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Abstract

Hindley and Milner’s type system is at the heart of programming languages such as Standard ML,
Objective Caml, and Haskell. Its expressive power, as well the existence of a type inference algo-
rithm, have made it quite successful. Traditional presentations of this algorithm, such as Milner’s Algo-
rithmW , are somewhat obscure. These short lecture notes, written for the APPSEM’05 summer school,
begin with a presentation of a more modern, constraint-based specification of the algorithm, and explain
how it can be extended to accommodate features such as algebraic data types, recursion, and (lexically
scoped) type annotations. Then, two chapters,yet to be written, review two recent proposals for incor-
porating more advanced features, known as arbitrary-rank predicative polymorphism and generalized
algebraic data types. These proposals combine a traditional constraint-based type inference algorithm
with a measure of local type inference.
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Chapter 1

Introduction

Typechecking is a discipline that assigns specifications, or types, to programs. A type typically is a
term whose size is small. Typechecking distinguishes itself from other program analyses by its relative
simplicity, which stems in part from its compositionality:the type ascribed to a program fragment
depends only on the types ascribed to the sub-fragments out of which it is composed.

Typechecking is interesting on multiple grounds. First, atype soundnesstheorem, established by
the type system designer, guarantees that a well-typed program cannot “crash:” its execution cannot
fail unexpectedly. This result is obtained in astaticmanner, that is, before the program is executed. It
provides users with a partial robustness guarantee, as wellas with a limitedsecurityproperty, on top of
which more advanced properties can be enforced.

Next, some more ambitious type systems allow static enforcement of more advanced security poli-
cies, such asaccess controlor information flow controlpolicies. Others encodedata flowanalyses,
which usually are of little interest to programmers, but enable more aggressive optimizations during
compilation.

Last, thanks to its compositional nature, and thanks to the related notions of parametricpolymor-
phismand typeabstraction, typechecking encouragesmodularity, that is, the decomposition of pro-
grams into independent and complementary units. This activity is central in the development of complex
software systems.

One often wishes for type systems to be as transparent as possible, that is, for the typechecking
process to be automatic or almost automatic. Indeed, even ifthe type discipline is known to the pro-
grammer, it is desirable not to burden him with extra work, that is, to only require minimal help out of
him. Thus, the programmer is typically asked to provide a specification for each program module, but, if
possible, nothing more. Furthermore, when the results of a type-based analysis are intended for use by
a compiler, it is desirable for the analysis to be fully automatic. This leads to studying thetype inference
problem, that is, the problem of determining which types a program or program fragment admits.

Because typechecking is compositional, type inference problems also admit a natural decomposi-
tion. In other words, the type inference problem associatedwith a program fragment admits a solution if
and only if each of the sub-problems associated with its sub-fragments also admits a solution and if these
solutions are consistent with respect to one another, that is, if the sub-fragments admit complementary
types.

As a consequence, a language for expressing type inference problems must offerconjunction, which
allows combining several sub-problems; laexistential quantification, which allows introducing atype
variablethat denotes a type to be determined; andpredicatesover types, such as the equality predicate,
which allows requiring two types to match. In other words, type inference is naturally reduced to the
satisfaction of logical formulæ, orconstraints.

Experience suggests that, even when the programming language of interest is rich, the constraint
language required to express its type inference problems remains relatively modest. Thus, reducing type
inference problems to constraint satisfaction problems allows a significant restriction of the universe of
discourse, and forms a useful first step.

Typesandconstraintsare among the most important objects manipulated in this document. The
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document begins with an overview of Hindley and Milner’s type system and of a constraint-based ver-
sion of its type inference algorithm. It then discusses its extension with data structures, recursion, and
optional type annotations. Two more advanced chapters,yet to be written, discuss further extensions
wheremandatory type annotationshelp and where alocal type inferencealgorithm is layered on top of
the traditional, constraint-based algorithm.



Chapter 2

Type inference for ML

The programming languages of the ML family, whose most influential members are Standard ML,
Objective Caml, and Haskell, are based on Hindley and Milner’s type system (also known as Damas
and Milner’s type system).

Hindley [1] solved the type inference problem for the simply-typedλ-calculus by showing, in a
constructive way, that every expression admits aprincipal type. His algorithm relies on first-order
unification, and can be (but was not at the time) presented as the combination of constraint generation
and constraint solving phases.

The simply-typedλ-calculus is amonomorphictype system, where an expressione cannotsimul-
taneouslyadmit several distinct types. Nevertheless, the principaltype for e, produced by Hindley’s
algorithm, can containtype variables, indicating thate in fact admits several types (an infinite num-
ber of them). Thus, the study of type inference reveals a formof parametric polymorphism, a notion
identified by Strachey [2].

Milner [3] suggested internalizing the notion of principaltype by introducingtype schemesand by
effectively allowing an expression to simultaneously haveseveral types. He proposed a type inference
algorithm that also relies on first-order unification, but that initially appeared more difficult to state in
terms of constraints. The connection between type inference and constraint solving became stronger
during the following two decades, thanks in particular to proposals for extending Hindley and Mil-
ner’s type system with more complex features such as subtyping. Gradually, constraints became more
systematically used in the formulation of type systems and type inference algorithms.

This chapter gives a constraint-based presentation of typeinference for Hindley and Milner’s type
system and for some of its extensions. Its material is drawn from a book chapter by Pottier and Rémy
[4]. I begin with the simply-typedλ-calculus (§2.1), move on to Hindley and Milner’s type system
(§2.2), then discuss more language features (§2.3).

2.1 The simply-typed λ-calculus

The definition of simply-typedλ-calculus appears in figure 2.1. It defines an inductive predicate whose
general form isΓ ⊢ e : τ , whereΓ is anenvironment, e is anexpression, andτ is a type. Expressions
are given by the grammar

e ::= x | λx.e | e e

Γ ⊢ x : Γ(x)
Γ;x : τ1 ⊢ e : τ2

Γ ⊢ λx.e : τ1 → τ2

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Figure 2.1: The simply-typedλ-calculus
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CHAPTER 2. TYPE INFERENCE FOR ML 6

JΓ ⊢ x : τK = Γ(x) = τ
JΓ ⊢ λx.e : τK = ∃α1α2.(JΓ;x : α1 ⊢ e : α2K ∧ α1 → α2 = τ)
JΓ ⊢ e1 e2 : τK = ∃α.(JΓ ⊢ e1 : α→ τK ∧ JΓ ⊢ e2 : αK)

Figure 2.2: Constraint generation for the simply-typedλ-calculus

wherex denotes avariable. Types are given by the grammar

τ ::= α | τ → τ

whereα denotes atype variable. An environment is a partial mapping of variables to types. Atriple
Γ ⊢ e : τ is apre-judgement. It is a judgementif can be derived from the rules of figure 2.1. A pair
(Γ, τ ) is a typingof e if and only if Γ ⊢ e : τ is a judgement. It is aprincipal typing of e if and only if
every other typing ofe is obtained out of it by substituting types for type variables. An expressione is
typableif and only if it admits a typing.

