
Type Inference Logics

DENIS CARNIER, KU Leuven, Belgium
FRANÇOIS POTTIER, Inria, France
STEVEN KEUCHEL, Vrije Universiteit Brussel, Belgium

Type inference is essential for statically-typed languages such as OCaml and Haskell. It can be decomposed
into two (possibly interleaved) phases: a generator converts programs to constraints; a solver decides whether
a constraint is satisfiable. Elaboration, the task of decorating a program with explicit type annotations, can
also be structured in this way. Unfortunately, most machine-checked implementations of type inference do
not follow this phase-separated, constraint-based approach. Those that do are rarely executable, lack effectful
abstractions, and do not include elaboration.

To close the gap between common practice in real-world implementations and mechanizations inside proof
assistants, we propose an approach that enables modular reasoning about monadic constraint generation in the
presence of elaboration. Our approach includes a domain-specific base logic for reasoning about metavariables
and a program logic that allows us to reason abstractly about the meaning of constraints. To evaluate it, we
report on a machine-checked implementation of our techniques inside the Coq proof assistant. As a case
study, we verify both soundness and completeness for three elaborating type inferencers for the simply typed
𝜆-calculus with Booleans. Our results are the first demonstration that type inference algorithms can be verified
in the same form as they are implemented in practice: in an imperative style, modularly decomposed into
constraint generation and solving, and delivering elaborated terms to the remainder of the compiler chain.

CCS Concepts: • Theory of computation→ Program verification.

Additional Key Words and Phrases: program verification, type inference, elaboration

ACM Reference Format:
Denis Carnier, François Pottier, and Steven Keuchel. 2024. Type Inference Logics. Proc. ACM Program. Lang. 8,
OOPSLA2, Article 346 (October 2024), 31 pages. https://doi.org/10.1145/3689786

1 Introduction
The goal of type inference is to determine whether a program is well-typed, and if it is, to compute its
most general type. Type inference is often accompanied or followed by elaboration, whose purpose
is to construct an explicitly-typed program. Naturally, type inference has long been the subject
of formal study [Curry and Feys 1958]. In his seminal paper on the programming language ML,
Milner [1978] presents two type inference algorithms, J andW, and proves thatW is sound: the
type inferred byW is a valid type for this program. Four years later, Damas and Milner [1982]
prove thatW is complete: if there is a valid type for this program thenW infers this type or
a more general type [Damas 1984]. At the time, all proofs were carried out by hand, and were
therefore prone to imprecision and mistakes. Since then, higher assurance has been obtained by
employing proof assistants to mechanically verify the desired properties [Dubois and Ménissier-
Morain 1999; Naraschewski and Nipkow 1999; Nazareth and Nipkow 1996; Urban and Nipkow

Authors’ Contact Information: Denis Carnier, KU Leuven, Leuven, Belgium, denis.carnier@kuleuven.be; François Pottier,
Inria, Paris, France, francois.pottier@inria.fr; Steven Keuchel, Vrije Universiteit Brussel, Brussels, Belgium, steven.keuchel@
vub.be.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/10-ART346
https://doi.org/10.1145/3689786

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

HTTPS://ORCID.ORG/0000-0003-2148-5193
HTTPS://ORCID.ORG/0000-0002-4069-1235
HTTPS://ORCID.ORG/0000-0001-6411-438X
https://doi.org/10.1145/3689786
https://orcid.org/0000-0003-2148-5193
https://orcid.org/0000-0002-4069-1235
https://orcid.org/0000-0001-6411-438X
https://doi.org/10.1145/3689786

346:2 Denis Carnier, François Pottier, and Steven Keuchel

2009]. Mechanization can reveal missing details or incorrect proofs, as illustrated, for instance, by
Zhao et al. [2019].
Although it is clear, very early, that type inference involves solving equations [Milner 1978;

Cardelli 1987; Wand 1987], the idea of explicitly binding type variables via existential quantifiers1
appears only later on: Jouannaud and Kirchner [1991] explain first-order unification as a constraint
rewriting process, where constraints involve equations, conjunctions, and existential quantification.
Later still, Odersky et al. [1999] present a constraint-based reformulation of ML’s type system.
Today, some form of constraint-based type inference is in use in several production-grade compilers,
including Helium [Heeren et al. 2003] and GHC [Vytiniotis et al. 2011].

Constraint-based type inference consists of two (possibly interleaved) steps, namely constraint
generation and constraint solving. These steps are performed by two separate pieces of code that
communicate via constraints whose logical meaning is clearly defined. In many paper presenta-
tions of constraint-based type inference, the constraint solver produces a Boolean result, namely
“satisfiable” or “unsatisfiable”. If the constraint is satisfiable then the source program is well-typed.
Naturally, in this event, it is then desirable or necessary to perform a third step, elaboration, which
constructs a program that carries explicit type annotations. Pottier [2014] proposes a method where
these three steps are described by just two pieces of code. The generator and elaborator form one
module; the solver forms another; the two parts communicate via constraints with “semantic values”.
This separation of concerns seems particularly appealing because it is expected to make each of
the two components easier to explain, evolve, re-use, and verify.

Yet, the constraint-based approach has seldom been mechanized. To the best of our knowledge,
PureCake [Kanabar et al. 2023; Kanabar 2023] is the only compiler that includes a verified constraint-
based type inference algorithm. While we applaud this achievement, we must also highlight some of
its limitations. In particular, PureCake’s type inference algorithm is proven sound, but not complete.
The fact that type variables must be chosen “fresh” is not formalized or exploited, as it is not
necessary for soundness. Also, while the proof of soundness exists, it is described neither in the
paper [Kanabar et al. 2023] nor in Kanabar’s dissertation [2023].

Realistic type inferencers (whether verified or unverified; whether constraint-based ormonolithic)
are usually expressed in an imperative style, either in an impure programming language, or in
a pure language equipped with effectful abstractions for failure and state, such as applicatives
or monads. Yet, when a monadic type inferencer is verified [Garrigue 2015; Tan et al. 2019], the
monadic abstraction is often not exploited: the definitions of the monadic combinators are unfolded,
and one reasons about a concrete run of the monadic program.
To reason about monadic programs without breaking the monadic abstraction, an alternative

approach is to develop a program logic that associates a logical reasoning rule with every operation
of the monad [Swierstra 2009; Maillard et al. 2019; Swierstra and Baanen 2019]. For instance, in
their proofs of correctness and completeness of algorithmW and of a unification algorithm, Silva
et al. [2020] use a program logic for the failure-and-state monad. However, while this program logic
facilitates reasoning about failure and state, it ignores domain-specific concerns such as reasoning
about the freshness of type variables. As a result, all statements have to deal with these concerns
explicitly. To fully embrace this approach, it is necessary to develop a monad and a program logic
that are tailored for the application domain: as argued by Nigron and Dagand [2021], “every monad
deserves a dedicated program logic”.

1An existentially quantified constraint ∃𝛼.𝐶 expresses the idea that 𝛼 stands for an as-yet-undetermined type, that is, a type
whose concrete value can be guessed by the constraint solver, subject to the constraint𝐶 . This must not be confused with
the concept of an existential type ∃𝛼.𝜏 , where the variable 𝛼 represents an abstract type, that is, a type whose concrete
value has intentionally been hidden. Existential types do not appear in this paper.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:3

e ∈ Exp ::= x | 𝜆x .e | 𝜆x:𝜏 .e | e e | true 𝜏 ∈ Ty ::= 𝜏⇒𝜏 | bool
| false | if e then e else e Γ ∈ Ctx ::= 𝜀 | Γ , x : 𝜏

Fig. 1. The simply typed 𝜆-calculus with Booleans (𝜆B)

In summary, we argue that, in machine-checked implementations of type inference and elabora-
tion, there is still an unmet need for an elegant and modular approach, one that retains and exploits
the best practices of real-world implementations, including a constraint-based phase separation
and the use of domain-specific monadic abstractions.

In this paper, we make several initial steps towards meeting this need. From first principles, we
develop a domain-specific approach to the mechanical verification of type inference and elaboration
algorithms based on constraints with semantic values. Our approach meets the following goals:
(1) the programming interface uses functional abstractions; (2) the algorithms can be extracted,
therefore executed outside of the proof assistant; (3) the implementation and proofs are modular
and composable thanks to constraints; and (4) several kinds of output are supported: the output of
an algorithm might be a Boolean result (“yes, the program is well-typed”), an inferred type, or an
explicitly-typed program.

This paper contributes a new understanding and semantics of “constraints with semantic values”.
An ordinary constraint, whose meaning is a truth value (either the constraint holds, or it does not),
can also be viewed as a monadic program, which either succeeds (with a unit result) or fails. This
view of constraints as programs can be extended to constraints with semantic values: in this more
general setting, a constraint is a monadic program which either succeeds (and produces a result of
type A) or fails. Because a constraint can have several solutions, it is naturally a non-deterministic
program, which has multiple possible results. In this setting, it seems natural to define the meaning
of constraints by interpreting a constraint as a function of type (A → P) → P, which maps a
postcondition to a truth value. This is known as a predicate transformer semantics. We use this
semantics as the basis of a program logic for high-level reasoning about the meaning of constraints.

In summary, we make the following contributions:
• We specify an abstract interface for type inference monads that enforces correct by construc-
tion handling of metavariables (§3.1). We develop a constraint-based approach by providing
a free monad instance (§3.1), that represents the syntax of constraints, and implement a
constraint generator with elaboration for the simply typed 𝜆-calculus with Booleans (§3.3).
• We develop a domain-specific base logic for reasoning about metavariables and define ab-
stractions tailored for reasoning about weakening substitutions (§4.2).
• We define the semantics of constraints (§4.3) on top of the base logic and derive rules that
form a program logic (§4.4) for reasoning about constraint generating functions which we
use to prove the correctness of our generator (§4.5).
• We mechanize the results of this paper, and a solver based on first-order unification in the
Coq proof assistant and report on the extraction to Haskell (§5).

2 Overview
In this section, we present an overview of our approach. The subject of our exposition is the simply
typed 𝜆-calculus with Booleans (𝜆B). We perform type inference and elaboration for this object
language. Figure 1 describes 𝜆B. Besides variables, abstraction, and application, we introduce an
if-then-else construct and two primitive values: true and false. There are two forms of 𝜆-abstraction,
namely an implicitly-typed abstraction (𝜆x .e) and an explicitly-typed one (𝜆x:𝜏 .e).

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:4 Denis Carnier, François Pottier, and Steven Keuchel

T-Var
(x : 𝜏) ∈ Γ

Γ ⊢𝐷 x : 𝜏{x

T-App
Γ ⊢𝐷 e1 : 𝜏1⇒𝜏2{ e′1 Γ ⊢𝐷 e2 : 𝜏1{ e′2

Γ ⊢𝐷 e1 e2 : 𝜏2{ e′1 e′2

T-Abs-Implicit
Γ , x : 𝜏1 ⊢𝐷 e : 𝜏2{ e′

Γ ⊢𝐷 𝜆x .e : 𝜏1⇒𝜏2{𝜆x:𝜏1.e′

T-Abs-Explicit
Γ , x : 𝜏1 ⊢𝐷 e : 𝜏2{ e′

Γ ⊢𝐷 𝜆x:𝜏1.e : 𝜏1⇒𝜏2{𝜆x:𝜏1.e′
T-True
Γ ⊢𝐷 true : bool{ true

T-False
Γ ⊢𝐷 false : bool{ false

T-If
Γ ⊢𝐷 e1 : bool{ e′1 Γ ⊢𝐷 e2 : 𝜏{ e′2 Γ ⊢𝐷 e3 : 𝜏{ e′3

Γ ⊢𝐷 if e1 then e2 else e3 : 𝜏{ if e′1 then e′2 else e′3

Fig. 2. Declarative typing and elaboration rules for 𝜆B

check (Γ : Ctx) (e : Exp) (𝜏 : Ty) : P := match e with
| x → if (x : 𝜏 ′) ∈ Γ then 𝜏 = 𝜏 ′ else ⊥
| 𝜆x .e →∃𝜏1.∃𝜏2 . (𝜏 = 𝜏1⇒𝜏2) ∧ check (Γ , x : 𝜏1) e 𝜏2
| 𝜆x:𝜏1.e→∃𝜏2. (𝜏 = 𝜏1⇒𝜏2) ∧ check (Γ , x : 𝜏1) e 𝜏2
| e1 e2 →∃𝜏 ′ . check Γ e1 (𝜏 ′⇒𝜏) ∧ check Γ e2 𝜏

′

| false → 𝜏 = bool | true→ 𝜏 = bool
| if e1 then e2 else e3 → check Γ e1 bool ∧

check Γ e2 𝜏 ∧ check Γ e3 𝜏

Fig. 3. Typing as a proposition generator

class CstrM (M : Type→ Type)
pure : A→ M A
(>>=) : M A→

(A→ M B) → M B
fail : M A
(∼) : Ty→ Ty→ M ()
pick : M Ty

Fig. 4. Monad interface for
constraints with semantic values

Figure 2 defines the 4-place judgement Γ ⊢𝐷 e : 𝜏{ e′. This judgement, known as declarative
typing with elaboration, states that in the typing context Γ the expression e admits the type 𝜏 and
that its elaborated form is the expression e′. Here, e′ is a fully type-annotated expression in the
same object language: thus, in this paper, elaboration is just type reconstruction. In other settings,
elaboration can also involve a translation of the source program into an intermediate language.

In the remainder of this overview, we first define a generator that produces constraints, viewed
as propositions (of type P) in the metalanguage (§2.1). These constraints express just the typability
problem; they do not encode the elaboration process. The generator is a recursive function that
translates a candidate typing judgement (Γ , e, 𝜏) to a proposition. Subsequently, we introduce
a monadic API for constraints with semantic values (§2.2). This allows the generator to produce
constraints whose result is not just a truth value, but can be a more complex object, such as an
elaborated expression. We provide a concrete implementation of this API in the form of a free
monad (§2.3). We conclude this overview with a predicate transformer semantics for constraints,
which we use to express the soundness and the completeness of the generator (§2.4).

2.1 Propositional Constraints
The type checking problem has a straightforward formulation: when Γ , e, 𝜏 are given, one must
decide whether the typing judgement Γ ⊢𝐷 e : 𝜏 holds. A constraint-based type-checker traverses
the input program e to produce a constraint that is logically equivalent to the typing judgement
Γ ⊢𝐷 e : 𝜏 . In this subsection, a constraint is just a meta-level proposition of type P.
Figure 3 gives the implementation of a constraint generator check. It is defined by induction

over the input program e. It does not analyze the shape of the candidate type 𝜏 . This is intentional:

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:5

beginning in the next section (§3), types may contain unification variables, whose shape is not yet
known. Instead, check uses existentially quantified variables, equality assertions, and conjunction
to express under what condition the candidate typing judgement holds. To illustrate this, consider
the case of an implicitly-typed abstraction 𝜆x .e. Such an abstraction is well-typed only when the
candidate type 𝜏 is a function type. This is expressed by requiring 𝜏 to be of the form 𝜏1⇒𝜏2 for
some types 𝜏1, 𝜏2. Furthermore, the function body e is required to admit the type 𝜏2 in the extended
context (Γ , x : 𝜏1).

