
A Simple View of Type-Secure Information Flow in the�-Calculus

François Pottier

INRIA
E-mail:Francois.Pottier@inria.fr

Abstract

One way of enforcing aninformation flow controlpol-
icy is to use a static type system capable of guaranteeing
a noninterferenceproperty. Noninterference requires that
two processes with distinct “high”-level components, but
common “low”-level structure, cannot be distinguished by
“low”-level observers. We state this property in terms of
a rather strict notion of process equivalence, namely weak
barbed reduction congruence.

Because noninterference is not asafetyproperty, it is
often regarded as more difficult to establish than a con-
ventional type safety result. This paper aims to provide
an elementary noninterference proof in the setting of the
�-calculus. This is done by reducing the problem tosub-
ject reduction– a safety property – for a nonstandard, but
fairly natural, extension of the�-calculus, baptized theh�i-
calculus.

1 Introduction

Information flow analysisconsists in analyzing a pro-
gram so as to determine how its outputdependson the in-
puts it is given; or, more generally, how its observable be-
havior depends on the stimuli provided by its environment.
Such an analysis allows static enforcement of so-called “in-
formation flow control” security policies, which prevent se-
cret data from being leaked on public communication chan-
nels, or unreliable information from affecting critical deci-
sions. More generally, dependency analysis is at the heart
of several program transformation techniques [1].

Information flow analysis, reformulated as a type in-
ference problem, has been heavily studied in the past
few years, especially in the area of high-level, sequen-
tial languages; for references, see e.g. [20]. Recently, re-
searchers [9, 11, 22, 10, 12, 27] have begun further extend-
ing this study to low-level, concurrent calculi, such as the
�-calculus. This is made clearly worthwhile by the fact that
these calculi allow modeling distributed computing systems

and protocols, which today are at the heart of many real-
world security concerns.

An information flow analysis usually comes in the form
of a type system, together with a soundness proof. The for-
mer is typically (although not necessarily) derived from an
existing system, whose types are augmented with annota-
tions taken from a fixedsecurity latticeL [3]. The sound-
ness theorem gives anoninterferencestatement: it asserts
that, if an appropriate type judgement holds, then no change
in the high-security inputs of a process can affect a low-
security observer. (Here, the usualsubject reductiontheo-
rem becomes of rather secondary importance; nevertheless,
it is often useful as a tool in the noninterference proof.)
Such a statement must rely on some (preferably standard)
notion of process equivalence, giving rise to a variety of
choices.

Examining the theoretical results offered by existing
works, we find some of them to be somewhat lacking in
strength or simplicity. Hepburn and Wright [10] propose
a type system which enjoys subject reduction, but do not
establish any kind of security property. Hennessy and
Riely [9] and Hennessy [8] base their noninterference state-
ments onmay- or must-testing equivalence; a statement
based on a stronger notion of process equivalence would
seem preferable. Sewell and Vitek [22] do not prove non-
interference. They instead define a so-called “causal flow
property” concerning the traces of a process in a “colored”
labelled transition semantics. Because both the property
and the colored semantics aread hoc, it is difficult to de-
termine exactly what is being guaranteed. Honda, Yoshida,
Vasconcelos and Berger, in a number of papers [11, 12, 27]
propose several advanced type systems, which allow ex-
ploiting linearity and deadlock-freedom properties to re-
fine the information flow analysis. Their noninterference
result, which is stated in terms of a weak bisimulation, re-
quires a rather involved proof [26], due to the need to keep
track of liveness properties. Furthermore, the type systems
presented in [12, 27] have a rigid type structure (due to
so-called “IO alternation” and “sequentiality” constraints),
which is meant to allow encodingsequentialcomputation
only. They would need to be extended if they were to ac-

1

cept every�-calculus process that is well-typed in a simple
type discipline.

In this paper, we wish to define a simple type-based
information flow analysis, roughly equivalent in expres-
sive power to Hennessy and Riely’s [9], to Sewell and
Vitek’s [22], or to the nonlinear fragment of Hondaet
al.’s [11], and to give anelementarynoninterference proof
for it. By showing how straightforward it is to establish non-
interference in this simple setting, we hope to convey some
useful insights, and to later facilitate the understandingof
more advanced type systems.

Our noninterference result will be stated in terms of
bisimulation equivalence, rather than (say) may-testing
equivalence, so as to identify more processes as insecure.
(See Focardi and Gorrieri’s work [7] for a discussion of this
issue.) In short, relying on a bisimulation equivalence al-
lows detecting information leaks caused bycontentionbe-
tween “low”-level and “high”-level processes waiting on a
single channelx. This, we argue, sounds desirable, because,
in practice (that is, under a reasonable fairness assumption),
a “low”-level process may detect the presence of a “high”-
level one by noticing that a message that was sent to it on
channelx was not received after a certain amount of time.

Of course, one may object that this phenomenon is only a
particular kind oftiming leak. Our type system does not, in
general, detect such leaks. Neither does it detectprobabilis-
tic information leaks, because we use notions of process
equivalence based onpossible, rather thanlikely, behav-
iors. Still, we argue that weak bisimulation yields a stronger
noninterference result than may-testing equivalence, andwe
choose to rely on it.

2 Overview

We wish to establish a noninterference result, i.e. prove
that two (well-typed) processes which differ only in some
“high”-level components behave identically when observed
through “low”-level channels. Note that this isnot a so-
called safetyproperty, because it requires examining the
traces oftwo processes, rather than of a single one. (See
e.g. [15] for more details.) This explains why noninterfer-
ence is considered more difficult to establish than a conven-
tional type safety result. Our approach consists in reducing
noninterference to a simplesubject reductionproperty (i.e.
to a safety property) for anonstandardextension of the�-
calculus. It is inspired by previous joint work with Vincent
Simonet [21].

Our calculus, baptized theh�i-calculus, describes the
independent execution of apair of processes (which we
arbitrarily index byf1; 2g), while keeping track of their
sharedsub-processes. For instance, theh�i-calculus pro-
cessP j hQi

1

j hRi

2

represents the pair(P j Q; P j R),
while explicitly recording the fact that the sub-processP

is shared. A sub-term of the formhPi
i

indicates thatP
is present only in the process of indexi, and absent in the
one of indexj, wherefi; jg = f1; 2g. Brackets cannot be
nested. This would not make any sense, since we only wish
to encode two standard processes, not more.

