
Université Paris Cité
École Doctorale 386 — Sciences Mathématiques de Paris Centre

Inria

Formal Verification of Heap Space Bounds under
Garbage Collection

A Space Tale from the Stars

Alexandre MOINE

Thèse de doctorat d’informatique

dirigée par Arthur CHARGUÉRAUD et par François POTTIER

présentée et soutenue publiquement le 20 septembre 2024 devant un jury composé de :

Robbert KREBBERS Associate Professor, Radboud University (rapporteur)
Magnus MYREEN Professor, Chalmers University of Technology (rapporteur)
Delia KESNER Professeure des universités, Université Paris Cité (examinatrice)
Azalea RAAD Associate Professor, Imperial College London (examinatrice)
Yannick ZAKOWSKI Chargé de recherche, Inria (examinateur)
Arthur CHARGUÉRAUD Directeur de recherche, Inria (directeur)
François POTTIER Directeur de recherche, Inria (directeur)

3

Abstract

This thesis addresses the problem of reasoning about the heap space usage of concurrent
programs in the presence of tracing garbage collection. While it is clear where space is
consumed—that is, at allocation points—it is far more difficult to understand where space
is recovered. Indeed, in the presence of tracing garbage collection, deallocation points are
implicit: there is no syntactic “free” operation. Instead, from time to time, the garbage
collector will deallocate unreachable memory blocks—that is, blocks that are not transitively
reachable from the locations that are roots of the program that remains to execute. Hence, a
central question of this thesis is: how to reason about unreachability?

To answer this question, we propose IrisFit, a Separation Logic built on top of the Iris
framework. In order to track the reachability of memory blocks, IrisFit equips each allocated
location with a pointed-by-heap assertion and a pointed-by-thread assertion, recording which
reachable memory blocks point to this location and which threads hold this location as a root,
respectively. Moreover, IrisFit makes use of space credits, a purely logical device that accounts
for the available free space. Space credits are consumed by allocations and produced when
the user proves a memory block unreachable.

This thesis points out a fundamental difficulty in the analysis of the worst-case heap space
complexity of concurrent programs in the presence of tracing garbage collection. Indeed, if
garbage collection phases and steps of the program’s threads can be arbitrarily interleaved,
then there exist undesirable scenarios in which a root held by a sleeping thread prevents a
possibly large amount of memory from being freed. To remedy this problem, we propose two
language features, namely protected sections, where garbage collection is disabled, and polling
points, instructions that block the current thread if garbage collection has been requested
by another thread. Protected sections can be exploited by the programmer to eliminate
undesirable scenarios and thereby obtain better worst-case heap space complexity. Polling
points can be inserted by the compiler in order to guarantee that no thread will indefinitely
wait for the garbage collector to run.

We extend IrisFit to reason on protected sections. We prove that IrisFit offers both a
safety guarantee (programs cannot crash and cannot exceed an initial heap space bound) and a
liveness guarantee after automatic insertion of polling points (every memory allocation request
is satisfied after a bounded number of steps by other threads and the garbage collector).

We illustrate the use of IrisFit via a number of case studies. In particular, we verify
standard lock-free data structures such as Treiber’s stack and Michael and Scott’s queue,
adequately decorated with protected sections. Moreover, we prove correct an encoding of
closures—concrete heap-allocated data structures implementing the abstract concept of a
first-class function.

The proof techniques we develop in this thesis are intended to apply to programs written
in widespread languages such as OCaml and Java. IrisFit and all the presented results are
mechanized in the Coq proof assistant.

Keywords Heap Space, Tracing Garbage Collection, Concurrency, Formal Verification,
Separation Logic.

4

Résumé

Cette thèse aborde le problème du raisonnement formel sur l’utilisation de l’espace de tas (heap
space) des programmes concurrents en présence d’un glaneur de cellules (garbage collector).
Alors qu’il est facile d’identifier où l’espace est consommé, c’est-à-dire les points d’allocation,
la présence d’un glaneur de cellules rend délicat de déterminer où l’espace est libéré, les points
de désallocation étant implicites. En effet, le glaneur de cellules peut s’exécuter à n’importe
quel moment pour désallouer des blocs mémoires inaccessibles, c’est-à-dire les blocs qui ne sont
pas transitivement accessibles depuis les adresses racines (roots) du code restant à exécuter.
Une question centrale à cette thèse est donc: comment raisonner sur l’inaccessibilité ?

Pour répondre à cette question, nous proposons IrisFit, une nouvelle logique de séparation
construite au-dessus du cadre logique Iris. IrisFit garde trace de l’accessibilité des blocs mé-
moire en équipant chaque adresse d’une assertion pointed-by-heap et d’une assertion pointed-
by-thread, enregistrant respectivement quel bloc mémoire accessible pointe vers cette adresse
et quel fil (thread) considère cette adresse comme une racine. De plus, IrisFit exploite la no-
tion de crédits-espace, un outil purement logique qui garde trace de la quantité d’espace libre
disponible. Des crédits-espace sont consommés par les allocations et peuvent être récupérés
en prouvant qu’un bloc mémoire est inaccessible.

