
To appear in J. Funtional Programming 1

FUNCTIONAL PEARL

Produing All Ideals of a Forest, Funtionally

JEAN-CHRISTOPHE FILLI

^

ATRE�

Laboratoire de Reherhe en Informatique,

Universit�e Paris Sud,

91405 Orsay Cedex, Frane

FRANC�OIS POTTIERy

INRIA Roquenourt

B.P. 105

78153 Le Chesnay Cedex, Frane

Abstrat

We present funtional implementations of Koda and Ruskey's algorithm for generating

all ideals of a forest poset as a Gray ode. Using a ontinuation-based approah, we give

an extremely onise formulation of the algorithm's ore. Then, in a number of steps, we

derive a �rst-order version whose eÆieny is omparable to that of a C implementation

given by Knuth.

1 Introdution

It is sometimes said that funtional programming languages are inherently less

eÆient than their imperative ounterparts. Today, suh an opinion has beome a

stereotype without substane. Yet, we still onfront it regularly, and must provide

onvining \pratial" evidene. In this paper, we show how a omplex algorithm,

heretofore presented only in an imperative form, an be expressed in a programming

language equipped with �rst-lass funtions. We obtain ode that is more onise,

signi�antly easier to prove orret, yet equally eÆient as the original. Then, we

derive a �rst-order version of our ode, whih an be easily implemented in C, if

desired.

The algorithm we are interested in is due to Y. Koda and F. Ruskey (Koda &

Ruskey, 1993). It enumerates the ideals of ertain �nite partially ordered sets|

namely, those whose Hasse diagram is a forest|as a Gray ode. In general, a Gray

ode is a sequene of words suh that two onseutive words di�er by only one

letter. A widely studied partiular ase onsists in enumerating all binary integers,

from 00 � � �0 to 11 � � � 1, as a Gray ode. Gray odes �nd appliation in mathe-

matis, eletrial engineering, optis, sheduling, network reliability, et. In fat, a

� (e-mail: Jean-Christophe.Filliatre�lri.fr)

y (e-mail: Franois.Pottier�inria.fr)

2 J.-C. Filliâtre and F. Pottier

Fig. 1. Koda and Ruskey's algorithm applied to the forest (1).

whole setion is devoted to them in the fourth volume of Knuth's Art of Computer

Programming. A preliminary version of this setion is urrently available eletroni-

ally (Knuth, 2001b). While writing it, Knuth took interest in Koda and Ruskey's

algorithm, and published two implementations of it (Knuth, 2001a). Our interest

arose from these readings.

Koda and Ruskey's algorithm an be desribed in a simple way. The task is to

enumerate all olorings of a given, arbitrary forest. A oloring onsists in marking

every node as either blak or white, with the sole onstraint that all desendants

of a white node be white as well. For instane, the following forest:

(1)

admits exatly 15 distint olorings, all of whih are given in Figure 1. By de�nition,

a sequene of olorings forms a Gray ode if and only if every oloring of the forest

appears exatly one in it and two onseutive olorings di�er by the olor of exatly

one node.

Let us illustrate the algorithm's funtioning on the forest (1). The main idea is

to interleave the sequenes of olorings whih orrespond to eah of the trees that

form the forest. Here, one must interlae the sequene of the three olorings of the

left-hand tree, namely:

(2)

with the sequene of the �ve olorings of the right-hand tree, given below:

(3)

Thus, the �rst line of Figure 1 exhibits the �rst oloring of the left-hand tree,

ombined suessively with all olorings of the right-hand tree. The seond line

shows the seond oloring of the left-hand tree, again ombined with all olorings

of the right-hand tree, but this time in reverse order|indeed, it is lear that the

mirror image of a Gray ode remains a Gray ode. Lastly, the third line exhibits

the third oloring of the left-hand tree and all olorings of the right-hand tree, this

time again in their initial order.

Funtional pearl 3

There remains to explain how to enumerate all olorings of a tree. Let the �rst

oloring be uniformly white. Then, to obtain the remainder of the sequene, olor

the root node blak and enumerate all olorings of the forest formed by its hildren.

