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Abstract and protocols, which today are at the heart of many real-
world security concerns.
One way of enforcing amformation flow controlpol- An information flow analysis usually comes in the form

icy is to use a static type system capable of guaranteeingof a type system, together with a soundness proof. The for-
a noninterferenceroperty. Noninterference requires that mer is typically (although not necessarily) derived from an
two processes with distinct “high™-level components, but existing system, whose types are augmented with annota-
common “low™-level structure, cannot be distinguished by tions taken from a fixedecurity latticeC [3]. The sound-
“low"-level observers. We state this property in terms of ness theorem gives roninterferencestatement: it asserts
a rather strict notion of process equivalence, namely weak that, if an appropriate type judgement holds, then no change
barbed reduction congruence. in the high-security inputs of a process can affect a low-
Because noninterference is notsafety property, it is security observer. (Here, the uswsalbject reductiontheo-
often regarded as more difficult to establish than a con- rem becomes of rather secondary importance; nevertheless,
ventional type safety result. This paper aims to provide it is often useful as a tool in the noninterference proof.)
an elementary noninterference proof in the setting of the Such a statement must rely on some (preferably standard)

m-calculus. This is done by reducing the problenstd- notion of process equivalenc@iving rise to a variety of
ject reduction- a safety property — for a nonstandard, but choices.

fairly natural, extension of the-calculus, baptized ther)- Examining the theoretical results offered by existing
calculus. works, we find some of them to be somewhat lacking in

strength or simplicity. Hepburn and Wright [10] propose
a type system which enjoys subject reduction, but do not
establish any kind of security property. Hennessy and
Riely [9] and Hennessy [8] base their noninterference state
ments onmay- or musttesting equivalence; a statement
Information flow analysisonsists in analyzing a pro- based on a stronger notion of process equivalence would
gram so as to determine how its outplépendsn the in-  seem preferable. Sewell and Vitek [21] do not prove non-
puts it is given; or, more generally, how its observable be- interference. They instead define a so-called “causal flow
havior depends on the stimuli provided by its environment. property” concerning the traces of a process in a “colored”
Such an analysis allows static enforcement of so-called “in |abelled transition semantics. Because both the property
formation flow control” security policies, which preventse and the colored semantics aad hog it is difficult to de-
cret data from being leaked on public communication chan- termine exactly what is being guaranteed. Honda, Yoshida,
nels, or unreliable information from affecting criticalaie Vasconcelos and Berger, in a number of papers [11, 12, 26]
sions. More generally, dependency analysis is at the hearpropose several advanced type systems, which allow ex-
of several program transformation techniques [1]. ploiting linearity and deadlock-freedom properties to re-
Information flow analysis, reformulated as a type in- fine the information flow analysis. Their noninterference
ference problem, has been heavily studied in the pastresult, which is stated in terms of a weak bisimulation, re-
few years, especially in the area of high-level, sequen-quires a rather involved proof [25], due to the need to keep
tial languages; for references, see e.g. [19]. Recently, re track of liveness properties. Furthermore, the type system
searchers [9, 11, 21, 10, 12, 26] have begun further extendpresented in [12, 26] have a rigid type structure (due to
ing this study to low-level, concurrent calculi, such as the so-called “lO alternation” and “sequentiality” constras)
m-calculus. This is made clearly worthwhile by the fact that which is meant to allow encodingequentialcomputation
these calculi allow modeling distributed computing syssem only. They would need to be extended if they were to ac-

1 Introduction



cept everyr-calculus process that is well-typed in a simple is shared. A sub-term of the forgP); indicates tha?
type discipline. is present only in the process of indgxand absent in the

In this paper, we wish to define a simple type-based one of indexj, where{i, j} = {1,2}. Brackets cannot be
information flow analysis, roughly equivalent in expres- nested. This would not make any sense, since we only wish
sive power to Hennessy and Riely’s [9], to Sewell and to encode two standard processes, not more.
Vitek’s [21], or to the nonlinear fragment of Hondst
al.’s [11], and to give arelementarynoninterference proof Because we are interested in comparing two processes
forit. By showing how straightforward it is to establish ron  that differ only in their “high™-level components, and be-
interference in this simple setting, we hope to convey somecause we encode these differences using “bracket” con-
useful insights, and to later facilitate the understandihg  structors, any sub-process that appears within brackéts wi
more advanced type systems. be considered a “high”-level process. Conversely, praeess

Our noninterference result will be stated in terms of that are shared will be considered “low™-level.
bisimulation equivalence, rather than (say) may-testing
equivalence, so as to identify more processes as insecure. One may wonder why it is not sufficient to employ only
(See Focardi and Gorrieri's work [7] for a discussion of this one kind of brackets, i.e. a single constructign For in-
issue.) In short, relying on a bisimulation equivalence al- stance, the process | (z.P) would represent the pair of
lows detecting information leaks caused dpntentionbe- ~ processesz, = | z.P), while encoding the fact that.P
tween “low’-level and “high™-level processes waiting on a S considered a “high™-level process. However, such a lan-
single channet. This, we argue, sounds desirable, because,guage would not be rich enough to express reduction; in-
in practice (that is, under a reasonable fairness assumptio deed, the pair of processes above evolvegtd?), which
a “low”-level process may detect the presence of a “high”- cannot be represented in the Single-bracket syntax — hence
level one by noticing that a message that was sent to it onthe need for two distinct bracket constructs.
channelz was not received after a certain amount of time.

Of course, one may object that this phenomenonisonlya N Sect. 3, we equip ther)-calculus with an operational
particular kind oftiming leak Our type system does not, in  Sémantics which reflects that of the standarcklculus, but

general, detect such leaks. Neither does it dgtettabilis- ~ Preserves sharing information. Reduction may take place
tic information leaks, because we use notions of processPutside brackets (meaning that a common reduction step
equivalence based opossible rather tharlikely, behav- is performed), inside brackets (meaning that some process

iors. Still, we argue that weak bisimulation yields astreng ~ Pe€rforms an independent, “high™-level step), or at bracket

noninterference result than may-testing equivalenceyand ~ boundaries. In the latter case, we discard sharing informa-
choose to rely on it. tion by reducingP to (P); | (P),. However, this is al-

lowed only if some communication step cannot otherwise

take place; gratuitous loss of sharing is forbidden. (T&is i

a crucial point; because we consider any process that ap-

pears under brackets as “high”-level, the semantics should
We wish to establish a noninterference result, i.e. prove not cause brackets to appear needlessly, lest the preoision

that two (well-typed) processes which differ only in some the information flow analysis be compromised.) We begin

