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Introduction

In type systems based on subtyping, type equality is re-

placed with subtyping, which is a less restrictive relation-

ship. The idea is, if �

1

is a subtype of �

2

, then a value of

type �

1

can be transparently supplied wherever a value of

type �

2

is expected.

Subtyping has been used as a key concept to create

formal type systems for object-oriented languages. These

systems often require the programs to be annotated with

user-supplied type information. Being able to omit this

information|or at least part of it|provides the program-

mer with a greater degree of freedom; hence, the desire arises

to do type inference in the presence of subtyping.

This issue has been extensively studied in the past few

years. Many type systems have been proposed, with vary-

ing degrees of richness and complexity. Possible features are

the existence of a least type ? and a greatest type >, the

presence of contravariant type constructors such as !, the

existence of union and intersection types, the existence of

recursive types, the ability for the user to extend the type

language through generative type declarations, etc. Virtu-

ally all of these systems base their type inference algorithms

upon the same principle. Each function application node

in the program generates a subtyping constraint, which re-

quires that the actual argument's type be a subtype of the

function parameter's type. Type inference consists in gath-

ering these constraints and checking that they admit a so-

lution.

The type system we present here is quite general. It has a

�xed type language, which is the set of regular types formed

with ?, > and !. It is not as powerful as that of [4, 5],

which has much more general union and intersection types;

still, it is general enough to easily support the addition of

a wide class of type constructs, such as extensible records

and variants. Type inference is done as explained above;

determining whether a conjunction of constraints admits a

solution is done through a closure computation [7]. In the-

ory, the issue is settled. In practice, however, things only

begin here. The number of constraints accumulated by type
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inference is large (at best, linear in the program size; at

worst, exponential, because let constructs duplicate them).

This slows down type inference (the closure algorithm takes

time cubic in the number of type variables) and makes types

illegible (constraints are part of the type information given

to the user).

Therefore, algorithms are needed to simplify sets of sub-

typing constraints, without a�ecting their meaning. In [14],

we introduced two such methods. One removed so-called

unreachable constraints; the other used heuristics to come

up with substitutions which could be applied to the inferred

type schemes without lessening their power. Smith and Tri-

fonov [18] re�ne the former into a concept called garbage

collection. Besides, they describe a process called canoniza-

tion, which consists in rewriting a type scheme so that each

variable has at most one constructed lower (resp. upper)

bound. Other substitution methods can be found in [1].

So, at this point, various simpli�cation methods are

known, some of which are very e�ective, such as garbage

collection. However, these are not su�cient to obtain an

e�cient, well-integrated type inference algorithm; several

problems remain. First, substitution heuristics are inher-

ently ine�cient. Many possibilities have to be tried out,

and each try is costly, since it involves proving that the

substitution is legal. We solve this problem by eliminating

heuristics altogether and replacing them with a very e�cient

minimization algorithm, a close cousin to the \Hopcroft"

algorithm introduced in [9]. Second, although garbage col-

lection, as described by Smith and Trifonov, works well, it

does not preserve the closure property. This is a problem,

since we would like the type inference algorithm to work with

closed constraint sets at all times, so it can do incremental

closure computations. We solve it by showing that if the

type inference rules are properly formulated, then no bipo-

lar type variables are generated, which ensures that garbage

collection preserves closure. Third, we give a precise formal

description of the canonization algorithm, and we combine

it with garbage collection, which makes it more e�cient. We

also show that a natural generalization of this algorithm can

be used, if desired, to eliminate bipolar variables. Fourth

and �nally, we draw a distinction between internal and ex-

ternal simpli�cation methods. The former help e�ciency,

and can be used throughout the type inference process; the

latter help readability, and must be used only when submit-

ting type information to the user. The former conict with

the latter, which is why the distinction is important; trying

to achieve e�ciency and readability at the same time is a

design mistake.



To sum up, we describe a full framework for type in-

ference and simpli�cation in the presence of subtyping. It

consists of a few key components: a set of type inference

rules, designed to preserve a couple of desirable invariants,

some internal simpli�cation methods (canonization, garbage

collection and minimization), and some (classic) external

methods. Each of them integrates smoothly into the whole.

As a result, the system is theoretically simple and leads to

an e�cient implementation.

This paper is organized as follows. Section 1 describes

the type system, while section 2 recalls how to compute po-

larities and use them to do garbage collection. Section 3

shows that it is enough (and best) to work with \small"

terms. Section 4 introduces canonization and combines it

with garbage collection to gain e�ciency. Section 5 explains

why and how to eliminate bipolar variables. Section 6 talks

about the di�erence between internal and external strate-

gies. Section 7 de�nes the minimization algorithm. Sec-

tion 8 describes the implementation and gives some perfor-

mance �gures. Section 9 discusses the remaining problems.

Finally, related work is surveyed in section 10. An appendix

shows the type inference engine at work on a typical exam-

ple. Proofs, as well as several non-essential de�nitions, were

omitted by lack of space; all can be found in [15].

Sections 3 to 7 discuss separate points and are largely

independent from one another.

