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1 INTRODUCTION

Domain-Specific Languages (DSLs) for scientific computing, signal processing and machine learning

allow the expression of high-level specifications of matrix and tensor computations and their

compilation into efficient low-level code [Baumgartner et al. 2005; Ragan-Kelley et al. 2013; Vasilache

et al. 2020]. The most popular representative is Halide
1
, specialized on image processing and

computer vision [Ragan-Kelley et al. 2012, 2013], with a wide range of uses from high-end graphics

to on-device processing in cameras.

Optimizing compilation for these DSLs involves finding a good schedule describing the orchestra-
tion of elementwise computational, communication and storage instructions composing the tensor

algebraic operations of interest. This schedule involves high-impact decisions about vectorization,

thread-level parallelism, distribution, locality optimization, memory mappings and layouts, etc.

Halide and TVM (an integrated tensor algebra compiler and machine learning framework, initially

derived from Halide [Moreau et al. 2019]) typically involve a performance expert to program such

a schedule manually, although machine-learning-based auto-tuners exist to partly automate the

task [Moreau et al. 2019; Mullapudi et al. 2016]. Other approaches rely on optimization research

algorithms such as integer linear programming, including Polymage [Mullapudi et al. 2015] and

Tensor Comprehensions [Vasilache et al. 2018, 2020]. The schedule plays a central role in guiding

efficient code generation from a high-level equational specification; it is a fundamental, unifying

property of all these approaches.

The above-mentioned frameworks however differ in their schedule representations: Tensor

Comprehensions uses affine schedule trees [Grosser et al. 2015] while Halide and TVM uses

custom scheduling directives with different trade-offs between expressiveness, expert control and
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automation. Whether they arise from DSLs like Halide or from black-box optimizers of imperative

loop nests like Pluto [Bondhugula et al. 2008a,b], the transformations involving array indices and

loop iterations have a strong impact on the structure of the generated code. Effectively, the efficient

code generated by these compilers often bears little resemblance to the original specification.

The control structure is altered at both local and global scales, by the application of many loop

transformations such as loop tiling, fusion, unrolling, index set splitting, pipelining. In addition,

functional tensors in the specification are lowered into imperative arrays in the generated code

with possibly different dimensionalities, some of the original dimensions are coalesced to express

parallelism opportunities, other dimensions are further decomposed (reshaped) to optimize locality,

values can be promoted to registers, rematerialized (i.e. computedmultiple times) or even completely

disappear through algebraic simplifications or partial evaluation.

This paper aims at verifying that low-level generated code matches the high-level specification

of tensor computations by exhibiting a refinement mapping [Abadi and Lamport 1988]. Focusing

on the Halide language and compiler, we show that its architecture lends itself well to translation
validation [Pnueli et al. 1998] despite the impressive semantic gap affecting both control andmemory.

We achieve this by formalizing both Halide specifications (called algorithms) and their low-level

imperative representation. We then associate an equation in the algorithm to each assignment in the

imperative code. This approach does not require formalizing the Halide scheduling language: while

maybe counter-intuitive, this indicates the techniques in this paper should generalize beyond Halide

itself to other compilers relying on affine transformations of control flow and storage mapping,

combined with symbolic reasoning on value expressions — provided the compiler can produce the

appropriate annotations.

The outline of the paper is as follows. We first present an intuitive explanation of prophetic
expressions, annotations we use to allow symbolic evaluation of unbounded sequential loops,

in Section 2. We then briefly recall the specifics of affine Halide specifications in Section 3, for

which we formalize in Section 4 a translation-validation procedure using prophetic expressions.

To our knowledge, our approach is the first to allow the verification of both general affine loop

transformations and algebraic transformations. We then evaluate our approach on some reference

Halide benchmarks in Section 5, and compare it to the state-of-the-art of affine program equivalence

checking. We discuss related work in Section 6, and the limitations and possible extensions of our

approach in Section 7. In particular, we mention two possible threats to the correctness of our

validator, namely overflow checking and the “fast-math” optimizations performed by Halide on

floating point numbers.

2 MOTIVATING EXAMPLES

Picture yourself a specification language for 𝑛-dimensional arrays. The exact details of the speci-

fication language may vary, but can be roughly thought of as follows. This language deals with

tensors: functional values indexed by integer points in a multidimensional space. The tensors are

defined by equations, read as assignments, and implicitly quantified over the multidimensional

domain. For instance, the outer product of two vectors 𝐴 and 𝐵 is a two-dimensional tensor defined

by the equation:

𝐶 (𝑖, 𝑗) = 𝐴(𝑖) × 𝐵( 𝑗) (1)

Here 𝑖 and 𝑗 are implicitly bound variables ranging over arbitrary integer values. These high-level

specifications are compiled into imperative programs through a code generation process guided by

a (user-provided or compiler-generated) schedule, whose concrete details vary. In the generated

program, the tensors are replaced by arrays representing finite subdomains of the corresponding

tensor. Our first intuition is that the nature of the code generator makes it possible to keep track of
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a mapping between array writes and tensor definitions: this property will be at the basis of our

verification algorithm.

Going back to Eq. (1), in an implementation of that specification, 𝐴, 𝐵 and 𝐶 become arrays,

and the range of 𝑖 and 𝑗 are computed through auxiliary mechanisms such as inference from

the shape of the input arrays (as in Tensor Comprehensions), or an explicit realization domain

for the output array (as in Halide). In Halide, expert users can manually write schedules using a

domain-specific language; in our example, the schedule C.split(i, i0, i1, 4).reorder(i1,
j, i0) would generate the following implementation, expressed in pseudocode (in this paper, we

will use lower-case names and brackets for array accesses, while upper-case names and parentheses

are used for tensor accesses).

1 for i0 = 0 to (N + 3) / 4 - 1 do
2 for j = 0 to M - 1 do
3 for i1 = 0 to 3 do
4 let i = min(i0 * 4, N - 4) + i1 in
5 c[i, j] := b[j] * a[i]

The split directive indicates that the loop over i should be separated into an outer loop i0 and

an inner loop i1. The loop nesting order, from innermost to outermost, is specified by the reorder
directive. More examples of the Halide scheduling language are shown by Ragan-Kelley et al. [2017].

The commutativity of × (i.e. b[j] * a[i] instead of a[i] * b[j]) has been applied manually

for illustration purposes: it does not appear in the schedule. More generally, Halide features a

simplification algorithm which can propagate constants and make use of algebraic properties such

as commutativity, associativity and distributivity: the values stored in the array c can be computed

using a different, but equivalent
2
, expression than that defining tensor 𝐶 .

The parameters 𝑁 and𝑀 used in the code correspond to the size of the arrays a and b, and are

not statically known; rather, the program ought to be valid for any such sizes.

In this case, it is relatively easy to convince oneself that the implementation follows the semantics

prescribed by the specification. More precisely, for any tensors 𝐴, 𝐵 and 𝐶 such that 𝐶 (𝑖, 𝑗) =

𝐴(𝑖) × 𝐵( 𝑗), and any initial memory mapping the a[i] to 𝐴(𝑖) and the b[j] to 𝐵( 𝑗), running the
above program will produce a final memory which, in addition, maps the c[i, j] to𝐶 (𝑖, 𝑗), where
𝑖 ranges over 0, . . . , 𝑁 − 1 and 𝑗 over 0, . . . , 𝑀 − 1.

There are multiple proofs of this fact, but we will focus on the following one, which exploits

the remark that, when executing an assignment c[i, j] := b[j] * a[i], the value written is

always the corresponding𝐶 (𝑖, 𝑗) from the specification. More precisely, we can make the following

observations:

• The set of locations written by the assignment c[i, j] := b[j] * a[i] is precisely

{c[min(4𝑖0, 𝑁 − 4) + 𝑖1, 𝑗] | 0 ≤ 𝑖0 < ⌈𝑁 /4⌉ ∧ 0 ≤ 𝑖1 < 4 ∧ 0 ≤ 𝑗 < 𝑀}
This set contains the “required” set of locations {c[𝑖, 𝑗] | 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀}, which is

expressed as an inclusion of sets defined by quasi-affine formulas. Quasi-affine formulas are

affine formulas extended with division and modulo operations where the denominator is a

constant. The decidability properties of Presburger arithmetic [Presburger 1929] extend to

quasi-affine formulas, and efficient specialized solvers such as isl [Verdoolaege 2010] can be

used to check its validity.

• When the assignment is executed for some values of 𝑖 and 𝑗 , we have 0 ≤ 𝑖 < 𝑁 and

0 ≤ 𝑗 < 𝑀 , which can also be checked using isl, and ensures that reads from arrays a and
b are in bounds. Note that this is not the same check as above: here we bound the set of

locations upwards to stay within the bounds for a and b, while earlier we bounded that set

2
Halide makes fast-math assumptions on floating-point numbers, which we discuss in Section 7.3.
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downwards to at least contain the required writes to c. Combining these two checks, the set

of computed locations must be exactly {c[𝑖, 𝑗] | 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀}.
• When the assignment is executed for some values of 𝑖 and 𝑗 , the value in b[j] is 𝐵( 𝑗) and
the value in a[i] is 𝐴(𝑖), as per the previous point, and because arrays a and b are never

written to. Hence, the value written to c[i, j] is equal to 𝐵( 𝑗) ×𝐴(𝑖). This value is equal to
𝐶 (𝑖, 𝑗), since 𝐶 (𝑖, 𝑗) = 𝐴(𝑖) × 𝐵( 𝑗) by definition and assuming × is commutative. In general,

proving this type of equality requires unfolding tensor definitions and checking the algebraic

reasoning performed by the compiler’s simplifier. Off-the-shelf general purpose SMT solvers

such as Z3 [de Moura and Bjørner 2008] used in this work, are quite good at proving such

formulas.

These three checks — coverage of writes, definedness of reads, equality of values — form the

backbone of a verifier for array programs. Here, we have seen a simple example where a single

value is ever written to each location; in general, the resulting program can contain recurrences:

an iteration of a loop which depend on values read by a previous iteration of the same loop. This

would make the proof fail: we have assumed that, when reading from arrays a and b, we know
exactly the value they hold. In the presence of recurrences, this is in general impossible, as it

requires unfolding many iterations of the loop at once. This property is also the main difficulty

for program equivalence checking approaches, where best-effort techniques based on transitive

closure [Shashidhar et al. 2005] or affine hulls [Verdoolaege et al. 2012] have been developed.

Instead, we can side-step the issue entirely by relying on the fact we are dealing with imple-

mentations generated by a scheduling compiler, which has a rich set of information about the

assignments available. Let us assume that the assignment is annotated with a prophetic expression.
The prophetic expression lives in the specification world, and predicts the value that will be written

by the assignment in terms of tensors. Assuming that the compiler can produce those annotations

along with the code, this allows breaking the cycle, because the prophetic expression uses tensors,

and hence is independent of the program memory. In particular, this means that we can always

know the value of the prophetic expression for any iteration of a loop without having to execute

the previous iterations of the loop.

Let us examine an example of this by considering matrix multiplication, implemented with an

explicit accumulator 𝑅:

𝑅(𝑖, 𝑗, 𝑘) = if 𝑘 ≤ 0 then 0 else 𝑅(𝑖, 𝑗, 𝑘 − 1) +𝐴(𝑖, 𝑘) × 𝐵(𝑘, 𝑗)
𝐶 (𝑖, 𝑗) = 𝑅(𝑖, 𝑗, 𝑃 − 1)

Reusing the same schedule as earlier, we would get the following implementation, where we

have annotated each assignment with a prophetic expression:

1 for i0 = 0 to (N + 3) / 4) - 1 do
2 for j = 0 to M - 1 do
3 for i1 = 0 to 3 do
4 let i = min(i0 * 4, N - 4) + i1 in
5 r {0} := 0
6 for k = 0 to P - 1 do
7 r {𝑅 (𝑖, 𝑗, 𝑘)} := r + b[k, j] * a[i, k]
8 c[i, j] {𝐶 (𝑖, 𝑗)} := r

In an assignment such as c[i, j] {𝐶 (𝑖, 𝑗)} := r, the prophetic expression 𝐶 (𝑖, 𝑗) between
brackets is ignored during the execution of the program, and only used for the validation. It is an

assertion than the value written when executing the statement will be 𝐶 (𝑖, 𝑗).
Without the annotations, it would not be immediately clear what the value of r should be at

iteration 𝑘 of the loop. However, by using the annotations, we can build a prophetic version of the
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program, which reads from the specification and executes assignments by using their prophetic

expression instead of the right-hand side.