This constraint generator is sound and complete: that is, the constraint that it constructs is valid
(true) if and only if the candidate typing judgement holds. This is stated by the following theorem:

Theorem 2.1 (Propositional generator correctness). check Γ e 𝜏 ↔ Γ ⊢𝐷 e : 𝜏 .

Proof. Soundness (→) is established by induction over the expression e, unpacking conjunctions
and existentials in induction hypotheses, and applying the introduction rules of the typing relation.
Completeness (←) is established by induction over the typing judgement. Thus, there is no need
for typing-judgement-inversion lemmas. □

2.2 Constraints with Semantic Values: Monadic API
Whereas the type checking problem calls for a Boolean answer (either the program is well-typed,
or it is not), the type synthesis problem and the elaboration problem call for more complex answers,
namely an inferred type and an explicitly-typed term. To address these problems, Pottier [2014]
proposes constraints with semantic values.2 In this setting, a constraint of type CV A represents at
the same time a constraint in the ordinary sense—that is, a logical problem that must be solved—and
a program whose result, or “semantic value”, has type A. The semantic value may depend on the
solution of the constraint: in particular, when a constraint involves an existentially quantified
variable, its semantic value may depend on the value assigned to this variable by the constraint
solver. We make this more precise in §3.
In this paper, we adopt and adapt Pottier’s approach [2014]. However, whereas his constraints

offer an applicative interface, ours offer a monadic interface. In Figure 3, to build constraints, we
have used truth and falsity, equality between object-language types, conjunction, and existential
quantification. This suggests that constraints with semantic values should also support these features.
We achieve this by proposing an abstract interface for constraint monads. This interface takes
the form of a type class, CstrM; it appears in Figure 4. The standard monadic combinators are
pure, which expresses truth and allows returning a semantic value, and (>>=), which can express
conjunction. The failure combinator fail expresses falsity. The equality combinator (∼) imposes an
equation between two object-language types: if its arguments are equal, then it succeeds and returns
a unit value; otherwise, it fails. The non-deterministic angelic choice combinator pick chooses an
object-language type in such a way that subsequent equalities hold and failure is avoided. Together
with (>>=), it can simulate existential quantification.

Using this interface, we write a monadic constraint generator for 𝜆B (Figure 5). It synthesizes a
type and performs elaboration. Just like the propositional constraint generator in Figure 3, it is
defined by induction over the expression, and avoids pattern matching on object-language types.

2.3 Constraints with Semantic Values: Implementation as a Free Monad
In Figure 6, we define an instance of the type class CstrM. It is a free monad: it defines the syntax
of the operations and does not specify their semantics. Following a standard recipe [Hancock and
Setzer 2000], the operations pure, fail, (∼), and pick become constructors of the inductive data

2The terminology “semantic value” is borrowed from the world of parsing.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

https://www.gnu.org/software/bison/manual/html_node/Semantic-Values.html

346:6 Denis Carnier, François Pottier, and Steven Keuchel

synth (Γ : Ctx) (e : Exp) : M (Ty × Exp) := match e with
| x → if (x : 𝜏) ∈ Γ | 𝜆x .e → 𝜏1 ← pick

then pure (𝜏, x) else fail 𝜏2, e′ ← synth (Γ , x : 𝜏1) e
| 𝜆x:𝜏1.e → 𝜏2, e′ ← synth (Γ , x : 𝜏1) e pure (𝜏1⇒𝜏2, 𝜆x:𝜏1 .e′)

pure (𝜏1⇒𝜏2, 𝜆x:𝜏1 .e′) | if e1 then e2 else e3 →
| e1 e2 → 𝜏1, e′1 ← synth Γ e1 𝜏1, e′1 ← synth Γ e1

𝜏2, e′2 ← synth Γ e2 𝜏2, e′2 ← synth Γ e2
𝜏3 ← pick 𝜏3, e′3 ← synth Γ e3
𝜏1 ∼ 𝜏2⇒𝜏3 𝜏1 ∼ bool
pure (𝜏3, e′1 e′2) 𝜏2 ∼ 𝜏3

| true → pure (bool, true) pure (𝜏2, if e′1 then e′2 else e′3)
| false → pure (bool, false)

Fig. 5. Monadic constraint generation with synthesis and elaboration

data Free (A : Type) : Type :=
Pure (a : A)
Fail
Eq (𝜏1 𝜏2 : Ty) (k : Free A)
Pick (k : Ty→ Free A)

Fig. 6. Free monad definition

WP : Free A→ (A→ P) → P :=
WP (Pure a) Q := Q a
WP (Fail) Q := ⊥
WP (Eq 𝜏1 𝜏2 k) Q := 𝜏1 = 𝜏2 ∧WP k Q
WP (Pick k) Q := ∃𝜏 .WP (k 𝜏) Q

Fig. 7. Weakest preconditions for the free monad

type Free A. Each constructor carries the operation’s inputs as well as a continuation k, which
expects the operation’s output as an argument. (In Fail, the continuation has type 0→ Free A, so
we remove it altogether. In Eq, the continuation has type 1→ Free A, which we simplify to just
Free A.) The “bind” operation is not a constructor; it is a function, which is defined by induction
over its first argument.
The higher-order combinator Pick expects a function of the metalanguage as an argument. In

essence, we arrive at a higher-order-abstract-syntax representation [Pfenning and Elliott 1988] of
constraints, where metalanguage variables are used to represent existentially quantified object-
language types. This representation may seem elegant, but is in fact quite impractical: to inspect
the body of an existentially quantified constraint (that is, the continuation of a Pick operation), one
must first supply a type! This makes it difficult to define a constraint solver. A naïve solver would
enumerate all possible types at each Pick: it would be very impractical, and not even guaranteed
to terminate. To work around this problem, in §3, we propose a first-order representation for
existential variables.

2.4 Generator Correctness
To state and prove correctness of the generator, we wish to assign a semantics to a constraint of
type Free A. In other words, we want to interpret a constraint as a proposition that expresses that
the constraint holds, and describes what semantic value the constraint might produce.

The functionWP in Figure 7 offers such an interpretation. If C is a constraint of type Free A and if
Q is a postcondition of type A→ P then the proposition WP C Q means that the non-deterministic
choices inherent in the constraint C can be settled in such a way that failure is avoided and the
constraint’s semantic value satisfies Q. In other words, WP C Q means that there exists a value

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:7

a : A such that C can produce a and a satisfies Q. More succinctly, one might say that “some result
of C satisfies Q” or that “C can satisfy Q”.
The function WP is sometimes referred to as a predicate transformer semantics [Swierstra and

Baanen 2019], because if f has type A→ Free B then the function 𝜆Q a. WP (f a) Q, whose type
is (B → P) → (A→ P), maps a postcondition to a precondition. This explains why it is named
WP, for weakest precondition.

We combine the function WP and the constraint generator synth to define an algorithmic variant
of the typing relation:

Γ ⊢𝐴 e : 𝜏1{ e′1 := WP (synth Γ e) (𝜆(𝜏2, e′2). 𝜏1 = 𝜏2 ∧ e′1 = e′2)
This judgement states that the constraint synth Γ e can produce the semantic value (𝜏1, e′1). In other
words, it states that one of its successful execution paths produces exactly the desired type and
elaborated expression. The correctness of the constraint generator can then be stated as a logical
equivalence between declarative and algorithmic typing:

Theorem 2.2 (Constraint generator correctness). Γ ⊢𝐴 e : 𝜏1{ e′ ↔ Γ ⊢𝐷 e : 𝜏1{ e′

In the completeness direction (←), the proof is by induction over the declarative typing judgement.
The goal is a total correctness statement: under the assumption that the typing judgement holds,
the computation must be able to succeed and to satisfy its postcondition. Because the judgement
WP C Q is in fact a Hoare logic, the proof requires Hoare-style reasoning rules for WP, including a
sequencing rule, a consequence rule, and so on. These rules are presented later on.

The soundness direction (→) is best dealt with by first reformulating the statement. The original
statement has the shapeWP C P → Q, which means “if there exists an execution of C that satisfies P ,
then Q”. This is equivalent to “every execution of C satisfies P → Q”.3 This statement can be written
under the form WLP C (P → Q), where the judgement WLP C Q means that the constraint C must
produce a value that satisfies Q, or in other words, that every successful execution of the program C
produces a value that satisfies Q.

A direct definition of this judgement appears in Figure 8. It is an alternative predicate transformer
semantics; the name WLP stands for weakest liberal precondition. The two semantics are related via
the equivalence (WP C P → Q) ↔ (WLP C (P → Q)), which is proved by induction on C.

Thus, the soundness direction of Theorem 2.2 is reformulated as follows:

Lemma 2.3 (Constraint generator soundness). WLP (synth Γ e) (𝜆(𝜏, e′). Γ ⊢𝐷 e : 𝜏{ e′)

The proof of this reformulated statement is more pleasant than a direct attempt at proving the
original statement: indeed, instead of deconstructing a WP hypothesis, we must now construct
a WLP statement. This can be done with the help of suitable Hoare-style reasoning rules for WLP.
A WLP judgement is a partial correctness statement: if the computation succeeds, then the

postcondition must hold. Since our programs always terminate, here, the word “partial” refers only
to the possibility of failure, as opposed to the possibility of divergence. Thus, perhaps it would be
more accurate to refer to WLP as a weak total correctness judgement [Apt 1983]. In general, it is
not possible to establish an equivalence between partial and total correctness judgements, as done
above; in our setting, however, such an equivalence holds.
Noteworthy is that we have just established the correctness of a constraint generator (which

performs type synthesis and elaboration) in isolation—that is, independently of a constraint solver.
However, to actually produce a value, an executable solver is necessary. In the rest of this paper, we
define a solver for a different variable representation, and integrate it with the generator to obtain
a verified generator-solver combination.
3We take the liberty of writing P → Q for 𝜆a.(P a→ Q) .

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:8 Denis Carnier, François Pottier, and Steven Keuchel

WLP : Free A→ (A→ P) → P :=
WLP (Pure a) Q := Q a
WLP (Fail) Q := ⊤
WLP (Eq 𝜏1 𝜏2 k) Q := 𝜏1 = 𝜏2 →WLP k Q
WLP (Pick k) Q := ∀𝜏 .WLP (k 𝜏) Q

Fig. 8. Weakest liberal preconditions for Free

𝛼, 𝛽 : Evar
w : World ::= 𝜖 |w, 𝛼

𝜏 : T̂y w ::= 𝛼 (if 𝛼 ∈ w) | b̂ool | 𝜏 ⇒ 𝜏

Γ̂ : Ĉtx w ::= 𝜀 | Γ̂ , x : 𝜏 (if 𝜏 ∈ T̂y w)
⌈_⌉ : ∀w. A→ Â w

Fig. 9. World-indexed types

3 Monadic Constraint Generation
In the previous section, we used higher-order abstract syntax to express existential quantification,
but we remarked that this prevents us from implementing a constraint solver (§2.3). We now remedy
this problem and develop a first-order abstract syntax of constraints with semantic values. Based on
this abstract syntax, we implement a new constraint generator with elaboration for 𝜆B. From the
previous section (§2), we keep just the definition of 𝜆B; we redefine everything else from scratch.

In implementations of type inference, constraints must be well-scoped: all type variables must be
bound by an existential quantifier. The fact that constraints are well-scoped can be either established
a posteriori or guaranteed a priori, by construction. In this paper, we choose the latter approach: we
impose a discipline of intrinsic well-scoping [Altenkirch and Reus 1999; Benton et al. 2012]. While
our exposition makes use of this intrinsically-scoped representation, it is not a requirement for
reproducing our approach. Moreover, we keep the choice of the underlying variable representation
opaque. For a more in-depth discussion of the benefits and drawbacks, we refer the reader to §5.
To mix monadic computations with intrinsic scoping of generated existential variables, we

build on existing ideas to index monadic computations [McBride 2011] to keep track of dynamic
allocations, specifically existing work to model dynamic allocation of reference cells [Bach Poulsen
et al. 2017; Rouvoet 2021] and symbolic variables [Keuchel et al. 2022]. The following exposition
adapts these ideas to our setting.
In the remainder of this section, we develop intrinsically-scoped constraints with semantic

values. In §3.1, we define open versions of object-language types, typing contexts, and constraints.
(An “open” syntactic object can contain type variables.) As before, constraints form a free monad.
We use the structure of the free monad to motivate a more general abstract interface. In §3.2, we
introduce the type constructor Open. This type constructor turns a closed type, such as the type
of expressions, into an open version of this type, without requiring a duplication of its definition.
Finally, we present the constituents of a type inference and elaboration algorithm: a constraint
generator (§3.3), a conversion to prenex normal form (§3.4), and a constraint solver (§3.5). We
compose these components (§3.6) to obtain an end-to-end algorithm.

3.1 Constraints with Semantic Values
For the intrinsically-scoped representation, we index our types with sets of existential variables,4
called worlds (Figure 9). We write T̂ype as a short-hand for World→ Type. Figure 9 defines open
object-language types T̂y : T̂ype and open typing contexts Ĉtx : T̂ype. We use a circumflex to
visually differentiate these types of open objects from their closed counterparts Ty and Ctx. The
difference between Ty and T̂y w is that an inhabitant of Ty is a closed object-language type, whereas
an inhabitant of T̂y w can be a type variable 𝛼 ∈ w. The function ⌈_⌉ translates a closed type (resp.
context) to an open type (resp. context).
4The order in which existential variables appear is not important in this simple setting, but would matter if the constraint
language was richer and involved both universally and existentially bound type variables.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:9

data F̂ree (A : T̂ype) (w : World) : Type :=
P̂ure (a : A w)
F̂ail
Êq (𝜏1 𝜏2 : T̂y w) (k : F̂ree A w)
P̂ick (𝛼 : Evar) (k : F̂ree A (w, 𝛼))

Fig. 10. Definition of the free monad

(⊑) : World→World→ Type
new𝛼 : w ⊑w, 𝛼

refl : w ⊑ w
trans : w0 ⊑ w1 → w1 ⊑ w2 → w0 ⊑ w2
[] : A w → w ⊑ w′ → A w′

Fig. 11. Parallel substitutions

|= A := ∀{w}. A w
A↠ B := 𝜆w. A w → B w
□A := 𝜆w. ∀{w′}.w ⊑ w′ → A w′

^A := 𝜆w. ∃{w′}.w ⊑ w′ × A w′

Const A := 𝜆w. A

Fig. 12. Notations

(>>=F) : |= F̂ree A↠ □(A↠ F̂ree B) ↠ F̂ree B
P̂ure a >>=F f := f refl a
F̂ail >>=F f := F̂ail
Êq 𝜏1 𝜏2 k >>=F f := Êq 𝜏1 𝜏2 (k >>=F f)
P̂ick 𝛼 k >>=F f := P̂ick 𝛼 (k >>=F f [new𝛼])

Fig. 13. Free monad bind

We assume the existence of a function fresh : World→ Evar which deterministically computes
a fresh name: that is, fresh w ∉ w. We explicitly use this function whenever we introduce a new
existential variable. However, we leave corresponding freshness side-conditions implicit.

