
JOIN(X): Constraint-Based Type Inferen
e for

the Join-Cal
ulus

Sylvain Con
hon and François Pottier

INRIA Ro
quen
ourt, {Sylvain.Con
hon,Fran
ois.Pottier}�inria.fr

Abstra
t. We present a generi

onstraint-based type system for the

join-
al
ulus. The key issue is type generalization, whi
h, in the presen
e

of
on
urren
y, must be restri
ted. We �rst de�ne a liberal generalization

riterion, and prove it
orre
t. Then, we �nd that it hinders type infer-

en
e, and propose a
ruder one, reminis
ent of ML's value restri
tion.

We establish type safety using a semi-synta
ti
 te
hnique, whi
h we be-

lieve is of independent interest. It
onsists in interpreting typing judge-

ments as (sets of) judgements in an underlying system, whi
h itself is

given a synta
ti
 soundness proof. This hybrid approa
h allows giving

pleasant logi
al meaning to high-level notions su
h as type variables,
on-

straints and generalization, and
learly separating them from low-level

aspe
ts (substitution lemmas, et
.), whi
h are dealt with in a simple,

standard way.

1 Introdu
tion

The join-
al
ulus [2℄ is a name-passing pro
ess
al
ulus related to the asyn-

hronous �-
al
ulus. The original motivation for its introdu
tion was to de�ne

a pro
ess
al
ulus amenable to a distributed implementation. In parti
ular, the

join-
al
ulus merges re
eption, restri
tion and repli
ation into a single synta
ti

form, the def
onstru
t, avoiding the need for distributed
onsensus. This design

de
ision turns out to also have an important impa
t on typing. Indeed, be
ause

the behavior of a
hannel is fully known at de�nition time, its type
an be safely

generalized. Thus, def
onstru
ts be
ome analogous to ML's let de�nitions. For

instan
e, the following de�nition:

def apply(f,x) = f(x)

de�nes a
hannel apply whi
h expe
ts two arguments f and x and, upon re
eipt,

sends the message f(x). In Fournet et al.'s type system [3℄, apply re
eives the

parametri
 type s
heme 8�:hh�i; �i, where h�i is the
hannel type
onstru
tor.

1.1 Motivation

Why develop a new type system for the join-
al
ulus? The uni�
ation-based sys-

tem proposed by Fournet et al. [3℄ shares many attra
tive features with ML's

2 Sylvain Con
hon and François Pottier

type system: it is simple, expressive, and easy to implement, as shown by the Jo-

Caml experiment [1℄. Like ML, it is pres
riptive, i.e. intended to infer reasonably

simple types and to enfor
e a programming dis
ipline.

Type systems are often used as a ni
e formal basis for various program anal-

yses, su
h as
ontrol �ow analysis, stri
tness analysis, usage analysis, and so

on. These systems, however, tend to be essentially des
riptive, i.e. intended to

infer a

urate types and to reje
t as few programs as possible. To a
hieve this

goal, it is
ommon to des
ribe the behavior of programs using a ri
h
onstraint

language, possibly involving subtyping, set
onstraints,
onditional
onstraints,

et
. We wish to de�ne su
h a des
riptive type system for the join-
al
ulus, as a

vehi
le for future type-based analyses.

Following Odersky et al. [5℄, we parameterize our type system with an arbi-

trary
onstraint logi
 X , making it more generi
 and more easily re-useable. Our

work may be viewed as an attempt to adapt their
onstraint-based framework

to the join-
al
ulus, mu
h as Fournet et al. adapted ML's type dis
ipline.

1.2 Type Generalization Criteria

The def
onstru
t improves on let expressions by allowing syn
hronization

between
hannels. Thus, we
an de�ne a variant of apply that re
eives the

hannel f and the argument x from di�erent
hannels.

def apply(f) | args(x) = f(x)

This simultaneously de�nes the names apply and args. The message f(x) will

be emitted whenever a message is re
eived on both of these
hannels.

In a subtyping-
onstraint-based type system, one would expe
t apply and

args to be given types h�i and h�i, respe
tively,
orrelated by the
onstraint

� � h�i. The
onstraint requires the
hannels to be used in a
onsistent way: the

type of x must mat
h the expe
tations of f. Now, if we were to generalize these

types separately, we would obtain apply : 8��[� � h�i℄:h�i and args : 8��[� �

h�i℄:h�i, whi
h are logi
ally equivalent to apply : 8�:hh�ii and args : 8�:h�i.

These types no longer re�e
t the
onsisten
y requirement!

To address this problem, Fournet et al. state that any type variable whi
h

is shared between two jointly de�ned names (here, apply and args), i.e. whi
h

o

urs free in their types, must not be generalized. However, this
riterion is

based on the syntax of types, and makes little sense in the presen
e of an ar-

bitrary
onstraint logi
 X . In the example above, apply and args have types

h�i and h�i, so they share no type variables. The
orrelation is only apparent

in the
onstraint � � h�i. When the
onstraint logi
 X is known,
orrelations

an be dete
ted by examining the (syntax of the)
onstraint, looking for paths

onne
ting � and �. However, we want our type system to be parametri
 in X ,

so the syntax (and the meaning) of
onstraints is, in general, not available. This

leads us to de�ne a uniform, logi
al generalization
riterion (Se
t. 5.2), whi
h

we prove sound.

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 3

Unfortunately, and somewhat surprisingly, this
riterion turns out to hinder

type inferen
e. As a result, we will propose a
ruder one, reminis
ent of ML's

so-
alled value restri
tion [9℄.

def D; J . P in Q
 def D;'J . 'P in Q

if dom(') = ln(J) ^
odom(') \ fn(J . P) = ?

def D in P
 def 'D in 'P

if dom(') = dn(D) ^
odom(') \ fn(def D in P) = ?

P j Q
 Q j P D

1

; D

2

 D

2

; D

1

P j 0
 P D; �
 D

P j (Q j R)
 (P j Q) j R D

1

; (D

2

; D

3

)
 (D

1

; D

2

); D

3

P ! Q) P j R! Q j R

P ! Q) def D in P ! def D in Q

(def D in P) j Q
 def D in (P j Q) if dn(D) \ fn(Q) = ?

def D

1

in def D

2

in P
 def D

1

; D

2

in P if fn(D

1

) \ dn(D

2

) = ?

def D; J . P in Q j 'J ! def D; J . P in Q j 'P if dom(') = ln(J)

Fig. 1. Operational semanti
s

1.3 Overview

We �rst re
all the syntax and semanti
s of the join-
al
ulus, and introdu
e some

useful notation. Then, we introdu
e a ground type system for the join-
al
ulus,

alled B(T), and establish its
orre
tness in a synta
ti
 way (Se
t. 4). Building

on this foundation, Se
t. 5 introdu
es JOIN(X) and proves it
orre
t with re-

spe
t to B(T). Se
t. 6 studies type re
onstru
tion, suggesting that a restri
ted

generalization
riterion must be adopted in order to obtain a
omplete algorithm.

2 The Join-Cal
ulus

We assume given a
ountable set of names N , ranged over by x; y; u; v; : : : We

write ~u for a tuple (u

1

; : : : ; u

n

) and �u for a set fu

1

; : : : ; u

n

g , where n � 0. The

4 Sylvain Con
hon and François Pottier

syntax of the join-
al
ulus is as follows.

P ::= 0 j (P j P) j u h~v i j def D in P

D ::= � j J . P j D;D

J ::= u h ~y i j (J j J)

We require join patterns to be linear. That is, all de�ned names in a join pattern

must be pairwise di�erent, and all lo
al names must also be pairwise di�erent.

The set of de�ned names dn(J) and the set of lo
al names ln(J) of a join-pattern

J are de�ned as follows.

dn(u h ~y i) = fug dn(J j J

0

) = dn(J) [dn(J

0

)

ln(u h ~y i) = �y ln(J j J

0

) = ln(J) [ln(J

0

)

The set of de�ned names dn(D) of a de�nition D is the union of the sets dn(J)

of all join-patterns J whi
h appear in D. Then, the set of free names of a pro
ess

or of a de�nition are as follows.

fn(0) = ? fn(�) = ?

fn(u h~v i) = fug [�v fn(J . P) = fn(P) n ln(J)

fn(P j P

0

) = fn(P) [fn(P

0

) fn(D;D

0

) = fn(D) [fn(D

0

)

fn(def D in P) = (fn(D) [fn(P)) n dn(D)

This de�nes the s
oping rules of the language. The lo
al names of a join-pattern

(i.e. the formal parameters of its messages) are bound in the
orresponding

guarded pro
ess, while de�ned names (i.e.
hannels being
reated) are bound

within the whole de�ning pro
ess, that is, within all guarded pro
esses as well

as within the main pro
ess.

Redu
tion ! is de�ned as the smallest relation that satis�es the laws in

Fig. 1. ' ranges over renamings, i.e. one-to-one maps from N into N .
 stands

for !\ . It is
ustomary to distinguish stru
tural equivalen
e and redu
tion,

but this is unne
essary here.

3 Notation

This se
tion de�nes some mathemati
al notation used throughout the paper.

De�nition 3.1. Given a set T , a T -environment, usually denoted � , is a partial

mapping from N into T . If N � N , � j

N

denotes the restri
tion of � to N . �+�

0

is the environment whi
h maps every u 2 N to �

0

(u), if it is de�ned, and to � (u)

otherwise. When � and �

0

agree on dom(�)\dom(�

0

), �+�

0

is written ���

0

.