1 The setting

The type system described in this section is a close cousin

to Smith and Trifonov's [18]. Our type inference rules have

been modi�ed so as to preserve some additional invariants,

discussed in sections 3 and 5. Also, our de�nition of con-

straint graphs allows occurrences of t and u at certain po-

sitions in types, as a purely syntactic convenience.

The language under study is a �-calculus with let, where

�-bound and let-bound identi�ers form two distinct syntac-

tic categories.

The set of ground types is the set of regular trees built

over ?, > (both with arity 0) and ! (with arity 2). A

partial order on ground types, called subtyping, is de�ned in

the classic manner.

De�nition 1.1 Subtyping is the greatest relation such that

� � �

0

holds i� at least one of the following is true:

� � = ?.

� �

0

= >.

� 9�

0

�

1

�

0

0

�

0

1

� = �

0

! �

1

, �

0

= �

0

0

! �

0

1

, �

0

0

� �

0

and

�

1

� �

0

1

.

Equipped with this ordering, the set of ground types be-

comes a lattice. We denote its least upper bound and great-

est lower bound operators by t and u, respectively. As in

any lattice, t and u are associative and commutative. In

addition, they are fully characterized as follows:

Proposition 1.1 The following are identities:

?t � = � ?u � = ?

>t � = > >u � = �

(�

1

! �

2

) t (�

0

1

! �

0

2

) = (�

1

u �

0

1

)! (�

2

t �

0

2

)

(�

1

! �

2

) u (�

0

1

! �

0

2

) = (�

1

t �

0

1

)! (�

2

u �

0

2

)

The de�nition of types resembles that of ground types;

however, types are �nite terms, and they may contain type

variables. Furthermore, we shall permit t and u constructs

to appear at speci�c positions in types. This allows encoding

multiple bounds into a single one, e.g. by writing (� �

� ^ �

0

� �) as (� t �

0

) � �. This decision a�ects only the

syntax of our constraint language, not its power; it shall

mainly allow a simpler description of canonization. Thus,

we de�ne two kinds of types, pos-types and neg-types:

�

+

::= � j ? j > j �

�

! �

+

j tf�

+

; : : : ; �

+

g

�

�

::= � j ? j > j �

+

! �

�

j uf�

�

; : : : ; �

�

g

(Note that t (resp. u) has two distinct meanings; it is an op-

eration on ground types and a type constructor.) Types are

considered equal modulo the equations of proposition 1.1.

Types have normal forms such that whenever t or u ap-

pears with n arguments, then n is at least 2, at most one

argument is not a type variable, and if such an argument

exists, then its head constructor is !.

A type is said to be constructed i� it is neither a variable

nor a t- or u-construct.

To keep track of the subtyping constraints created by

analyzing an expression, we introduce constraint graphs. A

constraint graph represents a conjunction of constraints, but

allows only one constructed bound per type variable. (This

requirement is made possible by the availability of t and u

constructs.) A constraint graph C is made up of a relation

between type variables, denoted by �

C

, and two maps C

#

and C

"

, which map each � 2 V to a its lower bound (a

constructed pos-type) and to its upper bound (a constructed

neg-type), respectively.

A ground substitution � is a solution of C (which we

denote by � ` C) i� the following conditions hold:

8�� 2 V � �

C

� ) �(�) � �(�)

8� 2 V �(C

#

(�)) � �(�) � �(C

"

(�))

To verify that a constraint graph admits a solution, one

needs to put it in some kind of solved form, o� which a

solution can be read straightforwardly. There exist sev-

eral notions of solved form. The simplest, which is also the

strongest, we call closure; it consists in requiring that the

constraint graph be closed by transitivity on variables and

by structural decomposition. It was originally introduced

in [7]

1

. Its advantage is that there exists a simple procedure

which turns any constraint graph into an equivalent closed

graph, if one exists. This allows deciding whether any given

constraint graph has a solution. The weakest known notion

of solved form, which we call weak closure, is similar in prin-

ciple, but is de�ned using a notion of provable entailment.

It was introduced in [18]

2

. Its advantage is that it imposes

less drastic requirements on the constraint graph, which is

useful in some delicate proofs, like that of Smith and Tri-

fonov's subsumption algorithm. Here, we need to introduce

a third notion, called simple closure, which is intermediate

between weak closure and closure. It is used to formalize the

canonization process; it is introduced in detail in section 4.1.

A context A = hx : �

x

i

x2I

is a �nite map from �-

identi�ers to neg-types. A type scheme � = A) � j C is a

triple of a context A, a pos-type � , and a constraint graph

C. All type variables in a type scheme should be understood

1

where it is called closed and consistent.

2

where it is called consistent and canonical.

2



as universally quanti�ed. However, we do not introduce any

quanti�ers, and we deal with �-conversion explicitly.

