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Abstract We give a machine-checked definition and proof of semantic correctness for
Danvy and Filinski’s properly tail-recursive, one-pass, call-by-value CPS transformation.
We do so in the setting of the pure A-calculus extended with a let construct. We propose
a new first-order, one-pass, compositional formulation of the transformation. We point out
that Danvy and Filinski’s simulation diagram does not hold in the presence of let, and prove
a slightly more complex diagram, which involves parallel reduction. We represent variables
as de Bruijn indices and show that, given the current state of the art, this does not represent
a significant impediment to formalization. Finally, we note that, given this representation
of terms, it is not obvious how to efficiently implement the transformation. To address this
issue, we propose a novel higher-order formulation of the transformation. We prove that it
is correct and informally argue that it runs in time O(nlogn).

1 Introduction

The transformation of call-by-value A-terms into continuation-passing style, independently
discovered by many researchers (Reynolds, 1993) and first explicitly formulated by Fischer
(1972, 1993), was first proved correct by Plotkin (1975).

Plotkin’s CPS transformation produces many ‘“‘administrative” redexes, which are a
source of inefficiency and complicate the proof of correctness of the transformation. To
address this issue, Danvy and Filinski (1992, Figure 2) propose a “one-pass” CPS transfor-
mation, which is so called because it produces no administrative redexes and therefore does
not require a second pass during which such redexes are eliminated. Furthermore, they give a
“properly tail-recursive” variant of the transformation (Danvy and Filinski, 1992, Figure 3),
where care is taken not to produce a harmful 7n-redex when a tail call is translated. Finally,
they establish the correctness of this transformation via a simple simulation argument. If the
source program is able to make one step of computation, then the transformed program is
able to follow suit in one or more steps (Danvy and Filinski, 1992, Lemma 3).

Danvy and Filinski’s transformation is presented in a “higher-order” form, where some
of the transformation functions are parameterized with “transformation-time continuations”
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which are transformation-time functions of terms to terms. Danvy and Nielsen (2003) later
propose a simpler but less elegant “first-order”” formulation, where transformation-time con-
tinuations are just terms. When the source language is the pure A-calculus, the two formu-
lations define the same transformation, so the same simulation property holds (Danvy and
Nielsen, 2003, Lemma 2). When the source language is extended with a let construct, the
two transformations no longer coincide: Danvy and Nielsen’s transformation produces some
administrative redexes which Danvy and Filinski’s transformation eliminates (§6).

In this paper, we set out to give a crisp, machine-checked account of Danvy and Filinski’s
properly tail-recursive CPS transformation, in the setting of the pure A-calculus extended
with a let construct. Although it may seem as if every aspect of the CPS transformation has
been documented already in the literature, we encounter a few unexpected difficulties along
the way, and make the following contributions:

1. We make the (retrospectively entirely obvious) observation that a transformation-time
continuation can be represented as a context, that is, as a term where a distinguished
bound variable serves as a named hole. This leads us to propose a first-order formula-
tion of the CPS transformation that is very close to Danvy and Filinski’s higher-order
formulation and does not exhibit the shortcomings of Danvy and Nielsen’s first-order
formulation.

2. We reduce the duplication inherent in Danvy and Filinski’s formulation. Instead of two
transformation functions, which are respectively used in “tail” and “nontail” contexts,
we define a single transformation function, which receives information about the context
as part of its continuation argument.

3. We represent variables as de Bruijn indices and show that, given the current state of the
art, this representation does not pose a significant obstacle in the definition of the CPS
transformation or in its correctness proof. We rely on Autosubst (Schéfer et al, 2015)
to eliminate boilerplate definitions and to automate many low-level proof obligations
about substitutions. Thus, we improve on some of the prior work, such as Minamide
and Okuma’s (2003), who use traditional named variables and have to explicitly account
for a-equivalence and freshness, and Dargaye and Leroy’s (2007), who use de Bruijn
indices, but go through a nonstandard intermediate language, equipped with two name
spaces. We emphasize that a “lifting” operation—that is, the application of an injective
renaming—should be read as an “end-of-scope” operator, which indicates that a certain
set of variables go out of scope. We present an interesting statement (Lemma 3) that is
universally quantified in such a renaming 6.

4. Much to our surprise, we find that Danvy and Filinski’s simulation argument (1992,
Lemma 3) breaks down in the presence of let constructs. Indeed, although Danvy and
Filinski (1992, Figure 4) extend the CPS transformation to deal with let constructs,
among other features, they do not extend its correctness proof. We provide a counter-
example and repair the proof by proposing a novel, slightly more complex simulation
diagram, which involves call-by-value parallel reduction. The theory of parallel reduc-
tion (Takahashi, 1995, Crary, 2009) is used to conclude the proof.

5. Although Danvy and Filinski (1992) remark informally that “the transformation always
terminates (and in essentially linear time)”, we find that, when variables are represented
as de Bruijn indices, it seems nontrivial to formulate the CPS transformation so that it
runs efficiently. To address this problem, we propose a novel higher-order formulation
of the transformation, which avoids all “lifting” operations by relying on “relocatable”
terms and continuations. We prove it equivalent to our earlier formulation, and (infor-
mally and experimentally) check that its time complexity is O(nlogn).
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apply (ok)v =k @v — an object-level application
apply(mK)v = Kv — a metalevel application
reify (o k) = k —ano-op
reify (m k) = Ax.(k x) where x # K — a two-level n-expansion

Fig. 1 Meta-level operations on continuations — informal version

1 ) =x

2 (Ax.t) = AxAy.[t]{oy} where y #1
3. I {c} = applyc (v)

4 [[1‘1 @lz]]{c} = [[tl]}{mvl = [[lz]]{m v=v @y, @ (reifyc)}}

5. letx=tnint]{c} =[a]{mvi=letx=viin[]{c}} where x # ¢

Fig. 2 A higher-order, one-pass, call-by-value CPS transformation — informal version

Our definitions and proofs have been machine-checked using Coq and are electronically
available (Pottier, 2017).

The paper is laid out as follows. We present the CPS transformation, first in a traditional
pencil-and-paper style (§2), then in a formal style (§3), where variables are represented as
de Bruijn indices. We state three fundamental lemmas on the interaction between the trans-
formation and substitutions (§4), then prove that the transformation is semantics-preserving
(85) and discuss how the presence of let constructs breaks Danvy and Filinski’s simulation
diagram (§6). Finally, we present an efficient formulation of the transformation (§7), which
we prove correct, before reviewing the related work (§8) and concluding (§9).

2 A one-pass call-by-value CPS transformation — informal version

We consider a core A-calculus whose terms are z ::=x | Ax.t |t @ ¢ | letx =t int. A value v
(also, k) is a term of the form x or Ax.z. We wish to define two metalevel functions, namely:

(v) the CPS transformation of the value v
[£]1{c} the CPS transformation of the term 7 with continuation ¢

The latter form can be read informally as “with the result of evaluating ¢, do ¢”. We let a
continuation c be either a term k, also known as an object-level continuation, or a metalevel
function k of terms to terms, also known as a metalevel continuation.! The purpose of
this distinction is to avoid the construction of so-called administrative redexes (Danvy and
Filinski, 1992, §1). We use explicit injections and write ¢ ::= o k | m k. The injections o -
and m -, although noisy, are necessary (even on paper) to avoid ambiguity.

