
Generalizing the higher-order frame and anti-frame rules

François Pottier
INRIA

Francois.Pottier@inria.fr

Abstract
This informal note presents generalized versions of the higher-
order frame and anti-frame rules. The main insights reside in two
successive generalizations of the “tensor” operator ⊗. In the first
step, a form of “local invariant”, which allows implicit reasoning
about “well-bracketed state changes”, is introduced. In the second
step, a form of “local monotonicity” is added.

1. Introduction
Consider a type system with types and capabilities, in the style of
Charguéraud and Pottier [3]. There is no need, here, to recall the
rules of the system: suffice it to say that the typing judgement for
terms takes the form:

Γ ` χ

where Γ is a typing environment and χ is a (computation) type.
(The term itself is omitted here.)

The higher-order frame rule In such a setting, Birkedal, Torp-
Smith, and Yang’s higher-order frame rule [2] takes the form of a
subtyping axiom:

FRAME

χ ≤ χ⊗ I

Here, I is a capability, which at the same time asserts ownership
and describes the type structure of a piece of state. (One could also
think of I as a separation logic assertion.)

The ⊗ operator The “tensor” operator (· ⊗ I) applies to every
syntatic category: typing environments, types, capabilities, etc. Its
definition is simple. At arrows, it acts as per the following law:

(χ1 → χ2)⊗ I = (χ1 ⊗ I) ∗ I → (χ2 ⊗ I) ∗ I

Here, χ ∗ I is the (separating) conjunction of a computation type
χ and a capability I; it is, itself, a computation type. At every
constructor other than arrows, the tensor operator simply distributes
into the sub-terms.

In short, the effect of (· ⊗ I) is to change the interpretation
of arrows throughout its argument. Every “pure” arrow · → · is
replaced with an “effectful” arrow · ∗ I → · ∗ I . Such an arrow
describes a function that requires I and returns it, that is, a function
that has a side-effect in the area of memory controlled by I .

Thus, the higher-order frame rule states that it is sound to de-
grade every arrow into an arrow that has an additional effect I . This
axiom is far from trivial, because it applies to higher-order types,
that is, to interactions that involve callbacks. For instance, imagine
the function map declares that it expects a client function f that has
no side effects, and purports that map f itself has no side effects. In
the presence of the higher-order frame rule, map can nevertheless
be applied to a client function f that has an effect over I , and map
f will then itself have an effect over I . That is,

(int → int) → list int → list int

is a subtype of

(int ∗ I → int ∗ I) → list int ∗ I → list int ∗ I

In short, the higher-order frame rule allows a piece of code (such
as map) that was written (and type-checked) with no side effects in
mind to be used in a context where there are side effects.

The anti-frame rule The higher-order anti-frame rule [4] does
exactly the converse: it allows a piece of code that was written with
side effects to be used in a context that expects no side effects. Its
formulation is:

AF
Γ⊗ I ` (χ⊗ I) ∗ I

Γ ` χ

The rule has a slightly dissymmetric look, because of the ∗ I
conjunct that appears in the right-hand side of the premise, but not
in its left-hand side. There is, indeed, dissymmetry. The code must
allocate and initialize its hidden state I , but this state can never
be de-allocated, because there is no way to statically predict its
lifetime.

The anti-frame rule rule allows hiding a piece of state within
a certain lexical scope. Thus, it allows defining an “object” with
internal mutable state that is accessible only via the object’s “meth-
ods”. Furthermore, the rule allows such an object to receive a non-
linear type. (The computation type χ in the conclusion may happen
to be a non-linear value type τ [3], whereas the type (χ ⊗ I) ∗ I
is definitely linear if I is a non-trivial capability.) Assigning the
object a non-linear type means that the object’s internal state is
technically untracked. In other words, as far as the type system is
concerned, such objects are considered ordinary values, and can be
freely aliased.

Hidden state is invariant A characteristic feature of the higher-
order frame and anti-frame rules is that the hidden state is described
by an invariant I . In both rules, whenever control is exchanged
between Term and Context, (that is, whenever control enters or
leaves the lexical scope delimited by the rule,) I holds. In the
case of the anti-frame rule, this means that Term can assume I
whenever it receives control (either because it is called by Context,
or because a call to Context returns), and Term must guarantee I
whenever it relinquishes control (either by returning to Context,
or by invoking a callback provided by Context). Term is free to
temporarily break I , but must restore it in due time.