Free Monad. Figure 10 gives a new definition of the free monad. With respect to Figure 6, the
main difference is that the P̂ick constructor now carries a variable 𝛼 , which is considered bound
in k. The “continuation” k is no longer a meta-level function: it is just a constraint.
Non-deterministically coming up with a type is implemented by generating a fresh variable:

p̂ickF : ∀w. F̂ree T̂y w := 𝜆w. let 𝛼 := fresh w in P̂ick 𝛼 (P̂ure 𝛼)
As it turns out, defining a bind operation for this monad proves to be more subtle. Consider,

defining it with the usual type

∀w. F̂ree A w → (A w → F̂ree B w) → F̂ree B w.

Unfortunately, this definition is not possible. The value of type A in the left-hand side may appear
under some binders (P̂ick), and may refer to those variables. Hence, bringing it into world w to
pass to the continuation would mean those variables escape their scope. We circumvent this issue
by also passing the world w′ of A to the continuation, and moreover, a weakening substitution
𝜃 : w ⊑ w′ to transport other values to this new world. The type of bind becomes [Bach Poulsen
et al. 2017; Keuchel et al. 2022; Rouvoet 2021]:

∀w. F̂ree A w → (∀w′ .w ⊑ w′ → A w′ → F̂ree B w′) → F̂ree B w.

In this paper, we mainly consider parallel substitutions, i.e. that simultaneously substitute all
type variables in world w by types in world w′. Figure 11 shows the interface that we are assuming.
In particular, new𝛼 represents a weakening that brings a new variable 𝛼 into scope. We write
the compositions more succinctly by juxtapositions. Moreover, we use post-application (_[_]) of
substitutions to open types A that have a substitution function defined, which include T̂y, Ĉtx etc.
We do not require that all indexed types T̂ype admit a substitution function.

As is evident from the type of bind above, the explicit world passing creates a lot of noise. We
therefore define some type constructors in Figure 12 that hide the plumbing. Concretely, validity

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:10 Denis Carnier, François Pottier, and Steven Keuchel

class ĈstrM (M : T̂ype→ T̂ype)
p̂ure : |= A↠ M A
(>>=) : |= M A↠ □(A↠ M B) ↠ M B
f̂ail : |= M A
(∼) : |= T̂y↠ T̂y↠ M ()
p̂ick : |= M T̂y

Fig. 14. Monadic interface for constraint gen-
eration

Open (A : Type) : T̂ype := Assignment↠ Const A
pure : |= Const A↠ Open A := 𝜆a 𝜄. a
(⟨$⟩) : |= Const (A→ B) ↠ Open A↠ Open B

:= 𝜆f a 𝜄. f (a 𝜄)
(⟨∗⟩) : |= Open (A→ B) ↠ Open A↠ Open B

:= 𝜆f a 𝜄. f 𝜄 (a 𝜄)
⌊_⌋ : |= T̂y↠ Open Ty := 𝜆𝜏 𝜄. 𝜏 [𝜄]

Fig. 15. The Open modality and its applicative interface

|= A expresses that a computation of type A may be used in any world. 𝐴 ↠ 𝐵 describes functions
between open types A, B as families of functions, and □A (“box” A) denotes that a computation
is abstracted over a substitution. We discuss the dual ^A (“diamond” A) in §3.4. Const turns a
closed type A into an open type by ignoring the world. Type constructors such as box, diamond and
Const are also commonly called modalities. As indicated by the braces, for a boxed computation
□A, we pass the substitution explicitly, but pass the world implicitly, since it is determined by the
substitution, and we also leave the world implicit when defining a computation |= A.
Figure 13 gives the definition of the bind for the free monad. Concretely, bind recurses on the

left-hand side computation until it reaches a leaf. In the pure case, the continuation is “unboxed” by
applying it to the identity substitution refl, before applying it to the semantic value. We push the
boxed continuation under an existential quantifier by substituting with new𝛼 . Note that substitution
is in particular defined for boxed computations, because we can precompose the given substitution
with the parameterized one.

Abstract monad interface. Figure 14 defines an abstract interface that we use for the implementa-
tion of the constraint generator. Defining the rest of the free monad instance is straightforward
and left to the reader. In the remainder, we assume the use of an arbitrary but fixed monad𝑀 that
implements the interface. When writing code, we make use of a do notation for the monad that
gives us an explicit handle on the substitution

[𝜃] x ← m ; b := m >>= (𝜆𝜃 x . b)

3.2 The Open Modality
Before defining the constraint generator, we have to answer the question of what the type of the
semantic value should be. Since we want to define type reconstruction, it should represent an object
language expression, but so far we have not defined an open version of expressions that may refer to
existentials. Defining copies, like we did for object language types, becomes cumbersome, especially
if we consider more complex elaborations that produce expressions of a different language.
In order to manage the scalability of our approach, Figure 15 defines the Open modality that

like Const turns a closed type into an open type. The difference is, that Open 𝐴 may depend on
a solution of the constraints. In particular, we represent a solution by an (Assignment : T̂ype)
of closed object language types to every existential in a world w. Open quite literally represents
closed semantic values 𝐴 that depend on the solution as a function from a solution to 𝐴. In a sense,
this modality enables a kind of staged computation [Davies and Pfenning 2001], with the first stage
being constraint generation before solving, and the second stage after solving.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:11

ŝynth : |= Ĉtx↠ Const Exp↠ M (T̂y × Êxp)
ŝynth Γ̂ (𝜆x .e) B ŝynth Γ̂ (e1 e2) B
[𝜃1] 𝜏1 ← p̂ick [𝜃1] 𝜏1, ê1 ← ŝynth Γ̂ e1

[𝜃2] 𝜏2, ê ← ŝynth (Γ̂ [𝜃1], x : 𝜏1) e [𝜃2] 𝜏2, ê2 ← ŝynth Γ̂ [𝜃1] e2

p̂ure (𝜏1 [𝜃2] ⇒ 𝜏2, 𝜆x:𝜏1 [𝜃2] .ê) [𝜃3] 𝜏3 ← p̂ick
[𝜃4] _ ← 𝜏1 [𝜃2𝜃3] ∼ 𝜏2 [𝜃3] ⇒ 𝜏3

p̂ure (𝜏3 [𝜃4], ê1 [𝜃2𝜃3𝜃4] ê2 [𝜃3𝜃4])

Fig. 16. Selected cases of constraint generation for synthesising an open type and a type reconstructed
expression

The modality allows for the composition of a second stage computation during the first stage,
by means of an applicative interface [McBride and Paterson 2008]5 that is defined in Figure 15.
To extract open object language types as a semantic output, we define the ⌊_⌋ function. Its im-
plementation simply instantiates the existentially quantified variables by applying an assignment
(𝜄 : Assignment w) to the given open object language type (𝜏 : T̂y w), which we also denote with
post-application.
As a convenience, and to prepare for elaboration, we define an open type of object language

expressions Êxp := Open Exp. The applicative can be used to define smart constructors, e.g.

𝜆x:_._ : |= T̂y↠ Êxp↠ Êxp := 𝜆𝜏 ê. (𝜆𝑥 :_._) ⟨$⟩ ⌊𝜏⌋ ⟨∗⟩ ê.

and we assume the availability of smart constructors for all the expression cases.
As a side note, Pottier [2014] defines a constraint generator using an applicative-only interface

that is roughly comparable to the specialization F̂ree (Open A), i.e. he considers closed semantic val-
ues only. Martinot and Scherer [2020] discuss the possibility of decomposing it into its constituents,
but ultimately do not pursue this idea. That is precisely what we have done here.

3.3 Constraint Generation
Figure 16 implements a new constraint generator using the interface defined in Figure 14. Since the
structure is almost identical to the one in Figure 5, apart from the variable representation and the
explicit passing of substitutions, we only show the unannotated 𝜆-case and the application case.
Each method and recursive call now explicitly introduces a substitution, signaling potential

allocations of existentials. This requires careful composition of these substitutions to transfer an
object from the from the world in which it was introduced to the world where it is used. For
example, in the untyped lambda case, after invoking p̂ick, we apply substitution 𝜃1 to the typing
context Γ̂ . The same applies to transporting 𝜏1 across the recursive call. However, this explicit
transportation, while necessary, tends to create a lot of noise without adding interesting information.
In our mechanization (§5), this is managed implicitly through Coq’s type class system, but we keep
substitutions explicit here for clarity.

3.4 Prenex Normal Form Conversion
As a first step towards solving the generated constraints, we transform them into a prenex normal
form (PNF). Concretely, all existential quantifiers appear on the outside of a quantifier-free part.

5The applicative functor terminology is usually used for endofunctors. Since Open is not endo, the precise designation
would be a lax monoidal functor.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:12 Denis Carnier, François Pottier, and Steven Keuchel

This normal form corresponds to the grammar

⊥ | ∃𝛼. 𝜏 = 𝜏 .

To model the quantifiers we make use of the ^ modality defined in Figure 12. The diamond is
a monad resembling the writer monad, but instead of accumulating monoid values, it collects
and composes substitutions. In essence, we represent a vector of existentials 𝛼 quantifiers, by a
weakening substitution (𝜃 : w ⊑ w, 𝛼). The prenex form is thus

Prenex A := Ôption ^(L̂ist (T̂y × T̂y) × A)

Parallel substitutions represent more than weakenings though so that Prenex represents more than
constraints in PNF. In our implementation, we define a type of weakening only substitutions to
model PNFs precisely. To convert a F̂ree constraint to an equivalent one in prenex form, we can
implement a function prenex : |= F̂ree A↠ Prenex A. This is not very interesting, and we therefore
omit it. Predictably, Prenex is a monad as well, which also instantiates the interface in Figure 14.

3.5 Constraint Solving
As part of the solver, we implemented McBride’s [2000; 2003a] first-order unification algorithm,
albeit with a different termination proof and rebased to the context variable removal of Keller and
Altenkirch [2010]. Due to a lack of space, we omit a description of the full implementation.

The algorithm employs a traditional nested-recursive structure of an outer recursion over worlds,
with one variable eliminated at each recursive step, and an inner structural recursion over two
object language types. Additionally, it follows an accumulator-passing style [McBride 2003a; Kumar
and Norrish 2010], progressively building up a substitution in triangular form [Baader et al. 2001].

The solver can fail, or otherwise produce a most-general unifier in the ^ monad, i.e. the interface
of the solver is

solve : |= L̂ist (T̂y × T̂y) ↠ Solved () Solved A := Ôption Â

in other words, it produces constraints with semantics values in solved form. The solver defines what
can essentially be seen as the dynamic semantics for constraints with semantic values, e.g. it allows
us to “run” the F̂ree monad computations

run : |= F̂ree A↠ Solved A := 𝜆m.

[𝜃1] eqs, a← prenex m ; [𝜃2] _← solve eqs ; p̂ure a[𝜃2]

3.6 Putting It Together
We now bring the different parts together and define an end-to-end type reconstruction algorithm
that composes them. Note that the do notation here is for the regular option monad:

reconstruct (Γ : Ctx) (e : Exp) : Option (∃w.T̂y w × Êxp w) :=
({w}, 𝜃, 𝜏, ê) ← run (ŝynth ⌈Γ⌉ e); Some (w, 𝜏, ê)

The result of this algorithm is a world w of unconstrained existentials, together with an open object
language type and elaborated expression that can still refer to the variables in w. This highlights
that constraint solving is non-grounding: any unification variable whose shape is not deduced
from traversing the program remains in the output of the solver. If we wish to, we may choose to
ground the remaining variables (for example to bool) to arrive at a concrete type-reconstructed
term. Clearly, this grounding is incomplete: a specific type has been chosen in the annotation.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:13

Γ ⊢𝐴 e : 𝜏{ e′ :=
match reconstruct Γ e with
| Some (w, 𝜏, ê) →
∃(𝜄 : Assignment w).
𝜏 [𝜄] = 𝜏 ∧ ê[𝜄] = e′

| None → ⊥

Fig. 17. Closed algorithmic typing relation

Pred w := Assignment w → P
P ⊣⊢ Q := ∀𝜄 : Assignment w, P 𝜄 ↔ Q 𝜄

P ⊢ Q := ∀𝜄 : Assignment w, P 𝜄 → Q 𝜄

u ≈ v := 𝜆𝜄.u[𝜄] = v [𝜄]
Γ̂ ⊢𝐷̂ e : 𝜏{ ê := 𝜆𝜄.Γ̂ [𝜄] ⊢𝐷 e : 𝜏 [𝜄]{ ê[𝜄]
P [𝜃] := 𝜆𝜄.P (𝜄 ◦ 𝜃).

Fig. 18. Assignment predicates

4 Type Inference Logics
We turn our attention now to the formal verification of the functional correctness of the type
reconstruction algorithm from §3. In particular, we want to show that the effectful reconstruct
function (§3.6) decides the typing rules for the simply typed 𝜆-calculus with Booleans (Figure 2).

Our proof strategy consists of two parts: a base logic that abstracts away assignments to existen-
tially quantified variables, and a program logic that defines reasoning rules for constraints with
semantic values in terms of this base logic. This approach allows us to prove a reformulation of the
generator correctness statement of Theorem 2.2.
We describe our approach in a top-down fashion. First, §4.1 will state the desired end-to-end

correctness theorem. Then, §4.2 will motivate and describe a domain-specific base logic over exis-
tentially quantified variables (evars) and describe predicate transformer semantics for substitutions
over evars as useful modalities. In §4.3, we first define an exact predicate transformer semantics for
our constraints with values, and subsequently define an interface (§4.4) with derivable rules that
we use as our program logic. Finally, we address the correctness of the constraint generator and
solver in §4.5, highlighting the modularity and proof automation of our approach.