Throughout the paper, we write v = ¢ for a metalevel abstraction (“the function that
maps vtot”) and k v for a metalevel application (“the result of applying x to v"’). A metalevel
function v = ¢ can be intuitively thought of as a term ¢ with a hole named v. A metalevel

' We closely follow Danvy and Filinski’s higher-order one-pass formulation (1992, Figure 3). However,
whereas Danvy and Filinski define two functions [[-]’ and [-], which respectively expect a term-level contin-
uation and a metalevel continuation, we define a single function [-] { - }, whose second argument is either an
object-level continuation or a metalevel continuation. This eliminates a significant amount of duplication in
the definition. The existence of such a formulation was known to Danvy and Filinski (1992, §2.6), who write
that “[one could] instrument the translation with an inherited attribute identifying tail-call contexts”.
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apply : cont — term — term

apply (ok)v =k @v — an object-level application
apply (m k) v = k[v/] — a metalevel substitution operation
reify : cont — term
reify (o k) = k — ano-op
reify (m k) = Ak — a two-level n-expansion
-[o] : cont— cont
(0k)[o] = o (k[o]) —apply &
(m x)[o] = m (k[ o]) — apply o under the binding construct m

Fig. 3 Meta-level operations on continuations — formal version

application ¢ v can be thought of as the term obtained by filling the hole in ¢ with the value v.
In §7, we write let v =1t; in t, for a metalevel local definition.

Two key operations on continuations are apply and reify (Figure 1). The term apply c v
can be thought of as the application of the continuation c to the value v. This is either an
object-level application or a metalevel application, depending on the nature of c¢. The term
reify ¢ can be thought of as the continuation c, represented as a term. If ¢ is an object-level
continuation o k, then reify c is just k. If ¢ is a metalevel continuation m k, then reify c is
Ax.(k x), that is, a A-abstraction whose formal parameter is a fresh variable x and whose
body is obtained by applying k to the term x.

The call-by-value CPS transformation is defined in Figure 2. The functions (-) and
[-1{-} are defined in a mutually inductive manner.

Equations 1 and 2 define the translation (v)) of a value v. A variable is translated to itself,
while a function of one parameter x is translated to a function of two parameters> x and y,
where the fresh variable y stands for a continuation. The function body, ¢, is translated with
object-level continuation y.

The remaining equations define the translation [¢] { ¢ } of a term # under a continuation c.
Equation 3 states that if the term ¢ happens to be a value v, then its translation [v] { ¢ } is the
application of the continuation c to the value (v). Equation 4 defines the term [t} @ ]| {c}
so that the translation of ¢ runs first, yielding a value denoted by the metavariable v;. Then,
the translation of #, is executed, yielding a value denoted by v,. Finally, an object-level
application of v; to the two arguments v, and reify ¢ is built, in accordance with the fact
that a translated function takes two arguments: a value and a continuation. In equation 5,
the translation of the term #; is executed first. Its value, denoted by vy, is bound via a let
construct to the variable x. The continuation c¢ is used, unchanged, in the translation of #,,
reflecting the fact that #, occurs in tail position in the term let x = #; in t.

3 A one-pass call-by-value CPS transformation — formal version

The informal definitions in the previous section (§2) rely on the nominal representation of A-
terms, which is standard in pencil-and-paper proofs. Although this representation has well-
understood foundations (Pitts, 2005) and is natively supported by certain proof assistants,
such as Nominal Isabelle (Urban, 2008, Huffman and Urban, 2010), it does not seem very
convenient for use in Coq as of today. In the formal part of the paper, we switch to de
Bruijn’s representation (1972), which is well supported in Coq, thanks to the Autosubst

2 Ideally, the target language of the translation would have functions of arity 2. For simplicity, we prefer
to unify the source and target languages, and represent a function of arity 2 as a curried function.
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() : term — term
1. () = x
2. (A1) = AA ([ 1] {00})
[1{-} : term — cont — term
3. I{c} = applyc (v)
4 enl{ch = [n{m[t'el{m1 @0@1 (rifyc)}}
5. Qlettyinta]{c} = [n]{mletOin [t} ] {12c}}

Fig. 4 A first-order, one-pass, call-by-value CPS transformation — formal version

library (Schifer et al, 2015). Autosubst offers a simplification tactic, asimpl, which attempts
to bring substitutions (and applications of a substitution to a term) into a canonical form.
This greatly reduces (yet does not quite eliminate) the burden of reasoning about renamings
and substitutions.

Furthermore, instead of a higher-order formulation, where terms with named holes are
represented by metalevel functions, we switch to a first-order formulation, where terms with
named holes are represented as ordinary terms, and ordinary variables serve as holes. In-
deed, the former representation, a form of higher-order abstract syntax (Pfenning and Elliott,
1988), includes undesired “exotic terms”, that is, metalevel functions that inspect their ar-
gument, instead of just building on top of it. Working with that representation would require
defining a notion of “well-behaved” metalevel function and proving that every metalevel
function of interest is well-behaved, which would be rather tedious. While there are variants
of higher-order abstract syntax that rule out exotic terms, such as parametric higher-order
abstract syntax (Chlipala, 2008), we prefer to stick with a first-order representation, where
a “named hole” is just a variable, and a variable is just a de Bruijn index.

Interestingly, the higher-order style re-appears further on in the paper (§7), where it is
used in an efficient implementation of the CPS transformation.

3.1 Notation

From here on, a variable x is a natural number, and we work with a A-calculus whose terms
aret=ux|At |t @t |lettinz. We write “term” for the type of terms. A value v (also, k) is
a term of the form x or Ar.

A substitution o is a total function of variables to terms. A value substitution is a
substitution ¢ such that, for every variable x, the term o(x) is a value. A renaming is a
substitution ¢ such that, for every variable x, the term o(x) is a variable. (A renaming is
not necessarily injective.) We write +i for the renaming x = x4 i. We write v - o for the
substitution that maps 0 to v and 1 +x to o(x). We write v/ for the substitution v - id. We
write f} o for the substitution that maps 0 to 0 and that maps 1 +x to 1 + o(x), for every x.
We write ¢[o] for the (capture-avoiding) application of the substitution o to the term #. This
operation is defined as follows:

x[o] = o(x) (Ar)[o] = A(1[fr o))
(t1 @ n)[o] = (1]o]) @ (1x]o]) (lett) intp)[o] = let (t1[o]) in (2[h o))

In Coq, this definition is automatically generated by Autosubst, based on programmer-
supplied indications of where variables are bound. We write o7 ; 0, for the composition
of 0] and o, that is, for the substitution that maps x to x[o1][03].
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We write 1'¢ for ¢[+i]. In short, 17¢ is the term obtained by adding i to every variable that
appears free in the term ¢. The symbol 1 can be intuitively read as an end-of-scope mark: it
means that the 7/ most-recently-introduced variables are not in scope in the term that follows
(Bird and Paterson, 1999, Hendriks and van Oostrom, 2003).

We write 11 for ¢[{} (+1)]. This renaming lifts every variable except 0 up by one, and
can be understood as an end-of-scope mark for the variable 1.

