebra of ground terms and itsﬂeld’ andip ranges over terms of scrypeand kindfield

ordering. The syntax of types and constraints is given in

. . . . L . n= 1 T —
Section 2.3 and their logical interpretation in Section 2.4 =l Lypel Tope| 7= 7 | {0}

pu=al|dp
2.1 Assumptions ¢ = a| Leid | Triew | Pre7 [Abs

This concrete style of definition is standard [14, 11]. Pa-
rameterizing our development with respect to a ground sig-

A ground Signature consists of three components: a fam-nature allows us to accommodate a whole famlly of defini-
ily of symbollattices, indexed bkinds a set ofparameter ~ tions in this style.

Definition 1 Let asorts be one of Type Row}.

2.2 Logical Model Theorem 1 Every(Ts,, <) forms a lattice.

Proof. It is straightforward to establish, by induction over
k, that every,, <$, is a preorder. In particular, establishing
that ., <P is transitive requires exploiting the last re-
qguirement in Definition 2. Because preorders are preserved
by intersection, evergs, is a preorder.

Let=¢, be the kernel of the preordet;,. Since eveng,
is antisymmetric=, satisfies the following equivalences:

We now define the universe of ground terms, which
forms the model within which types and constraints are in-
terpreted. As in [12, 7], we allow types to be recursive,
that is, we define ground terms as infinite trees. We do not
restrict our attention to regular trees, because that would
not affect constraint satisfiability or entailment. Sinbe t
model contains infinite trees, its definition is naturallyneo
ductive. We cannot devote space to establishing the exis- s(tp) :Zype 5’@)
tence of the fixed points mentioned below; a detailed treat-
ment of a similar construction can be found in [3].

Let £ be a denumerable set ajw labels Let ¢ range

< s=sAVpea(s) t, :Egg(pp)) t;

. Row /a
over row labels. (te) =2 (t0)
For the sake of brevity, let us writt,,) for s(t,)pcq(s) = Vel t, ="t

and (ty) for (t)¢cc. The former is a ground type whose
head symbol i and whose sub-terms are th)g wherep
ranges over the arity of. The latter is a ground row, that
is, a family of ground types indexed by row labels. This is
made precise by the following definition:

Because equality is precisely the greatest solution ofethes

equivalencess=, is in fact equality. So<¢, is an ordering.
Let O range over{U,N}. Let?U stand forll if pis a

member ofP* and forr otherwise. Definér analogously.

Then, the operationss, andrs,, whose argument is a finite
Definition 3 The family of modelT;; is the greatest solu- sypset ofT,, are defined coinductively by

tion to the following equations: Tvoe (/=i
0P {si(t) bier

= (Ox {si}icr) P Oppats) {ti}iesnpea(s:)

TPPe= {5(,) ; 5 € S AVp € a(s) 1, € Tymgiy}
TRW={(t,); VL€ L t, €TV
An element of T¢, is aground ternof sorts and kinds. ORY{(t}) bier

Two ground types are comparable if and only if they = (Dlype{tz},vel)
have comparable head symbols and their sub-terms at ev-

ery common parameter labglare comparable as well—in Itis easy to prove, by induction Oh’ that if T is a finite
R . subset ofTs , thenus, 7" (resp.rs, T') is a least upper bound
the reverse direction, jf is contravariant. Ground rows are r " "

. . : (resp. a greatest lower bound) fBwith respect tq, <5.. As
compared point-wise and covariantly.) . kK
aresult, it is also one with respect4d, . O
Definition 4 Lett P<¢, ¢’ stand fort <¢, ' if pis a member
of P*, and fort’ <¢ ¢ otherwise. The family of relations
<. is the greatest solution to the following equivalences:

In the following, we write< instead of<¢, wheng and

k are irrelevant or can be inferred from the context. If
~ t € TPPis of the forms(Z,), then we lett.p denotet,,.
s(ty) <PPeS'(8,) Similarly, if ¢ € TR is of the form(¢,), then we lett.¢
= s5<. 8 AVpea(s)Nals’) ¢, pSOMp) 41 denotet,. If s € S, andt € TYP®is of the forms’ (), then

—kind(p) “» we lets < ¢ stand fors <, s'.
¥ Row (77
(te) <™ () 2.3 Syntax of Terms and Constraints
= Ve Ll to <Pt

For every sorg and every kinds, let Vg be a distinct
denumerable set ofariables Let « range over variables.
Let afilter L be a finite or cofinite subset d. Filters are
machine representable and are preserved by finitary union,

This definition may be made more explicit by viewirg,
as the intersection of the denumerable fanify<;,)x>o,
where every, <¢, is the full binary relation ang ;< is

iven b : .
g y - B intersection, and complement. The syntakesisandcon-
s(tp) k1 <PPOS' (1) straintsis as follows:
s <o s AVPEals)Nals) b, h<post) 1 Tu=als(r)|or
C:=3a.C|CAC |true | false
(Fe) k<3O (£) |T<T
|L:7<T

Type 4/
S Vel t <)%t |L:s<t?r<rt

Terms are built out of variables, symbols, and the construc-in [11], extended with filters. Conditions must be of the
tor 9, which defines constant rows [13]. Constraint forms form s < 7; this restriction allows our solver to delay in-

include existential quantification, conjunction, sgldmen-
tary constraints, namely truth, falsity, subtyping constraint
and conditional subtyping constraints.