The sequene thus obtained is indeed a Gray ode, beause (i) the �rst and seond

olorings di�er only by the olor of the root node and (ii) from then on, the root

node remains una�eted, and the sequene of the olorings of the hildren forms a

Gray ode by onstrution. This proess is illustrated by (2) and (3) above. Note

that the oloring where every node is blak does not neessarily appear last in a

sequene.

Koda and Ruskey's paper (Koda & Ruskey, 1993) desribes two versions of this

algorithm, written as imperative pseudo-ode and as Pasal ode. One has om-

plexity O(nN), where n is the number of nodes in the forest and N is the number

of its olorings, that is, the length of the Gray ode to be produed. The other is

a re�nement with optimal omplexity, namely O(N). More reently, two C imple-

mentations were given by Knuth (Knuth, 2001a). All of these implementations are

omplex: they are typially 50 to 80 lines long and involve imperative modi�ations

of subtle data strutures.

The present paper desribes an alternative approah to implementing Koda and

Ruskey's algorithm. We begin with a simple algorithm (Setion 2), whih we �rst

implement in a purely funtional manner and then translate into a slightly more im-

perative style. Indeed, our programming language is Objetive Caml (Leroy et al.,

2002), so it is natural to exploit|to some degree|its imperative features. However,

it would be possible to use any language that supports �rst-lass funtions and mu-

table arrays, suh as other ML dialets, Haskell, Lisp, Sheme, et. In Setion 3,

we slightly modify the algorithm so as to ahieve optimal omplexity O(N). Then,

Setions 4 and 5 present re�ned implementations of the seond algorithm, elimi-

nating �rst-lass funtions in favor of lower-level representations, while preserving

most of the simpliity a�orded by our approah. Lastly, Setion 6 ompares our

implementations with those proposed by Knuth, performane-wise.

2 A ontinuation-based algorithm

We represent a forest as a value of OCaml type forest, de�ned as follows:

type tree = Node of int � forest

and forest = tree list

� list is OCaml's prede�ned type for lists of elements of type �. The list ontaining

x

1

; x

2

; : : : ; x

n

in this order is written [x

1

; x

2

; : : : ; x

n

℄. The empty list is written

[℄. The addition of an element x at the beginning of a list l is written x :: l. The n

nodes of the forest are labeled by the integers 0; 1; : : : ; n�1 in an arbitrary manner.

The algorithm needs to maintain a urrent oloring. It also needs to display every

oloring after it is omputed. Thus, our purely funtional implementation uses a

ombined I/O and state monad, whose OCaml signature is given in the top half

of Figure 2. A state ontains both the oloring, represented as an array of integers

where 0 stands for white and 1 stands for blak, and the output displayed so far,

4 J.-C. Filliâtre and F. Pottier

type state = int array � string

type omputation = state ! state

val reate : int ! state

val update : int ! int ! omputation

val get : int ! state ! int

val print : omputation

let re enum_forest k f s = math f with

| [℄ ! k s

| t :: f ! enum_tree (enum_forest k f) t s

and enum_tree k (Node (i,f)) s =

if get i s == 0 then

(k ++ update i 1 ++ enum_forest k f) s

else

(enum_forest k f ++ update i 0 ++ k) s

Fig. 2. A ontinuation-based version of Koda and Ruskey's algorithm (C0).

represented as a string. A omputation is a state transformer, that is, a funtion

from states to states. The state reate n is the algorithm's initial state, where every

node is olored white. The omputation update i olors node i with olor . The

operation get i returns the olor of node i. Lastly, the omputation print appends

the desription of the urrent oloring to the output string. Implementing this

monad in OCaml is straightforward; we omit the ode. To sequene omputations,

it is onvenient to introdue the following in�x operation, whih is nothing but

funtion omposition:

val (++) : omputation ! omputation ! omputation

Let us now desribe the ore of the algorithm. Beause trees and forests are

de�ned in a mutually indutive way, we naturally de�ne two mutually reursive

funtions enum tree and enum forest, whih enumerate the olorings of a tree and

of a forest, respetively. The key idea is to give these funtions an extra argument

k, of type omputation, whih will be alled after every oloring of the tree (resp.

forest) is omplete. The funtion k may be viewed as a ontinuation, and we all

it so in the following. The idea is, if the funtion k enumerates the olorings of a

ertain forest f0, then the omputation enum forest k f enumerates the olorings

of the forest f � f0 and enum tree k t those of the forest t :: f0, where � denotes

forest onatenation.