The subtyping relation on ground types is extended to

a so-called subsumption relation on type schemes. One says

that �

1

is subsumed by �

2

, and one writes �

1

�

8

�

2

, i� for

any ground instance of �

2

, there exists a ground instance of

�

1

which is smaller. This can be written

A

1

) �

1

j C

1

�

8

A

2

) �

2

j C

2

i�

8�

2

` C

2

9�

1

` C

1

�

1

(A

1

) �

1

) � �

2

(A

2

) �

2

)

Equivalence of type schemes, denoted by =

8

, is de�ned as

subsumption in both directions.

The typing rules are given in �gure 1. They are essen-

tially identical to those given in [18], only slightly simpli�ed.

Note that environments contain only let-identi�ers, while

�-identi�ers appear in the inferred contexts.

Introducing contexts in type schemes and in the typing

rules is not required by the advent of subtyping. Rather,

this technique, called �-lifting, is a technical trick which al-

lows us to deal solely with closed (i.e. fully quanti�ed) type

schemes, and thus, to de�ne scheme subsumption without

taking environments into account. Since subsumption is at

the very core of the theory, the whole system is made signif-

icantly simpler. Concerning subsumption, the presence of a

context does not add any complexity. It behaves essentially

as a record type to the left of an arrow type, hence the arrow

notation A) � j C.

These typing rules are not syntax-directed, because rule

(Sub) can be applied at any time. Furthermore, rule (App)

places sharing constraints on its premises. In �gure 2, we

present a set of type inference rules, which do not have these

problems, and thus can be directly turned into an algorithm.

One shows that they are correct and complete with respect

to the typing rules. That is, they �nd a typing if and only if

one exists, and in that case, it is a most general typing with

respect to subsumption.

A type inference judgment is of the form [F ] � `

I

e :

[F

0

] �. F and F

0

are sets of type variables, used to ensure

that any newly introduced type variable is \fresh"; thus, two

unrelated branches of a type inference tree are guaranteed

to produce type schemes which share no variables. These

annotations should otherwise be ignored.

Our type inference rules di�er from those of [18] in sev-

eral aspects. Modi�cations have been made to ensure that

they comply with the small terms invariant (see section 3)

and with the mono-polarity invariant (see section 5). In-

cidentally, these rules do describe an algorithm, since no

sharing constraints remain, and fresh variables are handled

explicitly.

Note that both sets of rules implicitly require all con-

straint graphs to have a solution. This condition is enforced

in the implementation by working with closed constraint

graphs at all times. The + operation, which adds a con-

straint to a constraint graph, performs an incremental clo-

sure computation in practice.

2 Polarities and garbage collection

Trifonov and Smith [18] explain how to annotate each type

variable in a type scheme with its polarity, and use this no-

tion to de�ne garbage collection. We recall their de�nitions

here.

If � = A ) � j C is a type scheme, where C is a

weakly closed constraint graph, then the sets dom

+

(�) and

dom

�

(�) of positive (resp. negative) variables of � are the

smallest sets such that for any � 2 f�;+g,

� fv

�

(� ) � dom

�

(�);

� 8x 2 dom(A) fv

�

(A(x)) � dom

��

(�);

� 8� 2 dom

+

(�) fv

�

(C

#

(�)) � dom

�

(�);

� 8� 2 dom

�

(�) fv

�

(C

"

(�)) � dom

��

(�).

The polarity of a variable � is de�ned as f� 2 f�;+g ; � 2

dom

�

(�)g. Informally speaking, the + (resp. �) sign indi-

cates that � might receive a new upper (resp. lower) bound

in the future. Polarities carry information about the direc-

tion of the data ow: positive (resp. negative) variables

represent an output (resp. input) of the code being typed.

Note that a variable can also carry both signs at once (we

call such a variable bipolar), or no sign at all (we call such

a variable neutral).

Garbage collection uses this information to throw away

meaningless constraints. A constraint is only useful if it ac-

tually constrains the type scheme, i.e. if it can potentially

cause a future closure computation to fail. If �

C

is transi-

tive, then GC(�) is de�ned as A) � j D, where

� � �

D

� i� � �

C

�, � 2 dom

�

(�) and � 2 dom

+

(�);

� D

#

(�) is C

#

(�) when � 2 dom

+

(�), and ? otherwise;

� D

"

(�) is C

"

(�) when � 2 dom

�

(�), and > otherwise.

In section 5, we show that it is possible to prohibit

bipolar variables; this gives better theoretical properties to

garbage collection. The minimization algorithm described

in section 7 also makes fundamental use of polarities.

3 Work with small terms

We are now done recalling de�nitions, and can start dis-

cussing this paper's contributions. In this section, we show

that it is possible to enforce quite drastic restrictions on the

height and shape of the type terms we manipulate. In addi-

tion to simplifying the theory, these restrictions are actually

bene�cial from an implementor's point of view.

A type term is said to be a leaf term i� it has height 0

and it is not constructed; equivalently, i� it is a combination

using t or u of one or more type variables. A type term is

said to be a small term i� it it is constructed and its sub-

terms are leaf terms. A type scheme A ) � j C is said to

verify the small terms invariant i� every A(x) is a leaf term,

� is a leaf term, and for each �, C

#

(�) and C

"

(�) are small

terms.

It is quite easy to show that any type scheme admits

an equivalent form which veri�es the small terms invariant.