“high”-level components behave identically when observed our formal development by showing how tK]ﬁ)-C&|CU|US
through “low"-level channels. Note that this ot a so- relates to the standardcalculus.

called safety property, because it requires examining the

traces oftwo processes, rather than of a single one. (See In Sect. 4, we equip thér)-calculus with a type system.
e.g. [15] for more details.) This explains why noninterfer- |t is very similar to Pierce and Sangiorgi’s type system for
ence is considered more difficult to establish than a conven-the 7-calculus [18], but is extended withecurity annota-
tional type safety result. Our approach consists in redycin tions a standard notion in information flow analyses; see
noninterference to a simpkubject reductiomproperty (i.e. e.g. [11, 21]. We prove that it enjoyssaibject reduction

2 Overview

to a safety property) for aonstandardextension of ther- property.
calculus. Itis inspired by previous joint work with Vincent
Simonet [20]. Sect. 5 shows how these results combine to yield a weak-

Our calculus, baptized thér)-calculus, describes the bisimulation-based noninterference property. In show, t
independent execution of pair of processes (which we bisimulation diagram naturally arises by design of {hi-
arbitrarily index by{1,2}), while keeping track of their  calculus, while preservation of “low”"-level barbs is a sim-
sharedsub-processes. For instance, the-calculus pro-  ple consequence of the typing hypothesis. Then, for conve-
cessP | (Q); | (R), represents the pailP® | Q, P | R), nience, Sect. 6 rephrases our results using “colored”drath
while explicitly recording the fact that the sub-procds  than “bracket”) notation for processes.



3 The (m)-Calculus 3.2 Semantics

3.1 Presentation We now define an operational semantics for the-
calculus. lIts restriction to standard processes will ddieic

The (r)-calculus is an extension of the synchronous with the standard synchronous polyadicalculus [16].
polyadicr-calculus [16], whose semantics describes thein-  For purely technical reasons, we choose a slightly altered
dependent execution of@air of processes, while keeping presentation of the latter as a starting point: we turn three
track of theirsharedsub-processes. (We consider a syn- structural congruence laws, namely scope extrusion,-repli
chronous variant, because it contains the asynchronoiss var cation, and spontaneous creation of new bound names, into
ant as a fragment; see Sect. 7.1 for comments about theeduction rules, thus making them irreversible. Provirag th
asynchronous case.) these changes do not affect the semantics ofrtiealculus
is an orthogonal issue, which we do not address here.

For technical convenience, structural congruence is not
made transitive. Similarly, evaluation contexts are net al
lowed to be nested. These presentational choices elimi-
nate some redundancy from our definitions, thus simplify-
N :=xz(j).P|Z(2).P |0 | N+ N ing proofs.

P:=N|(P|P)|'P|vz.P|(P);

Definition 1 Letz,y, z, ... range over a denumerable set
N of names Letg, z,... denote vectors of such names.
Leti range over{1,2}. Normal processes/, N, ... and
processe®, (), R, ... are given by

Definition 4 Structural congruence is the smallest reflex-
z(§).P bindsj in P, andvz.P bindsz in P. From this ive, compatible relation over processes such that theviello
information, the usual notions of free names, capture-free ing laws hold:
substitution, andx-convertibility are deduced. We write
fn(P) for the set of free names of a proceBs We iden- LN+0=N,N=N+0, N+ N = Np+ N,
tify processes up ta-conversion. (N1 + Nz) + Ny = N1+ (N + Ny);

In the fo.IIowing,bold metg-variables denotstandard 22P|0=P,P=P|0,P | =P | P, (P |
processes, i.e. processes which have no sub-term of the form P | P =P | (P | Py);
(P);. Throughoutthe paper, we restrict our attention to pro-
cesses where every sub-term of the fofth; is in fact of the 3. vz.vy.P = vy.vz.P.
form (P);, i.e. we never nest brackets.

. . _ Definition 5 An evaluation contex& is one of([] | P),
A single (r)-calculus process is meant to represepga va.[] or ([]);.

of standardr-calculus processes. In particul&B), stands

for the pair(P, 0), while (P), stands for(0,P). A (7)- Al structural congruence laws are standard. All evaluatio
calculus process of the forid representsharedstructure: contexts are standard as well, excgjyt, which allows re-

it stands for the pai(P,P). More generally, an arbitrary  duction under brackets.

processP stands for the paifm; (P), m=(P)), where the

projection functionsr; andw, are defined as follows. Definition 6 The raw one-step reduction relatiors is
given by Fig. 1. We writd/ #N (read: M and N may
communicate) fo(M | N —)V(N | M ), where(P )

is itself a short-hand fo(AP’ P — P'). Weak reduction,
written =, is defined ag= U +)*.

Definition 2 Let {i,j} = {1,2}. Thei™ projectionfunc-
tion, written 7;, satisfies the lawsr;((P);) = P and
m;((P);) = 0 and is a homomorphism on other (i.e. stan-
dard) process forms. We often writeP for 7;(P). For all

P, ;P is a standard process. Rules @®MM and GONTEXT are standard. Rulesx&R,

Projection may create superfluous null processes, whish iti REPL and New are directed versions of standard congru-

convenient to disregard. We introduce an auxiliary refatio €NCe€ rules. The crucial rule i®8IT, which allows discard-
for this purpose. ing sharing information if required by further reductions.

o . ) SPLIT can be viewed as a restriction of the following, more
Definition 3 Let <, be the smallest reflexive, compatible |iperal rule:

relation over processes which satisfies the Bw¢, P | 0. S
PLIT’
(By compatible we mean closed under all contexts.) View- M s (m M)y | (ma M)
ing m; as a relation, we will write? w; - >§ P or
P < - 7ri_1 P to denoter; P >5 P. (The superscript  SPLIT’ explicitly replaces a shared process with its projec-

