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Abstract. We present a generic constraint-based type system for the
join-calculus. The key issue is type generalization, which, in the presence
of concurrency, must be restricted. We first define a liberal generalization
criterion, and prove it correct. Then, we find that it hinders type infer-
ence, and propose a cruder one, reminiscent of ML’s value restriction.
We establish type safety using a semi-syntactic technique, which we be-
lieve is of independent interest. It consists in interpreting typing judge-
ments as (sets of) judgements in an underlying system, which itself is
given a syntactic soundness proof. This hybrid approach allows giving
pleasant logical meaning to high-level notions such as type variables, con-
straints and generalization, and clearly separating them from low-level
aspects (substitution lemmas, etc.), which are dealt with in a simple,
standard way.

1 Introduction

The join-calculus [2] is a name-passing process calculus related to the asyn-
chronous m-calculus. The original motivation for its introduction was to define
a process calculus amenable to a distributed implementation. In particular, the
join-calculus merges reception, restriction and replication into a single syntactic
form, the def construct, avoiding the need for distributed consensus. This design
decision turns out to also have an important impact on typing. Indeed, because
the behavior of a channel is fully known at definition time, its type can be safely
generalized. Thus, def constructs become analogous to ML’s 1et definitions. For
instance, the following definition:

def apply(f,x) = f£(x)

defines a channel apply which expects two arguments £ and x and, upon receipt,
sends the message f (x). In Fournet et al.’s type system [3], apply receives the
parametric type scheme Va.(({a), a), where () is the channel type constructor.

1.1 Motivation

Why develop a new type system for the join-calculus? The unification-based sys-
tem proposed by Fournet et al. [3] shares many attractive features with ML’s
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type system: it is simple, expressive, and easy to implement, as shown by the Jo-
Caml experiment [1]. Like ML, it is prescriptive, i.e. intended to infer reasonably
simple types and to enforce a programming discipline.

Type systems are often used as a nice formal basis for various program anal-
yses, such as control flow analysis, strictness analysis, usage analysis, and so
on. These systems, however, tend to be essentially descriptive, i.e. intended to
infer accurate types and to reject as few programs as possible. To achieve this
goal, it is common to describe the behavior of programs using a rich constraint
language, possibly involving subtyping, set constraints, conditional constraints,
etc. We wish to define such a descriptive type system for the join-calculus, as a
vehicle for future type-based analyses.

Following Odersky et al. [5], we parameterize our type system with an arbi-
trary constraint logic X, making it more generic and more easily re-useable. Our
work may be viewed as an attempt to adapt their constraint-based framework
to the join-calculus, much as Fournet et al. adapted ML’s type discipline.

1.2 Type Generalization Criteria

The def construct improves on let expressions by allowing synchronization
between channels. Thus, we can define a variant of apply that receives the
channel £ and the argument x from different channels.

def apply(f) | args(x) = f(x)

This simultaneously defines the names apply and args. The message f (x) will
be emitted whenever a message is received on both of these channels.

In a subtyping-constraint-based type system, one would expect apply and
args to be given types (8) and («), respectively, correlated by the constraint
B < {a). The constraint requires the channels to be used in a consistent way: the
type of x must match the expectations of £. Now, if we were to generalize these
types separately, we would obtain apply : Vaf[8 < (a)].(8) and args : Vag[8 <
(a)].{a), which are logically equivalent to apply : Va.((a})) and args : Va.(a).
These types no longer reflect the consistency requirement!

To address this problem, Fournet et al. state that any type variable which
is shared between two jointly defined names (here, apply and args), i.e. which
occurs free in their types, must not be generalized. However, this criterion is
based on the syntazr of types, and makes little sense in the presence of an ar-
bitrary constraint logic X. In the example above, apply and args have types
(B) and (a), so they share no type variables. The correlation is only apparent
in the constraint 8 < (). When the constraint logic X is known, correlations
can be detected by examining the (syntax of the) constraint, looking for paths
connecting o and 3. However, we want our type system to be parametric in X,
so the syntax (and the meaning) of constraints is, in general, not available. This
leads us to define a uniform, logical generalization criterion (Sect. 5.2), which
we prove sound.
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Unfortunately, and somewhat surprisingly, this criterion turns out to hinder
type inference. As a result, we will propose a cruder one, reminiscent of ML’s
so-called value restriction [9].

def D, Jp> P in Q = def D,pJ > P in @
if dom(p) =In(J) A codom(p) Nfn(J > P) =&
def D in P = def ¢D in pP
if dom(p) = dn(D) A codom(p) Nin(def D in P) = &

P|Q=Q|P D,,D; = D»,D:
Plo=P De=D
PIQIR=({P|Q)IR Dy, (D2, D3) = (D1, D2), D3

P-Q=P|R—>Q|R
P—Q=4def Din P —def Din(Q

(def Din P) | Q = def D in (P | Q) if dn(D)Nfn(Q) =2
def D; in def D> in P = def D;, D3 in P if fn(Dl) n dn(Dz) =g
def D,J>PinQ | pJ = def D,J>Pin Q| P  if dom(p) = In(J)

Fig. 1. Operational semantics

1.3 Overview

We first recall the syntax and semantics of the join-calculus, and introduce some
useful notation. Then, we introduce a ground type system for the join-calculus,
called B(T"), and establish its correctness in a syntactic way (Sect. 4). Building
on this foundation, Sect. 5 introduces JOIN(X) and proves it correct with re-
spect to B(T'). Sect. 6 studies type reconstruction, suggesting that a restricted
generalization criterion must be adopted in order to obtain a complete algorithm.

2 The Join-Calculus

We assume given a countable set of names N, ranged over by z,y,u,v,... We
write @ for a tuple (u1,...,uy) and @ for a set {u1,... ,up} , where n > 0. The
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syntax of the join-calculus is as follows.

P:::O|(P|P)|u(17)|defDinP
w=¢|J>P|D,D
Ju=u(y) [ (J]J)
We require join patterns to be linear. That is, all defined names in a join pattern
must be pairwise different, and all local names must also be pairwise different.

The set of defined names dn(J) and the set of local names In(J) of a join-pattern
J are defined as follows.

dn(u (7)) = {u} dn(J | J') = dn(J) Udn(J")
In(u(g)) =g In(J | J') =In(J)Uln(J")
The set of defined names dn(D) of a definition D is the union of the sets dn(.J)

of all join-patterns J which appear in D. Then, the set of free names of a process
or of a definition are as follows.

n(0) = fn(e) = @
fn(u (7)) = {u} Uo fn(J > P) = fn(P) \ In(J)
fu(P | P") = fu(P) Ufn(P") fn(D,D") = fu(D) U fn(D")
fu(def D in P) = (fu(D) Ufn(P)) \ du(D)

This defines the scoping rules of the language. The local names of a join-pattern
(i.e. the formal parameters of its messages) are bound in the corresponding
guarded process, while defined names (i.e. channels being created) are bound
within the whole defining process, that is, within all guarded processes as well
as within the main process.

Reduction — is defined as the smallest relation that satisfies the laws in
Fig. 1. ¢ ranges over renamings, i.e. one-to-one maps from N into N. = stands
for — N . It is customary to distinguish structural equivalence and reduction,
but this is unnecessary here.