3.2 The CPS transformation

A continuation c is either a value k, also known as an object-level continuation, or a term-
with-a-hole K, also known as a metalevel continuation. We write ¢ ::= o k | m k, and write
“cont” for the type of continuations. A term-with-a-hole is just a term, where, by convention,
the variable O represents the hole (and, accordingly, every other variable is lifted up by 1).
The injection m can be viewed as a binding construct, just like A: indeed, it introduces a
new variable, numbered 0.

Three key operations on continuations are apply, reify, and substitution (Figure 3). The
definitions of apply and reify are analogous to those presented earlier (Figure 1). In the
second line of apply’s definition, the operation of filling the hole in x with a value v is
now just a substitution x[v/]. In the second line of reify’s definition, the variable 0, which is
bound by m on the left-hand side, becomes bound by A on the right-hand side. The operation
of applying a substitution ¢ to a continuation c is defined in the obvious way. It is used in
Figure 4, as 1% ¢ is sugar for c[+2]. It is also used in the statement of several fundamental
lemmas (§4).

The definition of the CPS transformation appears in Figure 4. In Equation 2, instead of
a freshness side condition y # ¢ (Figure 2), an end-of-scope mark is used: the term # becomes
11t when it is brought down into the scope of the second A. Similarly, in Equation 4, the
term 1, is preceded with 1! because it is brought down into the scope of one m binder, and
the term reify c is preceded with 12 because it is brought down into the scope of two m
binders. The two “named holes” denoted by v; and v, in Figure 2 are now represented by
the variables 1 and 0, respectively. In Equation 5, similarly, the “named hole” v; is now
represented by the variable 0. The term #, is preceded with ﬂ because it is brought down
into the scope of an m binder that binds variable 1. We must therefore indicate that this
variable is not in scope in #,.

Because a continuation ¢ ::= o k | m K is a syntactic object, our formulation of the CPS
transformation is first-order. It nevertheless closely resembles Danvy and Filinski’s higher-
order formulation (1992, Figure 3). The two are in fact extensionally equal: they are two
formulations of the same transformation. Our formulation does not share the shortcomings
of Danvy and Nielsen’s first-order formulation (2003, Figure 2), to wit: (1) the transfor-
mation of applications requires distinguishing 4 cases, and the transformation of n-tuples
would require distinguishing 2" cases; and (2) when the source language is extended with
let constructs, Danvy and Nielsen’s transformation produces certain administrative redexes
which Danvy and Filinski’s transformation eliminates (§6).

It should be noted that the definition in Figure 4 is not directly accepted by Coq as an
inductive definition. This is due in part to Coq’s poor support for mutually inductive defini-
tions: the recursive call (v) in Equation 3 involves v, whereas Coq would insist that it should
involve a subterm of v. A deeper reason is that the recursive call [1'¢]{...} in Equation 2
involves 1!¢, which is not a subterm of At. We work around the former problem by first
defining [t]{c} (inlining away (v)), which does not cause much duplication), then recover
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(v) as [v] { done }, where done is defined as m 0. This trick is found in Danvy and Filinski’s
paper (1992, Definition 1), where (v) is written ¥ (v). We work around the latter problem by
using well-founded recursion over the size of terms, in a style explained by Chlipala (2013,
Chapter 7). These workarounds are rather irritating, as they represent a barrier to entry, espe-
cially for students. Although these issues are well-known (Barthe et al, 2006), better support
in Coq for general recursive functions still seems to be lacking. Fortunately, the difficulties
encountered in the definition of the CPS transformation do not affect reasoning about this
transformation. We prove that the two transformation functions satisfy the equations of Fig-
ure 4, and set up a tailor-made induction principle so that statements such as Lemmas 1-3
can be proved by mutual induction over the size of terms, without fuss.

4 Basic lemmas

We now state three basic lemmas that describe how the CPS transformation interacts with
renamings and substitutions. The three statements have similar structure. All three of them
are proved in the same manner, namely by mutual induction over the size of v and ¢, using the
mutual induction principle mentioned above. The proofs are not difficult: for each lemma, a
proof script of about 25 nonblank, noncomment lines is required.

The CPS transformation commutes with renamings: in short, a renaming ¢ can be
pushed down into both sides of [t]{c}.

Lemma 1 (Renaming) For every renaming o,

1. for every value v, (v)[c] = (v[o]).
2. for every term t and continuation ¢, ([t] {c})[o] = [t[c]]{c[o] }.

As an almost-immediate corollary, we obtain the following equality:
T(o: ) = (o) ()

That is, if a substitution 6’ can be expressed as the composition &'; (-) of a substitution ¢ and
the CPS transformation, then {} ¢’ can be similarly expressed as the composition (f7); ().
This equality is exploited in the proof of the substitution lemma, which follows. This seems
to be the reason why we must establish Lemma 1 before Lemma 2, even though Lemma 2
subsumes Lemma 1.

The CPS transformation commutes with substitutions ¢’ that can be expressed as a
composition &'; (), where o is a value substitution. In short, such a substitution ¢’ can be
pushed down into both sides of [¢] { ¢ }, becoming ¢ on the term side and remaining ¢’ on
the continuation side. This reflects the fact that ¢ represents a source term, which is subject
to the transformation, whereas ¢ represents a target term, which is not subject to it. This
result corresponds to Danvy and Filinski’s Lemma 2 (1992) and to the first part of Danvy
and Nielsen’s Lemma 1 (2003).

Lemma 2 (Substitution) For every value substitution o, for every substitution o', where
o’ is equal to o; (),

1. for every value v, (v)[c'] = (v[o]).
2. for every term t and continuation c, ([t]{c})[0o’] = [t[o]]{c[o’] }-
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The third and last fundamental lemma involves “kubstitutions”, a word that we coin for
substitutions that affect the continuation, but not the term. We wish to express the informal
idea that, “if o does not affect the term ¢, then ¢ can be pushed down into [¢]{ ¢}, where
it vanishes on the term side, and remains ¢ on the continuation side”. This is an interesting
statement, whose standard (informal, pencil-and-paper) formulation is simple, yet whose
formulation in de Bruijn style requires a little thought. Indeed, the condition that “c does
not affect the term ¢ should not be expressed by the equation ¢[c] = ¢. That would be too
restrictive. For instance, the substitution v/ intuitively “does not affect” the term 1!¢, where
the variable 0 does not occur free; yet, the result of the substitution application (117)[v/] ist,
which is not equal to Tl t. In other words, a substitution that “does not affect” a term can still
cause its free variables to be renumbered.

A more general approach is to allow the term ¢ to carry an end-of-scope mark, which
is represented by an injective renaming 6. (We have already encountered several renamings
that can be interpreted as end-of-scope marks, such as Tl, TZ, and T} .) One then requires the
substitution ¢ to act only upon the variables which 6 causes to go out of scope: this is very
elegantly expressed by the equation 6 ; ¢ = id. (This equation implies that 6 is an injective
renaming.) For instance, instantiating 6 with 1! and ¢ with v/ satisfies this equation.

We thus obtain the following statement. In short, if the composition 0; ¢ vanishes, then
o can be pushed down into [¢t[0]]{ ¢}, where it annihilates with 6 on the term side, and
remains ¢ on the continuation side.

Lemma 3 (Kubstitution) For all substitutions 0 and o, where the composition 0 ; o is the
identity substitution,

1. for every value v, (v[0])[c] = (V).
2. for every termt and continuation ¢, [(¢[0]]{c})[o] =[] {c[o] }.

