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Abstract. We consider a simple yet expressive λ-calculus equipped with
references, effect handlers, and dynamic allocation of effect labels, and
whose operational semantics does not involve coercions or rely on type in-
formation. We equip this language with a type system that supports type
and effect polymorphism, allows reordering row entries and extending a
row with new entries, and supports (but is not restricted to) lexically
scoped handlers. This requires addressing the issue of potential aliasing
between effect names. Our original solution is to interpret a row not only
as a permission to perform certain effects but also as a disjointness re-
quirement bearing on effect names. The type system guarantees strong
type soundness: a well-typed program cannot crash or perform an un-
handled effect. We prove this fact by encoding the type system into a
novel Separation Logic for effect handlers, which we build on top of Iris.
Our results are formalized in Coq.

1 Introduction

Effect handlers [30,17] can be viewed as a generalization of exception handlers.
Like raising an exception, performing an effect interrupts the normal flow of
execution and transfers control to a handler. Unlike an exception handler, an
effect handler gains access to a delimited continuation, which represents the
fragment of the evaluation context comprised between the point where the effect
was performed and the point where the effect handler was installed. Invoking
this continuation resumes the computation whose execution was suspended by
performing an effect.

To allow programmers to exploit several independent effects simultaneously,
it is desirable for effects to have names. Each effect handler handles a specific
name, or a specific set of names. When an effect is performed, the name of this
effect determines which handler is selected. This idea immediately gives rise to
several key questions about names. What are they: strings, variables, addresses?
Where are they defined? What is their scope?

In the simplest approach [2,14,22], effect names are global. All possible names
are predefined and are in scope everywhere. This approach is simple but unsatis-
factory in terms of expressiveness and modularity: an accidental collision, where
two unrelated pieces of code happen to use the same effect name, can have
surprising unintended consequences. We illustrate this problem later on (§2).



To remedy this problem, several authors have proposed to change the nature
of names. Their work falls broadly in two categories: the “lexical approach” and
the “generative approach”.

The “lexical approach” introduces local effect names with lexical scope. One
can then think of an effect name essentially as a variable. Tunneled exceptions [42]
and lexically scoped handlers [41,6,7,27] fall in this approach. In some of these
proposals, the local effect name is never exposed to the user, but a “capability” to
perform the effect is made available via a local variable. A potential pain point of
this approach is that one must somehow ensure that a name or capability cannot
escape its scope: this must be guaranteed by some combination of syntactic
restrictions, runtime tests, and static typing rules.

The “generative approach” consists in allowing new effects to be generated
afresh at runtime. This requires introducing a distinction between effect labels,
which are allocated at runtime, and effect names, which are variables (with
lexical scope) that the programmer uses to refer to effect labels. This is similar
to the distinction between memory locations and variables that is traditionally
used in the operational semantics of mutable references [29]. This approach has
long been in use for exceptions in Standard ML [25] and OCaml [24], and is
used also for effects in OCaml 5. It is powerful: in particular, it can simulate
lexically scoped handlers.1 However, it introduces several pitfalls of its own.
First, it creates the possibility of nameless effects, that is, the possibility that
there is no static effect name for a certain effect label. Second, it introduces
the possibility of aliasing between effect names, that is, the possibility that two
distinct effect names denote the same effect label. Aliasing creates a challenge
for type system designers: if one cannot statically tell whether two effect names
denote distinct labels, then it seems unclear how one can propose a sound and
precise type discipline.

At least three ways of evading or addressing this challenge appear in the
literature.

First, several mainstream languages adopt the generative approach but avoid
the aliasing challenge by offering a weak type soundness guarantee: a well-typed
program cannot crash, but can halt due to an unhandled exception or effect.
This is the case in Standard ML, where exceptions are untracked, and in OCaml,
where exceptions and effects are untracked. It is also the case in Eff [3].

Second, a number of authors evade or resolve the aliasing challenge by altering
the syntax and the operational semantics of the language. Instead of letting
the correspondence between an effect and a handler be determined purely by
the notion of equality of effect labels or effect names, they introduce coercions

1 This can be a source of confusion. A language that has “lexically scoped handlers”
can, technically, be presented in either of these two styles. Biernacki et al. [6] present
one semantics in each style, the “open semantics” and the “generative semantics”, and
prove an equivalence between them. Zhang and Myers [41] adopt what we believe is
a combination of lexically scoped handlers and implicit arguments, which they refer
to as “tunneling”, in their surface language. This language is then translated down
to a core language whose operational semantics is in the generative style.



that enable explicit disambiguation and collision avoidance. Examples include
Koka [21] as well as several papers by Biernacki et al. [4,5].

Third, some authors evade the challenge by restricting the programming
language in one or more ways, such as restricting attention to lexically scoped
handlers [6,7] and forbidding first-class functions [7].

This sets the scene for this paper. We stick with the generative approach,
which offers a simple and expressive semantics. We do not introduce coercions
or otherwise alter the operational semantics. We do not restrict our attention to
lexically scoped handlers. We address the aliasing challenge.

We propose Tes, a type-and-effect system that statically rules out unhandled
effects. As in most previous work, the potential effects of an expression are de-
scribed by a row, a concept introduced to type-check records and variants [32,38]
and later applied to the analysis of exceptions [28] and effects [14,22]. Type and
effect polymorphism are supported. Furthermore, a simple and powerful sub-
sumption relation allows reordering the entries in a row and extending a row
with new entries, without any side conditions.

How is this possible? How is the aliasing challenge addressed? Our key idea
is this: whenever a question about aliasing arises, require absence of aliasing.
In other words, we interpret a row not just as a description of the names and
types of the effects that may be performed, but also as a requirement that these
names be pairwise distinct. For instance, if a typing judgment states that an
expression e has effect (s : ι ⇒ κ) · (s′ : ι′ ⇒ κ′), then this means not only that
e may perform the effects s and s′, but also that e requires the effect labels
denoted by s and s′ to be distinct. In the presence of effect polymorphism, if e
has effect (s : ι ⇒ κ) · θ, where θ is a row variable, then we take this to mean
that e requires the effect label denoted by s to lie outside the set of effect labels
denoted by θ. We adapt our typing and subtyping rules, where needed, so as to
be sound with respect to this new interpretation of rows.

The reader may find our approach somewhat reminiscent of the manner in
which the separating conjunction of Separation Logic [31] requires disjointness
between the footprints of two formulae. Although this requirement may at first
seem strong, experience has shown that Separation Logic is in fact concise and
expressive. The examples that we present in Section 4.4 seem to suggest that our
disjointness requirement is acceptable; we have not yet found examples where
it is problematic. That said, we do not yet have practical experience with an
implementation of this type system.

Tes offers a strong type soundness guarantee: a well-typed program cannot
crash and cannot halt due to an unhandled effect. To prove this fact, we follow
a semantic approach that has become popular in the last few years [1,20,19]. We
introduce TesLogic, a novel variant of Separation Logic, constructed on top of
Iris [16], which allows reasoning about programs in the presence of effects and
handlers, multi-shot continuations, and dynamic allocation of effect labels. We
prove that this logic is sound, and we provide an interpretation of Tes’s typing
rules in terms of TesLogic’s reasoning rules. All of our results are formalized
in Coq, and our Coq formalization is available [36].



In summary, the main contributions of this paper are the design of Tes,
a type system for TesLang, a λ-calculus equipped with general references, effect
handlers, and dynamic allocation of effect labels, and a proof of type soundness,
which is carried out via a semantic interpretation into a new program logic,
TesLogic.

In Section 2, we provide more background and examples about the semantics
of effect handling: we discuss name collisions, effect coercions, lexically scoped
handlers, and dynamic allocation of effect labels, and we justify why we wish
to study a calculus where effect handling and dynamic allocation of effect labels
are separate constructs. In Section 3, we present the syntax and operational
semantics of TesLang. In Section 4, we introduce Tes and show a number
of examples of constructions that Tes is able to type-check. In Section 5, we
present a brief overview of the proof of type soundness. Finally, we discuss the
related work and conclude.

2 A Panorama of Semantics for Effect Handlers

The various mechanisms that we have mentioned so far, namely lexically scoped
handlers, dynamic allocation of effect labels, and effect coercions, aim to resolve
the basic problem of accidental collisions between effect names. Let us illustrate
this problem with an example.