If T is equipped with a partial order, it is extended point-wise to T -environments

of identi
al domain.

De�nition 3.2. Given a set T , ranged over by t,

~

t denotes a tuple (t

1

; : : : t

n

),

of length n � 0; we let T

?

denote the set of su
h tuples. If T is equipped with a

partial order, it is extended point-wise to tuples of identi
al length.

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 5

De�nition 3.3. Given a set I, (x

i

: t

i

)

i2I

denotes the partial mapping x

i

7!

t

i

of domain �x = fx

i

; i 2 Ig. (P

i

)

i2I

denotes the parallel
omposition of the

pro
esses P

i

. (D

i

)

i2I

denotes the
onjun
tion of the de�nitions D

i

.

De�nition 3.4. The Cartesian produ
t of a labelled tuple of sets A = (x

i

:

s

i

)

i2I

, written �A, is the set of tuples f(x

i

: t

i

)

i2I

; 8i 2 I t

i

2 s

i

g.

De�nition 3.5. Given a partially ordered set T and a subset V of T , the
one

generated by V within T , denoted by "V , is ft 2 T ; 9v 2 V v � tg. V is said

to be upward-
losed if and only if V = "V .

4 The System B(T)

This se
tion de�nes an intermediate type system for the join-
al
ulus,
alled

B(T). It is a ground type system: it does not have a notion of type variable.

Instead, it has monotypes, taken to be elements of some set T , and polytypes,

merely de�ned as
ertain subsets of T .

Assumptions. We assume given a set T , whose elements, usually denoted by

t, are
alled monotypes. T must be equipped with a partial order �. We assume

given a total fun
tion, denoted h�i, from T

?

into T , su
h that h

~

ti � h

~

t

0

i holds if

and only if

~

t

0

�

~

t.

De�nition 4.1. A polytype, usually denoted by s, is a non-empty, upward-

losed subset of T . Let S be the set of all polytypes. We order S by �, i.e. we

write s � s

0

if and only if s � s

0

.

Note that � and h�i operate on T . Furthermore, S is de�ned on top of T ;

there is no way to inje
t S ba
k into T . In other words, this presentation allows

rank-1 polymorphism only; impredi
ative polymorphism is ruled out. This is in

keeping with the Hindley-Milner family of type systems [4, 5℄.

De�nition 4.2. A monotype environment, denoted by B, is a T -environment.

A polytype environment, denoted by � or A, is an S-environment.

De�nition 4.3. The type system B(T) is given in Fig. 2. By abuse of notation,

in the �rst premise of rule b-Join, a monotype binding (u : t) is impli
itly viewed

as the polytype binding (u : "ftg).

Every typing judgement
arries a polytype environment � on its left-hand

side, representing a set of assumptions under whi
h its right-hand side may

be used. Right-hand sides
ome in four varieties. u : t states that the name

u has type t. D :: B (resp. D :: A) states that the de�nition D gives rise to

the environment fragment B (resp. A). Then, dom(B) (resp. dom(A)) is, by

onstru
tion, dn(D). Lastly, a right-hand side of the form P simply states that

the pro
ess P is well-typed.

The most salient aspe
t of these rules is their treatment of polymorphism.

Rule b-Inst performs instantiation by allowing a polytype s to be spe
ialized to

6 Sylvain Con
hon and François Pottier

Names

b-Inst

� (u) = s t 2 s

� ` u : t

b-Sub-Name

� ` u : t

0

t

0

� t

� ` u : t

De�nitions

b-Empty

� ` � ::

~

0

b-Join

� + (~u

i

:

~

t

i

)

i2I

` P

� ` (x

i

h ~u

i

i)

i2I

. P :: (x

i

: h

~

t

i

i)

i2I

b-Or

� ` D

1

:: B

1

� ` D

2

:: B

2

� ` D

1

; D

2

:: B

1

�B

2

b-Sub-Def

� ` D :: B B � B

0

� ` D :: B

0

b-Gen

8B 2 �A � ` D :: B

� ` D :: A

Pro
esses

b-Null

� ` 0

b-Par

� ` P � ` Q

� ` P j Q

b-Msg

� ` u : h

~

ti � ` ~v :

~

t

� ` u h~v i

b-Def

� +A ` D :: A � +A ` P

� ` def D in P

Fig. 2. The system B(T)

any monotype t 2 s. Conversely, rule b-Gen performs generalization by allowing

the judgement � ` D :: (x

i

: s

i

)

i2I

to be formed if � ` D :: (x

i

: t

i

)

i2I

holds

whenever (x

i

: t

i

)

i2I

2 �(x

i

: s

i

)

i2I

, i.e. whenever 8i 2 I t

i

2 s

i

holds. In

other words, this system o�ers an extensional view of polymorphism: a polytype

s is de�nitionally equal to the set of its monotype instan
es. Through b-Gen

and b-Inst, the judgement � ` D :: A may be viewed as mere eviden
e for the

set of its instan
es. Note that there may be an in�nite number of them, so rule

b-Gen may require an in�nite number of premises.

The �rst premise of rule b-Def re�e
ts the fa
t that every de�nition is re
ur-

sive by requiring it to produ
e an environment fragment A under assumptions

� + A (rather than � alone). The rule expe
ts a polytype environment frag-

ment A (rather than a monotype environment fragment B), so the system has

polymorphi
 re
ursion.

These remarks show that type
he
king in B(T) is not ne
essarily de
idable.

This will not hinder us, sin
e we use B(T) only as an intermediate step in the

onstru
tion of a de
idable type system, namely JOIN(X).

Rules other than b-Gen, b-Inst and b-Def are fairly straightforward; they

involve monotypes only, and are similar to those found in
ommon typed pro
ess

al
uli. The only non-syntax-dire
ted rules are the subtyping rules, namely b-

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 7

Sub-Name and b-Sub-Def. Rule b-Gen must (and
an only) be applied on
e

above every use of b-Def, so it is not a sour
e of non-determinism.

Before establishing type soundness for B(T), we prove several auxiliary lem-

mas.

Lemma 4.4 (Depth strengthening). If � ` P and �

0

� � , then �

0

` P .

Lemma 4.5 (Width strengthening). If u 62 fn(P) [fn(D), then

� ` P , � + (u : s) ` P

� ` D :: B , � + (u : s) ` D :: B

Lemma 4.6 (Substitution). If �+(u : t) ` P and � ` v : t, then � ` P [v=u℄.

Lemma 4.7. A derivation of � ` u : t is
anoni
al if and only if it
ontains

no instan
e of rule b-Sub-Name. Every judgement of the form � ` u : t has a

anoni
al derivation.

Proof. Straightforward
onsequen
e of the fa
t that every polytype is upward-

losed.

Lemma 4.8. Every judgement of the form � ` D

1

; D

2

:: B has a derivation

whi
h ends with an instan
e of rule b-Or. Every judgement of the form � `

J . P :: (x

i

: h

~

t

i

i)

i2I

has a derivation whi
h ends with an instan
e of rule b-

Join.

Proof. By indu
tion on the derivation of � ` D :: B. Assume the derivation ends

with an instan
e of b-Sub-Def:

� ` D :: B

0

B

0

� B

� ` D :: B

Thanks to the indu
tion hypothesis, we may assume that the premise � ` D :: B

0

is itself a
onsequen
e of b-Join or b-Or.

Case b-Join. The rule must be

� + (~u

i

:

~

t

0

i

)

i2I

` P

� ` J . P : (x

i

: h

~

t

0

i

i)

i2I

where B

0

= (x

i

: h

~

t

0

i

i)

i2I

. Furthermore, by hypothesis, B is (x

i

: h

~

t

i

i)

i2I

. Con-

sidering B

0

� B, this entails 8i 2 I

~

t

i

�

~

t

0

i

. By Lemma 4.4, we then have

� + (~u

i

:

~

t

i

)

i2I

` P . Rule b-Join allows
on
luding that � ` D :: B.

Case b-Or. Then, B

0

may be written B

0

1

� B

0

2

. The rule is

� ` D

1

:: B

0

1

� ` D

2

:: B

0

2

� ` D :: B

0

1

� B

0

2

8 Sylvain Con
hon and François Pottier

Considering B

0

� B, B must be of the form B

1

�B

2

, where B

0

1

� B

1

and B

0

2

� B

2

.

We may then build the derivations

` D

i

:: B

0

i

B

0

i

� B

i

` D

i

:: B

i

and
on
lude by applying rule b-Or.

This tiny lemma will be useful in Se
t. 5. It is a
orollary of Lemma 4.8.

Lemma 4.9. Assume � ` (D; J.P) :: B

0

and B

0

j

dn(J)

� B. Then � ` J.P :: B.

Proof. By Lemma 4.8, some derivation of � ` (D; J . P) :: B

0

must end with

b-Or

: : : � ` J . P :: B

0

j

dn(J)

� ` D; J . P :: B

0

We
on
lude by building

b-Sub-Def

� ` J . P :: B

0

j

dn(J)

B

0

j

dn(J)

� B

� ` J . P :: B

We establish type soundness for B(T) following the synta
ti
 approa
h of

Wright and Felleisen [10℄, i.e. by proving that B(T) enjoys subje
t redu
tion

and progress properties. Due to the
omplex synta
ti
 stru
ture of the join-

al
ulus (rather than expressions alone, one must deal with names, join-patterns,

de�nitions and pro
esses), the proof is not parti
ularly short. However, thanks

to our abstra
t treatment of polymorphism, it is entirely straightforward.

