
A 3-Part Type Inferen
e Engine

Fran�
ois Pottier

INRIA Ro
quen
ourt, BP 105, 78153 Le Chesnay Cedex, Fran
e.

Fran
ois.Pottier�inria.fr

Abstra
t. Extending a subtyping-
onstraint-based type inferen
e frame-

work with
onditional
onstraints and rows yields a powerful type infer-

en
e engine. We illustrate this
laim by proposing solutions to three

deli
ate type inferen
e problems: \a

urate" pattern mat
hings, re
ord

on
atenation, and \dynami
" messages. Until now, known solutions re-

quired signi�
antly di�erent te
hniques; our theoreti
al
ontribution is

in using only a single (and simple) set of tools. On the pra
ti
al side,

this allows all three problems to bene�t from a
ommon set of
onstraint

simpli�
ation te
hniques, leading to eÆ
ient solutions.

1 Introdu
tion

Type inferen
e is the task of examining a program whi
h la
ks some (or even all)

type annotations, and re
overing enough type information to make it a

eptable

by a type
he
ker. Its original, and most obvious, appli
ation is to free the

programmer from the burden of manually providing these annotations, thus

making stati
 typing a less dreary dis
ipline. However, type inferen
e has also

seen heavy use as a simple, modular way of formulating program analyses.

This paper presents a
ommon solution to several seemingly unrelated type

inferen
e problems, by unifying in a single type inferen
e system several previ-

ously proposed te
hniques, namely: a simple framework for subtyping-
onstraint-

based type inferen
e [15℄,
onditional
onstraints inspired by Aiken, Wimmers

and Lakshman [2℄, and rows �a la R�emy [18℄.

Constraint-Based Type Inferen
e

Subtyping is a partial order on types, de�ned so that an obje
t of a subtype may

safely be supplied wherever an obje
t of a supertype is expe
ted. Type inferen
e

in the presen
e of subtyping re
e
ts this basi
 prin
iple. Every time a pie
e

of data is passed from a produ
er to a
onsumer, the former's output type is

required to be a subtype of the latter's input type. This requirement is expli
itly

re
orded by
reating a symboli
 subtyping
onstraint between these types. Thus,

ea
h potential data
ow dis
overed in the program yields one
onstraint. This

fa
t allows viewing a
onstraint set as a dire
ted approximation of the program's

data
ow graph { regardless of our parti
ular de�nition of subtyping.

Various type inferen
e systems based on subtyping
onstraints exist. One

may
ite works by Aiken et al. [1, 2, 5℄, the present author [16, 15℄, Trifonov

2 Fran�
ois Pottier

and Smith [22℄, as well as an abstra
t framework by Odersky, Sulzmann and

Wehr [12℄. Related systems in
lude set-based analysis [8, 6℄ and type inferen
e

systems based on feature
onstraints [9, 10℄.

Conditional Constraints

In most
onstraint-based systems, the expression if e

0

then e

1

else e

2

may,

at best, be des
ribed by

�

1

� � ^ �

2

� �

where �

i

stands for e

i

's type, and � stands for the whole expression's type.

This amounts to stating that \e

1

's (resp. e

2

's) value may be
ome the whole

expression's value", regardless of the test's out
ome. A more pre
ise des
ription

{ \if e

0

may evaluate to true (resp. false), then e

1

's (resp e

2

's) value may

be
ome the whole expression's value" { may be given using natural
onditional

onstraints :

true � �

0

?�

1

� � ^ false � �

0

?�

2

� �

Introdu
ing tests into
onstraints allows keeping tra
k of the program's
ontrol

ow { that is, mirroring the way evaluation is a�e
ted by a test's out
ome, at

the level of types.

Conditional set expressions were introdu
ed by Reynolds [21℄ as a means

of solving set
onstraints involving stri
t type
onstru
tors and destru
tors.

Heintze [8℄ uses them to formulate an analysis whi
h ignores \dead
ode". He

also introdu
es
ase
onstraints, whi
h allow ignoring the e�e
t of a bran
h, in

a
ase
onstru
t, unless it is a
tually liable to be taken. Aiken, Wimmers and

Lakshman [2℄ use
onditional types, together with interse
tion types, for this

purpose.

In the present paper, we suggest a single notion of
onditional
onstraint,

whi
h is
omparable in expressive power to the above
onstru
ts, and lends itself

to a simple and eÆ
ient implementation. (A similar
hoi
e was made indepen-

dently by F�ahndri
h [5℄.) We emphasize its use as a way not only of introdu
ing

ontrol into types, but also of delaying type
omputations, thus introdu
ing some

\laziness" into type inferen
e.

Rows

Designing a type system for a programming language with re
ords, or obje
ts,

requires some way of expressing labelled produ
ts of types, where labels are

�eld or method names. Dually, if a programming language allows manipulating

stru
tured data, then its type system shall likely require labelled sums, where

labels are names of data
onstru
tors.

R�emy [18℄ elegantly deals with both problems at on
e by introdu
ing notation

to express denumerable, indexed families of types,
alled rows :

� ::= �; �; : : : ; '; ; : : : j a : � ; � j ��

A 3-Part Type Inferen
e Engine 3

(Here, � ranges over types, and a; b; : : : range over indi
es.) An unknown row

may be represented by a row variable, exa
tly as in the
ase of types. (By la
k

of symbols, we shall not synta
ti
ally distinguish regular type variables and row

variables.) The term a : � ; � represents a row whose element at index a is � ,

and whose other elements are given by �. The term �� stands for a row whose

element at any index is � . These informal explanations are made pre
ise via an

equational theory:

a : �

a

; (b : �

b

; �) = b : �

b

; (a : �

a

; �)

�� = a : � ; ��

For more details, we refer the reader to [18℄.