Because we are interested in comparing two processes
that differ only in their “high”-level components, and be-
cause we encode these differences using “bracket” con-
structors, any sub-process that appears within brackets will
be considered a “high”-level process. Conversely, processes
that are shared will be considered “low”-level.

One may wonder why it is not sufficient to employ only
one kind of brackets, i.e. a single constructionh�i. For in-
stance, the process�x j hx:Pi would represent the pair of
processes(�x; �x j x:P), while encoding the fact thatx:P
is considered a “high”-level process. However, such a lan-
guage would not be rich enough to express reduction; in-
deed, the pair of processes above evolves to(�x; P), which
cannot be represented in the single-bracket syntax – hence
the need for two distinct bracket constructs.

In Sect. 3, we equip theh�i-calculus with an operational
semantics which reflects that of the standard�-calculus, but
preserves sharing information. Reduction may take place
outside brackets (meaning that a common reduction step
is performed), inside brackets (meaning that some process
performs an independent, “high”-level step), or at bracket
boundaries. In the latter case, we discard sharing informa-
tion by reducingP to hPi

1

j hPi

2

. However, this is al-
lowed only if some communication step cannot otherwise
take place; gratuitous loss of sharing is forbidden. (This is
a crucial point; because we consider any process that ap-
pears under brackets as “high”-level, the semantics should
not cause brackets to appear needlessly, lest the precisionof
the information flow analysis be compromised.) We begin
our formal development by showing how theh�i-calculus
relates to the standard�-calculus.

In Sect. 4, we equip theh�i-calculus with a type system.
It is very similar to Pierce and Sangiorgi’s type system for
the �-calculus [18], but is extended withsecurity annota-
tions, a standard notion in information flow analyses; see
e.g. [11, 22]. We prove that it enjoys asubject reduction
property.

Sect. 5 shows how these results combine to yield a weak-
bisimulation-based noninterference property. In short, the
bisimulation diagram naturally arises by design of theh�i-
calculus, while preservation of “low”-level barbs is a sim-
ple consequence of the typing hypothesis. Then, for conve-
nience, Sect. 6 rephrases our results using “colored” (rather
than “bracket”) notation for processes.

2

3 The h�i-Calculus

3.1 Presentation

The h�i-calculus is an extension of the synchronous
polyadic�-calculus [16], whose semantics describes the in-
dependent execution of apair of processes, while keeping
track of theirsharedsub-processes. (We consider a syn-
chronous variant, because it contains the asynchronous vari-
ant as a fragment; see Sect. 7.1 for comments about the
asynchronous case.)

Definition 1 Let x; y; z; : : : range over a denumerable set
N of names. Let ~y; ~z; : : : denote vectors of such names.
Let i range overf1; 2g. Normal processesM;N; : : : and
processesP;Q;R; : : : are given by

N ::= x(~y):P j �xh~zi:P j 0 j N +N

P ::= N j (P j P) j !P j �x:P j hP i

i

x(~y):P binds ~y in P , and�x:P bindsx in P . From this
information, the usual notions of free names, capture-free
substitution, and�-convertibility are deduced. We write
fn(P) for the set of free names of a processP . We iden-
tify processes up to�-conversion.

In the following, bold meta-variables denotestandard
processes, i.e. processes which have no sub-term of the form
hP i

i

. Throughout the paper, we restrict our attention to pro-
cesses where every sub-term of the formhP i

i

is in fact of the
form hPi

i

, i.e. we never nest brackets.

A single h�i-calculus process is meant to represent apair
of standard�-calculus processes. In particular,hPi

1

stands
for the pair(P;0), while hPi

2

stands for(0;P). A h�i-
calculus process of the formP representssharedstructure:
it stands for the pair(P;P). More generally, an arbitrary
processP stands for the pair(�

1

(P); �

2

(P)), where the
projection functions�

1

and�
2

are defined as follows.

Definition 2 Let fi; jg = f1; 2g. Theith projectionfunc-
tion, written �

i

, satisfies the laws�
i

(hPi

i

) = P and
�

i

(hPi

j

) = 0 and is a homomorphism on other (i.e. stan-
dard) process forms. We often write�

i

P for �
i

(P). For all
P , �

i

P is a standard process.

Projection may create superfluous null processes, which it is
convenient to disregard. We introduce an auxiliary relation
for this purpose.

Definition 3 Let �
0

be the smallest reflexive, compatible
relation over processes which satisfies the lawP �

0

P j 0.

(By compatible, we mean closed under all contexts.) View-
ing �

i

as a relation, we will writeP �

i

� �

?

0

P or
P �

?

0

� �

�1

i

P to denote�
i

P �

?

0

P. (The superscript
? denotes the reflexive, transitive closure of a relation; the
infix operator� denotes the composition of relations.)

3.2 Semantics

We now define an operational semantics for theh�i-
calculus. Its restriction to standard processes will coincide
with the standard synchronous polyadic�-calculus [16].

For purely technical reasons, we choose a slightly altered
presentation of the latter as a starting point: we turn three
structural congruence laws, namely scope extrusion, repli-
cation, and spontaneous creation of new bound names, into
reduction rules, thus making them irreversible. Proving that
these changes do not affect the semantics of the�-calculus
is an orthogonal issue, which we do not address here.

For technical convenience, structural congruence is not
made transitive. Similarly, evaluation contexts are not al-
lowed to be nested. These presentational choices elimi-
nate some redundancy from our definitions, thus simplify-
ing proofs.

Definition 4 Structural congruence� is the smallest reflex-
ive, symmetric, compatible relation over processes such that
the following laws hold:

1. N+0 � N ,N
1

+N

2

� N

2

+N

1

, (N
1

+N

2

)+N

3

�

N

1

+ (N

2

+N

3

);

2. P j 0 � P , P
1

j P

2

� P

2

j P

1

, (P
1

j P

2

) j P

3

� P

1

j

(P

2

j P

3

);

3. �x:�y:P � �y:�x:P .

Definition 5 An evaluation contextE is one of([℄ j P),
�x:[℄ or h[℄i

i

.

All structural congruence laws are standard. All evaluation
contexts are standard as well, excepth[℄i

i

, which allows re-
duction under brackets.

Definition 6 The raw one-step reduction relation7! is
given by Fig. 1. We writeM#N (read: M andN may
communicate) for(M j N 7!)_(N jM 7!), where(P 7!)

is itself a short-hand for(9P 0

P 7! P

0

). Weak reduction,
written), is defined as(� [7!)