Anticipating on Section 3, we use a λ-calculus equipped with constructs to
perform and handle effects. The expression perform s v performs an effect with
effect name s and payload v. The expression handle e with s : h | r installs an
effect handler which monitors the execution of the subexpression e and which
handles the effects that carry the name s.2 If e returns a value v, then the return
branch r is invoked and receives the value v as an argument. If e performs an
effect with name s and with payload v, then the execution of e is suspended and
control is transferred to the effect branch h, which receives the payload v and a
continuation k representing the suspended computation.

Let us now introduce the function bad_counter. In a system of simple types,
which does not keep track of effects, bad_counter expects a function ff of type
(α → β) → γ and returns a function of type (α → β) → γ × int. The intended
behavior of bad_counter ff is to produce a new function ff ′ such that ff ′ behaves
like ff but at the same time counts how many times ff uses its argument. That
is, for an arbitrary function f , the application ff ′ f is expected to return a
pair (v, n), where v is the result of the computation ff f and n is the number
of invocations of f that have taken place during this computation. The function
bad_counter is defined as follows:

bad_counter ff = λf.

(
handle ff (λx. perform tick (); f x) with
tick : λ_ k. λn. k () (n + 1) | λy. λn. (y, n)

)
0

This code has a free effect name, tick . The function f is wrapped in a proxy
which performs an effect named tick . This effect is handled by bad_counter; the
2 For simplicity, this construct selects just one name, as opposed to a set of names.



handler implements a memory cell (in state-passing style) to count the number
of ticks, that is, the number of calls made by ff to f .

Unfortunately, because this function uses a fixed effect name, tick , it can
exhibit an unintended behavior, caused by an accidental collision of effect names.
The following use of bad_counter exhibits this issue:

bad_counter (bad_counter (λf. f ())) (λ_. ())

Because the function λf. f () calls its argument once, one might expect the
above expression to return (((), 1), 1). Its actual result, however, is (((), 2), 0). In
the interest of space, we omit an explanation of its operational behavior. The
key reason why it behaves incorrectly is that the two instances of bad_counter

use the same effect name. Each application of bad_counter installs a handler for
the effect name tick . One handler is nested inside the other. As a result, the
innermost handler intercepts two tick effects and the outermost handler never
observes any effect, whereas what was naively intended was that each handler
observes and handles one effect. As a result of the name collision, one of the
effects is accidentally handled by the innermost handler.

To avoid or help avoid accidental collisions between names, the literature
describes several mechanisms: (1) effect coercions, (2) lexically scoped handlers,
which can be viewed as a restricted case of (3) dynamic allocation of effect labels.
Let us now say a little more about these mechanisms.

Effect coercions. An effect coercion modifies the manner in which an effect is
matched with one of the enclosing handlers. Perhaps the simplest example is that
of the lift coercion [4,5], but there are other forms of coercions in the literature,
such as swap. Normally, performing an effect named s transfers control to the
innermost enclosing handler that selects the name s. However, in a language
with effect coercions, if there is a lift coercion between the point where the
effect is performed and the innermost enclosing handler, then this handler is
skipped and control is transferred instead to the next enclosing handler for the
name s.3 Under such a semantics, a coercion can be employed to write a fixed
version of bad_counter:

lift_counter ff =

λf.

(
handle ff (λx. perform tick (); lift tick (f x)) with
tick : λ_ k. λn. k () (n + 1) | λy. λn. (y, n)

)
0

As desired, lift_counter (lift_counter (λf. f ())) (λ_. ()) returns the
value (((), 1), 1). One tick effect is intercepted by the innermost handler; the
other effect is intercepted by the outermost handler thanks to the lift coercion.
In Biernacki et al.’s λHEL [5], lift_counter is well-typed. The lift coercion is
mandatory; without it, the code would be ill-typed.

3 A lift coercion behaves like an end-of-scope marker for the name s. This concept
has been studied, independently of effects, by various authors [13,10].



Lexically scoped handlers and dynamic allocation of effect labels. Perhaps the
most straightforward way to describe the operational behavior of lexically scoped
handlers is by means of their encoding in terms of ordinary effect handlers and
dynamic generation of effect labels. So, let us first extend our calculus with
dynamic allocation of effect labels. We introduce the construct effect s in e,
which binds the effect name s to a freshly generated effect label, then executes e.
The effect name s is a local variable: its scope is the subexpression e. An effect
label is a runtime entity; later in the paper, we let ℓ range over effect labels. In
this setting, a “lexically scoped handler” is encoded (simulated) as follows:

lex-handle e with h | r =
effect s in handle e (λx. perform s x) with s : h | r

(1)

This code first generates a fresh effect label, denoted by the name s. Then, it
installs a handler for the name s. This handler monitors the execution of the
expression e to the anonymous function λx. perform s x, which can be viewed as
a “capability” to perform the effect s.

A noteworthy aspect of the syntactic sugar lex-handle e with h | r is that it
does not explicitly involve any effect name. This construct is known as a “lexically
scoped handler”.

A lexically scoped handler can be used to write a fixed version of bad_counter:

counter ff = λf.

(
lex-handle λtick . ff (λx. tick (); f x) with
λ_ k. λn. k () (n + 1) | λy. λn. (y, n)

)
0 (2)

When lex-handle is executed, a fresh effect label (which is never explicitly
mentioned in this code) is generated. The variable tick stands for the “capabil-
ity” to perform this fresh nameless effect. One can check that the expression
counter (counter (λf. f ())) (λ_. ()) reduces to the value (((), 1), 1), as desired,
because the two instances of counter generate two distinct dynamic labels and
install one handler for each of these labels. Thus, no collision takes place.

Arguments in favor of dynamic allocation of effect labels. In summary, dynamic
allocation of effect labels is a way of avoiding collisions between effect names. It
can express lexically scoped handlers, but does not impose the use of lexically
scoped handlers: it also allows working with global names when desired. Its
dynamic semantics is simple. It is in use in several established programming
languages, such as Standard ML and OCaml.

We believe that lexically scoped handlers are an elegant idiom, which is well
suited to many but not all situations. So, we would not be satisfied with a
restricted programming language where lexically scoped handlers are the sole
form of effect handling. Indeed, lexically scoped handlers impose a somewhat
unnatural “capability-passing” style, where the capability to perform an effect
must be passed as an argument to a function (or captured in its closure). This
style becomes especially cumbersome when multiple effects are involved. Implicit
arguments can help, as suggested by Zhang and Myers [41] and by Odersky et
al. [27]. However, elaboration of implicit arguments is usually a type-directed



n ::= s | ℓ
v ::= () | ℓ | rec f x. e | §K
e ::= v | x | e e | ref e | ! e | e := e

| effect s in e | perform n e | handle e with n : v | v | eff ℓ v K
K ::= • | e K | K v | ref K | !K | e := K | K := v

| perform ℓ K | handle K with ℓ : v | v

Fig. 1. Syntax of effect values, values, expressions, and evaluation contexts

effect s in e / σ → e[ℓ/s] / σ[ℓ 7→ ()]
perform ℓ v / σ → eff ℓ v • / σ

handle v with ℓ : h | r / σ → r v / σ
handle (eff ℓ v K) with ℓ : h | r / σ → h v §(handle K with ℓ : h | r) / σ

§K v / σ → K[v] / σ

(eff ℓ v1 K) v2 / σ → eff ℓ v1 (K v2) / σ
e1 (eff ℓ v2 K) / σ → eff ℓ v2 (e1 K) / σ

handle (eff ℓ v K) with ℓ′ : h | r / σ → eff ℓ v (handle K with ℓ′ : h | r) / σ

Fig. 2. The head reduction relation (selected rules)

translation. If at all possible, we wish to preserve the “type erasure” property:
that is, we prefer a language whose operational semantics is not influenced by
type information, because such a semantics is easier to explain to an end user.
Similarly, we wish to avoid effect coercions because we believe that they introduce
unwarranted complexity, making the language and its dynamic semantics more
difficult to explain to programmers.

