
JOIN(X): Constraint-Based Type Inferene for

the Join-Calulus

Sylvain Conhon and François Pottier

INRIA Roquenourt, {Sylvain.Conhon,Franois.Pottier}�inria.fr

Abstrat. We present a generi onstraint-based type system for the

join-alulus. The key issue is type generalization, whih, in the presene

of onurreny, must be restrited. We �rst de�ne a liberal generalization

riterion, and prove it orret. Then, we �nd that it hinders type infer-

ene, and propose a ruder one, reminisent of ML's value restrition.

We establish type safety using a semi-syntati tehnique, whih we be-

lieve is of independent interest. It onsists in interpreting typing judge-

ments as (sets of) judgements in an underlying system, whih itself is

given a syntati soundness proof.

1 Introdution

The join-alulus [3℄ is a name-passing proess alulus related to the asyn-

hronous �-alulus. The original motivation for its introdution was to de�ne

a proess alulus amenable to a distributed implementation. In partiular, the

join-alulus merges reeption, restrition and repliation into a single syntati

form, the def onstrut, avoiding the need for distributed onsensus. This design

deision turns out to also have an important impat on typing. Indeed, beause

the behavior of a hannel is fully known at de�nition time, its type an be safely

generalized. Thus, def onstruts beome analogous to ML's let de�nitions. For

instane, the following de�nition:

def apply(f,x) = f(x)

de�nes a hannel apply whih expets two arguments f and x and, upon reeipt,

sends the message f(x). In Fournet et al.'s type system [4℄, apply reeives the

parametri type sheme 8�:hh�i; �i, where h�i is the hannel type onstrutor.

1.1 Motivation

Why develop a new type system for the join-alulus? The uni�ation-based sys-

tem proposed by Fournet et al. [4℄ shares many attrative features with ML's

type system: it is simple, expressive, and easy to implement, as shown by the Jo-

Caml experiment [1℄. Like ML, it is presriptive, i.e. intended to infer reasonably

simple types and to enfore a programming disipline.

Type systems are often used as a nie formal basis for various program anal-

yses, suh as ontrol �ow analysis, stritness analysis, usage analysis, and so

2 Sylvain Conhon and François Pottier

on. These systems, however, tend to be essentially desriptive, i.e. intended to

infer aurate types and to rejet as few programs as possible. To ahieve this

goal, it is ommon to desribe the behavior of programs using a rih onstraint

language, possibly involving subtyping, set onstraints, onditional onstraints,

et. We wish to de�ne suh a desriptive type system for the join-alulus, as a

vehile for future type-based analyses.

Following Odersky et al. [6℄, we parameterize our type system with an arbi-

trary onstraint logi X , making it more generi and more easily re-useable. Our

work may be viewed as an attempt to adapt their onstraint-based framework

to the join-alulus, muh as Fournet et al. adapted ML's type disipline.

1.2 Type Generalization Criteria

The def onstrut improves on let expressions by allowing synhronization

between hannels. Thus, we an de�ne a variant of apply that reeives the

hannel f and the argument x from di�erent hannels.

def apply(f) | args(x) = f(x)

This simultaneously de�nes the names apply and args. The message f(x) will

be emitted whenever a message is reeived on both of these hannels.

In a subtyping-onstraint-based type system, one would expet apply and

args to be given types h�i and h�i, respetively, orrelated by the onstraint

� � h�i. The onstraint requires the hannels to be used in a onsistent way: the

type of x must math the expetations of f. Now, if we were to generalize these

types separately, we would obtain apply : 8��[� � h�i℄:h�i and args : 8��[� �

h�i℄:h�i, whih are logially equivalent to apply : 8�:hh�ii and args : 8�:h�i.

These types no longer re�et the onsisteny requirement!

To address this problem, Fournet et al. state that any type variable whih

is shared between two jointly de�ned names (here, apply and args), i.e. whih

ours free in their types, must not be generalized. However, this riterion is

based on the syntax of types, and makes little sense in the presene of an ar-

bitrary onstraint logi X . In the example above, apply and args have types

h�i and h�i, so they share no type variables. The orrelation is only apparent

in the onstraint � � h�i. When the onstraint logi X is known, orrelations

an be deteted by examining the (syntax of the) onstraint, looking for paths

onneting � and �. However, we want our type system to be parametri in X ,

so the syntax (and the meaning) of onstraints is, in general, not available. This

leads us to de�ne a uniform, logial generalization riterion (Set. 5.2), whih

we prove sound.

Unfortunately, and somewhat surprisingly, this riterion turns out to hinder

type inferene. As a result, we will propose a ruder one, reminisent of ML's

so-alled value restrition [10℄.