Figure 1 (resp. 2) defines the judgements : ¢ (resp.-
T : k), which means that the termhas sort (resp. kind),
andr° C (resptox C), which means that the constrait
is well-sorted (resp. well-kinded). We restrict our attent
to well-sorted and well-kinded terms and constraints.

a€eV; Vp € a(s) F 1p:s0r(p) F7: Type
Fa:g F s(7p) : Type F 01 : Row
Fox ¢ Fo% Oy FO Cy FO% true
FoK Ja.C FOK Oy A Cy o false
F oy, Type F 719,71, 72 : ROW
FOKm <y FOKL:m <y
FXL:s<1m?7m <7

Figure 1. Well-sorted terms and constraints

s €S,
a€eV: Vp €a(s) + 7, :kind(p) Fr:ik
Fa:k Fs(7p) & For:k
Fok C Fok C1 Fok Co Fok true
Fok Jda.C' Fok C1 A Cs Fox false
s is aprimeelement ofS,
FrL,m ik F 10,71, T2 K
Fok 1 < 72 Fok L:is <171 <7y
Fok L:11 < Ty

Figure 2. Well-kinded terms and constraints

If 71 and, aretypes then the (standard) subtyping con-
straint; < 7 may be understood as a requirementifor
to be a subtype of,. Constraints that involveows how-
ever, must be annotated with a filter. That ispifand
arerows, then the constraink : = < = may be under-
stood as a requirement fet./ to be a subtype of;./ for
every row label € L. The introduction of filters compen-
sates the omission of the standard row constru@or; -)
by offering a way ofhot treating all row labels uniformly.

specting a conditional constraint’s conclusion until i€
dition must be satisfied, and is key to the algorithm’s poly-
nomial time complexity.

A symbols € S, is primeif and only if, for any finite
subsetS of Sy, s <. (U, S) implies3s’ € S s <, s
The requirement that be prime in Figure 2 slightly sim-
plifies the constraint solver and leads to more aggressive
constraint simplification algorithms, not discussed here;
see [11]. It could be relaxed if required by some applica-
tion.

2.4 Logical Interpretation

Terms and constraints are interpreted within the model
under aground assignmerthat gives meaning to their free
variables.

Definition 5 A ground assignmenp is a total sort- and
kind-preserving mapping from the variables into the model,
that is, a total mapping from eveiys, into T¢,.

Definition 6 Ground assignments are extended to terms by

¢(s(7p)) = s(¢(7p))

$(97) = ((71))

The first clause of this definition is standard. The second
clause interpret87 under¢ as the row that maps every row
label tog(7). If F 7 : ¢ andt 7 : & hold, theng(r) is a
member ofTs,.

dla =t FC
¢ F Ja.C

o+ C o Csy
o CLNCy

¢ F true

pF1 <1

Vee L ¢(n)l<d(r)l
oFL:m <1y

VeeL s<¢(r)l=od(r)Ll < d(r)l

oFL:s<197m <y

Figure 3. Constraint satisfaction

Definition 7 Figure 3 defines the judgemept- C (read:
¢ satisfied”). The assertiod; I+ C; (read: C entailsC.)
holds if and only if, for every ground assignmentp - C,
implies¢ - C,. Two constraints aréogically equivalentf

Our conditional constraints are exactly those studied and only if they entail each other.

The interpretation of constraints is straightforward. A€o pointwise ordering on mappings, provided weights are or-

straint on rows is interpreted point-wise within its filte. dered by0 < 1 and set-theoretic inclusion of filters. df

conditional constraint is interpreted as an implication. is an elementary constraint, the notatiore C' stands for
The reader may notice that the constraints< r» and {c} C C;in particular, ifc is of the form, sayL : i < 7o,

L : 0, < 01, are logically equivalent wheh is nonempty. thenc € C is equivalent tal. C C(r; < 7»), that is, the

So, it would be possible to suppress subtyping constraintsedger; < 7, has weightZ at leastin C.

on types altogether and to encode them as subtyping con-

straints on rows. It is convenient, however, to keep both; 3.2 Closing Constraints

our constraint solver simplifies the latter into the formar.

the case of conditional constraints, only constraints @rsro We now define a procedure for determining whether a

were kept. These choices are somewhat arbitrary; other prezonstraint is satisfiable. Following standard practicés it

sentations would be possible. presented as a closure computation, defined by the rules in
Figure 4.

3 Checking Satisfiability of Constraints The first three rules deal with subtyping constraints be-
tween types; they implement transitive closure, struttura

3.1 Representing Constraints decomposition, and failure, respectively. These rules are

standard [6, 12].
Thanks toa-conversion of existentially bound variables ~ The next three rules deal with subtyping constraints be-

and to scope extrusion, which allows rewritit@y.Cy) A tween rows. (RANS-Row) extends the usual transitivity
C, to Ja.(Cy AC,) whena does not appear free with,, rule by keeping track of filters: quite naturally, #f < a
every constraint can be put in prenex form. Given fhaC holds at every row label € L; and ifa < 7 holds at

is satisfiable if and only it is, it is in fact sufficient to de- ~ €Very row labell € L, then transitivity applies at every
velop a satisfiability test for constraints that do not imeol ~ fow label/ € L, N L,. (Recall that constraints between
existential quantifiers. rows are interpreted pointwise.) KBP-TYPE-ROW) ex-

We consider the conjunction operatarcommutative, ~ tends (ROP) to the case where the sub-termspaof the
associative and idempotent, which allows viewing every types being decomposed are rows. The full filfeis used,
constraint as a set of elementary constraints. This is notbecause these rows should be comparable at every row la-
quite satisfactory, however, because such a representatiobel- (FROP-ROw-TYPE) decomposes a constraint between
could be very redundant. Indeed, given fixed rawsand two uniform rows. Through these two rules, constraints be-

T, @ constraint set might contain several—in fact, exponen-tween types may give rise to constraints between rows, and

tially many—elementary constraints of the fodn: =, < vice versa. These three rules are a key novelty of this paper.
7. To remedy this problem, we identify constraints up to [N particular, (TRANS-Row) is a very natural generalization
the followingfusionlaws: of (TRANS). None of the rules requires fresh variables to be
allocated, contrary to the standard rules for row unifigatio
(L1 :11 <7) A (Lo :1 < 72) (see e.g. [14, appendix A)).
= (LiULy) 1 <1 (The Ieé:st three) rulgsé deal wci:th condi)tional constraints.
)) TRANS-CD-Row) and (TRANS-CD-TYPE) are transitivity
(Lis<m?n <m)A(Lr:is<10?m <) rules. They cause the lower bounds of the variable on which
= (LiULl):s<m?n<m the condition bears (namely) to be examined. (IRE) re-

leases the conclusion into the pool as soon as it becomes
evident that the condition is satisfied. These rules are a gen
eralization of the standard closure rules for conditiomal-c
straints [11, appendix A] with filters.