The ode is given in Figure 2; we refer to it as C0. Throughout, the variable s

denotes the urrent state. Let us begin with enum forest. If the forest is empty,

we simply all the ontinuation. If, on the other hand, the forest ontains at least

one tree t next to a sub-forest f, then we enumerate the olorings of t, by applying

enum tree to t, with a new ontinuation that enumerates the olorings of f with

ontinuation k. Let us now turn to enum tree. Its task is slightly more omplex,

beause it must enumerate the olorings either in one diretion, or in the other,

depending upon the urrent state. To determine whih, enum tree looks up the

Funtional pearl 5

type omputation = unit ! unit

let re enum_forest k = funtion

| [℄ ! k ()

| t :: f ! enum_tree (fun () ! enum_forest k f) t

and enum_tree k (Node (i,f)) =

if bits.(i) = 0 then begin

k (); bits.(i) 1; enum_forest k f

end else begin

enum_forest k f; bits.(i) 0; k ()

end

Fig. 3. A slightly more imperative implementation (C1).

olor of the tree's root, that is, get i s. If it is urrently white, then the whole tree

must be white. We have a omplete oloring, so we signal the ontinuation k; then,

we olor the root blak and enumerate its hildren's olorings using enum forest.

If, on the other hand, the root is urrently blak, we do the onverse. That is, we

�rst use enum forest to enumerate the hildren's olorings in reverse order, whih

leaves all of the hildren entirely white; then, we olor the root white, and signal

the ontinuation k.

To run C0 on a forest f, one alls enum forest with a ontinuation that displays

the urrent oloring every time it is invoked, that is, print:

enum_forest print f

This omputation is then applied to a suitable initial state, namely reate n, where

n is the size of the forest f.

A slightly more imperative implementation. From here on, we use a native imple-

mentation of the monad desribed above, so as to obtain more idiomati OCaml

ode. That is, the urrent oloring is now stored in a global array bits, while ol-

orings are displayed by alling OCaml's standard library funtions. As a result,

omputations operate only by side e�et. The ode is given in Figure 3; we refer to

it as C1. The di�erenes with respet to C0 are minor. The state parameter s disap-

pears or is replaed with the () onstant. The omposition operator ++ is replaed

with OCaml's native sequening onstrut ;. The urrent oloring is looked up and

modi�ed by reading and writing the global array bits. To run C1 on a forest f,

one alls enum forest with a ontinuation that displays the urrent ontents of the

array bits at every invoation:

enum_forest (fun () ! (* display urrent onfiguration *)) f

Complexity. To assess C1's omplexity, let us �rst introdue the two quantities in

terms of whih it is expressed, namely the forest's size and number of olorings. In

the following, we use OCaml's list syntax for forests. We write Node f for a tree

whose hildren form a forest f (and whose index is irrelevant). The size of a forest f

6 J.-C. Filliâtre and F. Pottier

(resp. of a tree t), written n(f) (resp. n(t)), is the number of its nodes. It is de�ned

indutively on the struture of trees and forests:

n([℄) = 0

n(t :: f) = n(t) + n(f)

n(Node f) = 1 + n(f)

The number of olorings of a forest f (resp. of a tree t), written N(f) (resp. N(t)),

is de�ned similarly:

N([℄) = 1

N(t :: f) = N(t)�N(f)

N(Node f) = 1 +N(f)

Unless it is ambiguous, we write n and N for these two quantities. For the forest (1),

we have n = 5 and N = 15.

We must make some assumptions about the ost of every operation. We ignore

the ost of funtion alls: this slightly simpli�es our omputations, while a�eting

the �nal result only up to a onstant fator. Two operations remain to be taken

into aount: modi�ation of the bits array and losure onstrution. The former

has onstant ost; as for the latter, it is reasonable to assume a onstant amortized

ost. We onsider both as unitary.

