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Abstrat. Extending a subtyping-onstraint-based type inferene frame-

work with onditional onstraints and rows yields a powerful type infer-

ene engine. We illustrate this laim by proposing solutions to three

deliate type inferene problems: \aurate" pattern mathings, reord

onatenation, and \dynami" messages. Until now, known solutions re-

quired signi�antly di�erent tehniques; our theoretial ontribution is

in using only a single (and simple) set of tools. On the pratial side,

this allows all three problems to bene�t from a ommon set of onstraint

simpli�ation tehniques, leading to eÆient solutions.

1 Introdution

Type inferene is the task of examining a program whih laks some (or even all)

type annotations, and reovering enough type information to make it aeptable

by a type heker. Its original, and most obvious, appliation is to free the

programmer from the burden of manually providing these annotations, thus

making stati typing a less dreary disipline. However, type inferene has also

seen heavy use as a simple, modular way of formulating program analyses.

This paper presents a ommon solution to several seemingly unrelated type

inferene problems, by unifying in a single type inferene system several previ-

ously proposed tehniques, namely: a simple framework for subtyping-onstraint-

based type inferene [15℄, onditional onstraints inspired by Aiken, Wimmers

and Lakshman [2℄, and rows �a la R�emy [18℄.

Constraint-Based Type Inferene

Subtyping is a partial order on types, de�ned so that an objet of a subtype may

safely be supplied wherever an objet of a supertype is expeted. Type inferene

in the presene of subtyping reets this basi priniple. Every time a piee

of data is passed from a produer to a onsumer, the former's output type is

required to be a subtype of the latter's input type. This requirement is expliitly

reorded by reating a symboli subtyping onstraint between these types. Thus,

eah potential data ow disovered in the program yields one onstraint. This

fat allows viewing a onstraint set as a direted approximation of the program's

data ow graph { regardless of our partiular de�nition of subtyping.

Various type inferene systems based on subtyping onstraints exist. One

may ite works by Aiken et al. [1, 2, 5℄, the present author [16, 15℄, Trifonov
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and Smith [22℄, as well as an abstrat framework by Odersky, Sulzmann and

Wehr [12℄. Related systems inlude set-based analysis [8, 6℄ and type inferene

systems based on feature onstraints [9, 10℄.

Conditional Constraints

In most onstraint-based systems, the expression if e

0

then e

1

else e

2

may,

at best, be desribed by

�

1

� � ^ �

2

� �

where �

i

stands for e

i

's type, and � stands for the whole expression's type.

This amounts to stating that \e

1

's (resp. e

2

's) value may beome the whole

expression's value", regardless of the test's outome. A more preise desription

{ \if e

0

may evaluate to true (resp. false), then e

1

's (resp e

2

's) value may

beome the whole expression's value" { may be given using natural onditional

onstraints :

true � �

0

?�

1

� � ^ false � �

0

?�

2

� �

Introduing tests into onstraints allows keeping trak of the program's ontrol

ow { that is, mirroring the way evaluation is a�eted by a test's outome, at

the level of types.

Conditional set expressions were introdued by Reynolds [21℄ as a means

of solving set onstraints involving strit type onstrutors and destrutors.

Heintze [8℄ uses them to formulate an analysis whih ignores \dead ode". He

also introdues ase onstraints, whih allow ignoring the e�et of a branh, in

a ase onstrut, unless it is atually liable to be taken. Aiken, Wimmers and

Lakshman [2℄ use onditional types, together with intersetion types, for this

purpose.

In the present paper, we suggest a single notion of onditional onstraint,

whih is omparable in expressive power to the above onstruts, and lends itself

to a simple and eÆient implementation. (A similar hoie was made indepen-

dently by F�ahndrih [5℄.) We emphasize its use as a way not only of introduing

ontrol into types, but also of delaying type omputations, thus introduing some

\laziness" into type inferene.

Rows

Designing a type system for a programming language with reords, or objets,

requires some way of expressing labelled produts of types, where labels are

�eld or method names. Dually, if a programming language allows manipulating

strutured data, then its type system shall likely require labelled sums, where

labels are names of data onstrutors.