1.3 Overview

We �rst reall the syntax and semantis of the join-alulus, and introdue some

useful notation. Then, we introdue a ground type system for the join-alulus,

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 3

P j Q
 Q j P D

1

; D

2

 D

2

; D

1

P j 0
 P D; �
 D

P j (Q j R)
 (P j Q) j R D

1

; (D

2

; D

3

)
 (D

1

; D

2

); D

3

(def D in P) j Q
 def D in (P j Q) if dn(D) \ fn(Q) = ?

def D

1

in def D

2

in P
 def D

1

; D

2

in P if fn(D

1

) \ dn(D

2

) = ?

def D; J . P in Q j 'J ! def D; J . P in Q j 'P if dom(') = ln(J)

Fig. 1. Operational semantis

alled B(T), and establish its orretness in a syntati way (Set. 4). Building

on this foundation, Set. 5 introdues JOIN(X) and proves it orret with re-

spet to B(T). Set. 6 studies type reonstrution, suggesting that a restrited

generalization riterion must be adopted in order to obtain a omplete algorithm.

By lak of spae, we omit all proofs, exept that of the main type soundness

theorem (Theorem 5.9). The interested reader is referred to [2℄.

2 The Join-Calulus

We assume given a ountable set of names N , ranged over by x; y; u; v; : : : We

write ~u for a tuple (u

1

; : : : ; u

n

) and �u for a set fu

1

; : : : ; u

n

g , where n � 0. The

syntax of the join-alulus is as follows.

P ::= 0 j (P j P) j u h~v i j def D in P

D ::= � j J . P j D;D

J ::= u h ~y i j (J j J)

The de�ned names dn(J) (resp. dn(D)) of a join-pattern J (resp. of a de�nition

D) are the hannels de�ned by it. In a proess def D in P , the de�ned names

of D are bound within D and P . More details are given in [2℄.

Redution! is de�ned as the smallest relation that satis�es the laws in Fig. 1.

(�-onversion and ongruene rules omitted for brevity.) ' ranges over renam-

ings, i.e. one-to-one maps from N into N .
 stands for !\ . It is ustomary

to distinguish strutural equivalene and redution, but this is unneessary here.

3 Notation

De�nition 3.1. Given a set T , a T -environment, usually denoted � , is a partial

mapping from N into T . If N � N , � j

N

denotes the restrition of � to N . �+�

0

is the environment whih maps every u 2 N to �

0

(u), if it is de�ned, and to � (u)

otherwise. When � and �

0

agree on dom(�)\dom(�

0

), �+�

0

is written ���

0

.

If T is equipped with a partial order, it is extended point-wise to T -environments

of idential domain.

4 Sylvain Conhon and François Pottier

De�nition 3.2. Given a set T , ranged over by t,

~

t denotes a tuple (t

1

; : : : t

n

),

of length n � 0; we let T

?

denote the set of suh tuples. If T is equipped with a

partial order, it is extended point-wise to tuples of idential length.

De�nition 3.3. Given a set I, (x

i

: t

i

)

i2I

denotes the partial mapping x

i

7!

t

i

of domain �x = fx

i

; i 2 Ig. (P

i

)

i2I

denotes the parallel omposition of the

proesses P

i

. (D

i

)

i2I

denotes the onjuntion of the de�nitions D

i

.

De�nition 3.4. The Cartesian produt of a labelled tuple of sets A = (x

i

:

s

i

)

i2I

, written �A, is the set of tuples f(x

i

: t

i

)

i2I

; 8i 2 I t

i

2 s

i

g.

De�nition 3.5. Given a partially ordered set T and a subset V of T , the one

generated by V within T , denoted by "V , is ft 2 T ; 9v 2 V v � tg. V is said

to be upward-losed if and only if V = "V .

4 The System B(T)

This setion de�nes an intermediate type system for the join-alulus, alled

B(T). It is a ground type system: it does not have a notion of type variable.

Instead, it has monotypes, taken to be elements of some set T , and polytypes,

merely de�ned as ertain subsets of T .

Assumptions. We assume given a set T , whose elements, usually denoted by

t, are alled monotypes. T must be equipped with a partial order �. We assume

given a total funtion, denoted h�i, from T

?

into T , suh that h

~

ti � h

~

t

0

i holds if

and only if

~

t

0

�

~

t.

De�nition 4.1. A polytype, usually denoted by s, is a non-empty, upward-

losed subset of T . Let S be the set of all polytypes. We order S by �, i.e. we

write s � s

0

if and only if s � s

0

.

Note that � and h�i operate on T . Furthermore, S is de�ned on top of T ;

there is no way to injet S bak into T . In other words, this presentation allows

rank-1 polymorphism only; imprediative polymorphism is ruled out. This is in

keeping with the Hindley-Milner family of type systems [5, 6℄.

De�nition 4.2. A monotype environment, denoted by B, is a T -environment.

A polytype environment, denoted by � or A, is an S-environment.

De�nition 4.3. The type system B(T) is given in Fig. 2. By abuse of notation,

in the �rst premise of rule b-Join, a monotype binding (u : t) is impliitly viewed

as the polytype binding (u : "ftg).