* denotes the reflexive, transitive closure of a relation; the tions. Thus, it implements our intuition that{a)-calculus
infix operator denotes the composition of relations.) process stands for a pair of standard processes. However,



required to allow some communication step. (Have a look
Comm at the subject reduction proof forlGe for more detalils.)
(M +2(§).P) | (N+z(2).Q) = P[Z/7] | Q Lastly, rule RisH allows pushing brackets down inside
v binders. In conjunction with BEAK, this lets them move
EXTR REPL down to the level of normal processes, where they can be
@ ¢ in(Q) P s P|IP dealt with by $LIT.
(vz.P) | Q = vz.(P| Q) BREAK and RysH may look surprising at first sight, be-
cause they appear to artificially create shared structure: a
NEW CO’\]'DT"E_):;D, parallel composition operatp(resp. a binderz) is moved
0~ vz.0 - - outsideof a bracket. To see why this is sound, consider the
E[P] = E[P'] 7™ projections of these rules, whefé j} = {1,2}. They
SeLIT are0 = 0 | 0 and0 = vz.0, i.e. still correct reduction
i MAN {i,j} = {1,2} steps. This remark is formalized by Lemma 2 below.
M| (N)i = (miM [ N); | (5 M), 3.3 Relating the(r)-Calculus to ther-Calculus
GLUE
M#AN BREAK We now reIat.e thér)-calculus to ther-calculus. (Be- _
D [N o (M N); (P1Q)i— (P)i](Q): cause the latter is a fragment of the former, we do not define
¢ ¢ ¢ it separately.) Our aim is to show that ttwe)-calculus al-
PUSH lows reasoning about the execution opair of standard
(ve.PY; v va.(P); w-calculus processes. That is, every reduction dfrg
calculus process represents correct reductions of ite@roj

tions; conversely, every reduction of a projection can be em
ulated by reductions of the whole. In other words, the two
semantics are in a weak bisimulation relation.

We begin with the easier part, i.e. proving that the projec-
because it has no side-condition, it allows sharing infor- tion of every congruence (resp. reduction) step is a correct
mation to be discarded at will. Although such a behavior congruence (resp. reduction) step as well.
would be perfectly valid as far as the untyped semantics of
the(r)-calculus is concerned, it would lead to a useless typeLémma 1 Leti € {1,2}. If P = P', thenm; P = m; P".
system. Indeed, as we have said, every process which ap- ) , L o e
pears under brackets must remain invisible to “low"-level Fr00f- By induction on the derivation aP = P". Ifitis an
observers. However,&IT’ potentially causegverypro- !nstan_ce of one of the laws in Definition 4, then the result
cess to appear under brackets. Because the type systef & diréct consequence of the fact thatbehaves homo-
must have subject reduction, adopting this rule would force MerPhically on standard process forms. Furthermore, the

it to typecheck every process under the most restrictive se-~ONJruence axioms are also.pre.served by projection: this
curity assumption holds (again) by homomorphism in all standard cases, and

As a result, we must replac@SIT’ with a restricted ver-  PY Projection to eitheP = Q or 0 = 0 in the case where

sion that preserves as much sharing information as possible<P>i = (Q); stems fronP = Q. =
i.e. that allows it to be discarded only if some communi-
cation step cannot otherwise take place. Thus, we obtain
SpLIT, whereM can be splitint(m; M); | (m;M); only  proot. By induction on the derivation o + P'.
if one of its projections, say; M, is able to communicate Case ©MM. , is a homomorphism on all process
. . . (3
with some termN which already appears under a bracket ¢« involved. (m; P)[3/7] is m:(P[Z/3]). The result fol-
(Ni. _ lows by Comm.
_ Rules G.UE and.B:{EAK can be understood as restric- Case KTR. 7; is a homomorphism on all process forms
tions of a (hypothetical) structural congruence rule: involved. The result follows by TR, noticing thatz ¢
(P | Q>z = <P>i | (Q)z fn(Q) |mpI|eSa: € fn(ﬂ',Q) .

Case RPL. Again,r; is ahomomorphism on all process
Again, allowing this equivalence to hold would be correct as forms involved.
far as the untyped semantics is concerned, but would pose a Case New. Immediate.
slight technical typing problem. The premise in ruleU& Case ONTEXT. The three sub-cases afe= || | @,
works around it by allowing brackets to be merged only if E = vz.[] andE = ([]);. The first two are easily dealt with

Figure 1. Semantics of the (m)-calculus

Lemma 2 Leti € {1,2}. If P — P’ thenm; P = m;P'.

4



by appealing to the induction hypothesis, applyinghc

TEXT and usingr;’s homomorphic behavior. Let us focus

on the third sub-case, whefe and P’ are respectively of
the form(Q); and(Q’);, andQ — Q' holds. Ifi # j,
thenm; P = m; P’ = 0 and the result is immediate. 4= 7,
thenm; P = Q andw; P’ = Q', sox; P reduces tar; P’ as
desired.

Case ®LIT. The image of the reduction through is
eitherm;M |N = (m;M |N) |0ormM |0=0|mM.
Both hold.

Case GUE. The image of the reduction through is
eitherM | N = M | N or0 | 0 = 0. Both hold.

Case BReEAK. The image of the reduction through is
eitherP | Q = P | Qor0 = 0| 0. Both hold.

Case RsH. The image of the reduction througf is
eithervz.P = vz.P or 0 = vz.0. Both hold. O

Lemma 3 Leti € {1,2}. If P = P', thenm; P = m; P'.

Proof. Direct consequence of Lemmas 1 and 2. |

CaseP =M +0 >y M = P'. Then,Pis M + N,
wherem;M = M andm; N = 0. Furthermore,N must
be 0, because no other normal term tiaas its projection.
Thus,P = M + 0 is structurally congruent td/, whosei"
projection isM = P’.

CaseP =M 2o, M + 0 = P'. TakeP' = P + 0.

CaseP = M; + M, 20 M, + M; = P'. Then,P
is My + M, wherem; M), = My, for k € {1,2}. Take
P’ = My + M.

CaseP = M, + (M2 + Mg) 20 (M1 + Mg) + M3 =
P’. Then,P is M, + (M, + M), wherem; M}, = My,
for k € {1,2,3}. (Indeed, because a summand must be a
normal term, no other sub-cases arise.) TRke= (M; +
Ms) + Ms.

CaseP =Q 2, Q| 0=P'. TakeP' =P | 0.

CaseP = Q; | Q2 20 Q2+ Q, =P'. Then,PisQ; |
Q2, Wherer; Q. = Qg fork € {1,2}. TakeP' = Q2 | Q.

CaseP = Qi | (Q2 | Q3) 20 (Q1 | Q2) | Q3 =P,
Then, eitherP is Q1 | (Q2 | @3), wherem;Qr = Q. for
ke {1,2,3},orPisQ1 | (Qz | Qs)i, wherem;Q1 = Q.

We continue with the subtler part, i.e. proving that ev- If the former, takeP' = (@, | @2) | @s. If the latter, then
ery correct (congruence or reduction) step performed by aBREAK reducesP to Q; | ((Qz2): | (Qs):), and we are

projectionr; P can be emulated by the terf. There is a
slight technical twist: ifr; P is P | 0, which reduces t®
via a structural congruence step, themay be of the form
P | (Q);, where{i,j} = {1,2}. In that caseP will be

back to the previous sub-case.