In the simply-typedλ-calculus, every typable expressione admits a principal typing. This fact was
proved, in the setting of combinatory logic, independentlyby Curry and by Hindley [1]. Curry’s proof
was direct, while Hindley’s relied on Robinson’s first-order unification algorithm [5]. Yet, Hindley
does not explicitly use equality constraints: instead, he uses the unification algorithm as a black box,
which, when supplied with two arbitrary type schemes, returns their least upper bound with respect to
the instantiation ordering, when it exists. This least upper bound is known as theirhighest common
instance. Thus, Hindley’s algorithm implicitly mixes constraint generation and constraint solving.

It is difficult to tell precisely when type inference for the simply-typedλ-calculus was considered as
the combination of distinct constraint generation and constraint solving phases. Such a view appears to
have gradually emerged during the 1980s, at a time when more general constraints, such as subtyping
constraints [6], were being introduced. This view is found,in a more or less informal fashion, in papers
by Clément, Despeyroux, Despeyroux, and Kahn [7] or by Cardelli [8]. The first explicit reduction of
type inference for the simply-typedλ-calculus to satisfaction of equality constraints seems due to Wand
[9].

2.1.1 A reduction of type inference to constraint solving

The constraints generated by Wand’s algorithm are made up solely of type equations and conjunctions.
For this reason, Wand can only reason aboutfreshtype variables in an informal way. Following Jouan-
naud and Kirchner [10], I extend the constraint language with existential quantification, which allows
dealing with this notion in a formal and elegant way. Thus, the constraint language is as follows:

C ::= τ = τ | C ∧ C | ∃α.C

Constraints are made up of type equations, conjunction, andexistential quantification. They are in-
terpreted in a Herbrand universe, that is, in a finite tree model. One could also interpret them in a
regular tree model, yielding a type inference algorithm foran extension of the simply-typedλ-calculus
with (equi-)recursive types. Constraint solving consistsin determining whether a constraintC is satis-
fiable. A constraint solving algorithm is best presented as arewrite system [10] whosesolved formsare
isomorphic tomost general unifiers.

To every pre-judgementΓ ⊢ e : τ , where the domain ofΓ contains the free variables ofe, one
associates a constraint, writtenJΓ ⊢ e : τK. The definition, which is by induction over the structure of
the expressione, appears in figure 2.2.

It is implicitly agreed that the type variablesα1, α2, andα must be chosenfreshwith respect toΓ
andτ , that is, must not appear free inΓ or τ . This could be made explicit by adding the side condition
α1, α2, α 6∈ ftv(Γ, τ). This freshness criterion is formal, because it is local: wedo not request that the
new type variables be chosen just“fresh,” which does not mean anything, but freshwith respect to a
few specific objects, namelyΓ andτ . Note that every type variable that occurs free inJΓ ⊢ e : τK must
necessarily occur free inΓ or τ .
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One can establish the following properties:

Theorem 2.1.1 φ is a solution ofJΓ ⊢ e : τK if and only if(φΓ, φτ) is a typing ofe. ⋄

Corollary 2.1.2 Let α be an arbitrary type variable. Let the environmentΓ map the free variables
of e to type variables that are pairwise distinct and distinct fromα. Then,e is typable if and only if
JΓ ⊢ e : αK is satisfiable. Furthermore, ifφ is a principal solution ofJΓ ⊢ e : αK, then(φΓ, φα) is a
principal typing ofe. ⋄

This result means that the type inference problem, which is to determine whether a term is typable,
can be reduced to the constraint satisfaction problem, which is to determine whether a constraint is
satisfiable. Furthermore, it implies that the simply-typedλ-calculus hasprincipal typings:

Corollary 2.1.3 If e is typable, thene admits a principal typing. ⋄

This property means that it is possible to analyze an expression e independently of its contextand to
infer not only its type, but also the requirements that it imposes upon its environment. Such a property
has applications to separate analysis and separate compilation [11, 12]. Unfortunately, it does not hold
of ML’s type system; I come back to this point later (§2.2.1).

It is easy to check that the constraintJΓ ⊢ e : αK of corollary 2.1.2 has sizeO(n), wheren is the
size ofe, and can be built in timeO(n) or O(n log n), depending on how variables and environments
are represented. A standard unification algorithm, such as Huet’s [13], based on Tarjan’sunion-find
data structure [14], allows determining whether such a constraint is satisfiable in timeO(nα(n)). (The
linear-time unification algorithm by Paterson and Wegman [15] isn’t of interest here, because it is not
incremental and cannot be used for ML.) To conclude, the timeand space complexity of type inference
for simply-typedλ-calculus is bounded byO(n log n).

2.1.2 An alternate reduction of type inference to constraint solving

In the previous paragraphs, I have decomposed the type inference problem in such a way that the notion
of an environment, as well as the process of building and looking up environments, are local to the first
phase, that is, constraint generation. The second phase, namely constraint solving, is not concerned
with environments, since this notion does not appear in the grammar of constraints. Yet, it is possible,
if desired, to decompose the problem in a slightly differentway, so that the notion of an environment
instead becomes local to the second phase.

To this end, I enrich the syntax of constraints:

C ::= . . . | x = τ | def x : τ in C

I now allow variablesx to appear free within constraints. For this reason, constraints are now interpreted
not only with respect to a valuationφ, which maps every type variableα to an element of the model in
which types are interpreted, but also with respect to a second valuationψ, which maps every variablex
to such an element. I introduce two new constraint forms and equip them with the following interpreta-
tion. The equationx = τ is satisfied by the valuationsφ andψ if and only if ψx andφτ coincide. The
constraintdef x : τ in C is satisfied byφ andψ if and only ifC is satisfied byφ andψ[x 7→ φτ ].

The expressiveness of the constraint language is not fundamentally affected by this extension. In-
deed, one can check that the equivalence law

def x : τ in C ≡ [τ/x]C

is valid in this interpretation. (Two constraints are equivalent if and only if they are satisfied by the same
valuations.) In other words, thedef construct is an explicit substitution form. It can be considered, to
a certain extent, as a form of syntactic sugar: indeed, if a constraintC has no free variables, then the
above law, oriented from left to right and viewed as a rewriterule, allows rewritingC into an equivalent
constraint, expressed in the initial syntax. A slight gain in expressiveness stems from the existence of
constraints with free variables: for instance,∃α.(x1 = α∧ x2 = α) expresses the fact that the variables
x1 andx2 should have a common type. On can also writex = τ1 ∧ x = τ2, which superficially appears
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Jx : τK = x = τ
Jλx.e : τK = ∃α1α2.(def x : α1 in Je : α2K ∧ α1 → α2 = τ )
Je1 e2 : τK = ∃α.(Je1 : α→ τK ∧ Je2 : αK)

Figure 2.3: Constraint generation for the simply-typedλ-calculus (variant)

Γ ⊢ e1 : σ Γ;x : σ ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ

Γ ⊢ e : τ ᾱ # ftv(Γ)

Γ ⊢ e : ∀ᾱ.τ

Γ ⊢ e : ∀ᾱ.τ

Γ ⊢ e : [~τ/~α]τ

Figure 2.4: Hindley and Milner’s type system

reminiscent ofintersection types[16, 17]; yet, according to the above interpretation, this constraint is
equivalent tox = τ1 ∧ τ1 = τ2. Thus, we remain within a simply-typed setting, where everyentity
(variable or expression) is monomorphic.