Every typing judgement arries a polytype environment � on its left-hand

side, representing a set of assumptions under whih its right-hand side may

be used. Right-hand sides ome in four varieties. u : t states that the name

u has type t. D :: B (resp. D :: A) states that the de�nition D gives rise to

the environment fragment B (resp. A). Then, dom(B) (resp. dom(A)) is, by

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 5

Names

b-Inst

� (u) = s t 2 s

� ` u : t

b-Sub-Name

� ` u : t

0

t

0

� t

� ` u : t

De�nitions

b-Empty

� ` � ::

~

0

b-Join

� + (~u

i

:

~

t

i

)

i2I

` P

� ` (x

i

h ~u

i

i)

i2I

. P :: (x

i

: h

~

t

i

i)

i2I

b-Or

� ` D

1

:: B

1

� ` D

2

:: B

2

� ` D

1

; D

2

:: B

1

�B

2

b-Sub-Def

� ` D :: B B � B

0

� ` D :: B

0

b-Gen

8B 2 �A � ` D :: B

� ` D :: A

Proesses

b-Null

� ` 0

b-Par

� ` P � ` Q

� ` P j Q

b-Msg

� ` u : h

~

ti � ` ~v :

~

t

� ` u h~v i

b-Def

� +A ` D :: A � +A ` P

� ` def D in P

Fig. 2. The system B(T)

onstrution, dn(D). Lastly, a right-hand side of the form P simply states that

the proess P is well-typed.

The most salient aspet of these rules is their treatment of polymorphism.

Rule b-Inst performs instantiation by allowing a polytype s to be speialized to

any monotype t 2 s. Conversely, rule b-Gen performs generalization by allowing

the judgement � ` D :: (x

i

: s

i

)

i2I

to be formed if � ` D :: (x

i

: t

i

)

i2I

holds

whenever (x

i

: t

i

)

i2I

2 �(x

i

: s

i

)

i2I

, i.e. whenever 8i 2 I t

i

2 s

i

holds. In

other words, this system o�ers an extensional view of polymorphism: a polytype

s is de�nitionally equal to the set of its monotype instanes.

Rules other than b-Gen, b-Inst and b-Def are fairly straightforward; they

involve monotypes only, and are similar to those found in ommon typed proess

aluli. The only non-syntax-direted rules are the subtyping rules, namely b-

Sub-Name and b-Sub-Def. Rule b-Gen must (and an only) be applied one

above every use of b-Def, so it is not a soure of non-determinism.

The following lemmas will be used in the proof of Theorem 5.9. The �rst

one allows weakening type judgements by strengthening their environment. The

seond one is tehnial.

Lemma 4.4. If � ` P and �

0

� � , then �

0

` P .

Lemma 4.5. Assume � ` (D; J.P) :: B

0

and B

0

j

dn(J)

� B. Then � ` J.P :: B.

6 Sylvain Conhon and François Pottier

We establish type soundness for B(T) following the syntati approah of

Wright and Felleisen [11℄, i.e. by proving that B(T) enjoys subjet redution and

progress properties.

Theorem 4.6 (Subjet redution). � ` P and P ! P

0

imply � ` P

0

.

De�nition 4.7. A proess of the form def D; J . P in Q j u h~v i is faulty if J

de�nes a message u h ~y i where ~v and ~y have di�erent arities.

Theorem 4.8 (Progress). No well-typed proess is faulty.

5 The System JOIN(X)

5.1 Presentation

Like B(T), JOIN(X) is parameterized by a set of ground types T , equipped with

a type onstrutor h�i and a subtyping relation �. It is further parameterized

by a �rst-order logi X , interpreted in T , whose variables and formulas are

respetively alled type variables and onstraints. The logi allows desribing

subsets of T as onstraints. Provided onstraint satis�ability is deidable, this

gives rise to a type system where type heking is deidable.

Our treatment is inspired by the framework HM(X) [6, 9, 8℄. Our presen-

tation di�ers, however, by expliitly viewing onstraints as formulas interpreted

in T , rather than as elements of an abstrat ylindri onstraint system. This

presentation is more onise, and gives us the ability to expliitly manipulate

solutions of onstraints, an essential requirement in our formulation of type

soundness (Theorem 5.9). Even though we lose some generality with respet to

the ylindri-system approah, we laim the framework remains general enough.

Assumptions. We assume given (T;�; h�i) as in Set. 4. Furthermore, we as-

sume given a onstraint logiX whose syntax inludes the following produtions:

C ::= true j � = h

~

�i j � � � j C ^ C j 9��:C j : : :

(�; �; : : : range over a denumerable set of type variables V .) The syntax of on-

straints is only partially spei�ed; this allows ustom onstraint forms, not known

in this paper, to be later introdued.

The logi X must be equipped with an interpretation in T , i.e. a two-plae

prediate ` whose �rst argument is an assignment, i.e. a total mapping � from V

into T , and whose seond argument is a onstraint C. The interpretation must

be standard, i.e. satisfy the following laws:

� ` true

� ` �

0

= h~�

1

i i� �(�

0

) = h�(~�

1

)i

� ` �

0

� �

1

i� �(�

0

) � �(�

1

)

� ` C

0

^ C

1

i� � ` C

0

^ � ` C

1

� ` 9��:C i� 9�

0

(�

0

n �� = � n ��) ^ �

0

` C

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 7

(� n �� denotes the restrition of � to V n ��.) The interpretation of any unknown

onstraint forms is left unspei�ed. We write C C

0

if and only if C entails C

0

,

i.e. if and only if every solution � of C satis�es C

0

as well.