?.

Rules COMM and CONTEXT are standard. Rules EXTR,
REPL and NEW are directed versions of standard congru-
ence rules. The crucial rule is SPLIT, which allows discard-
ing sharing information if required by further reductions.
SPLIT can be viewed as a restriction of the following, more
liberal rule:

SPLIT’
M 7! h�

1

Mi

1

j h�

2

Mi

2

SPLIT’ explicitly replaces a shared process with its projec-
tions. Thus, it implements our intuition that ah�i-calculus
process stands for a pair of standard processes. However,

3

COMM

(M + x(~y):P) j (N + �xh~zi:Q) 7! P [~z=~y℄ j Q

EXTR
x 62 fn(Q)

(�x:P) j Q 7! �x:(P j Q)

REPL

!P 7! P j !P

NEW

0 7! �x:0

CONTEXT
P 7! P

0

E[P ℄ 7! E[P

0

℄

SPLIT
�

i

M#N fi; jg = f1; 2g

M j hNi

i

7! h�

i

M j Ni

i

j h�

j

Mi

j

GLUE
M#N

hMi

i

j hNi

i

7! hM j Ni

i

BREAK

hP j Qi

i

7! hPi

i

j hQi

i

PUSH

h�x:Pi

i

7! �x:hPi

i

Figure 1. Semantics of the h�i-calculus

because it has no side-condition, it allows sharing infor-
mation to be discarded at will. Although such a behavior
would be perfectly valid as far as the untyped semantics of
theh�i-calculus is concerned, it would lead to a useless type
system. Indeed, as we have said, every process which ap-
pears under brackets must remain invisible to “low”-level
observers. However, SPLIT’ potentially causeseverypro-
cess to appear under brackets. Because the type system
must have subject reduction, adopting this rule would force
it to typecheck every process under the most restrictive se-
curity assumption.

As a result, we must replace SPLIT’ with a restricted ver-
sion that preserves as much sharing information as possible,
i.e. that allows it to be discarded only if some communi-
cation step cannot otherwise take place. Thus, we obtain
SPLIT, whereM can be split intoh�

i

Mi

i

j h�

j

Mi

j

only
if one of its projections, say�

i

M , is able to communicate
with some termN which already appears under a bracket
hNi

i

.
Rules GLUE and BREAK can be understood as restric-

tions of a (hypothetical) structural congruence rule:

hP j Qi

i

� hPi

i

j hQi

i

Again, allowing this equivalence to hold would be correct as
far as the untyped semantics is concerned, but would pose a
slight technical typing problem. The premise in rule GLUE

works around it by allowing brackets to be merged only if

required to allow some communication step. (Have a look
at the subject reduction proof for GLUE for more details.)

Lastly, rule PUSH allows pushing brackets down inside
� binders. In conjunction with BREAK, this lets them move
down to the level of normal processes, where they can be
dealt with by SPLIT.

3.3 Relating theh�i-Calculus to the�-Calculus

We now relate theh�i-calculus to the�-calculus. (Be-
cause the latter is a fragment of the former, we do not define
it separately.) Our aim is to show that theh�i-calculus al-
lows reasoning about the execution of apair of standard
�-calculus processes. That is, every reduction of ah�i-
calculus process represents correct reductions of its projec-
tions; conversely, every reduction of a projection can be em-
ulated by reductions of the whole. In other words, the two
semantics are in a weak bisimulation relation.

We begin with the easier part, i.e. proving that the pro-
jection of every reduction step is a correct reduction step as
well. This is immediate; we omit the proof. (All missing
proofs can be found in the full version of this paper [19].)

Lemma 1 Let i 2 f1; 2g. If P) P

0, then�
i

P) �

i

P

0.

We continue with the subtler part, i.e. proving that ev-
ery correct (congruence or reduction) step performed by a
projection�

i

P can be emulated by the termP . There is a
slight technical twist: if�

i

P is P j 0, which reduces toP
via a structural congruence step, thenP may be of the form
P j hQi

j

, wherefi; jg = f1; 2g. In that case,P will be
unable to perform the same step. To account for this, we
use the pre-order�?

0

introduced in Definition 3.

Lemma 2 Let i 2 f1; 2g. If P) P

0 andP �

?

0

� �

�1

i

P ,
then there exists some processP

0 such thatP) P

0 and
P

0

�

?

0

� �

�1

i

P

0.

The proof, which requires a number of auxiliary lemmas,
is given in the full version of this paper [19].

4 Typing the h�i-Calculus

4.1 Presentation

We now introduce a type system for theh�i-calculus. It
extends an existing type system for the�-calculus – namely
Pierce and Sangiorgi’s [18], which we choose for its sim-
plicity – with security annotations. Its typing judgements
are of the form� `pc P , where pc is asecurity level, i.e.
a member of a fixedsecurity latticeL. Such a judgement
may be read:under assumptions�, P is well-typed and will
affect only observers of security clearancepc or higher. It
may also be read:under assumptions�, assumingP gains

4

information of levelpc by being executed,P is well-typed.
This formulation explains why this meta-variable is histor-
ically named pc [6]: it is the security level whichP attains
simply by virtue of being executed, i.e. the security level
associated with its “program counter”.

Even though the security latticeL is arbitrary, it is de-
sirable to establish a simple dichotomy between “low” and
“high” security levels. Such a distinction allows simple
proofs; full generality will be recovered in Sect. 6. To
this end, in the present section, we assume given a fixed,
downward-closed setL � L. We will view levels within
(resp. outside)L as “low” (resp. “high”).

Noninterference states that two processes which differ
only in some high-level sub-terms cannot be distinguished
by low-level observers. To achieve this, our type system
will guarantee that processes of the formhPi

i

– which we
use to encode the differences between two processes – can
affect only high-security-level observers. In other words,
for � `pc hPii to hold, we will require pc62 L. (See rule
T-BRACKET in Fig. 2.) This will be our only use ofL in
this section.

As in [18], every channel typet carries a polaritypwhich
tells whether the channel may be used for input, output, or
both. It is further annotated with a security levell 2 L,
which tells how much information may be obtained by suc-
cessfully reading from or writing to the channel.

Definition 7 A polarityp is one off�;+;�g. Typest are
of the formh ~t ip

l

.