3 Syntax and Semantics

We introduce TesLang, a calculus with mutable state, effect handlers, multiple
named effects, dynamic allocation of effect labels, and multi-shot continuations.
The operational semantics of this calculus allows a continuation to be invoked
several times. With respect to this semantics, the type system presented in this
paper (§4) is strongly sound: it rules out all runtime errors (§5). With respect
to a dynamic semantics where invoking a continuation twice causes a runtime
failure, such as the semantics of OCaml 5, our type system would be weakly
sound, because it does not rule out this kind of runtime failure. Ensuring that
every continuation is invoked at most once would require an affine type system
and is beyond the scope of this paper. We note that an affine program logic, such
as Hazel [35], can guarantee that no continuation is invoked twice, therefore can
guarantee strong soundness even in the presence of one-shot continuations.

Our small-step operational semantics is very straightforward. It is equipped
with dynamic allocation of effect labels and with a standard treatment of effects



and effect handlers [2]. When an effect with label ℓ is performed, a dynamic
lookup takes place: the nearest enclosing handler that is able to handle the
label ℓ is selected. This is expressed, in small-step style, via several reduction
rules. In contrast with some papers in the literature, where coercions influence
the process of selecting a handler [21,4,5], here, this process is based purely on
equality of effect labels.

3.1 Syntax

We let f and x range over an infinite set of variables. We let s range over an
infinite set of variables, and we refer to these variables as effect names. These two
namespaces are independent of one another: an effect name cannot be passed
as a parameter to a function. We let ℓ range over an infinite set of addresses.
These addresses model both memory locations and effect labels. Both kinds of
entities are dynamically allocated, so, for simplicity, we use a single namespace
of addresses and a single store. Whereas variables f, x and effect names s can
appear in source programs, memory locations and effect labels ℓ exist only at
runtime. The reduction rules of the small-step semantics cause them to appear.

The syntax of effect values, values, expressions, and evaluation contexts is
shown in Figure 1.

An effect value n is either an effect name s or an effect label ℓ. This syntactic
category is closed under substitutions of effect labels for effect names. It is used
in the constructs perform n e and handle e with n : v | v. A programmer always
writes perform s e and handle e with s : v | v, where s is an effect name, but the
more general form is required in the operational semantics.

A value v is the unit value (), a memory location ℓ, a possibly recursive
function rec f x. e, or a continuation §K.

The syntax of expressions e includes values, variables, function application,
operations for allocating, reading, and writing references, as well as constructs
for allocating a fresh effect label, performing an effect, and handling an effect.
Sequencing is encoded as function application: let x = e1 in e2 is sugar for
(λx. e2) e1. The construct effect s in e dynamically allocates a new effect
label and binds the effect name s to this label in the expression e. The con-
struct perform s v performs an effect whose name is s and whose payload is
the value v. The construct handle e with s : h | r monitors the execution of the
expression e. If an effect named s is performed, then the effect branch h takes
control. If a value is returned, then the return branch r takes control. An ef-
fect that carries a name other than s is propagated up through this construct.
Finally, the construct eff ℓ v K, an active effect, does not appear in source
program, but plays a role in the operational semantics, as we shall explain in
the next subsection.

Our Coq formalization [36] covers a richer calculus, whose features include
base types, pairs, sums, and lists.

The syntax of evaluation contexts K defines a right-to-left evaluation order.
This choice is arbitrary: it is inspired by Iris’s HeapLang language [33], but our
results would hold also with left-to-right evaluation.



3.2 Semantics

The operational semantics of TesLang involves two relations, namely the head
reduction relation e / σ → e′ / σ′ and the reduction relation e / σ −→ e′ / σ′.
They act on configurations, where a configuration e / σ is a pair of an expres-
sion e and a store σ. The head reduction relation, a fragment of whose definition
appears in Figure 2, is the most interesting relation. The reduction relation,
whose definition is omitted, allows one step of head reduction to take place
under an evaluation context.

A store is a finite map of addresses to values. We use addresses ℓ to denote
both memory locations and effect labels. If ℓ denotes a memory location (that
is, the address of a reference), then σ(ℓ) is the value stored at this address. If ℓ
denotes an effect label, then the value σ(ℓ) is irrelevant: by convention, we use
the unit value ().

The rules not shown in Figure 2, such as βv-reduction and the rules for
allocating, reading, and writing references, are standard.

The first rule in Figure 2 states that effect s in e allocates a fresh address ℓ,
extends the store with a mapping of ℓ to the unit value, and substitutes the
effect label ℓ for the effect name s in the expression e. (The rule has the side
condition ℓ /∈ dom σ.) According to the second reduction rule, perform ℓ v
reduces to an active effect eff ℓ v •. An active effect has the ability to capture
the surrounding evaluation context, until it reaches a handler that is able to
handle it. In this rule, it is initialized with an empty evaluation context •. The
last three rules in Figure 2 show how an active effect captures its evaluation
context, one frame at a time. (The last rule has the side condition ℓ ̸= ℓ′.)
The third and fourth rules in Figure 2 show how the return branch or the effect
branch of a handle construct are taken. In the latter rule, the handler h is applied
to the payload value value v and to a continuation, which reifies the captured
evaluation context K. The continuation contains a copy of the effect handler: this
is a deep-handler semantics [15]. The fifth reduction rule in Figure 2 describes
the application of a continuation §K to a value v.

4 Type System

4.1 Syntax of types, rows, and signatures

We let α, β, and γ range over an infinite set of type variables. We let θ range
over an infinite set of row variables. We distinguish three syntactic categories,
namely types, rows, and signatures (Figure 3). The syntax of types is stable under
substitutions of types τ for type variables α. The syntax of rows is stable under
substitutions of rows ρ for row variables θ, for an ad hoc notion of substitution,
which reduces row concatenation expressions “ρ · ρ′” on the fly.4

4 The distinction between rows and signatures enforces the view that a row ρ is a list
where each component (known as a “signature”) is either a signature for an effect
name s or a row variable θ. Thus, we impose a simple form on rows. As an alternate



τ, κ, ι ::= unit | ⊥ | ⊤ | α | τ ref | τ ρ−→ τ | ∀α. τ | ∀θ. τ
ρ ::= ⟨⟩ | σ · ρ
σ ::= (s : τ ⇒ τ) | θ

Fig. 3. Syntax of types, rows, and signatures

Sub
Ξ | ∆ | Γ ⊢ e : ρ : τ

ρ′ ⊢b ρ ≤R ρ′ ρ′ ⊢ τ ≤T τ ′

Ξ | ∆ | Γ ⊢ e : ρ′ : τ ′

Var
Γ (x) = τ

Ξ | ∆ | Γ ⊢ x : ρ : τ

RecFun
Ξ | ∆ | Γ, f : τ

ρ−→ κ, x : τ ⊢ e : ρ : κ

Ξ | ∆ | Γ ⊢ rec f x. e : ⟨⟩ : τ
ρ−→ κ

App
Ξ | ∆ | Γ ⊢ e : ρ : τ

ρ−→ κ
Ξ | ∆ | Γ ⊢ e′ : ρ : τ

Ξ | ∆ | Γ ⊢ e e′ : ρ : κ

TypeIntro
α /∈ Ξ,Γ, ρ

Ξ, α | ∆ | Γ ⊢ v : ρ : τ

Ξ | ∆ | Γ ⊢ v : ρ : ∀α. τ

TypeElim
Ξ | ∆ | Γ ⊢ e : ρ : ∀α. τ
Ξ | ∆ | Γ ⊢ e : ρ : τ [τ ′/α]

RowIntro
θ /∈ Ξ,Γ, ρ

Ξ, θ | ∆ | Γ ⊢ v : ρ : τ

Ξ | ∆ | Γ ⊢ v : ρ : ∀θ. τ

RowElim
Ξ | ∆ | Γ ⊢ e : ρ : ∀θ. τ
Ξ | ∆ | Γ ⊢ e : ρ : τ [ρ′/θ]

Effect
s /∈ Γ, ρ, τ

Ξ | ∆, s | Γ ⊢ e : (s : abs) · ρ : τ

Ξ | ∆ | Γ ⊢ effect s in e : ρ : τ

Perform
s ∈ ∆ (s : ι ⇒ κ) ∈ ρ
Ξ | ∆ | Γ ⊢ e : ρ : ι

Ξ | ∆ | Γ ⊢ perform s e : ρ : κ

Handle
s ∈ ∆ Ξ | ∆ | Γ ⊢ e : ρ : τ

ρ = (s : ι ⇒ κ) · ρ0 ρ′ = (s : ι′ ⇒ κ′) · ρ0
Ξ | ∆ | Γ ⊢ h : ρ′ : ι −→ (κ

ρ′−→ τ ′)
ρ′−→ τ ′ Ξ | ∆ | Γ ⊢ r : ρ′ : τ

ρ′−→ τ ′

Ξ | ∆ | Γ ⊢ handle e with s : h | r : ρ′ : τ ′

Fig. 4. The type system (selected rules)



Our types are standard: they include the unit type unit, the bottom and top
types ⊥ and ⊤, type variables α, reference types, effect-annotated arrow types,
value-polymorphic types, and effect-polymorphic types. Effect-annotated arrow
types and effect-polymorphic types are discussed below.