JOIN(X) has onstrained type shemes, where a number of type variables ��

are universally quanti�ed, subjet to a onstraint C.

De�nition 5.1. A type sheme is a triple of a set of quanti�ers ��, a onstraint

C, and a type variable �; we write � = 8��[C℄:�. The type variables in �� are

bound in �; type shemes are onsidered equal modulo �-onversion. By abuse

of notation, a type variable � may be viewed as a type sheme 8?[true℄:�. The

set of type shemes is written S.

De�nition 5.2. A polymorphi typing environment, denoted by � or A, is a

S-environment. A monomorphi typing environment, denoted by B, is a V-

environment.

De�nition 5.3. JOIN(X) is de�ned by Fig. 3. Every judgement C; � ` J is

impliitly aompanied by the side ondition that C must be satis�able.

JOIN(X) di�ers from B(T) by replaing monotypes with type variables, poly-

types with type shemes, and parameterizing every judgement with a onstraint

C, whih represents an assumption about its free type variables. Rule Weaken

allows strengthening this assumption, while 9 Intro allows hiding auxiliary type

variables whih appear nowhere but in the assumption itself. These rules, whih

are ommon to names, de�nitions, and proesses, allow onstraint simpli�ation.

Beause we do not have syntax for types, rules Join andMsg use onstraints

of the form � = h~�i to enode type struture into onstraints.

Our treatment of onstrained polymorphism is standard. Whereas B(T) takes

an extensional view of polymorphism, JOIN(X) o�ers the usual, intensional

view. Type shemes are introdued by ruleDef, and eliminated by Inst. Beause

impliit �-onversion is allowed, every instane of Inst is able to rename the

bound variables at will.

For the sake of readability, we have simpli�ed rule Def, omitting two features

present in HM(X)'s 8 Intro rule [6℄. First, we do not fore the introdution of

existential quanti�ers in the judgement's onlusion. In the presene ofWeaken

and 9 Intro, doing so would not a�et the set of valid typing judgements, so

we prefer a simpler rule. Seond, we move the whole onstraint C into the type

shemes 8��[C℄�B, whereas it would be su�ient to opy only the part of C

where �� atually ours. This optimization an be easily added bak in if desired.

5.2 A Look at the Generalization Condition

The most subtle (and, it turns out, questionable; see Set. 6.1) aspet of this

system is the generalization ondition, i.e. the third premise of rule Def, whih

determines whih type variables may be safely generalized. We will now desribe

it in detail. To begin, let us introdue some notation.

8 Sylvain Conhon and François Pottier

De�nition 5.4. If B = (x

i

: �

i

)

i2I

, then 8��[C℄�B is the polymorphi environ-

ment (x

i

: 8��[C℄:�

i

)

i2I

. This must not be onfused with the notation 8��[C℄:B,

where the universal quanti�er lies outside of the environment fragment B.

Names

Inst

� (u) = 8��[C℄:�

C; � ` u : �

Sub-Name

C; � ` u : �

0

C �

0

� �

C; � ` u : �

De�nitions

Empty

C; � ` � ::

~

0

Join

C; � + (~u

i

: ~�

i

)

i2I

` P 8i 2 I C �

i

= h ~�

i

i

C; � ` (x

i

h ~u

i

i)

i2I

. P :: (x

i

: �

i

)

i2I

Or

C; � ` D

1

: B

1

C; � ` D

2

: B

2

C; � ` D

1

; D

2

:: B

1

�B

2

Sub-Def

C; � ` D :: B

0

C B

0

� B

C; � ` D :: B

Proesses

Null

C; � ` 0

Par

C; � ` P C; � ` Q

C; � ` P j Q

Msg

C; � ` u : � C; � ` ~v : ~� C � = h~�i

C; � ` u h~v i

Def

C; � +B ` (J

i

. P

i

)

i2I

:: B �� \ fv(�) = ?

8i 2 I C 8��[C℄:Bj

dn(J

i

)

� 8��[C℄�Bj

dn(J

i

)

C

0

; � + 8��[C℄�B ` P C

0

 C

C

0

; � ` def (J

i

. P

i

)

i2I

in P

Common

Weaken

C

0

; � ` J C C

0

C; � ` J

9 Intro

C;� ` J �� \ fv(�;J) = ?

9��:C; � ` J

Fig. 3. The system JOIN(X) (with a tentative Def rule)

The existene of these two notations, and the question of whether it is legal to

onfuse the two, is preisely at the heart of the generalization issue. Let us have

a look at rule Def. Its �rst premise assoiates a monomorphi environment frag-

ment B to the de�nition D = (J

i

. P

i

)

i2I

. If the type variables �� do not appear

free in � , then it is surely orret to generalize the fragment as a whole, i.e. to

assert that D has type 8��[C℄:B. However, this is no longer a valid environment

fragment, beause the quanti�er appears in front of the whole vetor; so, we

annot typehek P under � + 8��[C℄:B. Instead, we must push the universal

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 9

quanti�er down into eah binding, yielding 8��[C℄�B, whih is a well-formed

environment fragment, and an be used to augment � .

