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Abstract

Hindley and Milner’s type system is at the heart of prograngrianguages such as Standard ML,
Objective Caml, and Haskell. Its expressive power, as virdlaxistence of a type inference algo-
rithm, have made it quite successful. Traditional pred@nmta of this algorithm, such as Milner’s Algo-
rithm W, are somewhat obscure. These short lecture notes, writtéind APPSEM’05 summer school,
begin with a presentation of a more modern, constraintébggecification of the algorithm, and explain
how it can be extended to accommodate features such asailydhta types, recursion, and (lexically
scoped) type annotations. Then, two chaptgasto be written, review two recent proposals for incor-
porating more advanced features, known as arbitrary-raefligative polymorphism and generalized
algebraic data types. These proposals combine a tradittonatraint-based type inference algorithm
with a measure of local type inference.
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Chapter 1

| ntroduction

Typechecking is a discipline that assigns specificationsymes to programs. A type typically is a
term whose size is small. Typechecking distinguishesfifs@h other program analyses by its relative
simplicity, which stems in part from its compositionalityhe type ascribed to a program fragment
depends only on the types ascribed to the sub-fragmentd auitich it is composed.

Typechecking is interesting on multiple grounds. Firstyge soundnestheorem, established by
the type system designer, guarantees that a well-typedgrogannot “crash:” its execution cannot
fail unexpectedly. This result is obtained irstatic manner, that is, before the program is executed. It
provides users with a partial robustness guarantee, asas/elith a limitedsecurityproperty, on top of
which more advanced properties can be enforced.

Next, some more ambitious type systems allow static enfoece of more advanced security poli-
cies, such agccess controbr information flow controlpolicies. Others encodeata flowanalyses,
which usually are of little interest to programmers, butldaanore aggressive optimizations during
compilation.

Last, thanks to its compositional nature, and thanks to ¢teted notions of parametrfwolymor-
phismand typeabstraction typechecking encouragesodularity, that is, the decompaosition of pro-
grams into independent and complementary units. Thisigci«central in the development of complex
software systems.

One often wishes for type systems to be as transparent ablpodbat is, for the typechecking
process to be automatic or almost automatic. Indeed, evée ifype discipline is known to the pro-
grammer, it is desirable not to burden him with extra worlattls, to only require minimal help out of
him. Thus, the programmer is typically asked to provide &#jgation for each program module, but, if
possible, nothing more. Furthermore, when the results pyhe-based analysis are intended for use by
a compiler, it is desirable for the analysis to be fully auétim This leads to studying thgpe inference
problem, that is, the problem of determining which typesagpem or program fragment admits.

Because typechecking is compositional, type inferencelpnos also admit a natural decomposi-
tion. In other words, the type inference problem associaitfda program fragment admits a solution if
and only if each of the sub-problems associated with itsfeadpments also admits a solution and if these
solutions are consistent with respect to one another, shitthe sub-fragments admit complementary
types.

As a consequence, a language for expressing type infereoloclems must offeconjunction which
allows combining several sub-problems;d&stential quantificationwhich allows introducing aype
variablethat denotes a type to be determined; preticatesover types, such as the equality predicate,
which allows requiring two types to match. In other wordgqeynference is naturally reduced to the
satisfaction of logical formulae, aonstraints

Experience suggests that, even when the programming lgagufainterest is rich, the constraint
language required to express its type inference problemains relatively modest. Thus, reducing type
inference problems to constraint satisfaction problerwsval a significant restriction of the universe of
discourse, and forms a useful first step.

Typesand constraintsare among the most important objects manipulated in thisimeat. The
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document begins with an overview of Hindley and Milner'seygystem and of a constraint-based ver-
sion of its type inference algorithm. It then discussesxitemsion with data structures, recursion, and
optional type annotations. Two more advanced chapyetso be written, discuss further extensions
wheremandatory type annotatior®lp and where dbcal type inferencalgorithm is layered on top of
the traditional, constraint-based algorithm.



Chapter 2

Typeinferencefor ML

The programming languages of the ML family, whose most imfliz¢ members are Standard ML,
Objective Caml, and Haskell, are based on Hindley and Mangpe system (also known as Damas
and Milner’s type system).

Hindley [1] solved the type inference problem for the simpiped A-calculus by showing, in a
constructive way, that every expression admitgriacipal type His algorithm relies on first-order
unification, and can be (but was not at the time) presenteldeasambination of constraint generation
and constraint solving phases.

The simply-typed\-calculus is anonomorphidype system, where an expressionannotsimul-
taneouslyadmit several distinct types. Nevertheless, the prindipaé for e, produced by Hindley’s
algorithm, can contaitlype variablesindicating thate in fact admits several types (an infinite num-
ber of them). Thus, the study of type inference reveals a f@irparametric polymorphistra notion
identified by Strachey [2].

Milner [3] suggested internalizing the notion of principgbe by introducingype schemesand by
effectively allowing an expression to simultaneously hegeeral types. He proposed a type inference
algorithm that also relies on first-order unification, budtthitially appeared more difficult to state in
terms of constraints. The connection between type inferema constraint solving became stronger
during the following two decades, thanks in particular togmsals for extending Hindley and Mil-
ner’s type system with more complex features such as sulgygsradually, constraints became more
systematically used in the formulation of type systems gpd tnference algorithms.

This chapter gives a constraint-based presentation ofitfpeence for Hindley and Milner’s type
system and for some of its extensions. Its material is draam fa book chapter by Pottier and Rémy
[4]. | begin with the simply-typed\-calculus §2.1), move on to Hindley and Milner's type system
(§2.2), then discuss more language featu§@s3).

2.1 Thesimply-typed A-calculus

The definition of simply-typed-calculus appears in figure 2.1. It defines an inductive pegdiwhose
general form id" - e : 7, wherel is anenvironmente is anexpressionandr is atype Expressions
are given by the grammar

ex=x|\xel|ee
o I'(z) ix:mbe:m I'Fe:mp — 7 I'key:m
z: Iz
IF'FXze:m — I'kFejex:m

Figure 2.1: The simply-typed-calculus
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[Trz:7] = T(x)=r7
[TFAze:7] = Jogas.([liz:aake:m]Aar — az=71)
[Therex:7] = Fa([TFer:a—7|A[lFez:al)

Figure 2.2: Constraint generation for the simply-typedalculus

wherex denotes aariable Types are given by the grammar
Ti=alT—T

wherea denotes dype variable An environment is a partial mapping of variables to typestrile

I' ke : 7is apre-judgementlt is ajudgemenif can be derived from the rules of figure 2.1. A pair
(T, 7) is atypingof e ifand only if ' F e : 7 is a judgement. Itis arincipal typing of e if and only if
every other typing oé is obtained out of it by substituting types for type variabl&n expression is
typableif and only if it admits a typing.