Au cours de cette thèse, nous avons identifié une difficulté fondamentale dans l’analyse de
la complexité en espace de tas au pire cas des programmes concurrents en présence d’un gla-
neur de cellules. En effet, si l’exécution du glaneur de cellules et la réduction des fils peuvent
s’entrelacer de manière arbitraire, alors il existe des scénarios indésirables dans lesquels une
racine retenue par un fil endormi empêche la désallocation d’une quantité de mémoire possi-
blement grande. Pour remédier à ce problème, nous proposons deux nouvelles constructions:
les sections protégées, dans lesquelles le glaneur de cellules n’a pas le droit de s’exécuter, et les
points de polling, des instructions qui bloquent le fil courant si un autre fil requiert l’exécution
du glaneur de cellules. Les sections protégées peuvent être exploitées par le programmeur pour
éliminer les scénarios indésirables décrits ci-dessus, permettant ainsi d’obtenir une meilleure
complexité en espace de tas au pire cas. Les points de polling, quant à eux, peuvent être
insérés par le compilateur pour garantir qu’aucun fil n’attend indéfiniment que le glaneur de
cellules s’exécute.

Nous étendons IrisFit pour permettre de raisonner sur les sections protégées. Nous prou-
vons qu’IrisFit offre une garantie de sûreté (les programmes vérifiés ne peuvent pas produire
une erreur et n’excèdent pas une borne donnée en espace de tas) et une garantie de vivacité (il
existe une stratégie d’insertion des points de polling dans les programmes vérifiés garantissant
que chaque requête d’allocation sera satisfaite après un nombre de pas borné).

Nous illustrons l’utilisation d’IrisFit avec plusieurs études de cas. En particulier, nous
vérifions des structures de données concurrentes et non-bloquantes standards comme la pile
de Treiber et la file de Michael et Scott. Nous montrons qu’en augmentant le code de ces
structures avec des sections protégées, nous obtenons des implémentations qui garantissent
la complexité en espace de tas intuitivement attendue. De plus, nous prouvons correcte une
implémentation des fermetures, des structures de données concrètes allouées sur le tas implé-
mentant le concept abstrait de fonction de première classe.

Les techniques de raisonnement que nous développons dans cette thèse sont destinées à
s’appliquer à des langages répandus comme OCaml et Java. IrisFit ainsi que tous les résultats
présentés sont formalisés dans l’assistant de preuve Coq.

Mots clés Espace de tas, Glaneur de cellules, Concurrence, Vérification formelle, Logique
de séparation.

Résumé substantiel

Cette thèse est rédigée en anglais. Je fournis ici un résumé substantiel en français. Ce résumé
correspond à la traduction des sections 1.3 et 1.4.

Vérification de bornes en consommation de ressources

Vérification de programme L’objectif le plus courant de la vérification d’un programme
est d’établir sa sûreté et sa correction fonctionnelle, c’est-à-dire que l’exécution du programme
ne produit pas d’erreur et calcule un résultat correct. Dans le domaine de la vérification dé-
ductive [Filliâtre, 2011], un programme est vérifié avec l’aide d’une logique de programme,
c’est-à-dire un ensemble de règles de déduction dont la correction a été démontrée une fois
pour toute. La logique de séparation Reynolds [2002] et la logique de séparation concur-
rente [Brookes et O’Hearn, 2016; O’Hearn, 2019; Jung et al., 2018b] sont des exemples de
logiques de programme qui permettent un raisonnement compositionnel (c’est-à-dire, qui per-
mettent de raisonner sur les différents composants du programme de manière isolée) en pré-
sence de fonctionnalités avancées comme l’allocation dynamique de mémoire, l’état mutable
et la concurrence avec mémoire partagée.

Vérification de bornes en ressource Au-delà de la sûreté et de la correction fonction-
nelle, il peut être désirable d’établir des bornes sur la consommation de ressources des pro-
grammes, c’est-à-dire montrer que l’exécution d’un programme ne consomme pas plus qu’une
certaine quantité de ressource prédéfinie. En effet, un programme qui requiert une quantité
trop grande de temps peut être problématique. Un programme qui requiert une quantité trop
grande d’espace de pile produit un débordement de pile (stack overflow).

En supposant que l’on soit capable de dire où la ressource concernée est consommée et
produite, et en quelle quantité, établir une borne sur la consommation de cette ressource peut
être réduit à raisonner à propos de sureté. Pour ce faire, on peut construire une variante du
programme instrumentée avec un compteur de ressources, c’est-à-dire une variable globale
dont la valeur (un entier positif ou nul) indique quelle quantité de ressource est disponible.

Dans ce programme instrumenté, on place des instructions qui produisent une erreur si la
valeur du compteur est négative. Si l’on est capable de montrer que ce programme instrumenté
est sûr, c’est-à-dire que son exécution ne produit jamais d’erreur, alors on a effectivement établi
une borne sur la consommation de ressource du programme original.