Authors of previous type systems for the join-
al
ulus [3, 6℄ have found that

stru
tural equivalen
e, as presented in Fig. 1, does not preserve typings. Indeed,

the last stru
tural equivalen
e rule, by turning a series of nested de�nitions into

a single, mutually re
ursive de�nition, may
ause a pro
ess to be
ome ill-typed,

unless the type system has polymorphi
 re
ursion. Be
ause polymorphi
 re
ur-

sion leads to unde
idability, and be
ause these authors were
ommitted to the

synta
ti
 approa
h to type soundness, they had to restri
t stru
tural equivalen
e

and to introdu
e redu
tion
ontexts in the operational semanti
s. The problem

does not arise in this paper, be
ause B(T) has polymorphi
 re
ursion.

Theorem 4.10 (Subje
t redu
tion). � ` P and P ! P

0

imply � ` P

0

.

Proof. We
he
k that ea
h of the rules in Fig. 1 preserves typings. Then, a simple

ontext lemma, whi
h we do not state here, allows
on
luding that all redu
tions

preserve typings.

�-
onversion is easily dealt with using an auxiliary renaming lemma. Parallel

omposition of pro
esses o�ers no di�
ulty. Neither does
omposition of de�ni-

tions, be
ause we
an restri
t our attention, without loss of generality, to typings

of the form � ` D :: B, and be
ause Lemma 4.8 is available. We now deal with

the three remaining
ases.

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 9

S
ope extrusion. The pro
esses at hand are def D in P j Q and def D in P j

Q, where dn(D) \ fn(Q) = ?. Considering rules b-Par and b-Def, these pro-

esses are well-typed within � if and only if there exists A su
h that � + A `

D :: A, � + A ` P and � ` Q (resp. � + A ` Q). Be
ause dom(A) must be

dn(D), and be
ause dn(D) \ fn(Q) = ?, Lemma 4.5 shows that � ` Q holds if

and only if � +A ` Q holds. The result follows.

Merging of de�nitions. The pro
esses at hand are def D

1

in def D

2

in P

and def D

1

; D

2

in P , where fn(D

1

)\dn(D

2

) = ?. Furthermore, we may assume,

without loss of generality, that dn(D

1

) \ dn(D

2

) = ?. (If this is not the
ase,

perform �-
onversion �rst.) Considering rules b-Par and b-Def, the former is

well-typed within � if and only if there exist A

1

and A

2

su
h that � + A

1

`

D

1

:: A

1

, � + A

1

+ A

2

` D

2

:: A

2

and � + A

1

+ A

2

` P , while the latter is

well-typed within � if and only if there exists A su
h that � +A ` D

1

; D

2

:: A

and � +A ` P . There remains to show that these
onditions are equivalent.

We begin by noti
ing that � +A

1

` D

1

:: A

1

is equivalent to � +A

1

+A

2

`

D

1

:: A

1

. Indeed, this follows from Lemma 4.5, using fn(D

1

) \ dn(D

2

) = ? and

dom(A

2

) = dn(D

2

).

Now, assume the �rst
ondition holds. De�ne A = A

1

�A

2

. Assume B 2 �A.

B may be written B

1

� B

2

, where B

i

2 �A

i

for i 2 f1; 2g. We have � + A `

D

i

:: A

i

for i 2 f1; 2g. The derivations of these judgements must end with

b-Gen

8B 2 �A

i

� +A ` D

i

:: B

� +A ` D

i

:: A

i

Thus, we have � +A ` D

i

:: B

i

for i 2 f1; 2g. By rule b-Or, � +A ` D

1

; D

2

:: B

holds. Re
alling that B was arbitrary, rule b-Gen yields � + A ` D

1

; D

2

:: A.

Thus, the se
ond
ondition holds.

Conversely, assume the se
ond
ondition holds. Let A

i

stand for the re-

stri
tion of A to dn(D

i

), for i 2 f1; 2g. We have A = A

1

� A

2

. Choose i, j

su
h that fi; jg = f1; 2g. Consider some B

i

2 �A

i

. Be
ause every polytype is

non-empty, there exists some B

j

su
h that B

i

� B

j

2 �A. The derivation of

� +A ` D

1

; D

2

:: A must end with

b-Gen

8B 2 �A � +A ` D

1

; D

2

:: B

� +A ` D

1

; D

2

:: A

Among the premises, we �nd the judgement � + A ` D

1

; D

2

:: B

i

� B

j

, some

derivation of whi
h must have � +A ` D

i

:: B

i

as one of its premises. Be
ause

B

i

was arbitrary, rule b-Gen yields � +A ` D

i

:: A

i

. The result follows.

Redu
tion. The pro
esses at hand are def D; J .P in Q j 'J and def D; J .

P in Q j 'P , where dom(') = ln(J). J must be of the form (x

i

h ~u

i

i)

i2I

. Then,

dom(') = [

i2I

�u

i

. Assume � ` def D; J .P in Q j 'J . Considering rule b-Def,

there exists some A su
h that � + A ` D; J . P :: A and � + A ` Q j 'J . A

derivation of the former must end with

b-Gen

8B 2 �A � +A ` D; J . P :: B

� +A ` D; J . P :: A

10 Sylvain Con
hon and François Pottier

The derivation of the latter must in
lude

b-Par

8i 2 I

b-Msg

b-Inst

(� +A)(x

i

) = s

i

h

~

t

i

i 2 s

i

� +A ` x

i

: h

~

t

i

i � +A ` '~u

i

:

~

t

i

� +A ` x

i

h'~u

i

i

� +A ` 'J

(By Lemma 4.7, we have assumed a
anoni
al derivation of � + A ` x

i

: h

~

t

i

i.)

We have dom(A) = dn(D; J . P) � �x. Given (� + A)(x

i

) = s

i

, this means

A(x

i

) = s

i

. Let B = (x

i

: h

~

t

i

i)

i2I

. Then, some extension B

0

of B is a member of

�A, whi
h means � +A ` D; J .P :: B

0

is among the premises of b-Gen above.

By Lemma 4.8, some derivation of it is of the form

b-Or

: : :

b-Join

� +A+ (~u

i

:

~

t

i

)

i2I

` P

� +A ` J . P :: B

� +A ` D; J . P :: B

0

Thus, we have established � + A + (~u

i

:

~

t

i

)

i2I

` P and � + A ` '~u

i

:

~

t

i

.

Lemma 4.6 yields � +A ` P ['~u

i

=~u

i

℄, i.e. � +A ` 'P . The result follows.

Our notion of progress is weak: we guarantee the absen
e of runtime errors

(
aused by arity mismat
hes), but we do not prove the absen
e of deadlo
ks.

This is a
ommon weakness of many type systems for pro
ess
al
uli.

De�nition 4.11. A pro
ess of the form def D; J . P in Q j u h~v i is faulty if

J de�nes a message u h ~y i where ~v and ~y have di�erent arities.

Please note that a faulty pro
ess is not ne
essarily irredu
ible.

Theorem 4.12 (Progress). No well-typed pro
ess is faulty.

Proof. Assume � ` def D; J . P in Q j u h~v i and J
ontains a message u h~y i.

A

ording to b-Def and b-Par, we have

� +A ` u h~v i

� +A ` D; J . P :: A

for some polytype environment A. The derivation of the former must be

b-Msg

b-Inst

(� +A)(u) = s h

~

ti 2 s

� +A ` u : h

~

ti � +A ` ~v :

~

t

� +A ` u h~v i

(By Lemma 4.7, we have assumed a
anoni
al derivation of � + A ` u : h

~

ti.)

Note that ~v and

~

t have the same arity. Be
ause u 2 dn(J . P) � dom(A),

(� + A)(u) = s may be read A(u) = s. Thus,
onsidering every polytype is

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 11

non-empty, there exists B 2 �A su
h that B(u) = h

~

ti. Now, any derivation of

� +A ` D; J . P :: A ends with an instan
e of b-Gen, among whose premises

we �nd � + A ` D; J . P :: B. Be
ause B(u) = h

~

ti, and be
ause J
ontains a

message u h ~y i, some derivation of it must be of the form

b-Or

: : :

b-Sub-Def

b-Join

� + : : :+ ~y :

~

t

0

` P

� +A ` J . P :: B

0

B

0

� Bj

dn(J)

� +A ` J . P :: Bj

dn(J)

� +A ` D; J . P :: B

We have B

0

(u) = h

~

t

0

i, B

0

� Bj

dn(J)

, and B(u) = h

~

ti, whi
h imply that

~

t

0

and

~

t

have the same arity. As a result, ~y and

~

t have the same arity. The result follows.

5 The System JOIN(X)

5.1 Presentation

Like B(T), JOIN(X) is parameterized by a set of ground types T , equipped with

a type
onstru
tor h�i and a subtyping relation �. It is further parameterized

by a �rst-order logi
 X , interpreted in T , whose variables and formulas are

respe
tively
alled type variables and
onstraints. The logi
 allows des
ribing

subsets of T as
onstraints. Provided
onstraint satis�ability is de
idable, this

gives rise to a type system where type
he
king is de
idable.

