
Simplifying subtyping constraints

Fran�cois Pottier

Ecole Normale Sup�erieure { INRIA

�

Francois.Pottier@inria.fr

Abstract

This paper studies type inference for a functional, ML-style

language with subtyping, and focuses on the issue of simpli-

fying inferred constraint sets. We propose a powerful notion

of entailment between constraint sets, as well as an algo-

rithm to check it, which we prove to be sound. The algo-

rithm, although very powerful in practice, is not complete.

We also introduce two new typing rules which allow simpli-

fying constraint sets. These rules give very good practical

results.

1 Introduction

The concept of subtyping has been introduced by Cardelli

[4] and by Mitchell [9]. It is of great importance in many

record and object calculi. Subtyping has been extensively

studied in the case of explicitly typed programs; ML-style

type inference in the presence of subtyping is less under-

stood. Fuh and Mishra [7] have studied type inference in

the presence of subtyping and polymorphism. However, they

consider only structural subtyping, i.e. their subtyping rela-

tion is entirely derived from subtyping on base types. More

recently, Aiken and Wimmers [1] have proposed a general al-

gorithm for solving systems of subtyping constraints. Their

constraint language is rich; in particular, it includes \ and

[type operators.

The basis for our type system has been proposed by

Eifrig, Smith and Trifonov [5]. It is based on constrained

types, i.e. types of the form � j C, where � is an ordinary

type expression and C is a set of subtyping constraints of

the form �

1

. �

2

, meaning that �

1

must be a subtype of �

2

.

Palsberg [10] has introduced a similar system.

This constraint language is more restricted than Aiken

and Wimmer's. It does not have ? and > types, nor inter-

section and union operators. However, ? and > are easily

encoded with subtyping constraints. Besides, we introduce

notions of greatest lower bounds and least upper bounds of

ground types, and we will use them in a restricted way in

constraints.

�

Fran�cois Pottier, Projet Cristal, INRIA Rocquencourt, BP 105,

78153 Le Chesnay Cedex, France

To appear in the 1996 ACM SIGPLAN International

Conference on Functional Programming.

The type inference algorithm analyzes the program and

accumulates a set of subtyping constraints. Instead of try-

ing to solve these constraints, one de�nes a notion of consis-

tency, and the program is declared well-typed if and only if

its constraint set is consistent. We prove that a constraint

set is consistent if and only if it has a solution, so this is not a

fundamental departure from other systems, only a di�erence

in presentation.

This system is theoretically correct. However, because

each function application node in the program causes a sub-

typing constraint to be generated, the size of inferred types

is at best linear in the program size. In fact, it is even

worse, because constraint sets are duplicated by every use

of a let-bound variable. As a result, inferred types are much

too large to be read by humans, and they are unwieldy for

the type-checker itself. Hence, simplifying the inferred con-

straints is necessary for the system to be useable at all in

practice. We provide formal tools to this end.

We strengthen Smith's subtyping rule by introducing a

new, powerful notion of entailment between constraint sets.

We de�ne it formally and give an algorithm to verify it,

which is unfortunately incomplete but useful in practice.

Then, we introduce two new, independent typing rules to

simplify constraint sets. The �rst one removes so-called un-

reachable constraints. The second one applies substitutions

to the constraint set. Both are proved to be sound. These

simpli�cation methods have been implemented in a proto-

type type-checker, and give good practical results.

2 An overview of constraint-based type-checking

Before beginning a formal description of our framework, let

us describe the principles of constraint-based type inference.

We assume given a functional, ML-like language with sub-

typing.

During type-checking, a classical ML-style system gener-

ates equations between types: basically, every time a func-

tion is applied, the type of the supplied argument must be

equal to the function's domain type. Uni�cation is used as

an e�cient way to solve the resulting system of equalities. A

constraint-based system works in a similar way, except that

subtyping constraints are generated instead of equations: the

supplied argument must be a subtype of the function's do-

main type.

How does subtyping make type inference more di�cult?

In a language without subtyping, when faced with an

equation � = � , one can use uni�cation to equate � to �

in a very e�cient way. This does not work any more for a

constraint � . � .

Fuh and Mishra [7] have studied the problem in the case

of structural subtyping, where all type inclusions are conse-

quences of inclusions between atomic types. Their approach,

when encoutering a constraint such as �.�

1

! �

2

, is to iden-

tify � with a function type �

1

! �

2

, where the �

i

are fresh

type variables. This generates sub-constraints �

2

. �

2

and

�

1

. �

1

. The program is correct if all constraints involving

atomic types are true.

In our case, however, the system has non-structural sub-

typing. For instance, the record types ff

1

: �

1

; f

2

: �

2

g

and ff

1

: �

1

; f

3

: �

3

g are both subtypes of ff

1

: �

1

g, yet

they have di�erent shapes. Hence, when faced with the con-

straint � . ff

1

: �

1

g, we do not know the precise structure

of the type represented by �, so we cannot identify � with

a more precise type.

Type-checkers for ML-style languages use uni�cation to

solve systems of equations, that is, �nd a principal map-

ping from type variables to ground types which satis�es all

constraints. However, replacing equations with constraints

makes resolution much more complex; it is no longer obvi-

ous that a principal type exists, and computing the set of

all solutions becomes non-trivial. This is the approach taken

by Aiken [1]. The other approach, proposed by Smith [5],

consists in merely demanding the constraint set to be consis-

tent; writing an algorithm to check consistency is trivial. A

subject reduction theorem then guarantees soundness. Fol-

lowing Smith, we take the second approach. Palsberg [11]

has proved that consistency and solvability are equivalent,

and we adapt his proof to our system.

3 Examples

This section gives examples and motivations for the de�ni-

tions we will give later. The reader might wish to have a

look at section 5, which describes the basic type system, if

certain notions are unclear.

3.1 A strong notion of entailment

Entailment between constraint sets is an important notion:

the power of the subtyping rule (see �gure 3) depends on it.

C

1

` C

2

is de�ned in [5] as \elements of C

2

are elements

of C

1

's closure, or reexive constraints". This notion is not

powerful enough to prove that certain constraint sets are

equivalent.

Let us examine the subtyping rule. Assume we have

derived a certain constraint set C

2

for an expression, and we

would like to replace it safely with another set C

1

. We need

to make sure that if the expression is part of a larger program

which is invalid, this change will not cause the program to be

accepted. The program is invalid if and only if the constraint

set D generated for the rest of the program is such that D[

C

2

is inconsistent. It will be declared valid, after replacing

C

2

with C

1

, if and only if D[C

1

is consistent. This must not

happen. Hence, we de�ne C

1

` C

2

as \for any constraint set

D such that C

1

[D is consistent, C

2

[D is consistent". This

de�nition seems to be the most powerful possible one. It can

be quali�ed as \observational", because entailment between

constraint sets depends on their behavior with respect to

the \external world" D.