R�emy [18℄ elegantly deals with both problems at one by introduing notation

to express denumerable, indexed families of types, alled rows :

� ::= �; �; : : : ; ';  ; : : : j a : � ; � j ��
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(Here, � ranges over types, and a; b; : : : range over indies.) An unknown row

may be represented by a row variable, exatly as in the ase of types. (By lak

of symbols, we shall not syntatially distinguish regular type variables and row

variables.) The term a : � ; � represents a row whose element at index a is � ,

and whose other elements are given by �. The term �� stands for a row whose

element at any index is � . These informal explanations are made preise via an

equational theory:

a : �

a

; (b : �

b

; �) = b : �

b

; (a : �

a

; �)

�� = a : � ; ��

For more details, we refer the reader to [18℄.

Rows o�er a partiularly straightforward way of desribing operations whih

treat all labels (exept possibly a �nite number thereof) uniformly. Beause every

faility available at the level of types (e.g. onstrutors, onstraints) an also be

made available at the level of rows, a desription of what happens at the level

of a single label { written using types { an also be read as a desription of the

whole operation { written using rows. This interesting point will be developed

further in the paper.

Putting It All Together

Our point is to show that the ombination of the three onepts disussed above

yields a very expressive system, whih allows type inferene for a number of

advaned language features. Among these, \aurate" pattern mathing on-

struts, reord onatenation, and \dynami" messages will be disussed in this

paper. Our system allows performing type inferene for all of these features at

one. Furthermore, eÆieny issues onerning onstraint-based type inferene

systems have already been studied [5, 15℄. This existing knowledge bene�ts our

system, whih may thus be used to eÆiently perform type inferene for all of

the above features.

In this paper, we fous on appliations of our type system, i.e. we show how

it allows solving eah of the problems mentioned above. Theoretial aspets of

onstraint solving are disussed in [15, 17℄. Furthermore, a robust prototype

implementation is publily available [14℄. We do not prove that the types given

to the three problemati operations disussed in this paper are sound, but we

believe this is a straightforward task.

The paper is organized as follows. Setion 2 gives a brief tehnial overview

of the type system, fousing on the notion of onstrained type sheme, whih

should be enough to gain an understanding of the paper. Setions 3, 4, and 5

disuss type inferene for \aurate" pattern mathings, reord onatenation,

and \dynami" messages, respetively, within our system. Setion 6 sums up

our ontribution, then briey disusses future researh topis. Appendix A gives

some more tehnial details, inluding the system's type inferene rules. Lastly,

Appendix B gives several examples, whih show what inferred types look like in

pratie.
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2 System's Overview

The programming language onsidered throughout the paper is a all-by-value

�-alulus with let-polymorphism, i.e. essentially ore ML.

e ::= x; y; : : : j �x:e j (e e) j X;Y; : : : j let X = e in e

The type algebra needed to deal with suh a ore language is simple. The set

of ground terms ontains all regular trees built over ?, > (with arity 0) and !

(with arity 2). It is equipped with a straightforward subtyping relationship [15℄,

denoted �, whih makes it a lattie. It is the logial model in whih subtyping

onstraints are interpreted.

Symbols, type variables, types and onstraints are de�ned as follows:

s ::= ? j ! j > v ::= �; �; : : :

� ::= v j ? j � ! � j >  ::= � � �

j s � v ? � � �

A ground substitution � is a map from type variables to ground terms. A on-

straint of the form �

1

� �

2

, whih reads \�

1

must be a subtype of �

2

", is satis�ed

by � if and only if �(�

1

) � �(�

2

). A onstraint of the form s � � ? �

1

� �

2

,

whih reads \if � exeeds s, then �

1

must be a subtype of �

2

", is satis�ed by � if

and only if s �

S

head(�(�)) implies �(�

1

) � �(�

2

), where head maps a ground

term to its head onstrutor, and �

S

is the expeted ordering over symbols. A

onstraint set C is satis�ed by � if and only if all of its elements are.