CaseP = vz.vy.Q 2o vyvz.Q = P'. Then,P is
eithervz.vy.Q, wherem;Q = Q, or vz.(ry.Q);. If the
former, takeP’ = vy.vx.Q). If the latter, then, by BsH, P

unable to perform the same step. To account for this, wereducestox.ry.(Q);, which brings us back to the previous

use the pre-ordet introduced in Definition 3.

We will also require another auxiliary pre-order, which

sub-case.
CaseP = C[Py] 2o C[P;] = P’, wherePy 2, Py

“complements’<, with respect to structural congruence. It and C' is some (standard) process constructor. Then,

is defined as follows. (Note that, U < is =.)

Definition 7 Let <4 be the smallest reflexive, compatible
relation over processes which enjoys all laws of Definition 4

exceptP <o P | 0.

Our first lemma states that every standard structural con-
gruence step, except the removal of eXirarocesses, can
be emulated by thér)-calculus. The careful reader will

must of the formC|[P,], wherem; Py = Py. By induc-
tion hypothesis, there exists som such thatP, = P,
andPj = m;P}. These entailP = C[P] = C[P;] and
P’ = C[P{] = C[m P}] = mC[F]. O

The second main lemma states that every standard reduc-
tion step can be emulated (again, possibly introducing some
extra0’s in parallel) by the(r)-calculus.

notice that this lemma is the reason why we turn scope ex-| g a5 | etj ¢ {1,2}. If P = P’ andP = 7, P, then
? . - (3 1

trusion and replication into reduction rules. Indeed, when

there exists some proceBs such thatP = P’ andP’ <,

used in the reverse direction, neither of these rules can, in_ pr
P

general, be emulated. Scope intrusion fails because-a

calculus process has more free names than its projectionpygof. By induction on the derivation oP — P’. Let

Replication folding fails because two distingt)-calculus
processes may have identical projections.

Lemma4 Leti € {1,2}. If P 2, P’ andP = 7, P,
then there exists some proceBssuch thatP = P’ and
P’ = 71'Z'P’.

Proof. By induction on the derivation & >, P'. If P =
(P);, then P is structurally congruent t¢P’);, whosei"

projection isP’. Thus, we will silently omit this sub-case

in all cases below. Lefi, j} = {1, 2}.

{5} ={1,2}.

Case @MM. The reduction is

— Pi[Z/g] | P2 =P

Which processe$ haveP as theiri" projection? Pro-
jection preserves structure, except it may discard spime
constructors. So, i, such a constructor may enclose the
outermost node. If not, then each of the twp nodes may



(or may not) be enclosed by such a constructor. (The sum-

Case NEw. The reduction i? = 0 = vz.0 = P'.

mandsz(7).P, andz(Z).P, may not be enclosed in such a Because terms are identified modula@onversion, we may
way, because a summand must be a normal process.) Thiassume: ¢ fn(P). TakeP' = vz.P. ltis easy to check that

observation gives rise to five sub-cases.

1. If the outermost node is enclosed, theiis (P);. Be-
causeP — P’ holds, so doeéP); — (P’');, by Con-
TEXT. Furthermore(P'); hasP’ as itsi™" projection.

2. If both sum nodes are enclosed, then, bec®usere-
ducible, G.UE applies, reducing® to (P),. We fall
back to the previous sub-case.

3. If the right-hand sum alone is enclosed, thenis
(N1+.I'(g)P1) | <N2+§7<2>P2>,, Whereﬂ','Nl =N,
andm; P, = P;. BecauseP is reducible, 8LIT ap-
plies, showing thaP reduces to

(N1 +2(7).P1) | (N2 +2(2).P2));
| ((mj N1 + 2(g).7; 1))

By ComM and GNTEXT, this in turn reduces to
(P1[2/9) [ P2)i [ {(m; Ny + 2() .75 P1)) 5

whosei™ projection is(P1[2/7] | P2) | 0 = P’ |
0>, P

P = P' holds. Furthermore, we haveP’ = vz.0 = P'.
Case ONTEXT. The reduction is

P = E[Q] -~ E[Q] = P/

whereQ — Q’. BecauseE must be standard, only two
sub-cases arise.

1. Sub-cas® =[] | Qo. Then,P is either(P);, or Q |
Qo, Wherem;Q = Q andm;Qy = Q. If the former,
take P’ = (P');. If the latter, then the induction hy-
pothesis yields)’ such that) = Q' andQ’ <, m;Q’.
Let P' = Q' | Qo. Then, by ®NTEXT, P = P’
holds. Furthermore®’ = E[Q'] <o E[m;Q'] = m; P'.

2. Sub-cas® = vz.[] is dealt with in a similar way. O

Lemma6 If P — P’ andP <y Q, then there exists some
procesd’ such thatlQ =5 - — Q' andP’ <§ Q'.

Proof. (Sketch.) By induction on the derivationBf—~ P’.
Case @MM. If the 0 process is added inside one of the

summands, then it does not prevent reduction. If it is added

somewhere above the operators, then it can be brought to

4. The sub-case where the left-hand sum alone is en-the top level using commutativity and associativity of par-

closed is symmetric.

5. If no sum node is enclosed, théhis
(N1 +2(§)-P1) | (N2 + 2(2).P»)

wherem; N, = Ny, andm; P, = Py, for k € {1,2}.
Then, by @mM, P reduces td? [2/§] | P, whosei™
projection is preciselP’.

Case KXTR. The reduction is

P = (l/x.Ql) | Q2 — l/ﬂ?.(Ql | Qg) =P

wherez ¢ fn(Q.). By BREAK and RJSsH, P must reduce
to some process of the forfwz.Q1) | Q2, wherer;Qy, =
Q. for k € {1,2}. Pick some name ¢ fn(vz.Q1) U
fn(Q2). Then,P may be writter(vz.Q1[z/z]) | @2, which,
by EXTR, reduces taP’ = vz.(Q1[z/z] | @Q2). We have
P =vz.(Q1]z/z] | Q2) = P'.

Case RPL. The reduction is

P=1Q~Q|!Q=P'

Two sub-cases arise: eithéris (P);, or P is @), where
m:Q = Q. If the former, thenP reduces taP');. If the
latter, thenP reduces ta@ | !Q). In either case, the reduct
hasP’ as itsi" projection.

allel composition; then, reduction can take place under thi
context.

Case TR, REPL, NEW. Similar. (The only case where
we actually end up wittP?’ <} Q’, rather tharP’ <, Q/,
is that of REPL, where thed process may be added under a
replication operator.)

Case @NTEXT. If the 0 process is added inside, then
it does not prevent reduction. If it is added insilethen
the induction hypothesis can be applied. |

For technical reasons, we need to specialize lemmas 5
and 6 in the particular case where the reduction at hand is
an instance of scope extrusion. This is done in the following
definition and lemmas.