It might seem as if Lemma 3 is a corollary of Lemma 2. In fact, it is not, as it does not
require ¢ to be expressible under the form _; (-).
As a corollary, we get the equality:

([t e Hv/] = [ {clv/1}

This equality is used without justification by Danvy and Filinski (1992, proof of Lemma 3)
and forms the second part of Danvy and Nielsen’s Lemma 1 (2003). The statement found
there may seem simpler, but in reality lacks a freshness hypothesis, which corresponds to
our use of 11,

Using Lemma 3, we establish a few equations that clarify how the CPS transformation
behaves when applied to a term whose immediate subterms are values.

Lemma 4 (Special cases) For all values vy, vy, for every term t, for every continuation c,

i @] {c} = []{m1" (vi) @ 0@ 1! (reifyc) }
[vi @ va]{c} = (v1) @ (v2) @ (reifyc)
llet viinta] {c} = let (vi) in [2] {1'c}

5 Correctness of the CPS transformation

In an untyped setting, a term must exhibit one of three behaviors: it either converges (that
is, reduces in zero, one, or more steps to a value), or diverges (that is, admits an infinite
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reduction sequence), or reduces to a stuck term (a term that cannot reduce, yet is not a value).
We now prove that the CPS transformation is correct: that is, if a source term ¢ exhibits one
of these behaviors, then the transformed term [] { done } exhibits the same behavior, where
done is the empty-context continuation, m 0.

We write —py for the (small-step) call-by-value reduction relation, whose well-known
definition we omit. We write =y for the parallel call-by-value reduction relation, whose
definition we also omit: the reader is referred to Crary’s work (2009). Parallel reduction
strictly contains reduction: (—¢py) C (=>cby)- In short, parallel reduction differs from
reduction in that (1) it can contract several redexes at once and (2) it can contract redexes
under an arbitrary context, including under a A-abstraction and in the right-hand side of a
let construct.

The lemmas in this section are simple and have relatively short proofs (the proof scripts
for all lemmas, together, take up about 60 nonblank, noncomment lines). They may seem
quite a bit more involved than Danvy and Filinski’s simulation statement (1992, Lemma 3),
also found in Danvy and Nielsen’s paper (2003, Lemma 2). Indeed, the presence of the let
construct (which the papers just cited do not handle) complicates matters, requiring us to
define a notion of similarity between continuations, to prove several preliminary lemmas,
and to establish a simulation statement that involves parallel reduction (Lemma 7). In the
next section (§6), we justify more precisely why this added complexity seems unavoidable.

Definition 1 (Similarity of continuations) The assertion “c; is similar to ¢,” is inductively
defined by the following two rules:

1. o (reify c) is similar to c.

2. If K] =>cpy K holds, then m k; is similar to m K.

The first rule in Definition 1 must be present because, in the proof of Lemma 7, in the
case of fB,-reduction, we wish to apply Lemma 6, instantiated with o (reify ¢) and c. The
second rule in Definition 1 must be present because, in the proof of Lemma 6, in the case
where ¢ is a let construct, we wish to apply the induction hypothesis, instantiated with two
continuations m k7 and m x; which we can prove (using the induction hypothesis, again)
satisfy K| =>cpy K.

The following lemma is easily established by case analysis. The proof of its second item
relies on the fact that parallel reduction under a A-abstraction is permitted.

Lemma 5 (Application and reification of similar continuations) For all continuations c,
and ¢, if ¢y is similar to c¢;, then:

1. for every value v, apply c1 (v) = cpy apply c2 (V) holds;

2. reify c1 == cpy reify ¢z holds.

The next lemma is easily established by induction over the size of the term ¢. The proof
of the case where ¢ is a let construct relies on the fact that parallel reduction in the right-hand
side of a let construct is permitted.

Lemma 6 (Reduction in the continuation) For all continuations ¢\ and c3, if ¢ is similar
to ¢y, then, for every termt, [t]{c1 } =>cpy [t] { c2 } holds.

We then reach the main simulation diagram. This is a forward simulation diagram, which
states that the transformed term is able to simulate every step of computation taken by the
source term. In contrast with the statement proved by Danvy and Filinski (1992, Lemma 3)
and Danvy and Nielsen (2003, Lemma 2), we must allow the transformed term to take not
just one or more reduction steps —>C+bv, but also one parallel reduction step ==¢py. As
parallel reduction is a reflexive relation, this last step can be trivial.
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Lemma 7 (Simulation) For all terms t| and ta, for every continuation c, provided reify c is
avalue, tj —>py 1 implies [n]{c} (—,, - =) [R]{c}-

From this result, there follows that the CPS transformation (initiated with the identity
continuation) is correct: that is, it preserves convergence to a value, divergence, and “going
wrong”, that is, reducing to a stuck term.

Lemma 8 (Correctness) For every term t,

1. ift —7, v holds, where v is a value,

then there exists a value V' such that [t] { done } —7, V' and vV =, (v).
2. ift —%, holds,

then [[t] { done } —%;,, holds as well.
3. ift —2,, t' holds, where t' is stuck,

then [t] {done} —7, 1", wheret" is stuck.

The proof of the second item above relies on the fact that reduction and parallel reduction
commute, that is, =% - —J is a subset of —J - =% . This fact is proved by
Crary (2009), based on Takahashi’s results for call-by-name A-calculus (Takahashi, 1995).
We port Crary’s results to Coq, so as to offer a self-contained proof of our claims. The proofs
of the first and third item also exploit the fact that reduction and parallel reduction commute,
but require a more precise statement of this fact, namely, Crary’s Bifurcation lemma (2009,
Lemma 9).

It is easy to prove that the behavior of a CPS-transformed term is the same under call-by-
value and call-by-name evaluation. Indeed, to establish this result, it suffices to remark that,
in such a term, the right-hand side of every application must be a value, and the left-hand
side of every let construct must be a value. This property (which is preserved by reduction)
is sufficient to guarantee indifference.

Lemma 9 (Indifference) For every term t, the term [t] { done } exhibits the same reduction
sequence under call-by-value and call-by-name reduction semantics.

6 How let constructs complicate matters

Simplifications in the absence of let. In the absence of a let construct, the statements and
proofs in the previous section can be simplified as follows. The second rule in the definition
of similarity (Definition 1) can be removed. In the first item of Lemma 5, parallel reduction
—>¢bv can be replaced with at most one step of reduction, —>va. In the second item of
Lemma 5, parallel reduction can (almost miraculously) be replaced with an equality: indeed,
reify (o (reify ¢)) = reify ¢ holds. In the statement of Lemma 6, parallel reduction can then be
replaced with —>va. Finally, in the statement of Lemma 7, the relation (—>$)V C =>cby)
can be replaced with just —>§)V, yielding the simple simulation diagram found in the papers
by Danvy and Filinski (1992, Lemma 3) and Danvy and Nielsen (2003, Lemma 2). Parallel
reduction is not needed any more, so that correctness (Lemma 8) can be established without
appeal to the theory of parallel reduction.