4.1 The Correctness Statement
In order to mirror Theorem 2.2, Figure 17 defines a closed algorithmic typing relation. This definition
states that if reconstruct succeeds with a set or world of residual, unconstrained unification
variables w, an open type 𝜏 and an open reconstructed expression ê, then we require that these
can be instantiated simultaneously, i.e. with the same assignment, to the given closed type and
reconstructed expression. In other words, the calculated outputs of the algorithm are more general:
different instantiations of these unconstrained variables lead to different concrete types. The overall
correctness theorem now follows as an equivalence between algorithmic and declarative typing:

Theorem 4.1 (End-to-end correctness). Γ ⊢𝐴 e : 𝜏{ e′ ↔ Γ ⊢𝐷 e : 𝜏{ e′ .

4.2 Assignment Predicates
Just like in the implementation, we can modularly decompose Theorem 4.1 into constraint gen-
eration and constraint solving. The key insight is that this statement is between closed relations:
they both deal with a concrete object type and elaborated expression, while the outputs of the
generator and the input of the solver are open—the object type and expressions quantify over
possible instantiations of the existential variables. This mismatch is rectified in the definition of the
algorithmic typing relation in Figure 17 through an existential quantification over an assignment
to the unconstrained variables, thereby linking open and closed pieces of data. What is needed to
compose the proofs effectively is a logic that abstracts over these assignments. This avoids a lot of
bookkeeping in the correctness statements for the individual phases that occurs for instance due to
world updates—and hence assignments—during constraint generation and solving.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:14 Denis Carnier, François Pottier, and Steven Keuchel

This section introduces the notion of assignment predicates as the carrier of a base logic that we
use to state and reason about assertions involving existential variables. On top of this base logic,
we will later (§4.4) define a program logic for reasoning about open monadic computations.

The Pred abstraction. Figure 18 contains the definition of assignment predicates Pred as a map
from assignments of a given world to metalevel propositions. In other words, we use a world-
indexed family of predicates as the carrier of our logic. One way to think about assignments is that
they form a kind of ghost state or logical state [Jung et al. 2016; Owicki and Gries 1976] which is
used to keep track of additional facts in the proof of a program, but is not part of the concrete state
of the computation. For constraint generation, the concrete state is represented by the accumulated
existential variables and equality constraints, while the logical state additionally keeps track of an
assignment to every existential variable. In the next section, we will develop predicate transformers
for our monads, which enforce that at every point the concrete state is compatible with the ghost
state, i.e. that the ghost state satisfies the equality constraints.
Figure 18 additionally defines entailment (⊢) and bientailment (⊣⊢). To save space, we omit the

other logical connectives, but they, too, are lifted with their usual introduction and elimination
rules from P to Pred. For example, implication is defined as follows:

(→) : |= Pred↠ Pred↠ Pred := 𝜆P Q 𝜄. P 𝜄 → Q 𝜄

The rest of Figure 18 defines an internal equality u ≈ v which expresses that u and v become
equal after instantiation, an open version of the declarative typing relation derived from the closed
one, and a substitution operator for predicates P [𝜃], which composes the substitution with the
assignment. Substitution distributes over all connectives and the equality and typing relation.

Substitutions as assignment predicate transformers. Interestingly, we can also interpret substitu-
tions as assignment predicate transformers. Figure 19 defines both a total and a partial correctness
interpretation of weakest preconditions. It is worth noting that they change the world of the
predicates contravariantly. The key ingredient is the equation 𝜄1 ◦ 𝜃 = 𝜄0 involving a preassign-
ment 𝜄0 and an existentially (wp) or universally (wlp) quantified postassignment 𝜄1. The predicate
transformers are then the usual total and partial correctness interpretations of an equality assertion.

The equation can be understood in different ways. When viewing 𝜃 as a system of equations, it
expresses that 𝜄0 satisfies them. When interpreting 𝜄0 as a substitution, it says that 𝜃 is more general
than 𝜄0 .

For constraint generation, let us consider the introduction of a new fresh variable. Suppose 𝜃 is a
weakening that only introduces new existential variables, i.e. the domain of 𝜄0 is a subset of the
domain of 𝜄1, then the equation denotes that by restricting 𝜄1 to the domain of 𝜄0 , we get 𝜄0 back,
i.e. 𝜄1 consistently extends 𝜄0 . Said differently, in wp it represents an existential quantification over
closed types for all variables in w1 that do not appear in w0 . Dually, wlp represents a universal
quantification.

These predicate transformers enjoy a wealth of properties, some of which are shown in the bottom
half of Figure 19. The properties follow directly from similar ones for the underlying composition of
substitutions and assignments, and for the underlying existential and universal quantification. The
reflexivity and transitivity properties correspond to the classical rules for skip and seq statements
of imperative languages. The frame rule allows us to focus on one proof obligation involving a
weakest precondition simply by moving other obligations Q into the postcondition. As usual, when
wp appears to the left of an implication, we can switch to wlp instead. The adjoint rules show a
connection between the weakest preconditions and the substitution operator. Of particular interest
is sub-wlp-adjoint because it serves as an introduction rule whenever the head of an obligation
is wlp. Dually, the adjoint rule for wp can be used as an elimination rule, but we have not used

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:15

wp {w0 w1} (𝜃 : w0 ⊑ w1) (Q : Pred w1) : Pred w0 :=
𝜆(𝜄0 : Assignment w0). ∃(𝜄1 : Assignment w1). 𝜄1 ◦ 𝜃 = 𝜄0 ∧ Q 𝜄1
wlp {w0 w1} (𝜃 : w0 ⊑ w1) (Q : Pred w1) : Pred w0 :=
𝜆(𝜄0 : Assignment w0). ∀(𝜄1 : Assignment w1). 𝜄1 ◦ 𝜃 = 𝜄0 → Q 𝜄1

sub-wlp-refl∗ : wlp refl P ⊣⊢ P
sub-wlp-trans∗ : wlp (𝜃1𝜃2) Q ⊣⊢ wlp 𝜃1 (wlp 𝜃2 Q)
sub-wp-false : wp 𝜃 ⊥ ⊣⊢ ⊥
sub-wp-frame : wp 𝜃 P ∧ Q ⊣⊢ wp 𝜃 (P ∧ Q[𝜃])
sub-wp-wlp : (wp 𝜃 P → Q) ⊣⊢ wlp 𝜃 (P → Q[𝜃])
sub-wp-mono : wlp 𝜃 (P → Q) ⊢ wp 𝜃 P → wp 𝜃 Q
sub-wlp-mono : wlp 𝜃 (P → Q) ⊢ wlp 𝜃 P → wlp 𝜃 Q

sub-wp-adjoint
P ⊢ Q[𝜃]

wp 𝜃 P ⊢ Q
=================

sub-wlp-adjoint
P [𝜃] ⊢ Q

P ⊢ wlp 𝜃 Q
==================

Fig. 19. Select rules for substitution predicate transformers. Rules with (∗) apply identically to wp.

ŴPF : |= F̂ree A↠ □(A↠ Pred) ↠ Pred
ŴPF (P̂ure a) Q := Q refl a ŴPF (Êq 𝜏1 𝜏2 m) Q := 𝜏1 ≈ 𝜏2 ∧ ŴPF m Q
ŴPF (F̂ail) Q := ⊥ ŴPF (P̂ick 𝛼 m) Q := wp new𝛼 (ŴPF m Q[new𝛼])

Fig. 20. Predicate transformer semantics of the F̂ree monad

it in this way in our proofs. In Figure 19 we define strong monotonicity rules. A weaker version,
i.e. (P ⊢ Q) → (wp 𝜃 P ⊢ wp 𝜃 Q) is insufficient for our proofs, because we may need equalities or
typing judgements that only hold in the ghost state hidden in the right hand side entailment, to
prove that P implies Q. However, the weaker version requires us to show that P implies Q for any
ghost state. Notice that we use wlp on the left-hand side of the monotonicity rules in Figure 19 to
express in the present world and ghost state, i.e. before 𝜃 , that P implies Q in the future, i.e. after 𝜃 .

4.3 Predicate Transformer Semantics
We define the weakest preconditions ŴPF for the free monad in Figure 20. The weakest liberal
preconditions ŴLPF can be defined dually. We use uppercase letters to distinguish them from
the wp of substitution from §4.2. Just like the continuation of the bind operator in §3, ŴPF and
ŴLPF take a boxed postcondition □(A↠ Pred) as input, i.e. it can depend on an output world, the
substitution into that world, and the semantic value.

In the case of a P̂ure, the postcondition is first unboxed by applying it to the identity substitution
refl before applying it to the semantic value. The F̂ail and Êq rules should be familiar from Figure 7.
The P̂ick case is the most interesting. Notice that we are reusing the wp for substitutions. The
reader may have expected an existential quantification over a closed (or open) type which is then
substituted for the last introduced variable, such as:

ŴPF (P̂ick 𝛼 m) Q ⊣⊢ ∃𝜏 : Ty.(ŴPF m Q[new𝛼]) [𝛼 ↦→ ⌈𝜏⌉] .

This rule is equivalent, but complicates proofs because we would need to generalize our theorems
to account for an arbitrary substitution that is applied to the ŴPF in the head of a goal. This kind of
generalization still occurs, albeit for an arbitrary closing assignment instead of a substitution, and
it is completely hidden in the definition of (bi)entailments. For our proofs, we integrate a derived

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:16 Denis Carnier, François Pottier, and Steven Keuchel

WP-Bind : ŴP m (𝜆𝜃 a. ŴP (f 𝜃 a) Q[𝜃]) ⊢ ŴP (m >>= f) Q
WP-Eqals : 𝜏1 ≈ 𝜏2 ∧ ■(𝜆𝜃 .Q 𝜃 ()) ⊢ ŴP (𝜏1 ∼ 𝜏2) Q
WP-Pick : ∃𝜏 .■(𝜆𝜃 . ∀𝜏 . ⌈𝜏⌉ ≈ 𝜏 → Q 𝜃 𝜏) ⊢ ŴP (p̂ick) Q
WP-Mono : ■(𝜆𝜃 . ∀a. P 𝜃 a→ Q 𝜃 a) ⊢ ŴP m P → ŴP m Q

WLP-Bind : ŴLP m (𝜆𝜃 a. ŴLP (f 𝜃 a) Q[𝜃]) ⊢ ŴLP (m >>= f) Q
WLP-Eqals : 𝜏1 ≈ 𝜏2 → ■(𝜆𝜃 .Q 𝜃 ()) ⊢ ŴLP (𝜏1 ∼ 𝜏2) Q
WLP-Pick : ■(𝜆𝜃 . ∀𝜏 . Q 𝜃 𝜏) ⊢ ŴLP (p̂ick) Q
WLP-Mono : ■(𝜆𝜃 . ∀a. P 𝜃 a→ Q 𝜃 a) ⊢ ŴLP m P → ŴLP m Q

WP-WLP : ŴLP m (𝜆𝜃 . P 𝜃 a→ Q[𝜃]) ⊣⊢ ŴP m P → Q

Fig. 21. Program logic interface for constraint monads

rule to introduce the wp of new𝛼 into the rule for p̂ick:

sub-wp-new
∃𝜏 : Ty. P [new𝛼] ⊢ ⌈𝜏⌉ ≈ 𝛼 → Q

P ⊢ wp new𝛼 Q

This also uses an existential quantification, but instead of substituting the last introduced variable,
we introduce a hypothesis that states that the variable is equal to the existentially quantified type.
Notice that the world also changes, in the consequent it is w but we moved to world (w, 𝛼) in the
antecedent, i.e. the variable is not substituted away. The ŴPF and therefore also this rule are used
in the completeness proof, where we get preexisting closed types to fill in the existentials.

4.4 Program Logic
Since the constraint generator is implemented against an abstract monad interface, we also want to
define an abstract reasoning interface. We could distill the specific definition of the ŴPF for the
free monad into bientailment rules for the type class methods. However, that would result in an
overspecification because it would leak implementation-specific details of the free monad into the
interface. The free monad does not solve equalities immediately and implements p̂ick by choosing
a unification variable name via fresh. With bientailments, we could not allow any other behavior.
As we lay out in the next section, proving a bientailment directly is difficult. Consequently, we
split up the correctness into soundness and completeness directions, for which reasoning with
entailments is enough. Therefore, we define an interface with weaker entailment rules, that allows
more implementations. In particular, we can also define an instance for the Solved monad.
Allowing arbitrary behavior for (∼) specifically means that we need to allow an arbitrary

substitution to be passed to the continuation, not just the identity substitution like in the case of
the free monad. In other words, we need to introduce universal quantifications over substitutions
at specific points. This is in fact similar to the box modality, albeit on the level of predicates:

■ : |= □Pred↠ Pred := 𝜆{w} P . ∀{w′} (𝜃 : w ⊑ w′). wlp 𝜃 (P 𝜃)
It expresses that the given boxed predicate 𝑃 holds in any future world. We use wlp again to talk
about the future in the present. We define elimination, introduction, and substitution rules that
follow from the sub-wlp-refl, sub-wlp-adjoint, and sub-wlp-trans rules for substitutions:

■P ⊢ P refl (∀{w′} (𝜃 : w ⊑ w′). Q[𝜃] ⊢ P 𝜃) → (Q ⊢ ■P) (■P) [𝜃] ⊣⊢ ■(P [𝜃])
With all the ingredients in place, we finally define the program logic interface in Figure 21.

WP-Bind is a sequencing rule, i.e. it becomes the ŴP of the first subcomputation m which yields a

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:17

substitution 𝜃 and a value a. We then require Q to hold after applying f . Note that we also apply
the substitution 𝜃 to the postcondition Q, i.e. transporting it to the world after executing m, similar
to how continuations are transported in the definition of bind. The (∼) and p̂ick rules have been
generalized with the ■ modality, but otherwise stay the same. Crucially, we also use the ■ modality
in the monotonicity rules. Moreover, if ŴP appears to the left of an implication, we can switch to
the ŴLP via WP-WLP.

4.5 Correctness of the Generator
With the program logic rules at hand, we can turn to the correctness proof of the constraint
generator. First, we derive an open algorithmic typing relation from the generator

Γ̂ ⊢𝐴̂ e : 𝜏{ ê := ŴP (ŝynth Γ̂ e) (𝜆𝜃 (𝜏 ′, ê′). 𝜏 [𝜃] ≈ 𝜏 ′ ∧ ê[𝜃] ≈ ê′).
Akin to the end-to-end theorem, we state correctness of the constraint generator as an equivalence
of the algorithmic and declarative typing relations, in this case between open typing relations:

Theorem 4.2 (Generator correctness). Γ̂ ⊢𝐴̂ e : 𝜏{ ê ⊣⊢ Γ̂ ⊢𝐷̂ e : 𝜏{ ê

A direct proof by induction over 𝑒 is difficult. We did indeed define bientailment rules for the free
monad, but in contrast to Figure 20, the postcondition is specific instead of arbitrary. At the point
in the proof where we want to use an induction hypothesis, the postconditions will not be aligned,
and massaging them into the correct shape is burdensome. Hence, just like in §2.4, we can split
this equivalence into a soundness and a completeness direction, using the weaker program logic
rules. For soundness, we can switch from the ŴP to the ŴLP via rule WP-WLP and simplify the
equalities in the postcondition away.