One can now offer an alternate reduction of type inference for the simply-typedλ-calculus to con-
straint solving. It appears in figure 2.3, which defines a mapping of an expressione and a typeτ to a
constraintJe : τK. Note that environments have disappeared! Environment lookup, which allowed pro-
ducing an equation of the formΓ(x) = τ , has been suppressed; instead, one now produces the equation
x = τ , where the namex isn’t resolved. Environment extension, writtenΓ;x : α1 and exploited to
associate typeα1 to the variablex when analyzing aλ-abstractionλx.e, has also disappeared. Instead,
analysis of the abstraction bodye produces a constraintJe : α2K within whichx can occur free. These
free occurrences ofx are given a meaning, a posteriori, by wrapping this constraint into the context
def x : α1 in [].

What are the advantages of this new presentation with respect to the initial approach? There are
several, all of which are minor. First, the specification is now more abstract. The constraint solver can
choose to eagerly eliminate alldef forms via substitution, as suggested earlier, which essentially leads to
the initial algorithm. It can also choose another rewrite strategy, for instance, abottom-upone, leading
to a different algorithm. Next, corollary 2.1.2 can be reformulated in a slightly simpler way, because it
is no longer necessary to explicitly construct an environment Γ consisting of distinct type variables:

Theorem 2.1.4 Letα be an arbitrary type variable. Then,e is typable if and only ifJe : αK is satisfi-
able. ⋄

WhenJe : αK is satisfiable, a principal typing ofe can be reconstructed in a simple way out of a
solved form of this constraint. For instance, a solved form of Jx+ 1 : αK is x = int ∧α = int , whence
one can deduce that a principal typing ofx+ 1 is (x : int , int). Further details of this construction are
omitted.

In the case of simply-typedλ-calculus, thus, the two reductions of type inference to constraint
solving proposed above differ only in a cosmetic way. The true interest of the second one lies in the fact
that it alone admits an elegant generalization to the case ofML (§2.2.2).

2.2 Hindley and Milner’s type system

ML’s type system, defined by Milner [3] and by Damas and Milner[18], extends the simply-typed
λ-calculus by ascribingtype schemes, that is, polymorphic types, to the variables whose definition is
known, that is, to variables bound by a newlet form:

e ::= . . . | let x = e in e

In contrast,λ-bound variables, that is, formal function parameters, must remain monomorphic.
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fresh = doα ∈ V
doV ← V \ {α}
return α

J (Γ ⊢ x) = let ∀α1 . . . αn.τ = Γ(x)
doα′

1
, . . . , α′

n = fresh, . . . , fresh
return [α′

i/αi]
n
i=1

(τ)
J (Γ ⊢ λx.e1) = doα = fresh

do τ1 = J (Γ;x : α ⊢ e1)
return α→ τ1

J (Γ ⊢ e1 e2) = do τ1 = J (Γ ⊢ e1)
do τ2 = J (Γ ⊢ e2)
doα = fresh
doφ← mgu(φ(τ1) = φ(τ2 → α)) ◦ φ
return α

J (Γ ⊢ let x = e1 in e2) = do τ1 = J (Γ ⊢ e1)

let σ = ∀ ftv(φ(Γ)).φ(τ1)
return J (Γ;x : σ ⊢ e2)

Figure 2.5: AlgorithmJ

A type scheme is a type where zero or more type variables are universally quantified:

σ ::= ∀ᾱ.τ

Hindley and Milner’s type system is obtained by extending the definition of simply-typedλ-calculus
(figure 2.1) with the rules of figure 2.4.

2.2.1 AlgorithmsW and J

The introduction of polymorphism makes the type inference problem more complex. First, from a
theoretical point of view, its complexity is significantly increased: indeed, it becomesDEXPTIME-
complete [19, 20]. Furthermore, from a more pragmatic pointof view, it apparently remained difficult,
for a long time, to give a clear description of the type inference algorithm for Hindley and Milner’s
type system. The two equivalent algorithms proposed by Milner [3],W andJ , are quite involved.
Indeed, they mix calls to an underlying unification algorithm, compositions and applications of substi-
tutions, and operations over type schemes, such as instantiation and generalization, the latter of which
requires determining which type variables occur free in thecurrent environment. Furthermore, for some
unknown reason,W appears to have become more popular thanJ , even though the latter is viewed—
with reason!—by Milner as a simplification of the former. Jones’ presentation of type inference for
Haskell [21] does rest upon an implementation ofJ .

As an illustration, here is a definition ofJ . It is rather close to Milner’s. It rests upon a function
mgu(·), which to a conjunction of equations associates an (idempotent) most general unifier or fails. I
do not recall the classic definition of this function.

For enhanced readability, the algorithm is presented in an apparently imperative style: it relies on
two global variablesφ andV . φ is thecurrent substitution: it initially is the identity and represents
the most general unifier of the equations solved so far.V is an arbitrary, infinite set of type variables:
whenever the algorithm requires a “fresh” type variable, itis drawn out ofV . Formally speaking, one
can considerφ andV as standing for two implicit parameters and two implicit results of the algorithm,
which then becomes purely functional. The apparently imperative syntax that I use is in fact none other
than Haskell’sdo notation [22].

The algorithm accepts an environmentΓ and an expressione. It produces a typeτ or fails. It satisfies
the following invariants: (i)φ is of the formmgu(C), for some constraintC; (ii) no type variable inV



CHAPTER 2. TYPE INFERENCE FOR ML 10

occurs free inC, Γ, or in the resultτ . These invariants imply thatφ is idempotent, on the one hand, and
thatV is fresh with respect toφ, on the other hand. The algorithm is defined in figure 2.5.

The manner in which the current substitutionφ is updated, on the fourth line of the application
case, is such that, ifφ initially was the most general unifier of some constraintC, thenφ is, after the
update, the most general unifier of the conjunctionC ∧ τ1 = τ2 → α. This suggests that, instead of
maintaining a current substitutionφ, one could maintain a current conjunction of equationsC, and delay
its resolution. In fact, when does one actually need to computeφ and to apply it?

The answer appears a few lines down, in thelet case. There, a type schemeσ is built out of the
type φ(τ1) by universally quantifying all of the type variables that donot occur free inφ(Γ). (The
notation∀ᾱ quantifies over all type variablesexceptᾱ.) It is difficult to imagine how to buildσ without
exhibitingφ, that is, without solvingC. Perhaps for this reason, it was often considered that, in the
case of ML, constraint generation and constraint solving were inherently intermixed and could not be
separated entirely. Yet, there is really no reason to believe so (§2.2.2).