Our treatment is inspired by the framework HM(X) [5, 8, 7℄. Our presen-

tation di�ers, however, by expli
itly viewing
onstraints as formulas interpreted

in T , rather than as elements of an abstra
t
ylindri

onstraint system. This

presentation is more
on
ise, and gives us the ability to expli
itly manipulate

solutions of
onstraints, an essential requirement in our formulation of type

soundness (Theorem 5.10). Even though we lose some generality with respe
t to

the
ylindri
-system approa
h, we
laim the framework remains general enough.

Assumptions. We assume given (T;�; h�i) as in Se
t. 4. Furthermore, we as-

sume given a
onstraint logi
X whose syntax in
ludes the following produ
tions:

C ::= true j � = h

~

�i j � � � j C ^ C j 9��:C j : : :

(�; �; : : : range over a denumerable set of type variables V .) The syntax of
on-

straints is only partially spe
i�ed; this allows
ustom
onstraint forms, not known

in this paper, to be later introdu
ed.

The logi
 X must be equipped with an interpretation in T , i.e. a two-pla
e

predi
ate ` whose �rst argument is an assignment, i.e. a total mapping � from V

into T , and whose se
ond argument is a
onstraint C. The interpretation must

12 Sylvain Con
hon and François Pottier

be standard, i.e. satisfy the following laws:

� ` true

� ` �

0

= h~�

1

i i� �(�

0

) = h�(~�

1

)i

� ` �

0

� �

1

i� �(�

0

) � �(�

1

)

� ` C

0

^ C

1

i� � ` C

0

^ � ` C

1

� ` 9��:C i� 9�

0

(�

0

n �� = � n ��) ^ �

0

` C

(� n �� denotes the restri
tion of � to V n ��.) The interpretation of any unknown

onstraint forms is left unspe
i�ed. We write C
 C

0

if and only if C entails C

0

,

i.e. if and only if every solution � of C satis�es C

0

as well.

Note that we do not de�ne a syntax of types. As pointed out in [8℄, types are

a useful notation in pra
ti
e, but are entirely super�uous in theory, sin
e their

stru
ture
an be en
oded into
onstraints. Therefore, we leave the introdu
tion

of types as an implementation issue.

JOIN(X) has
onstrained type s
hemes, where a number of type variables ��

are universally quanti�ed, subje
t to a
onstraint C.

De�nition 5.1. A type s
heme is a triple of a set of quanti�ers ��, a
onstraint

C, and a type variable �; we write � = 8��[C℄:�. The type variables in �� are

bound in �; type s
hemes are
onsidered equal modulo �-
onversion. By abuse

of notation, a type variable � may be viewed as a type s
heme 8?[true℄:�. The

set of type s
hemes is written S.

De�nition 5.2. A polymorphi
 typing environment, denoted by � or A, is a

S-environment. A monomorphi
 typing environment, denoted by B, is a V-

environment.

De�nition 5.3. JOIN(X) is de�ned by Fig. 3. Every judgement C; � ` J is

impli
itly a

ompanied by the side
ondition that C must be satis�able.

JOIN(X) di�ers from B(T) by repla
ing monotypes with type variables, poly-

types with type s
hemes, and parameterizing every judgement with a
onstraint

C, whi
h represents an assumption about its free type variables. Rule Weaken

allows strengthening this assumption, while 9 Intro allows hiding auxiliary type

variables whi
h appear nowhere but in the assumption itself. These rules, whi
h

are
ommon to names, de�nitions, and pro
esses, allow
onstraint simpli�
ation.

Be
ause we do not have syntax for types, rules Join andMsg use
onstraints

of the form � = h~�i to en
ode type stru
ture into
onstraints.

Our treatment of
onstrained polymorphism is standard. Whereas B(T) takes

an extensional view of polymorphism, JOIN(X) o�ers the usual, intensional

view. Type s
hemes are introdu
ed by ruleDef, and eliminated by Inst. Be
ause

impli
it �-
onversion is allowed, every instan
e of Inst is able to rename the

bound variables at will.

For the sake of readability, we have simpli�ed rule Def, omitting two features

present in HM(X)'s 8 Intro rule [5℄. First, we do not for
e the introdu
tion of

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 13

existential quanti�ers in the judgement's
on
lusion. In the presen
e ofWeaken

and 9 Intro, doing so would not a�e
t the set of valid typing judgements, so

we prefer a simpler rule. Se
ond, we move the whole
onstraint C into the type

s
hemes 8��[C℄�B, whereas it would be su�
ient to
opy only the part of C

where �� a
tually o

urs. This optimization
an be easily added ba
k in if desired.

5.2 A Look at the Generalization Condition

The most subtle (and, it turns out, questionable; see Se
t. 6.1) aspe
t of this

system is the generalization
ondition, i.e. the third premise of rule Def, whi
h

determines whi
h type variables may be safely generalized. We will now des
ribe

it in detail. To begin, let us introdu
e some notation.

De�nition 5.4. If B = (x

i

: �

i

)

i2I

, then 8��[C℄�B is the polymorphi
 environ-

ment (x

i

: 8��[C℄:�

i

)

i2I

. This must not be
onfused with the notation 8��[C℄:B,

where the universal quanti�er lies outside of the environment fragment B.

The existen
e of these two notations, and the question of whether it is legal to

onfuse the two, is pre
isely at the heart of the generalization issue. Let us have

a look at rule Def. Its �rst premise asso
iates a monomorphi
 environment frag-

ment B to the de�nition D = (J

i

. P

i

)

i2I

. If the type variables �� do not appear

free in � , then it is surely
orre
t to generalize the fragment as a whole, i.e. to

assert that D has type 8��[C℄:B. However, this is no longer a valid environment

fragment, be
ause the quanti�er appears in front of the whole ve
tor; so, we

annot type
he
k P under � + 8��[C℄:B. Instead, we must push the universal

quanti�er down into ea
h binding, yielding 8��[C℄�B, whi
h is a well-formed

environment fragment, and
an be used to augment � .

However, 8��[C℄�B may be stri
tly more general than 8��[C℄:B, be
ause it

binds �� separately in ea
h entry, rather than on
e in
ommon. We must avoid

this situation, whi
h would allow in
onsistent uses of the de�ned names, by

properly restri
ting ��. (When �� is empty, the two notions
oin
ide.)

To ensure that 8��[C℄�B and 8��[C℄:B
oin
ide, previous works [3, 6℄ propose

synta
ti

riteria, whi
h forbid generalization of a type variable if it appears

free in two distin
t bindings in B. In an arbitrary
onstraint logi
, however, a

synta
ti
 o

urren
e of a type variable does not ne
essarily
onstrain its value.

So, it seems preferable to de�ne a logi
al, rather than synta
ti
,
riterion. To do

so, we �rst give logi
al meaning to the notations 8��[C℄�B and 8��[C℄:B.

De�nition 5.5. The denotation of a type s
heme � = 8��[C℄:� under an as-

signment �, written J�K

�

, is de�ned as "f�

0

(�) ; (�

0

n �� = � n ��)^ �

0

` Cg if this

set is non-empty; it is unde�ned otherwise.

This de�nition interprets a type s
heme � as the set of its instan
es in T ,

or, more pre
isely, as the upper
one whi
h they generate. (Taking the
one

a

ounts for the subtyping relationship ambient in T .) It is parameterized by an

assignment �, whi
h gives meaning to the free type variables of �.

14 Sylvain Con
hon and François Pottier

Names

Inst

� (u) = 8��[C℄:�

C; � ` u : �

Sub-Name

C; � ` u : �

0

C
 �

0

� �

C; � ` u : �

De�nitions

Empty

C; � ` � ::

~

0

Join

C; � + (~u

i

: ~�

i

)

i2I

` P 8i 2 I C
 �

i

= h ~�

i

i

C; � ` (x

i

h ~u

i

i)

i2I

. P :: (x

i

: �

i

)

i2I

Or

C; � ` D

1

: B

1

C; � ` D

2

: B

2

C; � ` D

1

; D

2

:: B

1

�B

2

Sub-Def

C; � ` D :: B

0

C
 B

0

� B

C; � ` D :: B

Pro
esses

Null

C; � ` 0

Par

C; � ` P C; � ` Q

C; � ` P j Q

Msg

C; � ` u : � C; � ` ~v : ~� C
 � = h~�i

C; � ` u h~v i

Def

C; � +B ` (J

i

. P

i

)

i2I

:: B �� \ fv(�) = ?

8i 2 I C
 8��[C℄:Bj

dn(J

i

)

� 8��[C℄�Bj

dn(J

i

)

C

0

; � + 8��[C℄�B ` P C

0

 C

C

0

; � ` def (J

i

. P

i

)

i2I

in P

Common

Weaken

C

0

; � ` J C
 C

0

C; � ` J

9 Intro

C;� ` J �� \ fv(�;J) = ?

9��:C; � ` J

Fig. 3. The system JOIN(X) (with a tentative Def rule)

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 15

De�nition 5.6. The denotation of an environment fragment A = (u

i

: �

i

)

i2I

under an assignment �, written LAM

�

, is de�ned as �JAK

�

= �(u

i

: J�

i

K

�

)

i2I

.

The denotation of 8��[C℄:B under an assignment �, written L8��[C℄:BM

�

, is de-

�ned as "f�

0

(B) ; (�

0

n �� = � n ��) ^ �

0

` Cg.