In the simply-typed\-calculus, every typable expressieadmits a principal typing. This fact was
proved, in the setting of combinatory logic, independebgiyCurry and by Hindley [1]. Curry’s proof
was direct, while Hindley’s relied on Robinson’s first-ordenification algorithm [5]. Yet, Hindley
does not explicitly use equality constraints: instead, esithe unification algorithm as a black box,
which, when supplied with two arbitrary type schemes, refuheir least upper bound with respect to
the instantiation ordering, when it exists. This least udmaund is known as thehighest common
instance Thus, Hindley’s algorithm implicitly mixes constraintmgeration and constraint solving.

It is difficult to tell precisely when type inference for thenply-typedA-calculus was considered as
the combination of distinct constraint generation and trairst solving phases. Such a view appears to
have gradually emerged during the 1980s, at a time when narergl constraints, such as subtyping
constraints [6], were being introduced. This view is founda more or less informal fashion, in papers
by Clement, Despeyroux, Despeyroux, and Kahn [7] or by Cardglli The first explicit reduction of
type inference for the simply-typedcalculus to satisfaction of equality constraints seengstdiWand

[9].

2.1.1 A reduction of typeinference to constraint solving

The constraints generated by Wand’s algorithm are madela}y s type equations and conjunctions.
For this reason, Wand can only reason alimghtype variables in an informal way. Following Jouan-
naud and Kirchner [10], | extend the constraint languagé existential quantification, which allows

dealing with this notion in a formal and elegant way. Thus,¢hnstraint language is as follows:

Cuo=7=7|CAC|IJa.C

Constraints are made up of type equations, conjunction,eaisdential quantification. They are in-
terpreted in a Herbrand universe, that is, in a finite tree eho@®ne could also interpret them in a
regular tree model, yielding a type inference algorithmaorextension of the simply-typedcalculus
with (equi-)recursive types. Constraint solving consistdetermining whether a constrai@itis satis-
fiable. A constraint solving algorithm is best presented eeswaite system [10] whossolved formsare
isomorphic tomost general unifiers

To every pre-judgemeri - e : 7, where the domain of contains the free variables ef one
associates a constraint, writtfh + e : 7. The definition, which is by induction over the structure of
the expression, appears in figure 2.2.

It is implicitly agreed that the type variables, a2, anda must be chosefreshwith respect td”
andr, that is, must not appear freelihor 7. This could be made explicit by adding the side condition
a1, ay, a & ftv(T, 7). This freshness criterion is formal, because it is local:deeot request that the
new type variables be chosen jukesh,” which does not mean anything, but fresith respect to a
few specific objectsiamelyl’ andr. Note that every type variable that occurs fre¢lin- e : 7] must
necessarily occur free inor .
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One can establish the following properties:
Theorem 2.1.1 ¢ is a solution of[T" - e : 7] if and only if (¢, ¢7) is a typing ofe. o

Corollary 2.1.2 Let « be an arbitrary type variable. Let the environmdhtmap the free variables
of e to type variables that are pairwise distinct and distinarfro. Then,e is typable if and only if
[T F e: «] is satisfiable. Furthermore, i is a principal solution of[l" - e : «], then(¢T, ¢«) is a
principal typing ofe. o

This result means that the type inference problem, which determine whether a term is typable,
can be reduced to the constraint satisfaction problem, wisi¢co determine whether a constraint is
satisfiable. Furthermore, it implies that the simply-typedalculus hagrincipal typings

Corollary 2.1.3 If e is typable, there admits a principal typing. o

This property means that it is possible to analyze an exjpressndependently of its conteahd to
infer not only its type, but also the requirements that it@®gs upon its environment. Such a property
has applications to separate analysis and separate ctionp[thl, 12]. Unfortunately, it does not hold
of ML's type system; | come back to this point lat§p(2.1).

It is easy to check that the constrajiit - e : ] of corollary 2.1.2 has siz@(n), wheren is the
size ofe, and can be built in tim&(n) or O(nlogn), depending on how variables and environments
are represented. A standard unification algorithm, suchwset’$1[13], based on Tarjanignion-find
data structure [14], allows determining whether such atraims is satisfiable in timé&(na(n)). (The
linear-time unification algorithm by Paterson and Wegmdij [dn't of interest here, because it is not
incremental and cannot be used for ML.) To conclude, the &intespace complexity of type inference
for simply-typed)-calculus is bounded b (n logn).

2.1.2 An alternatereduction of typeinference to constraint solving

In the previous paragraphs, | have decomposed the typenmderproblem in such a way that the notion
of an environment, as well as the process of building anditapip environments, are local to the first
phase, that is, constraint generation. The second phaselynaonstraint solving, is not concerned
with environments, since this notion does not appear in taegar of constraints. Yet, it is possible,
if desired, to decompose the problem in a slightly diffeneat, so that the notion of an environment
instead becomes local to the second phase.

To this end, | enrich the syntax of constraints:

Cu=...lz=7|defz:7inC

I now allow variables: to appear free within constraints. For this reason, coimésrare now interpreted
not only with respect to a valuatiafy which maps every type variableto an element of the model in
which types are interpreted, but also with respect to a sbealuationy), which maps every variable
to such an element. | introduce two new constraint forms auipehem with the following interpreta-
tion. The equation: = 7 is satisfied by the valuationsand if and only if 2 and¢r coincide. The
constraintdef « : 7 in C is satisfied by andv if and only if C is satisfied byy andy[z — ¢r].

The expressiveness of the constraint language is not fueidiatty affected by this extension. In-
deed, one can check that the equivalence law

defz:7in C = [r/z]C

is valid in this interpretation. (Two constraints are e@lant if and only if they are satisfied by the same
valuations.) In other words, theef construct is an explicit substitution form. It can be coeséatl, to

a certain extent, as a form of syntactic sugar: indeed, ifresttaintC has no free variables, then the
above law, oriented from left to right and viewed as a rewtite, allows rewriting”' into an equivalent
constraint, expressed in the initial syntax. A slight gairekpressiveness stems from the existence of
constraints with free variables: for instange. (1 = a A 22 = «) expresses the fact that the variables
x1 andzxs should have a common type. On can also write 7, A z = 72, which superficially appears
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[t:7] = z=7
[Me.e: 7] = Fogag.(defz:arinfe:a] Aag — az=1)
[erez:7] = Fa([er:a— 1] Alex:a])

Figure 2.3: Constraint generation for the simply-typedalculus (variant)

ke :o Dix:obey:T 'e:r a # ftv(T) I'te:Va.r
FkHletz=ejiney: 7 I'ke:Var I'ke:[F/a]r

Figure 2.4: Hindley and Milner’s type system

reminiscent ofintersection type§l6, 17]; yet, according to the above interpretation, tltiastraint is
equivalent tar = 73 A 71 = 7». Thus, we remain within a simply-typed setting, where eamtity
(variable or expression) is monomorphic.