A row is a list of signatures σ. A signature, in turn, is either a singleton
signature s : ι′ ⇒ κ′ or a row variable θ. A singleton signature s : ι′ ⇒ κ′ means
that performing the effect s is permitted and is analogous to calling a function
of argument type ι′ and return type κ′. According to this reading, a singleton
signature of the form s :⊥ ⇒ ⊤ actually forbids the effect s, because a function
whose argument type is ⊥ can never be called. We write s : abs as a short-hand
for this signature, and we refer to it as an absence signature for the effect s.

In addition to an argument type τ and a return type κ, an arrow type τ
ρ−→ κ

carries an “effect”, that is, a row ρ. Intuitively, a value of type τ ρ−→ κ is a function,
which, when applied to an argument of type τ , either returns a result of type κ or
performs an effect that is permitted by the row ρ. On top of this standard reading
of effect annotations, Tes introduces a novel aspect. The effect annotation ρ is
interpreted not only as a set of permitted effects, but also as a precondition: we
impose the semantic requirement that a function of type τ

ρ−→ κ can be invoked
only if the multiset of effect labels denoted by the row ρ has no duplicate elements.
This is not a syntactic requirement, which would be either “true” or “false” and
would be decided just by inspecting the syntax of the row ρ. Indeed, in general,
a row contains occurrences of effect names s, which denote a-priori-unknown
effect labels, and of row variables θ, which denote a-priori-unknown multisets of
effect labels. What we wish to require is that, at runtime, after effect names and
row variables have been substituted away by some substitution η, a function of
type τ

ρ−→ κ can be invoked only if no effect label appears twice in the closed
row η(ρ). Thus, the requirement that “ρ contains no duplicate labels” should be
thought of as a disjointness hypothesis bearing on the row ρ. Such a hypothesis
may or may not be satisfied, depending on how the effect names and row variables
that occur in ρ are instantiated.

In Tes, disjointness hypotheses are sometimes explicit and most of the time
implicit. In the subsumption judgments (Figure 5), a disjointness context D is
explicit: it can be interpreted as a conjunction of disjointness hypotheses. In
function types τ

ρ−→ κ and in typing judgments Ξ | ∆ | Γ ⊢ e : ρ : τ , an
implicit disjointness hypothesis bearing on the row ρ is built in, so there is no
need for an explicit disjointness context.

An effect-polymorphic type ∀θ. τ involves a universal quantification over a
row variable θ. For instance, the function iter, which iterates over a list, can be
defined as follows:

iter = rec iter xs f. match xs with (λx xs. f x; iter xs f | λ_. ()) (3)

path, one could use a single syntactic category ρ ::= ⟨⟩ | ρ · ρ | (s : τ ⇒ τ) | θ,
where a more general form of row concatenation is allowed. This would allow using
a standard notion of substitution, and would lead to different statements for some
of the row subsumption rules.



This function admits the following value- and effect-polymorphic type:

iter : ∀α. ∀θ. α list → (α
θ−→ unit)

θ−→ unit

This type states that the call iter xs f is safe, regardless of what the elements
of the list xs might be, and regardless of what effects the user function f might
perform. This type also guarantees that iter does not perform any effect of
its own: instantiating θ with ⟨⟩ shows that this must be the case. Finally, one
might think that this type guarantees that iter cannot intercept the effects
performed by f . This may or may not be true, depending on which interpretation
of effect-polymorphic types is chosen. A stronger interpretation can guarantee
this property, but rules out certain useful programming language constructs, such
as “dynamic-wind”. Conversely, a weaker interpretation of effect-polymorphic
types allows type-checking “dynamic-wind”, but breaks this guarantee. At this
time, the interpretation that we have verified in Coq is the weaker one (§5). We
further discuss this point in Section 6.

4.2 The typing judgment

A typing judgment in Tes takes the form Ξ | ∆ | Γ ⊢ e : ρ : τ . It involves
three environments: a row- and type-variable context Ξ, which binds row and
type variables θ and α; an effect-name context ∆, which binds effect names s; and
a type environment Γ , which maps variables x to types τ . This typing judgment
states that the expression e has effect ρ and type τ . Like an arrow type, this
judgment involves an implicit disjointness hypothesis bearing on the row ρ. That
is, this judgment guarantees that it is safe to execute e provided the row variables
and type variables in Ξ are instantiated in such a way that the multiset of effect
labels denoted by ρ has no duplicate elements.

A selection of the typing rules appears in Figure 4. The typing rules for
variables, functions, and applications are the same as in most type-and-effect
systems. The typing rules for references are also standard, and are omitted.
The rules TypeIntro, TypeElim, RowIntro, RowElim, which introduce and
eliminate value- and effect-polymorphic types, are also standard. In the presence
of mutable state, an unrestricted introduction rule for polymorphic types is un-
sound [34]. In this paper, we avoid this problem simply by building the value
restriction [39,12] into TypeIntro and RowIntro. Our Coq formalization [36]
proposes a more elaborate approach, where function types and typing judgments
are annotated with purity attributes. This approach yields a slightly more expres-
sive system, where, in particular, perform s x is considered a pure expression,
therefore can receive a polymorphic type.

Rule Effect, read from bottom to top, changes the current effect from ρ to
(s : abs) ·ρ. Intuitively, this means several things. First, while type-checking e, it
is safe to assume that the effect label denoted by s is disjoint from the multiset
of effect labels denoted by ρ. This assumption is implicitly expressed by the mere
appearance of the row (s : abs) · ρ in the premise. This assumption is justified
indeed, since the effect name s is bound to a fresh effect label when effect s in e



is executed. Second, because of the absence signature s : abs, one must check
that the expression e does not perform any effect with the name s. This seems
a natural and unavoidable restriction: if such an effect was allowed, there would
be no static effect name by which it can be described. Third, because of the
side condition s /∈ ρ, one must check that the row that appears in the premise
contains at most one singleton signature for the effect name s. As a counter-
example, if the expression e has effect (s : abs) · (s : abs), then the typing rule
Effect cannot be applied. The subsumption rule Sub cannot help, because the
subsumption judgment (s : abs) · (s : abs) ≤ (s : abs) does not hold. Thus, the
rule Effect enforces a disjointness constraint.

Rule Perform states that, when one performs an effect whose signature
is s : ι ⇒ κ, one must pass a payload value of type ι, and, in return, one can
expect a value of type κ. This supports the intuitive idea that performing an
effect is analogous to calling an effect-free function of type ι → κ.

Rule Handle type-checks handle e with s : h | r, where the expression e
is monitored by a handler for the effect s. This rule expresses the idea that
this construct establishes a boundary between the inside, where effects named s
may be performed in accord with the signature s : ι ⇒ κ, and the outside, where
effects named s may be performed in accord with a different signature s : ι′ ⇒ κ′.
Because s : abs is sugar for s :⊥ ⇒ ⊤, this rule also covers the common case
where the effect s is absent on the outside. Both the effect branch h and the
return branch r are part of the “outside world”, so their effects are described
by the outside row ρ′. This remark explains all occurrences of ρ′ in the last two
premises, except the one in the type of the continuation. The continuation, which

is the second parameter of the effect branch h, has type κ
ρ′

−→ τ ′. Because we
have adopted a “deep-handler” semantics (§3), a copy of the handler is reinstalled
inside the continuation. This explains why the effect ρ′ and the result type τ ′ of
the continuation are the same as those of the whole handle construct.

Rule Sub weakens a typing judgment by replacing an effect ρ and a type τ
with a weaker effect ρ′ and a weaker type τ ′. This rule relies on several sub-
sumption judgments, which we discuss next.