Definition 8 Polarities are ordered by� � �, � � +.
Types are ordered by

p � p

0

(p

0

� �)

~

t �

~

t

0

) (p

0

� +)

~

t

0

�

~

t)

h

~

t i

p

l

� h

~

t

0

i

p

0

l

(The ordering is extended point-wise to vectors of types.)
These definitions can be understood either inductively or
co-inductively, yielding finite or infinite types. The choice
of one or the other is orthogonal to our concerns; indeed,
the subject reduction and noninterference proofs are entirely
independent of this issue. We leave it open, to be settled by
the analysis designer at a later stage.

Note that our definition of subtyping doesnot allow a
channel’s security level to be modified, be it covariantly
or contravariantly. In other words, two channel types that
are in a subtyping relationship must have the same secu-
rity level. This (admittedly strong) requirement reflects the
fact that information flowsboth waysalong a channel, re-
gardless of the direction of messages (i.e. regardless of the
channel’s polarity). This property will be used in the proof
of Lemma 6, which itself plays a key role in establishing
subject reduction.

T-RECV
�(x) � h

~

t i

�

pc �; ~y :

~

t `pc P

� `

(pc) x(~y):P

T-SEND
�(x) � h

~

t i

+

pc �(~y) �

~

t � `pc P

� `

(pc) �xh~yi:P

T-NULL

� `

(pc) 0

T-SUM
� `

(pc) M � `

(pc) N

� `

(pc) M +N

T-NORMAL
� `

(pc) N

� `pc N

T-PAR
� `pc P � `pc Q

� `pc P j Q

T-REPL
� `pc P

� `pc !P

T-NEW
�;x : t `pc P

� `pc �x:P

T-BRACKET
� `pc P pc 62 L

� `pc hPii

T-SUB
� `pc P pc0 � pc

� `pc0 P

Figure 2. Typing rules of the h�i-calculus

Definition 9 The type system of theh�i-calculus is defined
by Fig. 2. It involves two separate judgement forms. Judge-
ments of the form� `

(pc) N concern normal processes.
Judgements of the form� `pc P concern arbitrary pro-
cesses.

Rules T-RECV and T-SEND require the channel’s secu-
rity level to match the level attained by the process, namely
pc. Furthermore, T-SUM requires all components of a sum
to have matching levels. As a result, if� `

(pc) N holds,
then all channels liable to be read or written byN must have
the same security level. This reflects the fact that informa-
tion may flow arbitrarily between these channels. As a sim-
ple illustration of this fact, considerN = x:P + y:Q. If, in
the presence ofN , a message sent on channelx is not con-
sumed after a while, then its sender knows that some mes-
sage was available on channely, so information flows from
y to x. (Recall that relying on weak bisimulation amounts,
in practice, to formulating a fairness hypothesis.) By sym-
metry, the converse is also true.

Rule T-SUB allows strengthening the security require-
ments bearing on a process. This rule applies only to judge-
ments of the form� `pc P ; applying it to judgements of the
form � `

(pc) N would break the property that all compo-
nents of a sum have a common security level.

In T-RECV and T-SEND, the continuation processP is
typed at a security level equal to that of the channelx (or
greater, thanks to T-SUB). This reflects the fact that a suc-
cessful synchronization atx yields information whichP

5

may exploit.

4.2 Type Preservation

We begin with three easy lemmas, stating that typing is
preserved by projection, by structural congruence, and by
substitution of names for names. Proofs are omitted.

Lemma 3 For i 2 f1; 2g, � `pc P implies� `pc �iP .

Lemma 4 � `pc P andP � P

0 imply� `pc P
0.

Lemma 5 �; ~y :

~

t `pc P and�(~z) � ~

t imply� `pc P [~z=~y℄.

Next comes an important auxiliary lemma, stating that,
if two normal processesM andN are able to communicate
with each other, and if they are typed under a common en-
vironment�, then they must be typed at the same security
level. (Additionally, the lemma states that the reduced pro-
cessR is well-typed at that level.) Indeed,M andN must
share some channelx, so they must both be typed atx’s
security level.

Lemma 6 Assume� `

(pc
1

)

M and� `

(pc
2

)

N . If M j

N 7! R, then� `pc R holds, wherepc= pc
1

= pc
2

.

Proof. BecauseM andN are normal processes, they are
irreducible; thus, the reductionM j N 7! R must be an
instance of rule COMM. Thus,M andN must be of the
formM

0

+ x(~y):P andN 0

+ x(~z):Q, respectively.
By T-SUM and T-RECV, the first hypothesis yields

� `

(pc
1

)

M

0, �(x) � h

~

t

1

i

�

pc
1

and�; ~y :

~

t

1

`pc
1

P . By
T-SUM and T-SEND, the second one yields� `

(pc
2

)

N

0,
�(x) � h

~

t

2

i

+

pc
2

, �(~z) � ~

t

2

and� `pc
2

Q.
From�(x) � h

~

t

1

i

�

pc
1

and�(x) � h

~

t

2

i

+

pc
2

, we deduce
pc

1

= pc
2

and ~

t

2

�

~

t

1

. Take pc= pc
1

= pc
2

. By transi-
tivity of subtyping,�(~z) � ~

t

1

holds. Lemma 5 then yields
� `pc

1

P [~z=~y℄. Using pc= pc
1

= pc
2

and T-PAR, we
obtain� `pc P [~z=~y℄ j Q, that is,� `pc R. 2

These results allow us to establish that typing is pre-
served by reduction.

Lemma 7 (Subject Reduction)� `pc P andP 7! P

0 im-
ply� `pc P

0.