However, 8��[C℄�B may be stritly more general than 8��[C℄:B, beause it

binds �� separately in eah entry, rather than one in ommon. We must avoid

this situation, whih would allow inonsistent uses of the de�ned names, by

properly restriting ��. (When �� is empty, the two notions oinide.)

To ensure that 8��[C℄�B and 8��[C℄:B oinide, previous works [4, 7℄ propose

syntati riteria, whih forbid generalization of a type variable if it appears

free in two distint bindings in B. In an arbitrary onstraint logi, however, a

syntati ourrene of a type variable does not neessarily onstrain its value.

So, it seems preferable to de�ne a logial, rather than syntati, riterion. To do

so, we �rst give logial meaning to the notations 8��[C℄�B and 8��[C℄:B.

De�nition 5.5. The denotation of a type sheme � = 8��[C℄:� under an as-

signment �, written J�K

�

, is de�ned as "f�

0

(�) ; (�

0

n �� = � n ��)^ �

0

` Cg if this

set is non-empty; it is unde�ned otherwise.

This de�nition interprets a type sheme � as the set of its instanes in T ,

or, more preisely, as the upper one whih they generate. (Taking the one

aounts for the subtyping relationship ambient in T .) It is parameterized by an

assignment �, whih gives meaning to the free type variables of �.

De�nition 5.6. The denotation of an environment fragment A = (u

i

: �

i

)

i2I

under an assignment �, written LAM

�

, is de�ned as �JAK

�

= �(u

i

: J�

i

K

�

)

i2I

.

The denotation of 8��[C℄:B under an assignment �, written L8��[C℄:BM

�

, is de-

�ned as "f�

0

(B) ; (�

0

n �� = � n ��) ^ �

0

` Cg.

This de�nition interprets environment fragments as a whole, rather than

point-wise. That is, L�M

�

maps environment fragments to sets of tuples of mono-

types. A polymorphi environment fragment A maps eah name u

i

to a type

sheme �

i

. The fat that these type shemes are independent of one another is

re�eted in our interpretation of A as the Cartesian produt of their interpreta-

tions. On the other hand, 8��[C℄:B is just a type sheme whose body happens

to be a tuple, so we interpret it as (the upper one generated by) the set of its

instanes, as in De�nition 5.5.

Interpreting the notations 8��[C℄�B and 8��[C℄:B within the same mathe-

matial spae allows us to give a logial riterion under whih they oinide.

De�nition 5.7. By de�nition, C 8��[C℄:B � 8��[C℄�B holds if and only if,

under every assignment � suh that � ` C, L8��[C℄:BM

�

� L8��[C℄�BM

�

holds.

The strength of this riterion is to be independent of the onstraint logi X .

This allows us to prove JOIN(X) orret in a pleasant generi way (see Set. 5.3).

As a �nal remark, let us point out that, independently of how to de�ne the

generalization riterion, there is also a question of how to apply it. It would be

orret for rule Def to require C 8��[C℄:B � 8��[C℄�B, as in [4℄. However,

when exeuting the program, only one lause of the de�nition at a time will be

10 Sylvain Conhon and François Pottier

redued, so it is su�ient to separately ensure that the messages whih appear in

eah lause have onsistent types. As a result, we suessively apply the riterion

to eah lause J

i

. P

i

, by restriting B to the set of its de�ned names, yielding

Bj

dn(J

i

)

. In this respet, we losely follow the JoCaml implementation [1℄ as well

as Odersky et al. [7℄.

5.3 Type Soundness, Semi-Syntatially

This setion gives a type soundness proof for JOIN(X) by showing that it is safe

with respet to B(T). That is, we show that every judgement C; � ` J desribes

the set of all B(T) judgements of the form �(� ` J), where � ` C. Thus, we

give logial (rather than syntati) meaning to JOIN(X) judgements, yielding

a onise and natural proof. As a whole, the approah is still semi-syntati,

beause B(T) itself has been proven orret in a syntati way.

De�nition 5.8. When de�ned (f. De�nition 5.5), J�K

�

is a polytype, i.e. an

element of S. The denotation funtion J�K

�

is extended point-wise to typing envi-

ronments. As a result, if � is an S-environment, then J� K

�

is an S-environment.

Theorem 5.9 (Soundness). Let �(u : �), �(D :: B), �(P) stand for u : �(�),

D :: �(B), P , respetively. Then, � ` C and C; � ` J imply J� K

�

` �(J).

Proof. By strutural indution on the derivation of the input judgement. We use

exatly the notations of Fig. 3. In eah ase, we assume given some solution �

of the onstraint whih appears in the judgement's onlusion.

Case Inst. We have J� K

�

(u) = J8��[C℄:�K

�

3 �(�) beause � ` C. The result

follows by b-Inst.

Case Sub-Name. The indution hypothesis yields J� K

�

` u : �(�

0

). The

seond premise implies �(�

0

) � �(�). Apply b-Sub-Name to onlude.

Case Empty. Immediate.