The property that I is an invariant is in fact hard-wired in the
very definition of the “tensor” operator · ⊗ I . This operator adds a
copy of I as a pre-condition and a post-condition to every arrow, so
I must hold at every interaction, period.

In the following, I argue that this is sometimes a limitation. I
present two modest generalizations of the “tensor” operator (and,
accordingly, of the frame and anti-frame rules) that introduce some
new expressive power.

1 2009/7/1



1 let mk () =
2 let x = ref 0 in
3 let m f =
4 x := !x + 1;
5 let v1 = !x in
6 f ();
7 let v2 = !x in
8 assert (v1 = v2);
9 x := !x - 1

10 in m

Figure 1. “callee-save register”

1 let mk () =
2 let σ, (x : [σ]) = ref 0 in
3 let cap I = { σ: ref int } in
4 got cap I;
5 hide I outside of
6 let m : (unit ∗ I → unit ∗ I) ∗ I → unit ∗ I =
7 got cap I;
8 x := !x + 1; – permitted by I
9 let v1 = !x in

10 f (); – permitted by I
11 let v2 = !x in
12 assert (v1 = v2); – not statically proven safe!
13 x := !x - 1
14 in m – m has external type (unit → unit) → unit

Figure 2. “callee-save register”, with AF

1 let mk () =
2 let σ, (x : [σ]) = ref 0 in
3 let cap I i = { σ: ref int i } in
4 pack cap ∃i. I i;
5 hide I outside of
6 let m : ∀i. (∀j. unit ∗ I j → unit ∗ I j) ∗ I i → unit ∗ I i =
7 got cap I i;
8 x := !x + 1;
9 got cap I (i + 1);

10 let v1 : int (i + 1) = !x in
11 f (); – instantiated with i + 1 for j
12 got cap I (i + 1);
13 let v2 : int (i + 1) = !x in
14 assert (v1 = v2); – statically proven safe
15 x := !x - 1;
16 got cap I i – restores the initial invariant
17 in m – m has external type (unit → unit) → unit

Figure 3. “callee-save register”, with GAF

2. Local invariants
2.1 A motivating example
Figure 1 presents an (untyped) piece of ML code, which, in object-
oriented terminology, implements an object with internal state x
and a single method m. The toplevel function mk can be viewed
as a constructor. It allocates and initializes an integer reference x,
defines the method m, which has access to x, and returns m to the
client. The method m accepts a callback f.

Why is this code interesting? The method m modifies x inter-
nally, by incrementing it; however, it restores its original value, by
decrementing x, before returning. (For this reason, this example is
dubbed “callee-save register”.) As a result, a call to m preserves the
value of x. Since no function other than m has access to x, one can

informally argue that every function call preserves the value of x.
This includes the call to f within m, so it seems safe for m to assert
that f preserves the value of x. This is expressed by the assertion
v1 = v2 on line 8 of Figure 1.

Can we hide x and typecheck this code using the anti-frame rule
(AF)? Yes. The code, with a few annotations, appears in Figure 2.
On line 2, σ is the singleton region inhabited by x. On line 3, we
define I as an abbreviation for the capability {σ : ref int}, which
represents the ownership of the region σ, and indicates that this
region holds a reference to an integer. On line line 4, we assert
that we hold the capability I . (This statement is optional; like a
type annotation, it is a machine-checked comment.) Then (line 5),
we apply the anti-frame rule, so that I is hidden outside of the
definition of the method m.

We define m at type ((unit → unit) → unit) ⊗ I , that is,
(unit ∗ I → unit ∗ I) ∗ I → unit ∗ I . The two negative occurrences
of I in this type mean that m can assume I initially (as confirmed
by the assertion on line 7), and can assume I after f returns.
Symmetrically, the two positive occurrences of I mean that m must
guarantee I when f is called, and must guarantee I when m returns.

The effect of the anti-frame rule is to remove an application of
· ⊗ I in the type of the value that is returned, so, to the outside, m
appears to have type (unit → unit) → unit. (This is the return type
of mk.)

Can we statically prove that the assertion on line 12 of Figure 2
is correct? No. The invariant I only guarantees that x is a reference
to some integer value. There is no way to express the fact that
this value is preserved across (well-balanced) interactions between
Term and Context.

In the following, we will use a singleton type of integers, of the
form int i, where i is a (type-level) integer index, to reason pre-
cisely about integer values. For the moment, though, this precision
does not help. We could define I as ∃i.{σ : ref int i}, but that
would not help. We would have a guarantee that a call to f pre-
serves the closed capability ∃i.{σ : ref int i}, but no guarantee
that the witness i is preserved. In fact, ∃i.{σ : ref int i} is equiv-
alent to {σ : ref (∃i.int i)}, which itself is interconvertible with
{σ : ref int}, because ∃i.int i is just int.