Rows o�er a parti
ularly straightforward way of des
ribing operations whi
h

treat all labels (ex
ept possibly a �nite number thereof) uniformly. Be
ause every

fa
ility available at the level of types (e.g.
onstru
tors,
onstraints)
an also be

made available at the level of rows, a des
ription of what happens at the level

of a single label { written using types {
an also be read as a des
ription of the

whole operation { written using rows. This interesting point will be developed

further in the paper.

Putting It All Together

Our point is to show that the
ombination of the three
on
epts dis
ussed above

yields a very expressive system, whi
h allows type inferen
e for a number of

advan
ed language features. Among these, \a

urate" pattern mat
hing
on-

stru
ts, re
ord
on
atenation, and \dynami
" messages will be dis
ussed in this

paper. Our system allows performing type inferen
e for all of these features at

on
e. Furthermore, eÆ
ien
y issues
on
erning
onstraint-based type inferen
e

systems have already been studied [5, 15℄. This existing knowledge bene�ts our

system, whi
h may thus be used to eÆ
iently perform type inferen
e for all of

the above features.

In this paper, we fo
us on appli
ations of our type system, i.e. we show how

it allows solving ea
h of the problems mentioned above. Theoreti
al aspe
ts of

onstraint solving are dis
ussed in [15, 17℄. Furthermore, a robust prototype

implementation is publi
ly available [14℄. We do not prove that the types given

to the three problemati
 operations dis
ussed in this paper are sound, but we

believe this is a straightforward task.

The paper is organized as follows. Se
tion 2 gives a brief te
hni
al overview

of the type system, fo
using on the notion of
onstrained type s
heme, whi
h

should be enough to gain an understanding of the paper. Se
tions 3, 4, and 5

dis
uss type inferen
e for \a

urate" pattern mat
hings, re
ord
on
atenation,

and \dynami
" messages, respe
tively, within our system. Se
tion 6 sums up

our
ontribution, then brie
y dis
usses future resear
h topi
s. Appendix A gives

some more te
hni
al details, in
luding the system's type inferen
e rules. Lastly,

Appendix B gives several examples, whi
h show what inferred types look like in

pra
ti
e.

4 Fran�
ois Pottier

2 System's Overview

The programming language
onsidered throughout the paper is a
all-by-value

�-
al
ulus with let-polymorphism, i.e. essentially
ore ML.

e ::= x; y; : : : j �x:e j (e e) j X;Y; : : : j let X = e in e

The type algebra needed to deal with su
h a
ore language is simple. The set

of ground terms
ontains all regular trees built over ?, > (with arity 0) and !

(with arity 2). It is equipped with a straightforward subtyping relationship [15℄,

denoted �, whi
h makes it a latti
e. It is the logi
al model in whi
h subtyping

onstraints are interpreted.

Symbols, type variables, types and
onstraints are de�ned as follows:

s ::= ? j ! j > v ::= �; �; : : :

� ::= v j ? j � ! � j >
 ::= � � �

j s � v ? � � �

A ground substitution � is a map from type variables to ground terms. A
on-

straint of the form �

1

� �

2

, whi
h reads \�

1

must be a subtype of �

2

", is satis�ed

by � if and only if �(�

1

) � �(�

2

). A
onstraint of the form s � � ? �

1

� �

2

,

whi
h reads \if � ex
eeds s, then �

1

must be a subtype of �

2

", is satis�ed by � if

and only if s �

S

head(�(�)) implies �(�

1

) � �(�

2

), where head maps a ground

term to its head
onstru
tor, and �

S

is the expe
ted ordering over symbols. A

onstraint set C is satis�ed by � if and only if all of its elements are.

A type s
heme is of the form

� ::= 8C: �

where � is a type and C is a
onstraint set, whi
h restri
ts the set of �'s ground

instan
es. Indeed, the latter, whi
h we
all �'s denotation, is de�ned as

f�

0

; 9� � satis�es C ^ �(�) � �

0

g

Be
ause all of a type s
heme's variables are universally quanti�ed, we will usually

omit the 8 quanti�er and simply write \� where C".

Of
ourse, the type algebra given above is very mu
h simpli�ed. In gen-

eral, the system allows de�ning more type
onstru
tors, separating symbols (and

terms) into kinds, and making use of rows. (A full de�nition { without rows { ap-

pears in [17℄.) However, for presentation's sake, we will introdu
e these features

only step by step.

The
ore programming language des
ribed above is also limited. To extend it,

we will de�ne new primitive operations, equipped with an operational semanti
s

and an appropriate type s
heme. However, no extension to the type system {

e.g. in the form of new typing rules { will be made. This explains why we do

not further des
ribe the system itself. (Some details are given in Appendix A.)

Really, all this paper is about is writing expressive
onstrained type s
hemes.

A 3-Part Type Inferen
e Engine 5

3 A

urate Analysis of Pattern Mat
hings

When fa
ed with a pattern mat
hing
onstru
t, most existing type inferen
e

systems adopt a simple,
onservative approa
h: assuming that ea
h bran
h may

be taken, they let it
ontribute to the whole expression's type. A more a

urate

system should use types to prove that
ertain bran
hes
annot be taken, and

prevent them from
ontributing.

In this se
tion, we des
ribe su
h a system. The essential idea { introdu
ing

a
onditional
onstru
t at the level of types { is due to [8, 2℄. Some novelty

resides in our two-step presentation, whi
h we believe helps isolate independent

on
epts. First, we
onsider the
ase where only one data
onstru
tor exists.