With let, Danvy and Filinski’s transformation violates the simple simulation diagram. Does
the simulation diagram necessarily become more complex in the presence of let? The answer
is positive. In the presence of let, the CPS transformation that we study (§3), which coincides
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with Danvy and Filinski’s transformation, does not satisfy the simple simulation diagram.
Here is an example that demonstrates this. Let ¢; stand for the term (A(let 0in 0)) @ (A0),
which in informal syntax would be written:

(Azletw=zinw) @ (Ax.x)

This term reduces to t;, which in de Bruijn’s notation is let A0 in 0 and in informal syntax
would be written:
letw=Ax.xinw

According to the simple simulation diagram, [1,] {done} — %, [12] {done} should hold.
Yet, this property is false: the term [#] { done } does not reduce (in any number of call-by-
value reduction steps) to the term [[#;] { done }. (We have checked this in Coq.) Let us explain

why that is the case. The term [#,] { done }, in informal notation, is:
(AzAkletw=zink @ w) @ (Ax.Ak. k @ x) @ (Aw.w)
This term reduces in two f3, steps to:
letw=Ax.Ak. k @ xin (Aw.w) @ w
Unfortunately, the term [t;] { done }, in informal notation, is:
letw=Ax.Ak.k @ xinw

We have a “near miss”. The last two displayed terms differ by the contraction of a 3,-redex,
which takes place in the right-hand side of a let construct. Such a contraction is not permitted
by the relation —> ¢y .

This counter-example is one of two counter-examples of minimal size (not counting
variables, the term #; has size 4) and involves only one let construct, so it is arguably the
“simplest” possible counter-example. It was found by an exhaustive enumeration procedure,
illustrating the fact that testing can help disprove conjectures.

With let, Danvy and Nielsen’s transformation obeys the simple simulation diagram. Danvy
and Nielsen’s transformation is extended with support for let constructs by Minamide and
Okuma (2003, §4.4), who report that this extended transformation still obeys a simple simu-
lation diagram: when the source program makes one step, the transformed program follows
suit in zero or more steps (up to a-equivalence, which in Minamide and Okuma’s paper is
explicit). They formally verify this fact using Isabelle/HOL.

This does not contradict our findings, because Minamide and Okuma’s transformation
does not coincide with Danvy and Filinski’s transformation, which we study. Indeed, the
former produces administrative redexes which the latter eliminates. Consider, for instance,
the term #} defined as r, @ 0, where the term ¢, is as above. In informal notation, the term
can be written:

(letw=Axxinw) @y

Minamide and Okuma’s transformation, applied to 5 and to the identity continuation Az.z,
yields:
letw=AxAk.k@xin(Aw.w@y @ (Az.2)) @w

This term exhibits an administrative redex (Aw....) @ w. In contrast, Danvy and Filinski’s
transformation, applied to #; and to the object-level identity continuation o Az.z, yields:

letw=Ax.Ak.k @ xinw @y @ (Az.7)
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This is no surprise: Danvy and Nielsen (2003, §7.2) note that their formulation of the CPS
transformation cannot be extended with support for let in such a way that it “flattens nested
blocks”. They write: “We do not see how a first-order one-pass CPS transformation can
flatten nested blocks in general if it is also to be compositional.” We show that this is in fact
possible: our formulation (§3) is first-order, compositional, and coincides with Danvy and
Filinski’s transformation. The downside of our formulation is that it is not efficient: we now
turn to this issue.

7 An efficient implementation of the CPS transformation

Extracting OCaml code out of the Coq definitions of Figures 3 and 4 yields a working yet
very inefficient implementation of the CPS transformation. Indeed, these definitions involve
substitution under various guises. A substitution operation k[v/] is explicitly used in the
definition of apply. The lifting operations 1!, 12, and T} are also substitution operations.
This gives rise to two problems. First, even if the operation of applying a substitution to a
term was somehow efficiently implemented, its cost would still be at least linear in the size
of the term, which implies that the time complexity of the CPS transformation would be at
least quadratic. Second, Autosubst’s implementation of this operation is inefficient. Indeed,
for mathematical simplicity, Autosubst represents a substitution o as a function. From an
algorithmic point of view, this is not a good choice. The construction of the substitution {} ©,
which takes place when a binder is entered, allocates a new closure. Thus, a substitution
forms a linked list of closures in memory, whose length is at least the number of binders
that have been entered. Therefore, the cost of applying a substitution to a variable is at least
linear, and the cost of applying a substitution to a term is at least quadratic.

This naturally raises the questions: can the CPS transformation, viewed as a function
of terms (in de Bruijn’s representation) to terms (in the same representation), be efficiently
implemented? Can this implementation be proved correct with respect to the definition that
we have presented earlier (§3)? Because we found this “programming exercise” considerably
more difficult than expected, we describe our solution.

In order to obtain an efficient implementation of the CPS transformation, it is necessary
to avoid the use of lifting and substitution altogether. To avoid the substitution x[v/] of a
value v into a term-with-a-hole k, we revert to a higher-order formulation, where metalevel
continuations are represented as metalevel functions. To avoid the lifting operations 1!, 12,
and 1!, we explicitly carry and maintain a renaming, which is applied on the fly. Of course,
an efficient representation of renamings, which supports lookup and extension in logarithmic
time, must be used.

7.1 Efficient de Bruijn renamings

To begin with, we need an efficient representation of renamings. Recall that a renaming is a
total mapping of variables to variables, or more precisely, of de Bruijn indices to de Bruijn
indices. This representation must efficiently support the following four operations:

1. Build the identity renaming id.

2. Given a renaming o and a variable x, compute o (x).
3. Given a renaming o, construct the renaming {} ©.

4. Given a renaming o, construct the renaming o; (+1).
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It should be obvious why the first two operations are needed. Operation 3 is required when a
(A-bound or let-bound) variable in the source program is translated to a (similarly A-bound
or let-bound) variable in the target program. Operation 4 is required when a variable that
does not exist in the source program is introduced in the target program: this is the case of
continuation variables.

To gain an intuition for these operations, it is useful to visualize a renaming ¢ as a
bipartite graph on N x N, where the source variables, labeled O, 1,..., appear on the left-
hand side; the target variables, labeled 0,1, ..., appear on the right-hand side; and where
there is an edge from every source variable x to the target variable o (x). Operation 3 can
then be viewed as renumbering every vertex on either side by adding 1 to its label; creating
one new vertex, numbered 0, on either side; and adding a new edge between these new
vertices. Visually, the original graph is untouched; two new vertices and a new edge are
added to it. Operation 4 can be viewed as renumbering every vertex on the right-hand side
by adding 1 to its label, and creating one new vertex, numbered O, on the right-hand side.
Visually, the original graph is again untouched; one new vertex is added to it.

It may not be obvious at first how these four operations can be efficiently implemented.
A traditional finite map data structure, such as a balanced binary search tree, supports the
insertion of new key-value pairs, but does not support renumbering every key in its domain
or renumbering every value in its codomain. A binary random access list (Okasaki, 1999,
Chapter 9) (Sozeau, 2007) supports the former operation, but not the latter.