In section 6, we show that C

1

` C

2

is equivalent to the

statement \every solution of C

1

is a solution of C

2

", which

proves that this de�nition is indeed natural.

Our de�nition of C

1

` C

2

is strictly more powerful than

checking whether C

1

's closure contains C

2

. Let us give a few

interesting examples. If F is a non-trivial, covariant context,

then

f� . F (�); F (�) . �g ` � . �

Another typical example is

f�

1

� �

2

. ; �

1

� �

2

. g ` �

1

� �

2

.

Both statements can be proved by using the de�nition of

entailment. However, this de�nition involves a universally

quanti�ed constraint set D. This gives it great power, but

also makes it di�cult to verify automatically. In section 8,

we introduce an algorithm, in the form of a set of inference

rules, to verify entailment without recourse to its de�nition.

Let us hint (informally) at how the algorithm copes with

these two examples.

In the case of the �rst example, to show that � . �, it is

su�cient to show that F (�) . �, because of the hypothesis

� . F (�). Symmetrically, it is su�cient to prove F (�) .

F (�). Since F is a covariant context, after applying a certain

number of propagation rules, we will realize that we need to

show �.� again. This suggests building an inductive proof,

and declaring success when the original goal is encountered

again.

In the case of the second example, one uses a least upper

bound, as follows. To show that �

1

� �

2

is smaller than , it

is su�cient to show that it is smaller than one of 's lower

bounds, i.e. to prove one of these assertions:

�

1

� �

2

. �

1

� �

2

�

1

� �

2

. �

1

� �

2

But none of them holds. Better yet, it is su�cient to prove

that it is smaller than the least upper bound of 's lower

bounds, i.e.

�

1

� �

2

. (�

1

� �

2

) t (�

1

� �

2

)

Now, because t is distributive with respect to product, this

rewrites to

�

1

� �

2

. (�

1

t �

1

) � (�

2

t �

2

)

which is equivalent to �

1

. �

1

t �

1

and �

2

. �

2

t �

2

, both of

which are immediate.

This notion of least upper bound will be formalized in

section 7. Note that we need to allow t symbols on the

right

1

side of constraints, so de�ning least upper bounds by

declaring \�

1

t �

2

. � is equivalent to �

1

. � ^ �

2

. �" would

not be of any help here.

Both of these examples are of practical interest: they ap-

pear while simplifying the types of various classic functions.

3.2 Removing unreachable constraints

Consider the following expression:

let Y = fun f -> (fun g -> fun x -> f (g g) x)

(fun g -> fun x -> f (g g) x) in

let compute = Y (fun f -> fun x -> plus 1 (f x)) in

compute 1

1

More precisely, in contravariant positions.

2

Here Y is the classic �x-point combinator, and plus is a

primitive addition function. Therefore, compute is a func-

tion which takes an integer and returns an integer (it is of no

signi�cance here that the computation does not terminate).

Now, the type obtained for this expression is int together

with the constraints

� . (� !)! � ! "

� . (� !)! � !

' = '! � !

 = ! �! int

� = � ! � ! int

int . �

The inference algorithm indeed reports that the expression

has type int; but it also produces a series of inclusion con-

straints, making the result unexpectedly complex.

Assume that this expression is part of a larger program.

Other constraints will be generated for the other parts of the

program; then the constraint set will be closed and checked

for consistency. However, the new constraints cannot pos-

sibly involve any of the type variables above, because these

variables are unreachable: they are not part of the result

type of the expression, nor are they part of the environment

the expression was typed in. Hence, these constraints will

not a�ect the consistency of the whole program; we might

as well discard them now.

Section 9 formalizes the concept of unreachable type vari-

ables and shows that constraints involving those variables

can be safely removed from the constraint set. Because the

use of let constructs leads to duplication of constraint sets,

removing unreachable constraints early is vital.

3.3 Simplifying constraint sets

We introduce a substitution rule to simplify constraint sets.

Let us explain the idea. Assume we have written a function

f from integers to integers. The type inference system might

assign it type

f : 8��:�! � j f� . int; int . �g

When we apply f to an argument of type �, the function ap-

plication rule will declare the result to be of type � , together

with constraints

� . � . int int . � . �

Clearly, variables � and � add no information to this con-

straint set. So we might just as well get rid of them imme-

diately, and declare that f has type

int! int

We have applied substitution [int=�; int=�] to the original

type.

While doing type inference, we must be careful to choose

substitutions which are not restrictive; otherwise, they will

yield a less general type, possibly causing us to reject a

correct program later. To make sure that the new type is

as expressive as the previous one, we will require that it be

possible to cancel the e�ect of the substitution by applying

the subtyping rule. That is, before applying substitution

to constrained type � j C, we will require that C ` (C)

and C ` (�) . � .

3.4 Practical results

Our simpli�cation methods have been implemented into a

small type-checker. It gives very good results on classic ex-

amples. For instance, we have coded the classic quicksort

function on lists; we omit the code here for brevity. Its un-

simpli�ed type contains 300 constraints, only 60 of which are

reachable; after simpli�cation, the type is trimmed down to

(�! � ! bool)! [Nil j Cons of � �]! �

together with the constraints

� = [Nil j Cons of � � �]

 = [Nil j Cons of � �]

� . �

This is identical to the usual ML type of quicksort, ex-

cept that the �rst element of the argument list has type �,

whereas the remaining ones have type �. This is bewilder-

ing at �rst; it seems that a list can only be sorted if all of its

elements have the same type. However, a closer look reveals

that this type is correct, and slightly more general than the

ML type. This di�erence comes from the fact that our ver-

sion of quicksort always uses the �rst element of the list as

a pivot.

This is of no practical interest, of course, but it is amus-

ing to see that the inferred type is, unexpectedly, more gen-

eral than the usual ML type. If we restrict the inferred type

by applying substitution [�=�; =�], we obtain the ML type

as a special case. Note that even then the function is more

powerful than its ML counterpart, since it can sort hetero-

geneous lists, provided that each element's type is a subtype

of the comparison function's domain type.

The time needed to infer and simplify quicksort's type

was slightly under 10 seconds. The prototype typechecker

was compiled to native code with Caml Special Light, so the

performance still leaves to be desired. However, the proto-

type uses naive data structures to represent constraints, so

substantial speed improvements should be possible.

4 The expression language

The expression language is given by �gure 1.