Definition 8 Let~> be the relation generated WX TR and
CONTEXT.

Lemma7 Leti € {1,2}. If P % P’ andP = m; P, then
there exists some proces$ such thatP = P’ andP’ =
’/TiP’.

Proof. Extract the two relevant cases out of the proof of
Lemma 5. O

Lemma8 If P ¥ P’ andP <, Q, then there exists some
procesdR’ such thatQ >4 - > Q' andP’ <, Q'.



Proof. Extract the two relevant cases out of the proof of Proof. Direct consequence of Lemmas 12, 4, 7 and 51

Lemma 6. O
Lemma 14 Leti € {1,2}. If P > P'andP <} - 7; ' P,

The careful reader will notice that the following lemma then there exists some proceBssuch thatP = p' and
is the reason why we turn creation of new bound names intop <* . L P

areduction rule. Indeed, when used in the reverse direction

the rule cannot be emulated: #f:.0 moves to0, vz.(0 | Proof. Immediate (take®’ = P). |
0) cannot follow step. (Recall that scope intrusion is not
allowed.) Lemma 15 Leti € {1,2}. If P >, P’ andP <} - 7' P,

then there exists some proceBSsuch thatP = P’ and
Lemma9 If P 2, P’ andP <, Q, then there exists some pr <k 71 P

processR’ such thatQ (=, U+)* Q' andP’ <, Q.

Proof. Direct consequence of Lemmas 11,4and 7. O
Proof. (Sketch.) By induction on the derivation & >, g

P, Lemma 16 Leti € {1,2}. If P = P’ andP <} - 7, ! P,

Case+-monoid law. If the0 process is added inside one then there exists some proceBssuch thatP = p' and
of the summands, then it does not block reduction. Oth- p’ < - —1 P

erwise, it must added at top level; reduction can then take
place under this context. Proof. Direct consequence of Lemmas 13, 14 and 153

Case|-monoid law. If the0 process is added inside one
of the.components, then it does not bloclf reduction. O.th.er—4 Typing the (w)-CaIcqus
wise, it can be brought to the top level using commutativity
and associativity of parallel composition; reduction daart
take place under this context.

Casevz.vy.Q 2o vy.vz.Q. If the 0 process is added
inside bothv binders, then it does not block reduction. Oth-
erwise, it can be brought down to this position using scope
extrusion.

Case congruence law. If tlieprocess is added inside,
then it does not prevent reduction. If it is added inside

4.1 Presentation

We now introduce a type system for tlve)-calculus. It
extends an existing type system for thealculus — namely
Pierce and Sangiorgi’s [18], which we choose for its sim-
plicity — with security annotations. Its typing judgements
are of the forml’ e P, where pc is aecurity leveli.e.

then the induction hypothesis can be applied. O a member of a fixedecurity lattice. Such a judgement
may be readunder assumptioris, P is well-typed and will
The last two lemmas yield the following: affect only observers of security cleararmeor higher. It

may also be readinder assumptionB, assumingP gains
Lemma 10 If P (2o U+=)* P’ andP <, (‘3 then there information of levepc by being executed; is well-typed
e>§|sts some procedq’ such thatQ (2o U—)* Q' and  Thjs formulation explains why this meta-variable is histor
P’ <0 Q' ically named pc [6]: it is the security level whidh attains
simply by virtue of being executed, i.e. the security level
associated with its “program counter”.

This in turns yields: Even though the security latticé is arbitrary, it is de-

" sirable to establish a simple dichotomy between “low” and

Lemma 11 If P (2o Lf )" P'andP < (‘3 thenl there “high” security levels. Such a distinction allows simple
e>§|sts some proces’ such thatQ (2oUm)* Q" and  proofs: full generality will be recovered in Sect. 6. To
P’ <5 Q. this end, in the present section, we assume given a fixed,
downward-closed sel. C £. We will view levels within
(resp. outside] as “low” (resp. “high”).
We may now proceed as follows. Noninterference states that two processes which differ
only in some high-level sub-terms cannot be distinguished
by low-level observers. To achieve this, our type system
will guarantee that processes of the fo{®); — which we
use to encode the differences between two processes — can
affect only high-security-level observers. In other words
Lemma 13 Leti € {1,2}. If P+ P’ andP <} - 7; " P, for T’ o (P); to hold, we will require pog L. (See rule
then there exists some proceBssuch thatP = P’ and T-BRACKET in Fig. 2.) This will be our only use of. in
P <-m b P this section.

Proof. Direct consequence of Lemmas 8 and 9. |

Proof. Direct consequence of Lemma 10. a

Lemma 12 If P — P’ andP <} Q, then there exists some
procesd’ such thatQ (=, U »—>) -~ Q andP’ <} Q.

Proof. Direct consequence of Lemmas6and 11. O



As in [18], every channel typecarries a polarity which
tells whether the channel may be used for input, output, or T-RECV B
both. It is further annotated with a security leveE £, Plx) <(tlpe DiGgittpcP
which tells how much information may be obtained by suc- I oo z(7).P
cessfully reading from or writing to the channel.
Definition 9 A polarity p is one of{—, +, £}. Typest are }_(2§I\I<D<£>+ T(j) < i kP T-NuLL
of the form(£)?. — = e I'F(po O
r l_(pc) x(y).P
Definition 10 Polarities are ordered byt < —, + < +.
Types are ordered by T-Sum T-NORMAL
, o , o Dhpg M ThpyN Iy NV
p<p (p< =t<t) P <+=>t <) F"(pc)M‘|‘N T bpe N
(B < ()
L T-PAR T-REPL T-NEW
(The ordering is extended point-wise to vectors of types.)| 1 Foc P T FpeQ [ Fpe P T2 :tbpc P
These definitions can be understood either inductively or TFwP|Q Tr1p ' r vz P
co-inductively, yielding finite or infinite types. The cheic pe pe” pe
of one or the other is orthogonal to our concerns; indeed, T-BRACKET T-Sus
the subject reduction and noninterference proofs aresptir Lo P pce L [ bpc P pc < pc
independent of this issue. We leave it open, to be settled by T Foo (P); Iro P
the analysis designer at a later stage. peAt e pe
Note that our definition of subtyping doe®t allow a
channel’s security level to be modified, be it covariantly Figure 2. Typing rules of the  (r)-calculus

or contravariantly. In other words, two channel types that

are in a subtyping relationship must have the same secu-

rity level. This (admittedly strong) requirement refledts t
fact that information flows$oth waysalong a channel, re-
gardless of the direction of messages (i.e. regardlessof th
channel’s polarity). This property will be used in the proof
of Lemma 20, which itself plays a key role in establishing
subject reduction.