Our solution to this puzzle is to internally represent a renaming using a finite map m of
de Bruijn levels to de Bruijn levels. (de Bruijn levels are analogous to de Bruijn indices, but
are counted in the opposite direction: a higher level denotes a more recent binder.) Let us
assume, for a moment, that the height of the source name space is src, that is, only the source
variables in the semi-open interval [0, src) are of interest. Then, the conversion between a
source de Bruijn index and a source de Bruijn level (in either direction) is performed by
transforming x to src — 1 —x. Similarly, if the height of the target name space is dst, then
the conversion between a target index and a target level is performed by transforming x’ to
dst — 1 —x'. Thus, if m is a map of levels to levels, and if the operation find x m can be used
to look up x in this map, then the corresponding transformation of indices to indices maps x
to dst — 1 — find (src—1—x) m.

Formally speaking, let us assume that a correct and efficient implementation of finite
maps is available. We assume that this data structure supports the operations empty, add,
and find. (We axiomatize these operations in Coq and implement them in OCaml using
OCaml’s balanced binary search tree library.) Then, we represent a renaming as a triple
(src,m,dst), where m is a finite map and src and dst are natural numbers. (Slightly cutting
corners, we instruct Coq to represent natural numbers as OCaml machine integers.) The
function interpret in Figure 5 defines how a triple (src,m,dst) should be interpreted as a
renaming, that is, as a total function of variables to variables. The first equation in Figure 5
has been justified above. The second equation in Figure 5 causes the renaming to behave
uniformly beyond the heights of the source and target name spaces: that is, the variables
src,src+ 1, ... are mapped to dst,dst+ 1, ..., and so on.

Definition 2 A triple (src,m,dst) represents a renaming o if

. mis a well-formed finite map;

. the interval [0...src) is contained in the domain of m;

. the image of this interval through m is contained in the interval [0...dst);
. for every x, the equality interpret (src,m,dst) x = 6(x) holds.

B W N~
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Lemma 10 The four desired operations on renamings are implemented as follows:

1. (0,empty,0) represents the identity renaming.

2. If (src,m,dst) represents o, then interpret (src,m,dst) x is o (x).

3. If (src,m,dst) represents o, then (src + 1,add src dst m,dst + 1) represents 1) .
4. If (src,m,dst) represents G, then (src,m,dst+ 1) represents ¢ ; (+1).

7.2 Relocatable terms

In order to obviate the need for lifting operations, such as 1!, instead of constructing terms,
whose free variables might later need to be renumbered, we construct relocatable terms.
A relocatable term is a function, which, when applied to the height dst of the target name
space, produces a term. Thus, the type “rterm” of relocatable terms is defined as nat — term.

In the following, we reuse the metavariables 7, k,v to range over relocatable terms, as
it would be cumbersome to have to invent a whole new set of metavariables. The type of
a metavariable should always be clear from the context, as in the next definition, where
t denotes a relocatable term and ¢’ denotes a term. Similarly, in the next subsection (§7.3), the
metavariable x is reused to denote a metalevel function of relocatable terms to relocatable
terms, and the metavariable c is reused to denote a relocatable continuation.

The meaning of a relocatable term is defined by a 3-place predicate whose parameters
respectively have types rterm, term, and nat, as follows.

Definition 3 A relocatable term 7 represents a term ¢’ at time dsz if and only if, for every i,
the application ¢ (dst + i) yields the term 1'¢’.

This definition builds in the idea that the height of the target name space can only grow
between the time dst when a relocatable term is constructed and the time dst 4 i when this
relocatable term is applied so as to obtain a term.

The following (trivial) lemma states that relocatable terms really are relocatable: that is,
they do not need to be explicitly lifted. If the relocatable term ¢ represents the term ¢’ when
the height of the target name space is dst, then the same relocatable term ¢ automatically
represents 1 when the height of the target name space grows to dst +i.

Lemma 11 (Relocation) If t represents t’ at time dst, then t represents 1t at time dst + 1.

We use the auxiliary functions in Figure 6 to construct relocatable terms.

The function call var dst x converts the de Bruijn index x to a de Bruijn level dst — 1 —x
and returns a function which, when applied to ds?’, converts this level back to an index. It is
expected that dst’ is greater than or equal to dst. The idea is to exploit the fact that de Bruijn
levels are unaffected by the growth of the name space that they inhabit.

The relocatable term lambda t, once instructed of the height dst of the target name space,
increases dst by 1, so as to make room for one more variable, applies the function ¢ to a
relocatable representation of the variable 0, and applies the resulting relocatable term to dst,
S0 as to obtain a term.

The identity function is represented by the relocatable term lambda (x = x), which (as
can be checked by unfolding) is a constant function which ignores its argument dst and
always returns the term A0.

The representation predicate of Definition 3 can be used to give specifications to the
functions var, lambda, and app. For instance, provided x < dst holds, the relocatable term
var dst x represents the term x at time dsz. We omit the specifications of lambda and app.
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interpret (src,m,dst) x = dst—1— find (src—1—x)m if x < src
interpret (src,m,dst) x = x+ dst — src otherwise

Fig. 5 Interpretation of a triple (src,m,dst) as a renaming

var : nat— nat — rterm
var dstx = dst' = dst' —1— (dst—1—x)

lambda : (rterm — rterm) — rterm
lambdat = dst = A(let dst = dst+ 1 int (var dst 0) dst)

app rterm — rterm — rterm
app 1) ty = dst = (1) dst) @ (1, dst)

Fig. 6 Construction functions for relocatable terms

rapply : rcont — rterm — rterm
rapply (o k) v = app kv — an object-level application
rapply (mK)v = K v — a metalevel application

rreify : rcont — rterm
rreifyk = k —ano-op
rreify Kk = lambda x — a two-level n-expansion

Fig. 7 Operations on relocatable continuations

svar : nat— (env — rterm)
svar x (src,m) = dst = interpret (src,m,dst) x

sbind : (env — rterm) — (env — rterm)
sbind t (src,m) = dst = let (src,m,dst) = (src+1,add src dst m,dst+ 1) int (src,m) dst

slambda : env — (env — rterm) — rterm
slambda p t = dst = A(sbind t p dst)

slet : env — rterm — (env — rterm) — rterm
slet p ty ty = dst = let (1) dst) in (sbind t; p dst)

()-S5 © term — env — rterm
x| p§ = svarxp

(At | p§ = slambda p (p = lambda (k= {t | p§{ok}))
C1-5{-} : term — env — rcont — rterm
vl pS{ic} = rapplyc {v|pS§
h @unlp§{cy = {nlpS{mvi= {n|p§S{mvs= app (appviv,) (rreifyc)} }
Uettiinn [ p§{c} = {n|pS{mvi=sletpvi (o= {n|pS{c})}

Fig. 8 A higher-order, one-pass, call-by-value CPS transformation — formal & efficient version

7.3 Relocatable continuations

In our initial informal presentation of the CPS transformation (§2), we have used a higher-
order style, where terms-with-a-hole are represented as metalevel functions. Then (§3), we
have switched to a first-order style, where they are represented as syntax, because this style
is easier to reason about. We now switch back to a higher-order style, because represent-
ing a term-with-a-hole as a metalevel function is efficient. The operation of filling the hole
with a value is just metalevel function application; there is no need for a substitution opera-
tion. Provided this operation is ever performed at most once, this approach is profitable. In
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the CPS transformation, every term-with-a-hole is filled exactly once, so this condition is
satisfied.

A relocatable continuation c is either a relocatable term k (of type rterm) or a metalevel
function K (of type rterm — rterm). We write ¢ ::= o k | m k. We write “rcont” for the type
of relocatable continuations.