While the concrete syntax of our language has constructs

for building and accessing pairs, records and variants, they

are not necessary in the theoretical de�nition of the lan-

guage. Instead, they can be regarded as an in�nite collection

of primitive functions.

Instead of type-checking programs in an empty environ-

ment, we will always assume a basic environment containing

all of these primitives. This way, there is no need to intro-

duce the primitives as constants; they are handled exactly

in the same way as variables.

The advantage of introducing such constructs through

primitive functions is to reduce the number of typing rules,

thus shortening proofs and making it obvious that the typ-

ing rules for pairs, records and variants are derived from the

function application rule (together with the type of a primi-

tive function). Notice that the expression language only has

four constructs: it is a �-calculus with let.

In order to simplify reasoning on records and variants,

we assume given a collection of label �elds f

i

, as well as a

collection of constructors K

i

, where i ranges over natural

integers.

3

Note that pairs and variants do not add any essential

complexity to the system with records; they have been added

to allow writing classic examples, such as sorting lists. Clas-

sic examples based on records are less common, and often

involve contrived pseudo-object-oriented message passing.

5 The type system

5.1 The type language

The type language is de�ned by �gure 2. We denote the set

of all type terms by T .

5.2 The type inference rules

Type inference rules are given by �gure 3. Judgements

are of the form A ` e : � j C, where A is an environment,

e is the expression to type-check, and � j C is the inferred

constrained type.

All constraint sets appearing in judgements are implic-

itly required to be consistent, as de�ned below. If a type

inference rule yields an inconsistent set, its use is invalid.

The rules are the four classic typing rules for variable

instantiation, �-abstraction, application, and let binding,

plus a subtyping rule. The latter is based on our entailment

relation (see section 5.5) and is more powerful than the one

introduced in [5], which is based on set containment.

Using properties of the entailment relation, one veri�es

that it is possible to rewrite any typing proof so that it uses

the subtyping rule at most once at the bottom.

As a result, we have

Theorem 5.1 The type system has subject reduction.

Proof: This proof is based on Smith's proof of subject re-

duction

2

. Assume A ` e : � j C. Then there exists a typing

proof which uses the subtyping rule at most once at the end.

Thus, e is typable without using the subtyping rule (hence,

in Smith's system) which yields a certain type �

0

j C

0

. So,

if e reduces to e

0

, then according to Smith's subject reduc-

tion property, e

0

also has type �

0

j C

0

in Smith's system.

Because Smith's subtyping rule is weaker than ours, e

0

also

has type �

0

j C

0

within our system; and adding back the

�nal subtyping rule shows that A ` e

0

: � j C holds.2

5.3 Closure of a constraint set

A constraint set C is closed if and only if it is closed by

transitivity and by propagation.

C is closed by transitivity if and only if

�

1

. � 2 C ^ � . �

3

2 C) �

1

. �

3

2 C

where � is a type variable

3

.

C is closed by propagation if and only if it veri�es the

following conditions:

�

1

! �

2

. �

1

! �

2

2 C) �

1

. �

1

2 C ^ �

2

. �

2

2 C

2

Although we have a larger set of primitive functions, whose se-

mantics should be de�ned and checked, and we have introduced vari-

ant types. A direct proof could also be easily written.

3

One usually allows any type �

2

instead of only type variables.

We have shown the two de�nitions to be equivalent. In particular,

although this modi�cation alters the de�nition of a set's closure, it

does not change the consistency of its closure.

�

1

� �

2

. �

1

� �

2

2 C) �

1

. �

1

2 C ^ �

2

. �

2

2 C

ff

i

: �

i

g

i2I

. ff

j

: �

j

g

j2J

2 C) 8k 2 I \ J �

k

. �

k

2 C

[K

i

of �

i

]

i2I

. [K

j

of �

j

]

j2J

2 C) 8k 2 I \ J �

k

. �

k

2 C

The closure of C, denoted C

1

, is the smallest closed

constraint set containing C.

5.4 Consistency of a constraint set

A constraint set is consistent if and only if all constraints in

its closure are consistent. A constraint �

1

. �

2

is consistent

if and only if one of the following conditions holds:

� �

1

or �

2

is a type variable

� �

1

and �

2

are the same atomic type

� �

1

and �

2

are function types

� �

1

and �

2

are product types

� �

1

is ff

i

: �

i

g

i2I

, �

2

is ff

j

: �

j

g

j2J

and J � I

� �

1

is [K

i

of �

i

]

i2I

, �

2

is [K

j

of �

j

]

j2J

and I � J

5.5 The entailment relation

Let C

1

and C

2

be coercion sets. We say that C

1

entails C

2

(and we write C

1

` C

2

) if and only if for any coercion set

D such that C

1

[D is consistent, C

2

[D is also consistent.

This relation behaves like an implication, as demonstra-

ted by the following properties:

C ` C

1

and C ` C

2

() C ` C

1

[C

2

A ` B and B ` C) A ` C

C

1

` C and C

1

� C

2

) C

2

` C

If is a substitution,

C

1

` C

2

) (C

1

) ` (C

2

)

6 Consistency versus solvability

After accumulating subtyping constraints, one has a choice

between trying to solve them, as does Aiken [1], or merely

verifying that they are consistent, as suggested by Smith [5].

In the former case, the existence of a solution guarantees

that the program has a valid monomorphic type, and its

soundness can be established from there; in the latter case,

the program's soundness is guaranteed by a subject reduc-

tion theorem.

Palsberg [11] has established that both approaches are

equivalent, in a system similar to ours, and we adapt his

proof to our case.

Then, we further show that our notion of entailment,

which is based on consistency, is equivalent to a natural

notion of entailment based on solutions of constraint sets.

Hence, it appears that both approaches are entirely equiva-

lent, and many questions about constraint sets can be for-

mulated in both manners.

4

Expressions:

e ::= x variable or constant

j �x:e function

j e e function application

j let x = e in e polymorphic let

Figure 1. The expression language

Types:

� ::= � type variable

j a atomic type: bool, int, etc.

j � ! � function type

j � � � product type

j ff

i

: �

i

g

i2I

record type

j [K

i

of �

i

]

i2I

variant type

Constraints:

c ::= � . �

Type schemes:

� ::= 8�:� j C a quanti�ed (type, constraint set) pair

Figure 2. The type language

A(x) = 8�:� j C ' is a substitution of domain �

A ` x : '(� j C)

A;x : � ` e : �

0

j C

A ` �x:e : � ! �

0

j C

A ` e

1

: �

1

j C

1

A ` e

2

: �

2

j C

2

A ` e

1

e

2

: � j C

1

[C

2

[f�

1

. �

2

! �g

A ` e

1

: �

1

j C

1

A;x : 8�:�

1

j C

1

` e

2

: �

2

j C

2

� = FV(�

1

j C

1

) n FV(A) ' is a substitution of domain �

A ` let x = e

1

in e

2

: �

2

j '(C

1

) [C

2

A ` e : � j C C

0

` C C

0

` � . �

0

A ` e : �

0

j C

0

Figure 3. Type inference rules

5

6.1 De�nition of solvability

We need to give a few de�nitions before we can introduce

the notion of solvability. These de�nitions are essentially

taken from [11], with a few adjustments to accomodate our

richer type language, which in particular adds record types.