A type sheme is of the form

� ::= 8C: �

where � is a type and C is a onstraint set, whih restrits the set of �'s ground

instanes. Indeed, the latter, whih we all �'s denotation, is de�ned as

f�

0

; 9� � satis�es C ^ �(�) � �

0

g

Beause all of a type sheme's variables are universally quanti�ed, we will usually

omit the 8 quanti�er and simply write \� where C".

Of ourse, the type algebra given above is very muh simpli�ed. In gen-

eral, the system allows de�ning more type onstrutors, separating symbols (and

terms) into kinds, and making use of rows. (A full de�nition { without rows { ap-

pears in [17℄.) However, for presentation's sake, we will introdue these features

only step by step.

The ore programming language desribed above is also limited. To extend it,

we will de�ne new primitive operations, equipped with an operational semantis

and an appropriate type sheme. However, no extension to the type system {

e.g. in the form of new typing rules { will be made. This explains why we do

not further desribe the system itself. (Some details are given in Appendix A.)

Really, all this paper is about is writing expressive onstrained type shemes.
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3 Aurate Analysis of Pattern Mathings

When faed with a pattern mathing onstrut, most existing type inferene

systems adopt a simple, onservative approah: assuming that eah branh may

be taken, they let it ontribute to the whole expression's type. A more aurate

system should use types to prove that ertain branhes annot be taken, and

prevent them from ontributing.

In this setion, we desribe suh a system. The essential idea { introduing

a onditional onstrut at the level of types { is due to [8, 2℄. Some novelty

resides in our two-step presentation, whih we believe helps isolate independent

onepts. First, we onsider the ase where only one data onstrutor exists.

Then, we easily move to the general ase, by enrihing the type algebra with

rows.

3.1 The Basi Case

We assume the language allows building and aessing tagged values.

e ::= : : : j Pre j Pre

�1

A single data onstrutor, Pre, allows building tagged values, while the destru-

tor Pre

�1

allows aessing their ontents. This relationship is expressed by the

following redution rule:

Pre

�1

v

1

(Pre v

2

) redues to (v

1

v

2

)

The rule states that Pre

�1

�rst takes the tag o� the value v

2

, then passes it to

the funtion v

1

.

At the level of types, we introdue a (unary) variant type onstrutor [ � ℄.

Also, we establish a distintion between so-alled \regular types," written � , and

\�eld types," written �.

� ::= �; �; ; : : : j ? j > j � ! � j [� ℄

� ::= ';  ; : : : j Abs j Pre � j Any

A subtype ordering over �eld types is de�ned straightforwardly: Abs is its least

element, Any is its greatest, and Pre is a ovariant type onstrutor.

The data onstrutor Pre is given the following type sheme:

Pre : �! [ Pre � ℄

Notie that there is no way of building a value of type [ Abs ℄. Thus, if an ex-

pression has this type, then it must diverge. This explains our hoie of names.

If an expression has type [ Abs ℄, then its value must be \absent"; if it has type

[ Pre � ℄, then some value of type � may be \present".
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The data destrutor Pre

�1

is desribed as follows:

Pre

�1

: (�! �)! [' ℄! 

where ' � Pre �

Pre � ' ?� � 

The onditional onstraint allows (Pre

�1

e

1

e

2

) to reeive type ? when e

2

has

type [ Abs ℄, reeting the fat that Pre

�1

isn't invoked until e

2

produes some

value. Indeed, as long as ' equals Abs, the onstraint is vauously satis�ed, so

 is unonstrained and assumes its most preise value, namely ?. However, as

soon as Pre � ' holds, � �  must be satis�ed as well. Then, Pre

�1

's type

beomes equivalent to (�! �)! [ Pre � ℄! �, whih is its usual ML type.