We write F (k; f) for the total ost of applying enum forest to a forest f with a

ontinuation of ost k. Similarly, we write T (k; t) for the ost of applying enum tree

to a tree t with a ontinuation of ost k. From the ode C1, we derive the equations

that govern these quantities:

F (k; [℄) = k (4)

F (k; t :: f) = 1 + T (F (k; f); t) (5)

T (k; Node f) = 1 + k + F (k; f) (6)

In equation (5), the unitary ost orresponds to losure onstrution. The losure

itself is, by hypothesis, a ontinuation of ost F (k; f), hene the seond term. In

equation (6), the unitary ost orresponds to updating the array. From these equa-

tions, it is easy to establish the following upper bounds:

F (k; f) � N(f)� (k + n(f))

T (k; t) � N(t)� (k + n(t))� 1

When one applies enum forest to a forest f with a ostless initial ontinuation,

the upper bound simpli�es to N(f) � n(f). Thus, we onlude that C1 has time

omplexity O(nN). One may show, in a similar way, that the number of losures

built during evaluation is bounded by N(f)� 1 and thus C1 has spae omplexity

O(N).

Funtional pearl 7

let re enum_forest k = funtion

| [℄ ! k

| t :: f ! enum_tree (enum_forest k f) t

and enum_tree k (Node (i,f)) =

let lf = enum_forest k f in

fun () !

if bits.(i) = 0 then begin

k (); bits.(i) 1; lf ()

end else begin

lf (); bits.(i) 0; k ()

end

Fig. 4. First re�nement (C2).

3 First re�nement: pre-planning ontrol

This time bound is not optimal; in fat, it is easy to see that C1 atually repeats

some omputations many times. Indeed, every time a given forest is traversed, the

same ontinuation is built. In example (1), enum tree is applied three times to the

seond tree; every time, it is passed a fresh ontinuation, whose e�et is in fat the

same (namely to all the initial ontinuation).

It is possible, with a slight modi�ation to the algorithm, to fator out these

repeated alloations. The idea is that enum tree and enum forest, instead of enu-

merating the olorings immediately, should now return a ontinuation (that is, a

funtion of type unit ! unit) that performs the enumeration when invoked. The

modi�ed ode, whih we refer to as C2, is given in Figure 4. It di�ers from C1 in

three ways. First, when enum forest is applied to an empty forest, it merely returns

its ontinuation k, instead of exeuting it immediately. Seond, when it is applied

to a non-empty forest, it immediately invokes enum forest k f, whih returns a

ontinuation; the need for an expliit delay (that is, a �-abstration) has been re-

moved. Lastly, and most importantly, enum tree alls enum forest only one and

returns a ontinuation. This all to enum forest is performed as soon as enum tree

reeives two arguments, whih is preisely the way it is used within enum forest.

To run C2 on a forest f, one still applies enum forest to f with a display on-

tinuation. The result is now itself a ontinuation, that must be invoked in order to

perform the atual enumeration, as follows:

enum_forest (fun () ! (* display urrent onfiguration *)) f ()

C2 makes more intensive use of higher-order funtions than C1: we now employ

funtions that return funtions. The priniple remains the same, though: if the

funtion k enumerates the olorings of the forest f0, then the funtion enum forest

k f (resp. enum tree k t) enumerates those of the forest f � f0 (resp. t ::f0). One

may notie that enum forest and enum tree are now instanes of the generi \fold"

funtions assoiated to the data types tree and forest. Still, for the sake of larity,

we prefer to de�ne them diretly.

8 J.-C. Filliâtre and F. Pottier

Complexity. The funtions enum forest and enum tree now have three arguments.

Applying them to one argument does not trigger any omputation, but the seond

and third appliations have distint osts, whih must be measured separately.

The ost of an appliation to two arguments is easily determined. Indeed, every

node in the forest at hand is learly traversed exatly one; furthermore, traversing

every node indues a unit ost, due to the losure that is built within enum tree.

Hene, the total ost is the number of nodes, n. Moreover, beause only this pre-

liminary phase alloates memory, we may immediately onlude that C2's spae

omplexity is O(n).