One can now offer an alternate reduction of type inferencéhi® simply-typedi-calculus to con-
straint solving. It appears in figure 2.3, which defines a nrappf an expression and a typer to a
constraintfe : 7]. Note that environments have disappeared! Environmekujpowhich allowed pro-
ducing an equation of the fori(«) = 7, has been suppressed; instead, one now produces the aquatio
x = 7, where the name isn’t resolved. Environment extension, writt€nx : «; and exploited to
associate type; to the variablez when analyzing a-abstractiomz.e, has also disappeared. Instead,
analysis of the abstraction bodyproduces a constraiffit : «.] within which z can occur free. These
free occurrences of are given a meaning, a posteriori, by wrapping this constiaio the context
defz:a;in ).

What are the advantages of this new presentation with respebe initial approach? There are
several, all of which are minor. First, the specificationasvimore abstract. The constraint solver can
choose to eagerly eliminate diéf forms via substitution, as suggested earlier, which egdrieads to
the initial algorithm. It can also choose another rewritatsgy, for instance, bottom-upone, leading
to a different algorithm. Next, corollary 2.1.2 can be refiafated in a slightly simpler way, because it
is no longer necessary to explicitly construct an enviromriieconsisting of distinct type variables:

Theorem 2.1.4 Let« be an arbitrary type variable. Them,is typable if and only ifle : o] is satisfi-
able. o

When[e : «] is satisfiable, a principal typing @f can be reconstructed in a simple way out of a
solved form of this constraint. For instance, a solved fofrfuot 1 : o] isx = int A « = int, whence
one can deduce that a principal typingzof- 1 is (x : int, int). Further details of this construction are
omitted.

In the case of simply-typed-calculus, thus, the two reductions of type inference tostaint
solving proposed above differ only in a cosmetic way. The tniierest of the second one lies in the fact
that it alone admits an elegant generalization to the cab_f§2.2.2).

2.2 Hindley and Milner’stype system

ML'’s type system, defined by Milner [3] and by Damas and Milfig8], extends the simply-typed
A-calculus by ascribingype schemeghat is, polymorphic types, to the variables whose definits
known, that is, to variables bound by a nkatform:

ex=...|letz=cine

In contrastA-bound variables, that is, formal function parameters,tmereain monomorphic.
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fresh = doacV
doV «— V\{a}
return o

J(T+x) = letVay...q,. 7 =T(x)
doaf,...,al, =fresh,..., fresh
return o /o ]2 (7)

JTF Azx.eq) = doa = fresh
dor =J (T2 :abe)
returna — n;

j(Fl—eleg) = dOlej(l"l—el)
dOTQZJ(Fl_eg)
doa = fresh
do ¢ «— mgu(é(r1) = ¢(r2 — a)) o0 ¢
return «

JTkletzx=ejiney) = dorp=J([Fe)

leto = Vtv(e(T)).o(1)
return J(T;z : o F e3)

Figure 2.5: Algorithm7

A type scheme is a type where zero or more type variables arersally quantified:
o:=VYa.r

Hindley and Milner’s type system is obtained by extending definition of simply-typed\-calculus
(figure 2.1) with the rules of figure 2.4.

221 AlgorithmsWw and J

The introduction of polymorphism makes the type inferencgbjfem more complex. First, from a
theoretical point of view, its complexity is significantipdreased: indeed, it becompgXPTIME-
complete [19, 20]. Furthermore, from a more pragmatic poiriew, it apparently remained difficult,
for a long time, to give a clear description of the type infere algorithm for Hindley and Milner’s
type system. The two equivalent algorithms proposed by &i[8], YW and 7, are quite involved.
Indeed, they mix calls to an underlying unification algarthcompositions and applications of substi-
tutions, and operations over type schemes, such as ir@tantand generalization, the latter of which
requires determining which type variables occur free irctimeent environment. Furthermore, for some
unknown reasonyV appears to have become more popular thfareven though the latter is viewed—
with reason!—by Milner as a simplification of the former. &shpresentation of type inference for
Haskell [21] does rest upon an implementatiorjof

As an illustration, here is a definition gf. It is rather close to Milner’s. It rests upon a function
mgu(-), which to a conjunction of equations associates an (ideemppimost general unifier or fails. |
do not recall the classic definition of this function.

For enhanced readability, the algorithm is presented inppa@@ntly imperative style: it relies on
two global variabless and V. ¢ is the current substitution it initially is the identity and represents
the most general unifier of the equations solved soWais an arbitrary, infinite set of type variables:
whenever the algorithm requires a “fresh” type variablés drawn out ofV’. Formally speaking, one
can considep andV as standing for two implicit parameters and two implicituiés of the algorithm,
which then becomes purely functional. The apparently iraper syntax that | use is in fact none other
than Haskell’'sdo notation [22].

The algorithm accepts an environmé&rand an expressian It produces a type or fails. It satisfies
the following invariants: (i) is of the formmgu(C), for some constraint’; (ii) no type variable inl/
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occurs free irC', I, or in the resultr. These invariants imply thatis idempotent, on the one hand, and
that V' is fresh with respect tg, on the other hand. The algorithm is defined in figure 2.5.

The manner in which the current substitutipris updated, on the fourth line of the application
case, is such that, i initially was the most general unifier of some constraiftthen¢ is, after the
update, the most general unifier of the conjunctiom -, = » — «. This suggests that, instead of
maintaining a current substitutieh one could maintain a current conjunction of equatiohand delay
its resolution. In fact, when does one actually need to caenpand to apply it?

The answer appears a few lines down, in lftecase. There, a type schemds built out of the
type ¢(71) by universally quantifying all of the type variables that dot occur free inp(I"). (The
notationva quantifies over all type variabl@xcepia.) It is difficult to imagine how to buildr without
exhibiting ¢, that is, without solving”. Perhaps for this reason, it was often considered that,en th
case of ML, constraint generation and constraint solvingevigherently intermixed and could not be
separated entirely. Yet, there is really no reason to bekevg2.2.2).

What about the proof of algorithii? One can establish the following properties in succession:

Theorem 2.2.1 (Correctness) If 7(I" I e) terminates in statég, V') and returnsr, theng(T') F e :
¢(1) is a judgement. .