3 Notation

This section defines some mathematical notation used throughout the paper.

Definition 3.1. Given a set T, a T-environment, usually denoted I', is a partial
mapping from N into T. If N C N, I'|y denotes the restriction of I' to N. I'+1"
is the environment which maps everyu € N to I (u), if it is defined, and to I'(u)
otherwise. When I' and I'" agree on dom(I")Ndom(I"), I'+ 1" is written ' &®I".
If T is equipped with a partial order, it is extended point-wise to T -environments
of identical domain.

Definition 3.2. Given a set T, ranged over by t, t denotes a tuple (t1,...tn),
of length n > 0; we let T* denote the set of such tuples. If T is equipped with a
partial order, it is extended point-wise to tuples of identical length.
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Definition 3.3. Given a set I, (z; : t;)'S! denotes the partial mapping z; —
t; of domain T :.{xi; i € I}. (P)'€! denotes the parallel composition of the
processes P;. (D;)'€! denotes the conjunction of the definitions D;.

Definition 3.4. The Cartesian product of a labelled tuple of sets A = (x; :
5;)'€L, written I1A, is the set of tuples {(x; : ;)" ;Vie I t; € s;}.

Definition 3.5. Given a partially ordered set T and a subset V of T, the cone
generated by V within T, denoted by 1V, is {t € T; v € V v <t}. V is said
to be upward-closed if and only if V =1V

4 The System B(T)

This section defines an intermediate type system for the join-calculus, called
B(T). It is a ground type system: it does not have a notion of type variable.
Instead, it has monotypes, taken to be elements of some set 7', and polytypes,
merely defined as certain subsets of 7.

Assumptions. We assume given a set 7', whose elements, usually denoted by
t, are called monotypes. T must be equipped with a partial order <. We assume
given a total function, denoted (-}, from T* into T, such that (£ < (#) holds if
and only if i<t

Definition 4.1. A polytype, usually denoted by s, is a non-empty, upward-
closed subset of T'. Let S be the set of all polytypes. We order S by D, i.e. we
write s < s’ if and only if s D s'.

Note that < and (-} operate on T'. Furthermore, S is defined on top of T
there is no way to inject S back into 7. In other words, this presentation allows
rank-1 polymorphism only; impredicative polymorphism is ruled out. This is in
keeping with the Hindley-Milner family of type systems [4, 5].

Definition 4.2. A monotype environment, denoted by B, is a T-environment.
A polytype environment, denoted by I or A, is an S-environment.

Definition 4.3. The type system B(T) is given in Fig. 2. By abuse of notation,
in the first premise of rule B-JOIN, a monotype binding (u : t) is implicitly viewed
as the polytype binding (u : 1{t}).

Every typing judgement carries a polytype environment I on its left-hand
side, representing a set of assumptions under which its right-hand side may
be used. Right-hand sides come in four varieties. u : ¢ states that the name
u has type t. D :: B (resp. D :: A) states that the definition D gives rise to
the environment fragment B (resp. A). Then, dom(B) (resp. dom(.A4)) is, by
construction, dn(D). Lastly, a right-hand side of the form P simply states that
the process P is well-typed.

The most salient aspect of these rules is their treatment of polymorphism.
Rule B-INST performs instantiation by allowing a polytype s to be specialized to
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Names
B-INST B-SUB-NAME
I'(u)=s tes Fru:t t <t
I'Fu:t I'Fu:t
Definitions
E B-JOIN L B-OR
IB_T'_MPT(_}( I+ (ﬁl :ti)IEI =P I'-D,:: B 't Dy :: By
€ - —
TF (2 (@) S > P (0 () I'FDi,D>:: B @ B>
B-SUB-DEF B-GEN
rv-D:B B<EB VBellA I'+-D:B
r-p:pB I'-D: A
Processes
N B-PAR B-Msa .
‘;'F‘SLL 'tP TI'+HQ F'bu: (B Tri:f
'-pP|Q I'tu(7)
B-DEF

I'+Ar-D: A '+ ArP
I'+def D in P

Fig. 2. The system B(T")

any monotype t € s. Conversely, rule B-GEN performs generalization by allowing
the judgement I' F D :: (z; : 5;)'€! to be formed if I' - D :: (x; : t;)*€! holds
whenever (z; : t;)*¢! € II(z; : s;)'€!, i.e. whenever Vi € I t; € s; holds. In
other words, this system offers an extensional view of polymorphism: a polytype
s is definitionally equal to the set of its monotype instances. Through B-GEN
and B-INST, the judgement I' F D :: 4 may be viewed as mere evidence for the
set of its instances. Note that there may be an infinite number of them, so rule
B-GEN may require an infinite number of premises.

The first premise of rule B-DEF reflects the fact that every definition is recur-
sive by requiring it to produce an environment fragment A under assumptions
I' + A (rather than I alone). The rule expects a polytype environment frag-
ment A (rather than a monotype environment fragment B), so the system has
polymorphic recursion.

These remarks show that typechecking in B(7") is not necessarily decidable.
This will not hinder us, since we use B(T') only as an intermediate step in the
construction of a decidable type system, namely JOIN(X).

Rules other than B-GEN, B-INST and B-DEF are fairly straightforward; they
involve monotypes only, and are similar to those found in common typed process
calculi. The only non-syntax-directed rules are the subtyping rules, namely B-
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SuB-NaME and B-SUB-DEF. Rule B-GEN must (and can only) be applied once
above every use of B-DEF, so it is not a source of non-determinism.

Before establishing type soundness for B(T"), we prove several auxiliary lem-
mas.

Lemma 4.4 (Depth strengthening). If ' P and I'' < I, then '+ P.
Lemma 4.5 (Width strengthening). If u ¢ fn(P) U fn(D), then
I'FP&el+(u:s)FP
I'tDu:B&I'+(u:s)FDuB
Lemma 4.6 (Substitution). If '+ (u:t) - P and '+ v : ¢, then I' - Plv/ul.

Lemma 4.7. A derivation of I' b u : t is canonical if and only if it contains
no instance of rule B-SUB-NAME. Fvery judgement of the form I' - u : t has a
canonical derivation.

Proof. Straightforward consequence of the fact that every polytype is upward-
closed.

Lemma 4.8. FEvery judgement of the form I' v Dy, D2 :: B has a derivation
which ends with an instance of rule B-OR. Every judgement of the form I' -
Jo P (z 0 (8))€ has a derivation which ends with an instance of rule B-
JOIN.

Proof. By induction on the derivation of I" - D :: 5. Assume the derivation ends
with an instance of B-SUB-DEF:

I'-D:B B <B
I'+-D:B

Thanks to the induction hypothesis, we may assume that the premise I" + D :: B’
is itself a consequence of B-JOIN or B-OR.
Case B-JOIN. The rule must be
[+ () =P
LEJ> P (o (H)€!

where B’ = (z; : (#/;))*€!. Furthermore, by hypothesis, B is (z; : (£;))*¢!. Con-
sidering B' < B, this entails Vi € I #; < #;. By Lemma 4.4, we then have
I' + (@; : t;)"¢' F P. Rule B-JOIN allows concluding that I" - D :: B.