Proof. By induction on the derivation ofP 7! P

0.
Case COMM. P is of the formM j N . By T-SUB, T-

PAR and T-NORMAL, this yields� `

(pc
1

)

M and� `

(pc
2

)

N , where pc� pc
1

and pc� pc
2

hold. By Lemma 6 and
by T-SUB, � `pc P

0 holds.
Case SPLIT. The reduction isM j hNi

i

7! h�

i

M j

Ni

i

j h�

j

Mi

j

, wherefi; jg = f1; 2g and�
i

M#N. Our
hypothesis is� `pc M j hNi

i

. By T-SUB, T-PAR, T-
NORMAL and T-BRACKET, this yields� `

(pc
1

)

M and

� `pc
2

N, where pc� pc
1

, pc� pc
2

, and pc
2

62 L hold.
BecauseL is downward-closed, we may assume, without
loss of generality, that T-SUB is never used immediately
above T-BRACKET; as a result,� `

(pc
2

)

N holds.�
i

M#N

impliesM#N. As a result, we may apply Lemma 6 (either
toM andN or toN andM), yielding pc

1

= pc
2

.
It follows that� `pc

2

M holds. By Lemma 3, both�
i

M

and�
j

M are well-typed under� and pc
2

. By hypothesis,
so isN. Thus, considering pc

2

62 L, so ish�
i

M j Ni

i

j

h�

j

Mi

j

. Because pc
2

� pc, the result follows by T-SUB.
Case GLUE. The reduction ishMi

i

j hNi

i

7! hM j Ni

i

,
whereM#N. Our hypothesis is� `pc hMi

i

j hNi

i

. As
above, this yields� `

(pc
1

)

M and� `

(pc
2

)

N, where pc�
pc

k

and pc
k

62 L hold for k 2 f1; 2g. Again, Lemma 6
yields pc

1

= pc
2

. Thus,� `pc
2

hM j Ni

i

holds. The result
follows by T-SUB.

Case EXTR, REPL, CONTEXT, BREAK, PUSH. Immedi-
ate. 2

5 Noninterference

Combining the results of Sect. 3.3 and 4.2, we will now
derive a noninterference property, expressed in terms of
weak barbed reduction congruence [17].

Definition 10 Let � range over names and co-names
(x; �x; : : :). If � is x (resp. �x), then �� stands for�x (resp.
x). If � is x or �x, thenj� j is x. The predicateP#

�

(read:
the processP is observable at�) is defined as follows:

(M + x(~y):P)#

x

(M + �xh~yi:P)#

�x

P#

�

E does not bindj� j

E[P ℄#

�

P+

�

stands for(9P 0

P) P

0

^ P

0

#

�

).

Definition 11 LetB be an arbitrary set of names. A binary
relation R over processes is aweakB-simulation if and
only if

� P R Q^P) P

0 implies9Q0

Q) Q

0

^P

0

R Q

0;
and

� j� j 2 B, P R Q andP+
�

implyQ+
�

.

R is a weakB-bisimulationif and only ifR andR�1 are
weakB-simulations. Two processes areweaklyB-bisimilar
if they are related by some weakB-bisimulation. They are
weakly bisimilarif they areN -bisimilar.

In this section,L is fixed, as in Sect. 4. The set of chan-
nels which, according to a type environment�, do not leak
any high-level information is referred to as low(�). It is
defined as follows.

6

Definition 12 Given a type environment�, low(�) denotes
the largest setB � N such thatx 2 B and�(x) = h

~

t i

p

l

imply l 2 L. � is said to be anL-environmentif and only if
low(�) = N .

If x 2 low(�) holds, then, by rule T-BRACKET, no
well-typed process observable atx can appear under brack-
ets. So, in that case, observability atx must be preserved
by projection. This is expressed by the following simple
lemma, whose proof appears in the full version of this pa-
per. (We write� ` R to indicate that� `pc R holds for
some pc2 L.)

Lemma 8 (Barb Preservation) Assume� ` R, R#
�

and
j� j 2 low(�). Let i 2 f1; 2g. Then,(�

i

R)#

�

holds.

Then, it is easy to establish that any two processes which
are respectively the left- and right-hand projections of a sin-
gle, well-typedh�i-calculus process are barbed bisimilar,
provided only low-security barbs are observed.

Lemma 9 (Barbed Bisimulation) Let P R

�

Q hold if
and only if, for someh�i-calculus processR, both� ` R

andP �

?

0

� �

�1

1

R �

2

� �

?

0

Q hold. Then,R
�

is a weak
low(�)-bisimulation.

Proof. We prove thatR
�

is a weak low(�)-simulation. (To
deal withR

�

�1, simply swap�
1

and�
2

.) First, assume
P R

�

Q andP) P

0. Then, we have

P

��

�

?

0

�

�

�1

1

R

��

�

2

�

��

�

?

0

Q

nv
P

0

�

?

0

�

�

�1

1

R

0

�

2

Q

0

The leftmost commutative diagram is given by Lemma 2,
the middle one by Lemma 1, and the rightmost one merely
stems from the fact that�

0

is contained within�. Further-
more, Lemmas 4 and 7 yield� ` R

0, which shows that
P

0

R

�

Q

0 holds.
Next, we check thatR

�

preservesstrongbarbs, which,
given the above, implies that it also preserves weak ones,
meeting the second condition of Definition 11. Assume
P R

�

Q, P#
�

and j� j 2 low(�). For some processR,
� ` R andP �

?

0

� �

�1

1

R �

2

� �

?

0

Q hold. As a result
of the latter, we must haveR#

�

. By Lemma 8, this implies
(�

2

R)#

�

. Because�
2

R �

?

0

Q holds,Q#
�

follows. 2

As a corollary, we show that, for any processR, the pro-
jections�

1

R and�
2

R are weakly barbed-congruent [17],
provided we admit only contexts which, according to the
type system, emit only low-security barbs.

Theorem 1 For any processR, for any (standard) context
C such that� ` C[R℄ holds in someL-environment�,
C[�

1

R℄ andC[�

2

R℄ are weakly bisimilar.

Proof. Apply Lemma 9. Fori 2 f1; 2g, �
i

C[R℄ isC[�

i

R℄.
As a result,C[�

1

R℄ andC[�

2

R℄ are related byR
�

. Thus,
they are weakly low(�)-bisimilar. The result follows from
low(�) = N . 2

Our second corollary is in the style of Hondaet al.’s non-
interference claim [11]:

Theorem 2 Assume�
0

`pc
0

P

i

, wherepc
0

62 L, holds for
i 2 f1; 2g. Then, for any contextC and for any environment
� such that� ` C[℄ holds under the assumption�

0

`pc
0

[℄,
C[P

1

℄ andC[P

2

℄ are weaklylow(�)-bisimilar.