Le principe d’un compteur de ressource a été utilisé de nombreuses fois, avec des cadres
variés pour établir la sûreté. Par exemple, Crary et Weirich [2000] exploitent un système
de types dépendants ; Aspinall et al. [2007] exploitent une logique de programme dans le
style de VDM ; Carbonneaux et al. [2015] exploitent une logique de Hoare ; He et al. [2009]
exploitent une logique de séparation. La manière dont on résonne à propos de la valeur du
compteur dépend du cadre choisi. Dans l’approche la plus directe, la valeur du compteur est
explicitement décrite par les préconditions et postconditions de chaque fonction. C’est le cas,
par exemple, de l’approche de He et al. [2009], où deux compteurs distincts sont utilisés pour
mesurer l’espace de pile et l’espace de tas.

Dans des approches plus élaborées rendues possibles par la logique de séparation, le comp-
teur n’est pas vu comme une valeur entière, mais comme un sac de crédits, qui peuvent être
possédés de manière individuelle. Cela enlève le besoin de référer la valeur absolue du comp-
teur. À la place, la spécification d’une fonction peut indiquer que cette fonction requiert un
certain nombre de crédits et en produit un certain autre nombre.

5

6

Vérification de bornes en espace de tas, sans glaneur de cellules Un langage de
programmation sans glaneur de cellules offre une instruction de désallocation explicite. Il est
donc facile de dire où l’espace de tas est consommé et produit : une instruction d’allocation
consomme la quantité d’espace qu’elle reçoit en argument ; une instruction de désallocation
récupère l’espace occupé sur le tas par le bloc qui est sur le point d’être désalloué.

Dans un tel cadre, la logique de séparation traditionnelle étendue avec des crédits-espace
peut être utilisée pour vérifier des bornes en espace de tas. À notre connaissance, une telle
variante de la logique de séparation n’existe pas dans la littérature. Néanmoins, le travail
d’Hofmann sur le langage de programmation typé LPFL [2000] peut-être vu comme un pré-
curseur de cette idée. LPFL a une instruction d’allocation et une instruction de désallocation
explicite, qui respectivement consomme et produit des valeurs d’un type linéaire, noté ⋄, dont
les habitants se comportent comme des crédits-espace.

Vérification de bornes en espace de tas, en présence d’un glaneur de cellules En
présence d’un glaneur de cellules, comment raisonner à propos de l’espace de tas ? Dans ce
cadre, le langage de programmation n’a pas d’instruction de désallocation : il n’y a donc pas
de point de programme évident où l’espace peut être récupéré ! Un glaneur de cellules (GC)
peut être invoqué à des points arbitraires dans le temps et peut désallouer n’importe quel
sous-ensemble de blocs inaccessibles. Un bloc inaccessible est un bloc qui n’est pas accessible
depuis les racines en suivant un chemin dans le tas. Par conséquent, raisonner à propos de
l’espace de tas en présence d’un GC requiert de raisonner d’une manière ou d’une autre à
propos des racines et de l’inaccessibilité.

Madiot et Pottier [2022] font un premier pas vers la résolution de ce problème. Ils étendent
la logique de séparation avec plusieurs concepts. Pour garder trace de l’espace libre, ils uti-
lisent des crédits-espace. Ils considèrent la désallocation de la mémoire comme une opération
logique : la personne qui vérifie le programme décide à quel moment cette opération doit être
utilisée et quels blocs de mémoire doivent être supprimés. Cette décision est sujette à une
obligation de preuve : un bloc mémoire ne peut être logiquement désalloué que s’il est prouvé
inaccessible. Malheureusement, le concept d’inaccessibilité n’est pas local : ce dernier ne peut
pas être facilement exprimé en termes d’assertions de la logique de séparation. Madiot et Pot-
tier reformulent donc cette obligation de preuve comme suit : un bloc de mémoire peut être
logiquement désalloué s’il n’a pas de prédécesseurs et s’il n’est lui-même pas une racine. Pour
garder trace des prédécesseurs de chaque bloc mémoire, ils utilisent des assertions pointed-by.
Pour savoir quels blocs sont des racines, ils concentrent leur attention sur un langage de bas
niveau, où la pile est explicitement représentée dans le tas comme une collection de "cellules
de pile". Ainsi, un bloc est une racine si et seulement s’il s’agit d’une cellule de pile.

Dans un travail publié au cours de cette thèse [Moine et al., 2023], nous passons les idées
de Madiot et Pottier à l’échelle d’un langage de haut niveau, où la pile est implicite. Nous
introduisons des assertions Stackable pour garder implicitement trace des “racines invisibles”,
c’est-à-dire des adresses qui sont des racines parce qu’elles dans le cadre de la pile (stack
frame) d’un appelant indirect.