Whenever a type term violates the invariant, it su�ces to

break it down by introducing fresh variables (together with

appropriate subtype inequations) to stand for its sub-terms.

Actually, this is not even necessary in practice, because our

type inference rules are designed to always produce compli-

ant type schemes. In the typing rules, (Abs) is the only rule

which builds up new terms. So, rules (Abs

i

) and (Abs'

i

) in-

troduce one extra fresh variable, namely �, to avoid breaking

the small terms invariant.

This invariant simpli�es both theory and implementa-

tion of subsequent developments. Additionally, it helps sim-

plify inferred type schemes. Indeed, large terms no longer

3



A(x) = �

� ` x : A) � j C

(Var)

� ` e : (A+ [x 7! � ])) �

0

j C

� ` �x:e : A) � ! �

0

j C

(Abs)

� ` e

1

: A) �

2

! � j C � ` e

2

: A) �

2

j C

� ` e

1

e

2

: A) � j C

(App)

�(X) = �

� ` X : �

(LetVar)

� ` e

1

: �

1

� + [X 7! �

1

] ` e

2

: �

2

� ` let X = e

1

in e

2

: �

2

(Let)

� ` e : � � �

8

�

0

� ` e : �

0

(Sub)

Figure 1: Typing rules
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(Abs

i

)
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e : [F

0
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0
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0
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I
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0
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0

� �)
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i

)
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I

e

1

: [F

0
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1

) �

1
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I

e
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uA
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1
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2

! �)

(App
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�(X) = � � renaming of � rng(�) \ F = ?

[F ] � `

I

X : [F [ rng(�)] �(�)

(LetVar

i

)

[F ] � `

I

e
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: [F

0

] �

1

[F ] � + [X 7! �
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] `

I

e
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in e
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i
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Figure 2: Type inference rules

exist|informally speaking, each sub-term of a large term

is labeled with its own type variable. Thus, the minimiza-

tion algorithm (see section 7), whose occupation is to merge

variables, is able to �nd new opportunities|which essen-

tially means share sub-terms of large terms.

The idea of working solely with small terms is not new,

at least from a theoretical point of view. It is to be found,

for instance, in the theory of uni�cation [12], where prob-

lems are presented as sets of multi-equations of depth 1

at most, rather than as equations between arbitrary terms.

Among works more closely related to ours, those of Aiken

and Wimmers [2] and of Palsberg [13] use a similar conven-

tion. However, it is often a mere theoretical convenience.

Here, the invariant shall also help improve sharing between

nodes, through the minimization algorithm, and is thus es-

sential from an implementor's point of view.

4 Canonization

When dealing with arbitrary sets of constraints, it quickly

appears desirable that each type variable have exactly one

lower (resp. upper) constructed bound. There are two main

reasons for this. First, combining several bounds into a sin-

gle one is a simpli�cation per se, because some structure is

shared (or even eliminated). Second, this property is essen-

tial in the design of some simpli�cation algorithms, such as

minimization (see section 7).

To this end, we have introduced t and u constructs in

type expressions. The closure algorithm can easily handle

them, and they are a cheap way of enforcing uniqueness of

the constructed bound. However, in doing so, we have made

the type language more complex, and these new constructs

cannot easily be dealt with by some algorithms (again, min-

imization).

So, we now wish to eliminate them, in a process called

canonization. The small terms invariant ensures that, once

types have been put in normal form, arguments of t and

u can only be type variables. To do away with these con-

structs, we can use the same principle as in section 3: adding

fresh variables with appropriate constraints. An occurrence

of, say, � t � can be replaced with a fresh variable , pro-

vided � �  and � �  are added.

4
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Figure 3: De�nition of the rewriting functions
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Figure 5: De�nition of �

D

, modulo transitive closure

This process was �rst introduced by Smith and Tri-

fonov [18]. We improve their results in several ways. First,

we give a more precise formal description of it, and prove

that it preserves simple closure. This allows running the

garbage collection algorithm on the output type scheme. We

simulate its execution and show that many of the constraints

generated by canonization are then dropped. We can thus

de�ne an e�cient combined algorithm, which avoids gen-

erating any constraints which would provably be dropped

immediately afterwards by garbage collection. Second, we

show that the same algorithm can be used to eliminate bipo-

lar variables (more about this in section 5).

4.1 Simple closure

As explained above, we wish to run the type scheme output

by canonization through garbage collection, which requires

it to be at least weakly closed. This notion, de�ned using

provable entailment, is rather complex, so we prefer to use

something coarser, but simpler. Plain closure is too crude:

we cannot, in general, require that the output constraint

graph be closed. So, we de�ne an intermediate notion, called

simple closure.