This prophetic version of the program never reads from mutable memory, making its analysis

much easier: knowing the last write to an array cell is enough to know its value. In particular,

it is clear from the prophetic version of the program that r is equal to either 0 (when 𝑘 = 0) or

𝑅(𝑖, 𝑗, 𝑘 − 1) (otherwise) when updating r within the loop on 𝑘 , and equal to 𝑅(𝑖, 𝑗, 𝑃 − 1) (assuming

𝑃 > 0) when writing to c[i, j]. In addition, the fact that 𝐶 (𝑖, 𝑗) is written by the prophetic

program to the cell c[i, j] for all 0 ≤ 𝑖 < 𝑁 and 0 ≤ 𝑗 < 𝑀 is also clear, by the same set inclusion

as in the outer product case.

Finally, we have to prove that the regular version of the program has the same behavior as the

prophetic version of the program. To do so, we have to prove the following side conditions for any

values of 𝑖 , 𝑗 and 𝑘 reachable during execution of the program:

𝑅(𝑖, 𝑗, 𝑘) = if 𝑘 ≤ 0 then 0 else 𝑅(𝑖, 𝑗, 𝑘 − 1) + 𝐵(𝑘, 𝑗) ×𝐴(𝑖, 𝑘)
𝐶 (𝑖, 𝑗) = if 𝑃 ≤ 0 then 0 else 𝑅(𝑖, 𝑗, 𝑃 − 1)

The right-hand side of the equalities are computed from the right-hand side of the assignments

of r and c[i, j], where the reads to r are computed using the prophetic expressions. The side

conditions are an inductive invariant: they ensure that our reasoning propagates from one iteration

of the loop to the next.

We now have reduced the correctness of our program to these two quantified equalities in the

specification. In and of itself, that is valuable, thanks to the simplifications performed above: in

the formulas, the structure of the implementation has been erased, yielding a simpler domain. The

equalities in this case can be proven easily by an SMT solver.

To recapitulate, our approach requires two key ingredients to be automated:

• The assignments must be annotated with prophetic expressions in the specification, using

tensors and independent of the program memory. This allows us to symbolically evaluate

loops of parametric size.

• The expressions used in array indices (both for reads and writes), loop bounds, and condi-

tionals must be quasi-affine. This ensures that we can keep track of the values written to and

read from arrays.

The rest of this paper will show that this automation is indeed possible.

3 AFFINE SPECIFICATIONS OF ARRAY PROGRAMS

In order to represent and verify the high-level specification independently of the details of the

Halide specification language, we internally convert the Halide algorithm into a System of Affine

Recurrence Equations (SARE) [Karp et al. 1967; Le Verge et al. 1991]. In this section, we propose a

simple but novel formalization of Halide algorithms, and its reduction to SAREs following Feautrier

[1991].

3.1 Notations

We assume disjoint countably infinite sets of array names (ranged over by 𝑎), variables (ranged

over by 𝑥 , 𝑦), and function names (ranged over by 𝑓 ). We also assume a set of values U, and a

set of types (ranged over by 𝜏). Each type 𝜏 can be interpreted by a set of values J𝜏K ⊆ U. In

general, the J·K notation is used to denote an interpretation or evaluation. We assume the existence

of two distinguished types A, which evaluates to the set of all integers, and B, which evaluates

to {true, false}. Each function name 𝑓 has a function type 𝜏𝑓 = 𝜏1 × · · · × 𝜏𝑎𝑓
→ 𝜏 , where 𝑎𝑓
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1:6 Basile Clément and Albert Cohen

is the arity of 𝑓 , and a semantic interpretation J𝑓 K as a well-typed 𝑎𝑓 -ary function of the values.

Constants are nullary functions.

A signature S is a pair ⟨P,A⟩ where P is a finite set of integer variables called the program
parameters, and A is a finite set of tensor names ranged over by 𝐴. A tensor 𝐴 is equipped with a

type 𝜏𝐴 and an arity 𝑛𝐴. A model𝑀 over S is an assignment of a value J𝑥K𝑀 for each parameter

𝑥 ∈ P, and of a function J𝐴K𝑀 from Z𝑛𝐴 to J𝜏𝐴K for each 𝐴 ∈ A.

3.2 Affine Halide specifications

In Halide, specifications are called algorithms. We propose a simple formalization of Halide algo-

rithms as a system of equations augmented with imperative loops. We first recall the use of Halide

algorithms through an example; the interested reader can refer to Ragan-Kelley et al. [2017] for a

more thorough description by Halide’s designers.

Halide algorithms are defined in a DSL embedded in C++ or Python, where the user defines

tensors (called Funcs) as symbolic multidimensional functions over an infinite domain. Definitions

are written using an overloaded = operator. For instance, an algorithm computing the general

matrix multiplication 𝐷 = 𝛼𝐴𝐵 + 𝛽𝐶 can be written as follows, where 𝐾 is the size of the reduced

dimension:

Var i, j;
Func D;
RDom k(0, K);
D(i, j) = beta * C(i, j);
D(i, j) = D(i, j) + alpha * A(i, k) * B(k, j);

In this algorithm, we define a tensor D and give it two definitions. The first definition of any

Func is its (unique) pure definition, and it is treated specially to ensure it defines all the points in

the domain. The pure definition make uses of pure variables, which have type Var in the DSL, and

are implicitly quantified over the integers. Distinct pure variables must appear as arguments of the

tensor in the left-hand side of a pure definition, and are bound on the right-hand side. Only bound

pure variables can appear on the right-hand side of a definition. In the example, the pure definition

of tensor D is D(i, j) = beta * C(i, j).
Subsequent definitions are update definitions, and can refer to the previous values of the tensor

in an imperative way. In addition to pure variables, update definitions can make use of recurrence
variables3: variables of type RVar which encode imperative loops. Recurrence variables allow

defining tensors inductively in multiple steps, by having the value at each step depend on the

value at the previous step. Every update definition is implicitly nested in a sequential loop over

the RVars appearing in either the left- or right- hand sides of the definition. Recurrence variables

are declared using the RDom constructor, representing a multidimensional loop as a tuple of RVars.
In the example, the definition D(i, j) = D(i, j) + alpha * A(i, k) * B(k, j) uses the

recurrence variable k, and is semantically equivalent to the imperative loop:

for k = 0 to K - 1 do
D(i, j) = D(i, j) + alpha * A(i, k) * B(k, j)

Update definitions can refer to the tensor currently being defined, in an imperative way. They

are not equations: pure variables appearing in update definitions should be thought of informally

as parallel loops over an infinite domain. It is not possible to give a semantics to some update

definitions such as D(i, j) = D(j, i) + 1. In order to rule out such impossible definitions, Halide

ensures that within a single update definition, the same tensor indices can only be accessed at the

3
In Halide, they are called “reduction variables“, but their use is not limited to reductions, hence we prefer the term

recurrence variables.
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same values of the pure variables. This is enforced by ensuring that each pure variable appearing in

the definition must appear as an argument at the same position in all accesses to that tensor in the

definition. The pure variable can also appear at other positions; for instance, it is valid to write

D(i, i + 1) = D(i, i - 1) + D(i, 0) because i appears as an argument in the first position

for each of the accesses.

In addition, definitions of multiple functions cannot be interleaved, and recurrence domains

can include an arbitrary boolean expression as a filter restricting the points where the update is

performed. Halide specifications are laid out textually; once a tensor is used within the definition

of another, further update definitions of the tensor are disallowed.

We can represent formally a Halide specification over a signature S as a tuple ⟨𝐼 , 𝑃,𝑈 , <⟩ where:
• 𝐼 is the set of input tensors, which have no associated definition;

• 𝑃 maps each tensor 𝐴 ∈ S\𝐼 to its pure definition 𝑃𝐴;
• 𝑈 maps each tensor 𝐴 ∈ S\𝐼 to a (possibly empty) finite sequence 𝑈 1

𝐴
, . . . ,𝑈

𝑛𝐴
𝐴

of update
definitions for 𝐴;

• < defines a total order over the non-input tensors in S\𝐼 , representing the textual order of
the first pure definition to the tensor

The pure definition 𝑃𝐴 for tensor 𝐴 ∈ S is an equation written as follows:

∀𝑥1, . . . , 𝑥𝑛𝐴 , 𝐴(𝑥1, . . . , 𝑥𝑛𝐴 ) = 𝑒

The right-hand side of a pure definition can only refer to input tensors and the defined tensors 𝐴′

defined before 𝐴 (i.e. with 𝐴′ < 𝐴). In particular, the definition of 𝐴 cannot refer to 𝐴 itself.

An update definition𝑈 𝑖
𝐴
for tensor 𝐴 ∈ S is also an equation, which involve some pure variables

𝑥1, . . . , 𝑥𝑛 and an arbitrary number of recurrence variables 𝑦1, . . . , 𝑦𝑟 :

∀𝑥1, . . . , 𝑥𝑛 . for 𝑦1 : 𝑅1, . . . , 𝑦𝑟 : 𝑅𝑟 . 𝜙 =⇒ 𝐴(𝑒1, . . . , 𝑒𝑛𝐴 ) = 𝑒

Each of the 𝑦𝑖 has a recurrence domain 𝑅𝑖 , a parametrically bounded interval of Z. The bounds
of 𝑅𝑖 can only depend on the parameters, not the pure variables nor other recurrence variables.

The boolean expression 𝜙 is the filter: an additional condition on the points where the update is

performed.

The well-formedness condition can be formalized as follows. We require the existence of a

function 𝜋 from the pure variables {1, . . . , 𝑛} to the argument positions {1, . . . , 𝑛𝐴} such that, for

all 1 ≤ 𝑗 ≤ 𝑛:
(1) 𝑒𝜋 ( 𝑗) = 𝑥 𝑗 , and
(2) For each 𝐴(𝑒 ′

1
, . . . , 𝑒 ′𝑛𝐴 ) appearing as a sub-term of either the right-hand side 𝑒 or the filter 𝜙 ,

we have 𝑒 ′
𝜋 ( 𝑗) = 𝑥 𝑗 .

𝜋 maps each pure variable to a shared position in all accesses of the tensor being defined in the

update definition. In general, there might be less pure variables than argument positions (𝑛 ≤ 𝑛𝐴);
the other arguments can be any expression of the pure and reduction variables. In any case, this

ensures that there is no circular dependencies between iterations of an update definition: the

expression defining a location at some value of the pure variables can not read from locations

defined for other values of the pure variables, since the pure variables are shared indices of all the

accesses.

If all the filters and all the expressions occurring as index to any tensor in an algorithm are

piecewise quasi-affine combinations of pure and recurrence variables, we say that the algorithm is

an affine algorithm. In this paper, we only consider affine algorithms.
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3.3 Systems of Affine Recurrence Equations

SAREs are a specification language for affine programs used in polyhedral compilers [Karp et al.

1967; Le Verge et al. 1991]. Our tool internally converts Halide algorithms to SAREs, and the formal

proofs in Section 4 assume a SARE as a specification.

A SARE over a signature S is simply a set of equations:

∀𝑥1, . . . , 𝑥𝑛𝐴 , 𝜙 =⇒ 𝐴(𝑥1, . . . , 𝑥𝑛𝐴 ) = 𝑒

where 𝜙 is a Boolean-valued affine formula of 𝑥1, . . . , 𝑥𝑛𝐴 and the program parameters, and 𝑒 is

an expression built from functions and tensor accesses. The “recurrence” part in the name refers

to the fact that an equation defining tensor 𝐴 can itself read from tensor 𝐴. The indices of all

tensor accesses in 𝑒 must be affine expressions of 𝑥1, . . . , 𝑥𝑛𝐴 and the parameters. In addition, if two

equations define the same tensor 𝐴 in their left-hand side, then the domains of the two equations

must be disjoint (that is, the corresponding 𝜙s are mutually exclusive). This allows viewing all the

equations defining 𝐴 as a single equation for 𝐴 defined by case analysis.

The inputs of a SARE are the tensors which never appear as the left-hand side of an equation. A

model𝑀 satisfies a SARE if all the equations of the SARE hold in𝑀 . Note that we do not require

completeness of the SARE equations, nor do we preclude self-references. For instance, the SARE

𝐴(0) = 𝐴(1) is satisfied by all models𝑀 with J𝐴K𝑀 (0) = J𝐴K𝑀 (1), while the SARE 𝐴(0) = 𝐴(0) + 1

is not satisfied by any model.