Case B-OR. Then, B’ may be written B} @ B). The rule is

I't Dy :: By 't D : B
I'tD:BaB,
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Considering B’ < B, B must be of the form By & Bs, where B} < B; and B, < B,.
We may then build the derivations

kD, :: B; B; < B;
FD;:B;

and conclude by applying rule B-OR.

This tiny lemma will be useful in Sect. 5. It is a corollary of Lemma 4.8.
Lemma 4.9. Assume I' = (D, JoP) :: B' and B'|qy(5) < B. Then I' = JoP =2 B.
Proof. By Lemma 4.8, some derivation of I' - (D, J > P) :: B’ must end with

I'JpoP:: BI|dn(J)

0
R T e D TP B

We conclude by building

I'-JsP:: Bl|dn(J) Bl|dn(J) <B

B-SUB-DEF
I'JoP::B

We establish type soundness for B(T") following the syntactic approach of
Wright and Felleisen [10], i.e. by proving that B(T') enjoys subject reduction
and progress properties. Due to the complex syntactic structure of the join-
calculus (rather than expressions alone, one must deal with names, join-patterns,
definitions and processes), the proof is not particularly short. However, thanks
to our abstract treatment of polymorphism, it is entirely straightforward.

Authors of previous type systems for the join-calculus [3, 6] have found that
structural equivalence, as presented in Fig. 1, does not preserve typings. Indeed,
the last structural equivalence rule, by turning a series of nested definitions into
a single, mutually recursive definition, may cause a process to become ill-typed,
unless the type system has polymorphic recursion. Because polymorphic recur-
sion leads to undecidability, and because these authors were committed to the
syntactic approach to type soundness, they had to restrict structural equivalence
and to introduce reduction contexts in the operational semantics. The problem
does not arise in this paper, because B(T') has polymorphic recursion.

Theorem 4.10 (Subject reduction). I' - P and P — P’ imply I' - P'.

Proof. We check that each of the rules in Fig. 1 preserves typings. Then, a simple
context lemma, which we do not state here, allows concluding that all reductions
preserve typings.

a-conversion is easily dealt with using an auxiliary renaming lemma. Parallel
composition of processes offers no difficulty. Neither does composition of defini-
tions, because we can restrict our attention, without loss of generality, to typings
of the form I' - D :: B, and because Lemma 4.8 is available. We now deal with
the three remaining cases.
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Scope extrusion. The processes at hand are def D in P | () and def D in P |
@, where dn(D) N fn(Q) = @. Considering rules B-PAR and B-DEF, these pro-
cesses are well-typed within I" if and only if there exists A such that I" + A F
D:AT'+AFPand I'F Q (resp. I' + A F Q). Because dom(A) must be
dn(D), and because dn(D) Nfn(Q) = @, Lemma 4.5 shows that I' - @ holds if
and only if I" + A F @ holds. The result follows.

Merging of definitions. The processes at hand are def D; in def D5 in P
and def Dy, Dy in P, where fun(D;)Ndn(Dy) = @. Furthermore, we may assume,
without loss of generality, that dn(D;) Ndn(D;) = @. (If this is not the case,
perform a-conversion first.) Considering rules B-PAR and B-DEF, the former is
well-typed within I' if and only if there exist A; and Ay such that I' + A; F
D1 o Al, F+A1 +.A2 F D2 o .AQ and F+A1 +.A2 F P, while the latter is
well-typed within I" if and only if there exists A such that '+ A+ Dy, Dy it A
and I' + A+ P. There remains to show that these conditions are equivalent.

We begin by noticing that I"+ A; - Dy :: A; is equivalent to I'+ A; + Ao F
D, :: A;. Indeed, this follows from Lemma 4.5, using fn(D;) Ndn(D2) = @ and
dom(A2) = dn(Ds).

Now, assume the first condition holds. Define 4 = A; ® As. Assume B € I1 A.
B may be written By @ B, where B; € IIA; for i € {1,2}. We have I' + A F
D; :: A; for i € {1,2}. The derivations of these judgements must end with

VBellA;, '+ AFD;::B

B-GEN
I'+AFD;:: A;

Thus, we have I'+ A+ D; :: B; for i € {1,2}. By rule B-OR, I'+ A+ Dy, D5 :: B
holds. Recalling that B was arbitrary, rule B-GEN yields I" + A+ Dy, D5 :: A.
Thus, the second condition holds.

Conversely, assume the second condition holds. Let A; stand for the re-
striction of A to dn(D;), for i € {1,2}. We have A = A; & A,. Choose i, j
such that {i,j} = {1,2}. Consider some B; € II.A;. Because every polytype is
non-empty, there exists some B; such that B; ® B; € II.A. The derivation of
I'+ At Dy, D5 :: A must end with

VvBellA I'+Av-Dy,Ds:: B

B-GEN
F+A|‘D1,D2 ZZA

Among the premises, we find the judgement I' + A F Dy, Dy :: B; & B;, some
derivation of which must have I" + A+ D; :: B; as one of its premises. Because
B; was arbitrary, rule B-GEN yields I"' + A+ D; :: A;. The result follows.

Reduction. The processes at hand are def D, J> P in Q) | ¢J and def D, J >
P in Q | P, where dom(p) = In(J). J must be of the form (z; (@;))*<!. Then,
dom(yp) = Ujer @;. Assume I' - def D, J>P in Q | ¢J. Considering rule B-DEF,
there exists some A such that '+ A+ D, Jo P Aand '+ AF Q| oJ. A
derivation of the former must end with

vBellA I'+AFD,J>P: BB

-G
BraEn I'+A-D,J>P: A
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The derivation of the latter must include
Viel
(I + A)(z;) = si (t:) € 5
I+ AbF oz (6) I'+ AF oi; - 1
'+ AF z; (pi;)
'+ AbF oJ

B-INST

B-MsaG

B-PAR

(By Lemma 4.7, we have assumed a canonical derivation of I' + A b z; : (£;).)
We have dom(A) = dn(D,J > P) D z. Given (I" + A)(z;) = s;, this means
A(z;) = s;i. Let B = (z; : (£;))*€’. Then, some extension B’ of B is a member of
IT A, which means I'+ A+ D, J> P :: B' is among the premises of B-GEN above.
By Lemma 4.8, some derivation of it is of the form

I+ A+ (@ : 1) +pP
I'+ArJoP: BB
I'+A-D,JoP:: B

B-JOIN

5-OR

Thus, we have established I' + A + (@; : )€ F P and I' + A F oi; : t;.
Lemma 4.6 yields I' + A F Py, /4;), i.e. I' + A+ @P. The result follows.

Our notion of progress is weak: we guarantee the absence of runtime errors
(caused by arity mismatches), but we do not prove the absence of deadlocks.
This is a common weakness of many type systems for process calculi.

Definition 4.11. A process of the form def D,J> P in Q | u () is faulty if
J defines a message u () where U and § have different arities.

Please note that a faulty process is not necessarily irreducible.
Theorem 4.12 (Progress). No well-typed process is faulty.