De�nition 4.1 Let C be a constraint graph. The relation

�

C

is extended to leaf terms by

� �

C

tV () 9� 2 V � �

C

�

uV �

C

� () 9� 2 V � �

C

�

tV �

C

� () 8� 2 V � �

C

�

� �

C

uV () 8� 2 V � �

C

�

Then, �

C

is straightforwardly extended to small terms, as

follows:

? �

C

� �

C

>

�

0

! �

1

�

C

�

0

0

! �

0

1

() �

0

0

�

C

�

0

^ �

1

�

C

�

0

1

De�nition 4.2 A constraint graph C of domain V is sim-

ply closed i� for all �; � 2 V ,

� �

C

is transitive on type variables;

� � �

C

� implies C

#

(�) �

C

C

#

(�) ^ C

"

(�) �

C

C

"

(�);

� C

#

(�) �

C

C

"

(�).

A type scheme � = A) � j C is said to be simply closed i�

C is.

4.2 Canonization

Theorem 4.1 Let � = A ) � j C be a simply closed type

scheme of domain V . Let E be a subset of 2

V

, that is, a

family of subsets of V . E must contain all subsets of V of

cardinality strictly greater than 1, and must not contain the

empty set. (Each singleton f�g can be left out or made part

of E at will.)

For each S in E, pick two fresh variables �

S

and 

S

. The

rewriting functions r

+

and r

�

are de�ned in �gure 3. The

output constraint graph D is de�ned by its components D

#

and D

"

, given in �gure 4, and by the relation �

D

, which is

the transitive closure of the constraints given in �gure 5.

Let �

0

= r

�

(A) ) r

+

(� ) j D. Then �

0

is simply closed,

contains no t or u constructs, and � =

8

�

0

.
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E

#

(�) = r

+

(C

#

(�)) E

"

(�) = r

�

(C

"

(�)) E

#

(

S

) = ?

E

"

(

S

) = r

�

(

l

�2S

C

"

(�)) E

#

(�

S

) = r

+

(

G

�2S

C

#

(�)) E

"

(�

S

) = >

Figure 6: De�nition of E

#

and E

"

� �

E

� when � �

C

�



S

�

E

� when uS �

C

�

� �

E

�

S

when � �

C

tS



S

�

E

�

T

when 9� 2 S 9� 2 T � �

C

�

Figure 7: De�nition of �

E

This de�nition might seem complex and non-intuitive.

In particular, one might wonder why �gure 4 assigns a con-

structed lower (resp. upper) bound to 

S

(resp. �

S

), or

why the last line of �gure 5 creates constraints of the form

�

S

� 

T

. These constraints are only necessary to guaran-

tee that simple closure is preserved; they will be dropped

immediately by garbage collection, as we shall see below.

�

0

is simply closed; this allows computing polarities

and performing garbage collection. We now simulate these

phases. It turns out that the newly introduced �

S

are (at

most) positive, while the 

S

are (at most) negative. As for

the existing variables �, their polarities must decrease. In

particular, if f�g 2 E , then � becomes neutral. These re-

sults are formalized below.

Lemma 4.1 We have

dom

+

(�

0

) � f�

S

; S 2 E ^ S � dom

+

(�)g

[ f� ; f�g 62 E ^ � 2 dom

+

(�)g

dom

�

(�

0

) � f

S

; S 2 E ^ S � dom

�

(�)g

[ f� ; f�g 62 E ^ � 2 dom

�

(�)g

A �rst consequence of this lemma is that this transfor-

mation can be used to eliminate bipolar variables. It su�ces

to choose E such that whenever � is bipolar, then it is sched-

uled for elimination, i.e. f�g 2 E . The lemma shows that if

this condition holds, then there are no bipolar variables in

the output type scheme.

The second consequence is to allow garbage collection on

�

0

. Because we only have an approximation of the polari-

ties, we can only do a partial garbage collection. So, the

type scheme �

00

which we are going to de�ne is not GC(�

0

);

it contains more constraints than GC(�

0

), but fewer than

�

0

. Thus, in practice, we still have to complete the job by

running the garbage collection algorithm, but we have saved

time by not generating superuous constraints.

Theorem 4.2 Let E be the constraint graph given in �g-

ures 6 and 7. Let �

00

= r

�

(A) ) r

+

(� ) j E. Then

�

00

is a partially garbage-collected version of �

0

. That is,

GC(�

00

) = GC(�

0

).

5 Outlaw bipolar variables

We want our implementation of the type inference engine to

work with closed constraint graphs, which allows performing

the closure computations incrementally. As a consequence,

we must ensure that all simpli�cation phases preserve clo-

sure.

However, it turns out that in general, garbage collection

does not preserve closure. For instance, consider a bipolar

variable �

�

whose constructed bounds are

C

#

(�) = �

�

! �

+

C

"

(�) = �

�

! 

�

Then, if the constraint graph is to be closed, it must contain

�

+

� 

�

. However, such a constraint shall be thrown away

by garbage collection, thus breaking the invariant.

Fortunately, this problem has a simple solution. One

easily veri�es that if the input type scheme has no bipo-

lar variables, then garbage collection does preserve closure.

Such a type scheme is said to verify the mono-polarity in-

variant.