3.4 Reduction from affine Halide algorithms to SAREs

Let us now explain the reduction from affine Halide algorithms to SAREs. For each tensor 𝐴 in the

Halide algorithm, we will introduce a tensor 𝐴𝑆
to represent 𝐴 in the SARE, as well as intermediate

tensors 𝐴0 to represent the pure definition and 𝐴1, . . . , 𝐴𝑛 to represent the update definitions of

𝐴. The tensor 𝐴0 is directly defined using the pure definition of 𝐴, where each other tensor 𝐵 is

replaced with its SARE equivalent 𝐵𝑆 . The tensor 𝐴𝑖 representing an update definition 𝑈 𝑖
𝐴
has

𝑟 extra indices, where 𝑟 is the number of recurrence variables in 𝑈 𝑖
𝐴
: conceptually, the tensor

is replicated for each value of the recurrence variables. Note that due to the update restriction,

knowing the value of the array indices is enough to know the value of all pure variables appearing

in the right-hand side.

Instead of formal minutiae, we explain the construction of the tensor𝐴𝑖 through examples. In the

matrix multiplication algorithm above, the tensor 𝐷1 has an extra index for dimension 𝑘 . Within

the reduction domain 0 ≤ 𝑘 < 𝐾 , we replace accesses to other tensors with their SARE equivalent,

and replace accesses to 𝐷 to accesses to 𝐷𝑖 with the previous value of 𝑘 . Outside the reduction

domain, we replicate the last value of the previous stage, which is just 𝐷0 (𝑖, 𝑗) in this case:

0 ≤ 𝑘 < 𝐾 ⇒ 𝐷1 (𝑖, 𝑗, 𝑘) = 𝐷1 (𝑖, 𝑗, 𝑘 − 1) +𝐴𝑆 (𝑖, 𝑘) × 𝐵𝑆 (𝑘, 𝑗)
𝑘 < 0 ∨ 𝑘 ≥ 𝐾 ⇒ 𝐷1 (𝑖, 𝑗, 𝑘) = 𝐷0 (𝑖, 𝑗)

The SARE tensor for 𝐷 , 𝐷𝑆
, is defined as the last value of 𝐷1 lexicographically, i.e. 𝐷

𝑆 (𝑖, 𝑗) =

𝐷1 (𝑖, 𝑗, 𝐾 − 1). Note that when 𝐾 ≤ 0, 𝐷1 (𝑖, 𝑗, 𝐾 − 1) is equal to 𝐷0 (𝑖, 𝑗).
There are a few subtleties here. First, if there are multiple reduction variables, the previous value

must be computed lexicographically within the definition rectangle: for two reduction variables

0 ≤ 𝑥 < 𝑋 and 0 ≤ 𝑦 < 𝑌 , the extra indices to a recursive access would be select(𝑦 ≤ 0, 𝑥 − 1, 𝑥)
and select(𝑦 ≤ 0, 𝑌 − 1, 𝑦 − 1) respectively. Second, if there is a filter, when the filter is false, the

previous value of the current stage is directly reused. Finally, if the indices depend on the reduction

variables, all non-updated locations are defined using the previous value of the current stage. For
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instance, the update D(i, 2k) += D(i, k) where 𝑖 is a pure variable and 0 ≤ 𝑘 < 𝐾 is a reduction

variable becomes (within the recurrence domain):

0 ≤ 𝑘 < 𝐾 ⇒ 𝐷1 (𝑖, 2𝑘, 𝑘) = 𝐷1 (𝑖, 2𝑘, 𝑘 − 1) + 𝐷1 (𝑖, 𝑘, 𝑘 − 1)
0 ≤ 𝑘 < 𝐾 ∧ 𝑗 ≠ 2𝑘 ⇒ 𝐷1 (𝑖, 𝑗, 𝑘) = 𝐷1 (𝑖, 𝑗, 𝑘 − 1)

In this construction, we never used the assumption that the Halide algorithm was affine; in fact,

this construction can be used to give a formal semantics to any Halide algorithm as a system

of equations. If the original Halide algorithm was affine, all the expressions introduced by the

transformation are piecewise quasi-affine, and the resulting system of equations is a SARE. We

note that the construction described above introduces unneeded copies, i.e. equations which are

just defined in terms of another tensor. In general, it is not possible to eliminate such copies; since

we are in the affine case, we use isl to symbolically solve for the last non-copy equation using a

similar approach as that of Feautrier [1991].

4 TRANSLATION-VALIDATION OF AFFINE ARRAY PROGRAM

Let us now formalize the ideas presented in Section 2. We present Sched, an annotated imperative

language, and a validator for Sched programs with respect to a SARE. Sched annotations indicate,

for each imperative write, the equation it implements in the specification. We expect the compiler

to be able to elaborate the annotations during the code generation process. In the case of Halide,

we instrumented the Halide compiler to do so, as described in Section 5.

4.1 Verification conditions

Generation of verification conditions by tools such as Why3 [Bobot et al. 2011] or Dafny [Leino

2010] is implemented using a “weakest precondition” predicate transformer in a Hoare-style

logic. Assertions and loop invariants are used to link the code to a formal specification. The

prophetic annotations we have introduced in Section 2 can be seen as assertions, as in this naive

implementation of the matrix product from Section 2:

1 for i = 0 to N - 1 do
2 for j = 0 to M - 1 do
3 r[] := 0
4 assert (r[] = 0)
5 for k = 0 to P - 1 do
6 r[] := r[] + a[i, k] * b[k, j]
7 assert (r[] = R(i, j, k))
8 c[i, j] := r[]
9 assert (c[i, j] = C(i, j))

On its own, these assertions are not enough to prove the equivalence: loop invariants are required

to propagate information across loop iterations, such as the value of r[] at line 6 which is needed

to prove the assertion at line 7. In this case, we need to infer the invariant for the loop on k that we

used in Section 2:

5 for k = 0 to P - 1 do
6 invariant { r[] = if k = 0 then 0 else 𝑅 (i, j, k − 1) }
7 ...

In the general case, if r[] was an array, the invariant would also need to specify the values at

the indices which are not written by the loop.

The process we use to generate invariants, presented in this section, proceeds as follows. We

abstract the memory state of the program using a symbolic heap ℎ, and we abstract the behavior of

a statement 𝑠 by a symbolic heap Δℎ(𝑠) which represents the prophetic writes performed by 𝑠 . We
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Expressions

𝑒, 𝜄 :: = 𝑥 | 𝑙 variable and literals

| 𝑎[𝑒1, . . . , 𝑒𝑛] array indexing

| 𝐴(𝑒1, . . . , 𝑒𝑛) tensor indexing

| let 𝑥 = 𝑒1 in 𝑒2 let expression

| 𝑒1 + 𝑒2 | 𝑛 · 𝑒
| ⌊𝑒/𝑛⌋ | 𝑒 mod 𝑛 linear arithmetic

| 𝑒1 = 𝑒2 | 𝑒1 ≤ 𝑒2 comparisons

| 𝑒1 && 𝑒2 | !𝑒 Boolean connectives

| select(𝑒1, 𝑒2, 𝑒3) conditional expression

| 𝑓 (𝑒1, . . . , 𝑒𝑛) pure function call

Commands

𝑐 :: = skip

| 𝑐1 ; 𝑐2
| 𝑎[𝑒1, . . . , 𝑒𝑛] {𝑒 ′} := 𝑒
| if 𝑒 then 𝑐1 else 𝑐2
| let 𝑥 = 𝑒 in 𝑐

| allocate 𝑎 : 𝜏 [𝑒1 × · · · × 𝑒𝑛] in 𝑐
| for𝑘 𝑥 ≤ 𝑒 do 𝑐

Loop kind

𝑘 :: = seq | par

Fig. 1. Syntax of the implementation language Sched

note ⊲ the (associative) update combinator on symbolic heaps, such that the prophetic evaluation of

statement 𝑠 in any abstract heap ℎ is ℎ ⊲ Δℎ(𝑠). For a loop for i = 0 to N do s, after 0 ≤ 𝑖 ≤ 𝑁

iterations starting in any heap ℎ, we end up in ℎ ⊲Δℎ(𝑠 [i := 0]) ⊲ · · · ⊲Δℎ(𝑠 [i := 𝑖]). If the concrete
evaluation agrees with the prophetic evaluation, this must be a loop invariant when taking ℎ to be

the result of the prophetic evaluation up to that point. Because we verify the equality of concrete

and prophetic evaluation on each assignment, this inferred invariant is correct by construction and

does not need to be checked.

In the remainder of this section, we assume that a signature S is given, with a specification

as a SARE 𝑆 over S. We formulate the verification condition generator as a symbolic evaluator,

using symbolic heaps whose locations are array names indexed by affine expressions of the outer

variables. The values in the symbolic heaps are not referring to any mutable state, only to outer

loop iterators and specification tensors, and can be considered a form of ghost state. The precise

definition of the symbolic heaps using affine sets is postponed until Section 4.5.

The specification deals with possibly infinite domains, hence the implementation can only

implement a subset of the specification. We want to express that evaluating the implementation in

a memory where the input arrays match a subset of the input tensors results in a new memory

where the output arrays match a corresponding subset of the output tensors.

We will occasionally write 𝑒 for a sequence of expressions 𝑒1, . . . , 𝑒𝑛 . When meaningful, different

sequences in the same expression can have different lengths. The length of the sequence is written

|𝑒 |.

4.2 Expressions and Types

The grammars for the expressions of Sched are given in Fig. 1. The distinguished type A of affine

expressions is used for array indices and loop bounds, while the distinguished type B of affine

propositions is used in conditionals. Expressions of those distinguished types are required to be

piecewise quasi-affine expressions (resp. propositions) of the parameters and outer loop iterators. In

particular, values of type A and B cannot be written to arrays, but we allow casting them to a value

type such as int32 using a conversion function. We will ignore the issue of possible overflows in
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the index computations ofA throughout, and simply assume thatA is represented using unbounded

integers. We discuss possible ways of handling integer overflow in Section 7.2.

The typing contexts, ranged over by Γ, are heterogeneous. They can contain:

• Variable bindings 𝑥 : 𝜏 from a name to its type. We only consider bindings of type A or B
to simplify the presentation. Note that variables of value types can be represented using

zero-dimensional arrays.

• Array bindings from names to array shapes 𝑎 : 𝜏 [𝑒1× · · ·×𝑒𝑛]. An array shape 𝜏 [𝑒1× · · ·×𝑒𝑛]
represents a 𝑛-dimensional, rectangular array containing values of type 𝜏 , where dimension 𝑖

has length 𝑒𝑖 . Indices start at 0 in each dimension. Arrays are mutable, and are not initialized.

A mutable variable is a zero-dimensional array.

• Boolean expressions 𝑒 , to keep track of the bounds on loop indices and other conditionals.

These are the path conditions of our symbolic evaluator.

Whenever we write a context Γ, 𝑥 : 𝜏 (resp. Γ, 𝑎 : 𝜏 [𝑒]), we implicitly assume that 𝑥 (resp. 𝑎) is

not bound in Γ. In the case of an array binding, we also assume that the 𝑒𝑖 are well-typed of type A,
using the typing rules below. More generally, we follow the Barendregt convention of 𝛼-renaming

the bound variables to avoid name conflicts.

We assume that all contexts Γ start with a common prefix Γ𝑃 which only contain variable bindings

for the parameters. They are always usable in expressions.

The expressions of Sched can be separated into three categories. Afine expressions are used in

array indices, loop bounds, and conditionals. They are restricted to syntactically affine combinations

of program parameters and outer affine variables, and are typed using the judgement Γ ⊢ 𝑒 : 𝜏

(read "under assumptions Γ, the affine expression 𝑒 has type 𝜏"), where 𝜏 = A for integer affine

expressions or 𝜏 = B for boolean affine expressions. Executable expressions have a value type and
can contain array reads. They are found on the right-hand side of array assignments, and typed

using the judgement Γ ⊢a 𝑒 : 𝜏 , which is read "under assumptions Γ, the expression 𝑒 has executable
type 𝜏". Prophetic expressions have a value type but contain tensor calls instead of array reads, and

are found as prophetic annotations on array assignments. Prophetic expressions are typed using

the judgement Γ ⊢A 𝑒 : 𝜏 , read "under assumptions Γ, the expression 𝑒 has prophetic type 𝜏". The
rules for all those judgements are fairly standard, and given in Fig. 2. select is an eager affine

conditional and can appear in any expresion.