What about the proof of algorithmJ ? One can establish the following properties in succession:

Theorem 2.2.1 (Correctness) If J (Γ ⊢ e) terminates in state(φ, V ) and returnsτ , thenφ(Γ) ⊢ e :
φ(τ ) is a judgement. ⋄

Theorem 2.2.2 (Completeness) Let Γ be an environment. Let(φ0, V0) be a state that satisfies the
algorithm’s invariant. Letθ0 andτ0 be such thatθ0φ0(Γ) ⊢ e : τ0 is a judgement. Then, the execution
ofJ (Γ ⊢ e) out of the initial state(φ0, V0) succeeds. Let(φ1, V1) be its final state andτ1 be its result.
Then, there exists a substitutionθ1 such thatθ0φ0 andθ1φ1 coincide outsideV0 and such thatτ0 equals
θ1φ1(τ1). ⋄

Although the first statement above is simple, and easily proved by structural induction, the second
one isn’t. It is hard to decipher. As one might imagine, its proof is heavy, and, worse, does not, in my
opinion, shed any light upon the algorithm.

It is historically interesting to note that, for many years,the only known completeness proof forW
was the one by Damas [23], which never became widely available. Apparently only in the 1990s were
completeness proofs more widely published [24] and mechanized [25–27].

One should also note that the proofs of algorithmsW, J , or of their variants, such asM [28],
are sufficiently different in their structure, even though they share identical ideas, to only share a few
preliminary lemmas. The constraint-based approach described further on (§2.2.2) is superior in that the
proof of the constraint generator is performed just once. The various classic algorithms, namelyW , J ,
andM, then merely correspond to various constraint solvingstrategies, whose correctness proof is not
difficult.

Let us introduce a few more definitions. A typing(Γ′, τ ) is relative toΓ if and only if its first
componentΓ′ is an instance ofΓ. A typing of e is principal relative toΓ if and only if it is relative to
Γ and every typing ofe relative toΓ is an instance of it. Then, the two previous theorems lead to the
following conclusion.

Corollary 2.2.3 (Relative principal typings) The execution ofJ (Γ ⊢ e) succeeds if and only ife
admits a typing relative toΓ. Furthermore, ifφ1 andτ1 are the algorithm’s results, then(φ1(Γ), φ1(τ1))
is a typing ofe and is principal relative toΓ. ⋄

It is instructive to compare this statement with that of corollary 2.1.3. In the case of the simply-
typedλ-calculus, the inference algorithm expected just one argument, namely the expressione, and
either produced a principal typing or failed. In the case of ML, algorithmJ expects not onlye but also
an environmentΓ, and produces a principal typing ofe relative toΓ, that is, a typing that is principal
only among those typings whose first component is an instanceof Γ. Thus, the search is restricted to
only part of the universe of all typings ofe. For this reason, it is usually said that Hindley and Milner’s
type system does not haveprincipal typings, but nevertheless hasprincipal types. For further details,
consult Jim [11] or Wells [12].

Of course, one could supply the algorithm with an environment Γ that consists, as in corollary 2.1.2,
of pairwise distinct type variables. If every environment was an instance of such aΓ, as in the simply-
typedλ-calculus, then the algorithm would produce a principal typing. Unfortunately, such is not the
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case. A nontrivial type scheme is not an instance of a type variable: for instance, the type scheme
∀β.β → β is not an instance ofα. (Thetypeβ → β is an instance ofα.) In other words, by supplying
algorithmJ with an environment that consists of type variables, one requires it to assign monomorphic
types to all ofe’s free variables. A variable can have polymorphic behavioronly if the initial environ-
ment maps it to a nontrivial typescheme. In short, the algorithm is unable to infer that a free variable
should receive a polymorphic type.

2.2.2 A constraint-based approach

AlgorithmsW andJ exploit the unification algorithm as a black box, which, out of two arbitrary types,
produces a most general unifier. The algorithms are presented in such a way that a call tomgu(·) appears
necessary at least at everylet node. Thus, Milner’s presentation, just like Hindley’s (§2.1), implicitly
mixes constraint generation and constraint solving. Yet, for the sake of modularity, it would be desirable
to separate these two phases.

It is interesting to note that the standard presentations ofmany constraint-based extensions of ML,
such as HM(X) [29], suffer from the same flaw, although perhaps in a less obvious way. In HM(X),
creating a type scheme apparently does not require solving the current constraint, because type schemes
take the form∀ᾱ[C].τ , where the constraintC isn’t necessarily a solved form. However, in reality,
because the constraintC is copiedwhenever a fresh instance of the type scheme is taken, it is impor-
tant thatC be solved and simplified before the type scheme is created. For this reason, the original
presentation of type inference for HM(X) mixed constraint generation and constraint solving [29].

The solution that I now present, drawn from work by Pottier and Rémy [4], exploitsdef constraints,
analogous to those introduced in§2.1.2. It is applicable to Hindley and Milner’s type system as well as
HM(X). Here, I limit my interest to the former.

The idea is to enrich the constraint language considered in§2.1.2 by allowing a variablex to denote
not just a type, but a (constrained) type scheme. The syntax of constraints and of constrained type
schemes is now:

C ::= τ = τ | C ∧ C | ∃α.C | x � τ | def x : ς in C
ς ::= ∀ᾱ[C].τ

The logical interpretation of constraints is now relative to a valuationφ that maps every type variable
α to an element of the model in which types are interpreted, as before, and to a valuationψ that maps
every variablex to asetof such elements. Indeed, a type scheme is interpreted as a set of types. The
constraintx � τ , which might be read “typeτ is an instance of the type schemex,” is satisfied byφ and
ψ if and only if φτ is a member ofψx. The constraintdef x : ς in C is satisfied byφ andψ if and only
if C is satisfied byφ andψ[x 7→ ψ

φ (ς)], where the interpretationψφ (ς) of a constrained type schemeς is
defined as follows: ifς is ∀ᾱ[C].τ , then its interpretation is the set of allφ′τ , whereφ andφ′ coincide
outsideᾱ and whereφ′ andψ satisfyC.

Again, the effect of the above definitions, which can appear somewhat technical, is only to validate
the equivalence law

def x : ς in C ≡ [ς/x]C

Thus, thedef construct is anexplicit substitutionform. For the above law to make sense, though, one
must define the meaning of the constraintς � τ , which might be read “typeτ is an instance of the
constrained type schemeς.” Indeed, such a constraint appears whenx is replaced withς in a constraint
of the formx � τ . To define its meaning is to define its interpretation:ς � τ is satisfied byφ andψ
if and only if φτ is a member ofψφ (ς). Equivalently, this constraint can be considered syntactic sugar:
indeed, ifς is ∀ᾱ[C].τ ′, and ifᾱ is fresh with respect toτ , thenς � τ is equivalent to∃ᾱ.(C ∧ τ = τ ′).
In other words, the typeτ is an instance of the constrained type scheme∀ᾱ[C].τ ′ if, for some assignment
of the variables̄α that satisfiesC, τ ′ coincides withτ .

The extended constraint language offers constrained type schemes. Like in HM(X), this allows
building type schemes without having to first perform a constraint solving step. Furthermore, the new
language allows referring to a type scheme through a variable x, avoiding the need forcopyinga type
scheme whenever a fresh instance of it is desired.