Definition 11 The type system of thgr)-calculus is de-
fined by Fig. 2. It involves two separate judgement forms.
Judgements of the forfi @ N concern normal pro-
cesses. Judgements of the fdrrr,c P concern arbitrary
processes.

Rules T-Recv and T-END require the channel’s secu-
rity level to match the level attained by the process, namely
pc. Furthermore, T-$v requires all components of a sum
to have matching levels. As a result,lif+ N holds,
then all channels liable to be read or written/§ymust have
the same security level. This reflects the fact that informa-
tion may flow arbitrarily between these channels. As a sim-
ple illustration of this fact, considé¥ = z.P + y.Q. If, in
the presence oV, a message sent on chanme$ not con-

sumed after a while, then its sender knows that some mes-

sage was available on chanmgebko information flows from
y to z. (Recall that relying on weak bisimulation amounts,
in practice, to formulating a fairness hypothesis.) By sym-
metry, the converse is also true.

Rule T-uB allows strengthening the security require-
ments bearing on a process. This rule applies only to judge
ments of the fornt" Fpc P; applying it to judgements of the

form T' ) N would break the property that all compo-
nents of a sum have a common security level.

In T-RecVv and T-SEND, the continuation procesB is
typed at a security level equal to that of the channébr
greater, thanks to TA8). This reflects the fact that a suc-
cessful synchronization at yields information whichP
may exploit.

4.2 Type Preservation

We begin with three easy lemmas, stating that typing is
preserved by projection, by structural congruence, and by
substitution of names for names. Proofs are omitted.

Lemma 17 Fori € {1,2}, I Fpc P impliesD Fpc m; P.
Lemma 18 T’ Fpc P andP = P’ implyT Fpc P'.

Lemmal9 Iy :

Pz/g].

t Fpc PandT(2) < fimply ' Fpc

Next comes an important auxiliary lemma, stating that,
if two normal processe&! andN are able to communicate
with each other, and if they are typed under a common en-
vironmentI’, then they must be typed at the same security
level. (Additionally, the lemma states that the reduced pro
cessR is well-typed at that level.) Indeed/ and N must

-share some channel so they must both be typed ats

security level.



Lemma 20 Assumd’ F ey M andl Fye,) N. If M|
N — R, thenI' -y R holds, whergpc = pc; = pG,.

Proof. BecauseM and N are normal processes, they are
irreducible; thus, the reductio®/ | N — R must be an
instance of rule ©MMm. Thus, M and N must be of the
form M’ + z(j).P andN' + z(2).Q, respectively.

By T-Sum and T-Recv, the first hypothesis yields
U Fey M', D(z) < (t1)pe, andT;j : 1 Fpe, P. By
T-Sum and T-END, the second one yields () N,
[(z) < (t2)ge,, T(2) <tz @andl Fp, Q.

FromD(z) < (t1)p, @andT(z) < (2 )4, We deduce
pc, = pc andt; < t;. Take pc= pc; = pc,. By transi-
tivity of subtyping,I'(?) < £; holds. Lemma 19 then yields
[ Fpe, P[Z/9]. Using pc= pc = pc, and T-RR, we
obtainI' Fpc P[Z/9] | Q, thatis,I" -yc R. m|

These results allow us to establish that typing is pre-
served by reduction.

Lemma 21 (Subject Reduction)I" Fpc P and P — P’
imply T Fpc P'.

Proof. By induction on the derivation aP — P'.

Case ©MM. P is of the formM | N. By T-Sus, T-
PAR and T-NORMAL, this yieldsI" F () M andT k)
N, where pc< pc; and pe< pc; hold. By Lemma 20 and
by T-SuB, I -y P’ holds.

Case ®LIT. The reduction isM | (N); — (mM |
N); | (m; M);, where{i,j} = {1,2} andm; M#N. Our
hypothesis isl" Foc M | (N);. By T-SuB, T-PAR, T-
NORMAL and T-BRACKET, this yieldsT" + ) M and
[ Fpe, N, where pc< pcy, pc < pc;, and pe ¢ L hold.
BecauseL is downward-closed, we may assume, without
loss of generality, that TA® is never used immediately
above T-BRACKET; as aresultl” .,y N holds.7; M#N
implies M#N. As a result, we may apply Lemma 20 (ei-
thertoM andNN or toN and M), yielding pG = pG.

It follows thatT' t-,;, M holds. By Lemma 17, both
m; M andw; M are well-typed undef” and pg. By hy-
pothesis, so idN. Thus, considering pc ¢ L, so is
(m;M | N); | (m;M);. Because pc> pc, the result fol-
lows by T-SuB.

Case GUE. ThereductionigM); | (N); — (M | N);,
whereM#N. Our hypothesis i tpc (M); | (N);. As
above, this yields" -,y M andI F(,c,) N, where pc<
pc. and pg ¢ L hold fork € {1,2}. Again, Lemma 20
yields pG = pc,. Thus,I' -y, (M | N); holds. The result
follows by T-SuB.

Case KTR, REPL, CONTEXT, BREAK, PUSH. Immedi-
ate. O

5 Noninterference

Combining the results of Sect. 3.3 and 4.2, we will now
derive a noninterference property, expressed in terms of
weak barbed reduction congruence [17].

Definition 12 Let « range over names and co-names
(z,Z,...). If aisz (resp. Z), thena stands forz (resp.
x). If aisz or Z, then| a| is z. The predicate”], (read:
the process’ is observable at) is defined as follows:

(M +z(7)-P){, (M + Z(9)-P)lz

Py, E does not binda |
B[P,
Py, stands fo3pP’ P = P'AP'],).

Definition 13 Let B be an arbitrary set of names. A binary
relation R over processes is weak B-simulationif and
only if

e PRQAP = P'implies3Q’
and

Q=Q NP RQ,

e |a|€ B,PR@QandPy,implyQy,.

R is aweak B-bisimulationif and only if R andR~! are
weakB-simulations. Two processes aveakly B-bisimilar
if they are related by some wedkbisimulation. They are
weakly bisimilarif they are\ -bisimilar.

In this section L is fixed, as in Sect. 4. The set of chan-
nels which, according to a type environméhtdo not leak
any high-level information is referred to as I@W. It is
defined as follows.

Definition 14 Given a type environmeit, low(I') denotes
the largest seB C N such thatr € B andI'(z) = (¢)F
implyl € L. I' is said to be arn.-environmentf and only if
low(l') = N.

If z € low(I") holds, then, by rule T-BACKET, no well-
typed process observable atcan appear under brackets.
So, in that case, observabilityamust be preserved by pro-
jection. This is expressed by the following simple lemma.

