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Abstrat

This paper o�ers a theoretial study of onstraint simpli�ation, a fundamental

issue for the designer of a pratial type inferene system with subtyping.

In the simpler ase where onstraints are equations, a simple isomorphism between

onstrained type shemes and �nite state automata yields a omplete onstraint sim-

pli�ation method. Using it as a guide for the intuition, we move on to the ase of

subtyping, and desribe several simpli�ation algorithms. Although no longer om-

plete, they are oneptually simple, eÆient, and very e�etive in pratie.

Overall, this paper gives a onise theoretial aount of the tehniques found at the

ore of our type inferene system. Our study is restrited to the ase where onstraints

are interpreted in a non-strutural lattie of regular terms. Nevertheless, we highlight

a small number of general ideas, whih explain our algorithms at a high level and may

be appliable to a variety of other systems.

1 Introdution

1.1 Subtyping and type inferene

In a typed programming language, a funtion appliation (e

1

e

2

) is legal if and only if there

exists a type �

2

whih is both a valid type for the argument e

2

and a valid domain type for

the funtion e

1

.

In the simply-typed �-alulus, the set of all valid types of a given (un-annotated) ex-

pression e has a very regular struture: it is either empty, or exatly the set of all substi-

tution instanes of a most general type � . Then, inferring the (most general) type of an

expression redues to solving a set of equations between types [Wan87℄. The addition of

let-polymorphism, as done in ML [Mil78℄, essentially preserves this fat.

These systems have type instantiation as their only notion of type ompatibility. In

partiular, they view any two ground types as inompatible unless they are equal. For

instane, assume mahine integers and oating-point numbers are desribed by two base

types, namely int and real. Then, the appliation (fat x) is illegal if fat and x have

(most general) types int ! int and real, respetively. This is a good point, sine it is

ertainly a programming error. On the other hand, if log and n have (most general) types

real ! real and int, respetively, then the appliation (log n) is deemed illegal as well.

Yet, beause integers are mathematially a subset of reals, one may atually wish for this

term to be aepted.

To overome this limitation, Mithell [Mit84℄ suggests enrihing these type systems with

subtyping. This involves introduing a partial order � on types, together with a new typing

�
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rule, stating that if � � �

0

holds (read: if � is a subtype of �

0

) then every expression of

type � has type �

0

as well. For instane, hoosing the strit ordering int < real auses

(fat x) to remain ill-typed, while (log n) beomes well-typed, beause n : int now implies

n : real. Subtyping is not, in general, limited to base types: Cardelli [Car88℄ equips reord

types with a natural subtyping relation, allowing information about any number of �elds to

be disarded. In addition to its intrinsi interest, suh a system provides a possible basis

for the study of objet-oriented languages.

Systems equipped with subtyping have a ombination of type instantiation and subtyping

as their notion of type ompatibility. As a result, the type inferene problem no longer

redues to solving a set of equations. Instead, it requires solving a set of inequalities,

usually alled onstraints [Mit84, Pal95℄. This proess is theoretially straightforward, but

ostly, beause the eÆient uni�ation algorithms developed to solve equations [JK90℄ an

no longer be used.

Why, then, should we wish to perform type inferene? Would it not be suÆient to

require the programmer to supply type annotations, and merely hek their onsisteny?

Let us give two reasons why type inferene is useful. First, it frees the programmer from the

burden of delaring the type of every program variable|a tedious task in many widespread

languages|and allows him to naturally write polymorphi ode. Seond, type inferene

may be viewed as a simple way of desribing program analyses [PO95℄, whose results may

be used, for instane, to drive ompiler optimizations.

1.2 Simpli�ation

Our aim, then, is to study the type inferene problem in the presene of subtyping, and to

ompare it with the original problem, where subtyping is redued to equality.

The onstraint system to be solved is the same in both ases; its size is linear in the

program size. (Though let-polymorphism may, in fat, ause it to grow exponentially, it

is an aepted fat that it \usually" does not.) However, while equations an be solved

in quasi-linear time, solving inequalities between (non-atomi) terms typially requires (at

least) ubi-time algorithms [AW93, Pal95, MR00℄. Thus, an eÆieny problem appears.

Every uni�ation problem admits a most general solution. Thus, in the absene of

subtyping, every program has a most general type. It is often ompat and easily intelligible.

On the other hand, many lasses of subtyping problems do not have most general solutions.

Then, desribing the set of all valid types of a given program requires printing the onstraint

system itself, whih often involves many auxiliary type variables. Thus, a readability issue

also arises.

To address these problems, it seems neessary to simplify systems of subtyping on-

straints, i.e. to redue them to smaller, equivalent systems. This topi has reeived ontinued

attention in the past few years [Aik94, AF96, AWP96, FFSA98, AFFS98, F�ah99, EST95a,

TS96, FF96, FF97, Fla97, Pot96, Pot98a, Pot98b, Pot98℄. Indeed, designing a reasonable

simpli�ation algorithm is not easy. It must be orret and eÆient. Ideally, it should also

be omplete, i.e. produe optimal results. Unfortunately, ahieving ompleteness involves

solving the onstraint entailment problem, whih may be muh more omplex than on-

straint solving. In our framework, for instane, entailment has been shown PSPACE-hard,

but its deidability is still unsettled [HR98, NP99℄. For this reason, pratial onstraint

simpli�ation algorithms are often inomplete.

1.3 Choies

De�ning a type system with subtyping involves two main hoies. First, one must hoose

a onstraint logi, i.e. de�ne a onstraint language and its interpretation within a model.
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Seond, one must de�ne a set of typing rules. Beause typing judgements involve onstraints,

the rules redue the typing problem to a series of assertions expressed within the onstraint

logi. These two hoies are mostly orthogonal, as pointed out by [OSW99℄.

As far as the �rst hoie is onerned, the array of possibilities is extremely wide. The

model may have ovariant type onstrutors only, or it may have ontravariant onstrutors

as well. (In the former ase, onstraint systems may have smallest solutions.) It may or may

not have reursive types. (If present, they may give smoother mathematial properties to

the model, leading to simpler algorithms.) The model, equipped with the subtype ordering,

may or may not form a lattie. (If it does, then more aggressive simpli�ations beome

valid.) Types may be interpreted as ideals [MPS86℄ or as terms. (The former interpretation

assigns more preise meanings to union and intersetion types. On the other hand, it may

be more omplex; axioms suh as ? = (?), where  is any unary strit type onstrutor,

make onstraint solving more diÆult.) When types are interpreted as terms, subtyping

may be atomi (i.e. only onstant type onstrutors may be omparable), strutural (i.e.

only type onstrutors of idential arity may be omparable), or non-strutural (even type

onstrutors with di�erent arities may be omparable). Constraints may be interpreted

within a �xed model, or within a family thereof. (If the former, then deeper simpli�ations

are usually possible. On the other hand, user-extensible subtype hierarhies require the

latter.)

Changes in the onstraint logi greatly a�et the omplexity of the resolution and en-

tailment problems (as well as the formulation of the orresponding algorithms). For this

reason, we will fous on a single ase, while hoping that (some of) our methods may be

appliable to (some) other logis. More spei�ally, we hoose to interpret types in the �xed

model of all regular terms generated by ?, ! and >, with arities 0, 2 and 0, respetively.

Subtyping is interpreted in the model by ordering these onstrutors as given and viewing!

as a ontra/o-variant type onstrutor. This yields a non-strutural subtyping relationship,

whih forms a lattie. Although this ase may seem very simple, generalizing it to more

elaborate non-strutural term latties is straightforward (see e.g. [Pot00a℄) and requires no

fundamental hanges to the theory or to the algorithms.

The seond hoie de�nitely has less impat on the system as a whole. Although many

variants have appeared in the literature, most of them are very lose in spirit. The idea is

to extend the Hindley-Milner type disipline [Mil78℄ with onstraints, while keeping let-

polymorphism. Perhaps the most elegant formal exposition of this idea is the system HM(X)

by Odersky, Sulzmann et al. [OSW99, SMZ99℄. Here, however, we will use a set of typing

rules inspired by Trifonov and Smith [TS96℄, with a few tehnial modi�ations to the type

inferene rules. This somewhat unommon presentation allows us to deal with losed (i.e.

fully universally quanti�ed) type shemes only, making a formal desription of onstraint

simpli�ation|the entral topi of the present paper|easier.

1.4 Overview

In this paper, we present a type inferene system with subtyping, designed with onstraint

simpli�ation in mind. Its inferene rules are written so as to generate amenable onstraint

systems. We desribe three simpli�ation algorithms, designed to be used in ombination

with one another; they are simple, eÆient and e�etive. We emphasize the parallel between

the ase of equality and that of subtyping, and show that these algorithms are based, in

both ases, on the same broad ideas. In fat, in the ase of equality, their ombination

yields a omplete simpli�ation strategy. Although it is no longer omplete in the ase of

subtyping, we believe it produes good results in pratie.

This paper is laid out as follows. Setion 2 introdues the neessary theoretial bak-

ground, namely a set of ground types ordered by subtyping, a ore language, a set of typing
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rules, and an equivalent set of type inferene rules. The type inferene rules desribe a

deterministi algorithm, whih maps an expression to a onstrained type sheme. The on-

straints thus generated may be viewed, at will, as equations or as subtyping onstraints.

In the former ase, we obtain a type inferene system lose to that of ML; in the latter,

a system equipped with the full power of subtyping. Setion 3 studies the simpler one,

and suggests a omplete simpli�ation method by borrowing onepts from automata the-

ory. This setion should help the reader form general intuitions about the struture and

behavior of onstraints. We hope these ideas are appliable in other ontexts; in partiular,

they may be transferred to our more omplex system, whih is the topi of setion 4. In

this setion, whih forms the theoretial body of the paper, we formally desribe and prove

several onstraint simpli�ation algorithms, based on the same ideas. Setion 5 shows these

algorithms at work on a simple example. Setion 6 reviews related work.

This paper borrows ideas from several existing works. One of its novel aspets is their

seamless integration: we desribe a lean, simple theory, whih leads diretly to an eÆient

implementation [Pot00b℄. Another ontribution is in the area of presentation. First, thanks

to a arefully thought-out mathematial layout, we are able to present our formal results

with almost no auxiliary steps, and with substantially smaller proofs than in earlier works.

Seond, we highlight the similarity of our methods with those appliable in the ase of

equality onstraints; by doing so, we hope to help the reader grasp the essential ideas behind

our algorithms. Thus, this paper may onstitute a good introdution to the theoretial issues

behind onstraint-based type inferene.

Before beginning our tehnial exposition, let us reall that the fous of this paper is

on onstraint simpli�ation. Beause of this deision, several issues related to the design

of a onstraint-based type inferene system have been left aside. Among them, one may

mention ertain fundamental theoretial results, suh as type safety; various implementa-

tion onerns, inluding eÆieny measurements; extensions of the ore language neessary

to obtain a full-blown programming language; et. These issues are disussed at length

in [Pot98, Pot98b℄. Lastly, we do not address the issue of entailment, i.e. we do not

attempt to give an algorithm to deide whether two given type shemes are in the sub-

sumption relation. Indeed, we do not have a need for suh an algorithm, beause all of

the simpli�ation algorithms presented in this paper provably preserve the meaning of their

input. Nevertheless, the entailment problem is losely linked to the issue of onstraint

simpli�ation; we refer the interested reader to [AC93, KPS93, Pot98, HR98, NP99℄.

2 A onstraint-based type inferene system

2.1 Ground types

Ground types are the regular trees built with the elementary onstrutors?, > and!. They

are the simplest kind of types, sine they are (possibly reursive) types without variables.