Case Join. Let B = (x

i

: �

i

)

i2I

. Applying the indution hypothesis to the

�rst premise yields J� K

�

+(~u

i

: J~�

i

K

�

)

i2I

` P . Sine J�K

�

is "f�(�)g, this may be

written J� K

�

+ (~u

i

: �(~�

i

))

i2I

` P . (Reall the abuse of notation introdued in

De�nition 4.3.) The seond premise implies 8i 2 I �(�

i

) = h�(~�

i

)i. As a result,

by b-Join, J� K

�

` D : �(B) holds.

Case Or. Then, D is D

1

^ D

2

and B is B

1

� B

2

. Applying the indution

hypothesis to the premises yields J� K

�

` D

i

: �(B

i

). Apply b-Or to onlude.

Case Sub-Def. The indution hypothesis yields J� K

�

` D : �(B

0

). The

seond premise implies �(B

0

) � �(B). Apply b-Sub-Def to onlude.

Cases Null, Par. Immediate.

CaseMsg. Applying the indution hypothesis to the �rst two premises yields

J� K

�

` u : �(�) and J� K

�

` ~v : �(~�). The last premise entails �(�) = h�(~�)i.

Apply b-Msg to onlude.

Case Def. By hypothesis, � ` C

0

; aording to the last premise, � ` C

also holds. Let A = 8��[C℄�B. Take B 2 LAM

�

. Take i 2 I and de�ne B

i

=

Bj

dn(J

i

)

. Then, B

i

is a member of L8��[C℄�Bj

dn(J

i

)

M

�

, whih, aording to the

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 11

third premise, is a subset of L8��[C℄:Bj

dn(J

i

)

M

�

. Thus, there exists an assignment

�

0

suh that (�

0

n �� = � n ��) ^ �

0

` C and �

0

(Bj

dn(J

i

)

) � B

i

. The indution

hypothesis, applied to the �rst premise and to �

0

, yields J� +BK

�

0

` D :: �

0

(B).

By Lemma 4.5, this implies J� +BK

�

0

` J

i

. P

i

:: B

i

.

Now, beause ��\fv(�) = ?, J� K

�

0

is J� K

�

. Furthermore, given the properties

of �

0

, we have JBK

�

0

� J8��[C℄�BK

�

= JAK

�

. As a result, by Lemma 4.4, the

judgement above implies J� K

�

+ JAK

�

` J

i

. P

i

:: B

i

.

Beause this holds for any i 2 I , repeated use of b-Or yields a derivation of

J� K

�

+ JAK

�

` D :: B. Lastly, beause this holds for any B 2 LAM

�

, b-Gen yields

J� K

�

+ JAK

�

` D :: JAK

�

.

Applying the indution hypothesis to the fourth premise yields J� K

�

+JAK

�

`

P . Apply b-Def to onlude.

Case Weaken. The seond premise gives � ` C

0

. Thus, the indution hy-

pothesis may be applied to the �rst premise, yielding the desired judgement.

Case 9 Intro. We have � ` 9��:C. Then, there exists an assignment �

0

suh that (�

0

n �� = � n ��) ^ �

0

` C. Considering the seond premise, we have

J� K

�

0

= J� K

�

and �

0

(J) = �(J). Thus, applying the indution hypothesis to the

�rst premise and to �

0

yields the desired judgement.

This proof is, in our opinion, fairly readable. In fat, all ases exept Def

are next to trivial.

In the Def ase, we must show that the de�nition D has type JAK

�

, where

A = 8��[C℄�B. Beause B(T) has extensional polymorphism (i.e. rule b-Gen),

it su�es to show that it has every type B 2 �JAK

�

. Notie how we must �ut

B into piees� B

i

, orresponding to eah lause J

i

, in order to make use of the

per-lause generalization riterion. We use the indution hypothesis at the level

of eah lause, then reombine the resulting type derivations using b-Or. Notie

how we use Lemma 4.4; proving an environment strengthening lemma at the

level of JOIN(X) would be muh more umbersome.

The eight non-syntax-direted rules are easily proven orret. Indeed, their

onlusion denotes fewer (Sub-Name, Sub-Def, Weaken) or exatly the same

(9 Intro) judgements in B(T) as their premise. In a syntati proof, the presene

of these rules would require several normalization lemmas.

Corollary 5.10. No well-typed proess gets faulty through redution.

Proof. Assume C; � ` P . Beause C must be satis�able, it must have at least

one solution �. By Theorem 5.9, J� K

�

` P holds in B(T). The result follows by

Theorems 4.6 and 4.8.

6 Type Inferene

6.1 Trouble with Generalization

Two severe problems quikly arise when attempting to de�ne a omplete type

inferene proedure for JOIN(X). Both are aused by the fragility of the logial

generalization riterion.

12 Sylvain Conhon and François Pottier

Def

C; � +B ` (J

i

. P

i

)

i2I

:: B �� \ fv(�) = ?

(9i 2 I j dn(J

i

) j > 1)) �� = ?

C

0

; � + 8��[C℄�B ` P C

0

 C

C

0

; � ` def (J

i

. P

i

)

i2I

in P

Fig. 4. De�nitive Def rule

Non-determinism. To begin with, the riterion is non-deterministi. It states

a su�ient ondition for a given hoie of �� to be orret. However, there seems

to be, in general, no best hoie.