Proof. Assume I' - def D, J>P in Q) | u(¥) and J contains a message u ().
According to B-DEF and B-PAR, we have
I'+ AFu ()
I'+AFD,JoP:: A

for some polytype environment 4. The derivation of the former must be

'+ A)(u) =s {tyes
I+ AFu: @) I+ AFG:t
I'+ Ak u(7)

B-INST

B-MsG

(By Lemma 4.7, we have assumed a canonical derivation of I' + A F u : ().)
Note that @ and # have the same arity. Because u € dn(J > P) C dom(A),
(I' + A)(u) = s may be read A(u) = s. Thus, considering every polytype is
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non-empty, there exists B € II A such that B(u) = (). Now, any derivation of
I'+ AF D,J> P :: Aends with an instance of B-GEN, among whose premises
we find I'+ A+ D, J > P :: B. Because B(u) = (), and because J contains a
message u (), some derivation of it must be of the form

I+...4+§:tFP
F'+ArJsP B B' < Blan(s)
I'+ AE J> P Blan
Ir+A+-D,J>P::B

B-JOIN

B-SUB-DEF

5 OR

We have B'(u) = ('), B' < Blan(s), and B(u) = (f}, which imply that # and ¢
have the same arity. As a result, 7 and ¢ have the same arity. The result follows.

5 The System JOIN(X)

5.1 Presentation

Like B(T'), JOIN(X) is parameterized by a set of ground types T', equipped with
a type constructor (-) and a subtyping relation <. It is further parameterized
by a first-order logic X, interpreted in 7', whose variables and formulas are
respectively called type variables and constraints. The logic allows describing
subsets of T' as constraints. Provided constraint satisfiability is decidable, this
gives rise to a type system where type checking is decidable.

Our treatment is inspired by the framework HM(X) [5, 8, 7]. Our presen-
tation differs, however, by explicitly viewing constraints as formulas interpreted
in T, rather than as elements of an abstract cylindric constraint system. This
presentation is more concise, and gives us the ability to explicitly manipulate
solutions of constraints, an essential requirement in our formulation of type
soundness (Theorem 5.10). Even though we lose some generality with respect to
the cylindric-system approach, we claim the framework remains general enough.

Assumptions. We assume given (T, <, (-)) as in Sect. 4. Furthermore, we as-
sume given a constraint logic X whose syntax includes the following productions:

-

Cu=true|a={f)|a<pf|CAC|TaC]|...

(o, B, ... range over a denumerable set of type variables V.) The syntax of con-
straints is only partially specified; this allows custom constraint forms, not known
in this paper, to be later introduced.

The logic X must be equipped with an interpretation in 7', i.e. a two-place
predicate F whose first argument is an assignment, i.e. a total mapping p from V
into 7', and whose second argument is a constraint C'. The interpretation must
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be standard, i.e. satisfy the following laws:

p F true
pbao=(d) iff  plao) = (p(ar))
prag<a iff plan) < p(ay)
pECoANC:  iff pFCoApk G
pF3a.C iff ' P \a=p\a)yAp HC

(p \ @ denotes the restriction of p to V \ @.) The interpretation of any unknown
constraint forms is left unspecified. We write C I C' if and only if C entails C",
i.e. if and only if every solution p of C satisfies C' as well.

Note that we do not define a syntax of types. As pointed out in [8], types are
a useful notation in practice, but are entirely superfluous in theory, since their
structure can be encoded into constraints. Therefore, we leave the introduction
of types as an implementation issue.

JOIN(X) has constrained type schemes, where a number of type variables &
are universally quantified, subject to a constraint C'.

Definition 5.1. A type scheme is a triple of a set of quantifiers &, a constraint
C, and a type variable a; we write 0 = Ya[C].a. The type variables in @ are
bound in o; type schemes are considered equal modulo a-conversion. By abuse
of notation, a type variable a may be viewed as a type scheme Y@ [true].a. The
set of type schemes is written S.

Definition 5.2. A polymorphic typing environment, denoted by I or A, is a
S-environment. A monomorphic typing environment, denoted by B, is a V-
environment.

Definition 5.3. JOIN(X) is defined by Fig. 3. Every judgement C,I" - J is
implicitly accompanied by the side condition that C' must be satisfiable.

JOIN(X) differs from B(T") by replacing monotypes with type variables, poly-
types with type schemes, and parameterizing every judgement with a constraint
C', which represents an assumption about its free type variables. Rule WEAKEN
allows strengthening this assumption, while 3 INTRO allows hiding auxiliary type
variables which appear nowhere but in the assumption itself. These rules, which
are common to names, definitions, and processes, allow constraint simplification.

Because we do not have syntax for types, rules JOIN and MSG use constraints
of the form # = (@) to encode type structure into constraints.

Our treatment of constrained polymorphism is standard. Whereas B(T') takes
an extensional view of polymorphism, JOIN(X) offers the usual, intensional
view. Type schemes are introduced by rule DEF, and eliminated by INST. Because
implicit a-conversion is allowed, every instance of INST is able to rename the
bound variables at will.

For the sake of readability, we have simplified rule DEF, omitting two features
present in HM(X')’s V INTRO rule [5]. First, we do not force the introduction of
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existential quantifiers in the judgement’s conclusion. In the presence of WEAKEN
and 3 INTRO, doing so would not affect the set of valid typing judgements, so
we prefer a simpler rule. Second, we move the whole constraint C' into the type
schemes VYa[C]— B, whereas it would be sufficient to copy only the part of C
where & actually occurs. This optimization can be easily added back in if desired.

5.2 A Look at the Generalization Condition

The most subtle (and, it turns out, questionable; see Sect. 6.1) aspect of this
system is the generalization condition, i.e. the third premise of rule DEF, which
determines which type variables may be safely generalized. We will now describe
it in detail. To begin, let us introduce some notation.

Definition 5.4. If B = (x; : 3;)'€!, then VYa[C]—B is the polymorphic environ-
ment (z; : Va[C).3;)'€!. This must not be confused with the notation Va[C|].B,
where the universal quantifier lies outside of the environment fragment B.

The existence of these two notations, and the question of whether it is legal to
confuse the two, is precisely at the heart of the generalization issue. Let us have
a look at rule DEF. Its first premise associates a monomorphic environment frag-
ment B to the definition D = (J; > P;)*€!. If the type variables @ do not appear
free in I', then it is surely correct to generalize the fragment as a whole, i.e. to
assert that D has type Ya[C].B. However, this is no longer a valid environment
fragment, because the quantifier appears in front of the whole vector; so, we
cannot typecheck P under I' 4+ Va[C].B. Instead, we must push the universal
quantifier down into each binding, yielding Ya[C]— B, which is a well-formed
environment fragment, and can be used to augment I

However, Ya[C]—B may be strictly more general than V&[C].B, because it
binds & separately in each entry, rather than once in common. We must avoid
this situation, which would allow inconsistent uses of the defined names, by
properly restricting @. (When @ is empty, the two notions coincide.)

To ensure that Ya[C]— B and Va[C].B coincide, previous works [3, 6] propose
syntactic criteria, which forbid generalization of a type variable if it appears
free in two distinct bindings in B. In an arbitrary constraint logic, however, a
syntactic occurrence of a type variable does not necessarily constrain its value.
So, it seems preferable to define a logical, rather than syntactic, criterion. To do
so, we first give logical meaning to the notations Va[C|-»B and Va[C].B.