Lemma 22 (Barb Preservation) Assumel’ o R, R,
and|«| € low(I"). Leti € {1,2}. Then,pc € L and
(m;R)|,, hold.

Proof. By induction on the derivationd®| . Letx = | «|.

CaseR = M + z(j).P. By T-SuB, T-NORMAL and T-
REcyv, the typing hypothesiB -y R yieldsI'(z) < (- )0,
where pc< pc. Thus,I'(z) must be of the forn(-),. .
Becauser € low(T"), this entails pc € L. Becausel is



downward-closed, pe L follows. Lastly,m;R is m; M + Proof. Apply Lemma 23. Fori € {1,2}, m;C[R] is

z(y).m P, so(m; R){.,, holds. C[m;R]. As a result,C[m; R] and C[r R] are related by
CaseR = M + z(z).P is analogous. Rr. Thus, they are weakly lofd)-bisimilar. The result
CaseR = E[Ry], whereRy |, and E does not bindc. follows from lowm(I") = V. O

Then, by T-RRR, T-NEw or T-BRACKET, together with

T-SuB, T' Fpc R impliesTy Fpe, Ro, whereT and T Our second corollary is in the style of Honelzal.'s non-

agree onz and pg > pc. The induction hypothesis then interference claim [11]:
yields (m;Ro)}, and pg € L. Now, given pg € L
and recalling thatl is downward-closed, the judgement
I’ Fpe, Ro cannot possibly be the premise of a derivation in-
volving T-BRACKET. So,E must be standard. This implies
m R = mE[Ro] = E[m;Ryp], so(m;R)|, holds. Lastly,
pc € L follows from pg > pc and pg € L. o Proof. Because pe¢ L, T-BRACKET yieldsTy Fpe, (P:);
fori € {1,2}. DefineR asC[(P1): | (P2)2]. According to
T-PAR and to our hypothesis aboQ, " - R holds. Apply
Lemma 23. C[P;] and C[P;] are related byRr. As a
result, they are weakly lof¥)-bisimilar. |

Theorem 2 Assumd’y ¢, P;, wherepg ¢ L, holds for
i € {1,2}. Then, for any context and for any environment
I' such thafl’ - C[] holds under the assumptidfy Fpc, [],
C[P,] andC[P;] are weaklylow(T")-bisimilar.

Then, it is easy to establish that any two processes which
are respectively the left- and right-hand projections dha s
gle, well-typed(r)-calculus process are barbed bisimilar,
provided only low-security barbs are observed. (We write
I' - R to indicate thal -y 12 holds for some pe £.) Theorem 1 is, in our opinion, more directly useful than
Lemma 23 (Barbed Bisimulation) Let P R Q hold if Theorem 2. Indeed, thg former allows precise reasoning
and only if, for somér)-calculus proces®, bothT + R abqut two processes which have some common structure,
andP <} - 7r1_1 R m - >4 Q hold. ThenRy is a weak while the Iattertrea}tPl andP, as'entlrely separate. How-
Iow(F)-T)isimuIation. - ever, Theorem 1 is expressed in terms of a nonstandard

theoretical tool, namely thér)-calculus. For this reason,
Proof. We prove thaRr is a weak lowI')-simulation. (To we will now reformulate it, with a practical aim: provide a
deal with R, simply swapr; andm,.) First, assume  specification of the security guarantees offered by the type

P Rr Q andP = P’. Then, we have system that can be read and written by the programmer.
.ol . . e
P < - m R om 25 Q 6 Programmer-Oriented Specification
H . . ﬂ “I / We suggest allowing the programmer to color any sub-
P <5 - m R om Q process with a security levéle £, indicating that its pres-

The leftmost commutative diagram is given by Lemma 16 ence should not affect observers whose security clearance
9 9 y ' is not at least. Thus, we introduce a “coloredr-calculus.

tsr;gng??;?nciﬂg ?gci_fhrzz(massé:r?ti't:: dr|g.rt]rt]r.1;;st[:or;?h(r;1r<_arely It is reminiscent of Abadi, Lampson, and Lévy labelled
o ! withire. A-calculus [2] and of Sewell and Vitek’s colored bax-

X ! i
more, Lemmas 18 and 21 yield - Jt', which shows that calculus [21]. However, we do not need to define a seman-

P’ Rr Q' holds. : . C . .
. tics for it; here, we view it only as a programming notation.
Next, we check thaR preservestrongbarbs, which, y prog 9
given the above, implies that it also preserves weak ones, N u=(&).P | Z(&).P|0| N + N

meeting the second condition of Definition 13. Assume
P Rr Q, P|, and|a| € low(T"). For some procesg,

—1
' RandP <g -7 Rm - 25 Qhold. Asaresultof  The only variation with respect to ther)-calculus is that
the latter, we must havB|,. By Lemma 22, this implies  he constructP); is replaced with the coloring construct

P:=N|(P|P)|'P|va.P|l:P

(m2R)|,. Becauser R >§ Q holds,Q/, follows. 0 I : P. (Unlike brackets, coloring constructs can be nested.)
As a corollary, we show that, for any procesthe pro- The type system is modified by replacing rule RAKET

jectionsm; R and s R are weakly barbed-congruent [17], with

provided we admit only contexts which, according to the T-COLOR

type system, emit only low-security barbs. Clkpe P 1< pC

Theorem 1 For any processR, for any (standard) context Phpcl: P

C such thatl' - C[R] holds in someZ-environment’, Note that the new type system is no longer parameterized

Clmi R] and C[m; R] are weakly bisimilar. by a setZ.. We usel Iy P to denote its judgements.
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Rule T-CoLoRr simply forces the sub-proceg3 to be samenotion of “pc”. This is enforced by the invariance of
typechecked at a level that equals or excded$us, “col- security annotations.
ors” in the source program cause the typechecker to enforce  Let us now restrict our interest to the asynchronous frag-
additional constraints, which will then guarantee a cartai ment of ther-calculus, where every sender is of the form
security property, as we will now explain. Z(2).0. It may seem that, under this restriction, senders

GivenL C L, we define arasurefunction|-] ., which can no longer observe the reception of their messages. This
drops all sub-terms whose color is not a membeEo&ind  would suggest that making input (resp. output) channel
produces a term in the standarecalculus. The function  types covariant (resp. contravariant) in their securiglés
which strips off all colors, namely.| ¢, is written | -]. safe. This, however, is not the case; in fact, message recep-

Definition 15 Let ||, satisfy|l : P|, = | P|, whenl ¢ tion can still b_e.ot_)served by exploiting cpntennon between
: receivers. This s illustrated by the following examplekd&a