We can now express a constraint generation algorithm for Hindley and Milner’s type system in the
style of§2.1.2 (figure 2.3). The new algorithm appears in figure 2.6. The first three lines are identical



CHAPTER 2. TYPE INFERENCE FOR ML 12

Jx : τK = x � τ
Jλx.e : τK = ∃α1α2.(def x : α1 in Je : α2K ∧ α1 → α2 = τ)
Je1 e2 : τK = ∃α.(Je1 : α→ τK ∧ Je2 : αK)

Jlet x = e1 in e2 : τK = let x : ∀α[Je1 : αK].α in Je2 : τK

Figure 2.6: Constraint generation for Hindley and Milner’stype system

to those of figure 2.3, exceptx = τ is replaced withx � τ , reflecting the fact thatx now denotes
a type scheme and thatτ can be an arbitrary instance of it. The main novelty lies in the fourth line.
Upon first reading, one can view the let form, which hasn’t been defined yet, as synonymous fordef.
The algorithm first builds the constrained type schemeς1 = ∀α[Je1 : αK].α, whereα is an arbitrary
type variable. This is aprincipal constrained type scheme fore1. The constraint that expresses the fact
that e2 is well-typed, namelyJe2 : τK, can contain free occurrences ofx. It is placed in the context
let x : ς1 in [], so that these free occurrences denote the constrained typeschemeς1.

In fact, if let was defined as synonymous fordef, this constraint generation algorithm would not be
quite correct. In the particular case wherex does not occur free ine2, the constraintdef x : ∀α[Je1 :
αK].α in Je2 : τK is equivalent toJe2 : τK, which does not guarantee thate1 is well-typed. Thus, we
introducelet x : ς in C as syntactic sugar fordef x : ς in (∃α.x � α∧C). One can then check that the
constraintlet x : ∀α[Je1 : αK].α in Je2 : τK implies∃α.Je1 : αK, which guarantees thate1 is well-typed.
This is important because ML has call-by-value semantics: the expressione1 is evaluated even whenx
does not occur free ine2.

One can establish the correctness and completeness of this constraint generation algorithm with
respect to the specification of Hindley and Milner’s type system. Here is a statement of both properties:

Theorem 2.2.4 (Correctness and completeness) LetΓ be an environment whose domain isfv(e). The
expressione is well-typed relative toΓ if and only ifdef Γ in ∃α.Je : αK is satisfiable. ⋄

It is important to note that the constraint generation algorithm has linear complexity. In other words,
the modular decomposition into constraint generation and constraint solving can be effectively exploited
as an implementation technique, with no asymptotic overhead.

The use of thedef or let constructs is precisely intended to allow building a constraint of linear size.
(Indeed, let us stress that eliminating them, via a naı̈ve expansion, would cause an exponential blowup
in the size of the constraint.) This technique appears due toMüller [30]. It was independently used by
Gustavsson and Svenningsson [31], in a setting where the only base predicate was a subtype relationship
between variables that denote atoms. Gustavsson and Svenningsson show that, in this specific setting,
the strategy that consists in simplifying the left-hand side of alet definition before duplicating it leads
to an algorithm of cubic complexity. The exponential blowupis thus avoided altogether. Unfortunately,
this result does not hold in the case where constraints involve equations between types. Indeed, in that
case, constraint solving is necessarilyDEXPTIME-hard, since type inference for Hindley and Milner’s
type system can be reduced to it. Yet, McAllester [32] offersan interesting complexity result: under
the double hypothesis that inferred types have bounded sizeand that the (left-) nesting depth oflet
definitions is bounded, a constraint can be generated and solved in linear time. Whether this hypothesis
is reasonable is subject to debate; nevertheless, this result appears to explain why type inference for
Hindley and Milner’s type system is deemed “efficient in practice.”

One might think that the constraint-based approach is a lot of fuss with little benefit by arguing that
the programming language only has four constructs (variable, abstraction, application, andlet), where
as the constraint language has more (equation, conjunction, existential quantification, instantiation, and
let). Does this mean that a constraint-based encoding sheds no light on the type inference problem? Not
at all. As we shall see (§2.3), the introduction of products and sums, algebraic datatypes, references,
exceptions, which are some of the features of a full-fledged incarnation of ML, require no extensions
to the constraint language. Polymorphic recursion as well as “rigid” type annotations require universal
quantification in the constraint language. Thus, in the caseof a realistic programming language, the
reduction to constraint solving represents a significant simplification of the initial problem.
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2.2.3 A few words of constraint solving

A constraint solving algorithm is usually presented as a rewrite system. To demonstrate its correctness,
one establishes three properties: (i) every rewrite step preserves the constraint’s logical interpretation;
(ii) the rewrite system is strongly normalizing; and (iii) it is trivial to decide whether a normal form
(also known assolvedform) is satisfiable.

One of the strong points of the constraint-based approach isthat it offers the opportunity of defining
several distinct constraint solving algorithms, which often correspond to distinct strategies within a
single rewrite system. These algorithms can then share a single correctness proof.

The constraint language considered here is made up of a kernel language, which consists of type
equations, conjunction and existential quantification, enriched with an explicit substitution mechanism,
represented by thelet construct and by instantiation constraints. Thus, it is natural to define the rewrite
system, in a modular way, as the combination of a solver for the kernel language and of a separate
rule set for dealing with explicit substitutions. The former is none other than a first-order unification
algorithm, and can be arbitrary; only the structure of its solved forms must be agreed upon. The latter
performs operations known as “generalization” et “instantiation” in classic implementations of ML.

The most natural way of dealing withlet constraints is the one implicitly employed by Milner’s
algorithmsW andJ , as well as by Rémy [33], Müller [30], or Gustavsson and Svenningsson [31].
When faced with the constraintlet x : ς in C, one first simplifies the constrained type schemeς, so as
to make it as compact as possible. Then, one eliminates thelet construct by replacing all occurrences
of x by ς within C. Simplifying ς prior to duplication saves effort. Simplifying a constrained type
scheme consists, at least, in solving the constraint that itcontains. One can also go further. For instance,
one can decrease the number of its universal quantifiers, then float part of its constraint outside of the
let construct, again avoiding some duplication. These ideas, due to Rémy [33], are developed in detail
in [4, §8]. An efficient implementation of these techniques requires associating an integerrank with
every type variable. This mechanism, imagined by Rémy [33]and rediscovered by McAllester [32],
can be understood in logical terms: the rank of a type variable tells where it is bound. Decreasing
its rank amounts to floating its binder up within the current constraint, that is, to performing scope
extrusion.

An alternative strategy consists in dealing withlet constraints in two distinct ways, depending on
whether the variablex of interest isλ-bound orlet-bound in the program. In the former case, the
constraintdef x : τ in C is dealt with by eliminating thedef constructafter the constraintC is solved.
In the latter case, the constraintlet x : ς in C is dealt with by simplifyingς and eliminating thedef
constructbeforeC is analyzed, as above. This alternative approach corresponds to Mitchell’s PTL
algorithm [34], and was used in other works as well [35–37]. One of its strong points, according to
Chitil [37], is to facilitate an interactive search for typeerrors, by preventing the constraint solver from
propagating informationsidewayswith respect to the program’s tree structure.