Lemma 4.3 (Generator soundness). ⊢ ŴLP (ŝynth Γ̂ e) (𝜆𝜃 (𝜏, ê). Γ̂ [𝜃] ⊢𝐷̂ e : 𝜏{ ê)

Proof. By induction over the expression. Consider the case 𝜆x .e1, for which we have to prove

⊢ ŴLP ©­«
[𝜃1] 𝜏1 ← p̂ick
[𝜃2] 𝜏2, ê1 ← ŝynth (Γ̂ [𝜃1], x : 𝜏1) e1

p̂ure (𝜏1 [𝜃2] ⇒ 𝜏2, 𝜆𝑥 :𝜏1 [𝜃2] .ê1)

ª®¬ (𝜆𝜃 (𝜏, ê). Γ̂ [𝜃] ⊢𝐷̂ 𝜆x .e1 : 𝜏{ ê)

After applying the WLP-Bind and WLP-Pick, we end up with ■ at the head. From the introduction
rule for ■ and the rule for pick, we get a universal quantification over some 𝜃1 and over a 𝜏1,
respectively. We match these to the names in the do notation. It remains to show

⊢ ŴLP
(
[𝜃2] 𝜏2, ê1 ← ŝynth (Γ̂ [𝜃1], x : 𝜏1) e1

p̂ure (𝜏1 [𝜃2] ⇒ 𝜏2, 𝜆x:𝜏1 [𝜃2] .ê1)

)
(𝜆𝜃 (𝜏, ê). Γ̂ [𝜃1𝜃] ⊢𝐷̂ 𝜆x .e1 : 𝜏{ ê)

Using WLP-Bind and introducing our IH for e1 with (Γ̂ [𝜃1], x : 𝜏1) it remains to show

⊢ ŴLP
(
ŝynth (Γ̂ [𝜃1], x : 𝜏1) e1

)
(𝜆𝜃2 (𝜏2, ê1). (Γ̂ [𝜃1𝜃2], x : 𝜏1 [𝜃2]) ⊢𝐷̂ e1 : 𝜏2{ ê1) →

ŴLP
(
ŝynth (Γ̂ [𝜃1], x : 𝜏1) e1

)
(𝜆𝜃2 (𝜏2, ê1). ŴLP

(
p̂ure (𝜏1 [𝜃2] ⇒ 𝜏2, 𝜆x:𝜏1 [𝜃2] .ê1)

)
(𝜆𝜃 (𝜏, ê). Γ̂ [𝜃1𝜃2𝜃] ⊢𝐷̂ 𝜆x .e1 : 𝜏{ ê))

at which point we use WLP-Mono. We introduce the resulting ■ and get a universal quantification
over 𝜃2. We have to show the implication between the postconditions, which after applying the
pure rule and simplifying the identity substitution away becomes

⊢
(
Γ̂ [𝜃1𝜃2], x : 𝜏1 [𝜃2] ⊢𝐷̂ e1 : 𝜏2{ ê1

)
→

(
Γ̂ [𝜃1𝜃2] ⊢𝐷̂ (𝜆x .e1) : (𝜏1 [𝜃2] ⇒ 𝜏2){ (𝜆x:𝜏1 [𝜃2] .ê1)

)
.

We have not defined introduction rules for the open typing relation, but we can drop down to the
closed typing relation where the implication follows from T-Abs-Implicit. □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:18 Denis Carnier, François Pottier, and Steven Keuchel

For completeness, we also transform the statement to make it easier to prove. Ideally, we perform
the proof by induction over the given open declarative typing judgment, i.e. the right-hand side
of Theorem 4.2. However, the open relation itself is not inductively defined. Rather, it is defined
in terms of the inductive closed typing relation. It is not clear how to define a general enough
induction principle for the open relation. Instead, we induct over the underlying closed relation.
The statement itself has to be massaged to bring it into a shape for the induction. Specifically,
non-variable positions of the relation need to abstracted over with equality constraints similar to
the Elim tactic of McBride [2002] and Coq’s dependent induction tactic.

Lemma 4.4 (Generator completeness).
∀Γ e 𝜏 e′ . Γ ⊢𝐷 e : 𝜏{ e′ → ∀w (Γ̂ : Ĉtx w).
⊢ ⌈Γ⌉ ≈ Γ̂ → ŴP (ŝynth Γ̂ e) (𝜆𝜃 (𝜏, ê′).⌈𝜏⌉ ≈ 𝜏 ∧ ⌈e′⌉ ≈ ê′)

Proof. By induction on the closed typing judgment. The reasoning is similar to the soundness
direction. Each case is simplified using the ŴP rules from Figure 21. When the ŴP of a recursive
call is at the head position, we introduce it using monotonicity and the IH for that call. □

4.6 Putting It Together
We can define similar weakest preconditions operators ŴPP for Prenex, and ŴPS for Solved, and
use them to prove the correctness of the rest of the pipeline.

Lemma 4.5 (Prenex conversion correctness). ŴPP (prenex m) Q ⊣⊢ ŴPF m Q

Lemma 4.6 (Constraint solver correctness). ŴPS (solve eqs) (𝜆_.⊤) ⊣⊢ ⟦eqs⟧
We use denotation brackets to interpret a list of equalities as a predicate. All of the correctness
lemmas can be combined into the end-to-end Theorem 4.1. We refer the reader to our mechanization
(§5) for details. Having a sound and complete algorithm means we can effectively decide typing.

Corollary 4.7 (Decidability of typing). The three place relation Γ ⊢𝐷 e : 𝜏 is decidable.

Proof. After running the algorithm on the inputs Γ , e, we get a set of unconstrained variables w,
an open type 𝜏 and an open expression ê. Solving the additional constraint ⌈𝜏⌉ ≈ 𝜏 will reduce this
set further and the remainder can be grounded to bool. If the algorithm and the constraint solver
succeed, then the judgment holds by Theorem 4.1 and Lemma 4.6. Otherwise it does not. □

Unfortunately, we cannot decide the four place relation with this definition of our algorithm. For
the decidability of the relation with elaboration, we need to decide if the output of the algorithm
can be instantiated to the given elaborated expression. The adoption of the Open modality for
expressions, in favor of a separate, first-order representation of open expressions to be used in the
unification algorithm, means we cannot. Since the “fix” is very minor—essentially, just redefine
Êxp to something other than Open Exp—and because we argue that the open modality is very
interesting and useful in its own right, we omit these details for presentation purposes.

4.7 Correctness via Logical Relations
In this section we use an alternative proof method, proposed by Keuchel et al. [2022] in the context
of symbolic execution, to reduce the correctness (Theorem 4.2) of the constraint generator with the
first-order representation of existential variables from Figure 16, to the correctness (Theorem 2.2)
of the constraint generator with the higher-order representation from Figure 5. The general idea is
to define a binary logical relation between closed and open types that express a form of equivalence,
then show that the two constraint generator implementations are logically related, and finally use
the relatedness to reduce the correctness statements.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:19

R⟦A, Â⟧w : A × Â w → Pred w
R⟦Ty , T̂y ⟧w (𝜏, 𝜏) := ⌈𝜏⌉ ≈ 𝜏
R⟦A ,Open A⟧w (a, â) := ⌈a⌉ ≈ â
R⟦P , Pred ⟧w (P, P̂) := ⌈P⌉ ↔ P̂
R⟦A→ B, Â↠ B̂ ⟧w (f , f̂) :=
∀a â, R⟦A, Â⟧w (a, â) →
R⟦B, B̂⟧w (f a, f̂ â)

R⟦A ,□Â ⟧w (a, â) :=
■(𝜆(𝜃 : w ⊑ w′) .R⟦A, Â⟧w′ (a, â 𝜃))

Fig. 22. Logical Relation

R⟦Free A, F̂ree Â⟧w (m, m̂) :=
match m, m̂ with
| Pure a , P̂ure â → R⟦A, Â⟧w (a, â)
| Fail , F̂ail → ⊤
| Eq 𝜏1 𝜏2 m , Êq 𝜏1 𝜏2 m̂ →
R⟦Ty, T̂y⟧w (𝜏1, 𝜏1) ∧ R⟦Ty, T̂y⟧w (𝜏2, 𝜏2) ∧
R⟦Free A, F̂ree Â⟧w (m, m̂)
| Pick f , P̂ick 𝛼 k →
wlp new𝛼 (∀𝜏 : Ty, ⌈𝜏⌉ ≈ 𝛼 →
R⟦Free A, F̂ree Â⟧w,𝛼 (f 𝜏, k))

| _ , _ → ⊥

Fig. 23. Logical Relation for the free monad

Logical Relation. Figure 22 contains the definition of the logical relation for some of the simple
cases. Note that it is a relation defined using predicates of a given world w as opposed to regu-
lar propositions like in [Keuchel et al. 2022]. We will also use a proposition-valued relation for
computations that are valid, i.e. that can be used in any world:

R⟦A, Â⟧ : A × (|= Â) → P R⟦A, Â⟧(a, â) := ∀w.R⟦A, Â⟧w (a, â {w})
For most of the base cases, like object language types and typing contexts, and types in the Open

modality, the logical relation is defined using the internal equality, or equivalently, equality after
instantiating with the assignment that makes up the ghost state. As usual, functions are pointwise
related: they send related inputs to related outputs. A pure proposition is related to a predicate
if they are equivalent after injecting the proposition into predicates. More interesting is the case
of a boxed open computation â. It is related to a closed computation a whenever they are related
in every future as expressed by the ■ modality. We apply the boxed computation â to an explicit
witness 𝜃 given by ■, after which â 𝜃 becomes an unboxed computation.

Logically Related Computations. Figure 23 relates the higher-order with the first-order abstract
syntax variant of the free monad. It proceeds by recursion over two computations and requires
that at each step the same constructor is used. The cases for Pure, Fail and Eq follow immediately.
The interesting case Pick is similar to the function case above. After introducing 𝛼 via (wlp new𝛼)
and 𝜏 via universal quantification, we assume that they are logically related as witnessed by the
internal equality, and require that the two bodies f 𝜏 and k of the existential quantifications are
logically related.

Here we only defined the logical relation concretely for the free monads, but we can also reason
about two abstract monads M, M̂ that implement the interfaces in Figures 4 and 14, respectively. For
this, we require, e.g. in a new type class, that every corresponding pair of methods of the monad
type classes are logically related at their respective types. We omit the details.

Lemma 4.8 (Relatedness of constraint generators). The constraint generators synth of
Figure 5 and ŝynth of Figure 16 are logically related, i.e. the following holds:

∀(e : Exp), R⟦Ctx→ M (Ty × Exp), Ĉtx↠ M̂ (T̂y × Êxp)⟧(synth e, ŝynth e)

Proof. By induction over the expression e. Since both algorithms call the respective methods
from the type classes in the same order, we go through both computations in lockstep and use the
relatedness of all monad operations. □

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:20 Denis Carnier, François Pottier, and Steven Keuchel

Generator Correctness via the Logical Relation. We now turn towards reducing Theorem 4.2 to
Theorem 2.2 via the logical relation. The first step is to realize that logically related computations
have logically related weakest precondition predicate transformer semantics.

Lemma 4.9 (Relatedness of Weakest Preconditions).

R⟦Free A→ (A→ P) → P, F̂ree Â↠ □(Â↠ Pred) ↠ Pred⟧(WP, ŴP)

Since we defined algorithmic typing using the weakest preconditions of the generators, we immedi-
ately get relatedness of closed and open typing relations which is the missing link for the reduction
of the correctness theorems:

Corollary 4.10 (Relatedness of algorithmic typing). The closed and open algorithmic typing
relations are related, i.e. the following relation holds (omitting the type of the closed relation):

R⟦_, Ĉtx↠ Const Exp↠ T̂y↠ Êxp↠ Pred⟧(_ ⊢𝐴 _ : _{_, _ ⊢𝐴̂ _ : _{_)

Alternative Proof of Theorem 4.2. After unfolding the bientailment and introducing the
assignment 𝜄, the theorem follows from the following equivalences:

(Γ̂ ⊢𝐴̂ e : 𝜏{ ê) 𝜄 4.10←→ Γ̂ [𝜄] ⊢𝐴 e : 𝜏 [𝜄]{ ê[𝜄] 2.2←→ Γ̂ [𝜄] ⊢𝐷 e : 𝜏 [𝜄]{ ê[𝜄]
Fig.18
←→ (Γ̂ ⊢𝐷̂ e : 𝜏{ ê) 𝜄.

□

5 Mechanization and Evaluation
We have mechanically formalized our approach in the Coq proof assistant. This section discusses
choices and trade-offs, as well as practical infrastructure for proof automation.

Modularity and phase separation. In our mechanization, we defined an abstract constraint monad
type class as outlined in §3.1. We also implemented instances for the F̂ree, Prenex and the Solved
monad. When instantiating a generator programmed against the interface with the Solved instance,
the phases are only separated logically but not in the dynamic execution. We implemented and
mechanized the correctness of three constraint generators: the synthesizer from §3.3; a checker
in the style of Figure 3; and a bidirectional generator combining synthesizing and checking. This
demonstrates that our approach is flexible: it allows for different styles of constraint generation.
Furthermore, for each constraint generator we have two correctness proofs: a direct one and one
via our logical relation.

Existential variable representation. We left the specific variable representation for existentials
open in the paper. Concerns related to capture avoidance and 𝛼-equivalence do not arise in our
setting, since we never push substitutions under binders, and we never compare terms containing
binders. Our code base does not contain these definitions. We represent existentials using a hybrid
approach based on well-scoped de Bruijn indices and names, comprehensible to human readers.
They are exclusively used for computations and “decoration”, respectively. We do generate fresh
names but we do not prove that names are sufficiently fresh, i.e. that no shadowing occurs.
In our experience, the use of intrinsic scoping benefits the discovery of (correct) abstractions.

Specifically, this approach makes sure that we do not use incidental properties of a variable
representation, such as the invariance of a term under weakening. An intrinsic scoping prevents us
from using that simply because terms in different scopes have different types. Instead, each scope
change is an explicit operation on syntactic terms with an explicit witness.