Definition 5.5. The denotation of a type scheme o = Ya[Cl.a under an as-
signment p, written [o],, is defined as T{p'(a); (p'\@ =p\@)Ap'F C} if this
set is non-empty; it is undefined otherwise.

This definition interprets a type scheme o as the set of its instances in T,
or, more precisely, as the upper cone which they generate. (Taking the cone
accounts for the subtyping relationship ambient in T'.) It is parameterized by an
assignment p, which gives meaning to the free type variables of .
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Names

INST SuB-NAME
I'(u) = Va[Cl.a C,I'tu:d Clkd <a

C,'tu:a« C,'tu:«

Definitions

JOIN
oMY 5 Ol+@:a)r P viel Clkfi=(@)
s € N i i
C, Ik (2 (@i ) > P (zi: i)'

Or SuB-DEF
C,'+D,:B, C,I'+D,:B, C,'vD:B CIB <B

C,F"Dl,DQIZBl@Bz C,F"DB

Processes

PAr Msa

o GrEP  OrkQ  Oltu:f  CIEE:d  CkB=(d)
: C.TFP|Q C,TFu(d)

DEr )
O, +BF (Ji>P)< =B antv(l' =@
Viel CI- VO_C[C].B|dn(Ji) < V@[C]—»B|d,](Ji)
C',.I' +VYa[C]-»BF P c'\FC

C',I'+def (J;>P)'€ in P

Common

WEAKEN d INTRO
c'.r-Jg ClI-C' C,r-g antv(lJ)=@o

c,rv=Jg da.C, I'tJg

Fig. 3. The system JOIN(X) (with a tentative DEF rule)
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Definition 5.6. The denotation of an environment fragment A = (u; : 0;)*€!
under an assignment p, written (A),, is defined as I[A], = I (u; : [o;],)*¢!.
The denotation of Ya[C].B under an assignment p, written (Va[C].B),, is de-
fined as 14/ (B); (9 \ & = p\ @) A F C}.

This definition interprets environment fragments as a whole, rather than
point-wise. That is, (-), maps environment fragments to sets of tuples of mono-
types. A polymorphic environment fragment A maps each name u; to a type
scheme o;. The fact that these type schemes are independent of one another is
reflected in our interpretation of A as the Cartesian product of their interpreta-
tions. On the other hand, Va&[C].B is just a type scheme whose body happens
to be a tuple, so we interpret it as (the upper cone generated by) the set of its
instances, as in Definition 5.5.

Interpreting the notations V&[C]—B and V&[C].B within the same mathe-
matical space allows us to give a logical criterion under which they coincide.

Definition 5.7. By definition, C I+ V&[C].B < Ya|C]—B holds if and only if,
under every assignment p such that p = C, (Va[C].B), 2 (Va[C]—DB), holds.

Ezample 5.8. Let B = (a : (a); b : ((B))), C = a < B, and & = {«,[}. (For
conciseness, we use (-) as a type constructor, even though it isn’t one; hopefully
the meaning is clear enough.) Then, under any assignment, the denotation of
Va[C].B is

Mla: (B b: (#0); 6t € TAES )

whereas that of Ya[C]—»B is

Ma: () b (({t); t,t' €T}

The former is a strict subset of the latter. (If T stands for the 0-ary channel
type (), then (a : (T); b : (((T)))) witnesses this fact.) This shows that the
environment fragment B, under the constraint C, correlates the names a and b.
In other words, these names cannot be used independently at arbitrary types.
Indeed, this result is in accordance with the intuitive reading of the type scheme
VaBla < Bl.(a : {(a); b : ((B))), namely: “the value sent to a may be sent to
whichever channel is sent to b”.

The strength of this criterion is to be independent of the constraint logic X.
This allows us to prove JOIN(X) correct in a pleasant generic way (see Sect. 5.3).

As a final remark, let us point out that, independently of how to define the
generalization criterion, there is also a question of how to apply it. It would be
correct for rule DEF to require C IF Va[C].B < Va[C]—B, as in [3]. However,
when executing the program, only one clause of the definition at a time will be
reduced, so it is sufficient to separately ensure that the messages which appear in
each clause have consistent types. As a result, we successively apply the criterion
to each clause J; > P;, by restricting B to the set of its defined names, yielding
Blan(s;)- In this respect, we closely follow the JoCaml implementation [1] as well
as Odersky et al. [6].
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5.3 Type Soundness, Semi-Syntactically

This section gives a type soundness proof for JOIN(X) by showing that it is safe
with respect to B(T'). That is, we show that every judgement C, I' - 7 describes
the set of all B(T') judgements of the form p(I" F J), where p F C. Thus, we
give logical (rather than syntactic) meaning to JOIN(X) judgements, yielding
a concise and natural proof. As a whole, the approach is still semi-syntactic,
because B(T') itself has been proven correct in a syntactic way.

We first define some notation.

Definition 5.9. When defined (cf. Definition 5.5), [o], is a polytype, i.e. an
element of S. The denotation function [-], is extended point-wise to typing envi-
ronments. As a result, if I is an S-environment, then [I'], is an S-environment.

This allows us to state the main soundness theorem.

Theorem 5.10 (Soundness). Let p(u : «), p(D :: B), p(P) stand for u : p(a),
D :: p(B), P, respectively. Then, pt C and C,I' = T imply [I'], F p(J).

Proof. By structural induction on the derivation of the input judgement. We use
exactly the notations of Fig. 3. In each case, we assume given some solution p
of the constraint which appears in the judgement’s conclusion.

Case INST. We have [I'],(u) = [V&[C].a], 2 p(a) because p - C. The result
follows by B-INST.

Case SUB-NAME. The induction hypothesis yields [I'], - v : p(a). The
second premise implies p(a') < p(a). Apply B-SUB-NAME to conclude.

Case EMPTY. Immediate.

Case JOIN. Let B = (z; : 3;)'€!. Applying the induction hypothesis to the
first premise yields [I'], + (7 : [@;],)"€! F P. Since [], is M{p(a)}, this may be
written [I], + (@ : p(@;))'€! + P. (Recall the abuse of notation introduced in
Definition 4.3.) The second premise implies Vi € I p(8;) = (p(d;)). As a result,
by B-JOIN, [I'], F D : p(B) holds.

Case OR. Then, D is D; A Dy and B is By ® By. Applying the induction
hypothesis to the premises yields [I'], F D; : p(B;). Apply B-OR to conclude.

Case SuB-DEF. The induction hypothesis yields [I'], - D : p(B'). The
second premise implies p(B') < p(B). Apply B-SUB-DEF to conclude.

Cases NULL, PAR. Immediate.

Case Msa. Applying the induction hypothesis to the first two premises yields
I, Fu:p(B) and [, - 7 : p(d). The last premise entails p(5) = (p(&)).
Apply B-MsG to conclude.