Non-monotoniity. More subtly, strengthening the onstraint C may, in some

ases, ause apparent orrelations to disappear. Consider the environment frag-

ment B = (a : �; b : �) under the onstraint ?� = � (assuming the logi X

o�ers suh a onstraint, to be read �if is non-?, then � must equal ��). There is

a orrelation between a and b, beause, in ertain ases (that is, when 6= ?), �

and � must oinide. However, let us now add the onstraint = ?. We obtain

?� = � ^ = ?, whih is logially equivalent to = ?. It is lear that, under

the new onstraint, a and b are no longer orrelated. So, the set of generalizable

type variables may inrease as the onstraint C is made more restritive.

Given a de�nitionD, a natural type inferene algorithm will infer the weakest

onstraint C under whih it is well-typed, then will use C to determine whih

type variables may be generalized. Beause of non-monotoniity, the algorithm

may �nd apparent orrelations whih would disappear if the onstraint were

deliberately strengthened. However, there is no way for the algorithm to guess

if and how it should do so.

These remarks show that it is di�ult to de�ne a omplete type inferene

algorithm, i.e. one whih provably yields a single, most general typing.

Previous works [4, 7℄ use a similar type-based riterion, yet report no di�ulty

with type inferene. This leads us to onjeture that these problems do not arise

when subtyping is interpreted as equality and no ustom onstraint forms are

available. This may be true for other onstraint logis as well. Thus, a partial

solution would be to de�ne a type inferene proedure only for those logis,

taking advantage of their partiular struture to prove its ompleteness.

In the general ase, i.e. under an arbitrary hoie ofX , we know of no solution

other than to abandon the logial riterion. We suggest replaing it with a muh

more naïve one, based on the struture of the de�nition itself, rather than on

type information. One possible suh riterion is given in Fig. 4. It simply onsists

in refusing generalization entirely if the de�nition involves any synhronization,

i.e. if any join-pattern de�nes more than one name. (It is possible to do slightly

better, e.g. by generalizing all names not involved in a synhronization between

two messages of non-zero arity.) It is learly safe with respet to the previous

riterion.

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 13

The new riterion is deterministi, and impervious to hanges in C, sine

it depends solely on the struture of the de�nition D. It is the analogue of

the so-alled value restrition, suggested by Wright [10℄, now in use in most ML

implementations. Experiene with ML suggests that suh a restrition is tolerable

in pratie; a quik experiment shows that all of the sample ode bundled with

JoCaml [1℄ is well-typed under it.

In the following, we adopt the restrited Def rule of Fig. 4.

6.2 A Type Inferene Algorithm

Fig. 5 gives a set of syntax-direted type inferene rules. Again, in every judge-

ment C; � `

I

J , it is understood that C must be satis�able. The rules impliitly

desribe an algorithm, whose inputs are an environment � and a sub-term u, D

or P , and whose output, in ase of suess, is a judgement. Rule i-Or uses the

following notation:

De�nition 6.1. The least upper bound of B

1

and B

2

, written B

1

t B

2

, is a

pair of a monomorphi environment and a onstraint. It is de�ned by:

B

1

t B

2

= (u : �

u

)

u2U

;

^

i2f1;2g;u2dom(B

i

)

B

i

(u) � �

u

where U = dom(B

1

) [dom(B

2

) and the type variables (�

u

)

u2U

are fresh.

Following [9℄, we have saturated every type inferene judgement by existen-

tial quanti�ation. Although slightly verbose, this style niely shows whih type

variables are loal to a sub-derivation, yielding the following invariant:

Lemma 6.2. If C; � `

I

J holds, then fv(C) � fv(�;J) and fv(J)\ fv(�) = ?.

We now prove the type inferene rules orret and omplete with respet

to JOIN(X). For the sake of simpliity, we limit the statement to the ase of

proesses (omitting that of names and de�nitions).

Theorem 6.3. C; � `

I

P implies C; � ` P . Conversely, if C; � ` P holds, then

there exists a onstraint C

0

suh that C

0

; � `

I

P and C C

0

.

7 Disussion

JOIN(X) is losely related to HM(X) [6, 8℄, a similar type system aimed at

purely funtional languages. It also draws inspiration from previous type systems

for the join-alulus [4, 7℄, whih were purely uni�ation-based. JOIN(X) is an

attempt to bring together these two orthogonal lines of researh.