Then, we easily move to the general
ase, by enri
hing the type algebra with

rows.

3.1 The Basi
 Case

We assume the language allows building and a

essing tagged values.

e ::= : : : j Pre j Pre

�1

A single data
onstru
tor, Pre, allows building tagged values, while the destru
-

tor Pre

�1

allows a

essing their
ontents. This relationship is expressed by the

following redu
tion rule:

Pre

�1

v

1

(Pre v

2

) redu
es to (v

1

v

2

)

The rule states that Pre

�1

�rst takes the tag o� the value v

2

, then passes it to

the fun
tion v

1

.

At the level of types, we introdu
e a (unary) variant type
onstru
tor [� ℄.

Also, we establish a distin
tion between so-
alled \regular types," written � , and

\�eld types," written �.

� ::= �; �;
; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j Abs j Pre � j Any

A subtype ordering over �eld types is de�ned straightforwardly: Abs is its least

element, Any is its greatest, and Pre is a
ovariant type
onstru
tor.

The data
onstru
tor Pre is given the following type s
heme:

Pre : �! [Pre � ℄

Noti
e that there is no way of building a value of type [Abs ℄. Thus, if an ex-

pression has this type, then it must diverge. This explains our
hoi
e of names.

If an expression has type [Abs ℄, then its value must be \absent"; if it has type

[Pre � ℄, then some value of type � may be \present".

6 Fran�
ois Pottier

The data destru
tor Pre

�1

is des
ribed as follows:

Pre

�1

: (�! �)! [' ℄!

where ' � Pre �

Pre � ' ?� �

The
onditional
onstraint allows (Pre

�1

e

1

e

2

) to re
eive type ? when e

2

has

type [Abs ℄, re
e
ting the fa
t that Pre

�1

isn't invoked until e

2

produ
es some

value. Indeed, as long as ' equals Abs, the
onstraint is va
uously satis�ed, so

 is un
onstrained and assumes its most pre
ise value, namely ?. However, as

soon as Pre � ' holds, � �
 must be satis�ed as well. Then, Pre

�1

's type

be
omes equivalent to (�! �)! [Pre � ℄! �, whi
h is its usual ML type.

3.2 The General Case

We now move to a language with a denumerable set of data
onstru
tors.

e ::= : : : j K j K

�1

j
lose

(We let K, L; : : : stand for data
onstru
tors.) An expression may be tagged,

as before, by applying a data
onstru
tor to it. A

essing tagged values be-

omes slightly more
omplex, be
ause multiple tags exist. The semanti
s of the

elementary data destru
tor, K

�1

, is given by the following redu
tion rules:

K

�1

v

1

v

2

(K v

3

) redu
es to (v

1

v

3

)

K

�1

v

1

v

2

(L v

3

) redu
es to (v

2

(Lv

3

)) when K 6= L

A

ording to these rules, if the value v

3

arries the expe
ted tag, then it is passed

to the fun
tion v

1

. Otherwise, the value { still
arrying its tag { is passed to the

fun
tion v

2

. Lastly, a spe
ial value,
lose, is added to the language, but no

additional redu
tion rule is de�ned for it.

How do we modify our type algebra to a

ommodate multiple data
onstru
-

tors? In Se
tion 3.1, we used �eld types to en
ode information about a tagged

value's presen
e or absen
e. Here, we need exa
tly the same information, but

this time about every tag. So, we need to manipulate a family of �eld types,

indexed by tags. To do so, we add one layer to the type algebra: rows of �eld

types.

� ::= �; �;
; : : : j ? j > j � ! � j [� ℄

� ::= '; ; : : : j K : �; � j ��

� ::= '; ; : : : j Abs j Pre � j Any

We
an now extend the previous se
tion's proposal, as follows:

K : �! [K : Pre �; �Abs ℄

K

�1

: (�! �)! ([K : Abs; ℄!
)! [K : '; ℄!

where ' � Pre �

Pre � ' ?� �

lose : [�Abs ℄! ?

A 3-Part Type Inferen
e Engine 7

K

�1

's type s
heme involves the same
onstraints as in the basi

ase. Using a

single row variable, namely , in two distin
t positions allows expressing the fa
t

that values
arrying any tag other than K shall be passed unmodi�ed to K

�1

's

se
ond argument.

lose's argument type is [�Abs ℄, whi
h prevents it from ever being invoked.

This a

ords with the fa
t that
lose does not have an asso
iated redu
tion

rule. It plays the role of a fun
tion de�ned by zero
ases.

This system o�ers extensible pattern mat
hings: k-ary
ase
onstru
ts may

be written using k nested destru
tor appli
ations and
lose, and re
eive the

desired, a

urate type. Thus, no spe
i�
 language
onstru
t or type inferen
e

rule is needed to deal with them.

4 Re
ord Con
atenation

Stati
 typing for re
ord operations is a widely studied problem [4, 13℄. Com-

mon operations in
lude sele
tion, extension, restri
tion, and
on
atenation. The

latter
omes in two
avors: symmetri
 and asymmetri
. The former requires its

arguments to have disjoint sets of �elds, whereas the latter gives pre
eden
e to

the se
ond one when a
on
i
t o

urs.