The ost of a third appliation is measured as in the previous setion. We now

write F (k; f) (resp. T (k; t)) for the ost of exeuting the funtion obtained by

invoking enum forest (resp. enum tree) with a ontinuation of ost k. From the

ode C2, we derive the following equations:

F (k; [℄) = k (7)

F (k; t :: f) = T (F (k; f); t) (8)

T (k; Node f) = 1 + k + F (k; f) (9)

Only the seond equation di�ers from those that desribe C1. Given these equations,

it is straightforward to verify the following identities:

F (k; f) = N(f)� (k + 1)� 1

T (k; t) = N(t)� (k + 1)� 1

Applying enum forest to a forest f with a ostless initial ontinuation has a ost of

n(f). Then, invoking the ontinuation thus obtained entails a ost ofN(f)�1. Sine

n(f) � N(f) holds, we may onlude that C2 has time omplexity O(N), whih is

obviously optimal. The �rst phase above an be viewed as a \pre-planning" phase,

whih produes a network of ontinuations. Then, the seond phase performs the

atual enumeration, without alloating any new losures.

4 Seond re�nement: defuntionalizing

The algorithm given in the previous setion has optimal ost. Yet, it is still possible

to reap a small onstant fator. Indeed, we notie that every ontinuation built by

the ode in Figure 4 ontains alls to unknown funtions, namely k and lf. The

OCaml ompiler represents these funtions as losures ontaining a ode pointer and

a data environment. This may inur a speed penalty on modern proessors, beause

jumps to unknown addresses often defeat the branh predition unit, ausing a

pipeline stall. One way to address this problem is to replae the branh to an

unknown address with a test, followed with a branh to a onstant address. In other

words, we will now abandon the use of higher-order funtions. To replae them,

we will introdue a data struture, together with a (�rst-order) funtion run whih

interprets its values as funtions. This tehnique, known as defuntionalization, was

introdued by Reynolds three deades ago (Reynolds, 1998a; Reynolds, 1998b). It

has reently reeived some new interest as a program transformation (Danvy &

Funtional pearl 9

let re enum_forest k = funtion

| [℄ ! k

| t :: f ! enum_tree (enum_forest k f) t

and enum_tree k (Node (i,f)) =

Continue (i, k, enum_forest k f)

let re run = funtion

| Display !

(* display urrent onfiguration *)

| Continue (i, k, lf) !

if bits.(i) = 0 then begin

run k; bits.(i) 1; run lf

end else begin

run lf; bits.(i) 0; run k

end

Fig. 5. Seond re�nement (C3).

Nielsen, 2001) or ompilation (Cejtin et al., 2000) tehnique. Indeed, the program

transformation whih we are about to desribe ould be performed automatially

by a ompiler suh as MLton (Cejtin et al., 2002).

It is easy to observe that every ontinuation manipulated by C2 is either the

initial ontinuation (whih displays the urrent on�guration), or a ontinuation

built by enum_tree, whose ode then onsists of the last six lines of Figure 4. The

initial ontinuation only needs aess to the global array bits, so we will assume

that it has no free variables. Continuations of the latter kind, on the other hand,

have three free variables, namely i, k and lf. This analysis leads us to the following

data type de�nition:

type ontinuation =

| Display

| Continue of int � ontinuation � ontinuation

A value of type ontinuation ontains a tag|either Display or Continue|whih

e�etively plays the role of a ode pointer. When the tag is Continue, it is aom-

panied with values for i, k and lf, whih suÆe to apture the ontinuation's

meaning.

The defuntionalized version of enum_tree, given in Figure 5, now returns a data

struture of type ontinuation, instead of an atual ontinuation. To use suh a

data struture, we must interpret it as a funtion, that is, desribe how it is \run".

This is the role of the new funtion run. The funtion proeeds by ases, aording

to the ontinuation's tag. If it is Display, the urrent on�guration is displayed

(ode omitted). If it is Continue, then suitable values for i, k and lf are read from

the data struture, and the ontinuation's ode is exeuted. It is taken from the

last �ve lines of Figure 4, with alls to k and lf replaed with reursive alls to

run. To run C3 on a forest f, one writes run (enum_forest Display f).

Aording to measurements performed on a number of random forests, this re-

�nement yields a performane inrease that is onsistently omprised between 20

10 J.-C. Filliâtre and F. Pottier

let re enum_forest k = funtion

| [℄ ! k

| t :: f ! enum_tree (enum_forest k f) t

and enum_tree k (Node (i,f)) =

ka.(i) k;

lfa.(i) enum_forest k f;

i

let re run = funtion

| (-1) !