3.2 The General Case

We now move to a language with a denumerable set of data onstrutors.

e ::= : : : j K j K

�1

j lose

(We let K, L; : : : stand for data onstrutors.) An expression may be tagged,

as before, by applying a data onstrutor to it. Aessing tagged values be-

omes slightly more omplex, beause multiple tags exist. The semantis of the

elementary data destrutor, K

�1

, is given by the following redution rules:

K

�1

v

1

v

2

(K v

3

) redues to (v

1

v

3

)

K

�1

v

1

v

2

(L v

3

) redues to (v

2

(Lv

3

)) when K 6= L

Aording to these rules, if the value v

3

arries the expeted tag, then it is passed

to the funtion v

1

. Otherwise, the value { still arrying its tag { is passed to the

funtion v

2

. Lastly, a speial value, lose, is added to the language, but no

additional redution rule is de�ned for it.

How do we modify our type algebra to aommodate multiple data onstru-

tors? In Setion 3.1, we used �eld types to enode information about a tagged

value's presene or absene. Here, we need exatly the same information, but

this time about every tag. So, we need to manipulate a family of �eld types,

indexed by tags. To do so, we add one layer to the type algebra: rows of �eld

types.

� ::= �; �; ; : : : j ? j > j � ! � j [ � ℄

� ::= ';  ; : : : j K : �; � j ��

� ::= ';  ; : : : j Abs j Pre � j Any

We an now extend the previous setion's proposal, as follows:

K : �! [K : Pre �; �Abs ℄

K

�1

: (�! �)! ([K : Abs;  ℄! )! [K : ';  ℄! 

where ' � Pre �

Pre � ' ?� � 

lose : [ �Abs ℄! ?
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K

�1

's type sheme involves the same onstraints as in the basi ase. Using a

single row variable, namely  , in two distint positions allows expressing the fat

that values arrying any tag other than K shall be passed unmodi�ed to K

�1

's

seond argument.

lose's argument type is [ �Abs ℄, whih prevents it from ever being invoked.

This aords with the fat that lose does not have an assoiated redution

rule. It plays the role of a funtion de�ned by zero ases.

This system o�ers extensible pattern mathings: k-ary ase onstruts may

be written using k nested destrutor appliations and lose, and reeive the

desired, aurate type. Thus, no spei� language onstrut or type inferene

rule is needed to deal with them.

4 Reord Conatenation

Stati typing for reord operations is a widely studied problem [4, 13℄. Com-

mon operations inlude seletion, extension, restrition, and onatenation. The

latter omes in two avors: symmetri and asymmetri. The former requires its

arguments to have disjoint sets of �elds, whereas the latter gives preedene to

the seond one when a onit ours.

Of these operations, onatenation is probably the most diÆult to deal

with, beause its behavior varies aording to the presene or absene of eah

�eld in its two arguments. This has led many authors to restrit their attention

to type heking, and to not address the issue of type inferene [7℄. An inferene

algorithm for asymmetri onatenation was suggested by Wand [23℄. He uses

disjuntions of onstraints, however, whih gives his system exponential om-

plexity. R�emy [19℄ suggests an enoding of onatenation into �-abstration and

reord extension, whene an inferene algorithm may be derived. Unfortunately,

its power is somewhat dereased by subtle interations with ML's restrited poly-

morphism; furthermore, the enoding is exposed to the user. In later work [20℄,

R�emy suggests a diret, onstraint-based algorithm, whih involves a speial

form of onstraints. Our approah is inspired from this work, but re-formulated

in terms of onditional onstraints, thus showing that no ad ho onstrut is

neessary.

Again, our presentation is in two steps. The basi ase, where reords only

have one �eld, is takled using subtyping and onditional onstraints. Then, rows

allow us to easily transfer our results to the ase of multiple �elds.