The downside is of course that every subcomputation can potentially induce a scope change, and
thus we have to deal with a lot of witnesses and need to use them transport values from a point
where they are introduced to where they are used. We found that this is more problematic on the

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:21

Table 1. Overview of the mechanisation effort in terms of lines of code

CATEGORY Spec Proof

I Generic 1583 1035
Base logic 533 325
Infrastructure 282 154
Unification 186 129
Monad interface 126 146
Logical relation 139 89
Free monad 67 57
Monad interface (HOAS) 99 16
Open modality 44 54
Free monad (HOAS) 51 4
Prenex monad 22 31
Solved monad 14 21
Prenex conversion 20 9

CATEGORY Spec Proof

II Specific (𝜆B) 777 557
Generators (HOAS) 213 160
Generator (bidir) 110 77
Relatedness 63 87
Generator (check) 76 50
Infrastructure 58 66
Generator (synth) 68 49
Composition 58 37
Specification 70 4
Unification 46 27
Extraction 15 0

TOTAL 2360 1592

programming side, since the user has to deal with that. During proofs the intrinsic scoping enforces
correct handling without manual intervention, so one can largely gloss over the explicit witnesses.

Proof handling. Typically, a proof assistant’s existing infrastructure for handling hypotheses does
not extend to an embedded logic’s entailments or implications. To improve proof handling, we
instantiate the MoSeL [Krebbers et al. 2017, 2018] framework with our base logic, stubbing spatial
connectives and modalities when necessary. In addition to the usual context of hypotheses and
local variables of the proof assistant, MoSeL provides the user with a context of hypotheses of the
embedded logic. Furthermore, it implements high-level tactics for introduction and elimination of
the embedded logic’s connectives.
One of the highlight features of MoSeL is its adaptable support for modalities, which is not

restricted to a specific hardwired set of modalities, but is instead extensible through type classes.
The tactics it provides are parametric in the modalities they work with. We employ this machinery
for the specific modalities of our logic, particularly for introducing the wlp of a substitution. That
is, whenever the proof goal is of the form P1 ∧ . . . ∧ Pn ⊢ wlp 𝜃 Q, we “introduce” the wlp 𝜃

part of the head by means of a tactic that is in essence implementing rule sub-wlp-adjoint.
The effect of this introduction is that the substitution is applied to all hypotheses Pi and the wlp
vanishes from the head. Moreover, we hook (extensible) type class-based logic programming into
the modality introduction to further distribute the substitution automatically over connectives
inside the hypotheses to reduce the need for rewriting steps. Dually, we use themodality elimination
facilities if ■ appears at the head of a hypothesis.
We further automate proofs by providing reusable tactics to automatically apply the weakest

precondition reasoning rules of Figure 19 at the base logic level and the rules of Figure 21 at the
program logic level.

Extraction. We have extracted the end-to-end reconstruct function from §3.6 to Haskell. To
demonstrate the applicability of our work, we provide a small implementation combining the
extracted type inference and elaboration algorithm with a non-verified parser and pretty printer.
We provide a set of example 𝜆B programs as part of our development.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:22 Denis Carnier, François Pottier, and Steven Keuchel

Engineering effort. Table 1 provides an overview of the mechanization effort in terms of source
lines of code as produced by the coqwc tool. We draw a distinction between generic (I) and
language-specific code (II). We deem definitions and proofs as generic if they are, in some sense,
object language-agnostic or sufficiently modular to be compatible with and reusable for a different
object language. In principle, the code could be parameterized over a language instantiation, but
we have not done so. ‘Infrastructure’ includes the definition of worlds, fresh name generation,
substitution etc. The base logic comprises the definition of predicates, the predicate transformers
for substitutions, and the instantiation of the MoSeL framework. The generic part of unification
includes reusable recursion and induction schemes for successive variable elimination and the
variable cases for an occurs check, as well as the cases for flex-flex and flex-rigid unifications. The
monad interface consists of the constraint monad type class, the program logics interface and
derived reasoning rules. The implementation of the individual monads also contain the program
logic instantiations. We implemented both higher-order and first-order abstract syntax variants.
The language-specific code includes infrastructure like traversals to implement substitutions

and instantiation of open types to closed types and injecting closed types into open types. This
includes various proofs for the interaction between the traversals. The language specific unification
machinery consists of the occurs check traversal, and the structural recursion over two open types.
The variable cases are generally not part of the language-specific code, but are handled by the
generic code.
Overall, the language-specific parts are dominated by the constraint generators and the infras-

tructure. Proofs of the main lemmas that recurse over the syntax of the language are quite small, in
the order of 3 to 5 lines of code, where only the variable case is handled explicitly, and all other
cases are handled by automatic proof scripts. The bulk of the generator-specific proofs is to massage
the statements into the correct form. This is slightly more work for the completeness direction of
the direct proof and less work for the logical relation proof. Overall the proof effort for both proof
methods is comparable, but of course the logical relation proof requires the implementation of a
second HOAS-based generator.

As evidenced by Table 1, the base logic forms one of the biggest parts of our development, but it
is also the one with the biggest potential for reuse. The constraints and their program logic are
still somewhat specific to the features of the type system and thus need to be extended on a case
by case basis. However, even richer type systems will need a form of worlds and assignments. We
hope to develop a sufficiently generic base logic that can be instantiated and reused for multiple
constraint languages, including richer forms of constraints.

5.1 Synthetic Benchmark
We report on a small synthetic benchmark that captures the execution time for executing the
extracted Haskell code. The benchmark is comprised of two parts. The former part simply infers
types for increasingly large Church numerals, e.g. 𝜆𝑓 .𝜆𝑥 .𝑓 (𝑓 (𝑓 𝑥)) for𝑛 = 3. The latter benchmark
consists of what we dub a “worst-case term”: for 𝑛 = 3, a lambda expression is generated of the
form 𝜆𝑓 .𝜆𝑥1.𝜆𝑥2.𝜆𝑥3.𝑓 𝑥1 𝑥2 𝑥3. Figure 24 plots execution times for both Church numerals (left)
and the worst-case terms (right) for values of 𝑛 up to 500. The execution time measurements were
obtained on an Apple MacBook Air with M2 processor and 16 GB of memory, using Coq version
8.18 and GHC version 9.8.1.
For both benchmarks, the F̂ree monad suffers from the usual problem of a linear-time bind

operator [Voigtländer 2008]. The Prenex monad is not very efficient either, because the variable
representation uses unary natural numbers to represent de Bruijn indices: each increment in
the Church numeral is introducing one additional existential, in turn requiring all indices to be
incremented, incurring a quadratic runtime overhead.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:23

0 200 400
0

500

1,000

1,500

Church numeral (n)

Ex
ec
ut
io
n
tim

e
(m

s) Free
Prenex
Solved

0 200 400
0

20,000

40,000

Worst case term (n)

Free
Prenex
Solved

Fig. 24. Execution times of the two synthetic benchmarks. The x-axis plots the input size of the program, 𝑛
representing the number of unification variables for that term. Note that for the worst-case term, the Solved
monad (sym. ■) performs significantly worse due to (among other factors) the application of a quadratic
weakening substitution for every fresh existential variable introduction.

For the Church numerals the Solved monad is more efficient. Most generated existentials are
immediately eliminated by a unification. This allows the computation to scale to somewhat large
terms: Church number 1,000,000 can be checked in about 7.3s. However, for the worst-case term
the Solved monad cannot immediately eliminate existentials. Each new 𝜆-bound variable also
generates a new existential, yet equality constraints for unification are only introduced by the
application case, not the lambda abstractions. Consequently, even the Solved monad will have
to weaken the indices for all generated existentials at each lambda abstraction. Each weakening
is implemented via a parallel substitution generated “on the fly”, which has quadratic runtime
in the number of existentials. The F̂ree and Prenex monads outperform Solved in this case, since
in our implementation they do not use parallel substitutions, but a weakening only substitution
that implements a single variable weakening in constant time. We discuss efficient algorithms for
solving in the Future work section (§7.1).

6 Related Work
Our contributions build on a vast literature of related work. Here we focus on related work that
concerns different aspects of formal reasoning about inference.

Mechanized reasoning about type inference. In §1, we already provided a short survey of spec-
ifications and mechanizations of type inference. Reasoning about type inference inside a proof
assistant dates back to seminal work by Dubois and Ménissier-Morain [1999]; Naraschewski and
Nipkow [1999]; Nazareth and Nipkow [1996]; Urban and Nipkow [2009]. Many of these early works
axiomatize (part of) unification. More recent examples include CakeML [Tan et al. 2015], PureCake
[Kanabar et al. 2023], and work by Zhao et al. [2019]. It should be stressed that many of these
related works are concerned with object languages that are more expressive than the simply typed
lambda calculus. They include language features such as polymorphism that we do not discuss in
this paper. For a more thorough discussion, see Future work (§7.1).

Handling of metavariables. The original works by Damas and Milner [1978; 1982] handle unifi-
cation variables somewhat implicitly. Follow up work places more emphasis on keeping track of
where type variables are bound and what information is associated with them. The ordered contexts
of [Dunfield 2009; Dunfield and Krishnaswami 2013; Bosman et al. 2023] explicitly track solved
and unsolved existential variables. The ordering restricts which variables can appear in a solution.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:24 Denis Carnier, François Pottier, and Steven Keuchel

Moreover, the typing relation is extended with an output context and a substitution is encoded
in the derivations themselves. This is comparable to the passing of a world and a substitution
to the continuation in our definition of bind. In a similar spirit, Gundry et al. [2010] present an
implementation of polymorphic type inference which emphasizes managing ordered contexts.
Similarly, Zhao et al. [2018, 2019] keep track of them explicitly in algorithmic worklists.

Comparable to our approach Asai and Kadowaki [2017] opt for an intrinsically-scoped represen-
tation for type inference. Like in our settings, this unfortunately creates a lot of noise. Similarly,
Bach Poulsen et al. [2017] and van der Rest et al. [2022] use intrinsic scoping for dealing with
metavariables in monadic computations. They use a monadic strength to hide explicit witnesses.
This brings its own kind of awkwardness and noise to it, but more crucially, this concerns the
programming side only, and that line of work does not include the development of program logics
for their computations and it is not clear how to adapt this to reasoning in our setting. Finally,
Rouvoet [2021] complements the work of Bach Poulsen et al. [2017] by introducing notations that
hide worlds in the type signature, similar to Figure 12.

Program logics for monadic programs. Existing work has treated implementing and reasoning
about monadic programs in proof assistants. Cock et al. [2008] develop a Hoare logic for the state
monad with failures in Isabelle/HOL. The triples for basic monadic operations are structured in
weakest-precondition form, in order to to allow for automation when reasoning. Swierstra [2009]
develops the Hoare state monad, which indexed with a pre- and postcondition in an intrinsic
style. Furthermore, Swierstra and Baanen [2019] explore predicate transformer semantics for
computations represented by a free monad for, amongst others, the state, exception and non-
determinism effects. An important realization is that (weakest precondition) predicate transformers
can be seen as computations in a continuation monad with propositions as the answer type, also
called the backwards predicate transformer monad [Swamy et al. 2013; Ahman et al. 2017]. Dijkstra
monads [Swamy et al. 2013; Ahman et al. 2017] are monads indexed by their predicate transformers
semantics, which can, for some effects, be generically constructed [Maillard et al. 2019]. This is an
inherently intrinsic style, but it can also be used extrinsically [Silver and Zdancewic 2021].

Logics for type inference, freshness and constraints. McBride [2000, 2003b] develops a small base
logic for the correctness proof of his unification algorithm [McBride 2003a], with parallel substitu-
tions as the ghost state and triangular substitutions as the actual state. This includes the definition
of a few connectives (conjunction, negation, equality), but not all connectives of predicate logic.
More interestingly, McBride also defines a maximality modality for his base logic, to express that
his algorithm yields most general unifiers. We hope to reuse this modality in future work,
Silva et al. [2020] use Swierstra’s Hoare state monad with exceptions to mechanize a monadic

formulation of AlgorithmW in Coq. This is the only prior work we are aware of that provides
a mechanized proof of a type inference algorithm and retains some effectful abstraction when
reasoning. They use a single program logic that allows for failure, much like our ŴLP, and use it to
establish soundness and principal typing6. However, they do not build a domain-specific base logic
for their reasoning, but rather, use the Hoare state exception monad as a general purpose program
logic for its effects, which means that “base logic details” shine through in their statements.
Nigron and Dagand [2021] develop a small base separation logic exploiting the properties of

separation logic to enforce disjointness and thus freshness of identifiers. Building on their base
logic, they define program logics for two different free monads involving freshness. Moreover, they
also instantiate the MoSeL framework [Krebbers et al. 2018] for proof handling.

6Silva et al. [2020] claim proof of completeness, however, our definition of completeness is that the algorithm should not
fail on typable inputs, which they do not show. Rather, we interpret their completeness statement as principal typing.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:25

Correctness via logical relations. Keuchel et al. [2022] mechanize a verification condition generator
based on symbolic execution. They define a base logic using symbolic propositions, i.e. deeply-
embedded propositions, which only features restricted quantification over object language types,
and directly implement the symbolic executor in a predicate transformer monad based on symbolic
propositions. However, rather than to define elaborate reasoning rules for the base logic, or a
program logic for their monad, they reduce the soundness of their symbolic executor, via a logical
relation argument, to a higher-order abstract syntax variant similar to §4.7. They then proceed to
show the soundness of this second program using conventional techniques.
However, Keuchel et al. [2022] only consider this proof method, while we also establish how

to reason about a program that handles symbolic terms directly. Keuchel et al. [2022] only prove
a soundness statement while we prove both soundness and completeness. Moreover, we provide
several improvements to this method. Keuchel et al. [2022] use normal propositions, and makes
the assignment part of the logical relation. Their logical relation is comparable, but all of our
abstractions appear unfolded. As a result, their relatedness proofs are often interrupted my manual
rewriting steps that apply infrastructure lemmas. These steps are hidden in our case, because they
happen for instance transparently in the background during a modality introduction. We believe
part of our automation is also applicable in their setting and could reduce their proof effort.

7 Conclusions and Future Work
In this paper, we presented proof techniques for the mechanization of type inference algorithms
that extend to the problem of elaboration. In particular, we demonstrated that constraint-based,
phase-separated type inference, employed by many functional programming language implemen-
tations, also exhibits modular implementation benefits at the level of specification. We described
an approach that relied, among other things, on weakest precondition predicate transformers as a
denotation of constraints with semantic values. To evaluate our approach, we developed a mecha-
nized implementation of monadic, executable, phase separated type inference inside the Coq proof
assistantand extracted it to Haskell. We applied this machinery to 𝜆B, implementing and verifying
the functional correctness of an executable type checker, type synthesizer and type reconstruction
algorithm while leveraging proof automation to keep proof script size to a minimum.