Proof. Because pc
0

62 L, T-BRACKET yields�
0

`pc
0

hP

i

i

i

for i 2 f1; 2g. DefineR asC[hP

1

i

1

j hP

2

i

2

℄. According to
T-PAR and to our hypothesis aboutC, � ` R holds. Apply
Lemma 9.C[P

1

℄ andC[P

2

℄ are related byR
�

. As a result,
they are weakly low(�)-bisimilar. 2

Theorem 1 is, in our opinion, more directly useful than
Theorem 2. Indeed, the former allows precise reasoning
about two processes which have some common structure,
while the latter treatsP

1

andP
2

as entirely separate. How-
ever, Theorem 1 is expressed in terms of a nonstandard
theoretical tool, namely theh�i-calculus. For this reason,
we will now reformulate it, with a practical aim: provide a
specification of the security guarantees offered by the type
system that can be read and written by the programmer.

6 Programmer-Oriented Specification

We suggest allowing the programmer to color any sub-
process with a security levell 2 L, indicating that its pres-
ence should not affect observers whose security clearance
is not at leastl. Thus, we introduce a “colored”�-calculus.
It is reminiscent of Abadi, Lampson, and Lévy labelled
�-calculus [2] and of Sewell and Vitek’s colored box-�-
calculus [22]. However, we do not need to define a seman-
tics for it; here, we view it only as a programming notation.

N ::= x(~x):P j �xh~xi:P j 0 j N +N

P ::= N j (P j P) j !P j �x:P j l : P

The only variation with respect to theh�i-calculus is that
the constructhPi

i

is replaced with the coloring construct
l : P . (Unlike brackets, coloring constructs can be nested.)
The type system is modified by replacing rule T-BRACKET

with

T-COLOR
� pc P l � pc

� pc l : P

Note that the new type system is no longer parameterized
by a setL. We use� pc P to denote its judgements.

7

Rule T-COLOR simply forces the sub-processP to be
typechecked at a level that equals or exceedsl. Thus, “col-
ors” in the source program cause the typechecker to enforce
additional constraints, which will then guarantee a certain
security property, as we will now explain.

GivenL � L, we define anerasurefunctionb�
L

, which
drops all sub-terms whose color is not a member ofL, and
produces a term in the standard�-calculus. The function
which strips off all colors, namelyb�

L

, is writtenb�.

Definition 13 Let b�
L

satisfybl : P
L

= bP

L

whenl 2
L, bl : P

L

= 0 whenl 62 L, and be a homomorphism on
standard process forms.

Then, our final noninterference theorem states that prun-
ing sub-terms which carry “high” colors does not alter the
behavior of a process under a certain typed barbed congru-
ence, whereby a context is allowable only if its type states
that it will affect “low” channels only. Note that the mean-
ing of “low” and “high” is parameterized by the choice of
L, of which the type system is now independent.

Theorem 3 (Noninterference)Let L be a downward-
closed subset ofL. For any processR of the colored�-
calculus, for any (standard) contextC such that� C[R℄

holds in someL-environment�, C[bR℄ andC[bR

L

℄ are
weakly bisimilar.

Proof. Define a mapping�? from the colored�-calculus
into theh�i-calculus, which satisfies(l : P)

?

= P

? when
l 2 L, (l : P)

?

= hbP i

1

when l 62 L, and is a homo-
morphism on standard process forms. Then, the identities
�

1

(P

?

) = bP and�
2

(P

?

) = bP

L

hold for any colored
processP . Furthermore, it is easy to check that� pc P

implies � `pc P

?. As a consequence,� C[R℄ yields
� ` (C[R℄)

?. Furthermore,(C[R℄)

? is C[R

?

℄. By Theo-
rem 1,C[�

1

(R

?

)℄ andC[�

2

(R

?

)℄ are weakly bisimilar. By
the identities above, these are none other thanC[bR℄ and
C[bR

L

℄. 2

In particular, ifR itself is well-typed within someL-
environment, then every contextC such thatC[R℄ is well-
typed will do.

7 Discussion

7.1 Asynchrony

Our type system allows input (resp. output) channel
typesh ~t i�

l

(resp. h ~t i+
l

) to be covariant (resp. contravari-
ant) in theirparameters~t, but both areinvariant in their
security levell (Definition 8). Intuitively, this is because
synchronization causes information to flow not only from
the sender of a message to its receiver, but also in the re-
verse direction. As a result, both processes must have the

samenotion of “pc”. This is enforced by the invariance of
security annotations.

Let us now restrict our interest to the asynchronous frag-
ment of the�-calculus, where every sender is of the form
�xh~zi:0. It may seem that, under this restriction, senders
can no longer observe the reception of their messages. This
would suggest that making input (resp. output) channel
types covariant (resp. contravariant) in their security level is
safe. This, however, is not the case; in fact, message recep-
tion can still be observed by exploiting contention between
receivers. This is illustrated by the following example. Take
L = fL; Hg, with L � H. TakeL = fLg. Consider the typ-
ing judgement

x : h i

�

H ; y : h i

�

L ; z : h i

+

L `L h�xi2 j �y j x:y:0 j y:�z

This judgement isincorrect in our type system, because the
sub-termx:y:0 is ill-typed. Indeed, listening on channel
x, which has typeh i�H , causes “pc” to becomeH. Subse-
quently, listening on channely becomes illegal, sincey has
type h i�L . On the other hand, if input channel types were
covariant, thenh i�L would be a subtype ofh i�H , and the
judgement would become correct. Yet the two projections
of this process, namely

�y j x:y:0 j y:�z and �x j �y j x:y:0 j y:�z

arenot weaklyfy; zg-bisimilar. Indeed, the left-hand pro-
cess must send a message on channelz, while the right-
hand one may choose to never do so. In other words, the
presence of�x causes contention between two receivers on
y, which can be detected by observingz. This example
shows that channel types must remain invariant in their se-
curity annotations, even in the asynchronous fragment of
the�-calculus.

7.2 Exploiting Linearity

In the example above, the information leak is caused
by contention. If the channely was linear [14], then no
contention would be possible, and it would be safe for the
“high”-level processx:y:0 to receive a signal through the
“low”-level channely. In fact, under a strong notion of lin-
earity, every communication action on a linear channel must
eventually succeed (see e.g. [25]), so its success alone does
not carry any information. This fact is pointed out and ex-
ploited by Hondaet al. [11, 12, 27]. It is indeed crucial,
in practice, to take advantage of it, because the�-calculus
is a low-level programming language, where continuation-
passing style is ubiquitous: control is encoded through the
use of (often linear) communications, rather than evident in
the program’s syntax. Zdancewic and Myers [28] address
this issue in the case of a low-level, sequential calculus.