The grammar of commands 𝑐 is given in Fig. 1. It is mostly unsurprising, except that assignments

are annotated with a prophetic expression 𝑒 ′ as presented in Section 2. In addition, loops can

be either sequential or parallel, which is represented by an annotation. The difference between

the kinds of loops will be explained in Section 4.3. Commands are imperative, and do not have a

type; instead, we give a well-formedness judgement Γ ⊢ 𝑐 : Δℎ in Fig. 2. The argument Δℎ in this

judgement is a symbolic heap, which collects the set of prophetic updates performed by 𝑐 . More

details on symbolic heaps will be given in Section 4.5.

Note that Sched lacks both recursion and unbounded (while) loops, making it non-Turing

complete, like Halide. This restriction might seem significant; however, we follow the design of

domain-specific compilers for image processing and machine learning such as Halide or Tensor

Comprehensions on this. They are typically used on kernels which perform a fixed computation

parameterized by the problem size, and which might be repeated in an unbounded outer loop. This

precludes the compiler from optimizing across the boundary of that outer loop. Such optimizations

can be beneficial in particular for the implementation of recurrent neural network, and their

validation could be the topic for future work.
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T-Var

⊢ Γ, 𝑥 : 𝜏

Γ, 𝑥 : 𝜏 ⊢ 𝑥 : 𝜏

T-Array

𝑎 : 𝜏 [𝑒 ′
1
× · · · × 𝑒 ′𝑛] ∈ Γ ∀1 ≤ 𝑖 ≤ 𝑛, Γ ⊢ 𝑒𝑖 : A

Γ ⊢a 𝑎[𝑒1, . . . , 𝑒𝑛] : 𝜏

T-Tensor

𝐴 ∈ S ∀1 ≤ 𝑖 ≤ 𝑛𝐴, Γ ⊢ 𝑒𝑖 : A
Γ ⊢A 𝐴(𝑒1, . . . , 𝑒𝑛𝐴 ) : 𝜏𝐴

T-Bool

𝑏 ∈ {true, false}
⊢ 𝑏 : B

T-Int

⊢ 𝑛 : A

T-Call

∀1 ≤ 𝑖 ≤ 𝑛, 𝑘𝑖 ∈ {𝑘, ∅} ⇒ Γ ⊢𝑘𝑖 𝑒𝑖 : 𝜏𝑖
𝑘 ∈ {a, A} 𝑓 ∈ F 𝜏𝑓 = 𝜏1 × · · · × 𝜏𝑛 → 𝜏

Γ ⊢𝑘 𝑓 (𝑒1, . . . , 𝑒𝑛) : 𝜏

T-Select

𝑘 ∈ {a, A, ∅} Γ ⊢ 𝑒1 : B Γ, 𝑒1 ⊢𝑘 𝑒2 : 𝜏 Γ,¬𝑒1 ⊢𝑘 𝑒3 : 𝜏
Γ ⊢𝑘 select(𝑒1, 𝑒2, 𝑒3)

T-Let

𝑘 ∈ {a, A, ∅} Γ ⊢ 𝑒1 : A Γ, 𝑥 : A ⊢𝑘 𝜏
Γ ⊢𝑘 let 𝑥 = 𝑒1 in 𝑒2 : 𝜏

T-Add

Γ ⊢ 𝑒1 : A Γ ⊢ 𝑒2 : A
Γ ⊢ 𝑒1 + 𝑒2 : A

T-Mul

Γ ⊢ 𝑒 : A
Γ ⊢ 𝑛 · 𝑒 : A

T-Div

Γ ⊢ 𝑒 : A 𝑛 > 0

Γ ⊢ ⌊𝑒/𝑛⌋ : A

T-Mod

Γ ⊢ 𝑒 : A 𝑛 > 0

Γ ⊢ 𝑒 mod 𝑛 : A

T-Cmp

Γ ⊢ 𝑒1 : A Γ ⊢ 𝑒2 : A ⊙ ∈ {=, ≤}
Γ ⊢ 𝑒1 ⊙ 𝑒2 : B

T-And

Γ ⊢ 𝑒1 : B Γ ⊢ 𝑒2 : B
Γ ⊢ 𝑒1 && 𝑒2 : B

T-Not

Γ ⊢ 𝑒 : B
Γ ⊢ !𝑒 : B

Fig. 2. Typing rules for Sched expressions

T-Allocate

Γ, 𝑎 : 𝜏 [𝑒1 × · · · × 𝑒𝑛] ⊢ 𝑐 : Δℎ ∀1 ≤ 𝑖 ≤ 𝑛, Γ ⊢ 𝑒𝑖 : A
Γ ⊢ allocate 𝑎 : 𝜏 [𝑒1 × · · · × 𝑒𝑛] in 𝑐 : Δℎ\𝑎

T-Skip

Γ ⊢ skip : ∅

T-Seq

Γ ⊢ 𝑐1 : Δℎ1 Γ ⊢ 𝑐2 : Δℎ2
Γ ⊢ 𝑐1 ; 𝑐2 : Δℎ1 ⊲ Δℎ2

T-If

Γ ⊢ 𝑒 : B Γ, 𝑒 ⊢ 𝑐1 : Δℎ1 Γ,¬𝑒 ⊢ 𝑐2 : Δℎ2
Γ ⊢ if 𝑒 then 𝑐1 else 𝑐2 : (Δℎ1 ↾ 𝑒) ⊎ (Δℎ2 ↾ ¬𝑒)

T-SeqLoop

Γ ⊢ 𝑒 : A Γ, 𝑥 : A , 0 ≤ 𝑥 < 𝑒 ⊢ 𝑐 : Δℎ
Γ ⊢ forseq 𝑥 ≤ 𝑒 do 𝑐 : lexmax0≤𝑥<𝑒Δℎ

T-ParLoop

Γ ⊢ 𝑒 : A Γ, 𝑥 : A , 0 ≤ 𝑥 < 𝑒 ⊢ 𝑐 : Δℎ

Γ ⊢ forpar 𝑥 ≤ 𝑒 do 𝑐 :
⋃

0≤𝑥<𝑒
Δℎ

T-Assign

Γ ⊢𝑎 𝑒 : 𝜏 𝑎 : 𝜏 [𝑒 ′
1
× · · · × 𝑒 ′𝑛] ∈ Γ Γ ⊢𝐴 𝑡 : 𝜏 ∀1 ≤ 𝑖 ≤ 𝑛, Γ ⊢ 𝑒𝑖 : A

Γ ⊢ 𝑎[𝑒1, . . . , 𝑒𝑛]𝑡 := 𝑒 : {𝑎[𝑒1, . . . , 𝑒𝑛] ↦→ 𝑡}

Fig. 3. Well-formedness rules for statements
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4.3 Dynamic semantics

We will give a single semantics for all Sched expressions, targeting the set of values V = U ∪ Z ∪
{true, false}⊎{⊥}.⊥ is a distinguished value representing an undefined or unknown computation;

affine expressions have values in Z ∪ {true, false,⊥} while executable and prophetic expressions

have values in U ⊎ {⊥}.
The semantics is given in a dynamic environment ⟨E; 𝜇⟩ where the stack E is a map from variable

names to Z ∪ {true, false}, and the memory 𝜇 is a map from locations to U ⊎ {⊥}. Locations,
ranged over by ℓ , are multidimensional array cells, that is, array names indexed by integers:

ℓ :: = 𝑎[𝑛1, . . . , 𝑛𝑛]
The evaluation function J𝑒KE;𝜇 for expressions is fairly standard, and not reproduced here for

brevity. It assumes the presence of a model𝑀 of the specification for the tensor reads.⊥ is treated as

an error value, and is propagating: if any computation involves⊥, the result is⊥. Following Halide’s
design, select is eager, and evaluates all its arguments before choosing a value depending on the

conditional, although a lazy version could be considered. Illegal expressions (such as accessing an

undefined variable, reading an undefined location, or performing an ill-typed operation, including

using a tensor or function with incorrect arity) evaluate to ⊥.
If 𝑒 does not contain any array reads (e.g. 𝑒 is an affine or prophetic expression), then clearly

J𝑒KE;𝜇 is independent of 𝜇, and we write the corresponding value J𝑒KE .
The evaluation of a command 𝑐 in environment ⟨E; 𝜇⟩ into updates Δ𝜇 with reads 𝜌 , written

E; 𝜇 ⊢ 𝑐 ⇓𝑢 Δ𝜇; 𝜌 , is defined inductively in Fig. 4, and deserves some consideration. Let us ignore

𝜌 for the moment and focus on the updates Δ𝜇. It is not a final memory; rather, it should be

understood as a set of updates to be applied to the initial memory 𝜇. Hence, we call our semantics

an update semantics. The usual formulation of a dynamic semantics E, 𝜇 ⊢ 𝑐 ⇓ 𝜇 ′, where 𝜇 ′ is the
final memory, can be related to our update semantics as follows:

(∃𝜌.E; 𝜇 ⊢ 𝑐 ⇓𝑢 Δ𝜇; 𝜌) if, and only if, E, 𝜇 ⊢ 𝑐 ⇓ 𝜇 ⊲ Δ𝜇 (2)

The update operator ⊲, read “then”, is defined as 𝜇1 ⊲ 𝜇2 = (𝜇1\dom(𝜇2)) ⊎ 𝜇2. It can best be

understood through rule U-Seq: it contains the mappings of 𝜇2 and those of 𝜇1 not overwritten by

𝜇2. ⊲ is associative, and we define the iterated update ⊲0≤𝑖<𝑛 𝜇𝑖 = 𝜇0 ⊲ . . . ⊲ 𝜇𝑛−1.
The first motivation for using an update semantics instead of a more traditional presentation is

that, combined with prophetic expressions, it allows for a presentation that can be easily evaluated

symbolically. Consider rule U-For defining the semantics of a sequential loop. Since ⊲ is the

repeated application of ⊲, it amounts to repeating rule U-Seq J𝑒KE;𝜇0 times: we evaluate an iteration

𝑖 in a memory that has seen the updates from all iterations 𝑗 < 𝑖 . Indeed, if we can compute a

symbolic representation of memory 𝜇 ′𝑖 as a function of 𝑖 without knowing the input memory, then

it only remains to build a symbolic version of the iterated update ⊲ to have a symbolic evaluator.

Prophetic expressions give us the first component, while the affine restrictions mean that we can

compute an exact symbolic representation of ⊲.
The second motivation for using an update semantics is that it allows us to express the semantics

of parallel loops in a lightweight manner. Workflows expressed in 𝑛-dimensional array languages

are often highly parallelizable; in fact, many workflows require parallelization to achieve the high

performance promised by these languages, especially on highly parallel hardware such as GPUs.

The difficulty in designing a symbolic evaluator for parallel loops is linked to the handling of

synchronization primitives. Fortunately, compilers for 𝑛-dimensional array languages mostly use

synchronization within parallel loops using a rather predictable pattern: parallel loops can be

separated in sequential stages, with an unconditional global barrier between stages. There are no

other synchronization primitives than those global barriers.
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We can represent a parallel loop with multiple stages separated by barriers as multiple parallel

loops of the same size where each barrier is replaced by closing the current loop and starting a

fresh one. In fact, we do not even have to do this transformation: compilers such as Halide or

Tensor Comprehension use non-communicating parallel loops and only introduce barriers late in

the compilation process, and only when targeting GPUs. The algorithm for the introduction of

barriers could be verified independently.

Since our parallel loops are synchronization-free, it should be possible to execute the threads in

any order and get the same result. However, this is not true if there are data races. Hence, we wish to

only allow race-free executions. We do this by evaluating each iteration of the loop independently

in rule U-Par, and then requesting that the memories 𝜇𝑖 and 𝜇 𝑗 produced by distinct operations are

disjoint, i.e. different threads never write to the same location. In addition, this is where we use the

set of read locations 𝜌 to ensure that no thread reads a location that is written by a different thread.

The rule U-Par ensures there are no race conditions using the disjointness operator # to ensure

that different threads only access different regions of memory.

The rule U-Allocate allows for the local allocation of arrays. It creates a fresh local array and

initializes it with undefined values. Local arrays are properly scoped: local arrays allocated in

different threads do not alias. Writes and reads to the local arrays are erased when evaluating the

allocate statement.