2.3 Extensions

This section briefly discusses a few basic extensions that must be made to the calculus considered so
far—a pureλ-calculus—in order to turn it into a reasonable programminglanguage. I focus on three
features: data structures, recursion, and optional type annotations, because each provides an opportu-
nity of discussingexplicit type annotations, a topic that becomes central later in this document when
arbitrary-rank polymorphism and generalized algebraic data types are discussed. I omit a discussion of
many other features, among whichreferences, exceptions, pattern matching, objects, andmodules.

2.3.1 Data structures

Products and sums

Introducing so-calledstructural products and sums is straightforward. One extends the grammar of
types as follows:

τ ::= . . . | τ × τ | τ + τ
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The typeτ1 × τ2 describes a pair whose left (resp. right) component has typeτ1 (resp.τ2). The type
τ1 +τ2 describes either the application of the left injection to a value of typeτ1, or the application of the
right injection to a value of typeτ2. These products and sums are sometimes referred to asanonymous
because pair components and injections are unnamed: they are referred to via the predefined labels
“left” and “right.”

Like many simple language features, products and sums can beviewed either as new language
constructs or simply and as new constants, together with some syntactic sugar. This choice does not
have significant impact. Here, we adopt the second approach.Thus, we extend the calculus with the
following constants:

(·, ·) : ∀α1α2.α1 → α2 → α1 × α2

πi : ∀α1α2.α1 × α2 → αi
inj i : ∀α1α2.αi → α1 + α2

case : ∀α1α2α.α1 + α2 → (α1 → α)→ (α2 → α)→ α

Since our emphasis is not on dynamic semantics, we omit the reduction rules that come with these
constants. We also omit the definition of the syntactic sugars that usually accompany the(·, ·) andcase
constants. In terms of type inference, which is the main topic of interest, the impact of introducing new
constants is null. Indeed, constants are dealt with just like variables: it is only a matter of extending the
initial environment with the above bindings.

Structural products and sums are simple, but they alone do not lead very far. Indeed, a type built
out of products, sums, and base types (such as theunit type or the type of machine integers) can only
describe values ofboundedsize. They do not allow describing lists, trees, or other data structures of
unbounded size. For this, some form ofrecursivetypes is needed. Indeed, the informal definition: “a
list is either empty or a pair of an element and a list” is recursive.

Equi-recursive types

The equation
α = unit + τ × α

can be viewed as a characterization of the type of lists whoseelements have typeτ . Indeed, it para-
phrases the informal definition above. The most obvious way of introducing recursive types into a type
system is to ensure that this equation admits a solution. This can be done by extending the grammar of
types with syntax for regular trees:

τ ::= . . . | µα.τ

This is finite syntax for the regular tree obtained by “infinite unfolding.” (Well-formedness conditions
rule out meaningless “types,” such asµα.α, whose infinite unfolding isn’t well-defined.) Two typesτ1
andτ2 are said to beinterconvertiblewhen their infinite unfoldings coincide; we then writeτ1 =µ τ2.
Two interconvertible types can be used interchangeably: this is formalized by introducing a new typing
rule.

Γ ⊢ e : τ1 τ1 =µ τ2

Γ ⊢ e : τ2

This rule is not syntax-directed, so it can be applied at any point in a program. As a result, its impact
on type inference is not local, but pervasive. None of the constraint generation rules is affected, but
the interpretationof constraints changes: equations must now be interpreted in a regular treemodel,
instead of a finite tree model, so that the equationα = unit + τ ×α is viewed as satisfiable. Its solution
is the regular tree denoted byµα.unit + τ × α. In a finite tree model, it is unsatisfiable. In terms
of constraint solving, this requires moving from unification of finite first-order terms to unification of
regularfirst-order terms. The unification algorithm is almost unchanged [13]: the only difference is that
theoccurs checkis removed.

This approach to recursive types is known as theequi-recursiveapproach [38, 39], because equality
modulo infinite unfolding is placed at the heart of the type system. One of its strong points is to not
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require any explicit type annotations or declarations, so that full type inference is preserved. For this
reason, it is exploited, for instance, in the object-oriented subsystem of Objective Caml [40]. Its main
disadvantage is that, in the presence of equi-recursive types, many apparently meaningless programs
have types. For instance, self-applicationλx.(x x) has principal type∀β.(µα.α → β) → β. Yet,
self-application is rarely used in practice. It is likely that the programmer intended to write something
else—perhapsλx.(x + x). Thus, it would be better to immediately reject this program, instead of
accepting it and assigning it a baroque type.

Iso-recursive types

The iso-recursiveapproach to recursive types addresses this problem. In thisalternate approach, the
equation

α = unit + τ × α

is again viewed as unsatisfiable—that is, constraints are again interpreted in a finite tree model. Instead,
the user is allowed todeclarethat a new type constructor, saylist, satisfies theisomorphism

listα ≈ unit + α× listα

or, more generally,
T ~α ≈ τ

whereT is the user-defined type constructor andτ can refer toT as well as to the type parameters~α.
Declarations of iso-recursive types can in fact be mutuallyrecursive: every equation can refer to a type
constructor introduced by any other equation.

By isomorphism, it is meant thatT ~α andτ are distinct types, but that it is possible to convert one
into the another via theexplicit application of a constant whose dynamic semantics is the identity. Two
constants are introduced for this purpose:

foldT : ∀ᾱ.τ → T ~α
unfoldT : ∀ᾱ.T ~α→ τ

In the iso-recursive approach, converting fromT ~α to its unfoldingτ , or vice-versa, requires an explicit
use offoldT or unfoldT , that is, an explicit annotation, whereas, in the equi-recursive approach, the
conversion was implicit. As a result, full type inference isno longer available. In return, exotic terms
such asλx.(x x) are rejected, which pragmatically is good. This can be viewed as a situation where
mandatory type annotationsare helpful.

If the list type constructor is declared as above, then the empty list iswritten

foldlist (inj
1
())

A list l of type listα is deconstructed by

case(unfoldlist l) (λn. . . .) (λc.let hd = π1 c in let tl = π2 c in . . .)

A common idiom is tofold whenconstructingdata and tounfoldwhendeconstructingit.

Algebraic data types

In ML and Haskell, structural products and sums are fused with iso-recursive types, yielding so-called
algebraic data types[41]. The idea is to avoid requiring both a (type)nameand a (field or tag)number,
as in

foldlist (inj
1
())

Indeed, this is verbose. The use of a numeric tag is unpleasant, as it is difficult to remember the meaning
of tags, and fragile: programs are likely to break when the definition of lists evolves. Instead, it would
be desirable to mentiona single name, as in

Nil ()
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This is permitted by algebraic data type declarations.
An algebraic data type constructorT is introduced via arecord typeor variant typedefinition:

T ~α ≈

k∏

i=1

ℓi : τi or T ~α ≈

k∑

i=1

ℓi : τi

Labelsℓ are used as names for fields or tags. (Field labels and tag labels could be taken in two distinct
syntactic categories.) The record labels used in all algebraic data type declarations must be pairwise
distinct, so that every record label can be uniquely associated with a type constructorT and with an
indexi. A similar requirement bears on tag labels.