Of these operations,
on
atenation is probably the most diÆ
ult to deal

with, be
ause its behavior varies a

ording to the presen
e or absen
e of ea
h

�eld in its two arguments. This has led many authors to restri
t their attention

to type
he
king, and to not address the issue of type inferen
e [7℄. An inferen
e

algorithm for asymmetri

on
atenation was suggested by Wand [23℄. He uses

disjun
tions of
onstraints, however, whi
h gives his system exponential
om-

plexity. R�emy [19℄ suggests an en
oding of
on
atenation into �-abstra
tion and

re
ord extension, when
e an inferen
e algorithm may be derived. Unfortunately,

its power is somewhat de
reased by subtle intera
tions with ML's restri
ted poly-

morphism; furthermore, the en
oding is exposed to the user. In later work [20℄,

R�emy suggests a dire
t,
onstraint-based algorithm, whi
h involves a spe
ial

form of
onstraints. Our approa
h is inspired from this work, but re-formulated

in terms of
onditional
onstraints, thus showing that no ad ho

onstru
t is

ne
essary.

Again, our presentation is in two steps. The basi

ase, where re
ords only

have one �eld, is ta
kled using subtyping and
onditional
onstraints. Then, rows

allow us to easily transfer our results to the
ase of multiple �elds.

4.1 The Basi
 Case

We assume a language equipped with one-�eld re
ords, whose unique �eld may

be either \absent" or \present". More pre
isely, we assume a
onstant data
on-

stru
tor Abs, and a unary data
onstru
tor Pre; a \re
ord" is a value built with

one of these
onstru
tors. A data destru
tor, Pre

�1

, allows a

essing the
ontents

of a non-empty re
ord. Lastly, the language o�ers asymmetri
 and symmetri

8 Fran�
ois Pottier

on
atenation primitives, written � and ��, respe
tively.

e ::= : : : j Abs j Pre j Pre

�1

j � j ��

The relationship between re
ord
reation and re
ord a

ess is expressed by a

simple redu
tion rule:

Pre

�1

(Pre v) redu
es to v

The semanti
s of asymmetri
 re
ord
on
atenation is given as follows:

v

1

� Abs redu
es to v

1

v

1

�(Pre v

2

) redu
es to Pre v

2

(In ea
h of these rules, the value v

1

is required to be a re
ord.) Lastly, symmetri

on
atenation is de�ned by

Abs�� v

2

redu
es to v

2

v

1

�� Abs redu
es to v

1

(In these two rules, v

1

and v

2

are required to be re
ords.)

The
onstru
tion of our type algebra is similar to the one performed in Se
-

tion 3.1. We introdu
e a (unary) re
ord type
onstru
tor, as well as a distin
tion

between regular types and �eld types:

� ::= �; �;
; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

Let us explain, step by step, our de�nition of �eld types. Our �rst, natural step

is to introdu
e type
onstru
tors Abs and Pre, whi
h allow des
ribing values

built with the data
onstru
tors Abs and Pre. The former is a
onstant type

onstru
tor, while the latter is unary and
ovariant.

Many type systems for re
ord languages de�ne Pre � to be a subtype of

Abs. This allows a re
ord whose �eld is present to pretend it is not, leading

to a
lassi
 theory of re
ords whose �elds may be \forgotten" via subtyping.

However, when the language o�ers re
ord
on
atenation, su
h a de�nition isn't

appropriate. Why? Con
atenation { asymmetri
 or symmetri
 { involves a
hoi
e

between two redu
tion rules, whi
h is performed by mat
hing one, or both, of the

arguments against the data
onstru
tors Abs and Pre. If, at the level of types,

we allow a non-empty re
ord to masquerade as an empty one, then it be
omes

impossible, based on the arguments' types, to �nd out whi
h rule applies, and

to determine the type of the operation's result. In summary, in the presen
e of

re
ord
on
atenation, no subtyping relationship must exist between Pre � and

Abs. (This problem is well des
ribed { although not solved { in [4℄.)

This leads us to making Abs and Pre in
omparable. On
e this
hoi
e has been

made,
ompleting the de�nition of �eld types is rather straightforward. Be
ause

our system requires type
onstru
tors to form a latti
e, we de�ne a least element

A 3-Part Type Inferen
e Engine 9

Bot, and a greatest element Any. Lastly, we introdu
e a unary,
ovariant type

onstru
tor, Either, whi
h we de�ne as the least upper bound of Abs and Pre,

so that Abst(Pre �) equals Either � . This optional re�nement allows us to keep

tra
k of a �eld's type, even when its presen
e is not as
ertained. The latti
e of

�eld types is shown in �gure 1.

Any

Either �

OO

Abs

99ttttttttt

Pre �

eeLLLLLLLLLL

Bot

eeJJJJJJJJJ

99rrrrrrrrrr

Fig. 1. The latti
e of re
ord �eld types

Let us now assign types to the primitive operations o�ered by the language.

Re
ord
reation and a

ess re
eive their usual types:

Abs : fAbsg

Pre : �! fPre �g

Pre

�1

: fPre �g ! �

There remains to
ome up with
orre
t, pre
ise types for both
avors of re
ord

on
atenation. The key idea is simple. As shown by its operational semanti
s,

(either
avor of) re
ord
on
atenation is really a fun
tion de�ned by
ases over

the data
onstru
tors Abs and Pre { and Se
tion 3 has shown how to a

urately

des
ribe su
h a fun
tion. Let us begin, then, with asymmetri

on
atenation:

� : f'

1

g ! f'

2

g ! f'

3

g

where '

2

� Either �

2

Abs � '

2

?'

1

� '

3

Pre � '

2

? Pre �

2

� '

3

Clearly, ea
h
onditional
onstraint mirrors one of the redu
tion rules. In the

se
ond
onditional
onstraint, we assume �

2

is the type of the se
ond re
ord's

�eld { if it has one. The �rst subtyping
onstraint represents this assumption.