In summary, I is a global invariant, one that is preserved across
arbitrary sequences of calls and returns. What we would like to
have, here, is a local invariant, one that is preserved across well-
balanced such sequences.

Another way to put this is: x measures the number of re-entrant
calls to m, that is, the number of frames associated with m on the
(implicit) call stack. We would like to allow each level of the call
stack to have its own invariant, possibly distinct with the invariant
used at the next level.

2.2 A first generalization
There is a surprisingly simple solution to this issue. Instead of
defining I as ∃i.{σ : ref int i}, let us parameterize I over i, as
follows:

I i = {σ : ref int i}
I now has kind Z → CAP, where Z is the kind of integer indices,
and CAP is the kind of capabilities. In other words, I is no longer
an invariant, but a Z-indexed family of invariants. There remains to
generalize the definition of ⊗ as follows:

(χ1 → χ2)⊗ I = ∀i.((χ1 ⊗ I) ∗ I i → (χ2 ⊗ I) ∗ I i
)

The idea is simple. A universal quantification is used to share the
index i between the pre-condition and post-condition of every ar-
row, so every well-balanced interaction is now required to preserve
the open invariant I i. Less obviously, perhaps, different instantia-
tions of i can be used at different levels of the stack. This will be
illustrated below.

2 2009/7/1



In the above example, i has kind Z. Of course, the definition of
the generalized “tensor” operator is not specialized for this kind. In
general, the index i can have any kind κ that exists in the ambient
programming language. In particular, if tuple kinds are available,
the invariant I can effectively be parameterized over any number of
indices. When it is parameterized over zero indices (that is, when
κ is the unit kind), we obtain the traditional “tensor” operator as a
particular case.

It is nice to find that the statement of the frame rule is un-
changed:

FRAME

χ ≤ χ⊗ I

There is no visible difference. The (invisible) difference is that I is
now a κ-indexed family of invariants, for some kind κ.

Because the anti-frame rule is expressed not only in terms of
· ⊗ I , but also in terms of · ∗ I , its statement changes slightly. Here
is the generalized anti-frame rule (GAF):

GAF
Γ⊗ I ` (χ⊗ I) ∗ ∃i.I i

Γ ` χ

The conjunct ∃i.I i requires some invariant in the family I to hold
initially. Then, as in the frame rule, the “tensor” · ⊗ I is used to
express that, if some member I i of the family holds at a call (from
Term to Context or from Context to Term), then the same member
holds when this call returns.

Conjecture 1 The above generalized higher-order frame and anti-
frame rules are sound. ¦

2.3 Back to the example
Let us now come back to the “callee-save register” example of Fig-
ures 1 and 2. Using the generalized anti-frame rule, this code can
be type-checked in such a way that the internal state is hidden and
the assertion is statically proven valid. This is shown in Figure 3.
On line 3, I is now defined as a family of invariants, as announced
above. The reference x is initialized to 0, so, initially we hold the
capability I 0, which, by introducing an existential quantifier, be-
comes ∃i.I i (line 4). On line 5, the generalized anti-frame rule
is applied to the family I . As before, the method m is internally
defined at type:

((unit → unit) → unit)⊗ I

This time, however, this type means:

∀i.(∀j.unit ∗ I j → unit ∗ I j) ∗ I i → unit ∗ I i

The “tensor” operator has altered the meaning of the two arrows
in the type (unit → unit) → unit, and has introduced a distinct
universal quantifier at each arrow.

The universal quantification over i and the two occurrences of
I i mean that the method m can initially assume I i, for some
unknown i, and must eventually guarantee I i, for the same index i.
The universal quantification over j and the two occurrences of I j
mean that m must guarantee I j when f is called, for some j whose
choice is up to m, and m can assume I j, for the same index j, after
f returns.