Case DEF. By hypothesis, p = C'; according to the last premise, p F C
also holds. Let A = Va[C]—»B. Take B € (A),. Take i € I and define B; =
Blan(s;)- Then, B; is a member of (Va[C]— Blan(J;)),, Which, according to the
third premise, is a subset of (V&[C].B|4n(J;)),- Thus, there exists an assignment
p' such that (p'\a = p\ @) Ap' + C and p'(Blan(s;)) < Bi. The induction
hypothesis, applied to the first premise and to p’, yields [I"+ B], - D :: p'(B).
By Lemma 4.9, this implies [I" + B], F J; > P; :: B;.
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Now, because antv(I") = @, [I'], is [I'],,- Furthermore, given the properties
of p', we have [B], > [Va[C]—B], = [A],- As a result, by Lemma 4.4, the
judgement above implies [I'], + [4], + Ji > P; :: B;.

Because this holds for any i € I, repeated use of B-OR yields a derivation of
[I'], +[A], F D :: B. Lastly, because this holds for any B € (A),, B-GEN yields
[7], + [Al, F D = [A],.

Applying the induction hypothesis to the fourth premise yields [I'],+[A4], I
P. Apply B-DEF to conclude.

Case WEAKEN. The second premise gives p - C’. Thus, the induction hy-
pothesis may be applied to the first premise, yielding the desired judgement.

Case 3 INTRO. We have p F Ja.C. Then, there exists an assignment p'
such that (p' \ @ = p\ @) A p' F C. Considering the second premise, we have
[y =11, and p'(J) = p(J). Thus, applying the induction hypothesis to the
first premise and to p' yields the desired judgement.

This proof is, in our opinion, fairly readable. In fact, all cases except DEF
are next to trivial.

In the DEF case, we must show that the definition D has type [A],, where
A =Va|C]—B. Because B(T') has extensional polymorphism (i.e. rule B-GEN),
it suffices to show that it has every type B € II[A],. Notice how we must “cut
B into pieces” B;, corresponding to each clause J;, in order to make use of the
per-clause generalization criterion. We use the induction hypothesis at the level
of each clause, then recombine the resulting type derivations using B-OR. Notice
how we use Lemma 4.4; proving an environment strengthening lemma at the
level of JOIN(X) would be much more cumbersome.

The eight non-syntax-directed rules are easily proven correct. Indeed, their
conclusion denotes fewer (SUB-NAME, SUB-DEF, WEAKEN) or exactly the same
(3 INTRO) judgements in B(T") as their premise. In a syntactic proof, the presence
of these rules would require several normalization lemmas.

Corollary 5.11. No well-typed process gets faulty through reduction.

Proof. Assume C,I" - P. Because C must be satisfiable, it must have at least
one solution p. By Theorem 5.10, [I'], F P holds in B(T"). The result follows by
Theorems 4.10 and 4.12.

6 Type Inference

6.1 Trouble with Generalization

Two severe problems quickly arise when attempting to define a complete type
inference procedure for JOIN(X). Both are caused by the fragility of the logical
generalization criterion.

Non-determinism. To begin with, the criterion is non-deterministic. It states
a sufficient condition for a given choice of @ to be correct. However, there seems
to be, in general, no best choice. Consider the environment fragment B = (a :
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(a); b : (B)) under the constraint « N 8 = @ (assuming the logic X offers such a
constraint, e.g. X is a set constraint logic). The constraint creates a correlation
between the names a and b. Is it best to generalize «, leaving 8 monomorphic,
or to do the converse?

Non-monotonicity. More subtly, strengthening the constraint C' may, in some
cases, cause apparent correlations to disappear. Consider the environment frag-
ment B = (a : a;b : ) under the constraint y?7a = § (assuming the logic X
offers such a constraint, to be read “if 7y is non- L, then a must equal 4”). There is
a correlation between a and b, because, in certain cases (that is, when v # 1), a
and 8 must coincide. However, let us now add the constraint v = L. We obtain
Y?a = Ay = L, which is logically equivalent to v = L. It is clear that, under
the new constraint, ¢ and b are no longer correlated. So, the set of generalizable
type variables may increase as the constraint C' is made more restrictive.

Given a definition D, a natural type inference algorithm will infer the weakest
constraint C' under which it is well-typed, then will use C' to determine which
type variables may be generalized. Because of non-monotonicity, the algorithm
may find apparent correlations which would disappear if the constraint were
deliberately strengthened. However, there is no way for the algorithm to guess
if and how it should do so.

These remarks show that it is difficult to define a complete type inference
algorithm, i.e. one which provably yields a single, most general typing.

Previous works [3, 6] use a similar type-based criterion, yet report no difficulty
with type inference. This leads us to conjecture that these problems do not arise
when subtyping is interpreted as equality and no custom constraint forms are
available. This may be true for other constraint logics as well. Thus, a partial
solution would be to define a type inference procedure only for those logics,
taking advantage of their particular structure to prove its completeness.

In the general case, i.e. under an arbitrary choice of X, we know of no solution
other than to abandon the logical criterion. We suggest replacing it with a much
more naive one, based on the structure of the definition itself, rather than on
type information. One possible such criterion is given in Fig. 4. It simply consists
in refusing generalization entirely if the definition involves any synchronization,
i.e. if any join-pattern defines more than one name. (It is possible to do slightly
better, e.g. by generalizing all names not involved in a synchronization between
two messages of non-zero arity.) It is clearly safe with respect to the previous
criterion.

The new criterion is deterministic, and impervious to changes in C, since
it depends solely on the structure of the definition D. It is the analogue of
the so-called value restriction, suggested by Wright [9], now in use in most ML
implementations. Experience with ML suggests that such a restriction is tolerable
in practice; a quick experiment shows that all of the sample code bundled with
JoCaml [1] is well-typed under it.

In the following, we adopt the restricted DEF rule of Fig. 4.
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DEr )

O, +BF (Ji>P)< =B antv(l' =@
(Fiel |du(fi)|>1)=>a=9
C','+Va[C]»BFP C'IFC

C',I'+def (J;>P)' € in P

Fig. 4. Definitive DEF rule

6.2 A Type Inference Algorithm

Fig. 5 gives a set of syntax-directed type inference rules. Again, in every judge-
ment C,I" Fr J, it is understood that C' must be satisfiable. The rules implicitly
describe an algorithm, whose inputs are an environment I" and a sub-term u, D
or P, and whose output, in case of success, is a judgement. Rule 1-OR uses the
following notation:

Definition 6.1. The least upper bound of By and B, written By U B, is a
pair of a monomorphic environment and a constraint. It is defined by:

By UBs = (u: ay)*eY, /\ Bi(u) < ay
1€{1,2},ucdom(B;)

where U = dom(B;) U dom(B2) and the type variables (v, )“€Y are fresh.

Following [8], we have saturated every type inference judgement by existen-
tial quantification. Although slightly verbose, this style nicely shows which type
variables are local to a sub-derivation, yielding the following invariant:

Lemma 6.2. IfC,I' 1 J holds, then tv(C) Cfv(I,J) and fv(J)Ntv(l") = @.

We now prove the type inference rules correct and complete with respect to

JOIN(X).
Theorem 6.3 (Soundness). C,I' -1 J implies C, "'+ J.