They are monomorphi; polymorphism shall be introdued later by onsidering type shemes

whih denote sets of ground types.

De�nition 1 Let the ground signature �

g

onsist of ? and > with arity 0 and ! with

arity 2. A path p is a �nite string of 0's and 1's, i.e. an element of f0; 1g

�

. � denotes

the empty path. The length of a path p is denoted by j p j. Its parity �(p) is the number of

0's it ontains, taken modulo 2. A ground tree � is a partial funtion from paths into �

g

,

whose domain is non-empty and pre�x-losed, and suh that �(p0) and �(p1) are de�ned

i� �(p) = !. Given p 2 dom(�), the subtree of � rooted at p, written �

jp

, is the tree

q 7! �(pq). A tree is �nite i� its domain is �nite. A tree is regular i� it has a �nite number

of subtrees. A ground type is a regular ground tree. We denote the set of ground types by
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T. ? (resp. >) stands for the tree � suh that dom(�) = f�g and �(�) = ? (resp. >). If

�

0

and �

1

are trees, �

0

! �

1

stands for the tree � de�ned by �(�) = !, �(0p) = �

0

(p) and

�(1p) = �

1

(p).

The set of ground types is equipped with a partial order, alled subtyping.

De�nition 2 A family of orderings over ground types is de�ned indutively as follows.

First, �

0

is uniformly true. Seond, for any k 2 N

+

, � �

k+1

�

0

holds i� at least one of the

following is true:

� � = ?;

� �

0

= >;

� 9�

0

�

1

�

0

0

�

0

1

� = �

0

! �

1

, �

0

= �

0

0

! �

0

1

, �

0

0

�

k

�

0

and �

1

�

k

�

0

1

.

Subtyping, denoted by �, is the intersetion of these orderings.

(T;�) forms a lattie. Its operators t and u an be de�ned in several ways, e.g. using

automata produts, �nite approximations or a �x-point theorem. But their de�nition is of

little interest in itself, and we shall be ontent with the following haraterization.

Theorem 1 The set of ground types T, equipped with the subtyping relation, is a lattie.

We denote its least upper bound and greatest lower bound operators by t and u, respe-

tively. These operators are of ourse assoiative and ommutative. In addition, they are

haraterized by the following identities:

? t � = � ? u � = ?

> t � = > > u � = �

(�

1

! �

2

) t (�

0

1

! �

0

2

) = (�

1

u �

0

1

)! (�

2

t �

0

2

)

(�

1

! �

2

) u (�

0

1

! �

0

2

) = (�

1

t �

0

1

)! (�

2

u �

0

2

)

2.2 Types

We will soon desribe our type system, whih is a logi for deriving typing judgments about

programs. We wish the system to enjoy most general typings: so, informally speaking, the

set of a program's ground types should be expressible with a single typing judgment. That

is, a possibly in�nite set of possibly in�nite ground types should be desribed by a single

logial assertion|whih must be �nite. To allow this, we now introdue types, whih may

ontain type variables. Using reursive onstraints on variables, any given ground type an

be �nitely desribed; in addition, quanti�ation over type variables allows giving a �nite

desription of ertain in�nite sets of ground types. To sum up, type variables serve two

di�erent purposes: they enode reursive struture, and they allow polymorphism.

De�nition 3 Let V be a denumerable set of type variables, denoted by �, �, et. The set

of types, denoted by T , is de�ned by

� ::= � j ? j > j � ! �

A type is said to be onstruted i� it is not a variable.

De�nition 4 A ground substitution is a total mapping from type variables to ground types.

A renaming is a bijetion between two subsets of V. Ground substitutions and renamings

are straightforwardly extended to types.
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De�nition 5 The sets of positive and negative free variables of a type � , respetively

denoted by fv

+

(�) and fv

�

(�), are de�ned by

fv

+

(�) = f�g fv

�

(�) = ?

fv

+

(?) = ? fv

�

(?) = ?

fv

+

(>) = ? fv

�

(>) = ?

fv

+

(�

0

! �

1

) = fv

�

(�

0

) [ fv

+

(�

1

) fv

�

(�

0

! �

1

) = fv

+

(�

0

) [ fv

�

(�

1

)

The set of free variables of � , denoted by fv(�), is de�ned by

fv(�) = fv

+

(�) [ fv

�

(�)

2.3 Constrained type shemes

Like that of ML, our type system o�ers let-polymorphism. Thus, typing judgments asso-

iate programs not merely with types, but with type shemes.

A onstrained type sheme is essentially a type|its body|where variables are allowed

to assume arbitrary values, within the limits of ertain onstraints. Hene, a type sheme

represents a set of ground types, whih is obtained|roughly speaking|by applying all

solutions of the onstraints to the body.

Constraint-based type systems have appeared in order to deal with subtyping assump-

tions in typing judgments. However, they an also desribe lassi equality-based systems,

suh as ML itself. For this reason, we will give two variants of our type system: one where

onstraints are to be interpreted as equations, and one where they truly denote subtyping

relationships. The former is of ourse simpler, but still interesting, beause it presents many

ommon points with the latter, espeially in the area of onstraint simpli�ation, where the

same broad onepts apply. Studying it �rst will allow us to identify methods whih gener-

ally apply to all onstraint-based systems, as opposed to those spei� to our interpretation

of subtyping.

However, even in the simpler ase, our system exhibits a signi�ant departure from

ML, beause, following Trifonov and Smith [TS96℄, we hoose a formulation where all type

shemes are losed, i.e. with no free type variables.

This deision gives rise to a system where type shemes are stand-alone: their meaning

does not depend on any external assumptions. (De�ning the denotation of a type sheme

with free type variables would require supplying an assignment of ground types to these free

variables.) It also removes the need to maintain a global onstraint set, onstraining those

variables whih are free in the environment, sine there are none. Furthermore, we will

notie that two distint branhes of a type inferene derivation now share no type variables.

These properties lead to a simpli�ation, and a better understanding, of the theory, as well

as to a more straightforward implementation.

In ML, it is inorret to generalize over a type variable if it appears free in the envi-

ronment. So, how an we hope to be able to universally quantify over all variables? The

solution is to move the environment into the type sheme itself. This presentation is known

as �-lifting, for it essentially amounts to pretending that we are dealing solely with losed

program terms. Its funtioning will be detailed by the typing rules (see setion 2.4). More

preisely, information onerning let-bound variables remains stored inside an external en-

vironment, while information about �-bound variables appears in a ontext whih is part of

type shemes.

De�nition 6 Assume an ordering � on ground types, whih an be hosen to be = or �.

The forthoming de�nitions depend on the hoie on �, so we end up de�ning two variants

of the type system, based either on equality or on subtyping.
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De�nition 7 Assume a denumerable set of �-identi�ers, denoted by x, y, ...

De�nition 8 A ground ontext is a �nite map from �-identi�ers to ground types. The

ordering � is extended to ground ontexts as follows:

A �A

0

() 8x 2 dom(A

0

) x 2 dom(A) ^ A(x) �A

0

(x)

A ground type is a pair of a ground ontext A and a ground type � , written A ) � . The

ordering � is extended to ground types by setting

(A) �) � (A

0

) �

0

) () (A

0

�A) ^ (� � �

0

)

De�nition 9 A ontext A is a �nite map from �-identi�ers to types. If x 62 dom(A), then

A[x 7! � ℄ is the ontext whih extends A by mapping x to � . if x 2 dom(A), then Anx is the

ontext whih is unde�ned at x and whih oinides with A elsewhere. A type is a pair of a

ontext A and a type � , written A) � . Ground substitutions are extended straightforwardly

to ontexts and types.

De�nition 10 A onstraint is a pair of types, written � � �

0

. A ground substitution � is a

solution of it i� �(�) � �(�

0

); we then write � ` � � �

0

. When � stands for �, we say � is

a k-solution of � � �

0

i� �(�) �

k

�(�

0

); we then write � `

k

� � �

0

. We write � ` C (resp.

� `

k

C) when � `  (resp. � `

k

) holds for all  2 C.

De�nition 11 Type shemes are de�ned by

� ::= A) � j C

where A denotes a ontext, � a type and C a onstraint set. (The symbol j should be

interpreted here as a literal, not as a hoie.) Let fv(�) stand for the set of all type variables

whih appear in A, � or C. The order of � is j fv(�) j.

Intuitively speaking, all variables of a type sheme are to be onsidered as universally quan-

ti�ed. However, we shall not write any quanti�ers expliitly. Formally speaking, no impliit

�-onversion is allowed on type shemes; �-onversion shall be dealt with expliitly. This

deision allows a rigorous desription of the way fresh variables and renamings are handled.

We now de�ne the denotation of a type sheme as a set of ground types.

De�nition 12 The denotation J�K of a type sheme � is the union of the �-upper ones

generated by its ground instanes. That is,

JA) � j CK = fA

0

) �

0

; 9� ` C �(A) �) �A

0

) �

0

g

Informally speaking, a type sheme is simply a way of desribing a set of ground types.

Thus, its denotation is preisely this set, i.e. the set of ground types whih the program

would reeive in a system without polymorphism. Sine subtyping allows weakening a

program's ground type, it is natural for a sheme's denotation to be upward losed, hene

the use of upper ones in its de�nition. It is now lear that a type sheme is more general

than another one i� it represents a larger set of ground types; thus, subsumption between

type shemes is de�ned as set-theoreti inlusion of their denotations, as follows.

De�nition 13 Given two type shemes �

1

and �

2

, the former is said to be more general

than the latter i� J�

1

K � J�

2

K; we shall then write �

1

4 �

2

. In other words, �

1

is more

general than �

2

i� for any ground instane of �

2

, there exists a ground instane of �

1

whih

is smaller with respet to �. Formally,

(A

1

) �

1

j C

1

) 4 (A

2

) �

2

j C

2

)
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is thus equivalent to

8�

2

` C

2

9�

1

` C

1

�

1

(A

1

) �

1

) � �

2

(A

2

) �

2

)

We write �

1

� �

2

when �

1

4 �

2

and �

2

4 �

1

.

The relation 4 was introdued in [TS96℄, where it is written �

8

.

2.4 Typing rules

The language we are interested in is ore ML, that is, a �-alulus equipped with a let

onstrut. For the sake of simpliity, we separate �-bound identi�ers from let-bound ones,

by plaing them in two distint syntati lasses.

De�nition 14 Assume given a denumerable set of let-identi�ers, denoted by X, Y , ...

Expressions are de�ned by

e ::= x j �x:e j e e j X j letX = e in e

De�nition 15 Environments are de�ned by

� ::= ? j �;X : �

Environment aess is de�ned, as usual, by

(�;X : �)(X) = � (�;Y : �)(X) = �(X) when X 6= Y

Note that environments ontain information about let-bound variables only. Assoiating

types to �-bound variables is done inside type shemes, as shown by the typing rules given

in �gure 1.

De�nition 16 An expression e is well typed in an environment � i� there exists a type

sheme �, whose denotation is non-empty, suh that � ` e : �.

Reall that the denotation of a type sheme A) � j C is non-empty if and only if C admits

a solution. Thus, to determine whether a program is well-typed, one must not only build a

typing derivation, but also make sure that it yields a solvable onstraint set.

Also, reall that the relation 4, as well as the notion of denotation, depend on our hoie

of �. So, there are two variants of this type system, one based on equality, the other based

on subtyping.

In this system, one rule is devoted to eah syntati onstrut; in addition, rule (Sub),

alled the subsumption rule, allows reformulating the type sheme at any point, with great

exibility. It allows arbitrary �-onversions, as well as simpli�ations of the onstraint

system.