Formally speaking, the closure rules define a monotonic
e one offalseorr; < 7», where- 1, 75 : Type then, its function from constraints to constraints. This is made pre-

It is clear from Figure 3 that these laws preserve the mean-
ing of constraints, which thus remains well-defined. Under
these laws, a constraiGtmay be viewed as a mapping from
edgedo weights where an edgeis

weightC(e) must be 0 or 1; or cise by the following definition.
e oneofr; <mors <7971 < 79, Wherek 74,71, 7 : Definition 8 Given a constrain€, letclose(C) be the least
Row then, its weightC'(e) must be a filter_. (w.r.t. ©) constraint such that:

We writeC, C C, if and only if some representatives ofthe e C C close(C); and

constraintsC; and C,, viewed as sets of elementary con-

straints, are within the subset relation. Equivalentlgvwi e if C1 C C'andC, — C» is an instance of one of the
ing constraints as mappings from edges to weightis, the rules in Figure 4, therC', C close(C).

(TRANS) n<aANa<tmn = 11 <7
(PrROP) 51(7)) < s2(72) — _TI} P2
if 57 < sy andp € a(s1) Na(s2) andsortp) = Type
(FAIL) s51(7y) < s2(77) — false
if S1 ﬁ S92
(TRANS-ROW) Li:mm<aALy:a<m — LiNLy:1 <7y
(PROP-TYPE-ROW) s1(7y) < s2(7)) — L: T P< T2
if 57 < sy andp € a(s1) Na(s2) andsortp) = Row
(PROP-ROW-TYPE) L:0r <0m - 11 <7
if L £
(TRANS-CD-RowW) Ly :s<a?mn <ALy :0r<a — L1NLy:s<0171 <7y
(TRANS-CD-TYPE) L:s<0a?’n<nmAT7<a = L:s<0r?7nn<mn
(FIRE) L:s1<0s:(7p)?m <1 = L:1i <m
if S1 S S92

Figure 4. Constraint resolution

If C is well-sorted and well-kinded, then so dbse(C). Proof. We haveclose(C') D C, soclose(C) I+ C holds. To
Furthermore, the closure rules are compatible with fusion establish the converse, we must check that;if— C5 is

equivalence: ifCy; = C,, thenclose(Cy) = close(Cs). an instance of a closure rule, théh I+ C5 holds, that is,
This allows us to keep reasoning up to fusion equivalence. ¢ + Cy implies¢ F Cs.
Let us say that a row labéelis apparentin a setL iff o Case (TRANS) follows by transitivity of subtyping

either L is finite and? € L, or L is cofinite andl ¢ L. Let (Theorem 1).
us say that is apparent in a constraintiff ¢ is apparentin
someL that appears id'. Because the row labels apparent
in L1 U L, are those apparent ih; or L, this definition
is compatible with fusion equivalence. The number of row o Casg(TRANS-Row). Assumep = Ly : 7 < a ALy :
labels apparent in a constraifitis finite. a < . Letl € Ly N Ly (1). Because is a member of
L,, we havep(ry).r < ¢(«a).r. Because is a member of
Theorem 2 Given a constrainC, the functionclose hasa ~ L,, we haveg(a).r < ¢(r).r. By transitivity, we obtain
least fixed point containing’, called theclosureof C. ¢(m1).r < ¢(12).r. By discharging (1), we find - L, N
L2 - T1 S T2.

o Case(PRoP-ROW-TYPE). Becauses(9r;).L is ¢(1;),
the statemenp - L : 0 < Omy is equivalent tovl €
L ¢(n) < ¢(2). Becausd. is nonempty, the quantifica-
tion is redundant; the statement impligs 7, < 7.

o CasegProp), (FAIL) and (RROP-TYPE-RoW) follow
from Definitions 4 and 6.

Proof. None of the rules in Figure 4 introduces new vari-
ables or symbols. The row labels apparenLinn L, are
those apparent i, or Ly, so no rule makes new row la-
bels apparent. Lastly, no rule builds new terms, except
(TRANS-CD-TYPE), which builds the termdr out of the
termr. Becauser is of sortType while 97 is of sortRow o Case(TRANS-CD-Row). Assume¢ = L, : s <
this process cannot be iterated: the number of terms in exis@ T S T ALy Ir < a. Letl € Ly N Ly ()
tence remains bounded. Given finite sets of symbols, vari-Becausel is a member ofl,, we haves < ¢(a).t =
ables, terms, and apparent row labels, only a finite number?(71)-£ < é(72).f (2). Becausd is a member ofL,, we

of elementary constraints may be built. Thus, the sequencd@ved(7) < ¢(a).t (3). Assumes < ¢(07).L, that is,
C, close(C), close?(C), ... must converge. Its limitisthe 5 < @(7) (4). Itis straightforward to check that (4) and

least fixed point of ¢lose” containingC. O (3) imply s < ¢(a).£, which, combined with (2), implies
o(11)L < ¢(72).L. By successively discharging (4) and (1),

The following theorem implies that a constraint and its W€ findg = LiNLy:s <0771 < 7.

closure are logically equivalent. o Case(TRANS-CD-TYPE). Assume¢ F L : s <
)) Oa?n < m AT < a Letf € L (1). We have
Theorem 3 C andclose(C) are logically equivalent. s < p(a) = (1)L < ¢(72).L (2) ande(r) < d(a) (3).

Assumes < ¢(07).4, thatis,s < ¢(7) (4). As above, (4) everywhere true. Let us then assume thi ak-candidate
and (3) implys < ¢(«), which, combined with (2), implies and establish that it is in fact/a+ 1-candidate. We pick an
o(11) L < ¢(72).L. By successively discharging (4) and (1), arbitrary (non-conditional) subtyping constraint @ and

wefindp - L:s <0171 < 7o. proceed by cases according to its form. Because we reason
o Case(FIRE). Assumep - L : s; < 9sy(7,) 771 < To. up to fusion equivalence, we may restrict our attention to

Let¢ € L (1). We haves, < s2(¢(7,)) = o(n).L < singleton filters.