When the execution of m begins, we have I i (line 7). After
incrementing x, this capability is changed to I (i + 1); this is
a strong update (line 9). Thus, the value v1 of x at this time has
type int (i + 1) (line 10). The call to f is well-typed, provided
the universally quantified index j in the type of f is instantiated to
i + 1 (line 11). This is how different “levels in the stack” can have
different local invariants, as long as they all are members of a single
family. The call to f preserves the capability I (i + 1) (line 12), so
the value v2 of x after the call has type int (i+1) (line 13). Thus, v1

1 let mk () =
2 let x = ref 0 in
3 let locked = ref false in
4 let m f =
5 if not !locked then begin
6 locked := true;
7 let v1 = !x in
8 f ();
9 let v2 = !x in

10 assert (v1 = v2);
11 x := !x + 1;
12 locked := false
13 end
14 in
15 m

Figure 4. “callback with lock”

and v2 have the same (singleton) type. This is enough for the type-
checker to statically prove that v1 and v2 are equal, and to prove
that the runtime check on line 14 must succeed.

2.4 A subtler example
Figure 4 presents an example known in the literature under the
name of “callback with lock” [1, 5].

As in the previous example (Figure 1), a private integer refer-
ence x is accessible via a public method m. Contrary to the previ-
ous example, the value of x is not preserved by m: sometimes, m
increments x (line 11). As a result, it is not sound to assume that f
preserves x. Indeed, f could make a re-entrant call to m.

To guard against this situation, the code uses a dynamic check.
A Boolean flag, locked, is set before f is invoked, and cleared af-
terwards. If m is invoked while this flag is set, it does not modify x.
(One could wish for m to fail, by aborting the program or raising
an exception, in that case.) It is now sound to assume that the the
value of x is preserved across the call to f. This is expressed by the
assertion on line 10.

(In some previous papers [1, 5], a get method is added so as
to make the value of x observable and allow stating a meta-level
assertion about the successive values of x. Here, this is not required,
because the assertion is part of the code. Of course, we could add a
get method if desired.)

The anti-frame rule (AF) allows hiding the following invariant:

{x : ref int} ∗ {locked : ref bool}
(where, by abuse of language, I use the same name for a program
variable and for the singleton region that it inhabits). This is suffi-
cient to hide the object’s internal state, but does not allow proving
v1 and v2 equal.

Does the generalized anti-frame rule (GAF) offer a solution
to this problem? In a first attempt, one might attempt hiding the
following invariant family:

I (i, b) = {x : ref int i} ∗ {locked : ref bool b}
(i and b have respective kinds Z and B, so I is a Z × B-indexed
family of invariants. I assume int · and bool · are the singleton types
of integers and Booleans.) This attempt fails, because this invariant
is too strong: it requires the values of x and locked to be preserved
by m, whereas only the latter is, in general, preserved. The value
of x is preserved only when locked is set. This is expressed via a
slightly subtler invariant:

I (i, b) = ∃j.({x : ref int j} ∗ (b = true ⇒ i = j))
∗{locked : ref bool b}

3 2009/7/1



1 let mk () =
2 let x = ref 1 in
3 let m f =
4 x := 0;
5 f ();
6 x := 1;
7 f ();
8 assert (!x = 1)
9 in

10 m

Figure 5. “well-bracketed monotonic state change”

(I assume that a logical proposition, such as (b = true ⇒ i = j),
is viewed as a non-linear capability. If P and Q are propositions, I
assume that (P ) ∗ (Q) is equivalent to (P ∧ Q). I assume that, if
P can be shown to entail Q, then (P ) can be weakened to (Q).
With these assumptions, the existing machinery for transporting
capabilities subsumes Hoare logic.)

The first line in the definition of I above states, that upon entry
or exit of m, x must have some value j, such that, if locked is set,
then j is i. The existentially quantified index j is not necessarily the
same upon entry and upon exit of m. However, the index i, which
is universally quantified by the “tensor” operator, must be the same
upon entry and exit of m.

When the flag locked is cleared, b must be false, so there is
no requirement that the value of x be preserved, because different
instantiations of j upon entry and upon exit can be used. In fact,
since the type ∃j.int j is equivalent to the type int, one could
simplify I (i, false) as follows:

I (i, false) = {x : ref int} ∗ {locked : ref bool false}
On the other hand, when the flag locked is set, b must be true, so
j is forced to be i, and the flexibility afforded by the existential
quantification over j vanishes:

I (i, true) = {x : ref int i} ∗ {locked : ref bool true}
This forces the value of x to be preserved by m.

It is easy to check that an application of GAF, with the above
definition of I , is well-typed. (In fact, checking that m preserves I
does not even require exploiting the hypothesis that f preserves I .)
The hypothesis that f preserves I is exploited in order to statically
prove that the assertion on line 10 must succeed. If the value
of x before the call to f is represented by the index i (so that
v1 has type int i), then I (i, true) holds prior to the call. By
hypothesis, f preserves this particular instance of the invariant
family, so I (i, true) still holds after the call. This means that the
index i still represents the value of x after the call. As a result, v2

has type int i as well, and the assertion on line 10 must succeed.
In summary, the generalized anti-frame rule (GAF) can be used

to state that, under certain conditions, certain properties (such
as the value of certain variables) are preserved by every (well-
balanced) interaction between Term and Context.