These rules aim at simpliity. Still, we expet the unfamiliar reader to wonder why

ontexts are made part of type shemes. Let us explain. Contexts are part of the �-

lifting mehanism, whih allows us to emulate the behavior of ML, while using universally

quanti�ed variables exlusively. But how an we express \monomorphi" types, sine all

variables must be universally quanti�ed? Here is an example. Consider the expression

�x:letY = x in �f:(f Y Y )

Let us type this expression in ML. Y 's type is a monomorphi variable �. So, the two uses

of Y do not involve any instantiation, and the expression's type is � ! (� ! � ! �) ! �.

In our system, on the ontrary, Y 's type is (x : �) ) �, aording to rule (Var). Here,

8



A(x) = �

� ` x : A) � j C

(Var)

� ` e : A[x 7! � ℄) �

0

j C

� ` �x:e : A) � ! �

0

j C

(Abs)

� ` e

1

: A) �

2

! � j C � ` e

2

: A) �

2

j C

� ` e

1

e

2

: A) � j C

(App)

�(X) = �

� ` X : �

(LetVar)

� ` e

1

: �

1

�;X : �

1

` e

2

: �

2

� ` letX = e

1

in e

2

: �

2

(Let)

� ` e : � � 4 �

0

� ` e : �

0

(Sub)

Figure 1: Typing rules

� is (impliitly) universally quanti�ed. So, if one were free to use rule (Sub) to perform

renamings, the two uses of Y ould yield two distint shemes (x : �)) � and (x : )) .

However, the typing rule for funtion appliation requires that its two branhes share the

same ontext. So, neessarily, � and  must be the same variable, and the sub-expression

�f:(f Y Y ) has type (x : �) ) (� ! � ! �) ! �. One the �-abstration is performed,

the whole expression reeives type � ! (� ! � ! �) ! �, as expeted. To sum up, all

variables whih appear in the ontext atually have monomorphi behavior; this is aused by

a sharing onstraint on ontexts, whih is enfored whenever two branhes of the derivation

are brought together. So, we are able to do away with the notion of unquanti�ed type

variable; nonetheless, the system is orret, as stated below.

Statement 1 Let e be an expression satisfying the following two onditions:

� eah �-identi�er is bound at most one within e;

� if letX = e

1

in e

2

is a sub-expression of e, then X appears free within e

2

.

Assume e to be well-typed in the empty environment. Then e is safe with respet to a

all-by-value semantis of the language.

The above two onditions are tehnial. The �rst one is made neessary by the way we \lift"

�-binders through let binders; the seond one is required to make rule (Let) safe with

respet to a all-by-value semantis [TS96℄. They are not restritive, sine any expression

an be rewritten, without altering its semantis, so as to satisfy them. Indeed, to satisfy the

�rst ondition, an appropriate renaming of �-bound variables shall do; to ful�ll the seond

one, it suÆes to replae the onstrut letX = e

1

in e

2

with letX = e

1

in (� :e

2

)X

whenever X does not appear free in e

2

.
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�; � 62 F

[F ℄ � `

I

x : [F [ f�; �g℄ (x 7! �)) � j f� � �g

(Var

i

)

[F ℄ � `

I

e : [F

0

℄ A) �

0

j C A(x) = � � 62 F

0

[F ℄ � `

I

�x:e : [F

0

[ f�g℄ (A n x)) � j C [ f� ! �

0

� �g

(Abs

i

)

[F ℄ � `

I

e : [F

0

℄ A) �

0

j C x 62 dom(A) �; � 62 F

0

[F ℄ � `

I

�x:e : [F

0

[ f�; �g℄ A) � j C [ f� ! �

0

� �g

(Abs'

i

)

[F ℄ � `

I

e

1

: [F

0

℄ A

1

) �

1

j C

1

[F

0

℄ � `

I

e

2

: [F

00

℄ A

2

) �

2

j C

2

[F

00

℄ A

1

^A

2

= [F

000

℄ A j C

m

�; � 62 F

000

C = C

1

[ C

2

[ C

m

[ f� � �; �

1

� �

2

! �g

[F ℄ � `

I

e

1

e

2

: [F

000

[ f�; �g℄ A) � j C

(App

i

)

�(X) = � � renaming of � rng(�) \ F = ?

[F ℄ � `

I

X : [F [ rng(�)℄ �(�)

(LetVar

i

)

[F ℄ � `

I

e

1

: [F

0

℄ �

1

[F

0

℄ �;X : �

1

`

I

e

2

: [F

00

℄ �

2

[F ℄ � `

I

letX = e

1

in e

2

: [F

00

℄ �

2

(Let

i

)

Figure 2: Type inferene rules

The reader may point out that these onditions are not preserved by redution, whih

poses a problem when attempting to express a subjet redution property. However, we shall

not attempt to prove statement 1 in this paper, beause we hoose to fous on the issue

of onstraint simpli�ation. We remove these onditions and give a full subjet redution

proof|for the ase where � stands for the subtyping relation|in [Pot98b, Pot98℄. Doing so

requires a more omplex formulation of the type system, whih is why we hoose simpliity

here.

Lastly, one may notie that safety|with respet to any semantis|omes for free in

the pure �-alulus, sine there are no possible exeution errors. However, the safety proof

given in [Pot98b, Pot98℄ is not based on this remark, and an be extended to more omplex

aluli.

2.5 Type inferene rules

The typing rules introdued above annot be diretly used to infer an expression's type.

First, they are not syntax direted, beause of rule (Sub). Seond, rule (App) plaes

sharing onstraints on its premises: A, �

2

and C appear in both premises. So, we now

de�ne a set of type inferene rules, whih speify a type reonstrution algorithm; they are

given in �gure 2. The main di�erene with the typing rules is the disappearane of the

subtyping rule, whih has been built into the appliation rule. (The \[F ℄" annotations,

although noisy, are trivial; they allow an expliit treatment of fresh variables.)

Rule (App

i

) uses the following de�nition, whih desribes how ontexts are brought
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together whenever two branhes of the derivation meet.

De�nition 17 The assertion [F ℄ A

1

^ A

2

= [F

0

℄ A j C stands, by de�nition, for the

following onjuntion:

� dom(A) = dom(A

1

) [ dom(A

2

);

� 8x 2 dom(A

1

) \ dom(A

2

) A(x) 2 V n F ;

� 8x 2 dom(A

1

) n dom(A

2

) A(x) = A

1

(x);

� 8x 2 dom(A

2

) n dom(A

1

) A(x) = A

2

(x);

� F

0

= F [ fA(x) ; x 2 dom(A

1

) \ dom(A

2

)g;

� C = fA(x) �A

i

(x) ; x 2 dom(A

1

) \ dom(A

2

); i 2 f1; 2gg.

Informally speaking, we say that A is themeet of the two ontextsA

1

and A

2

. It is essentially

the least demanding ontext whih guarantees that both A

1

's and A

2

's expetations about

the expression's runtime environment are ful�lled.

The type inferene rules are sound and omplete with respet to the typing rules|that

is, they infer a most general type sheme for the expression at hand.

Statement 2 The type inferene rules are orret with respet to the typing rules; that is,

[F ℄ � `

I

e : [F

0

℄ � implies � ` e : �.

Statement 3 The type inferene rules are omplete with respet to the typing rules. That

is, if � ` e : � then, for any �nite F � V, there exists a �nite F

0

� V and a type sheme

�

0

4 � suh that [F ℄ � `

I

e : [F

0

℄ �

0

. Furthermore, �

0

is uniquely determined, up to a

renaming, by � and e.

These rules are very lose, in spirit, to those of Trifonov and Smith [TS96℄. However, we

have brought a few subtle, but important modi�ations, so as to produe type shemes

whih satisfy a ouple of interesting properties. First, any suh sheme is made up of small

terms only. Seond, when � stands for the subtyping relationship, the sheme ontains no

bipolar variables. Both properties shall be used throughout the paper to simplify statements

and proofs. We prove the former here; the latter is introdued in setion 4.2.

De�nition 18 A small term is a type term of the form ?, > or �

0

! �

1

, i.e. a term

whose strit sub-terms are type variables. A type sheme A ) � j C is made up of small

terms i� it satis�es the following onditions:

� for all x 2 dom(A), A(x) is a type variable;

� � is a type variable;

� for all (� � �

0

) 2 C, either � and �

0

are type variables, or one is a variable and the

other is a small term.

Theorem 2 If [�℄ F `

I

e : [F

0

℄ �, then � is made up of small terms.

Proof. Straightforward indution on the struture of the type inferene derivation. 2

The small terms property allows reasoning about sharing between sub-terms, and is a key

requirement in our formulation of minimization (see setion 4.5). It is already to be found,

for instane, in the theory of uni�ation [Hue76℄. Among works more losely related to ours,

Aiken and Wimmers [AW92℄ and Palsberg [Pal95℄ use a similar onvention.
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3 Simplifying equality onstraints

We are done introduing our type inferene system, whih spei�es how to assoiate a

onstrained type sheme with a given program. We shall now fous our attention onto the

main issue of interest here: how to simplify an inferred type sheme, without a�eting its

meaning. We begin, in this setion, with the simpler ase where � is hosen to be =, i.e.

where onstraints are equations.

In ommon presentations of equality-based type systems, no equations appear; instead,

their most general uni�ers are omputed diretly. Here, however, we expliitly deal with

equality onstraints, so as to highlight the similarity with the more omplex ase of subtyping

onstraints.

In this setion, and in this setion only, we hoose to deal with simpli�ed type shemes,

of the form � j C. We shall not onern ourselves with ontexts, beause their presene does

not add any diÆulty to the simpli�ation issue.

3.1 Preliminaries

Let us begin with a few straightforward fats onerning term automata [KPS93℄.

De�nition 19 A term automaton is a tuple A = (Q; q

0

; Æ; l) where:

� Q is a �nite set of states,

� q

0

2 Q is the start state,

� Æ : Q� f0; 1g ! Q is a (partial) transition funtion,

� l : Q! �

g

[ V is a labeling funtion,

suh that for any state q 2 Q and for any i 2 f0; 1g, Æ(q; i) is de�ned i� l(q) =!.

A state q 2 Q is said to be free i� its label is a variable, i.e. l(q) 2 V. The order of A

is the number of its states, i.e. jQ j.

A term automaton is essentially a way of representing a type term, possibly reursive and

possibly with free type variables. Suh a representation is more ompat than a lassi tree

representation, beause of its ability to express sharing between nodes.

De�nition 20 Let A = (Q; q

0

; Æ; l) be a term automaton. Extend Æ to a partial funtion

^

Æ : Q � f0; 1g

�

! Q. Then, A desribes a funtion �

A

from paths into �

g

[ V, de�ned by

p 7! l(

^

Æ(q

0

; p)).

Rather than viewing an automaton as a type term, possibly ontaining type variables, we

an also hoose to view it as a set of ground types.

De�nition 21 Let A be a term automaton. The ground instane of A through a ground

substitution � is the ground type � de�ned as follows: for all paths p,

� if �

A

(p) 2 �

g

, then �(p) = �

A

(p);

� if �

A

(p) is a type variable � 2 V, then �

jp

= �(�).

The denotation of a term automaton A is the set of its ground instanes.

Statement 4 A term automaton's denotation is non-empty.

Statement 5 Two term automata A and B have the same denotation i� �

A

and �

B

are

equal up to a renaming of variables.
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� = e � = e

0

� = e = e

0

(Fuse)

e = > = >

e = >

(Deompose

>

)

e = ? = ?

e = ?