¢(m2).L. Because the rule carries the side-conditign< o Casea; < ay. Because’ is closed with respect to

s2, this can be simplified t@(r).¢ < ¢(7).0. By dis- (TRANS), we havelb(a;) C Ib(as), which, by definition

charging (1), wefind - L : 7 < 7. a of ¢, implies¢(a;) < ¢(as).

A constraintC' is closedif and only if C' 2 close(C). The © Caéseg%ﬁs,—,iﬁé\r’]vg?rezﬁif%. l'il':sen,ﬁ |s<a member of
following theorem shows that a closed constraint is satisfi- (a). By Z pliesp(r1) < ¢(a).

able if and only if it does not contaiialse o Caser; < 73, wherer; is s;(7;) for eachi € {1,2}.
BecauseC' is closed with respect to #f) and does not

Theorem 4 If C is closed and does not contdialse, then containfalse we haves; < s,. Because&” is closed with
C is satisfiable. respect to (RoP) and (RROP-TYPE-ROW) and because
o _ is ak-candidate, we have(r;) 1< ¢(7;) for everyp €
Proof. Let us first introduce some terminology. A ground ;(5,) 0 a(s,). As a result, we have(r;) 1< ¢(72).
assignment k-satisfieghe constraint; < 7 if and only

if ¢(11) 1< &(72) holds. ¢ k-satisfies the constrairdt :
71 < 1o if and only if ¢(71).£ < &(72).£ holds for every
¢ € L. ¢ is ak-candidatefor C' if and only if it k-satisfies
every (non-conditional) subtyping constraintGh

Let us continue with a couple of auxiliary definitions.
Whent «a : Type letlb(a) be the set ofv’s non-variable

o Casea < 7y, Wherery, € V. Assumer; € lb(a).
BecauseC' is closed with respect to @ANS), we have
1 < 1 € C. According to the previous case, this im-
plieso(ri) k+1< ¢(72). Because this holds for an arbitrary
choice ofry within Ib(a), we haved ¢(1b(@)) k11 < ¢(72),
thatis,¢(a) 1< @(72).

lower bounds irC, that is, o Case{l} : a; < an. Because' is closed with respect
to (TRANS-Row), we havelb,(a;) C 1b,(ay), which, by
Ib(a) ={r; 7<aeCATEV} definition of ¢, implies¢(ay). < ¢(az).L.

o Case{(} : 9r; < «. Then,r; is a member ofb,(«).

hen! o aR;’t"‘.’a’g‘;het?* letlby (o) be the setoftv's gy gefinition of ¢, this impliesg(ry) < ¢(a).f, that is,
ower bounds at in C, that is, d(01).L < p(a) L.

be(a) = {r; {€} : 01 <a e C} o Case{l} : 01 < O7. BecauseC is closed with

respect to (RoP-Row-TYPE), we haver; < € C. Ac-

Recall that we reason up to fusion equivalence, so the con-cording to the four previous cases, this impkgs:) ;11 <
dition {¢} : 0r <a € Cmayberead € C(0r < a). If a d(12), thatis,¢(071) L 11 < ¢(072).L.

has kindk, thenlb(a) orlb,(a) (whichever is defined) is a o Case{l} : o < 87. Assumer; € lbs(a). Then,
finite set of terms of soffypeand of kindk. we have{(} : dn, < a € C. Because(' is closed with

Now, consider the following system of equations, whose respect to (RANS-Row), {¢}:0n < 9m € C' must hold.
unknown is a ground assignmeftt According to the previous case, this impligéry) 1<

¢(072).£. Because this holds for an arbitrary choicerof

¢la) = Ugba)) ifFa:Type within I (), we have ¢(Ibg(a)) g1 < ¢(87).4, thatis,
dla) = (Uo(lbe(a))) if Fa:Row D).l k1< H(OT).L.
Whena is a type variable, we requiig(«) to be the least Our case analysis, and our induction ép are now

upper bound of the images througlof «’s lower bounds; comp_l_ete; we have_ establisheq ttz_anatisfies every (non-

whena is a row variable, we requiré(a).¢ to be the least conditional) su_btypmg constraint . Let us now prove

upper bound of the images throughof a’s lower bounds that_¢> a_lso satisfies the C(_Jnd|t|0nal constraints(in We

at (. The existence of least upper bounds is guaranteed by29ain pick such a constraint and proceed by cases accord-

Theorem 1. Becaudd(a) contains terms of depth at least INg 10 its form, assuming a singleton filter.

1, the first equation is contractive; as a result, these equa- o Case{(} : s; < 0s3(7,) 771 < 2. Assumes; <

tions admit a solutio. (See e.g. [9, Chapter 2] for amore ¢(9s2(7,)).¢. This may be writters; < @(s2(7,)), that

detailed development, based on a metric argument.) is, s1 < s2. Then, becaus€’ is closed with respect to
Let us now show that, for akk > 0, ¢ is ak-candidate (FIRE), we have{/} : i < 7» € C. Becausep satisfies

for C. Fork = 0, the result is immediate, singe< is every (non-conditional) subtyping constraintah this im-

pliesp(ry).L < ¢(12).L. erwise. The algorithm uses an unordegedue() of pend-
oCase{l} : s < da?r; < 1. Assumes < ¢(0a).t, ing elementary constraints. It also maintainsuarent con-

thatis,s < ¢(c). By definition of¢, thisiss < U ¢(Ib(a)). straint C', represented as an association table from edges to

Because the head symbol of the least upper bound of a seweights, as suggested in Section 3.1is initially true, that

of ground terms is the least upper bound of their head sym-is, every edge has weightor &, as appropriate.

bols, and becausemust be a prime element of its symbol

lattice, this impliess < ¢(7) for somer € lb(«). Thus, if ciseandC(e) =0

we haver < a € C. Because& is closed with respect to then {C(e) +—1

(TRANS-CD-TYPE), we have{f} : s <0771 <1 € C. Q« Q,c

According to the previous case, satisfies this constraint.