Ground types are de�ned as regular trees and admit a least

type ? and a greatest type >. They are ordered by a sub-

typing relation adapted from Palsberg's [11], the latter being

equivalent to Amadio and Cardelli's [3].

These de�nitions are straightforward and given in ap-

pendix A.

6.2 Consistency versus solvability

Theorem 6.1 A constraint set is consistent if and only if

it is solvable.

6.3 Syntactic versus semantic entailment

We have proved that the notion of consistency can be re-

garded as a more algorithmic de�nition of solvability, which

is a more semantic notion. Now, we would like to com-

pare our syntactic notion of entailment, which is based on

consistency, with a semantic notion of entailment based on

solvability.

The natural way of de�ning a semantic notion of en-

tailment between two constraint sets C

1

and C

2

(denoted

C

1

j= C

2

) would be to require that every solution of C

1

be

a solution of C

2

. It is actually slightly more complex than

that, because C

2

might have more free variables than C

1

.

For instance, the statement

f� . int; � . boolg j= � . �

should hold because the principal solution of the left-hand

set is � 7! ?, and ?.� will hold for all �. However, � 7! ?

is not, strictly speaking, a solution of the right-hand set

because it doesn't assign any value to �. Obviously, free

variables such as � should be universally quanti�ed. We

achieve this e�ect by giving the following de�nition:

De�nition 6.1 Let C

1

and C

2

be two constraint sets. We

de�ne C

1

j= C

2

by

8' 2 S(C

1

) 8 2 V ! T

�

 ' 2 S(C

2

)

Here, ranges over maps from type variables to ground

types and the quanti�cation over is, in e�ect, a universal

quanti�cation over the variables in FV(C

2

) n FV(C

1

).

We can now make the following statement:

Theorem 6.2 Let C

1

and C

2

be two constraint sets. Then

C

1

` C

2

() C

1

j= C

2

7 Introducing lub's and glb's

As explained in section 3, the entailment algorithm will need

notions of greatest lower bounds and least upper bounds of

sets of types (sometimes referred to as glb's and lub's for

short), which we de�ne now.

7.1 On ground terms

Theorem 7.1 The set T

�

of ground terms, ordered by re-

lation �, forms a lattice. That is, there exist operations t

and u which, when applied to a set of ground terms, yield its

least upper bound and its greatest lower bound, respectively.

They are commutative and associative.

There is not enough room here to give the explicit de�nition

of t and u. It is very straightforward and yields a series of

identities which can be used to compute least upper bounds

and greatest upper bounds.

Proposition 7.1 For any s; s

0

; t; t

0

2 T

�

, these equations

hold:

t t > = >

t t ? = t

(s! s

0

) t (t! t

0

) = (s u t)! (s

0

t t

0

)

(s � s

0

) t (t � t

0

) = (s t t) � (s

0

t t

0

)

For the sake of brevity, we do not give all of them here.

Note that in particular, t and u are distributive over type

constructors.

7.2 On types

In order to be able to use glb's and lub's in constraints, we

make the following de�nition:

De�nition 7.1 A generalized type is a type term possibly

containing occurrences of the t and u constructors, as well

as of ? and >, as follows:

Generalized types:

� ::= : : :

j tf�

i

g

i2I

j uf�

i

g

i2I

j ?

j >

Generalized types are considered modulo the equations given

in proposition 7.1

4

.

A generalized constraint is a subtyping constraint involv-

ing generalized types.

This time, we have introduced t, u, ? and > as con-

structors into the syntax of our constraint language. We

give them a semantics by de�ning how they are instanti-

ated:

De�nition 7.2 For any mapping ' from type variables to

ground terms, ' is extended to generalized type terms as a

homomorphism, that is

'(tf�

i

g) = tf'(�

i

)g

'(uf�

i

g) = uf'(�

i

)g

'(?) = ?

'(>) = >

Two generalized types which are equal up to the equa-

tions given in proposition 7.1 are mapped to the same ground

term by ', so this de�nition does make sense.

This is enough to extend the notions of solution, solvabil-

ity and semantic entailment to generalized constraint sets.

4

That is, these equations can be freely used inside a term. There is

a slight abuse of language, as they originally applied to ground terms,

and they are used for generalized types here.

6

8 An algorithm to verify entailment

8.1 Description

We now give an algorithm to verify the entailment relation;

it is de�ned by a set of inference rules given in �gure 4. Let

us comment on these rules.

Judgements inferred by the algorithm are of the form

C;H

1

; H

0

` �

1

.�

2

where C is a closed constraint set, H

1

and

H

0

are generalized constraint sets, and �

1

.�

2

is a generalized

constraint, which we call the goal. Each rule replaces the

current goal with zero or more sub-goals.

In goals, t and u symbols always occur in contravari-

ant and covariant positions, respectively. That is, each rule

produces sub-goals which verify this property, provided that

the original goal does.

�

1

. �

2

2 C

C;H

1

; H

0

` �

1

. �

2

(1)

�

1

. �

2

2 H

1

C;H

1

; H

0

` �

1

. �

2

(2)

C;H

1

; H

0

` � u � . � t �

(3)

R = f� j � . � 2 C ^ � 6= �g

C;H

1

; H

0

[f� . � t �g ` � . (tR) t �

C;H

1

; H

0

` � . � t �

(4)

R = f� j � . � 2 C ^ � 6= �g

C;H

1

; H

0

[f� u � . �g ` � u (uR) . �

C;H

1

; H

0

` � u � . �

(5)

C;H

1

; H

0

` � .>

(6)

C;H

1

; H

0

` ? . �

(7)

C;H

1

; H

0

` a . a

(8)

C;H

1

[H

0

; ; ` � . � C;H

1

[H

0

; ; ` �

0

. �

0

C;H

1

; H

0

` � ! �

0

. � ! �

0

(9)

C;H

1

[H

0

; ; ` � . � C;H

1

[H

0

; ; ` �

0

. �

0

C;H

1

; H

0

` � � �

0

. � � �

0

(10)

J � I 8j 2 J C;H

1

[H

0

; ; ` �

j

. �

j

C;H

1

; H

0

` ff

i

: �

i

g

i2I

. ff

j

: �

j

g

j2J

(11)

I � J 8i 2 I C;H

1

[H

0

; ; ` �

i

. �

i

C;H

1

; H

0

` [K

i

of �

i

]

i2I

. [K

j

of �

j

]

j2J

(12)

Figure 4. Algorithm de�nition

One of the most interesting features of this algorithm

is its ability to reason by induction. The algorithm uses

H

1

and H

0

as a trace, which contains the goals which have

been encountered so far. More precisely, if a goal has been

encountered and a propagation rule has been used since,

then it belongs to H

1

; if no propagation rule has been used

since, the goal belongs to H

0

. The trace is initially empty,

i.e. we will be interested in proving statements of the form

C; ;; ; ` �

1

. �

2

.