The record type definition

T ~α ≈

k∏

i=1

ℓi : τi

introduces the constants

ℓi : ∀ᾱ.T ~α→ τi i ∈ {1, . . . , k}
makeT : ∀ᾱ.τ1 → . . .→ τk → T ~α

Some syntactic sugar is in order. In concrete syntax, we write e.ℓ for (ℓ e). Whenk > 0, we write
{ℓi = ei}

k
i=1

for (makeT e1 . . . ek).
The variant type definition

T ~α ≈
k∑

i=1

ℓi : τi

introduces the constants

ℓi : ∀ᾱ.τi → T ~α i ∈ {1, . . . , k}
caseT : ∀ᾱγ.T ~α→ (τ1 → γ)→ . . . (τk → γ)→ γ

In concrete syntax, we writecasee [ℓi : ei]
k
i=1

for (caseT e e1 . . . en) whenk > 0.
One can now declare

listα ≈ Nil : unit + Cons: α× listα

This gives rise to

Nil : ∀α.unit → listα
Cons : ∀α.α× listα→ listα

caselist : ∀αγ.listα→ (unit → γ)→ (α× listα→ γ)→ γ

Then, the empty list is written
Nil ()

A list l of type listα is deconstructed by

casel [
Nil : λn. . . .
| Cons: λc.let hd = π1 c in let tl = π2 c in . . .

]

This yields concrete syntax that is more pleasant, and more robust, than that obtained when viewing
structural products and sums and iso-recursive types as twoorthogonal language features. This explains
the success of algebraic data types.

2.3.2 Recursion

The ability to define data structures of unbounded size, suchas lists, is only one side of the coin. Indeed,
it is also necessary to be able to definefunctionsthat manipulate such data structures. The definition of
these functions typically requiresrecursion.
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Monomorphic recursion

In the pureλ-calculus, recursion needs not be introduced as an additional language feature: indeed, it is
possible, within the language, to define afixpoint combinator, which allows encoding arbitrary recursive
function definitions. However, this is mostly a theoreticalconsideration. In practice, it is just as simple
to view this combinator as a constant, together with anad hocreduction rule. The type scheme ascribed
to this constant is

fix : ∀αβ.((α→ β)→ (α→ β))→ α→ β

and the reduction rule, in a call-by-value setting, is

fix v1 v2 → v1 (fix v1) v2

This is perhaps not very enlightening at first sight. The ideais that a simple recursive function definition,
of the general form

letrecf = λx.e1 in e2

can then be viewed as syntactic sugar for

let f = fix (λf.λx.e1) in e2

In short, an application offix yields an anonymous recursive function, which, via alet definition, re-
ceives the namef within e2. This syntactic sugar allows deriving not only thedynamic semanticsof
letrec, but also itsstatic semantics. Indeed, in the setting of Hindley and Milner’s type system,a simple
analysis of the expressionlet f = fix (λf.λx.e1) in e2 shows that it admits typeτ2 under environment
Γ if and only if one can prove

Γ; f : τ → τ ′;x : τ ⊢ e1 : τ ′

ᾱ # ftv(Γ)
Γ; f : ∀ᾱ.τ → τ ′ ⊢ e2 : τ2

for appropriate values ofτ , τ ′, and ᾱ. That is, the typechecking rule forletrec that arises out this
syntactic sugar is

Γ; f : τ → τ ′;x : τ ⊢ e1 : τ ′ ᾱ # ftv(Γ) Γ; f : ∀ᾱ.τ → τ ′ ⊢ e2 : τ2

Γ ⊢ letrecf = λx.e1 in e2 : τ2

The first premise checks that the recursive function definition is consistent:f andλx.e1 must agree
upon a common typeτ → τ ′. The second and third premises allow this type to be generalized, that is,
turned into a type scheme∀ᾱ.τ → τ ′, which is assigned tof when typecheckinge2.

This rule is peculiar in that the variablef must be assigned amonomorphictype while typechecking
thebodyof the definition, that is, withine1. It is assigned apolymorphictype only while typechecking
the definition’suses, that is, withine2. This is a weakness, and is sometimes a problem in practice. At
best, the problem can be circumvented via code duplication;in some cases, no workaround exists, so
there is a loss in expressive power [42].

In terms of type inference, the constraint

Jletrecf = λx.e1 in e2 : τK

is equivalent to

let f : ∀αβ[let f : α→ β;x : α in Je1 : βK].α→ β in Je2 : τK

Becauseα andβ denotetypes, the variablef is consideredmonomorphicwhile typecheckinge1. It
receives apolymorphictype scheme only while typecheckinge2.
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Polymorphic recursion

[43] suggested resolving this issue by introducing a more symmetric rule forletrecdefinitions:

Γ; f : σ ⊢ λx.e1 : σ Γ; f : σ ⊢ e2 : τ

Γ ⊢ letrecf = λx.e1 in e2 : τ

Here,σ is an arbitrary type scheme. The body of the definition and itsuses are typechecked within a
common environment, where it is permitted forf to receive a type scheme. This rule is strictly more
expressive, yet safe. It is known aspolymorphic recursion.

Unfortunately, type inference in the presence of this feature becomes problematic. Informally speak-
ing, it seems that the rule requiresguessing a type scheme, which first-order unification cannot do. In
fact, the problem was shown by Henglein [44] and by Kfoury, Tiuryn, and Urzyczyn [45] to be inter-
reducible withsemi-unification, an undecidable problem. Several semi-algorithms are folklore and
reportedly work well [46]. Still, having to rely on a (potentially unpredictable) semi-algorithm is some-
what discomforting.

Fortunately, type inference in the presence of polymorphicrecursion becomes a simple problem
again if one is willing to rely on amandatory type annotation. The type system’s specification is
modified as follows:

Γ; f : σ ⊢ λx.e1 : σ Γ; f : σ ⊢ e2 : τ

Γ ⊢ letrecf : σ = λx.e1 in e2 : τ

Here,σ is no longer guessed: it is provided by the programmer. (For simplicity, let us assume, for the
time being, thatσ is a closed type scheme. This limitation can easily be removed; see§2.3.3.)

It can be shown that the constraint generation rule that corresponds to this typechecking rule is

Jletrecf : σ = λx.e1 in e2 : τK
=

let f : σ in (Jλx.e1 : σK ∧ Je2 : τK)

Here, it is clear thatf is assigned the type schemeσ both inside and outsideof the recursive definition.
For this constraint generation rule to make sense, though, there remains to define the notationJe : σK,
which is new. This requires extending the constraint language withuniversal quantification:

C ::= . . . | ∀α.C

The interpretation of this new constraint form is standard.Constraint solving now amounts tofirst-order
unification under a mixed prefix, a simple extension of standard first-order unification, forwhich there
is no established reference—consult, for instance, Pottier and Ŕemy [47,§1.10].

It should be intuitively clear thate admits the type scheme∀α.α → α if and only if e has type
α→ α for every possible instance ofα, or, equivalently, for an abstractα. To reflect this, one defines

Je : ∀ᾱ.τK

as syntactic sugar for
∀ᾱ.Je : τK

The need for universal quantification arises when polymorphism is assertedby the programmer—as
opposed toinferredby the system.