4.3 The subsumption judgments

The subsumption judgments on types, signatures, and rows appear in Figure 5.
An original aspect is that these judgments depend on a disjointness context D,
which appears on the left of the turnstile. A disjointness context is a (possibly
empty, unordered) list of rows, and is interpreted as a conjunction of disjointness
hypotheses: one hypothesis bears on each row. For instance, the disjointness
context (s1 : ι1 ⇒ κ1) · (s2 : ι2 ⇒ κ2), (s3 : ι3 ⇒ κ3) · θ, which is a list of
two rows, is equivalent to a conjunction of two disjointness hypotheses. The
first hypothesis is equivalent to s1 ̸= s2: it represents the assumption that the
effect names s1 and s2 denote two distinct effect labels. The second hypothesis
expresses the assumption that the effect label denoted by s3 is not a member of
the multiset of effect labels denoted by θ and that this multiset has no duplicate
elements.



Type subsumption

TypeRefl
D ⊢ τ ≤T τ

Bot
D ⊢ ⊥ ≤T τ

Top
D ⊢ τ ≤T ⊤

TypeTrans
D ⊢ τ ≤T τ ′ D ⊢ τ ′ ≤T τ ′′

D ⊢ τ ≤T τ ′′

Arrow
D, ρ′ ⊢ τ ′ ≤T τ D, ρ′ ⊢b ρ ≤R ρ′ D, ρ′ ⊢ κ ≤T κ′

D ⊢ τ
ρ−→ κ ≤T τ ′ ρ′−→ κ′

Signature subsumption

SigRefl
D ⊢ σ ≤S σ

SigCons
D ⊢ ι ≤T ι′ D ⊢ κ′ ≤T κ

D ⊢ (s : ι ⇒ κ) ≤S (s : ι′ ⇒ κ′)

Row subsumption

Empty
D ⊢b ⟨⟩ ≤R ⟨⟩

Extend
D ⊢b ρ ≤R σ · ρ

Swap
D ⊢b σ · σ′ · ρ ≤R σ′ · σ · ρ

RowCons
D ⊢ σ ≤S σ′

D ⊢false ρ ≤R ρ′

D ⊢b σ · ρ ≤R σ′ · ρ′

Erase
D ⊩ s # ρ

D ⊢true (s : abs) · ρ ≤R ρ

RowTrans
D ⊢b ρ ≤R ρ′

D ⊢b ρ
′ ≤R ρ′′

D ⊢b ρ ≤R ρ′′

Effect/row disjointness

D ⊩ s # ⟨⟩
D ⊩ s # σ D ⊩ s # ρ

D ⊩ s # (σ · ρ)

ρ ∈ D {(s : · ⇒ ·), (s′ : · ⇒ ·)} ⊆m ρ

D ⊩ s # (s′ : ι′ ⇒ κ′)

ρ ∈ D {(s : · ⇒ ·), θ} ⊆m ρ

D ⊩ s # θ

Fig. 5. The subsumption judgments



In the subsumption rules, the disjointness context is extended in the rule
Arrow and exploited in the rule Erase. Elsewhere, it is just transported.

Subsumption on types. The subsumption judgment on types D ⊢ τ ≤T τ ′ means
that, under the hypothesis D, τ is a subtype of τ ′. The rules in Figure 5 state
that this relation is reflexive, transitive, and admits ⊥ and ⊤ as bottom and
top elements. On function types, as usual, subsumption is contravariant in the
domain and covariant in the effect and in the codomain. One original aspect
of Arrow is that this rule enriches the disjointness context: in the premises, the
disjointness context changes from D to D, ρ′. The intuitive reason why this is

sound is that if someone uses a function at type τ ′ ρ′

−→ κ′ then (at the point where
the function is used) the disjointness hypothesis ρ′ must be satisfied, because this
hypothesis is part of our interpretation of function types. Thus, when proving

that a function of type τ
ρ−→ κ can be used as a function of type τ ′

ρ′

−→ κ′, it is
safe to rely on the disjointness hypothesis ρ′.

Subsumption on signatures. The subsumption judgment on signatures takes the
form D ⊢ σ ≤S σ′. Signature subsumption is reflexive and transitive. (Reflexivity
is given by SigRefl; transitivity is derivable.) According to SigCons, unlike
the standard function type constructor · → ·, the signature constructor s : · ⇒ ·
is covariant in its domain and contravariant in its codomain. Indeed, when the
signature s : ι ⇒ κ appears in the effect of an expression e, this means that e
has permission to perform an effect named s at type ι ⇒ κ. In other words, e
can assume that performing an effect named s is analogous to calling a function
of type ι → κ. This explains the reversed variance.

Subsumption on rows. The row subsumption judgment is D ⊢b ρ ≤R ρ′. The
Boolean parameter b will be explained shortly. Row subsumption is reflexive
and transitive. (Reflexivity is derivable; transitivity is given by RowTrans.)
By combining Empty, Extend, RowCons, Swap, and RowTrans, one finds
that if two rows, viewed as multisets of effect signatures, are related by multi-
set inclusion, then they are related by subsumption. Thus, subsumption allows
permuting row entries in arbitrary ways and extending a row with new entries.

The last row subsumption rule, Erase, allows dropping an effect signature
of the form s : abs. This rule may seem plausible because, both in the presence
of the effect signature s : abs and its absence, the effect s is forbidden. However,
an unqualified axiom ⊢ (s : abs) · ρ ≤R ρ would be unsound. This is due to our
interpretation of the row carried by a typing judgment (or by a function type)
as a disjointness hypothesis. By changing a typing judgment that carries the row
(s : abs) · ρ into one that carries the row ρ, one removes the hypothesis that the
effect label denoted by s is not a member of the multiset of effect labels denoted
by ρ. In order to safely remove a hypothesis, one must prove that it is satisfied.
This explains why Erase must carry the premise D ⊩ s # ρ, whose intuitive
meaning is that “the hypotheses in D guarantee that the effect label denoted
by s is not among the effect labels denoted by ρ”.



The parameter b serves to forbid a use of Erase under RowCons. Erase
requires this flag to be true, but RowCons sets it to false in its premise. Without
this restriction, one could first combine Erase and DisjEmpty to prove ⊢
(s : abs)·⟨⟩ ≤R ⟨⟩, then use RowCons and induction to obtain ⊢ (s : abs)·ρ ≤R ρ
without any side condition, thus circumventing the side condition in Erase.

The four rules that define the effect/row disjointness judgment D ⊩ s # ρ
are straightforward. The first two rules decompose the row ρ, which is a list of
effect signatures σ. The last two rules look up the disjointness context D so as
to find a disjointness hypothesis ρ that implies the goal. Whether ρ implies the
goal is decided based on a simple syntactic criterion: the relation · ⊆m · denotes
multiset inclusion; the row on the right-hand side is viewed as a multiset of effect
signatures.5

The desire to support Erase is the reason why the subsumption judgments
carry a disjointness context. In a hypothetical simplified system where these
judgments do not carry such a context, the premise of Erase would have to use
an empty disjointness context True. This premise would become True ⊩ s # ρ,
which is false, so Erase would become inapplicable. Yet Erase is desirable,
because it is useful in practice. We use it to type-check our encoding of a lexically
scoped handler: this is illustrated in Section 4.4.

Why is ⊢ (s : abs)·ρ ≤R ρ unsound? In the presence of this axiom, the judgment
⊢ (s : abs) · (s : abs) ≤R (s : abs) would be derivable. This judgment can be
exploited to type-check the following unsafe program:

1 effect s in

2 handle

3 handle (perform s ()) with s : λx_. not x | λ_. true
4 with s : λ_ _. () | λ_. ()

This program is unsafe because the effect s is performed with a payload of
type unit, namely the unit value () on line 3, and this effect is handled by the
innermost handler, also on line 3, which expects the payload x to be a Boolean
value. When this program is executed, it becomes stuck by attempting to execute
the function application not ().