Noti
e that we use Pre �

2

, rather than '

2

, as the se
ond bran
h's result type;

this is stri
tly more pre
ise, be
ause '

2

may be of the form Either �

2

.

10 Fran�
ois Pottier

Lastly, we turn to symmetri

on
atenation:

�� : f'

1

g ! f'

2

g ! f'

3

g

where Abs � '

1

?'

2

� '

3

Abs � '

2

?'

1

� '

3

Pre � '

1

?'

2

� Abs

Pre � '

2

?'

1

� Abs

Again, ea
h of the �rst two
onstraints mirrors a redu
tion rule. The last two

onstraints disallow the
ase where both arguments are non-empty re
ords. (The

areful reader will noti
e that any one of these two
onstraints would in fa
t

suÆ
e; both are kept for symmetry.)

In both
ases, the operation's des
ription in terms of
onstraints
losely re-

sembles its operational de�nition. Automati
ally deriving the former from the

latter seems possible; this is an area for future resear
h.

4.2 The General Case

We now move to a language with a denumerable set of re
ord labels, written

l, m, et
. The language allows
reating the empty re
ord, as well as any one-

�eld re
ord; it also o�ers sele
tion and
on
atenation operations. Extension and

restri
tion
an be easily added, if desired; we shall dispense with them.

e ::= ? j fl = eg j e:l j � j ��

We do not give the language's semanti
s, whi
h should hopefully be
lear enough.

At the level of types, we again introdu
e rows of �eld types, denoted by �.

Furthermore, we introdu
e rows of regular types, denoted by %. Lastly, we lift

the �ve �eld type
onstru
tors to the level of rows.

� ::= �; �;
; : : : j ? j > j � ! � j f�g

� ::= '; ; : : : j Bot j Abs j Pre � j Either � j Any

% ::= �; �;
; : : : j l : � ; % j ��

� ::= '; ; : : : j l : �; � j �� j Bot j Abs j Pre % j Either % j Any

This allows writing
omplex
onstraints between rows, su
h as ' � Pre �, where

' and � are row variables. A
onstraint between rows stands for an in�nite family

of
onstraints between types, obtained
omponent-wise. That is,

(l : '

0

; '

00

) � Pre (l : �

0

; �

00

) stands for ('

0

� Pre �

0

) ^ ('

00

� Pre �

00

)

We may now give types to the primitive re
ord operations. Creation and

sele
tion are easily dealt with:

? : f�Absg

fl = �g : �! fl : Pre �; �Absg

�:l : fl : Pre �; �Anyg ! �

A 3-Part Type Inferen
e Engine 11

Interestingly, the types of both
on
atenation operations are un
hanged from the

previous se
tion { at least, synta
ti
ally. (For spa
e reasons, we do not repeat

them here.) A subtle di�eren
e lies in the fa
t that all variables involved must

now be read as row variables, rather than as type variables. In short, the previous

se
tion exhibited
onstraints whi
h des
ribe
on
atenation, at the level of a single

re
ord �eld; here, the row ma
hinery allows us to repli
ate these
onstraints over

an in�nite set of labels. This in
rease in power
omes almost for free: it does not

add any
omplexity to our notion of subtyping.

5 Dynami
 Messages

So-
alled \dynami
" messages have re
ently re
eived new attention in the stati

typing
ommunity. Bugliesi and Crafa [3℄ propose a higher-order type system

whi
h a

ounts for �rst-
lass messages. Nishimura [11℄ ta
kles the issue of type

inferen
e and suggests a se
ond-order system �a la Ohori [13℄. M�uller and Nishi-

mura [10℄ propose a simpli�ed approa
h, based on an extended feature logi
.

The problem
onsists in performing type inferen
e for an obje
t-oriented lan-

guage where messages are �rst-
lass values, made up of a label and a parameter.

Here, we view obje
ts as re
ords of fun
tions, and messages as tagged values.

(Better ways of modeling obje
ts exist, but that is an independent issue.) Thus,

we
onsider a language with re
ords and data
onstru
tors, as des
ribed in Se
-

tions 3.2 and 4.2. Furthermore, we let re
ord labels and data
onstru
tors range

over a single name spa
e, that of message labels. (To save spa
e, we
hoose to deal

dire
tly with the
ase of multiple message labels; however, our usual, two-step

presentation would still be possible.) Lastly, we de�ne a primitive message-send

operation, written #, whose semanti
s is as follows:

fm = v

1

; : : : g (mv

2

) redu
es to (v

1

v

2

)

In plain words, # examines its se
ond argument, whi
h must be some message

m with parameter v

2

. It then looks up the method named m in the re
eiver

obje
t, and applies the method's
ode, v

1

, to the message parameter.

In a language with \stati
" messages, a message-send operation may only

involve a
onstant message label. So, instead of a single message-send operation,

a family thereof, indexed by message labels, is provided. In fa
t, in our simple

model, these operations are de�nable within the language. The operation #m,

whi
h allows sending the message m to some obje
t o with parameter p, may be

de�ned as �o:�p:(o:m p). Then, type inferen
e yields

#m : fm : Pre (�! �); �Anyg ! �! �

Be
ause the message label,m, is stati
ally known, it may be expli
itly mentioned

in the type s
heme, making it easy to require the re
eiver obje
t to
arry an

appropriate method. In a language with \dynami
" messages, on the other hand,

m is no longer known. The problem thus appears more
omplex; it has, in fa
t,

sparked the development of spe
ial-purpose
onstraint languages [10℄. Yet, the

ma
hinery introdu
ed so far in this paper suÆ
es to solve it.