Furthermore, we prove that any type scheme produced

by our type inference rules complies with this invariant. The

principle of the proof is two-fold. First, no freshly introduced

variables are bipolar. Rules (Var

i

) and (App

i

) expressly

introduce two variables � � �, where � is non-positive and �

is non-negative. If a single fresh variable were used, it might

be bipolar. Second, polarities decrease with time. That is,

if a variable is non-positive (resp. non-negative) when it is

�rst introduced, then it will never become positive (resp.

negative) at a later stage of the type inference process. This

property is consistent with the intuition that a non-positive

(resp. non-negative) variable will never receive new upper

(resp. lower) bounds in the future.

As shown in section 4, the canonization algorithm can be

used to transform any type scheme into an equivalent one

which veri�es the invariant. It replaces each bipolar variable

with two fresh variables, a negative one and a positive one.

Thus, the mono-polarity invariant will at worst double the

number of type variables in a type scheme.

This invariant also has bene�cial e�ects in other areas.

For instance, it opens new opportunities to the minimization

algorithm described in section 7. Indeed, a bipolar variable

cannot be merged with any other variable; but once it is

split, each half can potentially be merged with some other

variable. Another e�ect is that any cycles in the constraint

graph are now automatically removed by garbage collection.

Indeed, it is easy to verify that if a cycle survives garbage

collection, then it contains a bipolar variable. Thus, remov-

ing cycles in a separate phase (as done in [6, 14, 1]) is no

longer necessary.
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6 Sugar before display

There is a well-known \simpli�cation" strategy which we

have not discussed so far: namely, replacing a non-negative

(resp. non-positive) variable with its unique lower (resp.

upper) bound, if it exists. This strategy has been proposed

in numerous papers [6, 1, 3, 14].

However, it becomes illegal in our setting! Indeed, sup-

pose we attempt to replace a variable � with its unique

bound. If this bound is a constructed term, then the sub-

stitution violates the small terms invariant. If, on the other

hand, it is a type variable �, then � and � must have oppo-

site signs, because garbage collection would otherwise have

thrown away the constraint which links them. Thus, identi-

fying them creates a bipolar variable and violates the mono-

polarity invariant.

One should not be particularly upset about this fact. In

our eyes, the fact that this strategy breaks some desirable in-

variants only shows that it conicts with the e�ciency goal.

So, we forbid its use during the type inference process. The

strategy still remains useful after the type inference process

is complete, that is, immediately before displaying the re-

sult to the user. Indeed, though our invariants are internally

useful, they make type schemes illegible by creating many

intermediate nodes. So, we do allow replacing variables with

their unique bounds prior to display. We believe that this

distinction between internal and external representations is

quite important, and failure to recognize it can lead a de-

signer to set up conicting \simpli�cation" strategies.

This distinction also exists in ML typecheckers, where

type terms are internally represented by graphs, but dis-

played as trees. Preserving sharing internally is crucial to

avoid an exponential e�ciency loss.

7 Minimization

In [14], we proposed a two-step method to simplify a type

scheme �. First, come up with some substitution � ; then,

check whether �(�) is equivalent to �. However, the number

of possible � is huge, and the entailment algorithm used in

the second step is rather costly, so it was necessary to devise

heuristics to select appropriate substitutions. This solution

was unsatisfactory, because these heuristics were rather ad

hoc and still extremely ine�cient.

Thus, a systematic algorithm, which directly builds as

powerful a substitution as possible, is needed. Such an al-

gorithm was proposed by Felleisen and Flanagan [9] in the

case of set-based analysis; the same principle can be ap-

plied here. Start with the largest conceivable substitution,

i.e. one which merges all negative (resp. positive) variables

together. (We cannot merge a variable with a constructed

term, or a negative variable with a positive one, as explained

in section 6.) We can, equivalently, consider it as a partition

of the variables into two classes. Then, simulate a run of the

subsumption algorithm which checks whether this substitu-

tion is acceptable. If a failure occurs, determine why and

re�ne the partition by splitting an appropriate class so as to

eliminate the cause of the failure. Repeat this process until

no more failures are detected.

A failure typically occurs when we try to merge two vari-

ables which do not play the same role in the type scheme.

A variable's \role" is determined by the way it is linked to

other variables through subtyping constraints. Thus, an-

other way to (informally) present the algorithm is to say

that two variables can be merged if each one carries links

of the same kind as the other one and these links lead to

variables which can themselves be merged.

Both descriptions ring a bell|similar ideas are used to

minimize �nite state automata.

Theorem 7.1 Let � = A ) � j C be a garbage collected

type scheme. A partition � of �'s variables is said to be

compatible i� � � � implies

� pred

C

(�) = pred

C

(�) and succ

C

(�) = succ

C

(�);

� polarity(�) = polarity(�);

� C

#

(�) � C

#

(�) and C

"

(�) � C

"

(�).

Then, the type scheme

�

=

�

(obtained by collapsing classes)

is equivalent to �.

From this result, we deduce the so-called minimization

algorithm. The algorithm computes the coarsest compatible

partition. (As explained above, this involves computing an

initial partition, and running Hopcroft's minimization algo-

rithm [11] to re�ne it.) It then collapses each class down

to a single type variable. The whole process takes time

O(dn log n), where d is the degree of the graph �

C

, and n

is the number of type variables in �. We conjecture that it

is also O(N logN), where N is some measure of the size of

�. Actual tests show that its running time is approximately

linear in the size of its input.