Theorem 2.2.2 (Completeness) Let I" be an environment. Leipg, Vo) be a state that satisfies the
algorithm’s invariant. Le¥), andr, be such that ¢, (T') - e : 79 is a judgement. Then, the execution
of 7(T' F e) out of the initial statg(¢o, Vj) succeeds. Letp;, V1) be its final state ané; be its result.
Then, there exists a substituti@nsuch thaty ¢, andé, ¢, coincide outsidé’, and such that, equals

91¢1(T1). [od

Although the first statement above is simple, and easilygmtdowy structural induction, the second
one isn't. Itis hard to decipher. As one might imagine, itsgitis heavy, and, worse, does not, in my
opinion, shed any light upon the algorithm.

It is historically interesting to note that, for many yediss only known completeness proof fi¢
was the one by Damas [23], which never became widely availafgbparently only in the 1990s were
completeness proofs more widely published [24] and meced{R25-27].

One should also note that the proofs of algorithviws 7, or of their variants, such a$1 [28],
are sufficiently different in their structure, even thoubkyt share identical ideas, to only share a few
preliminary lemmas. The constraint-based approach destfurther on§2.2.2) is superior in that the
proof of the constraint generator is performed just once Vidrious classic algorithms, nameély, .7,
and M, then merely correspond to various constraint sohgtmgtegieswhose correctness proof is not
difficult.

Let us introduce a few more definitions. A typiri§’, 7) is relative toT" if and only if its first
component” is an instance of . A typing of e is principal relative toI" if and only if it is relative to
T" and every typing ot relative toI" is an instance of it. Then, the two previous theorems leatigo t
following conclusion.

Corollary 2.2.3 (Relative principal typings) The execution of/ (I' I e) succeeds if and only #
admits a typing relative tb'. Furthermore, ifp; andr, are the algorithm’s results, thef@; (T'), ¢1 (7))
is a typing ofe and is principal relative td". o

It is instructive to compare this statement with that of dlary 2.1.3. In the case of the simply-
typed A-calculus, the inference algorithm expected just one agpupmamely the expressian and
either produced a principal typing or failed. In the case &f, Mligorithm 7 expects not only but also
an environment’, and produces a principal typing efrelative tol’, that is, a typing that is principal
only among those typings whose first component is an instah€e Thus, the search is restricted to
only part of the universe of all typings ef For this reason, it is usually said that Hindley and Milser’
type system does not hapeincipal typings but nevertheless hasincipal types For further details,
consult Jim [11] or Wells [12].

Of course, one could supply the algorithm with an environtethat consists, as in corollary 2.1.2,
of pairwise distinct type variables. If every environmerassan instance of suchla as in the simply-
typed A-calculus, then the algorithm would produce a principalngp Unfortunately, such is not the



CHAPTER 2. TYPE INFERENCE FOR ML 11

case. A nontrivial type scheme is not an instance of a typmbia: for instance, the type scheme
V(3.6 — (B is not an instance af. (Thetype — [ is an instance of.) In other words, by supplying
algorithm 7 with an environment that consists of type variables, onaireq it to assign monomorphic
types to all ofe’s free variables. A variable can have polymorphic behawidy if the initial environ-
ment maps it to a nontrivial typecheme In short, the algorithm is unable to infer that a free vdgab
should receive a polymorphic type.

2.2.2 A constraint-based approach

Algorithms)V and.7 exploit the unification algorithm as a black box, which, oltveo arbitrary types,
produces a most general unifier. The algorithms are presenseich a way that a call tagu(-) appears
necessary at least at evdeg node. Thus, Milner’'s presentation, just like Hindley§2 (1), implicitly
mixes constraint generation and constraint solving. ettHfe sake of modularity, it would be desirable
to separate these two phases.

It is interesting to note that the standard presentatiomafy constraint-based extensions of ML,
such as HMX) [29], suffer from the same flaw, although perhaps in a lessoolswvay. In HM X),
creating a type scheme apparently does not require solvngurrent constraint, because type schemes
take the formva[C].7, where the constraint’ isn’'t necessarily a solved form. However, in reality,
because the constrai6t is copiedwhenever a fresh instance of the type scheme is taken, itgerim
tant thatC' be solved and simplified before the type scheme is createdthioreason, the original
presentation of type inference for HM ) mixed constraint generation and constraint solving [29].

The solution that | now present, drawn from work by Pottiedt &&my [4], exploitdef constraints,
analogous to those introducedgip.1.2. It is applicable to Hindley and Milner’s type systeswveell as
HM(X). Here, | limit my interest to the former.

The idea is to enrich the constraint language considerg®.in2 by allowing a variable to denote
not just a type, but a (constrained) type scheme. The syrftarrtstraints and of constrained type
schemes is now:

C = 7=7|CAC|FaC|lz=<7|defz:cinC
¢ u= ValCl.r

The logical interpretation of constraints is now relativeat valuationy that maps every type variable
« to an element of the model in which types are interpreted efsré, and to a valuation that maps
every variabler to asetof such elements. Indeed, a type scheme is interpreted ahtgpes. The
constraint: < 7, which might be read “type is an instance of the type schemgis satisfied by and
¢ if and only if ¢7 is a member ofpz. The constraintlef « : ¢ in C is satisfied byp andq) if and only
if C is satisfied by andy[z — jj(g)], where the interpretatiojf\(g) of a constrained type schemés
defined as follows: if is Va[C].7, then its interpretation is the set of &llr, where¢ and¢’ coincide
outsidea and wherep’ andq) satisfyC.

Again, the effect of the above definitions, which can appearesvhat technical, is only to validate
the equivalence law

defz:¢in C = [¢/2]C

Thus, thedef construct is arexplicit substitutiorform. For the above law to make sense, though, one
must define the meaning of the constrajn 7, which might be read “type is an instance of the
constrained type schemé Indeed, such a constraint appears whsda replaced with in a constraint

of the formz < 7. To define its meaning is to define its interpretation< 7 is satisfied by andy

if and only if o7 is a member oﬁ(g). Equivalently, this constraint can be considered syntautgar:
indeed, ifs is Va[C].7’, and ifa is fresh with respect to, thens < 7 is equivalenttada.(C AT = 7).

In other words, the typeis an instance of the constrained type sch&m’].7’ if, for some assignment

of the variablesy that satisfies”, ' coincides withr.

The extended constraint language offers constrained tyipenses. Like in HMX), this allows
building type schemes without having to first perform a caist solving step. Furthermore, the new
language allows referring to a type scheme through a varialdvoiding the need focopyinga type
scheme whenever a fresh instance of it is desired.