4.1 The Basi Case

We assume a language equipped with one-�eld reords, whose unique �eld may

be either \absent" or \present". More preisely, we assume a onstant data on-

strutor Abs, and a unary data onstrutor Pre; a \reord" is a value built with

one of these onstrutors. A data destrutor, Pre

�1

, allows aessing the ontents

of a non-empty reord. Lastly, the language o�ers asymmetri and symmetri
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onatenation primitives, written � and ��, respetively.

e ::= : : : j Abs j Pre j Pre

�1

j � j ��

The relationship between reord reation and reord aess is expressed by a

simple redution rule:

Pre

�1

(Pre v) redues to v

The semantis of asymmetri reord onatenation is given as follows:

v

1

� Abs redues to v

1

v

1

�(Pre v

2

) redues to Pre v

2

(In eah of these rules, the value v

1

is required to be a reord.) Lastly, symmetri

onatenation is de�ned by

Abs�� v

2

redues to v

2

v

1

�� Abs redues to v

1

(In these two rules, v

1

and v

2

are required to be reords.)

The onstrution of our type algebra is similar to the one performed in Se-

tion 3.1. We introdue a (unary) reord type onstrutor, as well as a distintion

between regular types and �eld types:

� ::= �; �; ; : : : j ? j > j � ! � j f�g

� ::= ';  ; : : : j Bot j Abs j Pre � j Either � j Any

Let us explain, step by step, our de�nition of �eld types. Our �rst, natural step

is to introdue type onstrutors Abs and Pre, whih allow desribing values

built with the data onstrutors Abs and Pre. The former is a onstant type

onstrutor, while the latter is unary and ovariant.

Many type systems for reord languages de�ne Pre � to be a subtype of

Abs. This allows a reord whose �eld is present to pretend it is not, leading

to a lassi theory of reords whose �elds may be \forgotten" via subtyping.

However, when the language o�ers reord onatenation, suh a de�nition isn't

appropriate. Why? Conatenation { asymmetri or symmetri { involves a hoie

between two redution rules, whih is performed by mathing one, or both, of the

arguments against the data onstrutors Abs and Pre. If, at the level of types,

we allow a non-empty reord to masquerade as an empty one, then it beomes

impossible, based on the arguments' types, to �nd out whih rule applies, and

to determine the type of the operation's result. In summary, in the presene of

reord onatenation, no subtyping relationship must exist between Pre � and

Abs. (This problem is well desribed { although not solved { in [4℄.)

This leads us to making Abs and Pre inomparable. One this hoie has been

made, ompleting the de�nition of �eld types is rather straightforward. Beause

our system requires type onstrutors to form a lattie, we de�ne a least element
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Bot, and a greatest element Any. Lastly, we introdue a unary, ovariant type

onstrutor, Either, whih we de�ne as the least upper bound of Abs and Pre,

so that Abst(Pre �) equals Either � . This optional re�nement allows us to keep

trak of a �eld's type, even when its presene is not asertained. The lattie of

�eld types is shown in �gure 1.

Any

Either �

OO

Abs

99ttttttttt

Pre �

eeLLLLLLLLLL

Bot

eeJJJJJJJJJ

99rrrrrrrrrr

Fig. 1. The lattie of reord �eld types

Let us now assign types to the primitive operations o�ered by the language.

Reord reation and aess reeive their usual types:

Abs : fAbsg

Pre : �! fPre �g

Pre

�1

: fPre �g ! �

There remains to ome up with orret, preise types for both avors of reord

onatenation. The key idea is simple. As shown by its operational semantis,

(either avor of) reord onatenation is really a funtion de�ned by ases over

the data onstrutors Abs and Pre { and Setion 3 has shown how to aurately

desribe suh a funtion. Let us begin, then, with asymmetri onatenation:

� : f'

1

g ! f'

2

g ! f'

3

g

where '

2

� Either �

2

Abs � '

2

?'

1

� '

3

Pre � '

2

? Pre �

2

� '

3

Clearly, eah onditional onstraint mirrors one of the redution rules. In the

seond onditional onstraint, we assume �

2

is the type of the seond reord's

�eld { if it has one. The �rst subtyping onstraint represents this assumption.

Notie that we use Pre �

2

, rather than '

2

, as the seond branh's result type;

this is stritly more preise, beause '

2

may be of the form Either �

2

.
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Lastly, we turn to symmetri onatenation:

�� : f'

1

g ! f'

2

g ! f'

3

g

where Abs � '

1

?'