12 Fran�
ois Pottier

Consider the partial appli
ation of the message send primitive # to some

re
ord r. It is a fun
tion whi
h a

epts some tagged value (mv), then invokes an

appropriate pie
e of
ode, sele
ted a

ording to the label m. This should ring a

bell { it is merely a form of pattern mat
hing, whi
h this paper has extensively

dis
ussed already. Therefore, we propose

: f'g ! [℄! �

where � Pre �

Pre � ?' � Pre (�! ��)

(Here, all variables ex
ept � are row variables.) The operation's �rst (resp. se
-

ond) argument is required to be an obje
t (resp. a message), whose
ontents

(resp. possible values) are des
ribed by the row variable ' (resp.). The �rst

onstraint merely lets � stand for the message parameter's type. The
onditional

onstraint, whi
h involves two row terms, should again be understood as a family,

indexed by message labels, of
onditional
onstraints between re
ord �eld types.

The
onditional
onstraint asso
iated with some label m shall be triggered only

if 's element at index m is of the form Pre , i.e. only if the message's label may

be m. When it is triggered, its right-hand side be
omes a
tive, with a three-fold

e�e
t. First, ''s element at index m must be of the form Pre (!), i.e. the

re
eiver obje
t must
arry a method labeled m. Se
ond, the method's argument

type must be (a supertype of) �'s element at label m, i.e. the method must be

able to a

ept the message's parameter. Third, the method's result type must

be (a subtype of) �, i.e. the whole operation's result type must be (at least) the

join of all potentially invoked methods' return types.

Our proposal shows that type inferen
e for \dynami
" messages requires

no dedi
ated theoreti
al ma
hinery. It also shows that \dynami
" messages are

naturally
ompatible with all operations on re
ords, in
luding
on
atenation {

a question whi
h was left unanswered by Nishimura [11℄.

6 Con
lusion

In this paper, we have advo
ated enri
hing an existing
onstraint-based type

inferen
e framework [15℄ with rows [18℄ and
onditional
onstraints [2℄. This

provides a single (and simple) solution to several diÆ
ult type inferen
e prob-

lems, ea
h of whi
h seemed to require, until now, spe
ial forms of
onstraints.

From a pra
ti
al point of view, it allows them to bene�t from known
onstraint

simpli�
ation te
hniques [17℄, leading to an eÆ
ient inferen
e algorithm [14℄.

We believe our system subsumes R�emy's proposal for re
ord
on
atena-

tion [20℄, as well as M�uller and Nishimura's view of \dynami
" messages [10℄.

Aiken, Wimmers and Lakshman's \soft" type system [2℄ is more pre
ise than

ours, be
ause it interprets
onstraints in a ri
her logi
al model, but otherwise

o�ers similar features. In fa
t, the ideas developed in this paper
ould have been

presented in the setting of Bane [5℄, or, more generally, of any system whi
h

allows writing suÆ
iently expressive
onstrained type s
hemes.

A 3-Part Type Inferen
e Engine 13

Referen
es

[1℄ Alexander S. Aiken and Edward L. Wimmers. Type in
lusion
onstraints and

type inferen
e. In Fun
tional Programming & Computer Ar
hite
ture, pages 31{

41. ACM Press, June 1993. URL: http://http.
s.berkeley.edu/~aiken/ftp/

fp
a93.ps.

[2℄ Alexander S. Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing

with
onditional types. In Prin
iples of Programming Languages, pages 163{173,

January 1994. URL: http://http.
s.berkeley.edu/~aiken/ftp/popl94.ps.

[3℄ Mi
hele Bugliesi and Silvia Crafa. Obje
t
al
uli for dynami
 messages. In

The Sixth International Workshop on Foundations of Obje
t-Oriented Languages,

FOOL 6, San Antonio, Texas, January 1999. URL: ftp://ftp.
s.williams.

edu/pub/kim/FOOL6/bugliesi.ps.

[4℄ Lu
a Cardelli and John Mit
hell. Operations on re
ords. Mathemati
al Stru
tures

in Computer S
ien
e, 1:3{48, 1991. Also in Carl A. Gunter and John C. Mit
hell,

editors, Theoreti
al Aspe
ts of Obje
t-Oriented Programming: Types, Semanti
s,

and Language Design, MIT Press, 1994. URL: http://resear
h.mi
rosoft.
om/

Users/lu
a/Papers/Re
ords.ps.

[5℄ Manuel F�ahndri
h. Bane: A Library for S
alable Constraint-Based Program

Analysis. PhD thesis, University of California at Berkeley, 1999. URL: http:

//resear
h.mi
rosoft.
om/~maf/diss.ps.

[6℄ Corma
 Flanagan and Matthias Felleisen. Componential set-based analysis. In

Pro
eedings of the ACM SIGPLAN '97 Conferen
e on Programming Language

Design and Implementation, pages 235{248, Las Vegas, Nevada, June 1997. URL:

http://www.
s.ri
e.edu/CS/PLT/Publi
ations/pldi97-ff.ps.gz.

[7℄ Robert Harper and Benjamin Pier
e. A re
ord
al
ulus based on symmet-

ri

on
atenation. In Conferen
e Re
ord of the 18th Annual ACM Sympo-

sium on Prin
iples of Programming Languages (POPL '91), pages 131{142, Or-

lando, Florida, January 1991. ACM Press. URL: http://www.
is.upenn.edu/

~b
pier
e/papers/merge.ps.gz.