Now, in addition to accepting elements of C as hypothe-

ses (rule (1)), the algorithm also regards elements of H

1

as

true, thanks to rule (2). This is reasoning by induction:

the algorithm realizes that this goal has already been en-

countered before, so continuing to build a proof for it would

cause an endless loop. Proving the goal can be thought of

as comparing two in�nite trees. However, because at least

one propagation rule has been used since the goal was last

encountered, we know that part of the trees have been suc-

cessfully compared. Hence, by carrying on the comparison,

we would be able to verify that the two trees can be success-

fully compared down to an arbitrary depth. So, it is valid

to declare that the goal holds. The algorithm owes a lot of

its power, and of its complexity, to this induction rule.

The reader might wonder why C and H

1

are kept sepa-

rate, since constraints found in both sets are considered as

true by the algorithm. One reason is that C contains hy-

potheses (i.e. regular constraints), while H

1

contains goals

(i.e. generalized constraints), and merging the two would

lead us to generate malformed goals (e.g. with glb's in con-

travariant positions), which we cannot handle.

Let us now comment on the remaining rules. Which one

is to be used depends on the structure of the goal. Distribu-

tivity of t and u over type constructors is used whenever

possible to push down lub's and glb's as far as possible; they

remain at top level only when one of their arguments is a

variable, or when two arguments have incompatible head

constructors.

The reexivity rule (3) states that a goal holds if a single

type variable appears on both sides of it.

Next come the variable elimination rules, (4) and (5),

which are symmetrical. Let us consider rule (4), which can

be used when the lub on the right side of the goal contains

a type variable �. To prove that the left side of the goal,

�, is smaller than its right side, it su�ces to show that it

is smaller than �. To do this, it would be su�cient to �nd

a type � such that � . � 2 C and prove that � is smaller

than �. However, this is too restrictive; instead, it is still

su�cient (and easier) to prove that � is smaller than tR,

where R is the set of all

5

lower bounds of � in C.

The rules discussed so far deal with goals which have at

least one type variable at top level. The remaining rules

deal with the cases where all types appearing at top level

are constructed types.

Rules (6) and (7) are symmetrical. > and ? appear in

goals when computing the lub or glb of types with incom-

patible head constructors, such as int t bool.

The remaining rules deal with goals where both sides

have the same head constructors. These goals can be de-

composed into smaller sub-goals, so these rules are collec-

tively called propagation rules. There is one per construct:

atoms, arrows, pairs, records and variants.

Rule (8) is the propagation rule for atomic types; we do

not allow subtyping between base types, so this rule has the

look of a reexivity rule.

The other propagation rules are similar to the propaga-

tion rules used when computing the closure of a constraint

set, only they work in the opposite way.

5

except � itself, otherwise the algorithm would not terminate.

7

8.2 Termination

To make sure that our rules actually de�ne an algorithm,

we need to verify that given a goal, determining whether it

is provable is a �nite process.

A closed coercion set C contains a cycle if and only if

there exist n type variables (n � 2) �

1

: : : �

n

such that f�

1

.

�

2

. : : : . �

n

. �

1

g � C.

Theorem 8.1 Let C be a closed coercion set without cycles.

Then checking whether there exists a proof of C; ;; ; ` �

1

.�

2

fails or succeeds in �nite time.

Hence, the algorithm works only on coercion sets without

cycles. This is not a problem, because we will prove (using

the substitution rule) that any cycle can be eliminated by

identifying all of its variables

6

.

8.3 Correctness

The algorithm is sound with respect to entailment:

Theorem 8.2 Let C be a constraint set and �

1

, �

2

be type

terms. Then

C; ;; ; ` �

1

. �

2

) C ` �

1

. �

2

A sketch of the proof is given in appendix B.

8.4 Completeness

Although we have long believed the algorithm to be com-

plete with respect to the de�nition of entailment, we have

recently found evidence to the contrary.

Since we have shown the equivalence between solvabil-

ity and consistence (see 6), we present the counter-example

from the point of view of solvability. It is slightly simpler.

Take C = f� ! int . �g and � = (? ! >) ! int. Then

we have

7

C ` � . �

but the following assertion does not hold:

C ` � . �! int

This means that rule (4) of the algorithm (and, symmet-

rically, rule (5)) is not complete, since it would replace the

goal � . � with the sub-goal � . �! int.

These are the only two incomplete rules | for all other

rules, we have shown that the premises hold if and only

if the conclusion holds. We have not yet grasped the full

signi�cance of this counter-example, and we do not know

how wide a range of counter-examples could be produced.

It should be emphasized that even though the algorithm is

not complete, it remains powerful and useful in practice; the

60 reachable coercions in quicksort's type are reduced to 3

meaningful ones.

6

Alternatively, we could modify rules (3), (4) and (5) so that the

algorithm still works with sets containing cycles.

7

Actually, ? and> are not allowed in types, so one should de�ne

� = (� !) ! int and add suitable constraints to C so that all

solutions of C assign ? to � and > to . We omit it for the sake of

simplicity.

9 Removing unreachable constraints

Consider a typing judgement A ` e : � j C. The set of reach-

able variables of this judgement, written as RV(A; �; C), is

the smallest set V of type variables such that

V � FV(A) [FV(�)

� . � 2 C

1

^ � 2 V) FV(�) � V

� . � 2 C

1

^ � 2 V) FV(�) � V

A constraint belonging to C's closure is said to be reach-

able if it contains only reachable variables. That is, the set

RC(A; �; C) of reachable constraints is de�ned as

f�

1

. �

2

2 C

1

j FV(�

1

) [FV(�

2

) � RV(A; �; C)g

We now prove a few lemmas which will be used in forth-

coming proofs.

We then introduce the following rule, called the connexity

rule, which allows removing all unreachable constraints:

A ` e : � j C C

0

= RC(A; �; C)

A ` e : � j C

0

From now on, this rule is part of the typing rule and the

statement A ` e : � j C represents a derivation which is

allowed to make use of this rule.