Yet, under the assumption ⊢ (s : abs) · (s : abs) ≤R (s : abs), this program
is well-typed, with an empty row and with the type unit. Beginning at the
root and working towards the leaves, the type derivation begins with an appli-
cation of Effect, which changes the empty row into the row (s : abs). Then,
by using Sub and by exploiting the above assumption, the row (s : abs) can be
changed to (s : abs) · (s : abs). At this point, the harm is done. Indeed, under the
row (s : abs) · (s : abs), the subprogram at lines 2–4 is well-typed. The fact that
this row includes two signatures for the effect name s allows us to install two
handlers for this name. The handler on line 2 allows its handlee—the expression
5 Our Coq code [36] presently employs a different representation of disjointness con-

texts and a different definition of the effect/row disjointness judgment. We believe,
but have not yet checked, that the Coq and paper formulations are equivalent.



on line 3—to perform effects according to the signature s : unit ⇒ unit. The
handler on line 3 allows its handlee to perform effects as per s : bool ⇒ unit.
The expression perform s () is type-checked with respect to the composite row
(s : unit ⇒ unit) · (s : bool ⇒ unit), which means that this expression must
respect either of these two signatures. It does indeed respect the first one, so it
is well-typed.

4.4 Examples

Filter Recall the higher-order iteration function iter (Eq. 3), whose type is

iter : ∀α. ∀θ. α list → (α
θ−→ unit)

θ−→ unit.

Let us use iter in the definition of filter:

filter xs f = let g = (λx. if f x then perform yield x) in iter xs g

The expression filter xs f “yields” each element x of the list xs in turn, by
performing a yield effect if f x returns true. In Tes, filter is well-typed, and
its type is:

filter : ∀α. ∀θ. α list → (α
θ−→ bool)

(yield :α⇒unit)·θ−−−−−−−−−−−→ unit

Checking that filter is well-typed is not difficult. Under the assumption that
f has type α

θ−→ bool, the subexpression f x has effect θ. Under the assumption
that x has type α, the subexpression perform yield x has effect (yield :α ⇒
unit). Because our subsumption rules allow extending a row with a new entry and
exchanging row entries, the composite subexpression if f x then perform yield x
admits the composite effect (yield :α ⇒ unit) · θ.

What does filter’s type mean? Ostensibly, the row (yield :α ⇒ unit) · θ
tells us that every effect performed by filter xs f must be either a yield effect
or an effect caused by f . Less obviously, these alternatives must be mutually
exclusive: indeed, the row (yield :α ⇒ unit) · θ carries the implicit requirement
that the effect label denoted by yield is not among the effect labels denoted by
θ. In other words, filter’s type forbids f from performing yield effects.

The reader may wonder what prevents us from instantiating θ with a row
that includes the effect name yield , such as (yield :α ⇒ unit). The answer is,
nothing prevents such an instantiation. The result, however, would be a view of
filter as a function whose effect is (yield :α ⇒ unit) · (yield :α ⇒ unit). Such
an effect carries an unsatisfiable disjointness hypothesis, namely yield ̸= yield .
As a result, once the type of filter has been instantiated in this way, filter
cannot be called anymore.6

6 Technically, an application of this instantiated filter function can still be well-typed,
but only if it appears in the body of a function which itself carries an unsatisfiable
disjointness hypothesis and therefore can never be called.



Lexically scoped handlers We now derive a typing rule for lexically scoped
handlers. Recall the encoding of a lexically scoped handler (Eq. 1):7

lex-handles e with h | r =
effect s in handle e (λx. perform s x) with s : h | r

For this construct, Tes admits the following derived typing rule:

LexHandle

Ξ | ∆ | Γ ⊢ e : ρ : ∀θ. (ι θ−→ κ)
θ·ρ−−→ τ s /∈ Γ, ρ, ι, κ, τ, τ ′

Ξ | ∆ | Γ ⊢ h : ρ : ι −→ (κ
ρ−→ τ ′)

ρ−→ τ ′ Ξ | ∆ | Γ ⊢ r : ρ : τ
ρ−→ τ ′

Ξ | ∆ | Γ ⊢ lex-handles e with h | r : ρ : τ ′

This rule is similar to the typing rule for lexically scoped handlers that appears
in Figure 3 of Biernacki et al.’s paper [6]. What is new and noteworthy is that we
obtain this rule as a special case of a more permissive type discipline, Tes, which
supports general effect handlers, as opposed to just lexically scoped handlers.

In LexHandle, whereas the effect on the outside is ρ, the effect on the inside
is θ · ρ. That is, inside the handlee, one more effect is permitted. The handlee
(the expression e) must be polymorphic in the row variable θ: that is, it must
treat this extra effect as an abstract effect.

The derivation of LexHandle involves an application of Effect and an
application of Handle. While proving that the premises of Handle hold, a key
step is to prove that the type of the effect branch h can be weakened as follows,
where ρ′ is a shorthand for (s : abs) · ρ:

Ξ | ∆ | Γ ⊢ h : ρ : ι −→ (κ
ρ−→ τ ′)

ρ−→ τ ′

Ξ | ∆ | Γ ⊢ h : ρ : ι −→ (κ
ρ′

−→ τ ′)
ρ′

−→ τ ′
ρ′ = (s : abs) · ρ

It is not at all obvious that this is possible! Two occurrences of ρ must be changed
into ρ′. One occurrence is positive and one is negative, and the rows ρ and ρ′

are not equal. Still, this implication can be established, via rule Sub. One must
check the following chain of subsumption relations:

ι −→ (κ
ρ−→ τ ′)

ρ−→ τ ′ ≤T ι −→ (κ
ρ−→ τ ′)

ρ′

−→ τ ′ ≤T ι −→ (κ
ρ′

−→ τ ′)
ρ′

−→ τ ′

The first step requires ⊢b ρ ≤R ρ′, which, by Extend, is true. The second step
requires ρ′ ⊢true ρ′ ≤R ρ, which, by Erase, is true as well. The disjointness
hypothesis ρ′ plays a key role: indeed, True ⊢true ρ′ ≤R ρ is false. In other
words, Erase is applicable because the disjointness hypothesis ρ′ is available,
and this hypothesis exists because Arrow causes it to appear as it descends
into the domains of two function types that are annotated with ρ′.
7 This encoding requires choosing an arbitrary name s that does not occur in e, h

or r. Furthermore, in the derivation of the typing rule LexHandle, s may need
to be renamed. On paper, we would normally not mention these details. However,
because our Coq code does not currently allow α-conversion of effect names, we
make s a parameter of the macro lex-handle and we include a freshness hypothesis
bearing on s in LexHandle.



Counter Using the type rule LexHandle, it is straightforward to check that
counter (§2, Eq. 2) can be assigned the following type:

counter : ∀αβ γ. (∀θ. (α θ−→ β)
θ−→ γ) → ∀θ. (α θ−→ β)

θ−→ (γ * int)

This means that counter accepts an arbitrary effect-polymorphic second-order
function ff and produces a function ff ′ whose type is similar to ff ’s type. The
only difference between the types of ff and ff ′ is in their result types, to wit,
γ versus γ * int.

It is not hard to see that the expression counter (counter (λf. f ())) (λ_. ()),
where two instances of counter are nested, is also well-typed, and that its type
is (unit * int) * int.

Mix The following second-order function, mix, involves a potentially challenging
mixture of features:

mix f =
handle (perform s (); f ())
with s : λ_ k. k () | λ_. ()

The effect name s occurs free in this code, so this is not an instance of a lexically
scoped handler. (We assume that the name s is introduced by the surrounding
context.) The subexpression perform s (); f () visibly performs the effect s and
calls the unknown function f , which itself may perform various effects, perhaps
including the effect s. This subexpression is monitored by a handler for the
effect s at type unit ⇒ unit.

In Tes, mix is well-typed. In fact, it admits several types. We show three:
the first two are equivalent, and the last one subsumes the first two.

The first idea that comes to mind may be: “since f has an unknown effect, let’s
represent this effect with a row variable θ”. Thus, one introduces a row variable θ,
and one assumes that f has type unit

θ−→ unit. Under this assumption, one finds
that perform s (); f () has effect (s : unit ⇒ unit) · θ. (The subsumption rule
Extend is used, twice, to merge the effect of perform s () and the effect of f ().)
Finally, using Handle, one finds that the body of the function mix has effect
(s : abs) · θ. In summary, mix admits the following type:

mix : ∀θ. (unit θ−→ unit)
(s : abs)·θ−−−−−−→ unit (4)

The effect (s : abs) · θ carried by the second arrow means that mix never throws
the effect s and transmits whatever effects f may throw, provided these effects do
not include s. Indeed, the row (s : abs) ·θ is interpreted not only as a description
of mix’s potential effects, but also as a disjointness constraint. Thus, the row
(s : abs) · θ in this type (4) cannot be replaced with just θ. Such a replacement
would amount to discarding the disjointness constraint, which would be unsound.