(Deompose

?

)

e = �

0

! �

1

= �

0

! �

1

e = �

0

! �

1

�

0

= �

0

�

1

= �

1

(Deompose

!

)

Figure 3: Solving multi-equations

3.2 Simplifying multi-equations

The type inferene algorithm generates equations. However, it is best to introdue a more

general notion of multi-equation, as is often done in works on uni�ation [Hue76, JK90,

R�em92℄.

De�nition 22 A multi-equation is a set of terms f�

1

; : : : ; �

n

g, written �

1

= � � � = �

n

. An

equality onstraint �

1

= �

2

an be viewed as a multi-equation. The notion of solution is

extended straightforwardly to multi-equations and to sets thereof. A multi-equation is made

up of small terms i� all of its members are variables or small terms.

In order to determine that a program is well-typed, we need to make sure that its asso-

iated type sheme has a non-empty denotation, i.e. that its onstraint set has a solution.

This is done by applying a set of rewriting rules to the multi-equation set, as follows.

Theorem 3 Consider a type sheme � = �

0

j C, where C is a multi-equation set, made

up of small terms. Rewrite C aording to the rules of �gure 3, until none applies; let C

0

denote the result of this proess. Then, C

0

is also made up of small terms, and has the same

solutions as C. Furthermore,

� if C

0

ontains at least one multi-equation of the form e = � = �

0

, where neither � nor

�

0

are variables, then J�K is empty;

� otherwise, C

0

is said to be in anonial form. It an easily be viewed as a term

automaton, whose order equals that of �, and whose denotation oinides with J�K.

As a orollary, J�K is non-empty.

Proof. With an appropriate de�nition of weight (e.g. give weight 1 to variables, ? and >,

and weight 2 to the ! symbol), it is easy to verify that eah rewriting rule auses the total

weight of the multi-equation set to derease. Hene, the proess must terminate. Eah

rewriting rule obviously preserves the solution spae, as well as the small terms property.

Assume C

0

ontains a multi-equation with two non-variable terms. Then, these terms

must have inompatible head onstrutors, beause none of the deomposition rules in �g-

ure 3 applies. So, C

0

has no solution. On the other hand, assume C

0

is in anonial form;
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then, eah multi-equation ontains at most one non-variable term. Additionally, beause

rule (Fuse) no longer applies, eah variable appears in at most one multi-equation. In

eah multi-equation, hoose a unique representative, equal to its non-variable term when

it has one, and to an arbitrary member otherwise. For eah � 2 fv(�), let repr(�) denote

the representative of �'s multi-equation, if � appears in some multi-equation, and � itself

otherwise. De�ne a term automaton A = (Q; q

0

; Æ; l) as follows:

� Q = fv(�);

� q

0

= �

0

;

� for i 2 f0; 1g, Æ(�; i) = �

i

when repr(�) = �

0

! �

1

;

� l(�) = repr(�)(�).

It is straightforward to verify that the ground instanes of this automaton are exatly those

of �; hene, its denotation oinides with J�K. The non-emptiness result stems from state-

ment 4. 2

Theorem 3 yields an algorithm to determine whether a type sheme has a non-empty

denotation; this makes type inferene deidable. However, it also shows that a anonial

type sheme an be viewed as a term automaton; we now establish the onverse, showing

that the two notions are equivalent.

Theorem 4 Let A be a term automaton. Then, there exists a anonial type sheme �, of

the same order, whose denotation oinides with A's.

Proof. Assume A = (Q; q

0

; Æ; l). Choose some injetive map q 2 Q 7! �

q

2 V . De�ne a

multi-equation set C by

� for eah � 2 rng(l), f�

q

; l(q) = �g 2 C;

� for eah q 2 Q suh that l(q) = ?, f�

q

;?g 2 C;

� for eah q 2 Q suh that l(q) = >, f�

q

;>g 2 C;

� for eah q 2 Q suh that l(q) =!, f�

q

; �

Æ(q;0)

! �

Æ(q;1)

g 2 C.

De�ne � = �

q

0

j C. It is straightforward to verify that J�K oinides with A's denotation.

2

The equivalene between anonial type shemes and term automata gives rise to an essen-

tial idea: the well-known minimization proedure for �nite-state automata arries over to

anonial type shemes.

Theorem 5 Let � be a anonial type sheme. Among the anonial type shemes equivalent

to �, there is one of minimal order, whih an be omputed in time O(n logn), where n is

the order of �.

Proof. Thanks to theorems 3 and 4, we an state the problem in terms of automata. Given

an automaton A, of order n, we must ompute an automaton B, whose denotation equals

that of A, and whih is minimal for this property. Aording to statement 5, we an

equivalently require �

A

= �

B

. Hene, the problem simply onsists in minimizing the labeled

�nite state automaton A, whih an be done in time O(n logn) [Hop71℄. 2
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Figure 4: A sample type sheme, in anonial form
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Figure 5: The same, viewed as an automaton
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Figure 6: The minimized automaton
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Figure 7: The same, viewed again as a type sheme
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Thus, it is possible to minimize the number of variables of a type sheme|whih we adopt as

a measure of its omplexity|in quasi-linear time. Figures 4 to 7 illustrate this proedure.

Our starting point is a type sheme whose multi-equation set has been put in anonial

form after the rules of �gure 3. Theorem 3 allows us to view it as an automaton (�gure 5),

whih we then minimize. Minimization is a well-known, two-step proess: �rst eliminate

any states not reahable from the start state, then merge equivalent states. In broad terms,

two states are equivalent if their labels are equal and if they arry transitions, with equal

labels, whose end states are in turn equivalent. This proess yields the automaton shown

in �gure 6. Finally, theorem 4 allows us to turn this automaton bak into a type sheme.

Of ourse, thinking in terms of automata allows a simple explanation of the proess, but

isn't mandatory; the minimization proedure an be desribed diretly in terms of multi-

equations, if one so wishes.

How does this proedure ompare to the usual resolution proess used in ML type infer-

ene? An ML type heker omputes the most general solution of the equation set, using

uni�ation. This essentially amounts to putting the type sheme in anonial form, by

applying the rules of �gure 3, then merging all members of a single multi-equation. Our

algorithm goes one step further, sine variables belonging to di�erent multi-equations an

also be merged, provided they stand for equivalent states of the automaton. In fat, our

simpli�ation proedure is omplete|it yields a type sheme with a minimal number of

variables. Sine our shemes are made up of small terms, this is a meaningful measure of

their omplexity.

Theoretially speaking, our deision of working with small terms allows us to easily

highlight the isomorphism between type shemes and term automata. More intuitively, one

might say that breaking a large type term down into a series of small terms, linked together

by equations, essentially amounts to labelling eah node of the original term with a type

variable. Identifying variables is then tantamount to sharing nodes in the original type term,

thus yielding a more ompat representation. Of ourse, a user is likely to prefer a more

readable representation, with fewer variables and larger terms; it is easy to revert to suh a

representation for display purposes. (For instane, the type sheme of �gure 7 an be printed

as �

2

! > ! >.) This is already the ase in typial ML implementations, where types

are internally represented by direted ayli graphs, but printed as trees. It is important

to arefully distinguish the two representations, sine the latter is typially exponentially

larger. In other words, an internal representation must favor eÆieny; onverting to an

external representation, whih o�ers better readability, must be delayed until the result is

ready for the user to be seen.

To onlude, we have studied a omplete simpli�ation proedure for onstrained type

shemes, in the ase where onstraints are equations. It onsists of three main steps: putting

the onstraints in anonial form, eliminating unreahable variables, and merging equivalent

variables. We shall now move on to the ase of subtyping, and disover that, although details

beome more omplex, the same broad ideas apply.

4 Simplifying subtyping onstraints

4.1 Solving onstraints

As in setion 3, our �rst task is to �nd an algorithm to deide whether a given onstraint set

has a solution. Indeed, doing so is required to determine whether a program is well-typed.

Our goal, in this setion, is to desribe suh an algorithm.

We begin with a fundamental tehnial result, whih desribes a weak, suÆient on-

dition for a onstraint set to have a solution. It will form the basis for the proof of the

onstraint solving algorithm. We prove a fairly powerful version of this result, allowing
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ground onstants to appear in onstraints. (Sine ground types may be in�nite, writing

down these extended onstraints would require some �nite representation; however, we will

not need to do so.) Thanks to this generalization, this result also forms the basis for the

proof of the garbage olletion algorithm (see setion 4.3).

De�nition 23 A onstraint set with ground onstants is a set C of subtyping onstraints

of the form � � �

0

, where � and �

0

are either two variables, one variable and a small term,

or one variable and a ground type. De�ne the assertion C 

+1

� � �

0

to mean

8k � 0 8� `

k

C � `

k+1

� � �

0

De�ne C

#

(�) = f� ; � 62 V ^ � � � 2 Cg and C

"

(�) = f� ; � 62 V ^ � � � 2 Cg. C is said

to be weakly losed i� the following onditions are met:

1. � � � 2 C and � �  2 C imply � �  2 C;

2. � � � 2 C and � 2 C

#

(�) imply 9�

0

2 C

#

(�) C 

+1

� � �

0

;

3. � � � 2 C and �

0

2 C

"

(�) imply 9� 2 C

"

(�) C 

+1

� � �

0

;

4. � 2 C

#

(�) and �

0

2 C

"

(�) imply C 

+1

� � �

0

.

Theorem 6 Let C be a onstraint set with ground onstants. If C is weakly losed, then C

has a solution.

Proof. Note that this proof only uses onditions 2 and 4 of de�nition 23. The other ondi-

tions shall be required by further theorems, suh as theorem 11.

Let V = fv(C). Consider the set T

V

of ground substitutions of domain V . We de�ne a

map S from T

V

into itself by

� 7!

�

� 7!

G

�2C

#

(�)

�(�)

�

Assuming T

V

is viewed as a metri spae, equipped with the usual distane between (tuples

of) in�nite trees [Cou83℄, it is easy to verify that S is

1

2

-ontrative. Thus, it has a unique

�x-point �.

We shall now verify that � is a solution of C. This is done by proving that it is a k-

solution of C, for all k � 0, by indution over k. The base ase is immediate, sine �

0

is

uniformly true (see de�nition 2). It remains to prove, assuming � `

k

C, that � `

k+1

C.

Consider a onstraint of the form � � � 2 C. Beause C satis�es ondition 2 of

de�nition 23, we have 8� 2 C

#

(�) 9�

0

2 C

#

(�) C 

+1

� � �

0

. Sine � `

k

C, this implies

8� 2 C

#

(�) 9�

0

2 C

#

(�) �(�) �

k+1

�(�

0

), whih in turn entails (

F

�2C

#

(�)

�(�)) �

k+1

(

F

�

0

2C

#

(�)

�(�

0

)). This statement is none other than �(�) �

k+1

�(�).

Next, onsider a onstraint of the form � � � 2 C, where � 62 V . Then, � 2 C

#

(�). So,

by de�nition of �, �(�) � �(�). In partiular, �(�) �

k+1

�(�).

Finally, onsider a onstraint of the form � � �

0

2 C, where �

0

62 V . Then, �

0

2 C

"

(�).