We can now express a constraint generation algorithm fodlejnand Milner’s type system in the
style 0f§2.1.2 (figure 2.3). The new algorithm appears in figure 2.6 fiiist three lines are identical
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[x:7] = z=7
[Me.e:7] = Fogag.(defz:arpinfe:az] Aay — ag=r7)
[erez:7] = Fa.([er:a— 7] Afez:a])

[letz =e1ineg: 7] letz : Va[fer : af].ain [eq : 7]

Figure 2.6: Constraint generation for Hindley and Milngype system

to those of figure 2.3, except = 7 is replaced withz < 7, reflecting the fact that now denotes

a type scheme and thatcan be an arbitrary instance of it. The main novelty lies im fiburth line.
Upon first reading, one can view the let form, which hasn’trbdefined yet, as synonymous fdef.
The algorithm first builds the constrained type scheme= Va[[e; : «f].c, wherea is an arbitrary
type variable. This is @rincipal constrained type scheme fer. The constraint that expresses the fact
that e is well-typed, namelyfe; : 7], can contain free occurrencesof It is placed in the context
letz : ¢; in [], so that these free occurrences denote the constraineddyipens;; .

In fact, if let was defined as synonymous fief, this constraint generation algorithm would not be
quite correct. In the particular case whereloes not occur free im;, the constraintlef z : Va[[e; :
a]].c in Jes : 7] is equivalent tdes : 7], which does not guarantee thatis well-typed. Thus, we
introducelet « : ¢ in C as syntactic sugar fatef z : ¢ in (3a.x < oA C). One can then check that the
constraintet z : Va[[e; : of].«in Jes : 7] implies3a.[e; : ], which guarantees that is well-typed.
This is important because ML has call-by-value semantlesekpression; is evaluated even when
does not occur free iay.

One can establish the correctness and completeness ofotissraint generation algorithm with
respect to the specification of Hindley and Milner’s typetsys Here is a statement of both properties:

Theorem 2.2.4 (Correctness and completeness) LetI" be an environment whose domairfiige). The
expressiore is well-typed relative td" if and only ifdefT" in Ja.[e : ] is satisfiable. o

Itis important to note that the constraint generation atgor has linear complexity. In other words,
the modular decomposition into constraint generation amdtraint solving can be effectively exploited
as an implementation technique, with no asymptotic ovethea

The use of thelef or let constructs is precisely intended to allow building a caistrof linear size.
(Indeed, let us stress that eliminating them, via a naiypaesion, would cause an exponential blowup
in the size of the constraint.) This technique appears diwititer [30]. It was independently used by
Gustavsson and Svenningsson [31], in a setting where tlydoask predicate was a subtype relationship
between variables that denote atoms. Gustavsson and Sgsean show that, in this specific setting,
the strategy that consists in simplifying the left-handesid alet definition before duplicating it leads
to an algorithm of cubic complexity. The exponential blowsithus avoided altogether. Unfortunately,
this result does not hold in the case where constraintsuavedjuations between types. Indeed, in that
case, constraint solving is necessanlgxPTIME-hard, since type inference for Hindley and Milner's
type system can be reduced to it. Yet, McAllester [32] off@nsinteresting complexity result: under
the double hypothesis that inferred types have boundedasidethat the (left-) nesting depth et
definitions is bounded, a constraint can be generated anedsivi linear time. Whether this hypothesis
is reasonable is subject to debate; nevertheless, thi egmears to explain why type inference for
Hindley and Milner’s type system is deemed “efficient in pice”

One might think that the constraint-based approach is & foiss with little benefit by arguing that
the programming language only has four constructs (vajadiistraction, application, atet), where
as the constraint language has more (equation, conjunetiistential quantification, instantiation, and
let). Does this mean that a constraint-based encoding shedghhom the type inference problem? Not
at all. As we shall see§@.3), the introduction of products and sums, algebraic tigtas, references,
exceptions, which are some of the features of a full-fledgedrnation of ML, require no extensions
to the constraint language. Polymorphic recursion as veeliigid” type annotations require universal
guantification in the constraint language. Thus, in the cdserealistic programming language, the
reduction to constraint solving represents a significanp#fication of the initial problem.
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2.2.3 A few wordsof constraint solving

A constraint solving algorithm is usually presented as aitevgystem. To demonstrate its correctness,
one establishes three properties: (i) every rewrite stepgoves the constraint’s logical interpretation;
(i) the rewrite system is strongly normalizing; and (iif)i$ trivial to decide whether a normal form
(also known asolvedform) is satisfiable.

One of the strong points of the constraint-based approatlaiist offers the opportunity of defining
several distinct constraint solving algorithms, whicheaoftcorrespond to distinct strategies within a
single rewrite system. These algorithms can then sharegesinrrectness proof.

The constraint language considered here is made up of alkenggiage, which consists of type
equations, conjunction and existential quantificatiomicred with an explicit substitution mechanism,
represented by thiet construct and by instantiation constraints. Thus, it isirstto define the rewrite
system, in a modular way, as the combination of a solver ferkiérnel language and of a separate
rule set for dealing with explicit substitutions. The fomig none other than a first-order unification
algorithm, and can be arbitrary; only the structure of ityaad forms must be agreed upon. The latter
performs operations known as “generalization” et “ing&idn” in classic implementations of ML.

The most natural way of dealing witlet constraints is the one implicitly employed by Milner’s
algorithms and 7, as well as by Rémy [33], Milller [30], or Gustavsson andrwegsson [31].
When faced with the constraitgt = : ¢ in C, one first simplifies the constrained type schemso as
to make it as compact as possible. Then, one eliminateleticenstruct by replacing all occurrences
of = by ¢ within C. Simplifying ¢ prior to duplication saves effort. Simplifying a constrihtype
scheme consists, at least, in solving the constraint tieahitains. One can also go further. For instance,
one can decrease the number of its universal quantifiens,fibat part of its constraint outside of the
let construct, again avoiding some duplication. These idazstal Reémy [33], are developed in detail
in [4, §8]. An efficient implementation of these techniques requassociating an integeank with
every type variable. This mechanism, imagined by Rémy 88] rediscovered by McAllester [32],
can be understood in logical terms: the rank of a type veisdlls where it is bound. Decreasing
its rank amounts to floating its binder up within the curreobstraint, that is, to performing scope
extrusion.

An alternative strategy consists in dealing wligh constraints in two distinct ways, depending on
whether the variable: of interest isA-bound orlet-bound in the program. In the former case, the
constraindef x : 7 in C is dealt with by eliminating theef constructafter the constraint' is solved.