Givens < ¢(7), this impliesg(71).£ < ¢(12).L. elseifcisL:e
oCase{l} : s < a?m < 7. Assumes < ¢(w).L. !et Li =L\ C(e)
By definition of ¢, thisiss < U ¢(Ib,(a)). As above, this then if L, # @
implies s < ¢(r) for somer € lby(a). Thus, we have then {C(e) «— LUuCle)
{€} : 0r < a € C. Because is closed with respect to Q< Q,L:e
(TRANS-CD-Row), we have{(} : s <0771 <1 € C.
According to the previous cases satisfies this constraint. Figure 5. Algorithm INSERT(c)

Givens < ¢(7), this impliesg(1).£ < ¢(72).L. O

Pseudocode for the procedumesieRT(c), which inserts
an elementary constraiatinto C and @, is given in Fig-
ure 5. In if cis patternthen command, the meta-variables
that occur within the pattern are bound in the command. If
c is a constraint on typesNsERTadds it toC' and(@, unless
it has already been processed before. If, on the other hand,
c is a constraint on rows, of the fort : e, then it is first
rewritten toL, : e, whereL, is L \ C(e), that is,L minus
the edge’s current weight. The rewritten constraint is then
added toC and@ if it is nontrivial. The point of rewriting
the constraint in such a way is to avoid any duplication of
effort; the complexity analysis (Section 3.5) relies orsthi
optimization.

Using INSERT, we define the procedureRBCESSc),
given in Figure 6, whose purpose is to enumerate and in-
sert the immediate consequences of a newly discovered con-
straintc. The procedure explores all new manners in which
a closure rule may become applicable due to the addition of
c. Itis mostly a paraphrase of Figure 4.

Together, these results show that constraint satisfigbilit
is decidable: a constraint is satisfiable if and only if it3-cl
sure (which may be computed in a finite number of steps)
does not contaifalse

Theorem 3 shows that a constraint and its closuréogre
ically equivalent, whereas proving that they aatisfaction
equivalent (i.e. one is satisfiable if and only if the other is
satisfiable) would suffice to establish decidability. Thie la
ter approach is followed by Palsberg and Zhao [7, Lemma
5.4]. Itis, however, much weaker, because it leadsrtora
compositionaltype inference system. Indeed, constraint
generation and constraint resolution can be interleavid on
if the latter preserves the meaning of constraints, that is,
the set of their solutions. If it doesn't, then resolutionsiu
be performedafter generation is complete, that is, after the
whole program has been analyzed. A compositional ap-
proach, where constraint generation may be freely inter-
leaved with resolution and simplification, is much more de-

sirable, for efficiency and modularity reasons. : I)))
Palsberg and Zhao's notion of “esat-closure” eagerly Figure 7 defines the main procedure. Starting with an

simplifies constraints of the fori @ V' < [¢ : U]~ into €MPty current constrairit and an empty queug, the func-
eitherV < [¢ : U7 or V! < [U]H__When the con- tion uses NSERTto schedule every element 6% for con-

text does not allow determining which of these two choices sideration. Then, as long as some constraint remains in the

is right, an arbitrary decision is made. However, in such a dUeue, it is processed, causing its consequences to be in-
situation, there is no principal choice—that is, each of the Sertéd into the queue, unless they were known already. The

two possible choices rules out some solutions—so the solu-2/90rithm stops whenNSeRT fails or when the queue be-

tion set is not preserved. Our approach, on the other hand©°Mes empty.
is to delaythis choice until it can be safely resolved. We]]
achieve this via conditional constraints; see the typersehe 3.4 Properties of the Algorithm
ascribed to symmetric record concatenation in Section 4.
Theorem 5 (Soundness)The mainwhile loop has invari-
3.3 Description of the Algorithm ant propertyCy C C C close™(Cp).

We now describe an algorithm that, given a constraint Proof. (Sketch.) The initialization step establish€s =
Cy, fails if it is unsatisfiable, and computes its closure oth- Cj, so this property is initially satisfied. To show that

if cisT <)
then for eachr, such thatC(a <) =1
do INSERT(1y < 72)

if cisa < 2
then for eachr, suchthatC(r < a) =1
do INSERT(1y < 72)

ifCiSLliTlgOé (3)
then for each

let Ly = Ca < 72)

|NSERT(L1 NLy:7 < T2)

ifCiSLQZOZSTz (4)
then for eachr;
d {Iet Li=C(n <a)
INSERT(L1 N Ly : 71 < T9)

if cissi(T)) < s2(77) (5)
if s1 £ s5 then fall
else for eachp € a(s1) Na(s2)
then if sorfp) = Type
do {then INSERT(7, P< 77)
elseINSERT(L : 1) P< 72)

if ciSL:0m <0m (6)
then INSERT(1; < 72)

ifciSL1:s§a77'1§72 (7)
then for eachr
q {Iet Ly =C(0r <)
INSERT(L1 N Ly : s <0771 < T2)

if cisLy : 01 < (8)
then for eachs, 7y,
d {IetLl =C(s<a?n <m)
INSERT(L1 N Ly : s <OT 771 < T2)

ifcisL:s<0a?mn <m 9
then for eachr
q {IetL:C(TSa)
INSERT(L : s < 077711 < T2)

ifcist<a (20)
then for eachs, 7y,
d {IetL =C(s<0a?m <)
INSERT(L : s <0771 < T2)

if cisL : 51 < 882(7_'[,) 71 < T and s1 < 89 (11)
then INSERT(L : 1, < 72)

Figure 6. Algorithm PROCESgc)

C < true
Q < empty
foreachc € Cy
do if c is false then fail elsel NSERT(c)
while @) is nonempty
q {extractc out of)
PROCESS¢)

Figure 7. Algorithm CLOSURE(C))

it is preserved throughout execution, one first establishes
another invariant property, namely C C, by inspec-
tion of the definition of NSERT. This ensures that, when
PROCESgc) is invoked,c € C holds. As a result, ev-
ery new constraint inserted byRBCESSis a member of
close(C). The result follows. |

Theorem 6 (Completeness)The mainwhile loop has in-
variant propertyclose(C \ Q) C C.