Aucun de ces articles ne se concentre sur la concurrence. Madiot et Pottier [2022] sup-
portent théoriquement la concurrence, mais seulement pour un langage de bas niveau dans
lequel la pile est explicite. De surcroît, Madiot et Pottier ne fournissent aucun exemple dans
lequel la concurrence apparait. Moine et al. [2023] ne supportent pas la concurrence. De par sa
conception, leur assertion Stackable garde trace d’une seule pile. L’étendre à la prise en charge
de plusieurs piles, comme il en existe dans un cadre concurrent, n’est à priori pas simple.

Contributions et vue d’ensemble

Nous présentons maintenant une vue globale des contributions de cette thèse et proposons
une vue d’ensemble de chaque chapitre.

7

Contribution no1 : IrisFit, une logique de séparation concurrente pour l’espace de
tas La contribution principale de cette thèse est IrisFit, la première logique de programme
qui permet d’établir la sûreté, la correction fonctionnelle, ainsi que des bornes au pire cas
en espace de tas pour des programmes concurrents en présence d’un glaneur de cellules. De
plus, IrisFit permet du raisonnement compositionnel, c’est-à-dire que IrisFit permet de vérifier
chaque composante du programme en isolation.

IrisFit propose des crédits-espace pour garder trace de l’espace libre. Nous utilisons et
améliorons l’assertion pointed-by-heap de Madiot et Pottier [2022] pour garder trace des poin-
teurs du tas vers le tas et introduisons l’assertion pointed-by-thread pour garder des traces des
pointeurs de la pile vers le tas. Toutes les deux, ces assertions permettent de prouver qu’une
adresse est inaccessible. Lorsque l’utilisateur est capable de le faire, nous proposons une règle
de désallocation fantôme, à la manière de Madiot et Pottier [2022]. Intuitivement, cette règle
consomme les assertions pointed-by-heap et pointed-by-thread démontrant l’inaccessibilité, et
produit des crédits-espace.

En comparaison avec la logique de séparation traditionnelle, et afin de garder trace de
l’accessibilité des adresses mémoire, les règle de raisonnement ont des obligations de preuve
supplémentaires. Néanmoins, nous sommes capables d’offrir à l’utilisateur des règles de rai-
sonnement simplifiées via deux mécanismes que nous introduisons. Premièrement, grâce à un
mode dédié, promettant de ne pas désallouer de blocs mémoire lors au cours d’une portée
syntaxique, l’utilisateur obtient une logique de séparation quasi standard. Deuxièmement,
nous offrons à l’utilisateur la possibilité de se rappeler qu’une obligation de preuve a déjà été
satisfaite à l’aide d’un souvenir, ce qui permet de satisfaire automatiquement cette obligation
si elle réapparait plus tard dans la preuve.

Contribution no2 : sections protégées et points de polling Si l’on ne fait pas atten-
tion, en présence d’un glaneur de cellules, les programmes concurrents peuvent présenter une
complexité en espace du tas sous-optimale dans le pire des cas, c’est-à-dire une complexité pire
que ce que l’on pourrait imaginer naïvement. Nous proposons des constructions de langage
de programmation qui permettent au programmeur d’éliminer les scénarios problématiques
que nous avons découvert. Les nouvelles fonctionnalités que nous proposons comprennent des
sections protégées, des sections du code où le glaneur de cellules est désactivé, et des points
de polling, des instructions qui bloquent le thread en cours si l’exécution du glaneur de cel-
lules a été demandé par un ou plusieurs autres threads. Le programmeur peut exploiter la
présence de sections protégées pour obtenir de meilleures bornes en espace de tas au pire des
cas. Nos sections protégées et nos points de pollings s’inspirent de mécanismes présents dans
des implémentations de langages réels, tels que les “safe points” d’Ocaml 5. Cependant, nous
pensons que les deux constructions que nous proposons se comportent mieux et introduisent
une distinction importante entre une construction qui est insérée par le programmeur et qui
est nécessaire pour garantir une bonne complexité de l’espace du tas dans le pire des cas (à
savoir, les sections protégées), et une construction qui peut être automatiquement insérée par
le compilateur et qui est nécessaire pour garantir la vivacité (à savoir, les points de polling).

Nous dotons IrisFit de règles de raisonnement pour les sections protégées, permettant une
forme de désallocation logique “à l’avance”. Ces règles permettent de désallouer logiquement
une adresse qui est accessible à partir des sections protégées actuelles, mais avec l’obligation
de prouver que cette adresse est inaccessible au moment où les sections protégées se terminent.

Contribution no3 : correction de la logique IrisFit Nous démontrons la correction
(soundness) d’IrisFit. Plus spécifiquement, nous établissons non seulement un théorème de
sûreté (safety), garantissant qu’un programme vérifié ne peut pas produire d’erreur ni dépasser
une borne initiale en espace de tas, mais aussi un théorème de vivacité (liveness), garantissant
qu’il existe une stratégie d’insertion des points de polling dans les programmes vérifiés telle
qu’aucun fil n’attende indéfiniment que le glaneur de cellules s’exécute.