The following proposition will guarantee the soundness

of the new rule (see section 11):

Proposition 9.1 The connexity rule commutes towards the

bottom with the basic typing rules (i.e. all but the subtyping

rule), possibly demanding that hidden variables above it be

renamed, and yielding a new constraint set which is a subset

of the original set's closure.

10 Simplifying constraints

We prove the following substitution lemma:

Lemma 10.1 If A ` e : � j C and is a substitution such

that (C) is consistent, then (A) ` e : (�) j (C).

The proof is very similar to that of ML's substitution

lemma. Only the case of the subtyping rule is new.

Thus, the type system is not a�ected by the addition of

the following rule:

A ` e : � j C

(A) ` e : (�) j (C)

However, during type inference, this rule must not be ap-

plied blindly, because it restricts the generality of the type

and can eventually lead to rejecting a valid program. Since

we do not wish to have the type inference algorithm back-

track, we must ensure that it always applies the rule in such

a way that the new typing is as general as the previous one.

We do this by requiring that the old judgement be a conse-

quence of the new one through the subtyping rule. That is,

we will use the substitution rule only as follows:

A ` e : � j C (A) = A C ` (C) C ` (�) . �

A ` e : (�) j (C)

8

The extra hypotheses ensure that the e�ect of a sub-

stitution rule can always be cancelled by a subtyping rule.

Consider a typing derivation. At any point in this deriva-

tion, we can insert a substitution rule, immediately followed

by a subtyping rule which cancels it. Now, the subtyping

rule can be pushed towards the bottom of the proof, and

eventually discarded, yielding a proof which has the same

skeleton as the original proof, except a substitution rule has

been added to it. This shows that the inference algorithm

can use the substitution rule at any point without fear or

failing in the future.

11 Correctness of the new typing rules

Because the substitution rule is derived from the other rules,

and because the connexity rule and the subtyping rule com-

mute with the four basic typing rules, adding our two new

rules to the type system does not a�ect the set of typable

programs. What's more,

Theorem 11.1 The extended type system has subject re-

duction.

Proof: (Sketch) Consider a typing judgement A ` e : � j

C. Since the substitution rule is derived from other rules,

there exists a proof of this judgement which doesn't use the

substitution rule. Since the connexity rule, as well as the

subtyping rule, commutes with the four basic rules

8

, the

proof can be rewritten so as to use these two rules only at

the bottom of the proof, and we have a typing A ` e : �

0

j C

0

which uses only the four basic rules. Now, assume expression

e reduces into e

0

. Because the original typing system has

subject reduction, there exists a proof of A ` e

0

: �

0

j C

0

in

the original system (consisting of the �ve rules in �gure 3).

Now, the same sequence of rules which was used to derive

A ` e : � j C from A ` e : �

0

j C

0

can be used to derive

A ` e

0

: � j C. 2

12 Choosing adequate substitutions

Given a typing judgement and a substitution , we have de-

�ned how to formally verify whether can be safely applied

to this judgement. Now, a practical simpli�cation algorithm

needs to be able to determine which substitutions are likely

to succeed on a given constraint set. This is important both

for speed and for e�ectiveness of the simpli�cation process.

Here, we have only heuristics. We give a few of them

below. More study is needed in this area, as we have no

formal results.

12.1 Basic heuristics

One heuristic is to look for cycles and eliminate them by

identifying all variables within a cycle.

Another idea is to look only for substitutions which af-

fect one variable at a time (although this is not su�cient,

see 12.3). Consider a variable �. Two likely candidates

for its replacement are the least upper bound of �'s lower

bounds in C, and, symmetrically, the greatest lower bound

8

The connexity rule does not exactly commute: when pushing it

towards the bottom, it yields a constraint set smaller than the original

set. This is not a problem | this change has to be propagated down,

and it obviously can: since there are fewer constraints than there used

to be, no new inconsistencies can appear.

of its upper bounds. For instance, if C contains the con-

straints �.fl

1

: �

1

g and �.fl

2

: �

2

g, trying to replace � with

fl

1

: �

1

; l

2

: �

2

g is probably a good idea. However, the terms

of \least upper bound" and \greatest lower bound" used

above are only informal; unlike Aiken [1], we have no such

notions when the types involved contain variables. When

our heuristic encounters type variables, for instance when

\computing" �t �, it tries both choices, � and �, one after

the other.

12.2 Turning recursive constraints into equations

We �nd it desirable, whenever possible, to replace recursive

constraints with equations, because a type variable involved

in a recursive equation is easily understood as a �xpoint,

whereas the e�ect of recursive constraints is less clear. We

have found that this is possible in many cases. For instance,

if we write a function which computes the length of a list,

the following type might be inferred for it:

[Nil j Cons of � � �]! int j f� . [Nil j Cons of � � �]g

Here, the type variable �, which obviously represents lists

of elements of type �, is bound by a recursive constraint,

instead of an equation.

Using the subtyping rule, we can introduce a new equa-

tion into the constraint set

 = [Nil j Cons of � �]

where is a fresh variable

9

.

We can now apply the substitution [=�]. To verify that

the premises of the substitution rule are met, we need to

show

� . [Nil j Cons of � � �]; = [Nil j Cons of � �] ` � .

which is immediate using the entailment algorithm. Hence,

our function has type

[Nil j Cons of � �]! int j f = [Nil j Cons of � �]g

and we have e�ectively replaced the constraint with an equa-

tion.

12.3 One variable at a time is not enough

The suggestion to try only substitutions whose domain is a

singleton, although e�cient in most cases, is too restrictive.

For instance, suppose we have inferred type � j C for a

certain expression e, where

C = f� = [Nil j Cons of � � �]; int . �g

This intuitively represents a list of integers, so we would like

to apply substitution [int=�]. However, the substitution

rule requires us to prove that

C ` � = [Nil j Cons of int � �]

which is false.

In fact, the variable � has been introduced only to rep-

resent a recursive type. If the type language had �-binders,

we could write the type of e as

��:[Nil j Cons of � � �] j fint . �g

9

This can be done without fear of making the inference algorithm

fail, because the new constraints are unreachable and could be re-

moved by the connexity rule.

9

which the substitution [int=�] would turn into

��:[Nil j Cons of int � �]

Here, � represents a di�erent �xpoint. This suggests that,

in the language without �-binders, the substitution should

also a�ect �.

Indeed, we can add a fresh variable together with the

equation

 = [Nil j Cons of int �]

in the same way as in 12.2, and then apply substitution

[int=�; =�]. This time the conditions of the substitution

rule are met and we end up with type

 j f = [Nil j Cons of int �]g

as expected.