Proof. (Sketch.) The initialization step establishés= @),

so this property is initially satisfied. L€(C;,Q;) be the
algorithm’s state after runs through the maiwhile loop.
Write ¢.C for the constraints that can be derived by applying
a closure rule te and (if it is a binary rule) to some element
of C'. Assume the invariant holds at steprhen:

close(Ciy1 \ Qiy1)
= close({c} U (C; \ @)

because Rocessdoes not affecC \ @
={c}Uc.(C;\ Qi) Uclose(C; \ Qi)
Cc.C;UC;

because € C;

by monotonicity ofc.C w.r.t. C

by the invariant at step

= Ui+1
by definition of RROCESS

which establishes the invariant at step 1. |

When the algorithm succeed3,is empty, so, by Theo-
rem 6,close(C') C C holds—that is(' is closed. Together
with Theorem 5, this shows thétis then the closure of the
initial constraintCy. Conversely, when the algorithm fails,
close(C) containsfalse, so, by Theorem 5, the closure of
Cy containsfalse as well. Thus, the algorithm succeeds if
and only if the closure o’y does not contairfalse, that
is—according to Theorems 3 and 4—if and onlyd§ is
satisfiable.

3.5 Complexity Analysis

We assess the algorithm’s time and space complexity in
terms of two parameters, namely the size ofCy, andm,

the number of row labels apparent . Note that, for of (TRANS), has the same cost. Inde€d(n?) is the cost

n to be properly defined, we must vie@ as a multiset usually associated with transitive closure.

of elementary constraints; we dot apply the fusion laws Let us now examine block 3, which implements half of

to it. The parametem is bounded byn, but is typically (TRANS-ROw). What is the cost of its innato statement?

much smaller in practice; hence, it is worth distinguishing If L, is finite, then|L; N Ly| < |L;| holds, so the cost of

between them. the call to NSERTIS O(1 + |L; | log m), and the cost of the
By examination of the closure rules (Figure 4), one finds do statement i€)(1 + |L;|logm) as well. If, on the other

that the number of edges whose weight may become non-hand, L; is cofinite, then we may bound the statement’s

null at some point is only)(rn?). The crucial point is that cost byO(m logm). According to the remark above, if we

even though new conditional constraints of the fofm: now let L; vary whilery, 75 anda remain fixed, the state-

s < 19771 < 72 may be created, no new triplés, 71, 72) ment’s cumulative cost is onl§ (rm logm). Lastly, letting

appear, so the number of distinct such triples rem@is). 71, T» @anda vary, we find that the total cost for block 3 is

Given that the number of choices fay is alsoO(n), this O(n®mlogm). Block 4 is symmetric.

leads us to a quadratic number of edges of the ferrd We now come to block 5, which implementsR@p) and

70 711 < 2. Subtyping edges are clearly at most quadratic (PROP-TYPE-Row). Assuming that sofp) may be looked

in number as well. up in constant time, the cost of the inndo statement is
The association table from edges to weights is imple- O(1). The cardinality of the set(s;) N a(s2) is bounded

mented as an array, whose space usage is@{u$). Ac- by a constant, because Definition 2 specifies that the set of

cess and update operations héMd) time complexity. We ~ symbols in the (fixed) ground signature is finite. Assuming
conduct our analysis based on these assumptions, althougthat this set can be computed in constant time, the cost of
it would be desirable, in practice, to use a more space-thefor loopis stillO(1). Let us assume that symbols can be
efficient data structure, possibly at the expense of an ad-compared in constant time. Because the number of distinct
ditional O(log n) time penalty. Insertion and removaldy constraints of the form, (7,) < s2(7;) is O(n?), the total

are performed in constant time. cost for block 5 is0(n?) as well.

We assume thaf is totally ordered, so filters may be Block 6, which implements (Rop-Row-TYPE), has
represented as a pair of a Boolean flag and a balanced binar§ostO(mn?). This again follows from the fact that, when
tree whose keys are row labels. A filter may be checked for L varies, its successive values are, on the one hand, at most
emptiness in constant time. Furthermore, memberékip ~ ©ne cofinite filter, and on the other hand, a sequence of pair-
L and insertion{¢} U L haveO (log m) time complexity. As ~ Wise disjoint, finite filters; sa. may only assume(m)

a result, unionl; U L., intersectiorl; N L, and difference ~ successive values.

L, \ L, may be computed in tim@ (1 + | L, | log m), where The analysis for blocks 7, 8, 9 and 10, whi_ch _imple—
|L| stands for the cardinal df if L is finite, and for that of ~ ment (TRANS-CD-Row) and (TRANS-CD-TYPE), is sim-
its complement if it is cofinite. ilar to that for block 3: each of these blocks has total cost

If ¢is a constraint on types, theN$ERT(c) runs in time O(n*mlogm). The analysis for block 11 is analogous to

O(1). If, on the other hand; is a constraint on rows, of the that for block 6: it has total cos (n*mlogm). To ob-
form L : e, then it runs in imeD(1 + |Z| log m). tain these bounds, one must recall that the number of triples

(s, 71, 72) in conditional constraints is bounded B)n).

So far, we have measured the cost of executing each
block, when thef statement that governs it is taken. There
remains to assess the cumulative cost of going through these
if statements, which is non-null even when the branch is not
taken. It is clear that running one constrairthrough all
if statements cost3(1) time. Because the number of con-
straints that can be queued@mn?), the cumulative cost
of going through these statementsiémn?) as well. To
sum up, we have established

A constraint of the forne can appear at most oncedh
becauseNseERTchecks whethef'(e) is 0 before appending
e to). Furthermore, by definition ofNSERT, if constraints
oftheformL, : e, Ly :e,... , L} : e SUuccessively appearin
the queue, then the filte(%,;), <;<x must be non-empty and
pairwise disjoint. This implies, in particular, that at nhos
one L; is cofinite. All others must be finite, and because
they are pairwise disjoint, there are at mosbf them. As
a result, the sumt; <;<,O(1 + |L;|logm) is bounded by
O(mlogm). This remark will be used shortly.