2.3.3 Optional type annotations

Polymorphic recursion is a situation where amandatorytype annotationhelps. This is in contrast with
the optional type annotations allowed by Standard ML, Objective Caml, orHaskell, which can only
restrict the set of valid types for a program.

What’s the point of providing explicit type annotations, when types can be inferred anyway? I can
think of two answers. First, type annotations serve as machine-checked documentation. Second, type
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annotations allow partitioning a large type inference problem into several independent sub-problems,
which makes it easier to report accurate type error locations when a program is ill-typed.

What’s the point of explicitly making a program’s principaltype less general than it could otherwise
be? Perhaps the program is more versatile than intended, andthe type annotations, which serve as
documentation, document its intended use only.

The treatment of optional type annotations has remained part of the folklore for a long time, and has
only rather recently been put in print by Peyton Jones and Shields [48] and by Pottier and Rémy [47].
When expressed in terms of constraints, it is particularly simple.

Optional type annotations are introduced by the rule

Γ ⊢ e : τ

Γ ⊢ (e : τ ) : τ

Here, the typeτ is provided by the programmer as part of the annotation. It must be a ground type,
because we have not (yet) introduced any means ofbinding type variables in expressions. Constraint
generation is extended accordingly:

J(e : τ ) : τ ′K = Je : τK ∧ τ = τ ′

It is not difficult to check thatJ(e : τ ) : τ ′K entailsJe : τ ′K, which means that the presence of the an-
notation makes the generated constraintmore specific(more demanding). This is why type annotations
restrict the set of valid types for a program.

Now, what aboutnon-groundtype annotations? Does it make sense for a type annotation tomention
(the name of) a type variable? It does, provided this name hasbeen explicitlyboundearlier in the
program. That is, we now need one (or several) program constructs for introducing type variables.

When the programmer introduces a new type variable, he presumably intends that variable to denote
an unknown type. But does the programmer mean that the program should be well-typed forsome
instance of this variable, or forall such instances? The two interpretations differ. Both are useful. As a
result, it makes sense to introduce two program constructs for binding type variables, corresponding to
existentialanduniversalquantification, respectively.

Their typechecking rules are as follows:

Γ ⊢ [τ/α]e : σ

Γ ⊢ ∃α.e : σ

Γ ⊢ e : σ α 6∈ ftv(Γ)

Γ ⊢ ∀α.e : ∀α.σ

The rule for existential quantification requirese to be well-typed undersomeinstantiation ofα. Indeed,
it suffices to findonetypeτ that satisfies the premise for the conclusion to hold. The substitution[τ/α]
is applied to the expressione, that is, to all type annotations withine. Thus, all references toα within e
are replaced with references toτ in the premise.

The rule for universal quantification requirese to be well-typed under theabsenceof any hypothesis
aboutα, that is, under the hypothesis thatα is abstract. This is formalized by its second premise. The
rule is in fact identical to the standard rule for generalization in Hindley and Milner’s type system,
except it is syntax-directed. References toα within e are not substituted out.

Constraint generation for existential quantification is straightforward:

J∃α.e : τK = ∃α.Je : τK

The type annotations insidee potentially contain free occurrences ofα. Thus, the constraintJe : τK itself
can contain such occurrences. They are given meaning by the existential quantifier. It is clear, here, that
it is up to type inference—more precisely, up to the constraint solver—to determine an appropriate value
for α.

For instance, the expression

λx1.λx2.∃α.((x1 : α), (x2 : α))

has principal type scheme
∀α.α→ α→ α× α
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Indeed, the generated constraint contains the pattern

∃α.(Jx1 : αK ∧ Jx2 : αK ∧ . . .)

which causesx1 andx2 to share a common type. Without the annotation, its principal type would be
more general. Ifα was universally quantified (λx1.λx2.∀α. . . .), the expression would be ill-typed,
since it would contain an assertion thatx1 andx2 have every type. Ifα was universally quantifiedup
front, (∀α.λx1.λx2. . . .), the expression would again be well-typed.

Constraint generation for universal quantification is somewhat more subtle. A naı̈ve definitionfails:

J∀ᾱ.e : τK = ∀ᾱ.Je : τK

This requiresτ to be simultaneously equal toall of the types thate assumes when̄α varies. This is not
what was intended. The informal intended meaning was thate should be well-typed forall instances of
ᾱ and that its eventual typeτ corresponds tosomesuch instance. To reflect this, one can instead define

J∀ᾱ.e : τK = ∀ᾱ.∃γ.Je : γK ∧ ∃ᾱ.Je : τK

This definition is correct. The trouble with it is thate is duplicated, which means that constraint gener-
ation no longer has linear time or space complexity. This canbe avoided with a slight extension of the
let constraint form [47].



Chapter 3

Conclusion

These lecture notes are currentlyincomplete. Two more chapters were planned and were to describe
situations wheremandatory type annotations helpand where alocal type inferencealgorithm is layered
on top of a traditional, constraint-based type inference algorithm so as to reduce the amount of required
annotations—in effect, turning some mandatory type annotations into optional type annotations again!

One chapter should discuss type inference in the presence ofarbitrary-rank polymorphism. Ref-
erences are early attempts to marry type inference for Hindley and Milner’s type system with first-
class polymorphism, via a feature that one could refer to as “iso-universal types” [49, 50]; L̈aufer
and Odersky’s proposal for introducing arbitrary-rank polymorphism without relying on explicit type
declarations [51]; Peyton Joneset al.’s suggestion of introducing an additionallocal type inferencecom-
ponent [52]; and Rémy’s reconstruction of their work [53].Also relevant are papers by Garrigue and
Rémy [54], Le Botlan and Rémy [55], and Vytiniotis, Weirich, and Peyton Jones [56].

One chapter should discuss type inference in the presence ofgeneralized algebraic data types [57].
Recent references are papers by Simonet and Pottier [58], Peyton Jones, Washburn, and Weirich [59],
Pottier and Régis-Gianas [60], and Sulzmann, Wazny, and Stuckey [61].

What lessons could be drawn from the papers discussed in these notes? In short,

• Constraint-based type inference is a versatile tool that can deal with many language features while
relying on a single constraint solver. The solver’s definition can be complex, but its behavior
remains predictable because it iscorrectandcompletewith respect to the logical interpretation of
constraints.

• In situations where it is difficult or impossible, due to intractability or undecidability issues, to
design a complete constraint solver, theconstraint generationprocess can be modified to take
advantage of user-providedhints—typically type annotations.

• In situations where the necessary hints are so numerous thatthey become a burden, alocal type
inferencealgorithm can be used to automatically produce some of thesehints. Although its design
is usuallyad hoc, it should remain predictable if it is sufficiently simple.

These ideas appear to be making their way into the next generation of programming languages equipped
with type inference.
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[51] Martin Odersky and Konstantin Läufer. Putting type annotations to work. InACM Symposium on
Principles of Programming Languages (POPL), pages 54–67, January 1996.

[52] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical type
inference for arbitrary-rank types. Manuscript, July 2005.
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