The meaning of a relocatable continuation is made explicit by a 3-place predicate whose
parameters respectively have types rcont, cont, and nat, as follows.

Definition 4 The assertion that a relocatable continuation ¢ represents a continuation ¢’ at
time dst is defined by the following two rules:

1. If k represents k" at time dst, then o k represents o k' at time dst.
2. If, for all i, for all values v and v’ such that v represents V' at time dst + i,
K v represents k'[V' - (+i)],
then m x represents m Kk’ at time dst.

We do not attempt to explain in detail this admittedly slightly cryptic definition. Let
us just state the following two lemmas, which confirm that everything works as expected.
Lemma 12 states that relocatable continuations are indeed relocatable. (Its statement has the
same structure as that of Lemma 11.) Lemma 13 states that the operations rapply and rreify,
defined in Figure 7, are correct implementations of apply and reify.

Lemma 12 (Relocation) If ¢ represents ¢’ at time dst, then ¢ represents 1 ¢’ at time dst+i.

Lemma 13 If c represents ¢’ at time dst, then:

1. If v represents V' at time dst, then rapply c v represents apply ¢’ V' at time dst.
2. rreify c represents reify ¢’ at time dst.

7.4 An efficient implementation of the CPS transformation

An efficient formulation of the CPS transformation is given in Figure 8. The value transfor-
mation, written {v | p§, and the term transformation, written (¢ | p§ {c}, are defined in a
mutually recursive manner. We write p for a pair (src,m), and we write env for the type of
such a pair. The type of the value transformation function {- | -§ is term — env — rterm,
which means that this function must be successively applied to a source value v, to a pair
(src,m), and to a number dst, producing a transformed term. Together, (src,m, dst) represent
arenaming (§7.1), that is, a total function of variables in the source name space to variables
in the target name space. Yet, things have been arranged so that (src,m) and dst are passed
separately, in two distinct phases; the partial application {v | p§ is a relocatable term.

We do not explain the definition in detail. Let us note that svar applies the renaming
(src,m,dst) to a source variable, yielding a target variable. sbind is used when a binder
in the source term gives rise to a binder in the target term; then, the current renaming &
becomes 1} 0. This is the case in slambda and slet, which are used when a A or let binder in
the source term gives rise to a A or let binder in the target term.

The following lemma states that this formulation of the CPS transformation is equivalent
to our earlier formulation (§3). Its proof, by induction on the term ¢, is not difficult.

Lemma 14 (Correctness) If (src,m,dst) represents 0 and if ¢ represents ¢’ at time dst, then
the relocatable term {t | (src,m)$§{c} represents the term [t[c]]{c' } at time dst.
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Fig. 9 Running time divided by nlogn, as a function of n. The horizontal scale is logarithmic. At left, random
terms; at right, “right-leaning” random terms, whose let constructs have a left-hand side of bounded size.

As a corollary, we find that the two formulations of the CPS transformation coincide.

Lemma 15 (Coincidence) Let us write py for the initial environment (0,empty) and rdone
Sfor the empty-context relocatable continuation m (t = t). Then, for every term t, the terms
Ut po§ {rdone} 0 and [t] { done} coincide.

This formulation of the CPS transformation, whose complete code appears in Figures 5
to 8, is efficient. We argue informally that its worst-case time complexity is O(nlogn), where
n is the size of the source term. Indeed, no lifting or substitution operations whatsoever are
involved. The dictionary operations find and add have worst-case time complexity O(logn).
Every other elementary operation, including allocations of abstract syntax tree nodes and
closure allocations, has worst-case time complexity O(1). Finally, every closure is invoked
exactly once, so the cost of executing this closure can be charged to the site where this
closure is allocated. It should then be evident that the worst-case time complexity of the
transformation is O(nlogn). This claim would arguably deserve a formal proof, which we
leave to future work!

We have extracted OCaml code from this definition and have experimentally confirmed
that the time complexity of the transformation, applied to randomly generated closed terms,
seems to be @ (nlogn). Indeed, the running time (measured by Jane Street’s core_bench
library, which attempts to even out the effect of GC), divided by nlogn, seems to give rise
to a constant function of n (Figure 9).

8 Related work

The CPS transformation and its formulations Reynolds (1993) recounts the discoveries of
continuations and of the CPS transformation. The earliest widely-cited accounts of the CPS
transformation, in a two-pass formulation, are Fischer’s (1972, 1993) and Plotkin’s (1975).
Danvy and Filinski (1992) offer a one-pass, higher-order formulation of the transformation.
Sabry and Felleisen (1993) propose a “compactifying” transformation, whose formulation is
one-pass and first-order. It is not compositional, that is, not defined directly by induction on
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the structure of terms. Indeed, before a term can be transformed, it must be identified as one
of (1) a value or (2) a neutral term in an evaluation context or (3) a B-redex in an evaluation
context. Danvy and Nielsen (2004) explain that the extra “compactifying” power of Sabry
and Felleisen’s transformation can be obtained by turning n-ary applications of curried n-ary
functions into cascades of let constructs prior to a conventional CPS transformation. Lawall
and Danvy (1993) show that the CPS transformation can be understood as the composition
of three steps, namely naming intermediate results, introducing continuations, and deciding
the evaluation order. Finally, Danvy and Nielsen (2003) present a one-pass, compositional,
first-order formulation of the transformation. A shortcoming of this formulation is that it
is redundant: the transformation of applications requires distinguishing four cases, and the
transformation of n-tuples would require distinguishing 2" cases. Another shortcoming is
that, as illustrated earlier (§6), extending it with support for let constructs results in the
production of administrative redexes. In contrast, the formulation proposed in this paper (§3)
is also one-pass, compositional, and first-order, but is just as elegant as Danvy and Filinski’s
higher-order formulation. In fact, it is arguably just a new reading of Danvy and Filinski’s
formulation with first-order glasses.

Type-preserving CPS transformations In this paper, we have carried out a purely untyped
study of the CPS transformation. The type-preserving character of the transformation has
been studied by numerous researchers, beginning with Meyer and Wand (1985) for the
simply-typed A-calculus and including Harper and Lillibridge (1993), Morrisett ez al. (1999),
Barthe ef al. (1999), and Shao et al. (2005), for ever-richer typed calculi. Subsequently,
many authors have shown how the property of type preservation can be statically verified
by the type-checker of the metalanguage in which the transformation is defined (Chen and
Xi, 2003, Linger and Sheard, 2004, Chlipala, 2007, 2008, Guillemette and Monnier, 2007,
2008, Savary Belanger et al, 2015).