(* display urrent onfiguration *)

| i !

if bits.(i) = 0 then begin

run ka.(i); bits.(i) 1; run lfa.(i)

end else begin

run lfa.(i); bits.(i) 0; run ka.(i)

end

Fig. 6. Last re�nement (C4).

and 30 perent. Although this may be deemed a rather small improvement, we

found it interesting, in partiular beause this formulation helped us disover the

next re�nement.

5 Last re�nement: using integer ontinuations

From the de�nition of enum_tree in Figure 5, it is now lear that enum_forest k f

alloates exatly one ontinuation objet for every node in the forest f. (One may

also notie that these objets form a direted ayli graph.) So, the initial ontin-

uation set aside, ontinuations are in one-to-one orrespondene with nodes. This

prompts us to identify the two notions, and|onsidering nodes are numbered|to

represent ontinuations as integers. By onvention, the integer �1 will be used to

represent the initial ontinuation.

What beomes of the information stored in Continue objets? The integer i

beomes redundant, sine it now is the ontinuation. The ontinuation k (resp. lf)

will now be stored at index i in a global array ka (resp. lfa) of size n. Beause

ontinuations are now integers, ka and lfa are arrays of integers.

The new version of enum_tree, given in Figure 6, now initializes the arrays ka

and lfa instead of alloating ontinuations, and returns i itself instead of a fresh

Continue objet. The algorithm's asymptoti spae omplexity remains unhanged,

but a onstant fator is saved, whose exat amount depends on the runtime system.

In run, the initial ontinuation is now distinguished by the speial value �1. In

the general ase, i stands for a node number, and the two ontinuation nodes k

and lf are obtained by looking up the arrays ka and lfa at index i. To run C4 on

a forest f, one writes run (enum_forest (-1) f).

Aording to measurements performed on a number of random forests, this re-

�nement yields a performane inrease that is onsistently omprised between 0

Funtional pearl 11

and 10 perent. This is a minor improvement, but we believe this formulation is

nevertheless interesting, for two reasons. First, it is amenable to a very simple im-

plementation in a low-level language suh as C. All storage is alloated in three

global arrays, requiring no dynami alloation. Seond, it sheds some light on the

algorithm's struture. Sine a ontinuation is now either a node or �1, the arrays

ka and lfa an be viewed as partial mappings from nodes to nodes. One may hek

that they are initialized by enum_forest and enum_tree as follows:

� If i is the root of the left-most tree in the forest, then ka.(i) is �1;

� if i has a left sibling j in the forest, then ka.(i) is j;

� otherwise, i must have a parent j in the forest, and ka.(i) is ka.(j).

� If i has a hild in the forest, then lfa.(i) is its right-most hild;

� otherwise, lfa.(i) is ka.(i).

This version of the algorithm bears a rather strong resemblane with Knuth's

oroutine-based algorithm (Knuth, 2001a). Indeed, Knuth's algorithm de�nes ex-

atly one oroutine per node, and relies on tables whih map every node to its

left sibling and to its right-most hild, if de�ned. However, Knuth's approah has

an inherent de�ieny: oroutines signal ompletion by returning, whih may ause

the whole all stak to be unwound, whereas they do so, in our ase, by invoking a

ontinuation. Thus, as reognized by Knuth, his algorithm may have asymptotially

worse behavior in some ases. It is noteworthy that our approah naturally leads

to an algorithm that is super�ially similar to Knuth's, but easier to understand,

and more eÆient.

Knuth's \loopless" algorithm, whih appears similar to Koda and Ruskey's origi-

nal desription (Koda & Ruskey, 1993), addresses this de�ieny by using a mutable

data struture that is signi�antly more omplex. The next setion ompares it with

ours.

6 Performane assessment

We now ompare C4, performane-wise, with Knuth's \loopless" implementation

L. Both were ompiled to x86 mahine ode, using the native OCaml ompiler with

array bounds heking turned o�, and g -O2, respetively. (We have also hand-

translated C4 to C ode, with no notieable time di�erene with respet to the

OCaml ode.) L implements Koda and Ruskey's more eÆient algorithm, whih is

loopless, that is, performs a onstant amount of omputation between two onse-

utive olorings. Our implementation is not loopless, but has the same overall time

omplexity, namely O(N).