Pik some � 2 C

#

(�). Then, ondition 4 of de�nition 23, together with our indution

hypothesis, yield � `

k+1

� � �

0

, i.e. �(�) �

k+1

�(�

0

). Sine this holds for all � 2 C

#

(�), we

also have (

F

�2C

#

(�)

�(�)) �

k+1

�(�

0

), i.e. �(�) �

k+1

�(�

0

). This onludes the proof. 2

Theorem 6 is a nie tool to exhibit solutions of a onstraint set. However, it is not lear,

given an arbitrary onstraint set, how it an be put in weakly losed form. So, we shall now

de�ne a stronger, but simpler, notion of losure, whih an be omputed more easily. This

is the notion originally proposed by Eifrig, Smith and Trifonov [EST95b℄.
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De�nition 24 The partial funtion sub, de�ned as follows, breaks a onstraint whose mem-

bers are variables or small terms down into a set of equivalent onstraints:

sub(� � �) = f� � �g sub(� � � ) = f� � �g

sub(? � �) = ? sub(� � >) = ?

sub(�

0

! �

1

� �

0

0

! �

0

1

) = f�

0

0

� �

0

; �

1

� �

0

1

g

De�nition 25 Let C be a onstraint set, made up of small terms. C is said to be losed

i� whenever f� � �; � � �

0

g � C, sub(� � �

0

) is de�ned and inluded in C. From now

on, a type sheme A) � j C is said to be losed i� C is losed.

In plain words, the above de�nition means that a onstraint set is losed i� it is stable

through a ombination of transitivity and strutural deomposition. Let us now verify, as

announed, that losure entails weak losure; whih means, onsidering theorem 6, that any

losed onstraint set admits a solution.

Theorem 7 Any losed onstraint set C is weakly losed.

Proof. It is lear that C satis�es ondition 1 of de�nition 23.

Assume � � � 2 C. Let � 2 C

#

(�). Beause C is losed, sub(� � �) = f� � �g � C.

So, � 2 C

#

(�). This is suÆient to establish ondition 2 of de�nition 23; just pik �

0

= � .

Symmetrially, ondition 3 is satis�ed.

Now, assume � 2 C

#

(�) and �

0

2 C

"

(�). Beause C is losed, sub(� � �

0

) is de�ned

and part of C. Thus, any k-solution of C is, in partiular, a k-solution of sub(� � �

0

).

Moreover, onsidering the de�nition of sub, it is easy to verify that any k-solution of

sub(� � �

0

) is a (k + 1)-solution of � � �

0

. Condition 4 of de�nition 23 ensues. 2

To onlude this setion, we present an algorithm whih puts a given onstraint set in losed

form, if it has a solution, and fails otherwise. This algorithm is used to determine whether

a given program is well-typed. Its bad omplexity: O(n

3

), as well as the size of its output:

O(n

2

), are among the main reasons why onstraint simpli�ation is required.

Theorem 8 Let C be a onstraint set, made up of small terms. Let C

2

denote

C [

�

[

f���;���

0

g�C

sub(� � �

0

)

�

If the sequene C;C

2

; C

4

; : : : is in�nite, then it reahes a �x-point C

1

, whih is the smallest

losed onstraint set ontaining C; its solution spae is equal to C's and non-empty. (C

1

is alled the losure of C.) Otherwise, C has no solution.

Proof. For an arbitrary C, it is lear that C

2

is equivalent to C if it is de�ned, and that

C has no solution otherwise (i.e. if sub is applied outside of its domain). Thus, if some

element of the sequene is unde�ned, then C has no solution. Otherwise, the sequene must

reah a �x-point C

1

, beause any newly reated onstraint involves existing terms, and

there is only a �nite number of suh onstraints. It is lear that C

1

is the smallest losed

set ontaining C. Aording to theorem 7, C

1

is also weakly losed; by theorem 6, it admits

a solution. 2

While building a type inferene derivation, we wish to make sure, at every step, that the

expression at hand is well-typed, so as to detet errors as soon as possible. So, we must main-

tain our onstraint sets in losed form. This may be done inrementally, taking advantage

of the fat that eah type inferene rule adds a few fresh onstraints to a losed onstraint

set; an inremental algorithm is desribed in [Pot98, Pot98b℄. Of ourse, if we use suh

an algorithm, then our simpli�ation algorithms must preserve the losure property; this

ensures that we may perform simpli�ations transparently at any point.
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4.2 Polarities

If � is the type sheme assoiated to an expression e, it would be interesting to distinguish

the type variables of � whih represent an input (i.e. some data expeted by the expression

e) from those whih represent an output (i.e. some result supplied by e). We shall annotate

eah type variable with a � sign in the former ase, and with a + sign in the latter ase.

Of ourse, it is possible for a variable to arry both signs at one; we all suh a variable

bipolar. Some variables, on the other hand, arry no sign at all; we all those neutral. Thus,

we shall assoiate a pair of Boolean ags, whih we all polarity, to eah variable. This

information will serve to guide all of our simpli�ation algorithms.

De�nition 26 Consider a weakly losed type sheme � = (A ) � j C), made up of small

terms. The set of positive variables of �, and the set of negative variables of �, respetively

denoted by fv

+

(�) and fv

�

(�), are the smallest subsets P and N of fv(�) suh that

� � 2 P

� rng(A) � N

� 8� 2 P fv

+

(C

#

(�)) � P ^ fv

�

(C

#

(�)) � N

� 8� 2 N fv

+

(C

"

(�)) � N ^ fv

�

(C

"

(�)) � P

Polarities may be easily omputed as a smallest �x-point. The time required is linear in

the size of the onstraint set. Indeed, visiting a variable's onstruted lower (resp. upper)

bounds has to be done at most one, namely when the variable �rst beomes positive (resp.

negative). Thus, eah onstraint is traversed at most one; whene the result.

Trifonov and Smith [TS96℄ introdued polarities as a re�nement of our notion of reah-

ability [Pot96℄, whih would only detet neutral variables, and used them to drive garbage

olletion (see setion 4.3). However, they did not mention ertain useful properties of

polarities, whih we shall now desribe.

Intuitively speaking, eah positive variable of � represents a piee of data omputed by

e and aessible as a part of its result. Assume e is plaed inside a ontext C, yielding

an expression C[e℄ whose assoiated sheme is �

0

. C[e℄'s result might still ontain some

parts of e's result, meaning that the orresponding variables are still positive in �

0

; others

may have been dropped, meaning that the orresponding variables are no longer positive

in �

0

. However, any value omputed by e, but inaessible through its result, obviously

remains inaessible through C[e℄'s result; whih means that any variables not positive in �

annot beome positive in �

0

. An analogous property holds for negative variables. In other

words, polarities derease as one walks down a type inferene derivation. This property is

formalized by the following theorem.

Theorem 9 Consider an instane of one of the type inferene rules of �gure 2, whose

output is a type sheme �. Pik some � 2 fv(�), and assume � also appears in �

0

, where �

0

is one of the rule's premises. Then, � 2 fv

+

(�) (resp. fv

�

(�)) implies � 2 fv

+

(�

0

) (resp.

fv

�

(�

0

)).

Proof. The only non-trivial ase is that of rule (App

i

). We use the notations of �gure 2.

For i 2 f1; 2g, let �

i

= (A

i

) �

i

j C

i

); assume C

i

is losed. De�ne

P = fv

+

(�

1

) [ fv

+

(�

2

) [ f�g

N = fv

�

(�

1

) [ fv

�

(�

2

) [ f�g [ fv(A)

We wish to show that P and N are onservative approximations of the polarities in �, i.e.

that they satisfy the reursive equations of de�nition 26. However, reall that omputing
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polarities requires the onstraint set to be losed. Thus, these equations must be applied

to C

1

, not to C itself; we need some information about C

1

in order to prove that the

equations hold.

Let the assertion �

+

stand for the onjuntion fv

+

(�) � P ^ fv

�

(�) � N . (The assertion

�

�

is de�ned symmetrially.) Notie that C

1

[C

2

is losed, beause these sets have disjoint

domains. Let us all \new" the onstraints in C

m

[ f� � �; �

1

� �

2

! �g, as well as any

onstraints arising from the subsequent losure omputation. It is straightforward to verify

that whenever a small term � appears on the left-hand (resp. right-hand) side of a new

onstraint, then �

+

(resp. �

�

) holds.

This guarantees that the equations of de�nition 26, applied to A) � j C

1

, are satis�ed

by P and N . Beause fv

+

(�) and fv

�

(�) are the smallest solutions of these equations, we

have fv

+

(�) � P and fv

�

(�) � N . In partiular, fv

+

(�) \ fv(�

i

) � fv

+

(�

i

) and fv

�

(�) \

fv(�

i

) � fv

�

(�

i

); whih is the desired result. 2

Theorem 9 guarantees that a variable's polarity dereases during its lifetime. As a orollary,

if the type inferene rules are written so as to never ause a fresh variable to be bipolar|and

so they are|then no bipolar variables an ever appear in a type inferene derivation.

Theorem 10 Assume [F ℄ � `

I

e : [F

0

℄ �. If none of the �(X), for X 2 dom(�), ontains

a bipolar variable, then neither does �.

Proof. First, we hek that whenever a fresh variable is reated by one of the type inferene

rules, it is not bipolar. Consider, for instane, rule (Var

i

). It reates two variables � and

�. The former appears in the ontext of the type sheme, while the latter appears in its

body. Hene, � is negative, and � is positive. Aording to de�nition 26, polarities an

only travel from a variable to a small term, so the onstraint � � � does not ause � (resp.

�) to beome positive (resp. negative). Note, on the other hand, that in the type sheme

(x 7! )) ,  is bipolar; splitting  into two variables � and �, linked by a onstraint, is

the tehnial trik whih allows us not to reate any bipolar variables. Rule (App

i

) ontains

a similar trik.

Seond, theorem 9 tells us that if a variable is bipolar at a ertain point, then it must

have been so sine the moment it was reated. Aording to the previous paragraph, this is

impossible; whene the result. 2

This result is used to simplify various de�nitions and proofs, in partiular onerning garbage

olletion and anonization. Of ourse, we will need to prove that our simpli�ation algo-

rithms also ause polarities to derease, so we an perform simpli�ations at any point

without breaking this property.

4.3 Garbage olletion

Computing the losure of a onstraint set typially yields a large number of onstraints.

Many of them are useful as intermediate steps of the losure omputation, but are no

longer essential one it is over. More preisely, we shall now show that the only meaningful

onstraints in a losed sheme A) � j C are the following:

� those whih link a positive (resp. negative) variable � to an element of C

#

(�) (resp.

C

"

(�))|they give information about the struture of a piee of data supplied (resp.

expeted) by the expression;

� those whih link a negative variable to a positive one|they represent a possible ow

of data from one of the expression's inputs to one of its outputs.
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Any other onstraints are superuous, i.e. do not a�et the sheme's denotation. Thus,

we an simply forget about them; this proess, proposed by Trifonov and Smith [TS96℄, is

alled garbage olletion. Note that all neutral variables are disarded; in our analogy with

setion 3, garbage olletion orresponds to the removal of unreahable nodes in a �nite

automaton. It does more than that, however, sine it also removes ertain edges between

reahable nodes.

De�nition 27 Consider � as in de�nition 26. The image of � through garbage olletion,

denoted by GC(�), is the type sheme A ) � j D, where D is a subset of C de�ned as

follows:

� � � � 2 D i� � � � 2 C, � 2 fv

�

(�) and � 2 fv

+

(�);

� D

#

(�) equals C

#

(�) if � 2 fv

+

(�), and ? otherwise;

� D

"

(�) equals C

"

(�) if � 2 fv

�

(�), and ? otherwise.

Theorem 11 Consider � as in de�nition 27. Then � � GC(�).