Let us now examine block 1 in Figure 6, which im-
plements half of (RANS). The number of distinct con-
straints of the formr; < « is O(n?), so this block is ex- . .
ecuted at mosb(n?) times. There ar@(n) distinctterms 4 Typing Record Operations
T9. Lastly, looking upC' and invoking NSERT takes time
O(1) in this case, so the total cost for this blockOgn?). In this section, we use the ground signature defined in
Block 2, which is symmetric and implements the other half Example 1. We instantiate the parametric constraint-based

Theorem 7 The algorithm runs in timé (n3m log m).

10

type inference framework HX) [5] with our constraint by Boolean operations and to enjoy a decidable emptiness
language. Then, we extend it with primitive operations on test. Sections 5.1 and 5.2 exploit this remark and suggest
records, to which we assigronstrained type schemess richer filter languages. Section 5.3 suggests another exten
follows. Let« range over variables of sofypeand kind sion, based on a more liberal sorting discipline.
type Lety range over variables of sdRowand kindfield.
The empty recordhas type{0Abs}. Access(.f) has type
VYap[{l} : ¢ < I(Prea)].{¢} — «. Notice how a single-
ton filter is used to extract information about fi¢lélone.
Non-strict extensiorf+¢), which subsumes extension and Imagine £ is finite and equipped with a partial order
update, has type <. Imagine the programmer specifié§, <), in a mod-
ular manner, by declaring new elements and edges at the
Vaprpa[{l}: 0(Prear) < o2 A(LA{L}) o1 < o], beginning of every program module. Thyg, <) forms a
{pr} = o= {o} finite butextensiblehierarchy. Let theeonegenerated by
Here, the first constraint uses a singleton filter to indicate be the set of’s lower bounds with respect tg. Letfilter
that the field¢ is present with typex in the new record, expressions\ consist of singletons, cones (represented by
while the second constraint uses a cosingleton filter te indi their generator), and Boolean combinations thereof:
cate that all fields other tharhave the same status as in the
original record Symmetric concatenatigr-) has type Au={l}|[LL]AUX]|-A

5.1 Hierarchizing Row Labels

Vip102p03] £ : Abs < 1 7s < i3

AL Abs < s? 01 < s Every filter expression may be interpreted as a filter in the

AL :Pre< 17 g < Abs]. obviou§ manner. Replqce filters with filter expressic_ms i_n
{01} = {p2) = {ps) the definition 01_‘ constraints: the meaning of constraints is
now parameterized by, <).
The first two constraints encode the semantics of record |t (£, <) was known entirely when solving constraints,
concatenation: if a field is missing from one argument, it there would be little point in this extension, becayse
is read from the other. The third constraint prevents a field would be Syntactic sugar for a union of Sing|etons_ (|t would
from being present in both arguments at once. All con- he more concise, though, which may be interesting in prac-
straints carry the full filter, because concatenation be- tice.) However, the row label hierarchy can be specified
haves uniformly with respect to all field labels. Assign- modularly, which means that, when a program module
ing an accurate type @symmetricgecord concatenationre- s being examined in isolatiorf£, <) is only known to be
quires a slight extension of our framework; see Section 5.3.someextension of the hierarch§C ;, <7) declared ini/.
It is straightforward to give a semantics to these opera- Thus, one must ensure that the constraints associated with
tions and to prove that these types are correct with respecty/ are satisfiable undeveryextension of(Lar, <ar). T
to it. We omit this step by lack of space. this end, one need not modify our algorithm; it suffices to
Our approach presents no novelty with respect to previ- plug in a test for emptiness that determines whether a given
ous work [14, 11], except in the use of our new constraint filter expression is empty under every extension of the cur-
language. Because the types above have bounded size, th@nt hierarchy. For such a test to be decidable, one must
size of a constraint associated with a monomorphic pro- jikely restrict the way new elements and edges are declared;
gram is linear in the size of the program. The row labels \ye |eave this issue for future work.
apparent in the constraint_are those gpparent in the program 5 may such an extension be useful? Consider a type
text. Thus, we are able to infer types in ti@¥n®m log m), system that gathers information about every object’s ctua
where@ is the program size andg is the number of re_cord class in a Java-like programming language. (&{<) re-
labels in the program. The addition t-polymorphism fiect the class and interface hierarchy. Then, ribes op-
invalidates this result in principle but is known to have lit o 5t0r may be described using a singleton filter, because it
tle practical impact on performance, provided effective-Co ¢reates objects of a known class. Tihstanceofoperator
straint simplification algorithms are available. may be described using a cone filter, because it selects ob-
. jects whose actual class @y subclass of a known class.
5 Extensions Using this mechanism, uncaught exception analyses based
on rows (see e.g. [8]) could be extended to handle languages
Sections 3.5 and 4 are based on the assumption that a filwhere exceptions form a hierarchy, such as Java, while pre-
ter is encoded as a pair of a Boolean flag and a finite set ofserving their ability to analyze program modules in isola-
row labels. However, the definition and proof of the con- tion. Naturally, this extension is speculative; its detaé-
straint solving algorithm only require filters to be presstv main to be worked out.

11

5.2 Structuring Individuals

Let us say that a filter is a set ofdividuals So far, we
have considered individuals to be row labels, that is, atoms
What if instead individuals were structured entities?

For instance, let individuals be-tuples of row labels,
for some fixed positive integér. Let filters be finite unions
of Cartesian products of the forgf x L x £¥—1~% where
0 < i < kandL is afinite or cofinite subset df, as before.
Then, filters are preserved by intersection and complement
and enjoy a decidable emptiness test. Without modifying
the constraint solving procedure, we obtain a constraimt la
guage that offer&-dimensional rowsa concept previously
studied by Rmy. Remy suggested using a 2-dimensional
row (that is, a 2-dimensional array of types), indexed on
the one hand by method names and the other hand by class
names, to keep track of the type of every method at every
class in an object-oriented language. Using filters of the
form L x £ or £ x L, itis possible to update an entire line
or an entire column of the array at once, which allows as-
signing types to the operations that create new methods or
new classes.