2

� '

3

Abs � '

2

?'

1

� '

3

Pre � '

1

?'

2

� Abs

Pre � '

2

?'

1

� Abs

Again, eah of the �rst two onstraints mirrors a redution rule. The last two

onstraints disallow the ase where both arguments are non-empty reords. (The

areful reader will notie that any one of these two onstraints would in fat

suÆe; both are kept for symmetry.)

In both ases, the operation's desription in terms of onstraints losely re-

sembles its operational de�nition. Automatially deriving the former from the

latter seems possible; this is an area for future researh.

4.2 The General Case

We now move to a language with a denumerable set of reord labels, written

l, m, et. The language allows reating the empty reord, as well as any one-

�eld reord; it also o�ers seletion and onatenation operations. Extension and

restrition an be easily added, if desired; we shall dispense with them.

e ::= ? j fl = eg j e:l j � j ��

We do not give the language's semantis, whih should hopefully be lear enough.

At the level of types, we again introdue rows of �eld types, denoted by �.

Furthermore, we introdue rows of regular types, denoted by %. Lastly, we lift

the �ve �eld type onstrutors to the level of rows.

� ::= �; �; ; : : : j ? j > j � ! � j f�g

� ::= ';  ; : : : j Bot j Abs j Pre � j Either � j Any

% ::= �; �; ; : : : j l : � ; % j ��

� ::= ';  ; : : : j l : �; � j �� j Bot j Abs j Pre % j Either % j Any

This allows writing omplex onstraints between rows, suh as ' � Pre �, where

' and � are row variables. A onstraint between rows stands for an in�nite family

of onstraints between types, obtained omponent-wise. That is,

(l : '

0

; '

00

) � Pre (l : �

0

; �

00

) stands for ('

0

� Pre �

0

) ^ ('

00

� Pre �

00

)

We may now give types to the primitive reord operations. Creation and

seletion are easily dealt with:

? : f�Absg

fl = �g : �! fl : Pre �; �Absg

�:l : fl : Pre �; �Anyg ! �
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Interestingly, the types of both onatenation operations are unhanged from the

previous setion { at least, syntatially. (For spae reasons, we do not repeat

them here.) A subtle di�erene lies in the fat that all variables involved must

now be read as row variables, rather than as type variables. In short, the previous

setion exhibited onstraints whih desribe onatenation, at the level of a single

reord �eld; here, the row mahinery allows us to repliate these onstraints over

an in�nite set of labels. This inrease in power omes almost for free: it does not

add any omplexity to our notion of subtyping.

5 Dynami Messages

So-alled \dynami" messages have reently reeived new attention in the stati

typing ommunity. Bugliesi and Crafa [3℄ propose a higher-order type system

whih aounts for �rst-lass messages. Nishimura [11℄ takles the issue of type

inferene and suggests a seond-order system �a la Ohori [13℄. M�uller and Nishi-

mura [10℄ propose a simpli�ed approah, based on an extended feature logi.

The problem onsists in performing type inferene for an objet-oriented lan-

guage where messages are �rst-lass values, made up of a label and a parameter.

Here, we view objets as reords of funtions, and messages as tagged values.

(Better ways of modeling objets exist, but that is an independent issue.) Thus,

we onsider a language with reords and data onstrutors, as desribed in Se-

tions 3.2 and 4.2. Furthermore, we let reord labels and data onstrutors range

over a single name spae, that of message labels. (To save spae, we hoose to deal

diretly with the ase of multiple message labels; however, our usual, two-step

presentation would still be possible.) Lastly, we de�ne a primitive message-send

operation, written #, whose semantis is as follows:

# fm = v

1

; : : : g (mv

2

) redues to (v

1

v

2

)

In plain words, # examines its seond argument, whih must be some message

m with parameter v

2

. It then looks up the method named m in the reeiver

objet, and applies the method's ode, v

1

, to the message parameter.