Proof. Write �

0

= GC(�). Sine �

0

has fewer onstraints, it is lear that �

0

4 �. So, we

need to prove � 4 �

0

. Aording to de�nition 13, this is equivalent to

8�

0

` D 9� ` C �(A) �) � �

0

(A) �)

Pik some �

0

` D. We now wish to prove that the following onstraint set with ground

onstants (see de�nition 23) admits a solution:

C [ f� � �

0

(�)g [ f�

0

(A(x)) � A(x) ; x 2 dom(A)g

We shall do so by proving that the following onstraint set|whih ontains the previous

one, aording to de�nition 26|is weakly losed:

C [ f�

0

(�) � � ; � 2 fv

�

(�) ^ � � � 2 C

r

g

[ f� � �

0

(�) ; � 2 fv

+

(�) ^ � � � 2 C

r

g

(where C

r

denotes the reexive losure of C, i.e. � � � 2 C

r

i� � = � or � � � 2 C). Let

E denote this set.

Beause C satis�es ondition 1 of de�nition 23, so does E. Using the same property, it

is easy to hek that E satis�es onditions 2 and 3. There remains to hek ondition 4.

Assume � 2 E

#

(�) and �

0

2 E

"

(�). Four ases arise, depending on whether � and �

0

are

small terms or ground terms:

� Both � and �

0

are small terms. Then, � 2 C

#

(�) and �

0

2 C

"

(�). The result is

immediate, onsidering C meets ondition 4.

� Both � and �

0

are ground terms. Then, aording to the de�nition of E, � is equal to

�

0

(�), for some � 2 fv

�

(�) suh that � � � 2 C

r

. Symmetrially, �

0

is of the form

�

0

(�

0

), for some �

0

2 fv

+

(�) suh that � � �

0

2 C

r

. Beause C satis�es ondition 1

of de�nition 23, � � �

0

2 C

r

. If � = �

0

, then � = �

0

and the result is immediate. So,

we an assume � � �

0

2 C. Sine � 2 fv

�

(�) and �

0

2 fv

+

(�), de�nition 27 spei�es

that � � �

0

2 D. Sine �

0

` D, �

0

(�) � �

0

(�

0

); that is, � � �

0

holds.

� � is a small term and �

0

is a ground term. As before, �

0

is of the form �

0

(�

0

), for some

�

0

2 fv

+

(�) suh that � � �

0

2 C

r

. On the other hand, we must have � 2 C

#

(�). If

� � �

0

2 C, onsidering that C satis�es ondition 2 of de�nition 23, there exists a small
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term �

00

2 C

#

(�

0

) suh that C 

+1

� � �

00

. If, on the other hand, � = �

0

, then the

same holds (simply pik �

00

= �). Pik some � `

k

E. We then have �(�) �

k+1

�(�

00

).

Furthermore, beause �

0

2 fv

+

(�), de�nition 27 spei�es that �

00

2 D

#

(�

0

). Sine

�

0

` D, this entails �

0

(�

00

) � �

0

(�

0

). Now, we need to reason by ases on the struture

of �

00

:

{ Assume �

00

is of the form Æ

0

! Æ

1

. Sine �

0

2 fv

+

(�), de�nition 26 spei�es that

Æ

1

2 fv

+

(�) and Æ

0

2 fv

�

(�). Aording to the de�nition of E, Æ

1

� �

0

(Æ

1

) 2 E.

Sine � `

k

E, this implies �(Æ

1

) �

k

�

0

(Æ

1

). Symmetrially, �

0

(Æ

0

) �

k

�(Æ

0

). As a

onsequene, �(Æ

0

! Æ

1

) �

k+1

�

0

(Æ

0

! Æ

1

). In other words, �(�

00

) �

k+1

�

0

(�

00

).

{ Assume �

00

is equal to ? or >. Then, the same holds, i.e. �(�

00

) �

k+1

�

0

(�

00

).

We an now ombine, by transitivity, the three results obtained above:

�(�) �

k+1

�(�

00

) �

k+1

�

0

(�

00

) � �

0

(�

0

)

This implies �(�) �

k+1

�

0

(�

0

). That is, � `

k+1

� � �

0

, whih is the desired result.

� The last ase is symmetrial to the previous one. 2

It is easy to hek that garbage olletion preserves polarities. Furthermore, provided

bipolar variables are disallowed, its output is losed, as stated below. This important remark

was missing from [TS96℄.

Theorem 12 Consider � as in de�nition 27. If fv

+

(�)\fv

�

(�) = ?, then GC(�) is losed.

Proof. Write GC(�) = A ) � j D, as in de�nition 27. As per de�nition 25, assume

f� � �; � � �

0

g � D. Then, � 2 fv

+

(�), beause it appears on the right-hand side of a

onstraint in D. Symmetrially, � 2 fv

�

(�). This is impossible, by hypothesis, so D is

(vauously) losed. 2

4.4 Canonization

In setion 3, in order to view a multi-equation system as a �nite state automaton, we required

it to be in anonial form, i.e. to equate eah variable with at most one non-variable term.

Similarly, in the ase of subtyping, we say that a onstraint set is in anonial form i�

eah variable has exatly one non-variable lower (resp. upper) bound. We shall require

this property before we attempt to minimize onstraint sets. In this setion, we give an

algorithm, alled anonization, whih omputes a anonial form of an arbitrary onstraint

set.

De�nition 28 Let � = A ) � j C be a type sheme, made up of small terms, ontaining

no bipolar variables, suh that � = GC(�).

Let V (resp. W ) range over non-empty subsets of fv

�

(�) (resp. fv

+

(�)). For eah

suh V (resp. W ) of ardinality greater than 1, pik a fresh variable 

V

(resp. �

W

). (By

fresh variables, we mean that these variables are pairwise distint, and distint from �'s

variables.) De�ne the rewriting funtion r

�

(resp. r

+

) aording to �gure 8. The �rst two

lines de�ne r

�

(resp. r

+

) on non-empty sets of negative (resp. positive) variables; they are

then extended to sets of negative (resp. positive) small terms.

The image of � through anonization, denoted by Can(�), is A ) � j D, where the

onstraint set D is given by �gure 9. It is lear that Can(�) is in anonial form.
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r

+

(f�g) = � r

�

(f�g) = �

r

+
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when jW j > 1 r

�
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when jV j > 1

r

+
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+

(S) r
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+
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n
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n
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g)! r
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1
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Figure 8: De�nition of the rewriting funtions
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Figure 9: Canonization
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The basi idea behind anonization is simple: introdue fresh variables to stand for least

upper bounds and greatest lower bounds of existing variables. For instane, \� t �" may

be represented by a fresh variable �

f�;�g

, together with the onstraints � � �

f�;�g

and

� � �

f�;�g

. A straightforward de�nition of anonization, based on this priniple, is given

by Trifonov and Smith [TS96℄. However, it involves intermediate losure omputations,

whih generate many superuous onstraints. For instane, � and � above must be pos-

itive, beause the least upper bound expressions whih arise during anonization always

involve positive variables. Sine there are no bipolar variables, � and � annot be negative.

So, the fresh onstraints � � �

f�;�g

and � � �

f�;�g

shall be removed by the next garbage

olletion pass. In between, though, these onstraints will take part in a losure omputa-

tion, and their transitive onsequenes may survive garbage olletion. Rather than going

through the proess of adding superuous onstraints as part of anonization, performing a

losure omputation, and then eliminating them, we give a more detailed desription of an-

onization, whose output is provably losed, and whih does not generate these unneessary

onstraints, thus saving time.

For the sake of simpliity, our de�nition reates an exponential number of fresh variables.

Of ourse, an implementation shall reate a fresh 

V

or �

W

only on demand, i.e. when it

appears in the onstruted bound of an existing variable|whih may be an original variable

�, or may itself be a  or a �.

Considering our strong hypotheses on �, it is easy to prove that Can(�) is losed. Further-

more, we may prove that existing variables see their polarity derease during anonization.

These results mean that we may apply anonization transparently at any point of the type

inferene proess, while still performing inremental losure omputations, and relying on

the assumption that no bipolar variables exist. They are proved below.

Theorem 13 Consider � as in de�nition 28. Then, Can(�) is losed. Furthermore,

fv

+

(Can(�)) � f�

W

g [ fv

+

(�)

fv

�

(Can(�)) � f

V

g [ fv

�

(�)

As a orollary, there are no bipolar variables in Can(�).

Proof. We �rst verify that two onstraints of D involving variables an never be ombined

by transitivity. It suÆes to notie that r

�

(V ) an never be equal to r

+

(W ), beause the

former is of the form 

V

or � 2 fv

�

(�), while the latter is of the form �

W

or � 2 fv

+

(�).

Sine � has no bipolar variables, fv

+

(�) \ fv

�

(�) = ?.

To fully verify the requirement of de�nition 25, it essentially suÆes to further notie

that � = GC(�). This implies that for all � 2 fv

+

(�) (resp. � 2 fv

�

(�)), C

"

(�) (resp.

C

#

(�)) is empty; whih implies D

"

(�) = f>g (resp. D

#

(�) = f?g). The desired property

follows easily; thus, Can(�) is losed.

This result allows us to ompute polarities. We verify that f�

W

g [ fv

+

(�) and f

V

g [

fv

�

(�) satisfy the �x-point equations of de�nition 26, applied to Can(�). To do so, it suÆes

to notie that a �

W

never appears in negative (resp. positive) position in a non-variable

lower (resp. upper) bound|a symmetri result holds of 

V

|and that any � 2 fv(�) appears

in fewer positions than in C. 2

We are now ready to prove the orretness of the anonization algorithm.

Theorem 14 Consider � as in de�nition 28. Then � � Can(�).

Proof. Let us use the notations of de�nition 28. We �rst show that Can(�) 4 �, i.e.

8� ` C 9�

0

` D �

0

(A) �) � �(A) �)
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Pik some � ` C. De�ne �

0

by

�

0

(�) = �(�) �

0

(

V

) =

l

�2V

�(�) �

0

(�

W

) =

G

�2W

�(�)

One easily heks that, for any W , �

0

(r

+

(W )) =

F

�2W

�(�). Similarly, �

0

(r

�

(V )) =

d

�2V

�(�). It is then straightforward to extend these results to sets of small terms, rather

than sets of variables. Finally, using these results, it is a matter of routine to asertain that

�

0

satis�es D.

The other diretion of the proof is slightly more diÆult, beause, as we explained before,

our de�nition of anonization ontains a built-in garbage olletion step. We introdue an

intermediate type sheme �

0

= A) � j E, where E is de�ned by

E = D [ f� � �

W

; � 2 Wg [ f

V

� � ; � 2 V g

First, let us show that � 4 �

0

, i.e.

8� ` E 9�

0

` C �

0

(A) �) � �(A) �)

It is suÆient to prove that E entails C, i.e. 8� ` E � ` C. Pik some � ` E. It is lear

that for any W , (

F

�2W

�(�)) � �(r

+

(W )). A symmetri result holds of any set of negative

variables V . As above, these results an be transferred to sets of small terms. Using them,

it is easy to hek that any solution of E also satis�es C.

There remains to prove that �

0

4 Can(�). We shall do so by notiing that the onstraints

in E nD are superuous, aording to garbage olletion. The result shall then follow from

theorem 11. Our �rst objetive is to prove that E is weakly losed, whih entitles us to

apply garbage olletion to �

0

.