7.1 Limitations and Future Work
At present, a major limitation of our approach is the expressiveness of the object language. In
many ways the simply typed lambda calculus does not adequately represent realistic programming
languages. Such languages typically include Hindley-Milner typing with numerous extensions
including subtyping, higher-ranked polymorphism, impredicative polymorphism, GADTs, and
others. Moreover, this limitation makes it difficult to judge how our approach compares to existing
mechanical formalizations that target Hindley-Milner or higher-ranked polymorphic systems. We
hope to rectify this in follow-up work that scales our implementation to support a richer set of
language features. To this end, we outline several independent ideas on how to generalize the
method to different polymorphic type systems, and what constitutes some of the necessary changes
to make this work.

Hindley-Milner polymorphism. To scale the approach to include HM let-generalizations, several
definitions have to be adapted. The presentation in this paper makes exclusive use of parallel
substitutions, which do not scale to allow for generalization, because, as discussed in the final
paragraph of §3.4, they represent more than weakenings. For HM-style polymorphism we believe
it necessary to work with several subrelations, including the box and diamond modalities induced
by each of the subrelations. Concretely, for generalization, we need to calculate the correct set of

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:26 Denis Carnier, François Pottier, and Steven Keuchel

variables at each generalization point. The parallel substitution only represents instantiations and
therefore does not really carry the required information. Using a weakening-only relation, which
we implemented and is the basis for F̂ree and Prenex monads, we can represent variables that have
been introduced after a generalization point.
Furthermore, our constraint language needs to be extended to account for generalization of

monomorphic types to type schemes and instantiation of types schemes. To handle instantiations,
one first needs to know which type scheme to instantiate. Alas, this depends on the result of
the solver on a subproblem. To remedy this problem, and keep constraint generation and solving
separate, Gustavsson and Svenningsson [2001] and Pottier and Rémy [2005] elegantly enrich the
syntax of constraints with so-called constraint abstractions or let constraints, which take the place of
type schemes. This representation thus remains first order and can be extended to support semantic
values [Pottier 2014]. We expect that similar extensions to our constraint language are required to
handle HM-style polymorphism.

On the solver side, we expect the unification algorithm to be largely reusable for monotypes, but
the solver needs to account for generalizations. This amounts to calculating a canonical solved form
from a solved form [Pottier and Rémy 2005]. As part of this, one usually needs to communicate
information “to the left” and across generalization points. This is typically tackled by replacing
existentials in the context with a set of new bindings [Bosman et al. 2023], or by moving existentials
and enriching information in an ordered context [Gundry et al. 2010]. Again, parallel substitutions
do not have enough structure to describe this, thus requiring us to adopt a bespoke subrelation.

Top level polymorphism. Aweaker form of polymorphism is to only generalize top level definitions
but not local let-bindings. This is for instance implemented in CakeML [Tan et al. 2015]. This
approach typically interleaves constraint generation and solving by first generating the constraints
for a single binding, solving those, then generalizing to construct a type scheme for the binding
before continuing with the remaining top-level bindings. For the constraint language, we still expect
something like constraint abstractions to be necessary, albeit with similar top-level restrictions. The
benefits, however, lie in simplifying the generalization part of constraint solving.

Rigid universals. Another possible extension is the inclusion of so-called rigid universal or Skolem
type variables [Vytiniotis et al. 2011]. These arise for instance from explicitly given type annotations
in a language with let-polymorphism (even without generalization), and the Odersky-Läufer
polymorphic subtyping system [Odersky and Läufer 1996]. Within the defining expression of the
universal, the universal itself can be referenced, but it can never be substituted by a type. Hence, it
acts more like a constant than a variable.
In the constraint language, we need to allow subconstraints to reference an additional set of

universals that are in scope in this subconstraint only. We expect that this can be modeled by
way of a new modality (akin to contextual modalities [Nanevski et al. 2008]) with its own set of
properties. Furthermore, to pass a semantic value of such a subconstraint to a continuation, this
extension would require an additional form of conjunction (or monadic bind). The continuation
then receives the result also under this modality. This is similar to what is observed by Martinot
and Scherer [2020], i.e. that outputs turn into modal inputs.

Efficient implementation. Many real-world implementations rely on highly space and time-
efficient implementations for constraint solvers to minimize compile time. Of equal interest to us is
therefore the mechanization of more efficient algorithms. On the one hand we wish to allow the
(computationally relevant parts of) weakening (§5.1) to be done in constant time, and on the other
hand we are interested in developing an efficient union-find-based constraint solver that leverages
Coq’s primitive arrays [Armand et al. 2010]. For this purpose, we hope to reuse our base logic

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

Type Inference Logics 346:27

(which we believe is sufficiently modular) and build atop it a program logic that simply enforces
consistency between the ghost and concrete state of the algorithm, i.e. a union-find data structure.

Object language parameterization. An obstacle to modularly reusing the code of our development
is that the object language types are fixed to be that of our chosen variant of the simply typed
lambda calculus and are currently not configurable. To address this we envision that the code needs
to be abstracted over the object language types and related methods. This includes the injection of
existential variables and closed types into open types, and traversals like substitution, an occurs
check, and unification. This can be achieved by either directly abstracting over these elements
and their proofs, or by adopting a datatype generic approach [Benke et al. 2003; Hinze 2000]
in which the traversals and their properties are implemented by recursing over the structure of
types. Datatype genericity has already been used in existing work to deal with intrinsically-scoped
syntax with binders [Allais et al. 2018; Asai and Kadowaki 2017; Keuchel and Jeuring 2012]. For
our purposes, a particular large universe of types that could be supported is that of fixed points of
finitary containers [Abbott et al. 2003; Gambino and Hyland 2004; Jaskelioff and Rypacek 2012;
Moggi et al. 1999] with the additional requirement that shapes have decidable equality. Both the
restriction to a finite number of fields per shape (constructor) and decidable equality of shapes are
required for unification.

Programming with presheaves. Next, we want to discuss the choice of working with indexed
sets and monotone functions by means of a box modality. Ideally, we can work with presheaves
in which every function is already monotone. We found that, without further support, working
with presheaves aggravates the problem of passing explicit witnesses. Chiefly, the problem we
are facing is that we do not know how to conveniently program in the internal language of the
presheaf model inside the proof assistant. The switch to a more explicit modal-logic approach
rather than an intuitionistic approach is a compromise, because we can be economic and make
functions monotonic only when needed. We are aware of other recent work to program in presheaf
models [Ceulemans et al. 2022], but we have not found anything that is practical enough for our
needs. Nevertheless, we believe that more insights in this direction may lead to more concise
formulations worth investigating.

Removing explicit weakening. Finally, related to the previous paragraph, our motivation for the
world-indexing and explicit weakenings revolved around the discovery of necessary abstractions
and their properties. Indeed, without it we would not have found the WP modalities of Figure 19
and in turn the ■ modality. Unfortunately, this created a lot of noise and boilerplate. Now that
we have identified the abstraction, we will focus on a representation for variables that remains
invariant under extension, i.e. when new existential variables are brought into scope. This will
banish explicit witnesses entirely from the code. For example using de Bruijn levels, one can drop
the world indexing and hide worlds entirely in the base logic. We hope to use our definitions to
define program logics with modalities that remain silent, i.e. without explicit weakenings.

Acknowledgements
We thank Didier Rémy, Dominique Devriese, Georgios Karachalias, Justus Fasse, Roger Bosman, and
the anonymous OOPSLA reviewers for their comments, feedback and suggestions on earlier drafts.
This research is partially funded by the Research Fund KU Leuven, the Cybersecurity Research
Program Flanders, and by ERC grant (UniversalContracts, 101040088). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council Executive Agency. Neither the European Union nor the granting
authority can be held responsible for them.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

346:28 Denis Carnier, François Pottier, and Steven Keuchel

Data-Availability Statement
Our results are publicly available [Carnier et al. 2024a,b]. The artifact contains the mechanization
in the Coq proof assistant of all theorems and proofs discussed in the paper. Moreover, we provide
example programs, Haskell sources, and a script to reproduce the benchmark results from §5.1.

References
Michael Abbott, Thorsten Altenkirch, and Neil Ghani. 2003. Categories of Containers. In Foundations of Software Science

and Computation Structures (FoSSaCS’03), Andrew D. Gordon (Ed.). Springer, 23–38.
Danel Ahman, Catalin Hritcu, Kenji Maillard, Guido Martínez, Gordon D. Plotkin, Jonathan Protzenko, Aseem Rastogi, and

Nikhil Swamy. 2017. Dijkstra monads for free. In Principles of Programming Languages (POPL). 515–529.
Ki Yung Ahn and Andrea Vezzosi. 2016. Executable Relational Specifications of Polymorphic Type Systems Using Prolog. In

Functional and Logic Programming (Lecture Notes in Computer Science, Vol. 9613). Springer, 109–125.
Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James McKinna. 2018. A type and scope safe universe

of syntaxes with binding: their semantics and proofs. Proc. ACM Program. Lang. 2, ICFP, Article 90 (jul 2018), 30 pages.
Thorsten Altenkirch and Bernhard Reus. 1999. Monadic Presentations of Lambda Terms Using Generalized Inductive Types.

In Computer Science Logic, Jörg Flum and Mario Rodriguez-Artalejo (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
453–468.

Krzysztof R. Apt. 1983. Ten years of Hoare’s logic: A survey—part II: Nondeterminism. Theoretical Computer Science 28, 1
(1983), 83–109.

Michaël Armand, Benjamin Grégoire, Arnaud Spiwack, and Laurent Théry. 2010. Extending Coq with Imperative Features
and Its Application to SAT Verification. In Interactive Theorem Proving, Matt Kaufmann and Lawrence C. Paulson (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 83–98.

Kenichi Asai and Kyoko Kadowaki. 2017. A Type Theoretic Specification of Type Inference. (2017). Unpublished.
Franz Baader, Wayne Snyder, Paliath Narendran, Manfred Schmidt-Schauss, and Klaus Schulz. 2001. Chapter 8 - Unification

Theory. In Handbook of Automated Reasoning, Alan Robinson and Andrei Voronkov (Eds.). North-Holland, Amsterdam.
Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert Krebbers, and Eelco Visser. 2017. Intrinsically-Typed

Definitional Interpreters for Imperative Languages. Proc. ACM Program. Lang. 2, POPL, Article 16 (dec 2017), 34 pages.
Marcin Benke, Peter Dybjer, and Patrik Jansson. 2003. Universes for generic programs and proofs in dependent type theory.

Nordic J. of Computing 10, 4 (Dec. 2003), 265–289.
Nick Benton, Chung-Kil Hur, Andrew J. Kennedy, and Conor McBride. 2012. Strongly Typed Term Representations in Coq.

J. Autom. Reason. 49, 2 (aug 2012), 141–159.
Roger Bosman, Georgios Karachalias, and Tom Schrijvers. 2023. No Unification Variable Left Behind: Fully Grounding Type

Inference for the HDM System. In 14th International Conference on Interactive Theorem Proving, ITP 2023, July 31-August
4, 2023, Białystok, Poland (LIPIcs). Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

Luca Cardelli. 1987. Basic polymorphic typechecking. Science of Computer Programming 8, 2 (1987), 147–172.
Denis Carnier, François Pottier, and Steven Keuchel. 2024a. Type Inference Logics - Artifact.
Denis Carnier, François Pottier, and Steven Keuchel. 2024b. Type Inference Logics - Software Repository.
Joris Ceulemans, Andreas Nuys, and Dominique Devriese. 2022. Sikkel: Multimode Simply Type Theory as an Agda Library.

InWorkshop on Mathematically Structured Functional Programming (MSFP). 93–112.
David Cock, Gerwin Klein, and Thomas Sewell. 2008. Secure Microkernels, State Monads and Scalable Refinement. In

Theorem Proving in Higher Order Logics, Otmane Ait Mohamed, César Muñoz, and Sofiène Tahar (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 167–182.

Haskell B. Curry and Robert M. Feys. 1958. Combinatory Logic. Vol. 1. North-Holland Publishing Company, Amsterdam.
Luis Damas. 1984. Type Assignment in Programming Languages. Ph.D. Dissertation. University of Edinburgh.
Luis Damas and Robin Milner. 1982. Principal type-schemes for functional programs. In Principles of Programming Languages

(POPL). 207–212.
Rowan Davies and Frank Pfenning. 2001. A Modal Analysis of Staged Computation. J. ACM 48, 3 (may 2001), 555–604.
Catherine Dubois and Valérie Ménissier-Morain. 1999. Certification of a Type Inference Tool for ML: Damas-Milner within

Coq. Journal of Automated Reasoning 23, 3–4 (Nov. 1999), 319–346.
Jana Dunfield. 2009. Greedy Bidirectional Polymorphism. In Proceedings of the 2009 ACM SIGPLAN Workshop on ML

(Edinburgh, Scotland) (ML ’09). Association for Computing Machinery, New York, NY, USA, 15–26.
Jana Dunfield and Neelakantan R. Krishnaswami. 2013. Complete and easy bidirectional typechecking for higher-rank

polymorphism. In International Conference on Functional Programming (ICFP). 429–442.
Nicola Gambino and Martin Hyland. 2004. Wellfounded Trees and Dependent Polynomial Functors. In Types for Proofs and

Programs (LNCS, Vol. 3085), Stefano Berardi, Mario Coppo, and Ferruccio Damiani (Eds.). Springer, 210–225.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

https://arxiv.org/abs/1608.06499
https://doi.org/10.1007/978-3-319-29604-3_8
https://doi.org/10.1145/3236785
https://doi.org/10.1145/3236785
https://doi.org/10.1016/0304-3975(83)90066-X
http://pllab.is.ocha.ac.jp/~asai/papers/paper2017.pdf
https://www.sciencedirect.com/science/article/pii/B9780444508133500102
https://www.sciencedirect.com/science/article/pii/B9780444508133500102
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3158104
http://dl.acm.org/citation.cfm?id=985799.985801
https://doi.org/10.1007/s10817-011-9219-0
https://drops.dagstuhl.de/opus/volltexte/2023/18383/
https://drops.dagstuhl.de/opus/volltexte/2023/18383/
https://doi.org/10.1016/0167-6423(87)90019-0
https://doi.org/10.5281/zenodo.13625874
https://github.com/decrn/tilogics
https://cgi.cse.unsw.edu.au/~eptcs/paper.cgi?MSFP2022.5
http://hdl.handle.net/1842/13555
http://doi.acm.org/10.1145/582153.582176
https://doi.org/10.1145/382780.382785
http://www.ensiie.fr/~dubois/jar_final.pdf
http://www.ensiie.fr/~dubois/jar_final.pdf
https://doi.org/10.1145/1596627.1596631
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582

Type Inference Logics 346:29

Jacques Garrigue. 2015. A certified implementation of ML with structural polymorphism and recursive types. Mathematical
Structures in Computer Science 25, 4 (2015), 867–891.