Proof. By structural induction on the derivation of the input judgement. For
the sake of conciseness, the induction hypothesis is applied silently.

Case 1-INST. Because the scope of the bound type variables @ is the same
in the premise and in the conclusion, namely C' and « (f is to be taken fresh,
i.e. outside of the scope of &), we can perform a-conversion on both judgements
and require @ N fv(I') = @. By INsT, we have C,I" F u : a. By WEAKEN and
SuB-NAME, we obtain C Aa < 3,1 - u : 8. The result follows by 3 INTRO.

Case I-EMmpTY. C implies true; apply WEAKEN.

Case 1-JOIN. Applying WEAKEN to the first premise yields C' A A\;c; Bi =
(@), I + (@} : ;)*¢! + P. Then, rule JOIN applies. Lastly, because the type
variables (&;)'€! are taken fresh, they do not appear in I'; the result follows by
3 INTRO.
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B,C:BluBz ﬂ:fV(Bl,Bz)
33.(Ci AC2 ANC), '+ D1, D> :: B

Processes
-PAR I-MsaG -
I-NULL 01,F|_IP C2,F|_IQ C,I"I—I'u,;ﬁ C,I‘I—Iﬁ:o‘é
true, I'F; 0 =
CiANC, '+ P|Q 3Ba.(CACAB = (@), IFru(d)
I-DEF

B fresh 8 = 1tv(B)
Ci, ' +BF; (Ji>P) € B
G =fv(B) C.=33.(C: AB' < B)
if3iel |dn(Ji)|>1then a= @ else @ =f
Cg,F—FV@[CQ]—»B Fr P

3B.(Cy AC3), I Fr def (J; > P;)'€" in P

Fig. 5. Type inference

Case I-OR. By WEAKEN, C; A Co AC,I" - D; :: B; holds for i € {1,2}.
Furthermore, by Definition 6.1, B is of the form B = B} ® B}, where C; AC3AC' IF
B,‘ S B; for ¢ € {1,2} By SUB—DEF, Cl A CQ A C,F F Di o B; holds. OR then
yields C; A Co AC,I" = Dy, D, :: B. By Lemma 6.2, 3 does not appear free in
I'; neither does it appear in fv(B), since B is made up of fresh variables. Apply
3 INTRO to conclude.

Case I-NULL. C implies true; apply WEAKEN.

Case 1-PAR. Apply WEAKEN to each premise, then PAR.

Case I-Msc. Let ' = CAC A B = (@). By WEAKEN, we have C', "' Fu: f
and C',I' F ¥ : @ Then, Msa applies, yielding C', ' F u (7). By Lemma 6.2, 8
and @ do not appear in I'; the result follows by 3 INTRO.

Case I-DEF. WEAKEN and SUB-DEF may be applied to the first premise,
yielding C; AB' < B, + B+ D : B. By Lemma 6.2, 3’ does not appear free in
I'or B. Thus, 3 INTRO yields C5, I'+B F D : B. The sixth premise, together with
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the freshness of 3, implies the second and third premises of rule DEF (Fig. 4).
Applying WEAKEN to the last premise, we have Cz2 A C3,I" + Va[Cy]—»B F P.
Thus, DEF yields Cy A C3,I"' F def D in P. Apply 3 INTRO to conclude.

To allow an inductive proof, completeness must be given a quite general
statement; the following formulation was suggested to us by Martin Sulzmann.
For conciseness, we use a pseudo-constraint J < J', defined as follows: u : a <
u: o stands for a < o’; D : B < D : B’ stands for B < B'; P < P stands for
true.

Theorem 6.4 (Completeness). Assume C;,I" = J and C" |+ I'" < I' and
C" I+ C. Then, there exist C' and J' such that C',I" -7 J' and C" I+
Iv(TN(C'"ANT < T).

Proof. By induction on the derivation of the input judgement. We recall that,
by definition, C' IF V&;[C1].a1 < Vas[Cs].ae holds if and only if p F C implies
[[Vo’q[Cl].ozl]]p D) IIV@Q[CQ].O{Q]]‘), that is, if and only if

das.C A Cs I 3@1.(01 Nap < Oéz)

assuming &; does not appear free in &;, C; or oj when i # j. This is extended
point-wise to environments.

Case INST. We assume I'(u) = Ya[C].a and I''(u) = V&'[C"].a’. Without loss
of generality, we assume @ and &' are taken disjoint. The original judgement,
derived by INST, is C,I' F u : «, while, by 1-INST, we may derive 3a@’.(C' Ao/ <
B),I" w3, where § is a fresh variable. Thus, there remains to prove that

C"IF33.3a".(C"'Aa' < B)AB <L a)

Now, because C" IF I'" < I', we have C" I+ V&'[C'].a/ < Va&[C].c,, which, by
definition of IF, is 3a.C" A C I+ Fa&'.(C' A o' < «). Because C" I+ C, this
assertion may be weakened to C"' I+ 3a’.(C" A @ < «). The result follows.

Case SUB-NAME. Applying the induction hypothesis to the first premise
yields C" and f’ such that C',I" F; w : " and C" I+ 3B'.(C' A B’ < &).
Without loss of generality, we assume /' is distinct from « and o'. The second
premise is C' IF ¢/ < a. Given C" IF C, there follows C" IF 38'.(C" A 8’ < «).

Case EMPTY. Immediate.

Case JOIN. Pick fresh variables &, 3] for i € I. Define Cy = C" A\, (d} <
@;). Then, Cy IF I + (u; : @)% < I' + (u; : @) holds. The first premise of
JoiN is C, " + (u; : @;)*¢! + P. Applying the induction hypothesis to it yields
C' such that C', I'" + (u; : d’;)ie[ Fr P and C; IF C'. Then, 1-JOIN yields

A(a)iE.(c' A /\ Bl =(@)), " Jo P (x;: B1)€!
el

Thus, there remains to prove

C" Ik 35 (ﬂaé)ie’-((f’ A\ Bi= (@) A N B < /3;-))

el i€l
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Because C IF C', and considering our freshness hypotheses, it suffices to check
that
C" IF 3B (@) (C" A N\ @ < ds A B = (@) A B < Bi)
iel
which follows from JOIN’s second premise, namely Vi € I C I+ 8; = (d;), and
from C" I+ C.

Case OR. The premises are C,I" F D; :: B; for i € {1,2}. Applying the
induction hypothesis yields C}, B; such that C{, I'" - D; : B; and C" I 36;.(CiA
B! < B;), where 3] = fv(B}). Without loss of generality, we may assume that [
does not appear in C}, B} and B; when i # j, so that

C" I+ 3B;85.(C} ACy A B} < Bi A By < By)
holds. Define B',C" as B} U Bj. Then, 1-OR yields
38184 (Cy NCYANC"), I 1 Dy, Dy =2 B'
Thus, there remains to prove
C" I+ 38".(3B1B5.(C; NCLAC"YANB' < By & By)

which, considering our freshness hypotheses and the definition of Bf U Bj, is
easily seen to hold.

Case SUB-DEF. Similar to SUB-NAME.

Cases NULL, PAR. Immediate.