First, we hek that E satis�es ondition 1 of de�nition 23. Consider two onstraints

f' �  ;  � �g � E. If both appear in D, then so does ' � �, beause D is losed. Besides,

at least one of them must appear in D, beause otherwise they would be of the form 

V

� �

and � � �

W

, whih would require � to be bipolar. So, let us assume ' �  2 D and

 � � 62 D. (The other ase is symmetri.) Then, the latter is of the form � � �

W

, where

� 2 W . Thus, the former must be of the form r

�

(V ) � �, where � � � 2 C for some

� 2 V . These properties are enough to guarantee that r

�

(V ) � �

W

2 D. Hene, E satis�es

ondition 1 of de�nition 23.

Then, we hek that E satis�es ondition 2 of de�nition 23. Beause D is losed, it

suÆes to verify that whenever � 2W and � 2 E

#

(�), there exists some �

0

2 E

#

(�

W

) suh

that E 

+1

� � �

0

. In other words, any k-solution � of E must satisfy �(r

+

(C

#

(�))) �

k+1

�(r

+

(

S

�2W

C

#

(�))). Beause � 2 W , C

#

(�) is a subset of

S

�2W

C

#

(�). Thus, what we

need to prove is a monotoniity property of r

+

; it is easy to prove it in the ase of variables

�rst, and to transfer it to the ase of small terms.

By symmetry, E also satis�es ondition 3 of de�nition 23. Finally, beause D is losed,

it satis�es ondition 4 of de�nition 23, and so does E. We have veri�ed that E is weakly

losed. Thus, aording to theorem 11, we may throw away some of �

0

's onstraints, as

allowed by its polarities, and obtain an equivalent type sheme.

Consider a onstraint of the form � � �

W

, where � 2 W . � 2 W implies � 2 fv

+

(�);

sine polarities derease during anonization, � 62 fv

�

(Can(�)). Furthermore, onstraints

between variables do not a�et the polarity omputation, so �

0

and Can(�) have the same

polarities. This implies � 62 fv

�

(�

0

). Sine � is not negative in �

0

, the onstraint � � �

W

may be thrown away without a�eting �

0

's denotation. The same is true of onstraints

of the form 

V

� �, where � 2 V . It follows that all onstraints in E n D are atually

superuous, and �

0

� Can(�). This onludes the proof. 2
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4.5 Minimization

The simpli�ation method developed in setion 3 is based on the minimization of �nite

automata, whih onsists of two steps: eliminate any unreahable states, then identify

all states whih reognize the same language. In the ase of subtyping, the �rst step is

performed by garbage olletion, whih disards superuous variables and onstraints. It is

also possible to design an algorithm in harge of performing the seond step, as suggested

by Flanagan and Felleisen [FF96, FF97, Fla97℄. We now present this algorithm, adapted

to our system, and name it minimization. It detets equivalent variables, using a method

reminisent of the way equivalent states of a �nite automaton are found, and then merges

them. We begin with the de�nition of the riterion whih allows onsidering ertain variables

as equivalent.

De�nition 29 Let V be a set of type variables. Any equivalene relation � on V is extended

to the set of small terms whose variables are in V :

? � ? > � >

�

0

! �

1

� �

0

! �

1

() (�

0

� �

0

) ^ (�

1

� �

1

)

De�nition 30 Let C be a onstraint set. For � 2 fv(C), de�ne

pred

C

(�) = f� ; � � � 2 Cg

su

C

(�) = f� ; � � � 2 Cg

De�nition 31 Let � = A ) � j C be a type sheme in anonial form, made up of small

terms, ontaining no bipolar variables, suh that � = GC(�). For any � 2 fv(�), C

#

(�)

(resp. C

"

(�)) is a singleton; so, by abuse of language, we shall use the same notation to

refer to its unique element.

An equivalene relation �, of domain fv(�), is ompatible with � i� � � � implies all

of the following:

1. f�; �g � fv

+

(�) or f�; �g � fv

�

(�);

2. pred

C

(�) = pred

C

(�) and su

C

(�) = su

C

(�);

3. C

#

(�) � C

#

(�) and C

"

(�) � C

"

(�).

We now prove that the above onditions are indeed suÆient to ensure orretness, i.e. if

we identify the variables of a type sheme aording to a ompatible equivalene relation,

then we obtain an equivalent type sheme.

De�nition 32 Consider � as in de�nition 31; let � be a partition ompatible with �. The

quotient

�

=

�

is de�ned|up to a renaming|as �(�), where � is any mapping of fv(�) into

V suh that

8�; � 2 fv(�) � � � () �(�) = �(�)

Theorem 15 Consider � and � as in de�nition 32. Then,

�

=

�

� �.

Proof. The assertion � 4

�

=

�

learly holds, beause the latter is the image of the former

through the substitution �. Conversely, let us show that

�

=

�

4 �. Let � be a solution of C.

We need to exhibit a solution �

0

of �(C) suh that �

0

(�(A) �)) � �(A) �).

Consider an equivalene lass of �. Beause of ondition 1 of de�nition 31, it must be

either a subset of fv

+

(�), or a subset of fv

�

(�). We denote it by V (resp. W ) in the former
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(resp. latter) ase. We denote the image of its elements through � by '

V

(resp. '

W

).

De�ne �

0

by

�

0

('

V

) =

G

�2V

�(�) �

0

('

W

) =

l

�2W

�(�)

We remark that for any � 2 fv

+

(�), �

0

(�(�)) � �(�) holds; symmetrially, for any � 2

fv

�

(�), we have �(�) � �

0

(�(�)).

Let us now verify that �

0

is a solution of �(C). We begin by heking that any onstraint

between variables is satis�ed. Suh a onstraint is neessarily of the form '

V

� '

W

;

furthermore, beause of ondition 2 of de�nition 31, we have

8� 2 V 8� 2W � � � 2 C

Beause � satis�es C, this implies

8� 2 V 8� 2W �(�) � �(�)

whih, onsidering the de�nition of �

0

, is exatly �

0

('

V

) � �

0

('

W

).

We then hek that any onstraint between a variable and a small term is satis�ed. Suh

a onstraint may be written �(C

#

(�)) � �(�)|the other ase is symmetri. If � 2 fv

�

(�),

this is immediate, beause C

#

(�) = ?. Assume � 2 fv

+

(�). Aording to the de�nition of

�

0

, our goal an then be written

8�

0

� � �

0

(�(C

#

(�))) � �(�

0

)

Assume �

0

� �. Thanks to ondition 3 of de�nition 31, we have C

#

(�

0

) � C

#

(�), so these

terms have the same image through �. Additionally, beause � satis�es C, �(C

#

(�

0

)) � �(�

0

)

holds. So, it suÆes to prove

�

0

(�(C

#

(�

0

))) � �(C

#

(�

0

))

whih is a straightforward onsequene of our above remarks onerning �

0

.

There only remains to verify that �

0

(�(A ) �)) � �(A ) �), whih is again a diret

onsequene of said remarks. 2

To obtain an algorithm, there remains to show, given a type sheme �, how to ompute an

equivalene relation ompatible with �. Of ourse, we wish to identify as many variables as

possible, so we wish to ompute the oarsest suh relation.

Theorem 16 Consider � as in de�nition 31. Then, there exists a oarsest equivalene

relation ompatible with �. It an be omputed in time O(dn logn), where n = j fv(�) j, and

d is the degree of the graph f(�; �) ; � � � 2 Cg.

Proof. If � is a small term, let head(�) 2 �

g

denote its head onstrutor. To eah � 2 fv(�),

assoiate a key, as follows:

key(�) = (1; pred

C

(�); head(C

#

(�))) if � 2 fv

+

(�)

key(�) = (0; su

C

(�); head(C

"

(�))) if � 2 fv

�

(�)

De�ne � �

key

� to mean key(�) = key(�). Furthermore, for i 2 f0; 1g, de�ne a partial

funtion Æ

i

from fv(�) into itself by

Æ

i

(�) = �

i

if � 2 fv

+

(�) and C

#

(�) = �

0

! �

1

Æ

i

(�) = �

i

if � 2 fv

�

(�) and C

"

(�) = �

0

! �

1
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Then, it is not diÆult to see that an equivalene relation � is ompatible with � i� it is

�ner than �

key

and stable with respet to Æ

0

and Æ

1

. (An equivalene relation � is stable

with respet to a funtion f i� for every lass B of �, either f is unde�ned on all of B, or

f is de�ned on all of B and f(B) lies entirely within some lass B

0

.)

So, the problem is now to �nd the oarsest re�nement of a given partition whih is

stable with respet to a �nite number of given funtions. Indeed, suh a re�nement exists;

Hoproft [Hop71℄ gives an O(n logn) algorithm to ompute it.

There remains to hek how muh time is neessary to ompute �

key

, Æ

0

and Æ

1

. �

key

an be obtained by building a list of all variables in fv(�), sorting it aording to their keys,

and then walking the list, taking advantage of the fat that variables related by �

key

must

be adjaent in the sorted list. Comparing two keys takes time O(d), beause predeessor

or suessor sets of ardinality up to d have to be ompared; so, the whole operation takes

time O(dn logn). Building Æ

0

and Æ

1

an be done in time O(n). 2

It is straightforward to hek that minimization preserves polarities, as well as the losure

property.

In the ase of equality onstraints, minimization was an optimal simpli�ation method,

as shown by theorem 5. Here, though, ompleteness is lost, beause the riterion we use

to detet equivalent variables is too oarse, as shown by the following example. Let F be

a ovariant type operator, distint from the identity. (For instane, take F (�) = > ! �.)

Consider the type sheme

�

�

! �

�

! 

+

j f�

�

� F �

�

; �

�

� F �

�

; F 

+

� 

+

; �

�

� 

+

g

Here, � and � annot be in the same lass. If they were, then the presene of the onstraint

� �  would require � �  to be also present, whih is not the ase. However, the onstraint

� �  is superuous, beause it is implied by the other onstraints. (Indeed, � � F � and

F  �  entail � � .) If a omplete axiomatization of entailment were known, it might

be possible to use it to determine that � and � are equivalent. However, in its absene, we

are left with an inomplete minimization algorithm, whih relies on a syntati riterion,

namely the presene of the onstraint � � , rather than on a semanti one, namely the

fat that this relationship is implied by the onstraint set.

Although situations similar to the above one do sometimes arise in pratie, experiene

shows that minimization often produes an optimal result. So, this theoretial problem is

not a pratial issue; on the ontrary, the riterion's simpliity is the key to the algorithm's

eÆieny.

5 Example

Our theoretial desription is over; we now wish to show our algorithms at work on a simple

example. Consider the expression �(x; y):hoose (x; y) or (y; x). (We assume the language

is extended with pairs, pair patterns, and a non-deterministi hoie onstrut hoose.) We

will �rst ompute a type sheme for this expression, by building a type inferene derivation,

then simplify it. (In a real implementation, simpli�ations may be applied at any point

of the derivation; it is desirable to do so at least at every let node, to avoid moving an

unsimpli�ed type sheme into the environment.)

Aording to rule (Var

i

), the �rst ourrene of x reeives type (x 7! v

1

)) v

2

, together

with the onstraint v

1

� v

2

. Similarly, the �rst ourrene of y reeives type (y 7! v

3

)) v

4

,

where v

3

� v

4

. The pair onstrution rule, like the appliation rule, omputes a meet of the

two ontexts, so (x; y) is assigned type (x 7! v

1

; y 7! v

3

)) v

5

, where v

2

� v

4

� v

5

is added

to the above onstraints.
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Figure 10: The initial onstraints
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Figure 11: After losure
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Figure 12: After garbage olletion
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Figure 13: After anonization
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Figure 14: After a seond pass of garbage olletion
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Figure 15: After minimization
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Similarly, the pair (y; x) reeives type (x 7! v

6

; y 7! v

8

) ) v

10

, where v

6

� v

7

; v

8

�

v

9

; v

9

� v

7

� v

10

.