In the example of Figure 4, x evolves in a globally monotonic
manner: its value increases with time. This property is not estab-
lished or exploited here. My work with Pilkiewicz (alluded to in
§4) would allow doing so.

3. Local monotonicity
3.1 A second generalization
The generalized anti-frame rule of §2 uses a universally quantified
index to enforce the preservation of some property of the hidden
state by each function call across the “border”. It is not difficult
to imagine one step further: one could wish to impose a local

monotonicity property, that is, to require each and every function
call across the border to guarantee that the hidden state evolves in a
certain way.

Again, let I be a κ-indexed family of invariants, for some
kind κ. In addition, let R be a pre-order over κ, that is, a predicate
of kind κ → κ → PROP that is provably reflexive and transitive.
(I am glossing over the details of how these proofs are carried out.)
For instance, if κ is the kind Z of integer indices, R could be the
total order ≤ over the integers. I view a proposition, of kind PROP,
as a non-linear capability, so that the existing machinery that deals
with capabilities subsumes Hoare logic. (A function precondition is
expressed by a proposition, viewed as a capability, in the position
of a function argument; a function postcondition is expressed by a
proposition in the position of a result.)

Now, generalize further the definition of ⊗, as follows:

(χ1 → χ2)⊗ I/R
= ∀i.((χ1 ⊗ I/R) ∗ I i → ∃j.((χ2 ⊗ I/R) ∗ I j ∗R i j)

)

Tensor is now a ternary operator, because it is parameterized over
I and R instead of just I . I use the notation · ⊗ I/R. Note that, if
R is equality, this definition degenerates to the generalized tensor
of §2.

The statements of the frame and anti-frame rules is unchanged
with respect to §2, save the additional parameterization over R:

FRAME

χ ≤ χ⊗ I/R

GAF
Γ⊗ I/R ` (χ⊗ I/R) ∗ ∃i.I i

Γ ` χ

The “tensor” ·⊗I/R is used to express that, if some member I i of
the family holds at a call across the border (from Term to Context
or from Context to Term), then some stronger member I j holds
when this call returns. The pre-state i and the post-state j are no
longer required to be equal, but only related by R.

The generalized anti-frame rule above intuitively states that
Term can assume that any call by Term to Context improves the
state, and Term must guarantee that any call by Context to Term
improves the state.

This is only a local monotonicity property, not a global one:
there is no requirement that the invariant always gets stronger with
respect to a global timeline. This is illustrated by the example in
§3.2.

Conjecture 2 The above generalized higher-order frame and anti-
frame rules are sound. ¦

3.2 An example
The example of Figure 5 has appeared in the recent literature [1, 5],
under the nickname “well-bracketed state change”. I would like to
change that nickname to “well-bracketed monotonic state change”,
so as to distinguish it from the examples considered earlier in
this note (Figures 1 and 4), which are about well-bracketed state
changes, but only involve preservation, not monotonicity.

This example is quite tricky: it seems difficult, at first sight, to
understand what is going on, let alone to prove that the assertion on
line 8 of Figure 5 cannot fail. Yet, the safety of this assertion is an
immediate consequence of the generalized anti-frame rule, with:

I i = {x : ref int i} ∗ (i ∈ {0, 1})
R = (≤)

Indeed, in order to prove that m admits the external type (unit →
unit) → unit, we must prove that it admits the internal type
(unit → unit) → unit⊗ I/R. By definition, this type is:

∀i1.(∀j1.unit ∗ I j1 → ∃j2.unit ∗ I j2 ∗R j1 j2) ∗ I i1 →
∃i2.unit ∗ I i2 ∗R i1 i2

4 2009/7/1



This is rather difficult to read. A translation in natural language
would be:

Admit that, if x initially has value j1 ∈ {0, 1}, then a call
to f leaves x with some new value j2 ∈ {0, 1} such that
j1 ≤ j2.
Prove that, if x initially has value i1 ∈ {0, 1}, then a call
to m leaves x with some new value i2 ∈ {0, 1} such that
i1 ≤ i2.