[8℄ Nevin Heintze. Set based analysis of ML programs. Te
hni
al Report CMU-CS-

93-193, Carnegie Mellon University, S
hool of Computer S
ien
e, July 1993. URL:

ftp://reports.adm.
s.
mu.edu/usr/anon/1993/CMU-CS-93-193.ps.

[9℄ Martin M�uller, Joa
him Niehren, and Andreas Podelski. Ordering
onstraints

over feature trees. Constraints, an International Journal, Spe
ial Issue on

CP'97, Linz, Austria, 1999. URL: ftp://ftp.ps.uni-sb.de/pub/papers/

ProgrammingSysLab/ftsub-
onstraints-99.ps.gz.

[10℄ Martin M�uller and Susumu Nishimura. Type inferen
e for �rst-
lass messages with

feature
onstraints. In Jieh Hsiang and Atsushi Ohori, editors, Asian Computer

S
ien
e Conferen
e (ASIAN 98), volume 1538 of LNCS, pages 169{187, Manila,

The Philippines, De
ember 1998. Springer-Verlag. URL: ftp://ftp.ps.uni-sb.

de/pub/papers/ProgrammingSysLab/FirstClass98.ps.gz.

[11℄ Susumu Nishimura. Stati
 typing for dynami
 messages. In Conferen
e Re
ord

of POPL '98: The 25th ACM SIGPLAN-SIGACT Symposium on Prin
iples

of Programming Languages, pages 266{278, San Diego, California, January

1998. URL: ftp://ftp.kurims.kyoto-u.a
.jp/pub/paper/member/nisimura/

dmesg-popl98.ps.gz.

[12℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferen
e with

onstrained types. Theory and Pra
ti
e of Obje
t Systems, 5(1), 1999. URL:

http://www.
s.yale.edu/~sulzmann-martin/publi
ations/tapos.ps.

14 Fran�
ois Pottier

[13℄ Atsushi Ohori. A polymorphi
 re
ord
al
ulus and its
ompilation. ACM Trans-

a
tions on Programming Languages and Systems, 17(6):844{895, November 1995.

[14℄ Fran�
ois Pottier. Walla
e: an eÆ
ient implementation of type inferen
e with

subtyping. URL: http://pauilla
.inria.fr/~fpottier/walla
e/.

[15℄ Fran�
ois Pottier. Simplifying subtyping
onstraints: a theory. Submitted for pub-

li
ation, De
ember 1998. URL: http://pauilla
.inria.fr/~fpottier/publis/

fpottier-journal-98.ps.gz.

[16℄ Fran�
ois Pottier. Type inferen
e in the presen
e of subtyping: from theory to

pra
ti
e. Te
hni
al Report 3483, INRIA, September 1998. URL: ftp://ftp.

inria.fr/INRIA/publi
ation/RR/RR-3483.ps.gz.

[17℄ Fran�
ois Pottier. Subtyping-
onstraint-based type inferen
e with
onditional
on-

straints: algorithms and proofs. Unpublished draft, July 1999. URL: http:

//pauilla
.inria.fr/~fpottier/publis/fpottier-
onditional.ps.gz.

[18℄ Didier R�emy. Proje
tive ML. In 1992 ACM Conferen
e on Lisp and Fun
-

tional Programming, pages 66{75, New-York, 1992. ACM Press. URL: ftp:

//ftp.inria.fr/INRIA/Proje
ts/
ristal/Didier.Remy/lfp92.ps.gz.

[19℄ Didier R�emy. Typing re
ord
on
atenation for free. In Carl A. Gunter and John C.

Mit
hell, editors, Theoreti
al Aspe
ts Of Obje
t-Oriented Programming. Types,

Semanti
s and Language Design. MIT Press, 1993. URL: ftp://ftp.inria.fr/

INRIA/Proje
ts/
ristal/Didier.Remy/taoop2.ps.gz.

[20℄ Didier R�emy. A
ase study of type
he
king with
onstrained types: Typing re
ord

on
atenation. Presented at the workshop on Advan
es in Types for Computer

S
ien
e at the Newton Institute, Cambridge, UK, August 1995. URL: http:

//
ristal.inria.fr/~remy/work/sub-
on
at.dvi.gz.

[21℄ John C. Reynolds. Automati

omputation of data set de�nitions. In A. J. H.

Morrell, editor, Information Pro
essing 68, volume 1, pages 456{461, Amsterdam,

1969. North-Holland.

[22℄ Valery Trifonov and S
ott Smith. Subtyping
onstrained types. In Pro
eedings

of the Third International Stati
 Analysis Symposium, volume 1145 of LNCS,

pages 349{365. SV, September 1996. URL: http://www.
s.jhu.edu/~trifonov/

papers/sub
on.ps.gz.

[23℄ Mit
hell Wand. Type inferen
e for re
ord
on
atenation and multiple inheritan
e.

Information and Computation, pages 1{15, 1993. A preliminary version appeared

in Pro
. 4th IEEE Symposium on Logi
 in Computer S
ien
e (1989), pp. 92{97.

URL: ftp://ftp.

s.neu.edu/pub/people/wand/papers/i
-91.dvi.

A Rules

This appendix gives a short des
ription of the system's type inferen
e rules

(Figure 2). Even though only the
ore language is expli
itly treated, these rules

are suÆ
ient to deal with a full-featured programming language. Indeed, any

extra language
onstru
t may be viewed either as synta
ti
 sugar, or as a new

primitive operation, whi
h
an be bound in an initial typing environment �

0

.