The rule U-Assign uses a domain check to ensure that there are no out-of-bounds writes, and

computes the set of locations read during evaluation of the right-hand side 𝑒 using the reads
function. The definition of reads is not reproduced here; reads(𝑒) is the list of all sub-expressions
of 𝑒 which are array accesses. For instance, reads(0 × 𝑥 [𝑖]) = {𝑥 [𝑖]}. Jreads(𝑒)KE;𝜇 is the set of
locations obtained by evaluating these accesses.

4.4 Symbolic evaluation

We will now build a symbolic evaluator for Sched. The symbolic evaluator will make use of the

prophetic expressions in order to break the self-referential cycle of sequential loops.

The judgement Γ;ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅 is presented in Fig. 5 and follows the dynamic evaluation

rules of Sched. The typing environment Γ and the input heap ℎ are symbolic representations

of the dynamic environment ⟨E; 𝜇⟩. The symbolic updates Δℎ and read locations 𝑅 are symbolic

versions of the updates Δ𝜇 and read locations 𝜌 .𝐶 is an additional parameter: it is a symbolic set of

equalities, with affine quantification. It will collect the verification conditions corresponding to the

equality between prophetic expression and executable expression at each assignment.

Surprisingly, most of the rules for the symbolic evaluator are straightforward — assuming that

the constraints, updates, and reads can be represented symbolically, which we will show later

by exploiting the affine restrictions we place on programs. The rules match closely the dynamic

semantics; in addition, except for the rule S-SeqLoop, they are algorithmic: the outputs Δℎ and 𝑅

(in red) and the constraints𝐶 (in purple) never appear as inputs of the inductive applications of the

predicate.

In the case of sequential loops, the output Δℎ appears as input to the recursive call inside the

lexmax. This would block the symbolic evaluation, as it requires us to invent the summary Δℎ of

a single iteration of the loop. Fortunately, we have prophetic expressions to solve the issue: by

examining the rules, we can see that the output Δℎ only depends on the prophetic expressions,

ignoring the right-hand side of all assignments. In fact, the summary is always the one computed

by the well-formedness judgement for statements:

Lemma 4.1. If Γ;ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅 holds, then Γ ⊢ 𝑐 : Δℎ also holds.
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U-Skip

E; 𝜇 ⊢ skip ⇓𝑢 ∅; ∅

U-Seq

E; 𝜇 ⊢ 𝑠1 ⇓𝑢 𝜇1; 𝜌1 E; 𝜇 ⊲ 𝜇1 ⊢ 𝑠2 ⇓𝑢 𝜇2; 𝜌2
E; 𝜇 ⊢ 𝑠1 ; 𝑠2 ⇓𝑢 𝜇1 ⊲ 𝜇2; 𝜌1 ∪ 𝜌2

U-If-True

J𝑒KE;𝜇 = true E; 𝜇 ⊢ 𝑠1 ⇓𝑢 𝜇 ′; 𝜌
E; 𝜇 ⊢ if 𝑒 then 𝑠1 else 𝑠2 ⇓𝑢 𝜇 ′; 𝜌

U-If-False

J𝑒KE;𝜇 = false E; 𝜇 ⊢ 𝑠2 ⇓𝑢 𝜇 ′; 𝜌
E; 𝜇 ⊢ if 𝑒 then 𝑠1 else 𝑠2 ⇓𝑢 𝜇 ′; 𝜌

U-Let

E + 𝑥 ↦→ J𝑒KE;𝜇 ; 𝜇 ⊢ 𝑐 ⇓𝑢 𝜇 ′; 𝜌
E; 𝜇 ⊢ let 𝑥 = 𝑒 in 𝑐 ⇓𝑢 𝜇 ′; 𝜌

U-For

∀0 ≤ 𝑖 < J𝑒KE;𝜇0 , E + 𝑥 ↦→ 𝑖; 𝜇0 ⊲ ⊲
0≤ 𝑗<𝑖

𝜇 ′𝑗 ⊢ 𝑐 ⇓𝑢 𝜇
′
𝑖 ; 𝜌𝑖

E; 𝜇0 ⊢ forseq 𝑥 ≤ 𝑒 do 𝑐 ⇓𝑢 ⊲
0≤𝑖<J𝑒KE;𝜇

0

𝜇 ′𝑖 ;
⋃

0≤𝑖<J𝑒KE;𝜇
0

𝜌𝑖

U-Par

∀0 ≤ 𝑖 < J𝑒KE;𝜇 , E + 𝑥 ↦→ 𝑖; 𝜇 ⊢ 𝑐 ⇓𝑢 𝜇𝑖 ; 𝜌𝑖 ∀0 ≤ 𝑖 ≠ 𝑗 < J𝑒KE;𝜇 , 𝜇𝑖#𝜇 𝑗 ∀0 ≤ 𝑖 ≠ 𝑗 < J𝑒KE;𝜇 , 𝜇𝑖#𝜌 𝑗

E; 𝜇 ⊢ forpar 𝑥 ≤ 𝑒 do 𝑐 ⇓𝑢
⋃

0≤𝑖<J𝑒KE;𝜇

𝜇𝑖 ;
⋃

0≤𝑖<J𝑒KE;𝜇

𝜌𝑖

U-Assign

J𝑒KE;𝜇 = 𝑣 J𝑒𝑖KE;𝜇 = 𝑛𝑖 for all 0 ≤ 𝑖 < 𝑛 𝑎[𝑛1, . . . , 𝑛𝑛] ∈ dom(𝜇)
E; 𝜇 ⊢ 𝑎[𝑒1, . . . , 𝑒𝑛] {𝑡} := 𝑒 ⇓𝑢 {𝑎[𝑛1, . . . , 𝑛𝑛] ↦→ 𝑣}; Jreads(𝑒)KE;𝜇

U-Allocate

J𝑒𝑖KE;𝜇 = 𝑛𝑖 for all 0 ≤ 𝑖 < 𝑛
𝜇𝑎 = {𝑎[𝑖1, . . . , 𝑖𝑛] ↦→ ⊥ | 0 ≤ 𝑖1 < 𝑛1 ∧ · · · ∧ 0 ≤ 𝑖𝑛 < 𝑛𝑛} E; (𝜇\𝑎) ∪ 𝜇𝑎 ⊢ 𝑐 ⇓𝑢 𝜇 ′; 𝜌

E; 𝜇 ⊢ allocate 𝑎 : 𝜏 [𝑒1, . . . , 𝑒𝑛] in 𝑐 ⇓𝑢 𝜇 ′\𝑎; 𝜌\𝑎

Fig. 4. Update semantics for Sched statements

Proof. The proof follows by induction and remarking that the rules of Γ ⊢ 𝑐 : Δℎ are exactly

those of Γ;ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅 with the premises involving ℎ, 𝐶 and 𝑅 removed. □

Hence, the following strategy for the evaluation of sequential loops: first, we compute the

iteration summary using the Γ ⊢ 𝑐 : Δℎ judgement which does not require a precise description of

the symbolic heap. Then, we plug the resulting Δℎ in the input heap ℎ ⊲ lexmax0≤𝑥 ′<𝑥Δℎ[𝑥/𝑥 ′] of
the symbolic evaluation judgement to compute the constraint𝐶 and the reads 𝑅. By using Γ ⊢ 𝑐 : Δℎ,
we rely on the fact that the concrete evaluation will follow the prophetic evaluation. The constraints

𝐶 are the price we pay for that: they keep track of the equalities that must hold for this property to

be true, tying the knot and ensuring the well-foundedness of our approach.

Another rule that requires some consideration is rule S-Assign. As mentioned above, reads(𝑒)
is the list of the array accesses in 𝑒 , interpreted here as a symbolic set of locations. This symbolic

set of locations is then used in rule S-Par in order to check for race freedom. In addition, rule

S-Assign has conditions Γ ⊢ J𝑒Kℎ ≠ ∅ (ensuring all array reads in 𝑒 are defined) and Γ ⊢ 0 ≤ 𝑒𝑖 < 𝑒 ′𝑖
(ensuring the write is within the array bounds). These two conditions are quasi-affine formulas,

whose entailment from the context Γ must be checked.
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S-Allocate

Γ, 𝑎 : 𝜏 [𝑒1 × · · · × 𝑒𝑛];ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅 Γ ⊢ 𝑒𝑖 : A for all 1 ≤ 𝑖 ≤ 𝑛
Γ;ℎ ⊢ 𝐶 =⇒ allocate 𝑎 : 𝜏 [𝑒1 × · · · × 𝑒𝑛] in 𝑐 : Δℎ\𝑎;𝑅\𝑎

S-Skip

Γ;ℎ ⊢ ∅ =⇒ skip : ∅; ∅

S-Seq

Γ;ℎ ⊢ 𝐶1 =⇒ 𝑐1 : Δℎ1;𝑅1 Γ;ℎ ⊲ Δℎ1 ⊢ 𝐶2 =⇒ 𝑐2 : Δℎ2;𝑅2

Γ;ℎ ⊢ 𝐶1 ∪𝐶2 =⇒ 𝑐1 ; 𝑐2 : Δℎ1 ⊲ Δℎ2;𝑅1 ∪ 𝑅2

S-Let

Γ ⊢ 𝑒 : A Γ, 𝑥 : A, 𝑥 = 𝑒;ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅

Γ;ℎ ⊢ 𝐶 [𝑥/𝑒] =⇒ let 𝑥 = 𝑒 in 𝑐 : Δℎ[𝑥/𝑒];𝑅 [𝑥/𝑒]

S-SeqLoop

Γ ⊢ 𝑒 : A Γ, 𝑥 : A , 0 ≤ 𝑥 < 𝑒;ℎ ⊲ lexmax0≤𝑥 ′<𝑥Δℎ[𝑥 ′/𝑥] ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅

Γ;ℎ ⊢
⋃

0≤𝑥<𝑒
𝐶 =⇒ forseq 𝑥 ≤ 𝑒 do 𝑐 : lexmax0≤𝑥<𝑒Δℎ;

⋃
0≤𝑥<𝑒

𝑅

S-ParLoop

Γ ⊢ 𝑒 : A Γ, 𝑥 : A , 0 ≤ 𝑥 < 𝑒;ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅 Γ, 𝑥 : A, 𝑦 : A, 0 ≤ 𝑥 ≠ 𝑦 < 𝑒 ⊢ dom(Δℎ)#𝑅 [𝑥/𝑦]
Γ, 𝑥 : A, 𝑦 : A, 0 ≤ 𝑥 ≠ 𝑦 < 𝑒 ⊢ dom(Δℎ)#dom(Δℎ) [𝑥/𝑦]

Γ;ℎ ⊢
⋃

0≤𝑥<𝑒
𝐶 =⇒ forpar 𝑥 ≤ 𝑒 do 𝑐 :

⋃
0≤𝑥<𝑒

Δℎ;
⋃

0≤𝑥<𝑒
𝑅

S-If

Γ ⊢ 𝑒 : B Γ, 𝑒;ℎ ⊢ 𝐶1 =⇒ 𝑐1 : Δℎ1;𝑅1 Γ,¬𝑒;ℎ ⊢ 𝐶2 =⇒ 𝑐2 : Δℎ2;𝑅2

Γ;ℎ ⊢ (𝐶1 ↾ 𝑒) ⊎ (𝐶2 ↾ ¬𝑒) =⇒ if 𝑒 then 𝑐1 else 𝑐2 : (Δℎ1 ↾ 𝑒) ⊎ (Δℎ2 ↾ ¬𝑒); (𝑅1 ↾ 𝑒) ⊎ (𝑅2 ↾ ¬𝑒)

S-Assign

𝑎 : 𝜏 [𝑒 ′
1
× · · · × 𝑒 ′𝑛] ∈ Γ Γ ⊢𝑎 𝑒 : 𝜏

Γ ⊢𝐴 𝑡 : 𝜏 Γ ⊢ 𝑒𝑖 : A for all 1 ≤ 𝑖 ≤ 𝑛 Γ ⊢ 0 ≤ 𝑒𝑖 < 𝑒 ′𝑖 for all 1 ≤ 𝑖 ≤ 𝑛 Γ ⊢ J𝑒Kℎ ≠ ∅
Γ;ℎ ⊢ J𝑒Kℎ ¨ {𝑡} =⇒ 𝑎[𝑒1, . . . , 𝑒𝑛] {𝑡} := 𝑒 : {𝑎[𝑒1, . . . , 𝑒𝑛] ↦→ 𝑡}; reads(𝑒)

Fig. 5. Typing rules and prophecies

4.5 Affine symbolic heaps

Let us now explain in more details how the symbolic representations used by the evaluator are

represented. A symbolic heap is a finite union of symbolic chunks, each represented by an array

name, local variables 𝑥 , index expressions 𝑒 , value expression 𝑒 , and condition 𝜙 :

{𝑥 .𝑎[𝑒] ↦→ 𝑒 | 𝜙}

The index expressions are affine combinations of the local variables and the free variables of the

chunk, while 𝜙 is a conjunction of affine equalities and inequalities of the same variables. However,

the value expression 𝑒 is an arbitrary prophetic expression (i.e. it does not contain array accesses,

and can be evaluated independently of program memory).