This de�nition interprets environment fragments as a whole, rather than

point-wise. That is, L�M

�

maps environment fragments to sets of tuples of mono-

types. A polymorphi
 environment fragment A maps ea
h name u

i

to a type

s
heme �

i

. The fa
t that these type s
hemes are independent of one another is

re�e
ted in our interpretation of A as the Cartesian produ
t of their interpreta-

tions. On the other hand, 8��[C℄:B is just a type s
heme whose body happens

to be a tuple, so we interpret it as (the upper
one generated by) the set of its

instan
es, as in De�nition 5.5.

Interpreting the notations 8��[C℄�B and 8��[C℄:B within the same mathe-

mati
al spa
e allows us to give a logi
al
riterion under whi
h they
oin
ide.

De�nition 5.7. By de�nition, C
 8��[C℄:B � 8��[C℄�B holds if and only if,

under every assignment � su
h that � ` C, L8��[C℄:BM

�

� L8��[C℄�BM

�

holds.

Example 5.8. Let B = (a : h�i; b : hh�ii), C = � � �, and �� = f�; �g. (For

on
iseness, we use h�i as a type
onstru
tor, even though it isn't one; hopefully

the meaning is
lear enough.) Then, under any assignment, the denotation of

8��[C℄:B is

"f(a : hti; b : hht

0

ii) ; t; t

0

2 T ^ t � t

0

g

whereas that of 8��[C℄�B is

"f(a : hti; b : hht

0

ii) ; t; t

0

2 Tg

The former is a stri
t subset of the latter. (If > stands for the 0-ary
hannel

type hi, then (a : h>i; b : hhh>iii) witnesses this fa
t.) This shows that the

environment fragment B, under the
onstraint C,
orrelates the names a and b.

In other words, these names
annot be used independently at arbitrary types.

Indeed, this result is in a

ordan
e with the intuitive reading of the type s
heme

8��[� � �℄:(a : h�i; b : hh�ii), namely: �the value sent to a may be sent to

whi
hever
hannel is sent to b�.

The strength of this
riterion is to be independent of the
onstraint logi
 X .

This allows us to prove JOIN(X)
orre
t in a pleasant generi
 way (see Se
t. 5.3).

As a �nal remark, let us point out that, independently of how to de�ne the

generalization
riterion, there is also a question of how to apply it. It would be

orre
t for rule Def to require C
 8��[C℄:B � 8��[C℄�B, as in [3℄. However,

when exe
uting the program, only one
lause of the de�nition at a time will be

redu
ed, so it is su�
ient to separately ensure that the messages whi
h appear in

ea
h
lause have
onsistent types. As a result, we su

essively apply the
riterion

to ea
h
lause J

i

. P

i

, by restri
ting B to the set of its de�ned names, yielding

Bj

dn(J

i

)

. In this respe
t, we
losely follow the JoCaml implementation [1℄ as well

as Odersky et al. [6℄.

16 Sylvain Con
hon and François Pottier

5.3 Type Soundness, Semi-Synta
ti
ally

This se
tion gives a type soundness proof for JOIN(X) by showing that it is safe

with respe
t to B(T). That is, we show that every judgement C; � ` J des
ribes

the set of all B(T) judgements of the form �(� ` J), where � ` C. Thus, we

give logi
al (rather than synta
ti
) meaning to JOIN(X) judgements, yielding

a
on
ise and natural proof. As a whole, the approa
h is still semi-synta
ti
,

be
ause B(T) itself has been proven
orre
t in a synta
ti
 way.

We �rst de�ne some notation.

De�nition 5.9. When de�ned (
f. De�nition 5.5), J�K

�

is a polytype, i.e. an

element of S. The denotation fun
tion J�K

�

is extended point-wise to typing envi-

ronments. As a result, if � is an S-environment, then J� K

�

is an S-environment.

This allows us to state the main soundness theorem.

Theorem 5.10 (Soundness). Let �(u : �), �(D :: B), �(P) stand for u : �(�),

D :: �(B), P , respe
tively. Then, � ` C and C; � ` J imply J� K

�

` �(J).

Proof. By stru
tural indu
tion on the derivation of the input judgement. We use

exa
tly the notations of Fig. 3. In ea
h
ase, we assume given some solution �

of the
onstraint whi
h appears in the judgement's
on
lusion.

Case Inst. We have J� K

�

(u) = J8��[C℄:�K

�

3 �(�) be
ause � ` C. The result

follows by b-Inst.

Case Sub-Name. The indu
tion hypothesis yields J� K

�

` u : �(�

0

). The

se
ond premise implies �(�

0

) � �(�). Apply b-Sub-Name to
on
lude.

Case Empty. Immediate.

Case Join. Let B = (x

i

: �

i

)

i2I

. Applying the indu
tion hypothesis to the

�rst premise yields J� K

�

+(~u

i

: J~�

i

K

�

)

i2I

` P . Sin
e J�K

�

is "f�(�)g, this may be

written J� K

�

+ (~u

i

: �(~�

i

))

i2I

` P . (Re
all the abuse of notation introdu
ed in

De�nition 4.3.) The se
ond premise implies 8i 2 I �(�

i

) = h�(~�

i

)i. As a result,

by b-Join, J� K

�

` D : �(B) holds.

Case Or. Then, D is D

1

^ D

2

and B is B

1

� B

2

. Applying the indu
tion

hypothesis to the premises yields J� K

�

` D

i

: �(B

i

). Apply b-Or to
on
lude.

Case Sub-Def. The indu
tion hypothesis yields J� K

�

` D : �(B

0

). The

se
ond premise implies �(B

0

) � �(B). Apply b-Sub-Def to
on
lude.

Cases Null, Par. Immediate.

CaseMsg. Applying the indu
tion hypothesis to the �rst two premises yields

J� K

�

` u : �(�) and J� K

�

` ~v : �(~�). The last premise entails �(�) = h�(~�)i.

Apply b-Msg to
on
lude.

Case Def. By hypothesis, � ` C

0

; a

ording to the last premise, � ` C

also holds. Let A = 8��[C℄�B. Take B 2 LAM

�

. Take i 2 I and de�ne B

i

=

Bj

dn(J

i

)

. Then, B

i

is a member of L8��[C℄�Bj

dn(J

i

)

M

�

, whi
h, a

ording to the

third premise, is a subset of L8��[C℄:Bj

dn(J

i

)

M

�

. Thus, there exists an assignment

�

0

su
h that (�

0

n �� = � n ��) ^ �

0

` C and �

0

(Bj

dn(J

i

)

) � B

i

. The indu
tion

hypothesis, applied to the �rst premise and to �

0

, yields J� +BK

�

0

` D :: �

0

(B).

By Lemma 4.9, this implies J� +BK

�

0

` J

i

. P

i

:: B

i

.

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 17

Now, be
ause ��\fv(�) = ?, J� K

�

0

is J� K

�

. Furthermore, given the properties

of �

0

, we have JBK

�

0

� J8��[C℄�BK

�

= JAK

�

. As a result, by Lemma 4.4, the

judgement above implies J� K

�

+ JAK

�

` J

i

. P

i

:: B

i

.

Be
ause this holds for any i 2 I , repeated use of b-Or yields a derivation of

J� K

�

+ JAK

�

` D :: B. Lastly, be
ause this holds for any B 2 LAM

�

, b-Gen yields

J� K

�

+ JAK

�

` D :: JAK

�

.

Applying the indu
tion hypothesis to the fourth premise yields J� K

�

+JAK

�

`

P . Apply b-Def to
on
lude.

Case Weaken. The se
ond premise gives � ` C

0

. Thus, the indu
tion hy-

pothesis may be applied to the �rst premise, yielding the desired judgement.

Case 9 Intro. We have � ` 9��:C. Then, there exists an assignment �

0

su
h that (�

0

n �� = � n ��) ^ �

0

` C. Considering the se
ond premise, we have

J� K

�

0

= J� K

�

and �

0

(J) = �(J). Thus, applying the indu
tion hypothesis to the

�rst premise and to �

0

yields the desired judgement.

This proof is, in our opinion, fairly readable. In fa
t, all
ases ex
ept Def

are next to trivial.

In the Def
ase, we must show that the de�nition D has type JAK

�

, where

A = 8��[C℄�B. Be
ause B(T) has extensional polymorphism (i.e. rule b-Gen),

it su�
es to show that it has every type B 2 �JAK

�

. Noti
e how we must �
ut

B into pie
es� B

i

,
orresponding to ea
h
lause J

i

, in order to make use of the

per-
lause generalization
riterion. We use the indu
tion hypothesis at the level

of ea
h
lause, then re
ombine the resulting type derivations using b-Or. Noti
e

how we use Lemma 4.4; proving an environment strengthening lemma at the

level of JOIN(X) would be mu
h more
umbersome.

The eight non-syntax-dire
ted rules are easily proven
orre
t. Indeed, their

on
lusion denotes fewer (Sub-Name, Sub-Def, Weaken) or exa
tly the same

(9 Intro) judgements in B(T) as their premise. In a synta
ti
 proof, the presen
e

of these rules would require several normalization lemmas.

Corollary 5.11. No well-typed pro
ess gets faulty through redu
tion.

Proof. Assume C; � ` P . Be
ause C must be satis�able, it must have at least

one solution �. By Theorem 5.10, J� K

�

` P holds in B(T). The result follows by

Theorems 4.10 and 4.12.

6 Type Inferen
e

6.1 Trouble with Generalization

Two severe problems qui
kly arise when attempting to de�ne a
omplete type

inferen
e pro
edure for JOIN(X). Both are
aused by the fragility of the logi
al

generalization
riterion.