Also, note that these type inferen
e rules use neither
onditional
onstraints, nor

rows; these will
ome only from �

0

.

For simpli
ity, we distinguish identi�ers bound by �, denoted x; y; : : : from

those bound by let, denoted X;Y; : : : Furthermore, we expe
t �-identi�ers to

be unique; that is, ea
h �-identi�er must be bound at most on
e in a given

A 3-Part Type Inferen
e Engine 15

� fresh

� `

I

x : 8?: hx : �i) �

(Var

i

)

� `

I

e : 8C:A) �

0

A(x) = �

� `

I

�x:e : 8C: (A n x)) � ! �

0

(Abs

i

)

� `

I

e

1

: 8C

1

: A

1

) �

1

� `

I

e

2

: 8C

2

: A

2

) �

2

� fresh C = C

1

[C

2

[f�

1

� �

2

! �g

� `

I

e

1

e

2

: 8C: (A

1

uA

2

)) �

(App

i

)

� (X) = � � fresh renaming of �

� `

I

X : �(�)

(LetVar

i

)

� `

I

e

1

: �

1

� + [X 7! �

1

℄ `

I

e

2

: �

2

� `

I

let X = e

1

in e

2

: �

2

(Let

i

)

Fig. 2. Type inferen
e rules

program. Lastly, in every expression of the form let X = e

1

in e

2

, we require

X to appear free within e

2

. It would be easy to over
ome these restri
tions, at

the expense of heavier notation.

The rules are fairly straightforward. The main point of interest is the way

ea
h appli
ation node produ
es a subtyping
onstraint. The only pe
uliarity is

in the way type environments are dealt with. The environment � , whi
h appears

on the left of the turnstile, is a list of bindings of the form X : �. Type s
hemes

are slightly more
omplex than initially shown in Se
tion 2. They are, in fa
t,

of the form � ::= 8C:A) � , where the
ontext A is a set of bindings of the

form x : � . The point of su
h a formulation is to obtain a system where no type

s
heme has free type variables. This allows a simpler theoreti
al des
ription of

onstraint simpli�
ation.

As far as notation is
on
erned, hx : �i represents a
ontext
onsisting of a

single entry, whi
h binds x to �. A n x is the
ontext obtained by removing x's

binding from A, if it exists. For the sake of readability, we have abused notation

slightly. In rule (Abs

i

), A(x) stands for the type asso
iated with x in A, if A

ontains a binding for x; it stands for > otherwise. In rule (App

i

), A

1

u A

2

represents the point-wise interse
tion of A

1

and A

2

. That is, whenever x has

a binding in A

1

or A

2

, its binding in A

1

u A

2

is A

1

(x) u A

2

(x). Be
ause we

do not have interse
tion types, this expression should in fa
t be understood as

a fresh type variable, a

ompanied by an appropriate
onjun
tion of subtyping

onstraints.

The rules impli
itly require every
onstraint set to admit at least one solution.

Constraint solving and simpli�
ation are des
ribed in [15, 17℄.

16 Fran�
ois Pottier

B Examples

Example 1. We de�ne a fun
tion whi
h reads �eld l out of a re
ord r, returning a

default value d if r has no su
h �eld, by setting extra
t = �d:�r:(fl = dg� r):l.

In our system, extra
t's inferred type is

extra
t : �! fl : '; g !

where ' � Either � � Either �

Abs � ' ?� �
 Abs � ? Abs � Any

Pre � ' ?� �
 Pre � ? Pre � � Any

The �rst
onstraint retrieves r:l's type and names it �, regardless of the �eld's

presen
e. (If the �eld turns out to be absent, � will be un
onstrained.) The left-

hand
onditional
onstraints
learly spe
ify the dependen
y between the �eld's

presen
e and the fun
tion's result.

The right-hand
onditional
onstraints have tautologous
on
lusions { there-

fore, they are super
uous. They remain only be
ause our
urrent
onstraint sim-

pli�
ation algorithms are \lazy" and ignore any
onditional
onstraints whose

ondition has not yet been ful�lled. This problem
ould be �xed by implementing

slightly more aggressive simpli�
ation algorithms.

The type inferred for extra
t 0 fl = 1g and extra
t 0 fm = 1g is int. Thus,

in many
ases, one need not be aware of the
omplexity hidden in extra
t's type.

Example 2. We assume given an obje
t o, of the following type:

o : f getText : Pre (unit! string); setText : Pre (string! unit);

sele
t : Pre (int� int! unit); �Abs g

o may represent, for instan
e, an editable text �eld in a graphi
 user interfa
e

system. Its methods allow programmati
ally getting and setting its
ontents, as

well as sele
ting a portion of text.

Next, we assume a list data stru
ture, equipped with a simple iterator:

iter : (�! unit)! � list! unit

The following expression
reates a list of messages, and uses iter to send ea
h of

them in turn to o:

iter (# o) [setText\Hello!"; sele
t (0; 5) ℄

This expression is well-typed, be
ause o
ontains appropriate methods to deal

with ea
h of these messages, and be
ause these methods return unit, as expe
ted

by iter. The expression's type is of
ourse unit, iter's return type.

Here is a similar expression, whi
h involves a getText message:

iter (# o) [setText\Hello!"; getText () ℄

This time, it is ill-typed. Indeed, sending a setText message to o produ
es a

result of type unit, while sending it a getTextmessage produ
es a result of type

string. Thus, (# o)'s result type must be >, the join of these types. This makes

(# o) an una

eptable argument for iter, sin
e the latter expe
ts a fun
tion

whose return type is unit.