The inferene rule for the hoose onstrut again omputes a meet of the ontexts, and

merges the two result types. We obtain (x 7! v

11

; y 7! v

12

)) v

13

, with the new onstraints

v

11

� v

1

; v

11

� v

6

; v

12

� v

3

; v

12

� v

8

; v

5

� v

13

; v

10

� v

13

.

Finally, rule (Abs

i

), extended to deal with pair patterns, removes the ontext entries

for x and y and uses them to build a funtion type. We �nally obtain type v

15

, with fresh

onstraints v

14

� v

11

� v

12

; v

14

! v

13

� v

15

. The onstraints obtained so far are grouped

in �gure 10.

We must now ompute the losure of this onstraint set, to ensure that the expression

is well-typed. This adds the onstraints v

11

� v

2

; v

11

� v

7

; v

12

� v

4

; v

12

� v

9

; v

2

� v

4

�

v

13

; v

9

� v

7

� v

13

. No inonsisteny is found, so the expression is type-orret; however, we

now wish to simplify this type sheme.

Sine the onstraint set is losed, we may ompute the polarity of eah variable. The

result is shown graphially in �gure 11. Dashed edges represent subtyping relationships be-

tween variables. Solid edges link eah variable v to the variables of its relevant onstruted

bounds, i.e. its onstruted lower (resp. upper) bounds, when v is positive (resp. negative).

Solid edges are labeled by 0, 1, l or r, to indiate domain, range, left omponent, and right

omponent, respetively. Nodes are labeled with the head onstrutor(s) of their relevant

onstruted bounds. Thus, by using polarities to identify relevant bounds|whih, in gen-

eral, simpli�es the �gure|we obtain a graphial presentation similar to that of setion 3.

There are two main di�erenes: �rst, the presene of subtyping edges; seond, the fat that

a variable may, at this point, have several relevant onstruted bounds.

Sine polarities are known, we may now apply garbage olletion, to get rid of all super-

uous onstraints. All neutral variables, namely v

5

, v

10

, v

1

, v

3

, v

8

and v

6

, disappear. This

orresponds to the intuition|whih is quite apparent on �gure 11|that they are intermedi-

ate variables, whih beome useless after they have played a part in the losure omputation.

The result of garbage olletion is shown by �gure 12.
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Things are now learer. However, v

13

has two onstruted lower bounds, namely v

2

� v

4

and v

9

� v

7

, and our minimization algorithm an only at on anonial sets, where eah

variable has exatly one onstruted bound. (This orresponds, informally speaking, to the

fat that only deterministi automata may be diretly minimized.) So, we �rst apply our

anonization algorithm, whose output is shown in �gure 13. It reates two fresh variables,

v

16

and v

17

. The former intuitively stands for v

2

t v

9

, while the latter stands for v

4

t v

7

.

Note that v

2

, v

4

, v

9

and v

7

have beome neutral as a result of anonization. Sine

minimization expets its input to be stable by garbage olletion, we must now run garbage

olletion again. Its output appears in �gure 14. (The reader may be surprised to see that

this algorithm has to be applied twie during the simpli�ation proess. In pratie, this is

not a problem at all, sine it is very heap. In theory, one may prove that anonization does

not require its input to be stable through garbage olletion, whih allows eah algorithm

to be run exatly one. Doing so requires a heavier proof [Pot98b, Pot98℄.)

A harateristi on�guration, alled a 2-rown in the literature, is now learly apparent.

The minimization algorithm will eliminate it. Indeed, v

16

and v

17

an be identi�ed, beause

they have idential polarities, predeessor sets, and onstruted lower bounds (namely ?).

Symmetrially, it is valid to merge v

11

and v

12

. The output of minimization is given by �g-

ure 15.

At this point, the result is learly optimal, onsidering our two invariants: we hose to use

small terms only, and to prohibit bipolar variables. This allowed an easier formulation of our

algorithms and proofs|in partiular, expressing minimization requires the �rst invariant,

sine there is otherwise no way to reason about sharing between type terms. Thus, we put

the emphasis on eÆieny. However, the omputation is now over, and we wish to display

its result. It is then perfetly aeptable to abandon these restritions, in order to enhane

readability. We apply a well-known simpli�ation tati [EST95a, AF96, AWP96, Pot96℄,

whih onsists in replaing positive (resp. negative) variables with their lower (resp. upper)

bound, if it is unique. This yields the type sheme displayed in �gure 16, whih is exatly

what a programmer familiar with ML would have expeted.

It is important to notie that the above invariants favor eÆieny, at the expense of

readability. We hoose an eÆient data representation during the whole type inferene

proess, and swith to a more readable form for display. Trying to ahieve eÆieny and

readability at the same time is a design mistake, sine these goals put opposite requirements

on the data representation: eÆieny requires small terms, whih allow improving sharing,

while readability favors large terms, whih help redue the number of variables. This fat

has already been pointed out while disussing our previous example, in setion 3.

6 Related work

Closest to our work are the papers by Eifrig, Smith and Trifonov [EST95b, EST95a℄. Their

onstraint logi is the same as ours; they perform onstraint solving using the losure algo-

rithm desribed in the present paper. Our de�nition of the sheme subsumption operator

4 omes from a later paper by Trifonov and Smith [TS96℄, where it is written �

8

. We also

adopt its formulation of the type inferene rules, with a few enhanements, as explained in

setion 2.5. Moreover, this paper introdues garbage olletion, a re�nement of a tehnique

for deteting unreahable variables proposed by the present author in [Pot96℄, as well as

anonization. (Its desription of anonization, however, is less preise, and may involve

losure omputations, whereas our de�nition is more detailed and allows proving that the

losure property is preserved.)

Aiken and Wimmers [AW92, AW93℄ also study the problem of onstraint-based type

inferene, but with a di�erent interpretation of onstraints. In our system, ground types
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are regular terms, and subtyping is de�ned expliitly on terms. Rather, Aiken et al. use the

ideal model [MPS86℄. Ground types are subsets of the model, and subtyping oinides with

set-theoreti inlusion. In both ases, type inferene involves onstraint solving; however,

in the former ase, onstraints are written in a dediated formalism, whereas in the latter,

the general theory of set onstraints is used. As a result, their system is more expressive,

as shown e.g. by its elaborate treatment of pattern mathing [AWL94℄, but more omplex.

Its initial implementation [Aik94℄ ontained unpublished simpli�ation algorithms. More

reent works by Aiken, F�ahndrih et al. [AF96, FFSA98, AFFS98, F�ah99℄ desribe various

simpli�ation tehniques, many of whih share ommon ideas with ours.

Flanagan and Felleisen [FF96, FF97, Fla97℄ also manipulate set onstraints, in order

to perform set-based analysis. Their system o�ers several ommon aspets with ours; in

partiular, it provided the inspiration for our minimization algorithm. The main di�erene

probably lies in the treatment of funtions. Indeed, in our system, a funtion's domain is

the type of its formal argument, that is, the type of the objets it is able to handle; so,

the ! onstrutor must be ontravariant with respet to its �rst argument. In Flanagan

and Felleisen's system, on the ontrary, a funtion's domain represents its atual argument,

that is, the values passed to this funtion during the program's exeution; so, the \dom"

destrutor is ovariant. Furthermore, the onstraint logi allows applying this destrutor to

objets other than funtions. These deisions have advantages: every solvable onstraint set

has a smallest solution; entailment is deidable. On the other hand, solving the onstraints

no longer guarantees that the program is orret; an additional hek beomes neessary.

Hene, the theory is signi�antly modi�ed.

Sulzmann et al. [OSW99, SMZ99℄ propose an abstrat onstraint-based type system,

alled HM(X). Whereas our paper o�ers a hoie between equality onstraints and a spei�

kind of subtyping onstraints, they go one step further and parameterize their system by an

arbitrary onstraint logi, together with its onstraint solving algorithm. Beause it does not

use our �-lifting tehnique, their system is loser to the original Hindley-Milner presentation.

As a drawbak, the simpli�ation issue is made slightly more omplex. First, simpli�ation

algorithms (and their proofs) must distinguish between the variables whih appear free in

the environment and those whih do not. Seond, the presene of free variables makes

implementing generalization and instantiation algorithms quite a subtle task, while it is

trivial in our presentation. Sulzmann et al. do not address simpli�ation or implementation

issues.

Bourdonle and Merz [BM96, BM97℄ propose a type system based on onstrained type

shemes, and apply it to an objet-oriented language with multi-methods. After de�ning

a subtyping relation between ground types, they lift it to the level of polymorphi type

shemes, using a tehnique idential to ours. However, their onstraint logi di�ers vastly.

On the one hand, subtyping is strutural and reursive types are absent, whih allows

deomposing any onstraint system into one involving atoms (onstants and variables) only.

On the other hand, their subtyping relation is arbitrary and user-extensible, by ontrast

with our �xed lattie. As a result, di�erent onstraint resolution tehniques are required;

they are studied by Frey [Fre97℄.

Palsberg [Pal95℄ studies the problem of type inferene for the ore objet alulus of

Abadi and Cardelli [AC94a, AC94b℄. He proposes an algorithm based on the same priniple

as that of Eifrig, Smith and Trifonov. However, the two systems exhibit a fundamental

di�erene: whereas Eifrig et al.'s ! onstrutor is ontravariant with respet to its �rst

argument and ovariant with respet to the seond one, Abadi and Cardelli's objet types are

invariant ; that is, a subtyping relationship between two objet types entails the equality of

their ommon omponents. As shown by Henglein [Hen97℄, this peuliarity allows enhaning

the inferene algorithm's eÆieny. However, to simulate funtion types in a satisfatory

way, Abadi and Cardelli must introdue universally and existentially quanti�ed types; in
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doing so, they lose type inferene.

M�uller, Niehren and Podelski [NMP97℄ take interest in the stati analysis of the language

Oz. The set of eah program variable's possible values is approximated by a set of in�nite

terms. One again, these sets are related by inlusion onstraints. Moreover, for the program

to be well-typed, the onstraints must not merely admit a solution, but one that assoiates

a non-empty set to eah variable. For this reason, M�uller et al. interpret onstraints in the

model of non-empty sets of terms. This system presents, in priniple, ommon points with

those mentioned above, but the details of onstraint resolution, entailment and|if it were

attempted|simpli�ation di�er widely. Also, note that this system only supports ovariant

type onstrutors.

Finally, let us mention Fuh and Mishra [FM88, FM89℄, who were preursors in the area

of onstraint simpli�ation. Their work, however, deals with atomi onstraints, as proposed

by Mithell [Mit84℄, and is of diminished interest today.

7 Conlusion

We have given a lean, omprehensive theoretial aount of a onstraint simpli�ation

system. This work brings together elements from various soures, and introdues several

original ideas, so as to build a streamlined framework. We propose a ombination of three

simpli�ation algorithms, whih are simple and well-understood, as evidened by the sim-

pliity of their proofs. Pratial experiments [Pot00b℄ show that this ombination is eÆient

and e�etive, although the problem of designing a omplete simpli�ation method urrently

remains open.

The type system studied in this paper is redued to an almost trivial ore|in appearane.

In fat, it is easy to extend it with advaned features, suh as open reord and variant

types, referene types, et. Furthermore, the essential ideas behind these algorithms are

very general and should be appliable to a wide variety of systems|our study of the ase of

equality onstraints supports this laim. In onlusion, we hope for this paper to onstitute

a sound theoretial basis for the development of onstraint-based type inferene systems.
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