In the latter case, the constraiet = : ¢ in C is dealt with by simplifyings and eliminating thelef
constructbeforeC is analyzed, as above. This alternative approach corréspmnMitchell’s PTL
algorithm [34], and was used in other works as well [35-37hef its strong points, according to
Chitil [37], is to facilitate an interactive search for typeors, by preventing the constraint solver from
propagating informatiosidewayswith respect to the program’s tree structure.

2.3 Extensions

This section briefly discusses a few basic extensions that breimade to the calculus considered so
far—a pure\-calculus—in order to turn it into a reasonable programmargyuage. | focus on three
features: data structures, recursion, and optional typetations, because each provides an opportu-
nity of discussingexplicit type annotationsa topic that becomes central later in this document when
arbitrary-rank polymorphism and generalized algebrata tigpes are discussed. | omit a discussion of
many other features, among whirferencesexceptionspattern matchingobjects andmodules

2.3.1 Datastructures
Products and sums

Introducing so-calledstructural products and sums is straightforward. One extends the gaarofm
types as follows:
Tu=.. | TXT|TH+T
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The typer; x 7, describes a pair whose left (resp. right) component hastygeesp.m2). The type
71 + 12 describes either the application of the left injection t@hue of typer, , or the application of the
right injection to a value of type,. These products and sums are sometimes referredanas/mous
because pair components and injections are unnamed: thagfarred to via the predefined labels
“left” and “right.”

Like many simple language features, products and sums casetved either as new language
constructs or simply and as new constants, together withessyntactic sugar. This choice does not
have significant impact. Here, we adopt the second approHohs, we extend the calculus with the
following constants:

(,) : Vojas.aqp — asg — ag X Qs
. Yojas.ap X g — oy
inj, : Voajos.oy — ag+ ag
case : Vajasa.ag +as — (g — a) — (g — a) — «

Since our emphasis is not on dynamic semantics, we omit thectien rules that come with these
constants. We also omit the definition of the syntactic sugaat usually accompany tlje -) andcase
constants. In terms of type inference, which is the mainctopinterest, the impact of introducing new
constants is null. Indeed, constants are dealt with justidiables: it is only a matter of extending the
initial environment with the above bindings.

Structural products and sums are simple, but they alone ttead very far. Indeed, a type built
out of products, sums, and base types (such aartiieype or the type of machine integers) can only
describe values dfoundedsize. They do not allow describing lists, trees, or otheaddtuctures of
unbounded size. For this, some formre€ursivetypes is needed. Indeed, the informal definition: “a
list is either empty or a pair of an element and a list” is retus.

Equi-recursive types

The equation
a=unit+7 x «a

can be viewed as a characterization of the type of lists weetements have type. Indeed, it para-
phrases the informal definition above. The most obvious Waytmducing recursive types into a type
system is to ensure that this equation admits a solutiors @dm be done by extending the grammar of
types with syntax for regular trees:

Tu= .| paT

This is finite syntax for the regular tree obtained by “innitnfolding.” (Well-formedness conditions
rule out meaningless “types,” such @s.«, whose infinite unfolding isn’t well-defined.) Two types
andr, are said to bénterconvertiblewhen their infinite unfoldings coincide; we then write =,, 7.
Two interconvertible types can be used interchangeabiyighHormalized by introducing a new typing
rule.

'kFe:mn TL =p T2
I'Fe:m

This rule is not syntax-directed, so it can be applied at asigtpn a program. As a result, its impact
on type inference is not local, but pervasive. None of thestraint generation rules is affected, but
the interpretationof constraints changes: equations must now be interprataddgular treemodel,
instead of a finite tree model, so that the equatioa unit + 7 x « is viewed as satisfiable. Its solution
is the regular tree denoted hyv.unit + 7 x «. In a finite tree model, it is unsatisfiable. In terms
of constraint solving, this requires moving from unificatiof finite first-order terms to unification of
regularfirst-order terms. The unification algorithm is almost unaed [13]: the only difference is that
theoccurs checks removed.

This approach to recursive types is known asdatyai-recursiveapproach [38, 39], because equality
modulo infinite unfolding is placed at the heart of the typstegn. One of its strong points is to not



CHAPTER 2. TYPE INFERENCE FOR ML 15

require any explicit type annotations or declarations,hsa tull type inference is preserved. For this
reason, it is exploited, for instance, in the object-orensubsystem of Objective Caml [40]. Its main
disadvantage is that, in the presence of equi-recursivestymany apparently meaningless programs
have types. For instance, self-applicatian.(« 2) has principal type/s.(na.a — 3) — 5. Yet,
self-application is rarely used in practice. It is likelyatithe programmer intended to write something
else—perhaps\z.(z + x). Thus, it would be better to immediately reject this progranstead of
accepting it and assigning it a baroque type.

| so-recur sive types

The iso-recursiveapproach to recursive types addresses this problem. lralii@isiate approach, the
equation
a=unit+7 X «a

is again viewed as unsatisfiable—that is, constraints aimamgterpreted in a finite tree model. Instead,
the user is allowed tdeclarethat a new type constructor, shst, satisfies thésomorphism

lista ~ unit + o x lista

or, more generally,
Tad~T

whereT is the user-defined type constructor andan refer tdl” as well as to the type parameters
Declarations of iso-recursive types can in fact be mutugltyrsive: every equation can refer to a type
constructor introduced by any other equation.

By isomorphismit is meant thafl’ @ andr are distinct types, but that it is possible to convert one
into the another via thexplicit application of a constant whose dynamic semantics is thitgieTwo
constants are introduced for this purpose:

fold, : Var—Ta
unfold, : VaTa—r

In the iso-recursive approach, converting fr@m to its unfoldingr, or vice-versa, requires an explicit
use offold,. or unfold,, that is, an explicit annotation, whereas, in the equiirgiga approach, the
conversion was implicit. As a result, full type inferencenislonger available. In return, exotic terms
such as\z.(x z) are rejected, which pragmatically is good. This can be viega situation where
mandatory type annotatiorae helpful.

If the list type constructor is declared as above, then the empty lgtien

foldig; (inj; ()

A list [ of typelist o is deconstructed by
case(unfoldg ) (An....) (Aclethd=m cinlettl =mcin ...)

A common idiom is tdold whenconstructingdata and tainfold whendeconstructingt.