Given a model𝑀 for the specification, we can evaluate a symbolic heap as a memory, by taking

the union of its definition on chunks.

J{𝑥 .𝑎[𝑒] ↦→ 𝑒 | 𝜙}KE = {𝑎[J𝑒KE+𝑥 ↦→𝑛] ↦→ J𝑒KE+𝑥 ↦→𝑛 | J𝜙KE+𝑥 ↦→𝑛}
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The braces on the left are the syntactic objects defining the symbolic chunks, while the braces

on the right describe a comprehension in the meta-theory. This evaluates to the mappings such

that there exists integer values 𝑛𝑖 for the 𝑥𝑖 for which 𝜙 (𝑛) holds.
Note that we do not enforce the functionality of our symbolic heaps. The same location could

be associated with different expressions, or the same expressions for different values of 𝑥 , which

ultimately evaluate to different values. If that is the case, the evaluation function replaces the value

with ⊥.
We will define symbolic sets of locations (ranged over by 𝑅), as symbolic heaps without a range,

written {𝑥 .𝑎[𝑒] | 𝜙}. They evaluate to sets of locations. The domain of a symbolic heap, dom(ℎ), is
taken by erasing the range of the heap. Similarly, we define sets of symbolic expressions (ranged

over by 𝐶) as symbolic heaps without locations, written {𝑥 .𝑒 | 𝜙}. They evaluate to sets of values.

For a set of boolean expressions 𝐶 , we write E ⊨ 𝐶 to indicate that false ∉ J𝐶KE ; that is, E ⊨ 𝐶 if

all the equalities in 𝐶 hold.

Since symbolic domains are equivalently defined by a single formula 𝜙 for each array, we can

define the usual set operations (union, intersection, difference, etc.) by applying the corresponding

connective to the 𝜙 formulas appropriately. The union is trivial by definition for each of those

structures; we can also intersect a symbolic heap ℎ (or symbolic domain, or symbolic range) with

an affine condition 𝑒 , written ℎ ↾ 𝑒 .
In addition, we need to define the following operations, used in our dynamic semantics, for

which we need a symbolic version:

• For the update combinator ℎ1 ⊲ ℎ2 we can simply use its defining equation (ℎ1\dom(ℎ2)) ∪ ℎ2
which is already expressible;

• For the iterated union

⋃
0≤𝑥<𝑒 ℎ, where 𝑒 is a symbolic expression, we can simply introduce

an additional local quantifier:⋃
0≤𝑦<𝑒

{𝑥 .𝑎[𝑒] ↦→ 𝑒 ′ | 𝜙} = {𝑥𝑦.𝑎[𝑒] | 𝑒 ′ | 0 ≤ 𝑦 < 𝑒 ∧ 𝜙}

• The iterated update can also be expressed symbolically. If we recall its definition, the iterated

update ⊲0≤𝑖<𝑛 𝜇𝑖 of a sequence of memories is the memory 𝜇 which contains, for a location

ℓ , the value 𝑣 = 𝜇𝑖 (ℓ) for the last 𝑖 which writes to that location (if it exists). Hence, the

contribution of an iteration 𝑖 is the subset of 𝜇𝑖 which is not overwritten by any of the 𝜇 𝑗 for

𝑗 > 𝑖 .

Using this alternate formulation, we can represent ⊲0≤𝑥<𝑒 ℎ using the operations we have

already defined and a substitution operation ℎ[𝑥 ′/𝑥], which replaces the variable 𝑥 in ℎ with

the variable 𝑥 ′:

⊲
0≤𝑥<𝑒

ℎ =
⋃

0≤𝑥<𝑒

(
ℎ\dom(

⋃
𝑥<𝑥 ′<𝑒

ℎ[𝑥 ′/𝑥])
)

If we extend this construction to handle multiple variables at once, only keeping the lexi-

cographically latest write in a bounded multidimensional space, we obtain a lexicographic

maximum combinator which is well-studied in the polyhedral literature and admits efficient

computations using Parametric Integer Programming without nested quantification.

Even though we are only computing the maximum one dimension at a time, we will write

the symbolic version of our iterated update combinator lexmax0≤𝑥<𝑒ℎ.
• The compatibility ℎ1 ¨ ℎ2 of two heaps indicate that they agree on their common domain. It

can be expressed using a set of equalities (where 𝑎[𝑒] = 𝑎′[𝑒 ′] is false if 𝑎 ≠ 𝑎′ or |𝑒 | ≠ |𝑒 ′ |,
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and 𝑒1 = 𝑒
′
1
∧ · · · ∧ 𝑒 |𝑒 | = 𝑒 ′|𝑒 | otherwise):

{𝑥 .𝑎[𝑒] ↦→ 𝑒 | 𝜙} ¨ {𝑦.𝑎′[𝑒 ′] ↦→ 𝑒 ′ | 𝜙 ′} = {𝑥𝑦.𝑒 = 𝑒 ′ | 𝜙 ∧ 𝜙 ′ ∧ 𝑎[𝑒] = 𝑎′[𝑒 ′]}

We have E ⊨ ℎ1 ¨ ℎ2 if, and only if, for all ℓ ↦→ 𝑣1 ∈ Jℎ1KE and ℓ ↦→ 𝑣2 ∈ Jℎ2KE , 𝑣1 = 𝑣2. That
is, E ⊨ ℎ1 ¨ ℎ2 if and only if Jℎ1KE;𝑀 ¨ Jℎ2KE;𝑀 .

Finally, we define the evaluation function of an expression 𝑒 in a symbolic heap ℎ, J𝑒Kℎ , which
yields a symbolic set of expressions by replacing array indices in 𝑒 with the corresponding expres-

sion(s) in ℎ. If any of the array indices in 𝑒 are not defined in ℎ, the resulting evaluation J𝑒Kℎ is

empty.

We note that none of the operations presented here strictly depend on the affine restrictions

we have placed on programs. However, if the formulas we consider are quasi-affine, we stay in a

decidable subset of arithmetic, namely Presburger arithmetic with modulus, which also admits

quantifier elimination. This allows us to use isl [Verdoolaege 2010], a specialized library to

represent parametric integer sets, and efficiently implement the operations described above.

4.6 Correctness proof

We now present the main arguments forming a proof that our symbolic evaluator correctly captures

the dynamic semantics of Sched.

To that regard, we say that a local environment E is compatible with a typing environment Γ,
denoted E ⊨ Γ, if:

• All variables in Γ have a corresponding value in E of the right type.

• For any array declaration in Γ, the array bounds evaluate to integers.

A memory 𝜇 is compatible with typing environment Γ in local environment E if E ⊨ Γ and

further for each array declaration 𝑎 : 𝜏 [𝑒1 × · · · × 𝑒𝑛] in Γ, the locations in 𝜇 for array 𝑎 are a subset
of the 𝑎[𝑖1, . . . , 𝑖𝑛] where 0 ≤ 𝑖𝑖 < J𝑒𝑖KE;𝜇 , with values in J𝜏K.
Then, we can quite easily show that well-typed prophetic and index expressions evaluate to

values of the proper type.

Lemma 4.2. If Γ ⊢ 𝑒 : 𝜏 or Γ ⊢𝐴 𝑒 : 𝜏 then for all ⟨E; 𝜇⟩ such that Γ ⊢ ⟨E; 𝜇⟩, we have J𝑒KE;𝜇 ∈ J𝜏K.
Furthermore, if a heap ℎ is well-formed in Γ, then for all E compatible with Γ, JℎKE is compatible with
Γ in E.

Proof. The proof is immediate by induction on the typing judgement, since tensors accesses

are total and prophetic and index expressions cannot contain array reads. □

The corresponding lemma for well-typed expressions is more involved, as it require additional

conditions on the memory to ensure all arrays are defined.

Lemma 4.3. If Γ ⊢𝑎 𝑒 : 𝜏 , ℎ is well-formed in Γ, and Γ ⊢ J𝑒Kℎ ≠ ∅ then for all E compatible with Γ,
we have J𝑒KE;JℎKE = JJ𝑒KℎKE ∈ J𝜏K.

Proof. The proof follows by structural induction on 𝑒 . The inductive cases are mechanic, and

the base case is that of an array access, where the condition Γ ⊢ J𝑎[𝑒1, . . . , 𝑒𝑛]Kℎ ≠ ∅ ensures that in

all environments E compatible with Γ, 𝑎[J𝑒1KE, . . . , J𝑒𝑛KE] is defined in JℎKE with a value of type

𝜏𝑎 , from which the equality follows. □

The same property holds for the symbolic evaluator, which is the main correctness condition for

our verifier.
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Theorem 4.4. If Γ;ℎ ⊢ 𝐶 =⇒ 𝑐 : Δℎ;𝑅, then for all E compatible with Γ such that E ⊨ 𝐶 , we have
E; 𝜇 ⊢ 𝑐 ⇓𝑢 JΔℎKE ; J𝑅KE , for any memory 𝜇 ⊇ JℎKE such that the locations defined in 𝜇 are exactly
those declared in Γ.

Proof. The proof is again by structural induction on the symbolic evaluation judgement. It relies

on the fact that, due to the updating nature of our semantics, an evaluation in a memory 𝜇 stays valid

in a larger memory 𝜇 ′ ⊇ 𝜇 and evaluates to the same set of updates. The most interesting case is that

of S-Assign, where we use Lemma 4.3, the fact that evaluation to a non-⊥ value is preserved in a

larger memory, and the false ∉ JJ𝑒Kℎ ¨ {𝑡}KE condition to show that JJ𝑒KℎKE = J𝑟KE . Other cases
worth mentioning are S-Allocate where the newly initialized memory is immediately weakened;

and rule S-SeqLoop, which makes use of the equality Jlexmax0≤𝑥<𝑒ℎKE = ⊲0≤𝑖<J𝑒KE JℎKE+𝑥 ↦→𝑖 to

generate the premises for U-SeqLoop. □

5 EXPERIMENTS

This section discusses the implementation of the approach described in Section 4 in OCaml, using

bindings to the isl library [Verdoolaege 2010] to represent affine expressions, and the Z3 SMT

solver [de Moura and Bjørner 2008] to discharge the generated verification conditions.

5.1 Generation of Sched from Halide

The Halide compiler is a parameterized code generator: the schedule guides the generation of

imperative code from the specification. We instrumented the Halide compiler to add prophetic

annotations to the generated code, as described below. We also altered the compiler to produce a

textual representation of the specification which can be parsed with our tool without having to

interpret the C++ DSL.

Halide starts by generating an imperative loop nest where the arrays live in the specification

index space, shifted to start at 0. We thus annotate each assignment with the stage, reduction

variables, and a copy of the original tensor indices. Since transformations must preserve the

semantics of the right-hand side of the assignment, subsequent transformations are applied to the

annotations as if they were part of the right-hand side. We note that this approach can be applied

to any compiler which generates a loop structure from the specification before possibly applying

structure-preserving transformations. In particular, this is the case for polyhedral compilers.

Multidimensional arrays are eventually flattened into buffers in linear memory. We annotate

accesses to the flat buffer with the original multidimensional array indices, so that we are able to

recover the multidimensional affine program. Linearized and multidimensional indices are both

kept, making the linearization step independently verifiable, as discussed in Section 7.1.

Finally, the cause of most non-trivial issues encountered when threading the annotations through

the compiler pipeline are due to Halide’s representation of vectorized loops. After the linearization

to flat buffers, vectorized loops are replaced with a ramp intrinsic encoding multiple indices at once

by implicitely representing the lane index. Halide relies on LLVM to transform this ramp intrinsic

into hardware vector instructions when possible. Transformations involving this implicit lane index

are not accurately captured by our annotations, requiring some engineering effort to support them.

Although they do not pose theoretical issues, we have disabled two optimization passes that could

cause complex multidimensional ramps for the sake of simplicity.