8

Can our proof approach be extended to deal with linear-
ity information? Let us give a rough sketch of how we en-
vision such an extension. The semantics of theh�i-calculus
must be modified to disallow linear communications from
taking place under brackets. Instead, one should introduce
reduction rules akin to the following, which re-discovers
sharing:

JOIN

h�x:Pi

1

j h�x:Qi

2

7! �x:(hPi

1

j hQi

2

) if x is linear

These changes allow a continuationx:P to be triggered
without splittingP . In turn, this will allow the type sys-
tem to viewP as a “low”-level process, even though the
trigger �x is sent from a “high”-level process. The antici-
pated difficulty is in establishing the completeness lemma,
i.e. the analogue of Lemma 2. Indeed, proving that JOIN

is always applicable requires proving that every linear com-
munication action will eventually succeed. This requires
using typing information, whereas, in our current develop-
ment, the results in Sect. 3.3 were (pleasantly) independent
of types. We view this research direction as most promising.

7.3 Type Inference

Type inference is no more difficult for this system than
for Pierce and Sangiorgi’s original type system [18]. Type
inference for (an extended version of) the latter has been
studied by Igarashi and Kobayashi [13]. To adapt their al-
gorithm, one must generate and solve extra inequalities, as
required by rules T-SUB and T-COLOR. These are atomic,
i.e. only involve variables and constants taken inL.

7.4 Related Work

In previous work with Sylvain Conchon [20], we pro-
posed a generic approach to information flow analysis,
based on a suitablecolored semantics, where terms are an-
notated withsecurity colorstaken fromL. (See e.g. Sewell
and Vitek’s colored box-�-calculus [22].) We suggested,
at the time, that this approach should be applicable to the
�-calculus. Later experiments confirmed our intuition, but
showed that it naturally leads to amay-testing-based nonin-
terference result. Our attempts to adapt it to a bisimulation
setting lead us to the present formulation, where brackets
replace colors, allowing a simple bisimulation proof.

Hennessy and Riely’s system [9] shares several basic
mechanisms, such as the use of security annotations on pro-
cesses, channels and judgements, with ours. Instead of us-
ing channel types annotated with polarities à la Pierce and
Sangiorgi, they use sets of so-called read or write “capa-
bilities”; this seems only a superficial difference. More
importantly, they study theasynchronous�-calculus un-
dermay-testingequivalence, which means that information

only flows from senders to receivers and allows a channel to
be read at a higher security level than it was written. (Con-
trast this with our discussion of Sect. 7.1.) Lastly, their
boxing construct�JP K is notanalogous to our coloring con-
structl : P . (Compare the corresponding typing rules.) It is
used with different meanings in their “resource control” sys-
tem and in their “information flow” system, which creates a
tension and seems to make their noninterference statement
a bit awkward.

Sewell and Vitek [22] develop a type system similar to
ours. (Their annotations are sets of principals, whereas we
employ a slightly more abstract notion of security level.)
They do not prove a noninterference result; instead, they
state a so-called “causal flow” property. We view this as
a serious shortcoming: it is difficult to determine exactly
which notion of causality the property reflects. The same
criticism can be held against Bodeiet al.’s “no read up/no
write down” property [4].

The restriction of Hondaet al.’s system [11] to nonlinear
types seems essentially identical to our system: judgements
are annotated with a security level similar to ours (compare
(Deg

s

) with T-SUB), and nonlinear channel types are in-
variant in their security level. The noninterference results
stated in [11, 12, 27] also rely on a form of weak bisimu-
lation. They propose the most advanced systems to date;
whether our technique can be modified to establish their
soundness is an interesting issue.

The problem of noninterference in multi-threaded imper-
ative languages is similar to the one studied here, and has
been investigated by several researchers [23, 24, 5]. We
believe that our proof technique could be re-used in their
setting, allowing the candidate bisimulation relation to be
defined implicitly in terms of a type system for a “bracket”
calculus – as done here – rather than explicitly, which is
clumsier (see e.g. [5]).

Acknowledgements

The paper owes much to numerous discussions with Syl-
vain Conchon. Alan Schmitt’s diagram-chasing skills were
also most helpful.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A
core calculus of dependency. InConference Record of the
26th ACM Symposium on Principles of Programming Lan-
guages, pages 147–160, San Antonio, Texas, Jan. 1999.
ACM Press.URL: http://www.soe.ucsc.edu/~abadi/
Papers/flowpopl.ps.

[2] M. Abadi, B. Lampson, and J.-J. Lévy. Analysis and caching
of dependencies. InProceedings of the 1996 ACM SIG-
PLAN International Conference on Functional Program-
ming, pages 83–91, Philadelphia, Pennsylvania, May 1996.

9

ACM Press.URL: http://www.soe.ucsc.edu/~abadi/
Papers/make-preprint.ps.

[3] D. E. Bell and L. J. LaPadula. Secure computer sys-
tems: Unified exposition and Multics interpretation. Tech-
nical Report MTR-2997, The MITRE Corp., Bedford, Mas-
sachusetts, July 1975.URL: http://www.mitre.org/
resources/centers/infosec/infosec.html.

[4] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static
analysis of processes for no read-up and no write-down.
In W. Thomas, editor,Proceedings of FoSSaCS’99, volume
1578 ofLecture Notes in Computer Science, pages 120–134.
Springer, Mar. 1999.URL: http://www.di.unipi.it/
~chiara/publ-40/BDNN99.ps.

[5] G. Boudol and I. Castellani. Non-interference for
concurrent programs and thread systems. To appear.
URL: ftp://ftp-sop.inria.fr/mimosa/personnel/

gbo/non-interf-threads.ps.gz, Sept. 2001.
[6] D. E. Denning.Cryptography and Data Security. Addison-

Wesley, Reading, Massachusetts, 1982.
[7] R. Focardi and R. Gorrieri. A classification of security

properties for process algebras.Journal of Computer Secu-
rity, 3(1):5–33, 1995.URL: http://www.cs.unibo.it/
~gorrieri/Papers/jcsfinal.ps.gz.

[8] M. Hennessy. The security picalculus and non-
interference. Technical Report 2000:05, University of Sus-
sex, Nov. 2000. URL: ftp://ftp.cogs.susx.ac.uk/
pub/reports/compsci/cs052000.ps.Z.

[9] M. Hennessy and J. Riely. Information flow vs. resource
access in the asynchronous pi-calculus. InProceedings of
the 27th International Colloquium on Automata, Languages
and Programming, Lecture Notes in Computer Science.
Springer-Verlag, July 2000.URL: http://www.depaul.
edu/~jriely/papers/00icalp.ps.gz.