8

Contribution no4 : impact des fermetures en présence d’un glaneur de cellules
Dans la plupart des langages de programmation fonctionnels, comme OCaml, les fonctions
avec des variables libres sont compilées en fermetures (closures) [Landin, 1964; Appel, 1992].

Une fermeture est un bloc alloué sur le tas qui pointe vers le code de la fonction ainsi
que la valeur de ses variables libres. Ainsi, les fermetures occupent de l’espace de tas et par-
ticipent à l’accessibilité de leur environnement (c’est-à-dire, les variables libres de la fonction
qu’elle représente). Les fermetures apparaissent partout dans les programmes fonctionnels :
comprendre leur consommation d’espace est important. Pour ce faire, nous programmons la
passe de compilation connue sous le nom de closure conversion, qui transforme les notations
de haut niveau pour les fonctions en code de bas niveau allouant et manipulant les blocs
de fermeture. Ensuite, nous prouvons des règles de raisonnement pour la création et l’appel
de fermeture. Nous proposons d’abord une interface logique de bas niveau, révélant le code
concret de la fonction implémentée. À partir de cette interface de bas niveau, nous dérivons
une interface de haut niveau qui cache le code de la fonction et ne révèle que sa spécification.

Contribution no5 : études de cas Pour illustrer IrisFit, nous proposons une variété
d’études de cas. Pour chacune d’entre elles, nous établissons non seulement la correction
fonctionelle, mais aussi des bornes en espace de tas pour chacune des fonctions impliquées.

Premièrement, IrisFit permet de raisonner sur des programmes séquentiels (c’est-à-dire,
des programmes qui n’utilisent pas de primitives de la concurrence). Nous vérifions une implé-
mentation des listes chaînées immutables ainsi que plusieurs fonctions sur cette structure de
données. En particulier, nous vérifions une implémentation de la concaténation des listes en
style par passage de continuation (continuation-passing style, CPS), illustrant les fermetures.
Pour démontrer la compositionnalité de notre approche, nous vérifions plusieurs implémenta-
tions des piles et expliquons comment les composer. Enfin, nous démontrons la capacité de
IrisFit de raisonner sur les structures de données circulaires au travers de la vérification d’une
liste circulaire simplement chaînée.

Deuxièmement, IrisFit permet de raisonnement sur des programmes concurrents subtils.
Nous proposons un encodage de la primitive fetch-and-add (FAA) avec des sections proté-
gées. Nous vérifions un compteur concurrent monotone, implémenté avec une paire de ferme-
tures partageant une référence mutable. Nous proposons une bibliothèque pour une forme de
concurrence structurée appelée async/finish. Nous présentons ensuite deux études de cas de
structures de données non-bloquantes. Nous vérifions la correction et établissons une borne
en espace de tas pour la pile de Treiber [1986] et la file de Michael et Scott [1996]. Afin d’en
établir les bornes en espace de tas intuitives, nous montrons comment ces structures doivent
être corrigées avec des sections protégées.

Structure de ce document Dans le chapitre 2, nous introduisons les idées principales
de LambdaFit, le langage formel que nous étudions, et d’IrisFit, la logique de programme
associée. Dans le chapitre 3, nous expliquons avec l’exemple de la pile de Treiber pourquoi
les sections protégées sont nécessaires pour garantir des bornes intuitives en espace de tas.
Après ces intuitions, nous présentons dans le chapitre 4 la syntaxe et la sémantique formelle
de LambdaFit. Nous plongeons ensuite dans IrisFit. Dans le chapitre 5, nous en présentons les
assertions et dans le chapitre 6 nous en présentons les règles de raisonnement. Nous justifions
ensuite la correction d’IrisFit. Dans le chapitre 7, nous exposons nos théorèmes de sûreté
et de vivacité, et expliquons qu’ils découlent d’un théorème de correction principal. Nous
esquissons la preuve de ce dernier dans le chapitre 8. Dans le chapitre 9, nous expliquons
notre encodage des fermetures et les règles de raisonnement associées. Dans le chapitre 10,
nous présentons la technique des triplets avec souvenir, simplifiant certaines obligations de
preuves. Nous présentons ensuite nos études de cas séquentielles dans le chapitre 11 et nos
études de cas concurrentes dans le chapitre 12. Dans le chapitre 13, nous couvrons les travaux
connexes. Dans le chapitre 14, nous concluons et présentons des pistes de travaux futurs.

Remerciements

Je tiens tout d’abord à remercier mes deux directeurs de thèse, Arthur Charguéraud et
François Pottier: votre duo a incarné tout ce qu’un doctorant peut espérer. Merci pour
votre disponibilité et pour votre bienveillance à toute épreuve. Merci à toi, Arthur, pour ton
implication et ton soutien sans faille qui ont fait fi de la distance. Merci d’avoir non seulement
guidé mes pas dans mes premières vraies preuves formelles, mais aussi de m’avoir appris à en
extraire le suc pour en parler dans un article. Merci à toi, François, pour ton enthousiasme
scientifique qui m’a motivé jour après jour. Merci de m’avoir transmis une (petite) partie
de ta connaissance de la science des autres, ainsi que de m’avoir appris les principes d’une
rigueur salvatrice.