5.2 OCaml prototype

Our tool takes the annotated output generated from the Halide compiler and rebuilds a Halide

algorithm and a Sched candidate implementation from that output.
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We first convert all the indices and statement-level conditonals into piecewise quasi-affine

functions represented using isl, and simplify them based on the context. ramp-based vectors are

transformed into parallel loops with an explicit index. The code generated by Halide often features

two “accidentally non-affine” constructs, which we convert into an equivalent affine representation.

First, when multiple dimensions of sizes 𝑒1, . . . , 𝑒𝑛 are parallelized, Halide uses a single parallel

loop with size 𝑒1 × · · · × 𝑒𝑛 , which we recognize and split into nested parallel loops of affine sizes.

Second, Halide can generate expressions of the form ⌊(𝑒 × 𝑒 ′ − 1)/𝑒⌋, which is always equal to

𝑒 ′−sgn(𝑒) provided 𝑒 is non-zero. Since Halide’s simplifier fails to do so, we recognize and simplify

this pattern.

After this initial conversion phase, our tool implements the algorithms described in Section 4.

We rely on isl to represent symbolic heaps, domains, and ranges. The coalescing operation

provided by isl has proven effective to keep simple representations of the symbolic heaps as

they get updated. isl uses parametric integer programming [Feautrier 1988] to perform efficient

quantifier elimination for the union and lexmax operators. Symbolic operations and simplifications

on Presburger arithmetic is a unique asset of isl — tailored to the needs of polyhedral compilation;

these operations would be much more cumbersome and inefficient to reproduce using Z3 (or any

feasibility-focused solver).

We note two optimizations that we make in the representation to improve efficiency. In order

to represent symbolic sets and heaps where the right-hand side expression does not have to

be affine, we transform every such expression into a template where each index of a tensor is

replaced with an affine hole. The templates are then de-duplicated. Similarly, to represent the set of

constraints 𝐶 , we make the observation that in a correct compilation, the indices in the right-hand

side (the implementation expression) of the equalities generated by rule S-Assignmust be deducible

only from the indices in the left-hand side (the specification expression). Hence, we compute an

expression of the former as a piecewise quasi-affine function of the latter, and only store the set of

specification indices, thereby reducing the dimensionality of the set.

Once the toplevel set of constraints 𝐶 has been computed, we generate Z3 queries to prove the

corresponding equalities. The translation to Z3 is mostly straightforward. We first encode the Halide

algorithm into a SARE, which are then encuded using the define-funs-rec facility [Barrett et al.

2010]. The well-formedness constraint on Halide algorithms ensures that these mutually recursive

functions are well-defined, but it is not checked. Z3 has specialized support for such recursive

functions which is typically more efficient than a direct encoding using quantifiers. Each constraint

in 𝐶 is a set of equalities which can then be expressed directly in Z3’s logic. Note that thanks to

the coalescing and simplifications performed by isl, there are typically fewer constraints to be

verified than assignments in the program, because unrolled statements yield the same constraint.

In addition, we observe that the domain of the formula is often, but not always, simple. It might

be worth investigating whether the coalescing logic of isl can be improved to better coalesce

the sets produced by our tool. In the outer product example of Section 2, the constraint is exactly

∀0 ≤ 𝑖 < 𝑁, 0 ≤ 𝑗 < 𝑀.𝐴(𝑖) × 𝐵( 𝑗) = 𝐵( 𝑗) ×𝐴(𝑖).
Finally, we perform additional processing before sending the generated equalities to Z3, lever-

aging polyhedral checks on indices using isl in a best-effort strategy. Namely, before sending

an equality 𝑒𝑠 = 𝑒𝑖 where 𝑒𝑠 comes from a prophetic annotation and 𝑒𝑖 was inferred from the

implementation:

• We unfold the tensors in 𝑒𝑠 which do not appear in the transitive dependences of the tensors

in 𝑒𝑖 , excluding cycles.

• For each access 𝑎𝑠 in 𝑒𝑠 and 𝑎𝑖 in 𝑒𝑖 to the same tensor, if the indices are equal, we replace

both accesses with the same let-bound variable to either 𝑎𝑠 or 𝑎𝑖 .
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In most cases, after these simplifications, the equality contains the same accesses syntactically on

both sides of the equality, helping Z3 focus on value-level reasoning rather than on resolving tensor

indexings.

5.3 Benchmark selection

Halide has a large benchmark suite in the benchmarks/ subdirectory of its repository. Some are

out of the scope of this paper due to containing non-affine specifications, including those with data-

dependent accesses and histograms. Others use unsupported features, e.g. assigning an undefined

value to simulate in-place input updates. We have run our tool on the remaining benchmarks, using

the schedule provided in the original benchmark suite. The benchmarks have implicit assumptions

on the required input sizes (e.g. that some dimensions are multiples of 16 or 32), implied by the

scheduling directives used. They do not appear in the specification, but Halide generates runtime

checks for them. These assumptions are given as contextual axioms to the verifier.

The benchmarks can be roughly separated into two application domains: linear algebra, including

the convolution operators of deep learning, and image processing.

From the linear algebra domain, we consider the following benchmarks:

• sdot is a simple dot product manually implemented with a tiling factor of 8. This is expected

to be easy to verify.

• sgemm is a general matrix-matrix multiply on floats, from the linear_algebra Halide appli-

cation. It uses an optimized CPU schedule and specializations for small and large matrices. As

a compute-intensive program, matrix-matrix multiply requires precise optimizations to get

good performance: as such, this benchmark features heavy loop transformations and is a good

stress test of our verifier as far as linear algebra benchmarks go. The sgemmTA and sgemmTB
are variants where one of the input matrices is transposed. The Halide specification has a

bug in these cases, and assumes that matrix 𝐴 is square. As such, we expect the verification

to fail.

• cmm1024 is anothermatrix-matrixmultiplication implementation, tuned for GPUs. This Halide

benchmark is written for 1024 × 1024 square matrices, and we verify it for this concrete size

only.

• conv_layer is a 2𝐷 convolution layer.

• dsc is a depthwise separable convolution. The specification contains non-affine indices, hence

we use a constant grouping factor of 3, eliminating the non-affine component.

From the image processing domain, we consider the following benchmarks:

• blur is a two-dimensional blur filter, performing an average of three neighbors in each

dimension. This example features storage folding: the schedule only stores four lines of the

intermediate tensor at once in a rolling buffer.

• sc is a chain of large stencils of width 25 (i.e. each stage reads from 25 distinct neighbors

from the previous stage). The default depth (i.e. number of stages) for the benchmark is 32,

which is reported as sc32; we also include a variant sc1 with a single stage.

• harris, unsharp, and nl_means are implementations of image processing algorithms, namely

the Harris corner detector, unsharp masking, and non-local means.

In most cases, the Halide compiler applies algebraic transformations such as associativity and

commutativity to the expressions in the specification. We represent signed and unsigned integer

types using Z3’s native representation based on bit-vectors. For floating-point numbers, we provide

three possible encodings, discussed in Section 7.3. In most cases, we simply encode floats as real

to capture the transformations which Halide makes under “fast-math” assumptions. For harris,
unsharp and nl_means, Halide performs constant propagation in the floating point domain, which
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we cannot validate when interpreting floats as reals. As such, we run Halide in “strict float” mode

for these benchmarks, disabling floating point optimizations.

5.4 Evaluation

Table 1 shows that our translation validation system succeeds on 14 of the 17 examples, with

running times from one second to 5 minutes for the successful examples. Two of the remaining

examples are expected to fail due to a bug in the specification. The last example reaches a timeout

of 15 minutes. To put these results in perspective, we ran the same examples through the ISA tool

from Verdoolaege et al. [2012]. ISA is only able to verify 7 of the examples, and times out on 8

including one of the incorrect examples. Of the three remaining examples, one is correctly shown

to be incorrect, while the others cannot be proven by ISA due to using simplifications beyond

associativity and commutativity.

Unlike our approach, ISA is fully automatic, and does not rely on annotations. ISA is able to

handle associative and commutative operators, but it is optional as it increases its runtime. We

indicate with superscripts when ISA was allowed to use associativity (𝐴) or commutativity (𝐶) of

an operator.

ISA takes C programs as inputs, which we generate from Sched by erasing the annotations.

Halide can directly generate C code with linearized (non-affine) accesses and using vectorization

primitives not supported by ISA. We also convert the specification to a C program, by creating a

different loop nest for each assignment. A simple data-flow analysis is used to infer the bounds.

Alternatively, we could compare the optimized Halide schedule with Halide’s default schedule.

ISA takes the form of three command-line tools. c2pdg converts the C program into a polyhedral

representation. We pass the option --pet-signed-overflow=ignore to c2pdg. da performs a

data-flow analysis on the polyhedral representation. eqv performs the equivalence checking on the

da output of two programs. We report the run-times of the different tools separately.

The results of our experimental evaluation are summarized in Table 1. The benchmarks have

been run on a machine with an Intel® Core™ 𝑖9 − 9900 CPU, with a timeout of 15 minutes. For

isa, the timeout applies separately to each step. For each benchmark, we indicate the run-time

of each tool in seconds, as well as whether the equivalence was successfully proved. For isa, the

c2pdg and da timings include the sum of times for both the implementation and specification.

When both our tool and ISA successfully validate the implementation, our tool has comparable

or better performance, except on the conv benchmark. This is because for the conv benchmark, the

affine conditions for the equalities sent to Z3 are quite complex. The conversion from the internal

representation of isl to Z3 for sets with many disjuncts is a bottleneck of our approach, and in

this specific case we suffer from a suboptimal implementation which does multiple conversion to

and from the internal representation of isl. In addition, our tool is able to prove more cases than

ISA. In the case of parametric matrix multiplications (sqsgemm and sgemm), ISA reached a timeout

of 15 minutes. Parts of these kernels are specialized, with different implementations depending on

the values of the parameters. The bigsqsgemm and bigsgemm entries present results when the size

of the matrices are larger than 512: by allowing the pruning of some branches, this allows ISA to

complete the verification. Note that this also drastically decreases runtime of our own algorithm.

Finally, let usmention the nl_means benchmark, whichwe fail to verify due to running out of time.

Like in conv, Halide generates complex affine conditions involving manyminimums andmaximums:

in consequence the isl representation of symbolic heaps contains many disjuncts, hurting the

performance. In fact, our current implementation times out during the initial simplification of

affine expressions. This could be mitigated by including more contextual information during the

simplification: manual experiments on some expressions extracted from that benchmark indicate

that it could result in up to an order of magnitude less disjuncts. Another avenue to explore would
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Table 1. Results of the experimental evaluation (times in seconds)

isa
Ours

c2pdg da eqv

blur <1 <1 1.1𝐴𝐶+ ✓ <1 ✓
cmm1024 <1 1.2 10 ✓ 2.6 ✓
sgemm1024 <1 2.5 27.3𝐶× ✓ 1 ✓

sqsgemm 2.5 4min34 > 15min
𝐶×

? 15.1 ✓
bigsqsgemm 1.6 17.5 8min12

𝐶× ✓ 2.7 ✓
sgemm 7. >15min N/A ? 3min24 ✓
bigsgemm 2.8 1min19 >15min ? 12.1 ✓
sc1 3.44 4m20 3.3 ✗ 12.5 ✓
sc32 1min41 >15min N/A ? 4min53 ✓
dsc 10.2 13min49 >15min ? 1min43 ✓
conv 2. 12.2 27.9𝐶max ✓ 2min12 ✓
sdot <1 <1 <1 ✓ <1 ✓

harris* 7.9 31.5 1min8 ✓ 44.8 ✓

unsharp* 1.3 6.1 13min44 ✗ 6.1 ✓

nl_means* >15min N/A N/A ? >15min ?

sgemmTA† 21.5 >15min N/A ? 10.4 ✗

sgemmTB† 21.1 N/A N/A ✗ 34.7 ✗

*
No floating-point optimizations

†
Expected to fail

be to find independent piecewise expressions that can be abstracted and factored out to reduce the

number of disjuncts.

6 RELATEDWORK

Translation validation. Pnueli et al. [1998] introduced translation validation for the verification

of compilers for languages with no loops. Approaches using symbolic evaluation combined with

specialized equivalence checking procedures are able to handle loop optimizations that mostly

preserve the execution order of instructions. For instance, the work of Necula [2000] supports

loop unrolling in the GCC compiler; other examples include software pipelining by Tristan and

Leroy [2010], loop-invariant code motion by Tristan et al. [2011], and loop-peeling and induction

variable strength reduction by Tate et al. [2011]. On the other hand, loop transformations such as

permutation, fusion or tiling fundamentally change the structure of the program. They require more

advanced validation techniques. The literature focuses on ad-hoc rules such as the permutation

rule of Barrett et al. [2005] and the similar rules of Kundu et al. [2009]. These approaches require

the compiler to trace the transformations that have been performed, an information that is not

easy to extract from schedule-based compilers [Bagnères et al. 2016; Zinenko et al. 2018].