It is natural to ask whether the algorithm is complete,

i.e. whether the coarsest compatible substitution is really

the coarsest substitution allowed by our de�nition of scheme

subsumption. The answer is negative; the problem is that

our de�nition of predecessor and successor sets rely on con-

straints which are syntactically present in the constraint

graph. If these sets are de�ned using entailment, a more

powerful de�nition of compatibility is obtained, which might

be complete (no counter-examples are known to us). How-

ever, using entailment has two ill e�ects: �rst, the extended

algorithm is still not complete, because no complete entail-

ment algorithm is known; and second, it is slower, because

our incomplete entailment algorithm is rather costly.

8 Implementation

How do these pieces �t together? First, the type inference

engine analyzes the program using the rules of �gure 2. As

new constraints appear, their closure is computed incre-

mentally, which guarantees that they have a solution. At

any point, canonization, garbage collection and minimiza-

tion can be applied; our theoretical development guarantees

that their combination preserves closure. Thus, the sim-

pli�cation process �ts smoothly into the regular inference

process.

When to perform simpli�cation? At least at each let

node, because the environment would otherwise contain un-

simpli�ed type schemes, and the simpli�cation work would

be needlessly duplicated. At other nodes, we have a choice;

in practice, only garbage collection is performed, because it

is cheap and e�ective enough.

Finally, when a type scheme must be presented to the

user, we apply our \external" simpli�cation method to it;

that is, we replace each type variable with its unique bound,

whenever allowed by the occur check.
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Lines Time Lines/s Closure Can. G.C. Min. w/o Min. Caml-Light

Graphs library 900 2s 450 45% 10% 30% 15% 2s 1s

CL 0.74 standard library 4300 5s 860 35% 20% 25% 15% 13s 6s

Format library 1100 7s 160 25% 10% 25% 40% 8s 1s

MLgraph library 9900 27s 370 35% 10% 25% 30% 93s 13s

Figure 8: Implementation's performance

Although the type language described in this paper is

reduced to a bare minimum, our implementation has a very

rich type language, featuring record and variant types with

row variables [16], and an interesting type-based exception

analysis. In particular, it can handle arbitrary Caml-Light

programs, provided they are translated into our language.

This translation removes all type declarations

3

and interface

speci�cations. This yields much more precise typings, but

makes the typechecker's task much heavier.

Figure 8 presents a few performance measurements on

existing Caml-Light libraries. The prototype, compiled into

machine language using Objective Caml 1.07, was tested

on a 150MHz Pentium Pro processor; timings are in user

time. The last column shows Caml-Light's compilation time,

and roughly represents a user's expectation; the previous

one shows our typechecker's performance in the absence of

minimization.

For Graphs and MLgraph, performance seems close to

Caml-Light's. The standard library contains smaller func-

tions, and is dealt with more easily; the Format library,

on the other hand, contains functions with large concrete

types|recall that we use almost no abstract types|and is

more di�cult to handle.

So, performance is reasonable when dealing with small or

medium types, and worsens when handling large ones; the

prototype does not behave linearly in this respect. However,

it is nice to note that simpli�cation is not a bottleneck, since

closure itself is non-linear. This is not entirely surprising,

since closure has, in theory, cubic time complexity. Also,

note that the bene�ts of minimization outweigh its cost;

that was not the case in [9].

9 Directions

To improve performance, one possibility is to investigate

incremental simpli�cation algorithms|all of our three algo-

rithms work on a whole type scheme, rather than only on

the most recently added constraints.

On the other hand, our performance �gures suggest that

our simpli�cation techniques are reasonably fast, i.e. of the

same order as closure itself. Thus, another possibility is to

concentrate not on the simpli�cation algorithms, but on the

constraint creation engine itself|that is, on the formulation

of the type inference rules. Indeed, our use of �-lifting incurs

a loss of sharing between the various branches of a type

inference derivation. Sharing is explicitly restored by the

context intersection operation, but this entails extra closure

and simpli�cation work.

Formulating the typing rules without making use of �-

lifting would thus produce a more intuitive, and possibly

3

except datatype declarations, which are turned into parameter-

ized abstract type declarations. Because our language has extensible

variant types, some pattern matchings would otherwise receive unex-

pected typings.

more e�cient, system. It would also help deal with impera-

tive constructs. Since our current system does not support

unquanti�ed type variables, it deals with expansive let de�-

nitions by rewriting them into �-redexes [19]. However, top-

level let de�nitions cannot be rewritten in such a way, so

they are accepted only if they de�ne a monomorphic value|

hence, a small loss of exibility.

Such a system seems to require a more complex subtyp-

ing rule|which is why we adopted �-lifting in the �rst place.

So, it is a challenging research subject.

Finally, let us mention that better practical performance

would of course be obtained if the code being tested used

appropriate abstract type de�nitions and module interfaces.

10 Related work

The typing rules used in this paper are the same as in [18].