We have implemented a heuristic which looks for vari-

ables bound by recursive equations, such as �, and extends

the scope of the substitution as described above. It is neces-

sary in practice, for example when simplifying quicksort's

type.

13 Related work

Amadio and Cardelli [3] have de�ned an algorithm to check

whether two types are in the subtype relation. This al-

gorithm uses a set of subtyping hypotheses similar to our

constraint sets, except that there is only one bound per

type variable. Our algorithm presents interesting similar-

ities with theirs. Their rule for dealing with recursive types,

�

A

, reads

� [ft � sg; " � "(t) � "(s)) �; " � t � s

This is similar to our variable elimination rules: variables are

replaced with their bounds and the current goal is added to

the execution trace. Their requirement that types should in

be in canonical form, i.e. the body of a � should not be an-

other �, corresponds to our requirement that the constraint

set should contain no cycles. Their algorithm is complete,

whereas ours isn't. This is because their initial set of as-

sumptions only has equations, while ours contains inclusion

constraints; hence replacing a variable with its bound poses

a problem.

Fuh and Mishra [7] have described several methods for

simplifying constraint sets. Each of them is subsumed by

our substitution rule. The conditions for each of their meth-

ods are su�cient to verify that our substitution rule applies;

however, they do not deal with the more complex cases han-

dled by our rule.

Aiken [2] has built a constraint simpli�cation algorithm

into Illyria, a Lisp implementation of his constraint solver.

Aiken's type language has intersection and union types, so

each type variable has at most one upper bound and one

lower bound. To simplify constraint sets, variables which

occur only in covariant (resp. contravariant) positions are

identi�ed with their upper (resp. lower) bound. This is

a special case of our substitution rule, provided that the

variable's bound can be expressed in our more restricted

type language. Aiken does not seem to handle variables

with mixed variance; our substitution rule does (and such

cases are easily encountered in practice).

Jones [8] has established a general framework for infer-

ring types together with sets of constraints, without speci-

fying the semantics of constraints. Our system is a special

case of his. Namely, his so-called \simpli�cation" rule is a

special case of our subtyping rule (Jones requires that the

constraint sets be equivalent in order to ensure complete-

ness of the type inference algorithm, otherwise the two rules

would be identical), and our substitution rule is a special

case of his \improvement" rule. Indeed, his de�nition of \

improves C" is (informally) equivalent to our requirement

that C ` (C). Of course, Jones' framework is very abstract

and does not tackle the issues of verifying the ` relation and

of �nding adequate substitutions .

Smith [6] has de�ned a rule to remove unreachable con-

straints which is very similar to ours, as well as a series of

substitution rules (replacing a variable by its bound, merg-

ing variables). His method for removing excess constraints is

more powerful than ours, because it tests whether variables

occur in covariant or contravariant positions, whereas ours

only checks whether they appear at all. For instance, given

an expression of type � j fint . �; � . intg, Smith can re-

move the second constraint, whereas we cannot

10

. However,

this does not seem to be a limitation in practice, because

actual constraint sets correspond to a program's data ow,

and variables tend to appear in \natural" positions, so that

Smith's rule has few extra possibilities as compared to ours

| and these cases are usually solved anyway by our sim-

pli�cation rule. Of course, this statement is only informal.

Smith's substitution rules, on the other hand, are restricted

cases of ours (they handle only variables with single variance

and with a single bound).

14 Conclusion

We have evidenced that the constraint-based type inference

system introduced in [5], although theoretically correct, de-

pends on type simpli�cation in order to be useable in prac-

tice. Smith has introduced some simpli�cation rules [6]; we

have shown that most of them can be understood as re-

stricted cases of a general substitution rule. Smith's reacha-

bility rule is similar to our connexity rule, and slightly more

powerful; they were developed independently.

We have de�ned a new notion of entailment, which gives

great power to the subtyping rule. Our substitution rule

makes use of entailment, so we have introduced an algo-

rithm to verify entailment and proven its soundness. The

algorithm, although incomplete, seems to be powerful and

gives good results in actual use.

Building on work by Palsberg [11], we have related con-

sistency to solvability and proved that our notion of entail-

ment is equivalent to a more natural, semantic one.

Several directions for future work can be followed. First,

determining whether it is possible to strengthen the algo-

rithm so as to achieve completeness with respect to entail-

ment is desirable. Then, as mentioned in section 12, comes

the issue of choosing adequate substitutions, which has not

been formally investigated yet.

It might desirable to �nd a better formulation for the typ-

ing rules. For instance, we often had the intuition that un-

reachable variables should be existentially quanti�ed, thus

easing some thorny renaming problems. Also, it might be

possible to enhance the generalization rule. Currently it en-

ters the whole constraint set into the environment and each

instantiation rule duplicates the constraints; ideally, only

10

Extending our connexity rule after Smith might be possible but

is not trivial | it breaks our proof of the substitution lemma.

10

constraints which have an e�ect on the generalized variables

should be duplicated and instantiated.

Finally, a desirable goal is to obtain principal types. Yet,

even if one achieves it, the notion of \simplest" type remains

subjective, because there seems to be no way to prove that

no other type inference system will yield a \simpler" type

for a given program.

Attaining these goals would allow a better understanding

of subtyping constraints. The results obtained so far, both

theoretical and practical, are promising and encourage us to

continue investigating this �eld.

References

[1] Alexander Aiken and Edward L. Wimmers. Type in-

clusion constraints and type inference. In Conference

on Functional Programming Languages and Computer

Architecture, pages 31{41. ACM press, 1993.

[2] Alexexander Aiken. Illyria system, 1994. Available on-

line as http://http.cs.berkeley.edu:80/~aiken/ftp

/Illyria.tar.gz.

[3] Roberto M. Amadio and Luca Cardelli. Subtyping re-

cursive types. In Proceedings of the Eighteenth ACM

Symposium on Principles of Programming Languages,

pages 104{118, Orlando, FL, January 1991. Also avail-

able as DEC Systems Research Center Research Report

number 62, August 1990.

[4] Luca Cardelli. A semantics of multiple inheritance. In

Semantics of Data Types, volume 173 of Lecture Notes

in Computer Science, pages 51{68. Springer Verlag,

1984. Also in Information and Computation, 1988.

[5] J. Eifrig, S. Smith, and V. Trifonov. Type inference

for recursively constrained types and its application to

OOP. In Mathematical Foundations of Programming

Semantics, New Orleans, volume 1 of Electronic Notes

in Theoretical Computer Science. Elsevier, 1995. To

appear. Currently available as ftp://ftp.cs.jhu.edu

/pub/scott/ooinfer.ps.Z.