In pratie, the two implementations seem to have very similar performane, as

suggested by the following graph. Every data point shows the ratio of their running

times (that is, C4's divided by L's) for a random forest (with 30 � n < 45). The

graph has three hundred data points. We have veri�ed that this ratio does not

appear to be orrelated with n or N .

12 J.-C. Filliâtre and F. Pottier

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

These measurements reet the time neessary to produe the Gray ode only|

nothing was displayed. In a realisti appliation, every oloring would be exploited

for some purpose before produing the next oloring, so the performane di�erene

between the two implementations would be even less notieable. In light of this

remark, we believe it is safe to laim that the two implementations are equally

eÆient.

Our ode is available eletronially (Filliâtre & Pottier, 2002); it is funtionally

equivalent to Knuth's (Knuth, 2001a).

7 Conlusion

We have proposed a funtional, higher-order implementation of Koda and Ruskey's

algorithm. From it, we have derived a �rst-order version whose eÆieny is ompa-

rable to Knuth's C implementation.

One key advantage of our ontinuation-based formulation (C2) is to be amenable

to formal proof. It is possible to give reasonably simple spei�ations for enum tree

and enum forest. Beause these funtions must enumerate olorings in either di-

retion, this requires haraterizing the �nal oloring of the Gray ode sequene

assoiated with a given forest. This an be done indutively over trees and forests.

As a result, the formalization is rather straightforward to ondut within a proof as-

sistant suh as Coq (Barras et al., 2002). We are urrently in the proess of arrying

out suh a task.

Referenes

Barras, Bruno, Herbelin, Hugo, et al. . (2002). The Coq Proof Assistant. URL: http:

//oq.inria.fr/.

Cejtin, Henry, Jagannathan, Suresh, & Weeks, Stephen. (2000). Flow-direted losure

onversion for typed languages. Pages 56{71 of: Smolka, Gert (ed), Proeedings of the

2000 European Symposium on Programming (ESOP'00). Leture Notes in Computer

Siene, vol. 1782. Springer Verlag. URL: http://www.sourelight.om/MLton/papers/

00-esop.ps.gz.

Cejtin, Henry, Fluet, Matthew, Jagannathan, Suresh, & Weeks, Stephen. (2002). The

MLton Standard ML Compiler. URL: http://www.mlton.org/.

Danvy, Olivier, & Nielsen, Lasse R. 2001 (Sept.). Defuntionalization at work. Third In-

ternational Conferene on Priniples and Pratie of Delarative Programming (PPDP

2001). Also available as BRICS Researh Report RS-01-23. URL: http://www.bris.dk/

RS/01/23/BRICS-RS-01-23.ps.gz.

Filliâtre, Jean-Christophe, & Pottier, Fran�ois. 2002 (Feb.). Funtional implementations

of Koda and Ruskey's algorithm. URL: http://www.lri.fr/~filliatr/software.en.html.

Knuth, Donald E. 2001a (June). An implementation of Koda and Ruskey's algorithm.

URL: http://www-s-staff.stanford.edu/~knuth/programs.html.

Funtional pearl 13

Knuth, Donald E. (2001b). The Art of Computer Programming. Vol. 4, Pre-Fasile

2a: A Draft of Setion 7.2.1.1: Generating all n-tuples. Addison-Wesley. Cirulated

eletronially. URL: http://www-s-staff.stanford.edu/~knuth/news.html.

Koda, Yasunori, & Ruskey, Frank. (1993). A Gray ode for the ideals of a forest poset.

Journal of algorithms, 15(2), 324{340. URL: http://sr.s.uvi.a/home/fruskey/

Publiations/ForestIdeals.ps.

Leroy, Xavier, Doligez, Damien, et al. . (2002). The Objetive Caml language. URL:

http://aml.inria.fr/.

Reynolds, John C. (1998a). De�nitional interpreters for higher-order programming lan-

guages. Higher-order and symboli omputation, 11(4), 363{397. URL: ftp://ftp.s.

mu.edu/user/jr/defint.dvi.gz.

Reynolds, John C. (1998b). De�nitional interpreters revisited. Higher-order and symboli

omputation, 11(4), 355{361. URL: ftp://ftp.s.mu.edu/user/jr/defintintro.dvi.gz.