[10] M. Hepburn and D. Wright. Trust in the pi-calculus. In
Third International Conference on Principles and Practice
of Declarative Programming (PPDP’01), Sept. 2001.

[11] K. Honda, V. Vasconcelos, and N. Yoshida. Secure infor-
mation flow as typed process behaviour. In G. Smolka,
editor, Proceedings of the 2000 European Symposium on
Programming (ESOP’00), volume 1782 ofLecture Notes in
Computer Science, pages 180–199. Springer Verlag, Mar.
2000. URL: ftp://ftp.dcs.qmw.ac.uk/lfp/kohei/
siftp-esop00.ps.gz.

[12] K. Honda and N. Yoshida. A uniform type structure
for secure information flow. InProceedings of the 29th
ACM Symposium on Principles of Programming Languages
(POPL’02), pages 81–92, Portland, Oregon, Jan. 2002.
URL: http://www.mcs.le.ac.uk/~nyoshida/paper/

ifa1.ps.gz.
[13] A. Igarashi and N. Kobayashi. Type reconstruction

for linear �-calculus with I/O subtyping. Informa-
tion & Computation, 161:1–44, Aug. 2000. URL:
http://www.graco.c.u-tokyo.ac.jp/~igarashi/

papers/LinearPi.ps.gz.
[14] N. Kobayashi, B. C. Pierce, and D. N. Turner. Lin-

earity and the Pi-Calculus. ACM Transactions on Pro-
gramming Languages and Systems, 21(5):914–947, Sept.
1999. URL: http://www.acm.org/pubs/citations/
journals/toplas/1999-21-5/p914-kobayashi/.

[15] J. McLean. A general theory of composition for
trace sets closed under selective interleaving func-
tions. In Proceedings of the 1994 IEEE Sym-
posium on Research in Security and Privacy. IEEE
Press, 1994. URL: http://chacs.nrl.navy.mil/

publications/CHACS/1994/1994mclean-sp.ps.
[16] R. Milner. The polyadic�-calculus: a tutorial. Technical

Report ECS–LFCS–91–180, Laboratory for Foundations of
Computer Science, Department of Computer Science, Uni-
versity of Edinburgh, Oct. 1991.URL: ftp://ftp.cl.
cam.ac.uk/users/rm135/ppi.ps.Z.

[17] R. Milner and D. Sangiorgi. Barbed bisimulation. In
W. Kuich, editor, International Colloquium on Automata,
Languages and Programming, volume 623 ofLecture Notes
in Computer Science, pages 685–695, Vienna, Austria, July
1992. Springer-Verlag.URL: ftp://ftp-sop.inria.fr/
meije/theorie-par/davides/bn.ps.gz.

[18] B. Pierce and D. Sangiorgi. Typing and subtyping for mobile
processes. InProceedings of the Eighth Annual IEEE Sym-
posium on Logic in Computer Science, pages 376–385, June
1993. URL: http://www.cis.upenn.edu/~bcpierce/
papers/pi-lics.ps.

[19] F. Pottier. A simple view of type-secure informa-
tion flow in the �-calculus. Full version. URL:
http://pauillac.inria.fr/~fpottier/publis/

fpottier-csfw15-long.ps.gz, Feb. 2002.
[20] F. Pottier and S. Conchon. Information flow inference for

free. InProceedings of the the 5th ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP’00),
pages 46–57, Montréal, Canada, Sept. 2000. ACM
Press.URL: http://pauillac.inria.fr/~fpottier/
publis/fpottier-conchon-icfp00.ps.gz.

[21] F. Pottier and V. Simonet. Information flow inference
for ML. In Proceedings of the 29th ACM Sympo-
sium on Principles of Programming Languages (POPL’02),
pages 319–330, Portland, Oregon, Jan. 2002. ACM
Press.URL: http://pauillac.inria.fr/~fpottier/
publis/fpottier-simonet-popl02.ps.gz.

[22] P. Sewell and J. Vitek. Secure composition of untrusted
code: Wrappers and causality types. InProceedings of the
13th Computer Security Foundations Workshop. IEEE Com-
puter Society Press, July 2000.URL: http://www.cl.
cam.ac.uk/users/pes20/wraptypes.ps.gz.

[23] G. Smith and D. Volpano. Secure information flow
in a multi-threaded imperative language. InConfer-
ence Record of the 25th ACM Symposium on Princi-
ples of Programming Languages, pages 355–364, Jan.
1998. URL: http://www.cs.nps.navy.mil/people/
faculty/volpano/papers/popl98.ps.Z.

[24] G. S. Smith. A new type system for secure informa-
tion flow. In Proc. 14th IEEE Computer Security Founda-
tions Workshop, pages 115–125, Cape Breton, Nova Scotia,
June 2001. URL: http://www.cs.fiu.edu/~smithg/
papers/csfw01.ps.gz.

[25] N. Yoshida. Graph types for monadic mobile processes.
In V. Chandru and V. Vinay, editors,Proceedings of
the 16th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science, volume 1180
of Lecture Notes in Computer Science, pages 371–386.

10

Springer-Verlag, 1996. URL: http://www.mcs.le.ac.
uk/~nyoshida/paper/graph1_short.ps.gz.

[26] N. Yoshida, K. Honda, and M. Berger. Linearity and bisim-
ulation. Technical Report MSC-2001/48, University of Le-
icester, Dec. 2001.URL: http://www.mcs.le.ac.uk/
~nyoshida/paper/lb.ps.gz.

[27] N. Yoshida, K. Honda, and M. Berger. Linearity and bisim-
ulation. In Proceedings of 5th International Conference
of Foundations of Software Science and Computer Struc-
tures (FoSSaCs 2002), Lecture Notes in Computer Science.
Springer Verlag, Apr. 2002.URL: http://www.mcs.le.
ac.uk/~nyoshida/paper/fossacs_ca_final.ps.gz.

[28] S. Zdancewic and A. C. Myers. Secure information flow
and CPS. In D. Sands, editor,Proceedings of the 2001
European Symposium on Programming (ESOP’01), Lec-
ture Notes in Computer Science, Genova, Italy, Apr. 2001.
Springer Verlag. URL: http://www.cs.cornell.edu/
zdance/lincont.ps.

11