Specification of tensor and arrays optimizations. The previous approaches prove optimizations on

intermediate representations and their transformations. Unfortunately, most tensor compilers do

not provide a formal semantics or type system to reason about, or for that matter to prove their

correctness w.r.t. some functional specification. TeIL is one significant effort in this direction [Rink

and Castrillon 2019], but its semantics based on combinators is not at the appropriate abstraction
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level to easily express the iterator-based specifications of most tensor programming languages.

We rely on a simple equational language to capture the semantics of these specifications, while

demonstrating the translation validation of a tensor compiler independently of the intermediate

representations encountered along the flow.

Equivalence checking of affine programs. In the case of numerical programs with array manip-

ulations, the problem of translation validation is known as an instance of program equivalence

checking. Samsom et al. [1995] proposes an approach based on pattern-matching of the right-hand

side of assignments on the original and optimized programs, then proves that the loop nests for

each pair of matched assignments iterate over the same domains. This approach is restricted to

code without recurrences, and the pattern-matching rules can only handle the most basic algebraic

transformations. Shashidhar et al. [2005] introduces Array Data-flow Dependence Graphs (ADDG)

to overcome the limitations of the original pattern-matching approach, and is able to handle finite

applications of associative and commutative operators. The ADDGs allow matching to occur at the

level of operator applications instead of statements, and it supports uniform recurrences by com-

puting a transitive closure of the updates. Karfa et al. [2013b] extend the ADDG method to handle

more algebraic transformations using a formalization procedure, but does not handle recurrences.

Banerjee et al. [2016] proposed handling recurrences by matching the bodies of loop, effectively

preventing structure-modifying transformations to be applied to recurrences.

Verdoolaege et al. [2012, 2010] extend the expressive power of the ADDG based methods consid-

erably, by providing a generic method to handle possibly non-uniform recurrences using widening.

Their approach is based on two passes. In the first pass, equalities between the two programs

are inferred based on the requested output equalities. Widening is used to propagate equalities

across loops. In a second pass, the verifier actually tries to prove that the inferred equalities are

correct. Their approach is probably the closest to ours, although our verifier only performs the

equivalent of their second pass, as we assume the equalities are provided by the compiler. Their

approach is able to handle fixed-arity associative and commutative operators, but no other algebraic

transformations.

Approaching the problem from a different angle, Barthou et al. [2002] tries to prove the equiv-

alence of Systems of Affine Recurrence Equations. They show the problem to be undecidable

in general, even without any algebraic transformations, and propose a best-effort algorithm for

proving equivalence by constructing an equivalence automaton. Their approach does not handle

algebraic transformations. Iooss et al. [2014] improves upon their algorithm to handle associative-

commutative reductions, using a bipartite matching between the reduced indices in the original

and transformed program, and is the only work we know of which is able to handle associative-

commutative reductions in a generic way.

Karfa et al. [2013a] directly encode the program equivalence problem as a formula which is

fed to an SMT solver. They show that the formulas this creates are too complex for SMT solvers

to handle in practice. We avoid the issue by using prophetic expressions as natural stopgaps to

generate multiple, simpler queries to the SMT solver.

Bao et al. [2016] propose a dynamic approach, dubbed PolyCheck, to the problem. It exploits the

structure of affine program control and data-flow to build a checker with the same structure as the

transformed program. If successful, it ensures the validity of all executions for a given problem size.

Journault and Miné [2018] propose abstract domains to represent and infer properties about

matrix manipulating program. They successfully apply their approach in presence of loop tiling,

as performed by the Pluto polyhedral compiler. Unlike ours, their approach does not rely on

annotations but relies instead on a library of patterns to match assignments with a corresponding
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semantic predicate. It is not clear how well this library of patterns would scale to arbitrary code

transformations.

7 DISCUSSION AND FUTUREWORK

In this section, we discuss limitations of the current approach and planned extensions towards the

translation-validation of a larger portion of the Halide compiler.

7.1 Array linearization

The focus of our presentation has been on multidimensional tensors and arrays, as it is the way

specifications are written. Ultimately, multidimensional arrays are represented as flat buffers in

linear memory, which can create non-affine indices due to parametric array sizes. Reconstructing

affine multidimensional indices from the linearized ones is possible, but difficult and typically

involves runtime checks [Doerfert et al. 2017]. However, in our case, we know the multidimensional

indices and simply have to check that the same injective linearization function is used for all accesses.

This is a fairly simple non-affine check, which could be expressed as a piecewise polynomial equality.

We experimented with simply sending the non-linear problem to Z3, which was able to prove it

correct without issue in all our benchmarks.

7.2 Overflow checking

We have formalized and implemented our validator using unbounded integers, and simply ignored

the possibility of overflows in index computations. There are two general approaches to handle

this threat to the formal soundness of our results when running the code using machine integers.

The first possibility is to find a sufficient condition on the parameters to ensure the absence

of overflow, which can be independently checked, following the approach of Cuervo Parrino

et al. [2012]. The second possibility is to explicitely model overflowing computations (assuming

some fixed well-defined behavior of signed integer overflow) using a piecewise representation or a

modulo expression, as appropriate. This would increase the runtime of the algorithm by introducing

disjunctions or auxiliary variables in the isl representation. ISA supports both approach (depending

on whether signed or unsigned indices are used); in our experiments, we use signed indices but

disable the overflow checking for a fair comparison.

To cover verification in full, overflow checking needs to take into account the linearization step

from multidimensional indices to linear memory. If the linearization is computed inline, it is enough

to ensure that the total array size fits in the appropriate integer type because we have proven that

the multidimensional indices are within bounds.

7.3 Handling of floating-point numbers

In Halide, and other languages targeting linear algebra, image processing, or deep learning, compu-

tations often involve floating-point numbers. These computations are transformed under “fast-math”

assumptions, which are formally unsound. There are multiple possible answers to that problem,

and we discuss three approaches supported by our implementation below.

• If bitwise equivalence is wanted, floating point numbers can be implemented using Z3’s

built-in support for IEEE floats. In this case, “fast-math” optimizations should be disabled;

Halide supports both a global “strict float” mode and a local annotation to disable such

optimizations within a given expression. Although we do not support these, some “fast-math”

transformations are correct in the absence of NaNs, infinites, or negative zeros and could be

supported with the appropriate assumptions on the input arrays [Menendez et al. 2016].
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• On the other side of the spectrum, common practice in numerical fields is to accept program

transformations which are valid on the reals, e.g. exploiting the associativity and distributivity

of operators. Following this practice, our default representation of floats uses Z3’s built-in

type for reals. While this provides no formal guarantee on the output of the program when

ran using floats, it ensures that only transformations valid on the reals have been applied.

This can be enough to trust the absence of bugs in a non-adversarial compiler. Note that

while this is mostly appropriate for the algebraic specifications encountered in linear algebra

or deep learning, representing floats as reals is an issue for image processing pipelines.

Image processing algorithms often provide opportunities for constant propagations: this

propagation is performed by Halide using floating-point math, and Z3 will usually not be

able to prove it correct in the reals (because it is not). Constant propagation could be verified

in this context if Halide used exact rational math instead.

• Finally, we can implement floating-point numbers axiomatically using an abstract type in Z3.

Using specific axioms, generic “fast-math” rules such as associativity can be supported, and

also constant propagation on a case-by-case basis. The same caveats as when implementing

floats using reals apply: if enough axioms are included, an adversarial compiler could build a

program that is correct in this axiomatization but compute all zeroes when ran using floats.

One final remark is that if we were to allow casts from floats to indices when lifting the affine

restrictions (see Section 7.4), special care would be required because “fast-math” transformations

could lead the cast to result in a different index, possibly creating out-of-bounds accesses.

7.4 Beyond affine specifications and schedules

In our work we have made the assumption that schedules for affine specifications result in affine

implementations. While true in general, an important counter-example is that of specialization

on an input value. For instance in a general matrix multiply 𝐷 = 𝛼𝐶 + 𝛽𝐴𝐵, implementations

often have a “fast path” specialization when 𝛼 = 0, avoiding loads from 𝐶 entirely. Handling such

specializations would require keeping track of non-affine conditionals in path conditions, and

giving them as additional context to Z3.

This would require ensuring that both branches of a non-affine ifwrite (possibly different values)
to the same locations, in order to be able to compute the last write to a location independently of the

non-affine condition in a lexmax computation. This is typically the case for a specialization. Note

that handling this would be more general than the approach of Verdoolaege et al. [2010], which

only handles non-affine control that is present in both the specification and the implementation.

That case is already handled in our approach through non-affine select operators — select being
an expression-level conditional ensures that the locations written to are not dependent on the

non-affine condition.

Another non-affine extension that can be integrated fairly easily is that of non-affine read
accesses. When encountering a read access, we currently solve exactly for the expression present in

the corresponding chunk using isl. If the access is non-affine, this is no longer possible. However,

we can build an expression as a select-tree of affine conditions depending on the expressions

present in the chunk, and apply that expression to the non-affine indices. We also have to check

using Z3 (instead of isl) that the non-affine indices are within the chunk’s domain.

7.5 Reductions

Associative and commutative reductions show up in many applications, the most common of them

being tensor contractions and convolutions. Properly accounting for the algebraic properties of

those reductions is crucial to be able to verify transformations such as those performed by Halide’s
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rfactor [Suriana et al. 2017] primitive, which permits reordering the reduction to increase the

available parallelism or improve memory locality.

The difficulty here is twofold. The first difficulty is in identifying the associative-commutative

operators, which is not immediate from Halide’s specification of them as recurrences. When

performing transformations on a reduction, Halide knows the operator it uses, and should be

able to provide an annotation to that regard without difficulties. We would then have to check

that the operator indeed is associative and commutative using Z3. The second one is in properly

representing the now arbitrary order of the computations.

The proper tool for representing objects in an arbitrary order is that of a set, and we have started

work on an extension of our system which represents a reduction on an array using an extra

virtual dimension to represent the reduced values. More precisely, we need to identify sections

during which the reduction is computed: this corresponds to a single stage of the computation

for Halide, and can be annotated. Within that section, we represent that an array 𝑎 of type 𝜏𝑎
implements a 𝑛-dimensional reduction using a special reduction type Σ𝑛𝜏𝑎 . The type Σ𝑛𝜏𝑎 extends

𝜏𝑎 in the dynamic semantics with 𝑛 dimensions, capturing the positions of the updates in the

original recurrence. At the end of the reduction, we must check that the set of written values

matches the specification.

This would essentially require Halide to annotate the reduction steps with the reordering it has

performed, alleviating the need for a matching algorithm such as that of Iooss et al. [2014].

7.6 Mechanized formal proofs

As we are performing validation of a complex system, it could be interesting to mechanize the

proof of correctness of our validator, and provide an implementation in a proof assistant such as

Coq [Team 2021]. We did mechanize an early version of the prophetic evaluation rules using Coq,

from which the current implementation now deviates. We aim to have an automatic verifier, and

rely on Z3 and isl for this. As such, mechanization could only guarantee that the verification

conditions we generate ensure the correctness of the implementation.

8 CONCLUSIONS

This paper proposes a translation-validation algorithm for compilers of equational tensor specifica-

tions, and applies it to the verification of benchmarks from the Halide DSL.

Although specified and implemented in the context of the Halide compiler, our approach naturally

generalizes to pointful tensor programming language. On the high-level side, by focusing on an

affine subset through the reduction to SAREs, we decouple our verifier from the details of the

specification language. On the low-level side, our verifier and formalization require an imperative

language of counted loops and arrays, annotated with refinements from the array writes to the

corresponding tensor definitions. This is a natural representation for the output of a pointful tensor

compiler: in fact, frameworks such as TVM, Tensor Comprehensions, and Tiramisu use either

Halide’s own IR or variants thereof.

The approach has been tested on reference Halide benchmarks, and shown to be a viable candidate

for the parametric verification of important primitives such as matrix multiplication. High-level

libraries based on graphs of operators such as TensorFlow could benefit from our approach to

validate the specialized implementations of those primitives.
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