I want to thank the members of my jury: your participation is an honor. First and
foremost, thanks to Robbert Krebbers and Magnus Myreen who accepted to review this
thesis. Thank you for your detailed feedback and enthusiasm. Thanks to Azalea Raad, et
merci à Yannick Zakowski, for participating in this jury. Un merci particulier à Delia Kesner
d’avoir accepté de participer à ce jury: j’ai suivi ses cours en master et son enseignement
a contribué à mon envie de faire de la recherche.

J’ai eu la chance de faire ma thèse dans une équipe extraordinaire, Cambium, que je
tiens à remercier chaleureusement. Merci tout d’abord aux membres permanents que je n’ai
pas encore cité: Damien Doligez, Yannick Forster, Xavier Leroy, Jean-Marie Madiot, Luc
Maranget et Didier Rémy. Les discussions autour du café vont me manquer, des détails de
conception des chars soviétiques aux critiques des derniers papiers acceptés à POPL. Merci
à Florian Angeletti pour sa disponibilité, que ce soit pour parler des détails du compilateur
OCaml ou du concert de la veille. Merci à Hélène Milome pour son aide administrative
précieuse. Merci aussi aux ex-Cambium/Gallium. Merci à Armaël Guéneau et Jacques-Henri
Jourdan pour les discussions quand nous nous sommes croisés. En plus de ces discussions,
merci à Gabriel Scherer, avec qui j’ai eu le plaisir de collaborer.

Je tiens aussi évidemment à remercier les membres non-permanents de l’équipe, mes com-
pagnons de galères. Merci à Clément Allain pour les échanges irisiens et la collaboration par
preuve interposée. Merci à Clément Blaudeau pour le soutien avant les deadlines et pour sa
science qui module jusqu’à la géopolitique. Merci à Basile Clément pour la collaboration et
les parties de jeu de rôle occasionnelles. Merci à Nathanaëlle Courant pour les discussions
enjouées. Merci à Chiara Daini d’avoir apporté un autre violon et un peu de véritable infor-
matique chez Cambium. Merci à Paulo Emílio de Vilhena d’avoir accompagné mes premiers
pas de thésard et pour les détours par l’Opéra. Merci à Rémy Seassau pour les moments de
décompression, plus que nécessaire, après le travail. Thanks to Irene Yoon, whose arrival in
the late office C332 brought laughter and pictures of cats.

During the second part of my PhD, I had the chance to collaborate remotely with two
amazing people, Sam Westrick and Stephanie Balzer. Thank you, Sam, for trusting an in-
tuition discussed on a small table at Ljubljana’s castle and for the cool collaboration that
followed. Thank you, Stephanie, for the awesome paper co-writing experience, for your ad-
vice and for your liveliness.

Enfin, je tiens à remercier ceux sans qui je n’aurais jamais fait de recherche. Merci aux
équipes enseignantes de l’Université Paris-Diderot de Paris Paris-Cité pour tout ce qu’elles
m’ont appris. Merci en particulier à Victor Lanvin d’avoir été un excellent chargé de TD et
à Yann Régis-Gianas de m’avoir fait écrire mon premier article scientifique. I also want to
thank Andrey Mokhov for supervising me during a Google Summer of Code internship: you
started my academic life.

9

10

Heureusement, la vie d’un thésard ne se résume pas au monde universitaire. Je tiens à
remercier tous mes ami·e·s, qui n’ont cessé de me soutenir et avec qui j’ai partagé des moments
inoubliables au cours de ces trois ans.

Merci aux copains du début. Merci à Arnaud, expert en construction aérospatiale. Merci
à Sacha, à qui certaines des musiques de ce manuscrit ne seront pas étrangères.

Merci aux ami·e·s de la math-info: vous n’avez fait que renforcer mon envie de faire
l’informatique. Merci à Maxime pour ces discussions dont on ne veut pas qu’elles s’arrêtent,
que ce soit sur Zoom ou au bord de l’Adriatique. Merci à Marie pour son goût partagé des
vidéos avec des animaux mignons et pour les discussions sur le reste de la vie. Merci à Étienne
pour le soutien et l’émulation OCamlesque mutuelle.

Merci aux ami·e·s d’après la licence, ceux-de-chez-l’IRIF-d’en-face, qui ont fait le même
choix discutable de faire une thèse. Merci à Victor pour l’entraide pendant ce M2 sous COVID
et pour les discussions passionnantes sur les choses importantes de la vie: le λ-calcul, l’amour,
et le mélange des deux. Merci à Klara pour les expos parisiennes. Merci à Vincent, Thiago
et Clément pour les soirées mémorables.