In a language with \stati" messages, a message-send operation may only

involve a onstant message label. So, instead of a single message-send operation,

a family thereof, indexed by message labels, is provided. In fat, in our simple

model, these operations are de�nable within the language. The operation #m,

whih allows sending the message m to some objet o with parameter p, may be

de�ned as �o:�p:(o:m p). Then, type inferene yields

#m : fm : Pre (�! �); �Anyg ! �! �

Beause the message label,m, is statially known, it may be expliitly mentioned

in the type sheme, making it easy to require the reeiver objet to arry an

appropriate method. In a language with \dynami" messages, on the other hand,

m is no longer known. The problem thus appears more omplex; it has, in fat,

sparked the development of speial-purpose onstraint languages [10℄. Yet, the

mahinery introdued so far in this paper suÆes to solve it.
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Consider the partial appliation of the message send primitive # to some

reord r. It is a funtion whih aepts some tagged value (mv), then invokes an

appropriate piee of ode, seleted aording to the label m. This should ring a

bell { it is merely a form of pattern mathing, whih this paper has extensively

disussed already. Therefore, we propose

# : f'g ! [ ℄! �

where  � Pre �

Pre �  ?' � Pre (�! ��)

(Here, all variables exept � are row variables.) The operation's �rst (resp. se-

ond) argument is required to be an objet (resp. a message), whose ontents

(resp. possible values) are desribed by the row variable ' (resp.  ). The �rst

onstraint merely lets � stand for the message parameter's type. The onditional

onstraint, whih involves two row terms, should again be understood as a family,

indexed by message labels, of onditional onstraints between reord �eld types.

The onditional onstraint assoiated with some label m shall be triggered only

if  's element at index m is of the form Pre , i.e. only if the message's label may

be m. When it is triggered, its right-hand side beomes ative, with a three-fold

e�et. First, ''s element at index m must be of the form Pre ( ! ), i.e. the

reeiver objet must arry a method labeled m. Seond, the method's argument

type must be (a supertype of) �'s element at label m, i.e. the method must be

able to aept the message's parameter. Third, the method's result type must

be (a subtype of) �, i.e. the whole operation's result type must be (at least) the

join of all potentially invoked methods' return types.

Our proposal shows that type inferene for \dynami" messages requires

no dediated theoretial mahinery. It also shows that \dynami" messages are

naturally ompatible with all operations on reords, inluding onatenation {

a question whih was left unanswered by Nishimura [11℄.

6 Conlusion

In this paper, we have advoated enrihing an existing onstraint-based type

inferene framework [15℄ with rows [18℄ and onditional onstraints [2℄. This

provides a single (and simple) solution to several diÆult type inferene prob-

lems, eah of whih seemed to require, until now, speial forms of onstraints.

From a pratial point of view, it allows them to bene�t from known onstraint

simpli�ation tehniques [17℄, leading to an eÆient inferene algorithm [14℄.

We believe our system subsumes R�emy's proposal for reord onatena-

tion [20℄, as well as M�uller and Nishimura's view of \dynami" messages [10℄.

Aiken, Wimmers and Lakshman's \soft" type system [2℄ is more preise than

ours, beause it interprets onstraints in a riher logial model, but otherwise

o�ers similar features. In fat, the ideas developed in this paper ould have been

presented in the setting of Bane [5℄, or, more generally, of any system whih

allows writing suÆiently expressive onstrained type shemes.
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A Rules

This appendix gives a short desription of the system's type inferene rules

(Figure 2). Even though only the ore language is expliitly treated, these rules

are suÆient to deal with a full-featured programming language. Indeed, any

extra language onstrut may be viewed either as syntati sugar, or as a new

primitive operation, whih an be bound in an initial typing environment �

0

.

Also, note that these type inferene rules use neither onditional onstraints, nor

rows; these will ome only from �

0

.

For simpliity, we distinguish identi�ers bound by �, denoted x; y; : : : from

those bound by let, denoted X;Y; : : : Furthermore, we expet �-identi�ers to

be unique; that is, eah �-identi�er must be bound at most one in a given
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: �
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� `
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let X = e

1

in e

2

: �

2

(Let

i

)

Fig. 2. Type inferene rules

program. Lastly, in every expression of the form let X = e

1

in e

2

, we require

X to appear free within e

2

. It would be easy to overome these restritions, at

the expense of heavier notation.