Our results are partly negative: under a natural generalization riterion, the

existene of prinipal typings is problemati. This leads us, in the general ase,

to suggest a more drasti restrition. Nevertheless, the logial riterion may still

be useful under ertain spei� onstraint logis, where prinipal typings an

14 Sylvain Conhon and François Pottier

Names

i-Inst

� (u) = 8��[C℄:� � fresh

9��:(C ^ � � �); � `

I

u : �

De�nitions

i-Empty

true; � `

I

� ::

~

0

i-Join

C; � + (~u

i

: ~�

i

)

i2I

`

I

P (~�

i

)

i2I

; (�

i

)

i2I

fresh

9(��

i

)

i2I

:(C ^

^

i2I

�

i

= h ~�

i

i); � `

I

(x

i

h ~u

i

i)

i2I

. P :: (x

i

: �

i

)

i2I

i-Or

C

1

; � `

I

D

1

: B

1

C

2

; � `

I

D

2

: B

2

B;C = B

1

t B

2

�

� = fv(B

1

; B

2

)

9

�

�:(C

1

^ C

2

^ C); � `

I

D

1

; D

2

:: B

Proesses

i-Null

true; � `

I

0

i-Par

C

1

; � `

I

P C

2

; � `

I

Q

C

1

^ C

2

; � `

I

P j Q

i-Msg

C; � `

I

u : �

~

C; � `

I

~v : ~�

9���:(C ^

~

C ^ � = h~�i); � `

I

u h~v i

i-Def

B fresh

�

� = fv(B)

C

1

; � +B `

I

(J

i

. P

i

)

i2I

:: B

0

�

�

0

= fv(B

0

) C

2

= 9

�

�

0

:(C

1

^ B

0

� B)

if 9i 2 I j dn(J

i

) j > 1 then �� = ? else �� =

�

�

C

3

; � + 8��[C

2

℄�B `

I

P

9

�

�:(C

2

^ C

3

); � `

I

def (J

i

. P

i

)

i2I

in P

Fig. 5. Type inferene

still be ahieved, or in situations where their existene is not essential (e.g. in

program analysis).

To establish type safety, we interpret typing judgements as (sets of) judge-

ments in an underlying system, whih is given a syntati soundness proof. The

former step, by giving a logial view of polymorphism and onstraints, aptly ex-

presses our intuitions about these notions, yielding a onise proof. The latter is

a matter of routine, beause the low-level type system is simple. Thus, both logi

and syntax are put to best use. We have baptized this approah semi-syntati;

we feel it is perhaps not publiized enough.

Aknowledgements

Alexandre Frey suggested the use of extensional polymorphism in the intermedi-

ate type system B(T). Martin Sulzmann kindly provided a proof of ompleteness

JOIN(X): Constraint-Based Type Inferene for the Join-Calulus 15

of onstraint-based type inferene in HM(X), whih was helpful in our own om-

pleteness proof. We would also like to aknowledge Martin Odersky and Didier

Rémy for stimulating disussions.

Referenes

[1℄ Sylvain Conhon and Fabrie Le Fessant. Joaml: Mobile agents for Objetive-

Caml. In First International Symposium on Agent Systems and Appliations and

Third International Symposium on Mobile Agents (ASA/MA'99), pages 22�29,

Palm Springs, California, Otober 1999. URL: http://para.inria.fr/~onhon/

publis/asa99.ps.gz.

[2℄ Sylvain Conhon and François Pottier. JOIN(X): Constraint-based type infer-

ene for the join-alulus. Long version. URL: http://pauilla.inria.fr/

~fpottier/publis/onhon-fpottier-esop01-long.ps.gz, April 2001.

[3℄ Cédri Fournet and Georges Gonthier. The re�exive hemial abstrat mahine

and the join-alulus. In Proeedings of the 23rd ACM Symposium on Priniples

of Programming Languages, pages 372�385, 1996. URL: http://pauilla.inria.

fr/~fournet/papers/popl-96.ps.gz.

[4℄ Cédri Fournet, Lu Maranget, Cosimo Laneve, and Didier Rémy. Impliit typing

à la ML for the join-alulus. In 8th International Conferene on Conurreny

Theory (CONCUR'97), volume 1243 of Leture Notes in Computer Siene, pages

196�212, Warsaw, Poland, 1997. Springer. URL: ftp://ftp.inria.fr/INRIA/

Projets/ristal/Didier.Remy/typing-join.ps.gz.

[5℄ Robin Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System Sienes, 17(3):348�375, Deember 1978.

[6℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferene with on-

strained types. Theory and Pratie of Objet Systems, 5(1):35�55, 1999. URL:

http://www.s.mu.oz.au/~sulzmann/publiations/tapos.ps.

[7℄ Martin Odersky, Christoph Zenger, Matthias Zenger, and Gang Chen. A fun-

tional view of join. Tehnial Report ACRC-99-016, University of South Australia,

1999. URL: http://lampwww.epfl.h/~zenger/papers/tr-ar-99-016.ps.

gz.

[8℄ Martin Sulzmann. A general framework for Hindley/Milner type systems with

onstraints. PhD thesis, Yale University, Department of Computer Siene, May

2000. URL: http://www.s.mu.oz.au/~sulzmann/publiations/diss.ps.gz.

[9℄ Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style

type systems in onstraint form. Researh Report ACRC�99�009, University of

South Australia, Shool of Computer and Information Siene, July 1999. URL:

http://www.ps.uni-sb.de/~mmueller/papers/hm-onstraints.ps.gz.

[10℄ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symboli Com-

putation, 8(4):343�356, Deember 1995.

[11℄ Andrew K. Wright and Matthias Felleisen. A syntati approah to type sound-

ness. Information and Computation, 115(1):38�94, November 1994. URL: http:

//www.s.rie.edu/CS/PLT/Publiations/i94-wf.ps.gz.