Algebraic data types

In ML and Haskell, structural products and sums are fusel is@-recursive types, yielding so-called
algebraic data typeftl]. The idea is to avoid requiring both a (typggmeand a (field or taghumber
asin

foldys; (inj; ()

Indeed, this is verbose. The use of a numeric tag is unpleassaitis difficult to remember the meaning
of tags, and fragile: programs are likely to break when tHendien of lists evolves. Instead, it would
be desirable to mentiom single namgas in

Nil ()
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This is permitted by algebraic data type declarations.
An algebraic data type constructbris introduced via aecord typeor variant typedefinition:

k k
T&WJH&I’Q or TO?%Z&S’TZ'
i=1 i=1

Labels? are used as names for fields or tags. (Field labels and talg lednddd be taken in two distinct
syntactic categories.) The record labels used in all aljeltata type declarations must be pairwise
distinct, so that every record label can be uniquely assetiaith a type constructdl and with an
index:. A similar requirement bears on tag labels.

The record type definition

k
TO_Z%H&ZTi
=1

introduces the constants
¢ YaTd—m ie{l,...,k}
maker : Var —...— 1, —Td

Some syntactic sugar is in order. In concrete syntax, weewrftfor (¢ ¢). Whenk > 0, we write
{t; = e;}F_ for (maker e ... ex).
The variant type definition

k
Ta= Z gi LT
i=1
introduces the constants
4 - NYarn, —-Ta ie{l,....,k}
caser : VYay.Ta— (m—7y)—...(k —=7) =7

In concrete syntax, we writeasee [¢; : e;]¥_, for (case- e ey ... e,) whenk > 0.
One can now declare
lista &~ Nil : unit + Cons: «a x lista

This gives rise to

Nil : Va.unit — lista
Cons : Va.a xlista — lista
casgst : Vavylista — (unit — v) — (a x lista — ) — v
Then, the empty list is written
Nil ()
Alist [ of typelist o is deconstructed by
casel |
Nil : An....

| Cons: Aclethd=mcinlettl=mocin ...

]

This yields concrete syntax that is more pleasant, and nuinest, than that obtained when viewing
structural products and sums and iso-recursive types asrtivogonal language features. This explains
the success of algebraic data types.

2.3.2 Recursion

The ability to define data structures of unbounded size, aadilsts, is only one side of the coin. Indeed,
it is also necessary to be able to definactionsthat manipulate such data structures. The definition of
these functions typically requirescursion
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Monomor phic recursion

In the pureX-calculus, recursion needs not be introduced as an additimmguage feature: indeed, it is
possible, within the language, to definfbx@oint combinatorwhich allows encoding arbitrary recursive
function definitions. However, this is mostly a theoreticahsideration. In practice, it is just as simple
to view this combinator as a constant, together witladmocreduction rule. The type scheme ascribed
to this constant is

fix : Vaf.((a — ) — (@ — §)) — a—

and the reduction rule, in a call-by-value setting, is
fix vy vo — vy (fixvy) Ve

This is perhaps not very enlightening at first sight. The ide¢hat a simple recursive function definition,
of the general form
letrec f = Az.eq in e

can then be viewed as syntactic sugar for
let f = fix (Af.Az.e1)in ey

In short, an application dix yields an anonymous recursive function, which, vieetdefinition, re-
ceives the nam¢g within e;. This syntactic sugar allows deriving not only thgnamic semanticsf
letreg but also itsstatic semanticdndeed, in the setting of Hindley and Milner’s type systasimple
analysis of the expressidet f = fix (Af.\z.e1) in es shows that it admits type, under environment
T if and only if one can prove

Difir—1hiao:the 7

a # ftv(T)

I f:Var—71Fey:m

for appropriate values of, 7/, anda. That is, the typechecking rule fdetrec that arises out this
syntactic sugar is
Iif:r—thao:thke 7 a # ftv(T) I;f:Var —7 ke :m
I'kletrecf = Axz.e;iney:

The first premise checks that the recursive function defimits consistent;f and Az.e; must agree
upon a common type — 7’. The second and third premises allow this type to be gezedilihat is,
turned into a type schem#&.m — 7/, which is assigned t¢ when typecheckings.

This rule is peculiar in that the variabfemust be assignedrmonomorphictype while typechecking
thebodyof the definition, that is, withir; . It is assigned @olymorphictype only while typechecking
the definition’suses that is, withines. This is a weakness, and is sometimes a problem in practice. A
best, the problem can be circumvented via code duplicatibspme cases, no workaround exists, so
there is a loss in expressive power [42].

In terms of type inference, the constraint

[letrec f = Az.ej ines : 7]
is equivalent to
let f:Vapllet f:a— Bz : «in e : B]]l.a — Bin [es : 7]

Becausenr and 5 denotetypes the variablef is considerednonomorphiovhile typechecking:; . It
receives golymorphictype scheme only while typechecking.



CHAPTER 2. TYPE INFERENCE FOR ML 18

Polymor phic recursion
[43] suggested resolving this issue by introducing a monersgtric rule forletrec definitions:

Isf:oF Axe;:o If:obey:T
I'Fletrecf = Az.ejines: 7

Here,o is an arbitrary type scheme. The body of the definition andsts are typechecked within a
common environment, where it is permitted fbto receive a type scheme. This rule is strictly more
expressive, yet safe. It is known pslymorphic recursion

Unfortunately, type inference in the presence of this fesii@comes problematic. Informally speak-
ing, it seems that the rule requirgaessing a type schemghich first-order unification cannot do. In
fact, the problem was shown by Henglein [44] and by Kfouryryin, and Urzyczyn [45] to be inter-
reducible withsemi-unification an undecidable problem. Several semi-algorithms arddi@kand
reportedly work well [46]. Still, having to rely on a (potéaity unpredictable) semi-algorithm is some-
what discomforting.

Fortunately, type inference in the presence of polymorpeaursion becomes a simple problem
again if one is willing to rely on anandatory type annotationThe type system'’s specification is
modified as follows:

Iif:obFXxe o Iif:obey: T
I'Hletrecf:0 =Ax.eiiney: 7

Here,o is no longer guessed: it is provided by the programmer. (Foplgcity, let us assume, for the
time being, thav is a closed type scheme. This limitation can easily be reaosee$2.3.3.)
It can be shown that the constraint generation rule thaespands to this typechecking rule is

[letrecf : o = Ax.e; iney: 7]

let f:oin ([Ax.eq : o] Aez: 7])

Here, it is clear thaf is assigned the type schemédothinside and outsidef the recursive definition.
For this constraint generation rule to make sense, thobghe remains to define the notatipn: o],
which is new. This requires extending the constraint laggusithuniversal quantification

C:u=...|Va.C

The interpretation of this new constraint form is stand&dnstraint solving now amounts fiest-order
unification under a mixed prefim simple extension of standard first-order unification wbich there
is no established reference—consult, for instance, Pattid Remy [47,51.10].