[6] Jonathan Eifrig, Scott Smith, and Valery Trifonov.

Sound polymorphic type inference for objects. In OOP-

SLA'95, 1995. Available as ftp://ftp.cs.jhu.edu

/pub/scott/sptio.ps.Z.

[7] You-Chin Fuh and Prateek Mishra. Polymorphic sub-

type inference: Closing the theory-practice gap. In

TAPSOFT'89, 1989.

[8] Mark Jones. Simplifying and improving quali�ed types.

Technical Report YALEU/DCS/RR-1040, Yale Univer-

sity, New Haven, Connecticut, USA, June 1994.

[9] John C. Mitchell. Coercion and type inference. In

Eleventh Annual Symposium on Principles Of Program-

ming Languages, 1984.

[10] Jens Palsberg. E�cient type inference of object types.

In Ninth Annual IEEE Symposium on Logic in Com-

puter Science, pages 186{195, Paris, France, July 1994.

IEEE Computer Society Press. To appear in Informa-

tion and Computation.

[11] Jens Palsberg and Patrick O'Keefe. A type system

equivalent to ow analysis. To appear in Proc. POPL

95. Currently available as ftp://ftp.daimi.aau.dk/

pub/palsberg/papers/popl95.ps.Z, 1995.

A De�nition of solvability

De�nition A.1 Let � be a ranked alphabet composed of:

� ?, > with null arity

� Atomic types (int, bool, etc.) with null arity

� !, � with arity 2

� fg

I

with arity j I j, for each set of labels I

� []

I

with arity j I j, for each set of labels I

A ground type is a regular tree over �. A path from the

root of such a tree is a string over P = fd; r; f; sg [IN ,

where d and r stand for \domain" and \range" respectively,

f and s stand for \�rst" and \second", and a natural integer

indicates a record or variant �eld number.

De�nition A.2 A ground type is represented by a ground

term, that is, a partial function from P

�

to � which maps

each path to the symbol at the end of that path. The set of

all such terms is denoted T

�

.

Ground types are ordered by the subtype relation �, as

follows.

De�nition A.3 The parity of p 2 P

�

, denoted �p, is the

number of d's in p, taken modulo 2. Let �

0

be the partial

order on � given by

8� 2 � ? �

0

� �

0

>

I � J) fg

J

�

0

fg

I

J � I) []

J

�

0

[]

I

and let �

1

be its reverse

8� 2 � > �

1

� �

1

?

J � I) fg

J

�

1

fg

I

I � J) []

J

�

1

[]

I

Two trees s; t 2 T

�

are in the subtype relation s � t if and

only if

8p 2 Dom(s) \Dom(t) s(p) �

�p

t(p)

We can now de�ne the notion of solvability:

De�nition A.4 Let C be a constraint set. Let ' be a map

from FV(C) to T

�

. ' is said to be a solution of C if and

only if

8�

1

. �

2

2 C '(�

1

) � '(�

2

)

The set of all solutions of C is denoted S(C). C is solvable

if and only if S(C) 6= ;.

B Correctness of the entailment algorithm

This appendix contains a sketch of the proof of correctness

for our entailment algorithm. Reading it is not necessary to

gain an understanding of the paper.

11

B.1 Weaker notions of solvability and entailment

Le k � 0. We de�ne a new ordering relation on ground

terms, denoted �

k

, by saying that s �

k

t if and only if

8p 2 Dom(s) \Dom(t) j p j< k) s(p) �

�p

t(p)

�

k

is a weaker version of � which compares trees only up

to depth k.

Now, by replacing � with �

k

in the de�nitions of S and

j=, we obtain weaker notions of solutions of a constraint set,

and of entailment, denoted S

k

and j=

k

.

These new notions of entailment are related to the regu-

lar entailment relation by the following implication:

(8k � 0 C

1

j=

k

C

2

)) C

1

j= C

2

k-entailment shares the three basic properties of entail-

ment given in section 5.5.

B.2 Sketch of the proof

We now want to prove that the algorithm is sound, i.e. if

C; ;; ; ` �

1

.�

2

, then C j= �

1

.�

2

, where �

1

.�

2

is a generalized

constraint.

The proof is made di�cult by the existence of the induc-

tion rule (2). We would like to prove directly that

C;H

1

; H

0

` �

1

. �

2

) C j= �

1

. �

2

but this is obviously false in the absence of any hypothesis on

H

1

. Rather than trying to express a complex invariant for

H

1

, we choose to build an inductive proof based on relation

j=

k

.

Let P be a proof of assertion C;H

1

; H

0

` �

1

. �

2

. One

calls depth of P the number of propagation rules used in the

shortest branch topped by an induction rule. If the proof

uses no induction rule at all, the depth of P is said to be

in�nite.

The proof of correctness is cut into two parts. The hard-

est part is proving

Theorem B.1 If C;H

1

; H

0

` �

1

. �

2

has a proof of depth

k, then

8k

0

� k C j=

k

0

�

1

. �

2

The proof is by induction on the proof's structure. The

idea here is that the induction rule is considered \unsafe",

because it takes a hypothesis fromH

1

, and we know nothing

about H

1

. So, if all induction rules are used at depth k or

deeper, we should be able to show C j=

k

0

�

1

. �

2

, which

involves only constraints derived with a derivation of height

k � 1 at most. Note that in the proof of this theorem, the

case of the induction rule is trivial, because then k = 0, and

relation j=

0

holds for all constraint sets.

The second part of the proof consists in the following

theorem:

Theorem B.2 Let P be a proof of assertion C; ;; ; ` �

1

.�

2

of �nite depth k. Then there exists a proof P

0

of the same

assertion, with depth strictly greater than k.

This is rather easy to understand. Whenever the induc-

tion rule is used in a proof, the current goal is part of H

1

,

so it has been encountered before. Instead of using the in-

duction rule immediately, one can modify the proof to use

regular rules. Necessarily, the same goal will be encountered

later, and only then will the induction rule be used. This

causes at least one more propagation rule to be used (be-

cause the goal was in H

1

, and only propagation rules add

goals toH

1

). So, doing this for every induction rule at depth

k yields a proof of depth strictly greater than k.

The combination of these two theorems gives the sound-

ness theorem:

Theorem B.3 Let C be a constraint set and �

1

, �

2

be type

terms. Then

C; ;; ; ` �

1

. �

2

) C j= �

1

. �

2

If a proof of C; ;; ; ` �

1

.�

2

exists, then there exist proofs

of arbitrary depth, thanks to theorem B.2. So, according

to theorem B.1, C j=

k

�

1

. �

2

holds for arbitrarily large k.

Hence, C j= �

1

. �

2

holds.

12