Older systems [7, 14] have the same valid programs, but

fewer valid typings, because they lack a polymorphic sub-

sumption rule. Here, as in [18], scheme subsumption is the

one and only theoretical basis for all simpli�cation methods,

which is simple and elegant.

The type system proposed by Sulzmann et al. [17] is

fairly close to ours, but does not use �-lifting. Still, it is

not the ideal system we discussed in the previous section,

because its subtyping rule is too weak: in particular, it does

not allow garbage collection in the global constraint graph.

As far as simpli�cation is concerned, our current algo-

rithms are strictly more powerful than those given in [6, 1,

18]. Minimization is slightly less powerful, in theory, than

the heuristics of [14], because the latter are based on en-

tailment; however, in practice, it is much more e�ective and

e�cient.

A performance comparison with [1] or [9] is di�cult, be-

cause the analysis performed, as well as the machine and

compiler used, vary widely. It seems safe to say that our

results are at least as good.

Palsberg [13] and Henglein [10] study e�cient type infer-

ence for an object calculus. It di�ers largely from our system

(in particular, Henglein takes advantage of the fact that ob-

ject types are invariant to improve e�ciency). However,

some of the techniques presented here (garbage collection

and minimization) might carry over to it.

Conclusion

This paper describes our work towards an e�cient, stream-

lined type inference engine in the presence of subtyping.

Our starting point was an existing type system with sev-

eral known simpli�cation strategies (canonization, garbage

collection). Still, implementing it in an e�cient way was not

possible, mainly by lack of a systematic substitution algo-

rithm, but also because the issue of data representation was

not settled; some transformations had conicting e�ects.

8



We give new algorithms: a very e�cient minimization

algorithm, which eliminates the need for any substitution

heuristics, and a combined canonization/garbage collection

algorithm. In addition, we deal with the problem of data

representation by identifying invariants which should be pre-

served during type inference: the small terms invariant and

the mono-polarity invariant. They have bene�cial e�ects in

several areas. Some transformations which improve read-

ability, but break the invariants, are postponed until the

type must be displayed to the user.

The result is a full framework for type inference with sub-

typing, with a clean and simple theory, leading to e�cient

algorithms. At present, the most promising research topic

appears to be the elimination of �-lifting, yielding a system

closer to ML, but with greater theoretical complexity.
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Figure 9: Before closure
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Figure 10: After closure

A A full example

This appendix shows the type inference engine at work on

a small, but rather typical example, namely the classic map

operation. The type language used here has products and

extensible variant types (without row variables, for the sake

of simplicity). The expression language has corresponding

constructs (pairs, data constructors and pattern matching),

as well as a �x-point operator rec.

rec map in function f -> function

Nil -> Nil

| Cons (x, rest) -> Cons (f x, map f rest)

The type inference rules indicate that the expression has

type v

22

, together with the constraints given by �gure 9.

Let us compute their closure; it is given by �gure 10, in

a way which looks more like a constraint graph: there is

one line per type variable, mentioning its lower and upper

bounds.

It turns out that the closure computation did not in-

troduce any symbolic t or u constructs. So, in this

case, the canonization algorithm has nothing to do. We

can now compute polarities. The �x-point computation

starts by marking the entry point, v

22

, as positive, and

then propagates marks through the above constraint graph.

We �nd that v
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are positive, while
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are negative.

Given this information, we can perform garbage collec-

tion. Positive (resp. negative) variables lose all of their up-

per (resp. lower) bounds; furthermore, constraints involving

two variables are kept only if the left-hand one is negative

and the right-hand one is positive. This yields
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We can now run the minimization algorithm. We compute

the largest equivalence relation such that two equivalent

variables have the same polarity, the same successors and

predecessors, and equivalent constructed bounds. In this

case, it is easy to see that the only non-trivial equivalence

classes are fv

13

; v

19

g and fv

16

; v

20

g.

Note that replacing v

19

with v

13

can be viewed as rec-

ognizing a partially unrolled �x-point. Indeed, it essentially

consists in replacing F (�t:F (t)) with �t:F (t), where F is the

type operator

t 7! [ Nil | Cons of v

5

� t ]
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By collapsing the equivalence classes, we obtain
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Type simpli�cation is over; as far as the internal engine

is concerned, this is the result. At this point, \external"

simpli�cation strategies may be applied to make the type

scheme more readable. We replace each variable with its

unique bound (except where disallowed by the occur check).

Finally, we obtain that map has type (v

6

! v

8

)! v

13

! v

16

where

v

13

� [ Nil | Cons of v

6

� v

13

]

[ Nil | Cons of v

8

� v

16

] � v

16

which is optimal, given our type language.

If we want to go a little further, we can notice that the

above inequalities can be replaced by equalities. (The proof

of correctness is trivial. Garbage collection would replace

these equalities with the original inequalities; since garbage

collection is correct, the two type schemes are equivalent.)

Thus, map's type could be printed as

(v

6

! v

8

)! �t:[ Nil | Cons of v

6

� t ]

! �t:[ Nil | Cons of v

8

� t ]
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