It should be intuitively clear that admits the type schemé&.cc — « if and only if e has type
«a — « for every possible instance of or, equivalently, for an abstraat To reflect this, one defines

[e : Va.7]
as syntactic sugar for
Va.e : 7]

The need for universal quantification arises when polymigmlis assertedby the programmer—as
opposed tanferred by the system.

2.3.3 Optional type annotations

Polymorphic recursion is a situation wherenandatorytype annotatiomelps This is in contrast with
the optional type annotations allowed by Standard ML, Objective CamlHaskell, which can only
restrictthe set of valid types for a program.

What'’s the point of providing explicit type annotations, avhtypes can be inferred anyway? | can
think of two answers. First, type annotations serve as maebinecked documentation. Second, type
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annotations allow partitioning a large type inference pgobinto several independent sub-problems,
which makes it easier to report accurate type error locatiomen a program is ill-typed.

What'’s the point of explicitly making a program’s princifggpe less general than it could otherwise
be? Perhaps the program is more versatile than intendedthantype annotations, which serve as
documentation, document its intended use only.

The treatment of optional type annotations has remainadptre folklore for a long time, and has
only rather recently been put in print by Peyton Jones andl&h{48] and by Pottier and Remy [47].
When expressed in terms of constraints, it is particularhpte.

Optional type annotations are introduced by the rule

I'Fe:r
'k(e:7):7

Here, the typer is provided by the programmer as part of the annotation. Ktrbe a ground type,
because we have not (yet) introduced any mearsrafing type variables in expressions. Constraint
generation is extended accordingly:

[e:r):7]=[e:T]AT=7

It is not difficult to check thaf(e : 7) : 7'] entails[e : 7], which means that the presence of the an-
notation makes the generated constraiotre specifi¢more demanding). This is why type annotations
restrict the set of valid types for a program.

Now, what abouhon-groundype annotations? Does it make sense for a type annotatiorrntion
(the name of) a type variable? It does, provided this namebkas explicitlyboundearlier in the
program. That is, we now need one (or several) program agststfor introducing type variables.

When the programmer introduces a new type variable, he prasly intends that variable to denote
an unknown type. But does the programmer mean that the proghmuld be well-typed fosome
instance of this variable, or f@ll such instances? The two interpretations differ. Both aedulisAs a
result, it makes sense to introduce two program constroctsifiding type variables, corresponding to
existentialanduniversalguantification, respectively.

Their typechecking rules are as follows:

Tk [r/ale:o 'kte:o a ¢ ftv(T)
I'F3ae:o I'-Va.e: Va.o

The rule for existential quantification requireto be well-typed undesomeinstantiation ofn. Indeed,
it suffices to findonetype r that satisfies the premise for the conclusion to hold. Thetgtultion[r/«]

is applied to the expressienthat is, to all type annotations within Thus, all references @ within ¢

are replaced with referencesan the premise.

The rule for universal quantification requiret be well-typed under thebsencef any hypothesis
abouta, that is, under the hypothesis thais abstract. This is formalized by its second premise. The
rule is in fact identical to the standard rule for generdiarain Hindley and Milner’s type system,
except it is syntax-directed. Referencesitwithin e are not substituted out.

Constraint generation for existential quantification raigthtforward:

[Ba.e: 7] = Fa.fe: 7]

The type annotations insi@gotentially contain free occurrencesafThus, the constraiffe : 7] itself
can contain such occurrences. They are given meaning byistertial quantifier. It is clear, here, that
it is up to type inference—more precisely, up to the constisilver—to determine an appropriate value
for a.

For instance, the expression

AzyAze.Ja.((21 @ @), (x2 : @))

has principal type scheme
Va.ao - a— a X«
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Indeed, the generated constraint contains the pattern
Jo.([zr: o] Azz:a] ALY

which causes; andxs to share a common type. Without the annotation, its prindigse would be
more general. lfx was universally quantified\g;.\z2.Va. .. .), the expression would be ill-typed,
since it would contain an assertion thgtandx, have every type. I& was universally quantifiedp
front, (Va.Axq.Axs. . . .), the expression would again be well-typed.

Constraint generation for universal quantification is sehregt more subtle. A naive definitidails:

[Va.e : 7] = Va.[e : 7]

This requires to be simultaneously equal &l of the types that assumes whef varies. This is not
what was intended. The informal intended meaning wasetkhbuld be well-typed foall instances of
a and that its eventual typecorresponds teomesuch instance. To reflect this, one can instead define

[Va.e: 7] = Va.3vy.Je : v] A Ja.[e: 7]

This definition is correct. The trouble with it is thais duplicated, which means that constraint gener-
ation no longer has linear time or space complexity. Thistmaavoided with a slight extension of the
let constraint form [47].



Chapter 3

Conclusion

These lecture notes are currenithcomplete. Two more chapters were planned and were to describe
situations wherenandatory type annotations hedipd where docal type inferencalgorithm is layered
on top of a traditional, constraint-based type inferengerdhm so as to reduce the amount of required
annotations—in effect, turning some mandatory type atiostainto optional type annotations again!

One chapter should discuss type inference in the presenasbitfary-rank polymorphism. Ref-
erences are early attempts to marry type inference for Eyndhd Milner's type system with first-
class polymorphism, via a feature that one could refer toiss-Universal types” [49, 50]; &ufer
and Odersky’s proposal for introducing arbitrary-rankymebrphism without relying on explicit type
declarations [51]; Peyton Jonesal’s suggestion of introducing an additionatal type inferenceom-
ponent [52]; and Rémy’s reconstruction of their work [53]so relevant are papers by Garrigue and
Rémy [54], Le Botlan and Rémy [55], and Vytiniotis, Wehicand Peyton Jones [56].

One chapter should discuss type inference in the presergenefalized algebraic data types [57].
Recent references are papers by Simonet and Pottier [58prPéones, Washburn, and Weirich [59],
Pottier and Régis-Gianas [60], and Sulzmann, Wazny, anck8y [61].

What lessons could be drawn from the papers discussed ia tioéss? In short,

e Constraint-based type inference is a versatile tool thatleal with many language features while
relying on a single constraint solver. The solver’s defimtcan be complex, but its behavior
remains predictable because itimrectandcompletewith respect to the logical interpretation of
constraints.

¢ In situations where it is difficult or impossible, due to axttability or undecidability issues, to
design a complete constraint solver, ttanstraint generatiorprocess can be modified to take
advantage of user-providduhts—typically type annotations.

¢ In situations where the necessary hints are so numerouthyabecome a burden,lacal type
inferencealgorithm can be used to automatically produce some of thiete Although its design
is usuallyad hog it should remain predictable if it is sufficiently simple.

These ideas appear to be making their way into the next giored programming languages equipped
with type inference.

21
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