The reader may wonder what happens if θ is instantiated, in the above type,
with a row that mentions s, such as s : int ⇒ int. Technically, this is permitted,
but yields a version of mix whose effect is (s : abs) · (s : int ⇒ int). Such a
function can never be called.



Thus, this type (4) effectively forbids f from performing effect s. One may
wonder whether this fact can be made explicitly visible in the type of mix. In fact,
it can. By the subsumption rules Arrow, Extend, and Erase, the type (4) is
equivalent to the following type:

mix : ∀θ. (unit (s : abs)·θ−−−−−−→ unit)
(s : abs)·θ−−−−−−→ unit (5)

Indeed, under the disjointness constraint carried by the outer arrow, the rows θ
and (s : abs) · θ are equivalent.

It is worth noting that this type allows the function f to use the effect s
internally, if desired, and at an arbitrary type, provided this effect is handled
internally by f and does not escape.

Finally, one may wonder whether it is necessary to forbid f from visibly
performing effect s. In fact, it is not: one can allow f to perform this effect and
let it escape, provided it is performed at type unit ⇒ unit, which is the type
expected by the handler inside mix. It is not difficult to check that mix admits
the following type:

mix : ∀θ. (unit (s : unit⇒unit)·θ−−−−−−−−−−→ unit)
(s : abs)·θ−−−−−−→ unit (6)

This type (6) is in fact more general than (that is, a subtype of) the previous
type (5). This follows directly from the fact that s : abs is a short-hand for
s :⊥ ⇒ ⊤ and from the subsumption rules SigCons, RowCons, and Arrow.

5 Metatheory

In this section, we present the general architecture of the proof of our type
soundness statement (Theorem 3), which states that, if a closed program e is
well-typed, then e is safe: that is, e may diverge or terminate with a value, but
cannot perform an unhandled effect. Full details are found in our Coq code [36].

Our first step is to interpret our typing judgments as semantic typing judg-
ments. A semantic typing judgment Ξ | ∆ | Γ ⊨ e : ρ : τ is a logical assertion
stating that substituting certain values for the free variables of e yields a closed
program that meets a certain specification. To fill in the details, one must define
precisely which values may be substituted and what specification is met.

To do so, we introduce TesLogic, an extension of Iris [16], an expressive
Separation Logic. Iris’s base logic has no built-in support for effects and han-
dlers, but allows constructing a program logic with such support. de Vilhena and
Pottier define such a logic, Hazel [35]. Because Hazel is tailored for unnamed ef-
fects and one-shot continuations, we cannot re-use it. Nevertheless, in the design
of TesLogic, we do rely on one of Hazel’s key features, protocols.

A protocol Ψ describes a service on which the handlee can rely and which
the handler must implement. Mathematically, it is a binary relation between a
value v, the payload of the effect, and a predicate Φ, the precondition of the con-
tinuation for this effect. A typical example of a protocol is the pre/post protocol



Weakest precondition

wp e ⟨E⟩{Φ} ≜ ValidDistinct E.1 −−∗ ewp e ⟨E⟩{Φ}

Basic weakest precondition

ewp v ⟨E⟩{Φ} ≜ Φ(v)

ewp (eff ℓ v K) ⟨E⟩{Φ} ≜ ∃Ψ.(ℓ, Ψ) ∈ E ∗ (↑□Ψ) v (λw. ▷ ewp K[w] ⟨E⟩{Φ})
ewp e ⟨E⟩{Φ} ≜ ∀σ. S(σ) ≡∗⊤ ∅

∃ e′, σ′. e / σ −→ e′ / σ′ ∗
∀ e′, σ′. e / σ −→ e′ / σ′ ≡∗∅ ∅ ▷ |⇛∅ ⊤

S(σ′) ∗ ewp e′ ⟨E⟩{Φ}

Persistent upward closure

(↑□Ψ) v Φ ≜ ∃Φ′. Ψ v Φ′ ∗ □∀w.Φ′(w) −−∗ Φ(w)

Validity-and-distinctness property

ValidDistinct L ≜ NoDup L ∧
∧
ℓ∈L

ℓ 7→□ ()

Fig. 6. Definition of the weakest precondition

{Φ1}.{Φ2}, defined as λ v Φ. Φ1(v) ∗ □∀w. Φ2(w) −−∗ Φ(w). We use this protocol
(in the interpretation of signatures, Figure 7) to attach a precondition Φ1 and a
postcondition Φ2 to an effect: performing an effect with payload v is permitted
if Φ1(v) holds, and one can assume that it returns a value w such that Φ2(w)
holds. The symbol □ is Iris’s persistence modality. Here, it reflects the fact that
continuations are multi-shot: a single perform expression can “return” several
times with several different values of w, so we must be prepared to exploit Φ2

several times.

To reason about labeled effects, we introduce the notion of a protocol list E,
a list of pairs of a label and a protocol. Therefore, whereas Hazel’s weakest
precondition modality is parameterized with a single protocol, ours is param-
eterized with a protocol list. In our setting, the assertion wp e ⟨E⟩{Φ} means
that (1) it is safe to execute e; (2) if e produces a value v then Φ(v) holds; and
(3) if e performs an effect labeled ℓ then it does so according to a protocol Ψ such
that (ℓ, Ψ) ∈ E holds. Its definition appears in Figure 6. It is broadly similar
to Hazel’s wp modality, save for three aspects: the use of a protocol list E; the use
of a persistent upward closure; and the appearance of a validity-and-distinctness
property as an assumption of the weakest precondition assertion. The persistent
upward closure again has to do with the fact that continuations are multi-shot.
The validity-and-distinctness property expresses two properties of the labels in
the list E; first, these labels are pairwise distinct; second, these labels have been
allocated. The latter fact is expressed by a persistent points-to assertion [37].



Interpretation of types (selected cases)

VJτ ρ−→ κKδη(v) ≜ □∀w. VJτKδη(w) −−∗ wp (v w) ⟨RJρKδη⟩{VJκKδη}
VJ∀θ. τKδη(v) ≜ ∀E. VJτKδη,θ 7→E(v)

Interpretation of rows and signatures

RJρKδη ≜
⋃
σ∈ρ

SJσKδη
SJ(s : ι ⇒ κ)Kδη ≜ (δ(s), {VJιKδη}.{VJκKδη})

SJθKδη ≜ η(θ)

Interpretation of typing judgments

Ξ | ∆ | Γ ⊨ e : ρ : τ ≜ ∀ η, δ, vs. GJΓ Kδη(vs) −−∗ wp (e[vs][δ]) ⟨RJρKδη⟩{VJτKδη}
GJΓ Kδη(vs) ≜ ∀ {x 7→ τ} ⊆ Γ. VJτKδη(vs(x))

Fig. 7. Interpretation of types, rows, signatures, and typing judgments

This notion of wp enjoys a set of reasoning rules that we omit. The following
theorem states that it is sound to reason about programs by means of these
rules:

Theorem 1 (Soundness of TesLogic). If wp e ⟨[]⟩{Φ} holds, then e is safe.

With TesLogic at hand, let us come back to the definition of the semantic
judgment Ξ | ∆ | Γ ⊨ e : ρ : τ .

As usual, a type τ is interpreted as a semantic type, that is, a persistent
predicate VJτKδη on values. More unusually, a row ρ is interpreted as a protocol
list RJρKδη, defined as

⋃
σ∈ρ SJσKδη, the list concatenation of the interpretations

of the elements of ρ. The environment δ maps effect names to effect labels; η
maps type variables to semantic types and row variables to protocol lists.

This said, our interpretation of types (Figure 7) is mostly standard [19]. The
interpretation of a function type, VJτ ρ−→ κKδη, is the set of values v such that
the application of v to a value w in VJτKδη satisfies a wp assertion with protocol
list RJρKδη and postcondition VJκKδη. What is crucial is that the validity-and-
distinctness property that we have built into the definition of wp formalizes
the requirement that effect names be pairwise distinct. The interpretation of an
effect-polymorphic type involves a quantification ∀E over protocol lists.

Theorem 2 (Fundamental Theorem). The syntactic judgment entails the
semantic judgment: Ξ | ∆ | Γ ⊢ e : ρ : τ =⇒ Ξ | ∆ | Γ ⊨ e : ρ : τ .