Merci aux ami·e·s qui me rappellent heureusement qu’il existe d’autres choses que la
recherche et l’informatique. Merci au “club de Laives”, Alaric, Antoine, Aymeric, Charlie,
Laura, Luc, Néel, Pierre, Stéphane, ainsi que plus récemment Circé et Merlin, pour la décou-
verte de tous ces cocktails “merveilleux” et les parties de jeux de société. Merci aux trois du
dé à 5 faces. Merci à Clément pour sa présence et ses scénarios shaaniques. Merci à Émiland,
dottore in ingegneria dell’informazione, pour les aventures qui ont impliqué successivement
une forge, un four à bois et des bourgeons de sapins. Merci à Antonin, doctorant en chimie
physique, pour la complicité que l’on partage depuis plus de quinze ans: que L. le L. et Pierre
Loti m’en soient témoins, ça n’est que le début.

Merci à tous les autres, celles et ceux que je ne mentionne pas par manque de place: je ne
vous oublie évidemment pas.

Enfin, merci à ma famille: les mots de la langue française sonnent bien creux pour vous
exprimer toute ma gratitude. Merci à mes grands-parents de m’avoir transmis et de continuer
de me transmettre bien plus qu’ils ne le pensent. Merci à mes oncles et tantes pour leur
soutien inconditionnel. Merci en particulier à Emmanuel pour les discussions depuis le bout
du monde, à Sylvaine pour les rires, et à Jean-Claude et Stéphanie pour leur accueil et tout
ce qu’ils m’ont appris. Merci à mes cousins et cousines. Merci à Nicolas, docteur en STAPS
(dont le manuscrit contient environ 4 fois plus de pages que le présent document!), pour ses
encouragements de mes premières parties de jeux-vidéos à cette thèse. Merci à Julia pour
sa présence constante, pour ses fêtes toujours mémorables, et de m’avoir appris à déceler
l’invisible du vol des oiseaux. Merci aux chats, Aaron, Moumou et Keta, pour les ronrons au
cœur de l’orage.

Merci à mes parents, pour absolument tout. Merci pour votre soutien pendant cette
thèse et pendant mes études. Surtout, et c’est le plus important, merci pour l’enfance que
vous m’avez offerte. Merci à toi, maman, docteure en sociologie, de m’avoir montré que
faire une thèse relevait du domaine du possible. Merci à toi, papa, de m’avoir appris qu’en
travaillant, j’y arriverais sans aucun doute. Enfin, merci à toi, Cécile, ma sœur jumelle, avec
qui j’affronte et je savoure ce monde depuis le début.

Merci à tous, du fond du cœur.
Thank you all, from the bottom of my heart.

Contents

1 Introduction 15
1.1 General Concepts . 16
1.2 Proving Programs Correct . 19
1.3 Verification of Resource Bounds . 23
1.4 Contributions and Overview . 24
1.5 Research Output: Publications and Mechanization 26

2 Key Ideas 29
2.1 Roots and Garbage Collection . 29
2.2 Maximum Heap Size and Blocking Memory Allocation 30
2.3 Protected Sections . 31
2.4 Polling Points . 31
2.5 A Concurrent Separation Logic for Heap Space 32
2.6 Closures . 33

3 Why Treiber’s Stack Needs Protected Sections 35
3.1 Naive Implementation of Treiber’s Stack . 35
3.2 Space Usage of Treiber’s Stack without Protected Sections 36
3.3 Space Usage of Treiber’s Stack with Protected Sections 37

4 Syntax and Semantics of LambdaFit 39
4.1 Syntax . 39
4.2 Memory Blocks, Stores, and Heap Size . 40
4.3 Thread Pools and Configurations . 40
4.4 The Head Reduction Relation . 42
4.5 The Step Relation . 42
4.6 The Garbage Collection Relation . 42
4.7 The Action Relation . 43
4.8 Enabled Actions . 43
4.9 The Main Reduction Relation . 44

5 Program Logic: Assertions 45
5.1 Triples . 45
5.2 Ghost Updates . 46
5.3 Points-to Assertions . 46
5.4 Sizeof Assertions . 46
5.5 Space Credits . 47
5.6 Pointed-By-Heap Assertions . 48
5.7 Pointed-By-Thread Assertions . 49
5.8 Inside and Outside Assertions . 50
5.9 Deallocation Witnesses . 51
5.10 Liveness-Based Cancellable Invariants . 52

6 Program Logic: Reasoning Rules 53
6.1 Logical Deallocation . 53
6.2 Reasoning Rules for Terms . 55
6.3 Reasoning about Protected Sections . 56
6.4 Reasoning under Evaluation Contexts . 57
6.5 Locally Trading Trimming for a Simpler and More Powerful Bind Rule 58
6.6 Logical Deallocation of Cycles . 59

11

12 CONTENTS

7 Safety, Liveness and Core Soundness Theorems 61
7.1 Safety . 61
7.2 Liveness . 63
7.3 The Oblivious Semantics and the Core Soundness 65
7.4 Deriving Safety from Core Soundness . 66
7.5 Deriving Liveness from Safety . 67