Non-determinism. To begin with, the
riterion is non-deterministi
. It states

a su�
ient
ondition for a given
hoi
e of �� to be
orre
t. However, there seems

to be, in general, no best
hoi
e. Consider the environment fragment B = (a :

18 Sylvain Con
hon and François Pottier

h�i; b : h�i) under the
onstraint � \ � = ? (assuming the logi
 X o�ers su
h a

onstraint, e.g. X is a set
onstraint logi
). The
onstraint
reates a
orrelation

between the names a and b. Is it best to generalize �, leaving � monomorphi
,

or to do the
onverse?

Non-monotoni
ity. More subtly, strengthening the
onstraint C may, in some

ases,
ause apparent
orrelations to disappear. Consider the environment frag-

ment B = (a : �; b : �) under the
onstraint
?� = � (assuming the logi
 X

o�ers su
h a
onstraint, to be read �if
 is non-?, then � must equal ��). There is

a
orrelation between a and b, be
ause, in
ertain
ases (that is, when
 6= ?), �

and � must
oin
ide. However, let us now add the
onstraint
 = ?. We obtain

?� = � ^
 = ?, whi
h is logi
ally equivalent to
 = ?. It is
lear that, under

the new
onstraint, a and b are no longer
orrelated. So, the set of generalizable

type variables may in
rease as the
onstraint C is made more restri
tive.

Given a de�nitionD, a natural type inferen
e algorithm will infer the weakest

onstraint C under whi
h it is well-typed, then will use C to determine whi
h

type variables may be generalized. Be
ause of non-monotoni
ity, the algorithm

may �nd apparent
orrelations whi
h would disappear if the
onstraint were

deliberately strengthened. However, there is no way for the algorithm to guess

if and how it should do so.

These remarks show that it is di�
ult to de�ne a
omplete type inferen
e

algorithm, i.e. one whi
h provably yields a single, most general typing.

Previous works [3, 6℄ use a similar type-based
riterion, yet report no di�
ulty

with type inferen
e. This leads us to
onje
ture that these problems do not arise

when subtyping is interpreted as equality and no
ustom
onstraint forms are

available. This may be true for other
onstraint logi
s as well. Thus, a partial

solution would be to de�ne a type inferen
e pro
edure only for those logi
s,

taking advantage of their parti
ular stru
ture to prove its
ompleteness.

In the general
ase, i.e. under an arbitrary
hoi
e ofX , we know of no solution

other than to abandon the logi
al
riterion. We suggest repla
ing it with a mu
h

more naïve one, based on the stru
ture of the de�nition itself, rather than on

type information. One possible su
h
riterion is given in Fig. 4. It simply
onsists

in refusing generalization entirely if the de�nition involves any syn
hronization,

i.e. if any join-pattern de�nes more than one name. (It is possible to do slightly

better, e.g. by generalizing all names not involved in a syn
hronization between

two messages of non-zero arity.) It is
learly safe with respe
t to the previous

riterion.

The new
riterion is deterministi
, and impervious to
hanges in C, sin
e

it depends solely on the stru
ture of the de�nition D. It is the analogue of

the so-
alled value restri
tion, suggested by Wright [9℄, now in use in most ML

implementations. Experien
e with ML suggests that su
h a restri
tion is tolerable

in pra
ti
e; a qui
k experiment shows that all of the sample
ode bundled with

JoCaml [1℄ is well-typed under it.

In the following, we adopt the restri
ted Def rule of Fig. 4.

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 19

Def

C; � +B ` (J

i

. P

i

)

i2I

:: B �� \ fv(�) = ?

(9i 2 I j dn(J

i

) j > 1)) �� = ?

C

0

; � + 8��[C℄�B ` P C

0

 C

C

0

; � ` def (J

i

. P

i

)

i2I

in P

Fig. 4. De�nitive Def rule

6.2 A Type Inferen
e Algorithm

Fig. 5 gives a set of syntax-dire
ted type inferen
e rules. Again, in every judge-

ment C; � `

I

J , it is understood that C must be satis�able. The rules impli
itly

des
ribe an algorithm, whose inputs are an environment � and a sub-term u, D

or P , and whose output, in
ase of su

ess, is a judgement. Rule i-Or uses the

following notation:

De�nition 6.1. The least upper bound of B

1

and B

2

, written B

1

t B

2

, is a

pair of a monomorphi
 environment and a
onstraint. It is de�ned by:

B

1

t B

2

= (u : �

u

)

u2U

;

^

i2f1;2g;u2dom(B

i

)

B

i

(u) � �

u

where U = dom(B

1

) [dom(B

2

) and the type variables (�

u

)

u2U

are fresh.

Following [8℄, we have saturated every type inferen
e judgement by existen-

tial quanti�
ation. Although slightly verbose, this style ni
ely shows whi
h type

variables are lo
al to a sub-derivation, yielding the following invariant:

Lemma 6.2. If C; � `

I

J holds, then fv(C) � fv(�;J) and fv(J)\ fv(�) = ?.

We now prove the type inferen
e rules
orre
t and
omplete with respe
t to

JOIN(X).

Theorem 6.3 (Soundness). C; � `

I

J implies C; � ` J .

Proof. By stru
tural indu
tion on the derivation of the input judgement. For

the sake of
on
iseness, the indu
tion hypothesis is applied silently.

Case i-Inst. Be
ause the s
ope of the bound type variables �� is the same

in the premise and in the
on
lusion, namely C and � (� is to be taken fresh,

i.e. outside of the s
ope of ��), we
an perform �-
onversion on both judgements

and require �� \ fv(�) = ?. By Inst, we have C; � ` u : �. By Weaken and

Sub-Name, we obtain C ^ � � �; � ` u : �. The result follows by 9 Intro.

Case i-Empty. C implies true; apply Weaken.

Case i-Join. Applying Weaken to the �rst premise yields C ^

V

i2I

�

i

=

h ~�

i

i; � + (~u

i

: ~�

i

)

i2I

` P . Then, rule Join applies. Lastly, be
ause the type

variables (��

i

)

i2I

are taken fresh, they do not appear in � ; the result follows by

9 Intro.

20 Sylvain Con
hon and François Pottier

Names

i-Inst

� (u) = 8��[C℄:� � fresh

9��:(C ^ � � �); � `

I

u : �

De�nitions

i-Empty

true; � `

I

� ::

~

0

i-Join

C; � + (~u

i

: ~�

i

)

i2I

`

I

P (~�

i

)

i2I

; (�

i

)

i2I

fresh

9(��

i

)

i2I

:(C ^

^

i2I

�

i

= h ~�

i

i); � `

I

(x

i

h ~u

i

i)

i2I

. P :: (x

i

: �

i

)

i2I

i-Or

C

1

; � `

I

D

1

: B

1

C

2

; � `

I

D

2

: B

2

B;C = B

1

t B

2

�

� = fv(B

1

; B

2

)

9

�

�:(C

1

^ C

2

^ C); � `

I

D

1

; D

2

:: B

Pro
esses

i-Null

true; � `

I

0

i-Par

C

1

; � `

I

P C

2

; � `

I

Q

C

1

^ C

2

; � `

I

P j Q

i-Msg

C; � `

I

u : �

~

C; � `

I

~v : ~�

9���:(C ^

~

C ^ � = h~�i); � `

I

u h~v i

i-Def

B fresh

�

� = fv(B)

C

1

; � +B `

I

(J

i

. P

i

)

i2I

:: B

0

�

�

0

= fv(B

0

) C

2

= 9

�

�

0

:(C

1

^ B

0

� B)

if 9i 2 I j dn(J

i

) j > 1 then �� = ? else �� =

�

�

C

3

; � + 8��[C

2

℄�B `

I

P

9

�

�:(C

2

^ C

3

); � `

I

def (J

i

. P

i

)

i2I

in P

Fig. 5. Type inferen
e

Case i-Or. By Weaken, C

1

^ C

2

^ C; � ` D

i

:: B

i

holds for i 2 f1; 2g.

Furthermore, by De�nition 6.1, B is of the form B = B

0

1

�B

0

2

, where C

1

^C

2

^C

B

i

� B

0

i

for i 2 f1; 2g. By Sub-Def, C

1

^ C

2

^ C; � ` D

i

:: B

0

i

holds. Or then

yields C

1

^ C

2

^ C; � ` D

1

; D

2

:: B. By Lemma 6.2,

�

� does not appear free in

� ; neither does it appear in fv(B), sin
e B is made up of fresh variables. Apply

9 Intro to
on
lude.

Case i-Null. C implies true; apply Weaken.

Case i-Par. Apply Weaken to ea
h premise, then Par.

Case i-Msg. Let C

0

= C ^

~

C ^ � = h~�i. By Weaken, we have C

0

; � ` u : �

and C

0

; � ` ~v : ~�. Then, Msg applies, yielding C

0

; � ` u h~v i. By Lemma 6.2, �

and �� do not appear in � ; the result follows by 9 Intro.

Case i-Def. Weaken and Sub-Def may be applied to the �rst premise,

yielding C

1

^B

0

� B;� +B ` D : B. By Lemma 6.2,

�

�

0

does not appear free in

� orB. Thus, 9 Intro yields C

2

; �+B ` D : B. The sixth premise, together with

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 21

the freshness of

�

�, implies the se
ond and third premises of rule Def (Fig. 4).