Mechanized accounts of the CPS transformation The POPLmark challenge (Aydemir et al,
2005) has drawn attention to the fact that formalizing the metatheory of programming lan-
guages is now feasible and desirable, but sometimes remains challenging, due in large part
to the difficulty of dealing with binding structure in a pleasant manner. The present work can
be viewed as another case study in the spirit of the POPLmark challenge. In our experience,
thanks to Autosubst (Schifer et al, 2015), it is now relatively easy to reason in Coq about
terms in de Bruijn’s representation. We believe that the statements of the auxiliary lemmas
in §4 have been simplified as a result of Autosubst’s view of substitutions as total functions.
The proofs of these lemmas would have been much less tractable without Autosubst.
Minamide and Okuma (2003) formalize three formulations of the CPS transformation,
namely Plotkin’s (1975), Danvy and Nielsen’s (2003), and Danvy and Filinski’s (1992), in
the proof assistant Isabelle/HOL. Because they find de Bruijn indices “difficult to manage”,
they prefer to use traditional named variables. This causes them to run into a number of
difficulties, as they must explicitly keep track of the uniqueness or freshness of variables
and explicitly account for o-equivalence. They also report problems in dealing with the fact
that the latter two formulations are functions of two arguments: when applied to a term, they
yield a function of a continuation to a term. At the time, this “defeated Isabelle’s automated
tactics.” To work around this, Minamide and Okuma reformulate these transformations as
functions which, when applied to a term, produce a context, that is, a term with a single
unnamed hole. This differs from our view of a metalevel continuation as a term with one
named hole, which arguably is more natural. As reported earlier (§6), Minamide and Okuma
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extend Danvy and Nielsen’s transformation with support for let constructs. They report fur-
ther problems with the uniqueness of bound variables, but are nevertheless able to establish
that the simple simulation diagram holds.

Tian (2006) uses Twelf to formalize a higher-order, CPS transformation. His source
and target calculi differ: whereas the source calculus is a variant of the A-calculus (with an
explicit redundancy between values and expressions), the target calculus is a nonstandard
continuation-passing style calculus. Although the construct App(V1, V2, k), where k denotes
a metalevel abstraction x = E, can informally be read as let x =V} @ V; in E, the construct
Lam(x,k).E, where k also denotes a metalevel abstraction, is very much nonstandard: it
is a binder at a higher type. Accordingly, the operational semantics of the target calculus
involves a substitution at a higher type (rule red_app, Figure 2). This calculus apparently
cannot be faithfully modeled using ordinary first-order terms and substitutions (of terms for
variables). We believe that it could be modeled by using hereditary substitutions (of contexts
for context variables).

Dargaye and Leroy (2007) verify a one-pass CPS transformation, with support for let
constructs (among other features), which we believe is equivalent to Danvy and Filinski’s
properly-tail-recursive transformation. They propose a first-order, one-pass formulation, but,
departing from Danvy and Nielsen’s approach, they use a “smart application” constructor,
written @, which reduces administrative redexes on the fly. This seems to be another way
of avoiding the shortcomings of Danvy and Nielsen’s formulation. However, the fact that
smart application does not commute with substitution creates a slight complication in the
proof. Instead of directly establishing the correctness of the transformation, Dargaye and
Leroy first establish the correctness of a naive transformation, which does not eliminate
administrative redexes, then prove that the two transformations are the same, up to parallel
reductions (Dargaye and Leroy, 2007, Lemma 6). Thus, although they follow a different
technical path, they end up exploiting parallel reduction, probably for the same fundamental
reason as we do. They use a big-step operational semantics, so do not establish a simulation
diagram. Nevertheless, their correctness statement (Dargaye and Leroy, 2007, Theorem 2)
is closely related to ours (Lemma 8, item 1).> Dargaye and Leroy choose to “avoid some of
the difficulties associated with standard de Bruijn indices” by using two distinct namespaces
for the source variables and for the variables introduced by the translation. This approach
seems effective, but makes the statements of the substitution lemmas heavier (Dargaye and
Leroy, 2007, Lemmas 1 and 2) and requires performing a (verified) conversion from the two-
namespace calculus back to a standard A-calculus. Perhaps Autosubst could make Dargaye
and Leroy’s approach more lightweight; anyway, we show that a direct transformation is
tractable.

Chlipala (2007) presents a verified type-preserving compiler from the simply-typed A-
calculus to assembly language, which includes a transformation into CPS form. He uses
dependent types to ensure that object-level terms are well-scoped and well-typed. Variables
are represented as de Bruijn indices. The proof of semantic preservation is carried out by
defining (type-directed) interpretations of both the source and target languages into the met-
alanguage and by defining a (type-directed) logical relation that relates these interpretations.

3 It might seem as though the parallel reduction sequence v/ =7,y (V) in our Lemma 8 is stated in the

reverse direction, compared with Dargaye and Leroy’s Theorem 2. The confusion is cleared by noting that the
function ¥ in their Theorem 2 denotes the nonoptimizing transformation of values. Thus, our statement and
their statement are indeed slightly different, and, by combining them, one finds that the value V' lies some-
where on a parallel reduction path from the nonoptimized translation of v to the optimized translation of v.
Dargaye and Leroy inadvertently use the metavariable ¥ to refer to both the nonoptimizing and optimizing
versions of the value transformation.
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This is quite different from our approach, which is based on an operational semantics and
does not exploit type structure. In a subsequent paper (2008), Chlipala moves away from
de Bruijn indices and instead proposes “parametric higher-order abstract syntax”, a form of
higher-order abstract syntax (Pfenning and Elliott, 1988) where parametric polymorphism
is used to ensure that variables are considered opaque and thereby eliminate “exotic terms”.
A type-preserving CPS transformation for System F is presented. Semantics preservation is
proved via a “foundational type-theoretic semantics”, as in Chlipala’s previous paper (2007).

9 Conclusion

In this paper, we have proposed a new first-order, one-pass, compositional formulation of
the call-by-value CPS transformation. This new formulation can be viewed as a new reading
of Danvy and Filinski’s formulation (1992). We have also proposed a new higher-order,
one-pass, compositional formulation, which leads to an efficient implementation. We have
proved that these formulations define the same transformation and that this transformation is
semantics-preserving. We have clarified which simulation diagram must be used in the latter
proof, as Danvy and Filinski’s simple simulation diagram (1992, Lemma 3) does not hold in
the presence of a let construct. We have found that, thanks to Autosubst (Schéfer et al, 2015),
formal reasoning about terms in de Bruijn’s representation is tractable. Our definitions and
proofs have been machine-checked using Coq and are available online (Pottier, 2017). We
hope that some of the techniques illustrated in this paper can be useful in teaching and in the
construction of verified compilers, beyond the CPS transformation.

We found the efficient formulation proposed in §7 rather difficult to discover. Somewhat
distressingly, although its proof of correctness is reasonably simple, we still find it difficult
to explain why and how this code works. A related technical remark is that we were not able
to assign fully satisfactory specifications to the auxiliary functions lambda (Figure 6) and
sbind, slambda, and slet (Figure 8). Instead, in the proof of Lemma 14, we expand away
these auxiliary functions, and reason directly about the resulting code. As another remark,
because this code involves higher-order functions, it is hard to understand its operational
behavior, that is, to understand exactly which instructions are carried out and in which order.
Perhaps studying a defunctionalized version of this code would shed new light on it.

Future work might include scaling up our definitions and proofs so as to handle a richer
source language, including products, sums, and so on. One might also wish to formalize the
call-by-name CPS transformation. At a metatheoretic level, it would be worth investigating
whether and how metatheoretic definitions and statements can be systematically translated
from one representation of names to another: say, from the nominal representation to the
de Bruijn’s representation, and vice-versa. Can one systematically translate freshness side
conditions into end-of-scope operators, and vice-versa? Can one somehow compensate for
the fact that the nominal representation relies on unordered contexts, whereas de Bruijn’s
representation relies on ordered contexts?
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