As another instance, let individuals trees let filters be
some class ofree automatahat is preserved by Boolean
operations and enjoys a decidable emptiness test. We ob-
tain a new flavor of rows, which allows encoding certain
functions from trees into types. This may open an avenue
towards full type inference for programming languages ded-
icated to manipulating XML structures, such as XDuce, that
haveregular expression type®]. Currently, XDuce only
has some (local) type inference.

Again, an in-depth exploration of these extensions must
be left for future research. Still, we believe it is pleasamgl
interesting that the algorithm should exhibit such geritgral

5.3 More Row Terms

Figure 1 requires types of the fors{7,) to have sort
Type which means that row terms must be variables or of
the formdr. Thisis indeed sufficient for many applications.
However, it is sometimes desirable to give meaning to row
terms of the forms(7,). Rémy [13] pointed out that every
type constructos of sort Typé® = Typemay be viewed, at
the same time, as a row constructor of Raw = Row
In the logical model, the effect afon rows is then defined
as the point-wise extension of its effect on types. This ex-
tension yields extra expressiveness, which is useful &rinf
types for language features sucheagmmetrigecord con-
catenation and so-calldist-class messagd3l]. We an-
ticipate no difficulty in adapting our results to this more-li

eral sorting discipline. The algorithm must then be extende [10]

with more closure rules; we have avoided this complication
for the sake of clarity.

12

References

[1] Luca Cardelli and John Mitchell. Operations on
records. In Carl A. Gunter and John C. Mitchell,
editors, Theoretical Aspects of Object-Oriented Pro-
gramming: Types, Semantics, and Language Design
MIT Press, 1994. URL: http://research.microsoft.

com/Users/luca/Papers/Records.ps.

[2] Haruo Hosoya and Benjamin C. Pierce. Regular
expression pattern matching for XML.Journal of
Functional Programming 2002. To appearurL:
http://www.kurims.kyoto-u.ac.jp/ hahosoya/papers/

tapat-full.ps.

[3] l.

Dexter Kozen, Jens Palsberg, and Michael
Schwartzbach. Efficient recursive subtypinilath-
ematical Structures in Computer Scienég1):113—
125, 1995.

palsberg/paper/mscs95-kps.ps.gz.

URL: http://www.cs.purdue.edu/homes/

[4] David McAllester. On the complexity analysis of
static analysesJournal of the ACM49(4):512-537,

July 2002.URL: http://www.autoreason. com/sas01.ps.

[5] Martin Odersky, Martin Sulzmann, and Martin
Wehr. Type inference with constrained typeghe-
ory and Practice of Object System$(1):35-55,
1999.

publications/tapos.ps.

URL: http://www.comp.nus.edu.sg/~sulzmann/

[6] Jens Palsberg, Mitchell Wand, and Patrick M.
O’Keefe. Type inference with non-structural subtyp-
ing. Formal Aspects of Computing®:49—-67, 1997.
URL:http://www.cs.purdue.edu/homes/palsberg/paper/
fac97.ps.gz.

[7] Jens Palsberg and Tian Zhao. Efficient type inference
for record concatenation and subtypinglEEE Sym-
posium on Logic in Computer Science (LICBages
125-136, July 2002URL: http://www.cs.purdue.edu/
homes/palsberg/paper/lics02.ps.gz.

8] Francois Pessaux and Xavier Leroy. Type-based anal-
ysis of uncaught exceptionsACM Transactions on
Programming Languages and Systen22(2):340—
377, 2000. URL: http://pauillac.inria.fr/ xleroy/
publi/exceptions-toplas.ps.gz.

[9] Francois Pottier. Type inference in the presence of
subtyping: from theory to practice. Research Report
3483, INRIA, September 1998RL: ftp://ftp.inria.

fr/INRIA/publication/RR/RR-3483.ps.gz.

Francois Pottier.wallace: an efficient implementa-
tion of type inference with subtyping, February 2000.
URL: http://pauillac.inria.fr/"fpottier/wallace/.

[11]

[12]

[13]

[14]

[15]

[16]

Francois Pottier. A versatile constraint-based type
inference system. Nordic Journal of Computing

7(4)312—347, November 2000RL: http://pauillac.
inria.fr/~fpottier/publis/fpottier-njc-2000.ps.gz.

Francois Pottier. Simplifying subtyping constraint
a theory. Information and Computatiqri70(2):153—
183, November 2001URL: http://pauillac.inria.fr/
“fpottier/publis/fpottier-ic01.ps.gz.

Didier Remy. Projective ML. IPACM Symposium on
Lisp and Functional Programming (LFPpages 66—
75, 1992. URL: ftp://ftp.inria.fr/INRIA/Projects/
cristal/Didier.Remy/1fp92.ps.gz.

Didier Remy. Type inference for records in a
natural extension of ML. In Carl A. Gunter and
John C. Mitchell, editors,Theoretical Aspects Of
Object-Oriented Programming. Types, Semantics
and Language DesignMIT Press, 1994. URL:
ftp://ftp.inria.fr/INRIA/Projects/cristal/Didier.
Remy/taoopl.ps.gz.

John C. Reynolds. Automatic computation of data set
definitions. In A. J. H. Morrell, editor|nformation
Processing 68volume 1, pages 456—461. North Hol-
land, 1969.

Mitchell Wand. Type inference for objects with in-
stance variables and inheritance. In Carl A. Gunter
and John C. Mitchell, editorsTheoretical Aspects
of Object-Oriented Programming: Types, Semantics,
and Language Designpages 97-120. MIT Press,
1994. URL: ftp://ftp.ccs.neu.edu/pub/people/wand/
papers/gunter-mitchell-94.dvi.

13