The proof is obvious. After the assignment on line 6, x holds the
value 1 – that is, the capability I 1 is available. The hypothesis
about f implies that x still holds 1 after the call to f on line 7. (More
precisely, we have ∃j2.(I j2 ∗ 1 ≤ j2), which provably implies
I 1.) As a result, the assertion on line 8 is valid. Furthermore, since
the final state of x is 1, it is provably greater than or equal to its
initial state i1, which by hypothesis is a member of {0, 1}.

In principle, a sufficiently advanced combination of a type-
checker and a proof checker should be able to verify this proof.

It seems to me that that the natural-language version of this
proof is about as short as it can get: m “is monotonic” (read: m
has a monotonic effect on the hidden state) because f can safely
be assumed to be monotonic as well, and this assumption about f
is (recursively) justified by the fact that f can affect the state only
via m, which is monotonic.

This is only a local (or “well-bracketed”) monotonicity prop-
erty: although there is a guarantee that a call to m or to f causes x
to grow, there is no guarantee that x grows over time. In fact, this is
false, since the value of x alternates between 0 and 1.

This example seems contrived. I would be interested in finding
a real-world example of a local monotonicity property that is not
also a global monotonicity property.

4. Conclusion
I am writing this draft, informal note in order to solicit some
feedback from the community. At the moment, no type soundness
proofs have been carried out. There are probably pieces of related
work that I am not aware of. Please forgive these shortcomings.

I believe that these two generalized versions of the tensor opera-
tor are interesting, and could be useful in practice. The examples of
Figures 1 and 4, for instance, correspond to realistic programming
patterns.

Birkedal et al. [2] construct a model of the tensor operator and
of the higher-order frame rule. In this model, every arrow is under-
stood as implicitly polymorphic over all potential state extensions.
It would be interesting to find out whether this model can be up-
dated to support the generalized tensor operators presented in this
note.

Alexandre Pilkiewicz and I are presently preparing a capability-
based account of monotonicity. This account is orthogonal to most
of the other features of the host programming language (such as
mutable state, the frame rule, and the anti-frame rule), but interacts
well with them. It is plausible that the second generalized anti-
frame rule presented in this note could be derived from the first
generalized anti-frame rule, combined with our general treatment
of monotonicity.

Can the generalized anti-frame rules be derived from the basic
anti-frame rule? It seems not, since the latter enforces an invari-
ant property of the state alone, while the former enforce properties
of the state and of the (implicit) evaluation context in combination.
Can the generalized anti-frame rules be derived from the basic anti-
frame rule, up to a program transformation, such as continuation-
passing style transform, which makes the evaluation context ex-
plicit? Maybe – I have no idea.

At this time, it is not clear to me how far the tensor operator, and
the frame and anti-frame rules, can (and should) be generalized.
Are there further generalizations, waiting to be discovered? Could
one prove that the current rules are complete in some sense? These
are open questions.

References
[1] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent

representation independence. In ACM Symposium on Principles of
Programming Languages (POPL), pages 340–353, January 2009.

[2] Lars Birkedal, Noah Torp-Smith, and Hongseok Yang. Semantics of
separation-logic typing and higher-order frame rules for Algol-like
languages. Logical Methods in Computer Science, 2(5), November
2006.

[3] Arthur Charguéraud and François Pottier. Functional translation
of a calculus of capabilities. In ACM International Conference on
Functional Programming (ICFP), pages 213–224, September 2008.

[4] François Pottier. Hiding local state in direct style: a higher-order anti-
frame rule. In IEEE Symposium on Logic in Computer Science (LICS),
pages 331–340, June 2008.

[5] Eijiro Sumii. A complete characterization of observational equivalence
in polymorphic lambda-calculus with general references. In Computer
Science Logic, September 2009.

5 2009/7/1

http://ttic.uchicago.edu/~amal/papers/sdri.pdf
http://ttic.uchicago.edu/~amal/papers/sdri.pdf
http://arxiv.org/pdf/cs.LO/0610081
http://arxiv.org/pdf/cs.LO/0610081
http://arxiv.org/pdf/cs.LO/0610081
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://cristal.inria.fr/~fpottier/publis/chargueraud-pottier-capabilities.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://cristal.inria.fr/~fpottier/publis/fpottier-antiframe-2008.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/poly-ref.pdf
http://www.kb.ecei.tohoku.ac.jp/~sumii/pub/poly-ref.pdf

	Introduction
	Local invariants
	A motivating example
	A first generalization
	Back to the example
	A subtler example

	Local monotonicity
	A second generalization
	An example

	Conclusion