Adam Gundry, Conor McBride, and James McKinna. 2010. Type inference in context. In Workshop on Mathematically
Structured Functional Programming (MSFP). 43–54.

Jörgen Gustavsson and Josef Svenningsson. 2001. Constraint Abstractions. In Symposium on Programs as Data Objects
(Lecture Notes in Computer Science, Vol. 2053). Springer.

Peter Hancock and Anton Setzer. 2000. Interactive Programs in Dependent Type Theory. In Computer Science Logic, Peter G.
Clote and Helmut Schwichtenberg (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 317–331.

Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. 2003. Scripting the type inference process. In Proceedings of the
Eighth ACM SIGPLAN International Conference on Functional Programming, ICFP 2003, Uppsala, Sweden, August 25-29,
2003, Colin Runciman and Olin Shivers (Eds.). ACM, 3–13.

Ralf Hinze. 2000. Generic programs and proofs. Habilitation thesis. Universität Bonn.
Mauro Jaskelioff and Ondrej Rypacek. 2012. An Investigation of the Laws of Traversals. In Proceedings of the Fourth Workshop

on Mathematically Structured Functional Programming, MSFP’12 (Electronic Proceedings in Theoretical Computer Science,
Vol. 76), James Chapman and Paul Blain Levy (Eds.). Open Publishing Association, 40–49.

Jean-Pierre Jouannaud and Claude Kirchner. 1991. Solving equations in abstract algebras: a rule-based survey of unification.
In Computational Logic. Essays in honor of Alan Robinson, Jean-Louis Lassez and Gordon Plotkin (Eds.). MIT Press,
Chapter 8, 257–321.

Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016. Higher-order ghost state. In International Conference on
Functional Programming (ICFP). 256–269.

Hrutvik Kanabar. 2023. Verified compilation of a purely functional language to a realistic machine semantics. Ph.D. Dissertation.
School of Computing, University of Kent.

Hrutvik Kanabar, Samuel Vivien, Oskar Abrahamsson, Magnus O. Myreen, Michael Norrish, Johannes Åman Pohjola, and
Riccardo Zanetti. 2023. PureCake: A Verified Compiler for a Lazy Functional Language. Proceedings of the ACM on
Programming Languages 7, PLDI (2023), 952–976.

Chantal Keller and Thorsten Altenkirch. 2010. Hereditary Substitutions for Simple Types, Formalized. In Proceedings of the
Third ACM SIGPLAN Workshop on Mathematically Structured Functional Programming (Baltimore, Maryland, USA) (MSFP
’10). Association for Computing Machinery, New York, NY, USA, 3–10.

Steven Keuchel, Sander Huyghebaert, Georgy Lukyanov, and Dominique Devriese. 2022. Verified Symbolic Execution with
Kripke Specification Monads (and No Meta-Programming). Proc. ACM Program. Lang. 6, ICFP, Article 97 (aug 2022),
31 pages.

Steven Keuchel and Johan T. Jeuring. 2012. Generic conversions of abstract syntax representations. In Proceedings of the 8th
ACM SIGPLAN workshop on Generic programming, WGP ’12. ACM, 57–68. Copenhagen, Denmark, September 12, 2012.

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur Charguéraud,
and Derek Dreyer. 2018. MoSeL: a general, extensible modal framework for interactive proofs in separation logic.
Proceedings of the ACM on Programming Languages 2, ICFP (2018), 77:1–77:30.

Robert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order concurrent separation logic. In
Principles of Programming Languages (POPL).

Ramana Kumar and Michael Norrish. 2010. (Nominal) Unification by Recursive Descent with Triangular Substitutions.
In Interactive Theorem Proving, Matt Kaufmann and Lawrence C. Paulson (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 51–66.

Kenji Maillard, Danel Ahman, Robert Atkey, Guido Martínez, Catalin Hritcu, Exequiel Rivas, and éric Tanter. 2019. Dijkstra
monads for all. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 104:1–104:29.

Olivier Martinot and Gabriel Scherer. 2020. Quantified Applicatives: API design for type-inference constraints. Presented at
the ML Family Workshop.

Conor McBride. 2000. Dependently Typed Functional Programs and their Proofs. Ph.D. Dissertation. University of Edinburgh.
Conor McBride. 2002. Elimination with a Motive. In Types for Proofs and Programs, Paul Callaghan, Zhaohui Luo, James

McKinna, Robert Pollack, and Robert Pollack (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 197–216.
Conor McBride. 2003a. First-Order Unification by Structural Recursion. Journal of Functional Programming 13, 6 (2003),

1061–1075.
Conor McBride. 2003b. First-Order Unification by Structural Recursion – Correctness Proof. Accessed: 2023-10-26.
Conor McBride. 2011. Functional pearl: Kleisli arrows of outrageous fortune. (2011). Available at https://personal.cis.strath.

ac.uk/conor.mcbride/Kleisli.pdf.
Conor McBride and Ross Paterson. 2008. Applicative Programming with Effects. Journal of Functional Programming 18, 1

(2008), 1–13.
Robin Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. System Sci. 17, 3 (Dec. 1978), 348–375.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

https://www.math.nagoya-u.ac.jp/~garrigue/papers/certint1202.pdf
https://adam.gundry.co.uk/pub/type-inference-in-context/
http://www.cse.chalmers.se/~josefs/publications/ca.pdf
https://doi.org/10.1145/944705.944707
https://doi.org/10.4204/EPTCS.76.5
http://iris-project.org/pdfs/2016-icfp-iris2-final.pdf
https://hrutvik.co.uk/assets/pdf/Hrutvik_Kanabar_thesis.pdf
https://doi.org/10.1145/3591259
https://doi.org/10.1145/1863597.1863601
https://doi.org/10.1145/3547628
https://doi.org/10.1145/3547628
https://doi.org/10.1145/2364394.2364403
https://doi.org/10.1145/3236772
http://cs.au.dk/~birke/papers/ipm-conf.pdf
https://doi.org/10.1145/3341708
https://doi.org/10.1145/3341708
https://doi.org/10.1017/S0956796803004957
http://www.strictlypositive.org/foubsr-website/
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/Kleisli.pdf
http://www.soi.city.ac.uk/~ross/papers/Applicative.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.67.5276

346:30 Denis Carnier, François Pottier, and Steven Keuchel

E. Moggi, G. Bellè, and C.B. Jay. 1999. Monads, Shapely Functors and Traversals. Electronic Notes in Theoretical Computer
Science 29 (1999), 187–208. CTCS ’99, Conference on Category Theory and Computer Science.

Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput.
Logic 9, 3, Article 23 (jun 2008), 49 pages.

Wolfgang Naraschewski and Tobias Nipkow. 1999. Type Inference Verified: Algorithm W in Isabelle/HOL. Journal of
Automated Reasoning 23 (1999), 299–318.

Dieter Nazareth and Tobias Nipkow. 1996. Formal Verification of Algorithm W: The Monomorphic Case. In Theorem Proving
in Higher Order Logics (TPHOLs) (Lecture Notes in Computer Science, Vol. 1125). Springer, 331–345.

Pierre Nigron and Pierre-évariste Dagand. 2021. Reaching for the Star: Tale of a Monad in Coq. In Interactive Theorem Proving
(ITP) (Leibniz International Proceedings in Informatics, Vol. 193). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
29:1–29:19.

Martin Odersky and Konstantin Läufer. 1996. Putting Type Annotations To Work. In Principles of Programming Languages
(POPL). 54–67.

Martin Odersky, Martin Sulzmann, and Martin Wehr. 1999. . Theory and Practice of Object Systems 5, 1 (1999), 35–55.
Susan Owicki and David Gries. 1976. Verifying Properties of Parallel Programs: An Axiomatic Approach. Commun. ACM

19, 5 (may 1976), 279–285.
Frank Pfenning and Conal Elliott. 1988. Higher-Order Abstract Syntax. In Programming Language Design and Implementation

(PLDI). 199–208.
François Pottier. 2014. Hindley-Milner elaboration in applicative style. In International Conference on Functional Programming

(ICFP).
François Pottier and Didier Rémy. 2005. The Essence of ML Type Inference. In Advanced Topics in Types and Programming

Languages, Benjamin C. Pierce (Ed.). MIT Press, Chapter 10, 389–489.
Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and Eelco Visser. 2020. Intrinsically-Typed Definitional Interpreters

for Linear, Session-Typed Languages. In Proceedings of the 9th ACM SIGPLAN International Conference on Certified
Programs and Proofs (New Orleans, LA, USA) (CPP 2020). Association for Computing Machinery, New York, NY, USA,
284–298.

A. J. Rouvoet. 2021. Correct by Construction Language Implementations. Ph.D. Dissertation. Delft University of Technology.
Rafael Castro G. Silva, Cristiano D. Vasconcellos, and Karina Girardi Roggia. 2020. MonadicW in Coq. In Brazilian Symposium

on Programming Languages (SBLP). 25–32.
Lucas Silver and Steve Zdancewic. 2021. Dijkstra monads forever: termination-sensitive specifications for interaction trees.

Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–28.
Nikhil Swamy, Joel Weinberger, Cole Schlesinger, Juan Chen, and Benjamin Livshits. 2013. Verifying higher-order programs

with the Dijkstra monad. ACM SIGPLAN Notices 48, 6 (2013), 387–398.
Wouter Swierstra. 2009. A Hoare Logic for the State Monad. In Theorem Proving in Higher Order Logics (TPHOLs) (Lecture

Notes in Computer Science, Vol. 5674). Springer, 440–451.
Wouter Swierstra and Tim Baanen. 2019. A predicate transformer semantics for effects (functional pearl). Proceedings of the

ACM on Programming Languages 3, ICFP (2019), 103:1–103:26.
Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony C. J. Fox, Scott Owens, and Michael Norrish. 2019. The

verified CakeML compiler backend. Journal of Functional Programming 29 (2019), e2.
Yong Kiam Tan, Scott Owens, and Ramana Kumar. 2015. A verified type system for CakeML. In Implementation of Functional

Languages (IFL). 7:1–7:12.
Aaron Tomb and Cormac Flanagan. 2005. Automatic type inference via partial evaluation. In Principles and Practice of

Declarative Programming (PPDP). 106–116.
Christian Urban and Tobias Nipkow. 2009. Nominal verification of algorithm W. In From Semantics to Computer Science:

Essays in Honour of Gilles Kahn, Yves Bertot, Gérard Huet, Jean-Jacques Lévy, and Gordon Plotkin (Eds.). Cambridge
University Press, 363–382.

Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet, Eelco Visser, and Peter Mosses. 2022. Intrinsically-Typed Definitional
Interpreters à La Carte. Proc. ACM Program. Lang. 6, OOPSLA2, Article 192 (oct 2022), 30 pages.

Janis Voigtländer. 2008. Asymptotic Improvement of Computations over Free Monads. In Mathematics of Program Con-
struction, Philippe Audebaud and Christine Paulin-Mohring (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
388–403.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X): Modular type inference
with local assumptions. Journal of Functional Programming 21, 4–5 (2011), 333–412.

Mitchell Wand. 1987. A Simple Algorithm and Proof for Type Inference. Fundamenta Informaticæ 10 (1987), 115–122.
Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2018. Formalization of a Polymorphic Subtyping Algorithm.

In Interactive Theorem Proving, Jeremy Avigad and Assia Mahboubi (Eds.). Springer International Publishing, Cham,
604–622.

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

https://www.sciencedirect.com/science/article/pii/S1571066105803160
https://doi.org/10.1145/1352582.1352591
http://www4.informatik.tu-muenchen.de/~nipkow/pubs/W.ps.gz
https://www21.in.tum.de/~nipkow/pubs/tphol96.html
https://doi.org/10.4230/LIPIcs.ITP.2021.29
http://lamp.epfl.ch/~odersky/papers/popl96.ps.gz
https://doi.org/10.1002/(SICI)1096-9942(199901/03)5:1Inference with Constrained Types
https://doi.org/10.1145/360051.360224
http://doi.acm.org/10.1145/53990.54010
http://cambium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf
http://cambium.inria.fr/~fpottier/publis/emlti-final.pdf
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.1145/3372885.3373818
https://doi.org/10.4233/uuid:f0312839-3444-41ee-9313-b07b21b59c11
https://doi.org/10.1145/3427081.3427085
https://doi.org/10.1145/3434307
https://webspace.science.uu.nl/~swier004/publications/2009-tphols.pdf
https://doi.org/10.1145/3341707
https://cakeml.org/jfp19.pdf
https://cakeml.org/jfp19.pdf
https://cakeml.org/ifl15.pdf
http://alumni.soe.ucsc.edu/~atomb/tomb05inference.pdf
https://www21.in.tum.de/~nipkow/pubs/w.pdf
https://doi.org/10.1145/3563355
https://doi.org/10.1145/3563355
http://research.microsoft.com/en-us/um/people/simonpj/papers/constraints/jfp-outsidein.pdf
http://research.microsoft.com/en-us/um/people/simonpj/papers/constraints/jfp-outsidein.pdf
http://web.cs.ucla.edu/~palsberg/course/cs239/reading/wand87.pdf

Type Inference Logics 346:31

Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. 2019. A mechanical formalization of higher-ranked polymorphic
type inference. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 112:1–112:29.

Received 2024-04-06; accepted 2024-08-18

Proc. ACM Program. Lang., Vol. 8, No. OOPSLA2, Article 346. Publication date: October 2024.

https://doi.org/10.1145/3341716
https://doi.org/10.1145/3341716

	Abstract
	1 Introduction
	2 Overview
	2.1 Propositional Constraints
	2.2 Constraints with Semantic Values: Monadic API
	2.3 Constraints with Semantic Values: Implementation as a Free Monad
	2.4 Generator Correctness

	3 Monadic Constraint Generation
	3.1 Constraints with Semantic Values
	3.2 The codecodeOpen Modality
	3.3 Constraint Generation
	3.4 Prenex Normal Form Conversion
	3.5 Constraint Solving
	3.6 Putting It Together

	4 Type Inference Logics
	4.1 The Correctness Statement
	4.2 Assignment Predicates
	4.3 Predicate Transformer Semantics
	4.4 Program Logic
	4.5 Correctness of the Generator
	4.6 Putting It Together
	4.7 Correctness via Logical Relations

	5 Mechanization and Evaluation
	5.1 Synthetic Benchmark

	6 Related Work
	7 Conclusions and Future Work
	7.1 Limitations and Future Work

	References