Case MsG. Applying the induction hypothesis to the first premise yields C’
and B’ such that C", I F; w: ' and C" I 3'.(C" A B < ). The judgement
C',I" F; u : B’ must have been produced by I-INST; a look at this rule shows
that B’ appears only in a single constraint of C’, where it is given a lower bound.
As a result, C" IF 38'.(C' A B' < ) implies C" I+ 38'.(C" A ' = (). Similarly,
assuming @ = (v;)*¢! and @ = (a;)*€!, applying the induction hypothesis to
the i-th component (i € I) of the second premise yields C! and «} such that
Ci,I"trv:af and C" IF 3af.(C] A o = ;).

As in Case OR above, our freshness hypotheses allow these entailment asser-
tions to be combined, yielding
C"IF 3 (C'AB =B N\(C]Aa) =)

iel
iel

where @' is (a})*¢". To combine the type inference judgements, we apply rule

I-Msg, yielding
3s'a’ (C'A N\ CIAB = (@), I Fru(D)
iel
Thus, there remains to prove that

C"IF3'a’ . (C' A\ CIAB = (@)

iel
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which follows from the entailment assertion above, from the third premise C' IF
B = (@) and from the hypothesis C"" I+ C.

Case DEF. Our hypotheses are as in Fig. 4, except we take the last premise to
be C' IF d&.C. As mentioned in Sect. 5.1, this does not affect the type system’s
expressive power, but allows us, without loss of generality, to assume that @ does
not appear free in I, I'', C', C".

We assume C" IF C'. Pick a fresh B'; define 3' = fv(B'). Define Cy =
C" ANB' = B. We have Cy IF I'" + B' < I' + B. Furthermore, because C' I C,
Co IF C holds. Thus, we may apply the induction hypothesis to the first premise,
yielding

Ci,,I"+B v+ D:B"
where Cy IF 33".(Cy A B" < B) and B" = fv(B"). We assume, without loss of
generality, that 3" is fresh with respect to B and B'.

Define Cy = 33".(Cy A B" < B'). Because B and B’ are interchangeable
under Cy, and considering the above freshness hypothesis, Cy IF C5 holds.

Because (' appears neither in C* nor in B, we have C"" I+ 33'.(B' = BAC)).
Recalling Cy IF 33".(Cy A B" < B), this implies

C"IF 38'.(B' = BA3F".(C, AB" < B))
which, given the freshness of 3", can be written
C" - 35'3".(C, AB" < B' = B)
Define &' as @ if 3i € I |dn(J;)| > 1, and as 3 otherwise. We claim that
Co I I'" +Va'[Cy]»B' < I' +Va|C|—+B

If @ = &' = @, this is an immediate consequence of Cy IF B’ = B and Cj I+ Cs.
Otherwise, it suffices to check, for every (u: 8') € B’ and (u : 8) € B, that

Co IFVa'[Cs).0" < Va[C].B
which, by definition of IF, is equivalent to
Ja.Co AC IF3F&'.(Cy A B < B)

Recalling that @' = f', and lifting Cy’s outermost existential quantifier to the
toplevel, this can be written

Ja.Co ACIF3B'B".(CL AB" < B'AB' < B)

By weakening the left-hand side to d@.C", then recalling that & does not appear
free in C"'; by recalling that 8’ and 3 are corresponding elements of B’ and B,
this may strengthened to

C" I+ 3B'8".(C; AB" < B' < B)

which we have already proven above. Thus, our claim holds.
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This allows us to apply the induction hypothesis to the penultimate premise
of DEF, yielding C3 such that C3, " +Va'[C2]—=B" Fr P and C' IF C3. We may
then apply I-DEF, yielding 358'.(Co A C3), " - def D in P. Thus, there remains
to prove

C" IF 33'.(Cy A Cs)

This can be shown by recalling C" IF 33'.(B' = B A (). Because Cj IF Cy and
Co IF C" I C" I+ C3, this implies C" IF 33".(B' = B A Cy A C3), whence the
result.

Case WEAKEN. The second premise is C' I+ C'. Because C" I+ C, we have
C" I C'. Thus, the induction hypothesis can be applied to the first premise,
yielding the desired result.

Case 3 INTRO. Assume C" I+ Ja.C. Without loss of generality, we assume
that @ does not appear free in C"" or I''. Applying the induction hypothesis to
C" AC and to the first premise, we obtain C' and J' such that C', I’ +; J' and

C'"ACIFIB(C'ANT < T)

where 3 = fv(J'). Introducing an additional existential quantifier on both sides,
we obtain )
3a.(C" AC) IF3a3F.(C' AT < T)

Because a does not occur in C"', and because C" |- 3a.C, the left-hand side is
equivalent to C". Furthermore, by Lemma 6.2, the free variables of C' and J'
must occur free in I, hence cannot appear in &. Thus, we have

C"IF3B(C'ANT <)
which is the desired result.

Soundness and completeness of the type inference rules may now be re-stated
in a more concise way. For the sake of simplicity, we limit the statement to the
case of processes (omitting that of names and definitions).

Theorem 6.5. C,I" F; P implies C,I' - P. Conversely, if C,I" - P holds, then
there exists a constraint C' such that C',I'+; P and C I+ C".

Proof. By specializing Theorems 6.3 and 6.4.

7 Discussion

JOIN(X) is closely related to HM(X) [5, 7], a similar type system aimed at
purely functional languages. It also draws inspiration from previous type systems
for the join-calculus [3, 6], which were purely unification-based. JOIN(X) is an
attempt to bring together these two orthogonal lines of research.

Our results are partly negative: under a natural generalization criterion, the
existence of principal typings is problematic. This leads us, in the general case,
to suggest a more drastic restriction. Nevertheless, the logical criterion may still
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be useful under certain specific constraint logics, where principal typings can
still be achieved, or in situations where their existence is not essential (e.g. in
program analysis).

We have not discussed extending the calculus with primitive operations and
associated d-rules. Such an extension is straightforward. It requires assigning
a set of monotypes to each operation p in B(T'), and extending the subject
reduction and progress proofs; then, assigning a type scheme to p in JOIN(X),
and showing that all elements of its denotation are valid monotypes for p in
B(T).

To establish type safety, we interpret typing judgements as (sets of) judge-
ments in an underlying system, which is given a syntactic soundness proof. The
former step, by giving a logical view of polymorphism and constraints, aptly ex-
presses our intuitions about these notions, yielding a concise proof. The latter is
a matter of routine, because the low-level type system is simple. Thus, both logic
and syntax are put to best use. We have baptized this approach semi-syntactic;
we feel it is perhaps not publicized enough.

One may argue that this approach only yields a type safety result, whereas
subject reduction and progress [10] are more precise properties. This is true, but
let us ask: is it worth it? The semi-syntactic approach may afford a more modular
proof, where subtle and interesting aspects (e.g. constraints, generalization) are
clearly separated from administrative ones (e.g. substitution lemmas, etc.). For
the record, we have established a subject reduction property for JOIN(X), using
a restricted operational semantics along the lines of [6]. The proof does not have
such pleasant modular structure, and has shown rather fragile when confronted
to changes in the typing rules, whereas the semi-syntactic proof turns out to be
much easier to incrementally update.
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