L,|l: P], = 0whenl ¢ L, and be a homomorphism on ; ;

L = {L,H}, withL < H. TakeL = {L}. Consider the typ-
standard process forms. o

ing judgement

Then, our final noninterference theorem states that prun- N N N

ing sub-terms which carry “high” colors does not alter the = : { )i,y : (), 2: () P (@)2 |7 |2y.0]y.2
behavior of a process under a certain typed barbed congru- N _
ence, whereby a context is allowable only if its type states This judgementisncorrectin our type system, because the
that it will affect “low” channels only. Note that the mean- Sub-termz.y.0 is |II-tj)[/ped. Indeed, listening on channel
ing of “low” and “high” is parameterized by the choice of @, Which has typg )i, causes “pc” to become. Subse-

L, of which the type system is now independent. guently, listening on channglbecomes illegal, sincg has
type ( ). On the other hand, if input channel types were

Theorem 3 (Noninterference) Let L be a downward- Covariant’ ther( >L:t would be a Subtype 0¢ >I—T’ and the

closed subset of. For any process? of the coloredr-  j;dgement would become correct. Yet the two projections
calculus, for any (standard) contegt such thatl” IF C[R] of this process, namely

holds in somd.-environment’, C[|R]] andC[| R|.] are

weakly bisimilar. g|zy0|yz and Z|y|zy0|yz

Proof. Define a mapping* from the coloredr-calculus

into the (wr)-calculus, which satisfied : P)* = P* when ) . :
N . cess must send a message on chaan&hile the right-
l €L (I:P)*=(P]) whenl ¢ L, and is a homo-
. . ... _hand one may choose to never do so. In other words, the
morphism on standard process forms. Then, the identities . .
N " presence of causes contention between two receivers on
m1(P*) = |P] andmy(P*) = | P] hold for any colored . . .
L y, which can be detected by observiag This example
processP. Furthermore, it is easy to check thatky P shows that channel types must remain invariant in their se
impliesT" Fpc P*. As a consequencé, I C[R] yields yp

T I (C[R])*. Furthermore(C[R])* is C[R*]. By Theo- curity annotations, even in the asynchronous fragment of

rem 1,C[r (R*)] andClr (R*)] are weakly bisimilar. By ther-calculus.

the identities above, these are none other 6@k |] and » ] ]
C[|R] L] O 7.2 Exploiting Linearity

arenot weakly {y, z }-bisimilar. Indeed, the left-hand pro-

In particular, if R itself is well-typed within somel-

, ; In the example above, the information leak is caused
environment, then every conte&t such thatC[R] is well- P

by contention. If the channel was linear [14], then no

typed will do. contention would be possible, and it would be safe for the
) ) “high”-level processe.y.0 to receive a signal through the
7 Discussion “low"-level channely. In fact, under a strong notion of lin-
earity, every communication action on a linear channel must
7.1 Asynchrony eventually succeed (see e.g. [24]), so its success alorge doe

not carry any information. This fact is pointed out and ex-
Our type system allows input (resp. output) channel ploited by Hondeet al. [11, 12, 26]. It is indeed crucial,
types(t), (resp. (it >z+) to be covariant (resp. contravari- in practice, to take advantage of it, becausezthmalculus
ant) in theirparameterst, but both areinvariant in their is a low-level programming language, where continuation-
security levell (Definition 10). Intuitively, this is because passing style is ubiquitous: control is encoded through the
synchronization causes information to flow not only from use of (often linear) communications, rather than evident i
the sender of a message to its receiver, but also in the rethe program’s syntax. Zdancewic and Myers [27] address
verse direction. As a result, both processes must have thehis issue in the case of a low-level, sequential calculus.
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Can our proof approach be extended to deal with linear- only flows from senders to receivers and allows a channel to
ity information? Let us give a rough sketch of how we en- be read at a higher security level than it was written. (Con-
vision such an extension. The semantics of(thecalculus  trast this with our discussion of Sect. 7.1.) Lastly, their
must be modified to disallow linear communications from boxing construcp[P] is notanalogous to our coloring con-
taking place under brackets. Instead, one should introducestruct/ : P. (Compare the corresponding typing rules.) Itis
reduction rules akin to the following, which re-discovers used with different meanings in their “resource controB-sy
sharing: tem and in their “information flow” system, which creates a
tension and seems to make their noninterference statement
a bit awkward.

Sewell and Vitek [21] develop a type system similar to
ours. (Their annotations are sets of principals, whereas we
employ a slightly more abstract notion of security level.)
They do not prove a noninterference result; instead, they
state a so-called “causal flow” property. We view this as
a serious shortcoming: it is difficult to determine exactly
which notion of causality the property reflects. The same
criticism can be held against Bodei al's “no read up/no
write down” property [4].

The restriction of Hondat al’s system [11] to nonlinear
types seems essentially identical to our system: judgesnent
are annotated with a security level similar to ours (compare
(Deg,) with T-SuB), and nonlinear channel types are in-
variant in their security level. The noninterference resul
stated in [11, 12, 26] also rely on a form of weak bisimu-
lation. They propose the most advanced systems to date;
whether our technique can be modified to establish their

JOIN
(Z.P)1 | (2.Q)2 — Z.((P)1 | (Q)2) if z is linear

These changes allow a continuatienP to be triggered
without splitting P. In turn, this will allow the type sys-
tem to view P as a “low"-level process, even though the
trigger z is sent from a “high”-level process. The antici-
pated difficulty is in establishing the completeness lemma,
i.e. the analogue of Lemma 16. Indeed, proving thaai]

is always applicable requires proving that every linearcom
munication action will eventually succeed. This requires
using typing information, whereas, in our current develop-
ment, the results in Sect. 3.3 were (pleasantly) independen
of types. We view this research direction as most promising.

7.3 Type Inference

Type inference is no more difficult for this system than
for Pierce and Sangiorgi's ongmgl type system [18]. Type soundness is an interesting issue.
inference for (an extended version of) the latter has been

. . : . The problem of noninterference in multi-threaded imper-
stu@ed by Igarashi and Kobayashi [13]. To adapt thglr al ative languages is similar to the one studied here, and has

gorlthm, one must generate and solve extra mequahﬂgs, %3een investigated by several researchers [22, 23, 5]. We
required by rules T-88 and T-QLOR. These are atomic, ; ! . .
believe that our proof technique could be re-used in their

I.e. only involve variables and constants takeitin setting, allowing the candidate bisimulation relation ® b
defined implicitly in terms of a type system for a “bracket”
calculus — as done here — rather than explicitly, which is
clumsier (see e.g. [5]).
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