Applying Weaken to the last premise, we have C

2

^ C

3

; � + 8��[C

2

℄�B ` P .

Thus, Def yields C

2

^ C

3

; � ` def D in P . Apply 9 Intro to
on
lude.

To allow an indu
tive proof,
ompleteness must be given a quite general

statement; the following formulation was suggested to us by Martin Sulzmann.

For
on
iseness, we use a pseudo-
onstraint J � J

0

, de�ned as follows: u : � �

u : �

0

stands for � � �

0

; D : B � D : B

0

stands for B � B

0

; P � P stands for

true.

Theorem 6.4 (Completeness). Assume C; � ` J and C

00

 �

0

� � and

C

00

 C. Then, there exist C

0

and J

0

su
h that C

0

; �

0

`

I

J

0

and C

00

9fv(J

0

):(C

0

^ J

0

� J).

Proof. By indu
tion on the derivation of the input judgement. We re
all that,

by de�nition, C
 8��

1

[C

1

℄:�

1

� 8��

2

[C

2

℄:�

2

holds if and only if � ` C implies

J8��

1

[C

1

℄:�

1

K

�

� J8��

2

[C

2

℄:�

2

K

�

, that is, if and only if

9��

2

:C ^ C

2

 9��

1

:(C

1

^ �

1

� �

2

)

assuming ��

i

does not appear free in ��

j

, C

j

or �

j

when i 6= j. This is extended

point-wise to environments.

Case Inst. We assume � (u) = 8��[C℄:� and �

0

(u) = 8��

0

[C

0

℄:�

0

. Without loss

of generality, we assume �� and ��

0

are taken disjoint. The original judgement,

derived by Inst, is C; � ` u : �, while, by i-Inst, we may derive 9��

0

:(C

0

^ �

0

�

�); �

0

` u : �, where � is a fresh variable. Thus, there remains to prove that

C

00

 9�:(9��

0

:(C

0

^ �

0

� �) ^ � � �)

Now, be
ause C

00

 �

0

� � , we have C

00

 8��

0

[C

0

℄:�

0

� 8��[C℄:�, whi
h, by

de�nition of
, is 9��:C

00

^ C
 9��

0

:(C

0

^ �

0

� �). Be
ause C

00

 C, this

assertion may be weakened to C

00

 9��

0

:(C

0

^ �

0

� �). The result follows.

Case Sub-Name. Applying the indu
tion hypothesis to the �rst premise

yields C

0

and �

0

su
h that C

0

; �

0

`

I

u : �

0

and C

00

 9�

0

:(C

0

^ �

0

� �

0

).

Without loss of generality, we assume �

0

is distin
t from � and �

0

. The se
ond

premise is C
 �

0

� �. Given C

00

 C, there follows C

00

 9�

0

:(C

0

^ �

0

� �).

Case Empty. Immediate.

Case Join. Pi
k fresh variables ~�

0

i

; �

0

i

for i 2 I . De�ne C

1

= C

00

^

V

i2I

(~�

0

i

�

~�

i

). Then, C

1

 �

0

+ (u

i

: ~�

0

i

)

i2I

� � + (u

i

: ~�

i

)

i2I

holds. The �rst premise of

Join is C; � + (u

i

: ~�

i

)

i2I

` P . Applying the indu
tion hypothesis to it yields

C

0

su
h that C

0

; �

0

+ (u

i

: ~�

0

i

)

i2I

`

I

P and C

1

 C

0

. Then, i-Join yields

9(��

0

i

)

i2I

:(C

0

^

^

i2I

�

0

i

= h~�

0

i

i); �

0

`

I

J . P :: (x

i

: �

0

i

)

i2I

Thus, there remains to prove

C

00

 9

�

�

0

:

9(��

0

i

)

i2I

:(C

0

^

^

i2I

�

0

i

= h~�

0

i

i) ^

^

i2I

(�

0

i

� �

i

)

!

22 Sylvain Con
hon and François Pottier

Be
ause C

1

 C

0

, and
onsidering our freshness hypotheses, it su�
es to
he
k

that

C

00

 9

�

�

0

(��

0

i

)

i2I

:(C

00

^

^

i2I

~�

0

i

� ~�

i

^ �

0

i

= h~�

0

i

i ^ �

0

i

� �

i

)

whi
h follows from Join's se
ond premise, namely 8i 2 I C
 �

i

= h ~�

i

i, and

from C

00

 C.

Case Or. The premises are C; � ` D

i

:: B

i

for i 2 f1; 2g. Applying the

indu
tion hypothesis yields C

0

i

, B

0

i

su
h that C

0

i

; �

0

`

I

D

i

: B

0

i

and C

00

 9

�

�

0

i

:(C

0

i

^

B

0

i

� B

i

), where

�

�

0

i

= fv(B

0

i

). Without loss of generality, we may assume that

�

�

0

i

does not appear in C

0

j

, B

0

j

and B

j

when i 6= j, so that

C

00

 9

�

�

0

1

�

�

0

2

:(C

0

1

^ C

0

2

^ B

0

1

� B

1

^ B

0

2

� B

2

)

holds. De�ne B

0

; C

0

as B

0

1

t B

0

2

. Then, i-Or yields

9

�

�

0

1

�

�

0

2

:(C

0

1

^ C

0

2

^ C

0

); �

0

`

I

D

1

; D

2

:: B

0

Thus, there remains to prove

C

00

 9

�

�

0

:(9

�

�

0

1

�

�

0

2

:(C

0

1

^ C

0

2

^ C

0

) ^ B

0

� B

1

�B

2

)

whi
h,
onsidering our freshness hypotheses and the de�nition of B

0

1

t B

0

2

, is

easily seen to hold.

Case Sub-Def. Similar to Sub-Name.

Cases Null, Par. Immediate.

Case Msg. Applying the indu
tion hypothesis to the �rst premise yields C

0

and �

0

su
h that C

0

; �

0

`

I

u : �

0

and C

00

 9�

0

:(C

0

^ �

0

� �). The judgement

C

0

; �

0

`

I

u : �

0

must have been produ
ed by i-Inst; a look at this rule shows

that �

0

appears only in a single
onstraint of C

0

, where it is given a lower bound.

As a result, C

00

 9�

0

:(C

0

^ �

0

� �) implies C

00

 9�

0

:(C

0

^ �

0

= �). Similarly,

assuming ~v = (v

i

)

i2I

and ~� = (�

i

)

i2I

, applying the indu
tion hypothesis to

the i-th
omponent (i 2 I) of the se
ond premise yields C

0

i

and �

0

i

su
h that

C

0

i

; �

0

`

I

v

i

: �

0

i

and C

00

 9�

0

i

:(C

0

i

^ �

0

i

= �

i

).

As in Case Or above, our freshness hypotheses allow these entailment asser-

tions to be
ombined, yielding

C

00

 9�

0

��

0

:(C

0

^ �

0

= � ^

^

i2I

(C

0

i

^ �

0

i

= �

i

))

where ��

0

is (�

0

i

)

i2I

. To
ombine the type inferen
e judgements, we apply rule

i-Msg, yielding

9�

0

��

0

:(C

0

^

^

i2I

C

0

i

^ �

0

= h~�

0

i); �

0

`

I

u h~v i

Thus, there remains to prove that

C

00

 9�

0

��

0

:(C

0

^

^

i2I

C

0

i

^ �

0

= h~�

0

i)

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 23

whi
h follows from the entailment assertion above, from the third premise C

� = h~�i and from the hypothesis C

00

 C.

Case Def. Our hypotheses are as in Fig. 4, ex
ept we take the last premise to

be C

0

 9��:C. As mentioned in Se
t. 5.1, this does not a�e
t the type system's

expressive power, but allows us, without loss of generality, to assume that �� does

not appear free in � , �

0

, C

0

, C

00

.

We assume C

00

 C

0

. Pi
k a fresh B

0

; de�ne

�

�

0

= fv(B

0

). De�ne C

0

=

C

00

^ B

0

= B. We have C

0

 �

0

+ B

0

� � + B. Furthermore, be
ause C

0

 C,

C

0

 C holds. Thus, we may apply the indu
tion hypothesis to the �rst premise,

yielding

C

1

; �

0

+B

0

`

I

D :: B

00

where C

0

 9

�

�

00

:(C

1

^ B

00

� B) and

�

�

00

= fv(B

00

). We assume, without loss of

generality, that

�

�

00

is fresh with respe
t to B and B

0

.

De�ne C

2

= 9

�

�

00

:(C

1

^ B

00

� B

0

). Be
ause B and B

0

are inter
hangeable

under C

0

, and
onsidering the above freshness hypothesis, C

0

 C

2

holds.

Be
ause

�

�

0

appears neither in C

00

nor in B, we have C

00

 9

�

�

0

:(B

0

= B^C

0

).

Re
alling C

0

 9

�

�

00

:(C

1

^ B

00

� B), this implies

C

00

 9

�

�

0

:(B

0

= B ^ 9

�

�

00

:(C

1

^ B

00

� B))

whi
h, given the freshness of

�

�

00

,
an be written

C

00

 9

�

�

0

�

�

00

:(C

1

^ B

00

� B

0

= B)

De�ne ��

0

as ? if 9i 2 I j dn(J

i

) j > 1, and as

�

�

0

otherwise. We
laim that

C

0

 �

0

+ 8��

0

[C

2

℄�B

0

� � + 8��[C℄�B

If �� = ��

0

= ?, this is an immediate
onsequen
e of C

0

 B

0

= B and C

0

 C

2

.