The rules are fairly straightforward. The main point of interest is the way

eah appliation node produes a subtyping onstraint. The only peuliarity is

in the way type environments are dealt with. The environment � , whih appears

on the left of the turnstile, is a list of bindings of the form X : �. Type shemes

are slightly more omplex than initially shown in Setion 2. They are, in fat,

of the form � ::= 8C:A ) � , where the ontext A is a set of bindings of the

form x : � . The point of suh a formulation is to obtain a system where no type

sheme has free type variables. This allows a simpler theoretial desription of

onstraint simpli�ation.

As far as notation is onerned, hx : �i represents a ontext onsisting of a

single entry, whih binds x to �. A n x is the ontext obtained by removing x's

binding from A, if it exists. For the sake of readability, we have abused notation

slightly. In rule (Abs

i

), A(x) stands for the type assoiated with x in A, if A

ontains a binding for x; it stands for > otherwise. In rule (App

i

), A

1

u A

2

represents the point-wise intersetion of A

1

and A

2

. That is, whenever x has

a binding in A

1

or A

2

, its binding in A

1

u A

2

is A

1

(x) u A

2

(x). Beause we

do not have intersetion types, this expression should in fat be understood as

a fresh type variable, aompanied by an appropriate onjuntion of subtyping

onstraints.

The rules impliitly require every onstraint set to admit at least one solution.

Constraint solving and simpli�ation are desribed in [15, 17℄.
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B Examples

Example 1. We de�ne a funtion whih reads �eld l out of a reord r, returning a

default value d if r has no suh �eld, by setting extrat = �d:�r:(fl = dg� r):l.

In our system, extrat's inferred type is

extrat : �! fl : ';  g ! 

where ' � Either �  � Either �

Abs � ' ?� �  Abs �  ? Abs � Any

Pre � ' ?� �  Pre �  ? Pre � � Any

The �rst onstraint retrieves r:l's type and names it �, regardless of the �eld's

presene. (If the �eld turns out to be absent, � will be unonstrained.) The left-

hand onditional onstraints learly speify the dependeny between the �eld's

presene and the funtion's result.

The right-hand onditional onstraints have tautologous onlusions { there-

fore, they are superuous. They remain only beause our urrent onstraint sim-

pli�ation algorithms are \lazy" and ignore any onditional onstraints whose

ondition has not yet been ful�lled. This problem ould be �xed by implementing

slightly more aggressive simpli�ation algorithms.

The type inferred for extrat 0 fl = 1g and extrat 0 fm = 1g is int. Thus,

in many ases, one need not be aware of the omplexity hidden in extrat's type.

Example 2. We assume given an objet o, of the following type:

o : f getText : Pre (unit! string); setText : Pre (string! unit);

selet : Pre (int� int! unit); �Abs g

o may represent, for instane, an editable text �eld in a graphi user interfae

system. Its methods allow programmatially getting and setting its ontents, as

well as seleting a portion of text.

Next, we assume a list data struture, equipped with a simple iterator:

iter : (�! unit)! � list! unit

The following expression reates a list of messages, and uses iter to send eah of

them in turn to o:

iter (# o) [ setText\Hello!"; selet (0; 5) ℄

This expression is well-typed, beause o ontains appropriate methods to deal

with eah of these messages, and beause these methods return unit, as expeted

by iter. The expression's type is of ourse unit, iter's return type.

Here is a similar expression, whih involves a getText message:

iter (# o) [ setText\Hello!"; getText () ℄

This time, it is ill-typed. Indeed, sending a setText message to o produes a

result of type unit, while sending it a getTextmessage produes a result of type

string. Thus, (# o)'s result type must be >, the join of these types. This makes

(# o) an unaeptable argument for iter, sine the latter expets a funtion

whose return type is unit.