We establish this theorem by induction on the syntactic typing judgment. For
every syntactic typing rule, we prove that the interpretation of the conclusion
follows from the interpretations of the premises.

The previous two theorems lead directly to the desired type soundness result:



Theorem 3 (Soundness of Tes). If ∅ | ∅ | ∅ ⊢ e : ⟨⟩ : unit, then e is safe.

6 Related Work

Hillerström and Lindley [14] study the core calculus of Links [9], a functional
programming language for web applications, which they extend with support
for effect handlers. Taking advantage of Links’s row-based approach to type-
checking records, they annotate function types with rows of effects. Their rows
use Rémy’s kind discipline [32] to ensure that an effect name can never appear
twice in a row.

Leijen [22] formalizes a subset of the Koka language [23]. He presents a cal-
culus with support for handlers and globally defined effects, a type system with
value and effect polymorphism, and a compilation strategy for explicitly-typed
programs. This strategy relies on a selective CPS transformation [26], which
he extends with support for effect polymorphism. A row in Leijen’s system is
univariate: it contains at most one row variable. Tes, in contrast, allows a row
to contain several row variables. This ability is exploited, for example, in the
typing rule LexHandle. Indeed, the premise contains the effect-polymorphic
type ∀θ. (α θ−→ β)

θ·ρ−−→ τ, where θ abstracts away the fresh effect label that is
allocated by lex-handle.

A notable omission from Leijen’s formalization is Koka’s inject [21], which
is akin to a lift coercion. Biernacki et al. [4] are the first authors to provide
a formal treatment of such a construct. They define its operational semantics
and they propose a type system with effect polymorphism and univariate rows.
They present the first binary logical relations for effect handlers, and they use
these relations to prove that their system is sound. In a later paper [5], the same
authors introduce λHEL, a calculus that supports both dynamic allocation of
effect labels and effect coercions. In addition to the lift coercion, they consider
(1) the swap coercion, which exchanges two effects in a row; (2) the cons coercion,
which rearranges effects deep in a row; and (3) composition of coercions. These
new coercions do not add expressiveness: they can be expressed in terms of
lift. Still, they help programmers control the dynamic search for a handler.
Biernacki et al. propose a type system with support for universal and existential
types. Although counter, discussed in Sections 2 and 4, is expressible in λHEL,
Biernacki et al.’s type system does not accept this program. (This has been
confirmed by the authors in a personal communication.) The technical reason
why counter is ill-typed is that the subsumption rules are not sufficiently flexible:
an abstract row θ cannot be weakened to a larger row. It is not trivial how to
overcome this issue, because the interpretation of a signature in Biernacki et al.’s
system depends on the signature’s position in the row. Tes, in contrast, allows
extension, thanks to the rule Extend.

Zhang and Myers [41] present “a new semantics based on tunneling”, which
they claim avoids “accidental handling” by construction. As far as we understand,
however, they do not propose a semantics in the usual sense, that is, a reduction
semantics. Instead, their “semantics” seems to be a translation of the surface



language into a core calculus, λ⇓⇑. This translation is not formally defined: it is
sketched by way of examples. Furthermore, as noted by Biernacki et al. [6], there
is a discrepancy between the paper presentation of λ⇓⇑ and its Coq formalization.
The paper does not mention dynamic generation of effect labels, but the calculus
that is formalized in Coq supports this feature via a construct that generates a
fresh effect label and installs a handler for this label; in other words, a lexically
scoped handler.

For this calculus with lexically scoped handlers, Zhang and Myers propose a
type system with support for effect polymorphism. They prove its soundness us-
ing binary logical relations. Then, they exploit these logical relations to establish
interesting typed contextual equivalence laws. One law [41, Example 1] shows
that an effect-polymorphic function cannot intercept the effects represented by
an abstract row variable. This law seems to express the intuitive idea of “absence
of accidental handling”, but we remark that this notion is never formally defined.

Zhang and Myers [41] and other authors [8] suggest that “absence of acciden-
tal handling”, sometimes also referred to as “effect safety”, has something to do
with parametricity. Unfortunately, “parametricity” itself is a somewhat loosely-
defined concept. As far as we understand, the word “parametricity” refers to the
fact that a syntactic universal type is interpreted via a meta-level universal quan-
tification over a certain universe of semantic types. However, the strength of this
meta-level quantification depends on which universe of semantic types is chosen.
A smaller universe yields a system with weaker universal types, which may enjoy
fewer equivalence laws, but may also admit more well-typed programs.

To illustrate this point, let us ask whether our calculus, TesLang, can be ex-
tended with a “dynamic-wind” construct [11]. This construct, dynamic-wind p e q,
monitors the execution of e and invokes the thunk p whenever control enters e
(at the beginning of e’s execution and every time e is resumed) and invokes the
thunk q whenever control leaves e (at the end of e’s execution and every time e
performs an effect). To type-check this construct, one might extend Tes with
the following typing rule:

DynamicWind
Ξ | ∆ | Γ ⊢ e : ρ : τ

Ξ | ∆ | Γ ⊢ p : ρ : unit −→ unit Ξ | ∆ | Γ ⊢ q : ρ : unit −→ unit

Ξ | ∆ | Γ ⊢ dynamic-wind p e q : ρ : τ

We have proved that this rule is sound with respect to the interpretation of
types presented in Section 5. So, our semantic model supports dynamic-wind.
Furthermore, our semantic model arguably enjoys “parametricity”, since a univer-
sal type is interpreted via a meta-level universal quantification. Yet, introducing
dynamic-wind breaks Zhang and Myers’s desired equivalence law [41, Example 1],
because it allows observing arbitrary effects, without knowledge of their name
and type. Therefore, “parametricity” does not guarantee “absence of accidental
handling”.

The lesson that we draw from this remark is that a programming language
designer is faced with a tension between making the language more powerful



by introducing constructs such as dynamic-wind, allowing new programs to be
written, and making the language less powerful by forbidding such constructs,
thereby validating new equivalence laws. Our (unary) semantic model (§5) errs
on the side of admitting more constructs and fewer equivalence laws. In future
work, it would be interesting to propose a (binary) semantic model that ad-
mits fewer constructs and validates more laws, so as to prove that Tes without
dynamic-wind validates Zhang and Myers’s law [41, Example 1].

Despite their previous studies of coercions [4,5], Biernacki et al. [6] argue
against coercions, which they deem impractical for real-world programming, and
propose a type system for a language that supports lexically scoped handlers
only. They present two semantics for this language: (1) an open semantics, where
effect names are not substituted with labels, and where evaluation is defined
among open terms in a capture-avoiding way; and (2) a generative semantics,
where effect names are substituted at runtime with effect labels, as in TesLang.
By means of binary logical relations, they prove that the type system is sound
and that the two semantics are equivalent.

Kammar and Pretnar [18] show that a calculus with effects and handlers but
without references and without dynamic allocation of effect labels admits a type
system with unrestricted polymorphism. Thus, generalization applies even to an
expression that performs and handles effects. Kammar and Pretnar establish the
soundness of their system via a syntactic approach [40]. The version of Tes that
we have formalized in Coq [36] distinguishes pure and impure expressions and
allows generalizing the type of a pure expression. The pure expressions include
expressions that perform or handle effects. Allocating a fresh effect label is still
considered impure. Although such an allocation seems intuitively harmless, our
current semantic model interprets allocation as an Iris “update”, and Iris does
not allow exchanging a universal quantifier with an update modality, so we are
unable to justify that allocation is pure. We conjecture that this problem would
perhaps not appear in a syntactic approach.

7 Conclusion

In this paper, we have argued in favor of a simple semantics for effect handlers,
where the dynamic search for a handler is based purely on equality of effect
labels, and where fresh labels can be generated at runtime. This language can
express, but is not restricted to, lexically scoped handlers. We have proposed a
type system equipped with type and effect polymorphism and with a powerful
subsumption relation. A distinguishing feature is the idea that a row expresses
a disjointness requirement on effect labels. We have established type soundness
via a semantic approach.

In future work, it would be desirable to strengthen our semantic model and
turn it into a binary model, so as to establish contextual equivalence laws such
as Zhang and Myers’s [41]. We also wish to investigate support for modules and
inference of principal types, with the ultimate aim of proposing a strong type
system for OCaml 5.
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