Otherwise, it su�
es to
he
k, for every (u : �

0

) 2 B

0

and (u : �) 2 B, that

C

0

 8��

0

[C

2

℄:�

0

� 8��[C℄:�

whi
h, by de�nition of
, is equivalent to

9��:C

0

^ C
 9��

0

:(C

2

^ �

0

� �)

Re
alling that ��

0

=

�

�

0

, and lifting C

2

's outermost existential quanti�er to the

toplevel, this
an be written

9��:C

0

^ C
 9

�

�

0

�

�

00

:(C

1

^ B

00

� B

0

^ �

0

� �)

By weakening the left-hand side to 9��:C

00

, then re
alling that �� does not appear

free in C

00

; by re
alling that �

0

and � are
orresponding elements of B

0

and B,

this may strengthened to

C

00

 9

�

�

0

�

�

00

:(C

1

^ B

00

� B

0

� B)

whi
h we have already proven above. Thus, our
laim holds.

24 Sylvain Con
hon and François Pottier

This allows us to apply the indu
tion hypothesis to the penultimate premise

of Def, yielding C

3

su
h that C

3

; �

0

+ 8��

0

[C

2

℄�B

0

`

I

P and C

0

 C

3

. We may

then apply i-Def, yielding 9

�

�

0

:(C

2

^C

3

); �

0

` def D in P . Thus, there remains

to prove

C

00

 9

�

�

0

:(C

2

^ C

3

)

This
an be shown by re
alling C

00

 9

�

�

0

:(B

0

= B ^ C

0

). Be
ause C

0

 C

2

and

C

0

 C

00

 C

0

 C

3

, this implies C

00

 9

�

�

0

:(B

0

= B ^ C

2

^ C

3

), when
e the

result.

Case Weaken. The se
ond premise is C
 C

0

. Be
ause C

00

 C, we have

C

00

 C

0

. Thus, the indu
tion hypothesis
an be applied to the �rst premise,

yielding the desired result.

Case 9 Intro. Assume C

00

 9��:C. Without loss of generality, we assume

that �� does not appear free in C

00

or �

0

. Applying the indu
tion hypothesis to

C

00

^C and to the �rst premise, we obtain C

0

and J

0

su
h that C

0

; �

0

`

I

J

0

and

C

00

^ C
 9

�

�

0

:(C

0

^ J

0

� J)

where

�

�

0

= fv(J

0

). Introdu
ing an additional existential quanti�er on both sides,

we obtain

9��:(C

00

^ C)
 9��:9

�

�

0

:(C

0

^ J

0

� J)

Be
ause �� does not o

ur in C

00

, and be
ause C

00

 9��:C, the left-hand side is

equivalent to C

00

. Furthermore, by Lemma 6.2, the free variables of C

0

and J

0

must o

ur free in �

0

, hen
e
annot appear in ��. Thus, we have

C

00

 9

�

�

0

:(C

0

^ J

0

� J)

whi
h is the desired result.

Soundness and
ompleteness of the type inferen
e rules may now be re-stated

in a more
on
ise way. For the sake of simpli
ity, we limit the statement to the

ase of pro
esses (omitting that of names and de�nitions).

Theorem 6.5. C; � `

I

P implies C; � ` P . Conversely, if C; � ` P holds, then

there exists a
onstraint C

0

su
h that C

0

; � `

I

P and C
 C

0

.

Proof. By spe
ializing Theorems 6.3 and 6.4.

7 Dis
ussion

JOIN(X) is
losely related to HM(X) [5, 7℄, a similar type system aimed at

purely fun
tional languages. It also draws inspiration from previous type systems

for the join-
al
ulus [3, 6℄, whi
h were purely uni�
ation-based. JOIN(X) is an

attempt to bring together these two orthogonal lines of resear
h.

Our results are partly negative: under a natural generalization
riterion, the

existen
e of prin
ipal typings is problemati
. This leads us, in the general
ase,

to suggest a more drasti
 restri
tion. Nevertheless, the logi
al
riterion may still

JOIN(X): Constraint-Based Type Inferen
e for the Join-Cal
ulus 25

be useful under
ertain spe
i�

onstraint logi
s, where prin
ipal typings
an

still be a
hieved, or in situations where their existen
e is not essential (e.g. in

program analysis).

We have not dis
ussed extending the
al
ulus with primitive operations and

asso
iated Æ-rules. Su
h an extension is straightforward. It requires assigning

a set of monotypes to ea
h operation p in B(T), and extending the subje
t

redu
tion and progress proofs; then, assigning a type s
heme to p in JOIN(X),

and showing that all elements of its denotation are valid monotypes for p in

B(T).

To establish type safety, we interpret typing judgements as (sets of) judge-

ments in an underlying system, whi
h is given a synta
ti
 soundness proof. The

former step, by giving a logi
al view of polymorphism and
onstraints, aptly ex-

presses our intuitions about these notions, yielding a
on
ise proof. The latter is

a matter of routine, be
ause the low-level type system is simple. Thus, both logi

and syntax are put to best use. We have baptized this approa
h semi-synta
ti
;

we feel it is perhaps not publi
ized enough.

One may argue that this approa
h only yields a type safety result, whereas

subje
t redu
tion and progress [10℄ are more pre
ise properties. This is true, but

let us ask: is it worth it? The semi-synta
ti
 approa
h may a�ord a more modular

proof, where subtle and interesting aspe
ts (e.g.
onstraints, generalization) are

learly separated from administrative ones (e.g. substitution lemmas, et
.). For

the re
ord, we have established a subje
t redu
tion property for JOIN(X), using

a restri
ted operational semanti
s along the lines of [6℄. The proof does not have

su
h pleasant modular stru
ture, and has shown rather fragile when
onfronted

to
hanges in the typing rules, whereas the semi-synta
ti
 proof turns out to be

mu
h easier to in
rementally update.

A
knowledgements

Alexandre Frey suggested the use of extensional polymorphism in the intermedi-

ate type system B(T). Martin Sulzmann kindly provided a proof of
ompleteness

of
onstraint-based type inferen
e in HM(X), whi
h was helpful in our own
om-

pleteness proof. We would also like to a
knowledge Martin Odersky and Didier

Rémy for stimulating dis
ussions.

Referen
es

[1℄ Sylvain Con
hon and Fabri
e Le Fessant. Jo
aml: Mobile agents for Obje
tive-

Caml. In First International Symposium on Agent Systems and Appli
ations and

Third International Symposium on Mobile Agents (ASA/MA'99), pages 22�29,

Palm Springs, California, O
tober 1999. URL: http://para.inria.fr/~
on
hon/

publis/asa99.ps.gz.

[2℄ Cédri
 Fournet and Georges Gonthier. The re�exive
hemi
al abstra
t ma
hine

and the join-
al
ulus. In Pro
eedings of the 23rd ACM Symposium on Prin
iples

of Programming Languages, pages 372�385, 1996. URL: http://pauilla
.inria.

fr/~fournet/papers/popl-96.ps.gz.

26 Sylvain Con
hon and François Pottier

[3℄ Cédri
 Fournet, Lu
 Maranget, Cosimo Laneve, and Didier Rémy. Impli
it typing

à la ML for the join-
al
ulus. In 8th International Conferen
e on Con
urren
y

Theory (CONCUR'97), volume 1243 of Le
ture Notes in Computer S
ien
e, pages

196�212, Warsaw, Poland, 1997. Springer. URL: ftp://ftp.inria.fr/INRIA/

Proje
ts/
ristal/Didier.Remy/typing-join.ps.gz.

[4℄ Robin Milner. A theory of type polymorphism in programming. Journal of Com-

puter and System S
ien
es, 17(3):348�375, De
ember 1978.

[5℄ Martin Odersky, Martin Sulzmann, and Martin Wehr. Type inferen
e with
on-

strained types. Theory and Pra
ti
e of Obje
t Systems, 5(1):35�55, 1999. URL:

http://www.
s.mu.oz.au/~sulzmann/publi
ations/tapos.ps.

[6℄ Martin Odersky, Christoph Zenger, Matthias Zenger, and Gang Chen. A fun
-

tional view of join. Te
hni
al Report ACRC-99-016, University of South Australia,

1999. URL: http://lampwww.epfl.
h/~
zenger/papers/tr-a
r
-99-016.ps.

gz.

[7℄ Martin Sulzmann. A general framework for Hindley/Milner type systems with

onstraints. PhD thesis, Yale University, Department of Computer S
ien
e, May

2000. URL: http://www.
s.mu.oz.au/~sulzmann/publi
ations/diss.ps.gz.

[8℄ Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/Milner style

type systems in
onstraint form. Resear
h Report ACRC�99�009, University of

South Australia, S
hool of Computer and Information S
ien
e, July 1999. URL:

http://www.ps.uni-sb.de/~mmueller/papers/hm-
onstraints.ps.gz.

[9℄ Andrew K. Wright. Simple imperative polymorphism. Lisp and Symboli
 Com-

putation, 8(4):343�356, De
ember 1995.

[10℄ Andrew K. Wright and Matthias Felleisen. A synta
ti
 approa
h to type sound-

ness. Information and Computation, 115(1):38�94, November 1994. URL: http:

//www.
s.ri
e.edu/CS/PLT/Publi
ations/i
94-wf.ps.gz.