8 Proof of the Core Soundness Theorem 71
8.1 Definition of the Weakest Precondition Modality 71
8.2 Auxiliary Definitions . 72
8.3 Resource Algebras . 74
8.4 State Interpretation and Definition of Assertions 76
8.5 Proving the Core Soundness Theorem . 79

9 Closures 83
9.1 Environments . 83
9.2 Closure Implementation . 84
9.3 Low-Level Closure API . 84
9.4 Low-Level Closure API: Implementation Details 85
9.5 High-Level Closure API . 86
9.6 High-Level Closure API: Implementation Details 87

10 Triples with Souvenir 89
10.1 Those Who Cannot Remember the Past Are Condemned to Repeat It 89
10.2 Internals of Souvenirs . 90

11 Sequential Case Studies 91
11.1 Containers: A Generic Approach . 91
11.2 Linked Lists and Linked List Reversal . 92
11.3 Continuation-Passing Style . 94
11.4 Sequential Stacks . 95
11.5 A Circular Singly-Linked List . 97

12 Concurrent Case Studies 101
12.1 Atomic Triples . 101
12.2 Fetch-and-Add . 102
12.3 A Concurrent Counter Object . 104
12.4 An Async/Finish Library . 106
12.5 Treiber’s Stack . 108
12.6 Michael and Scott’s Queue . 112

13 Related Work 117
13.1 Polling Points . 117
13.2 Protected Sections . 118
13.3 Reasoning about Space without a GC . 118
13.4 Reasoning about Space with a GC . 119
13.5 Space-Related Results for Compilers . 120
13.6 Safe Memory Reclamation Schemes . 120
13.7 Disentanglement . 121

14 Conclusion 123
14.1 Mechanization . 123
14.2 Perspectives . 124

List of Figures

1 An unsafe-for-space implementation of Treiber’s stack 35
2 Initial and problematic states of the scenario. 36
3 A safe-for-space implementation of Treiber’s stack 37

4 LambdaFit: syntax . 40
5 The head reduction relation . 41
6 The step relation . 41
7 The garbage collection relation . 41
8 The action relation . 43
9 Enabled actions and auxiliary predicates . 44
10 The main reduction relation . 44

11 Structural reasoning rules . 46
12 Reasoning rules of the “sizeof ” assertion . 47
13 Reasoning rules for space credits . 47
14 Reasoning rules for the pointed-by-heap assertion 48
15 Reasoning rules for the pointed-by-thread assertion 49
16 Reasoning rules for “inside” and “outside” assertions 50
17 Reasoning rules for deallocation witnesses . 51

18 Syntax-directed reasoning rules, without Bind and rules for protected sections 54
19 Reasoning rules: protected-section-specific rules 56
20 Reasoning rules: the Bind rule . 57
21 Reasoning rules: additional mode-specific rules 58
22 Reasoning rules: logical deallocation . 59

23 Predicates used to state the soundness theorem 62
24 Predicates used to state the liveness theorem 64
25 The oblivious reduction relation and associated predicates 65
26 Predicates for the liveness condition . 68

27 Definition of the weakest precondition (WP) modality 72
28 Definition of the state interpretation predicate 77
29 Definition of assertions . 77
30 Lemmas for the proof of the Core Soundness Theorem 80

31 Macros for closure construction and invocation 84
32 Low-level API for closures . 84
33 Definition of the predicate Closure . 86
34 High-level API for closures . 86
35 Definition of the predicate Spec . 87

36 Key reasoning rules for triples with souvenir 89
37 Definition of triples with souvenir . 90

38 Code and specification of linked list reversal 93
39 Internals of linked lists . 94
40 Code and specification of linked list concatenation in continuation-passing style 95
41 Specification of possibly-bounded sequential stacks 96
42 Code and specification of circular singly-linked lists 97

13

14 LIST OF FIGURES

43 Internals of circular singly-linked lists . 98

44 Code and specification of fetch-and-add . 103
45 Code and specification of a concurrent monotonic counter 104
46 Internals of the concurrent counter . 105
47 Code and specification of an async/finish library 107
48 Specification of Treiber’s stack . 109
49 Internals of Treiber’s stack . 111
50 Code and specification of Michael and Scott’s queue 113

51 Pattern matching may extend the lifetime of variables 126
52 Impact of dead code elimination (DCE) on weak pointers 127
53 Impact of common sub-expression elimination (CSE) on weak pointers 127

Chapter 1

Introduction

Prokofiev, S. (1935).
Violin Concerto No. 2, Andante Assai.

Computer programs are written by us, fallible humans. As such, programs can have bugs.
In a world where programs impact an ever-growing part of our lives, bugs are a plague. In-
deed, famous examples shed light on the impacts of bugs at various times and places. For
example, each due to a different bug, the Therac-25 radiation therapy machine killed several
patients [Leveson and Turner, 1993], the Ariane 5 rocket crashed during its first flight [Le Lann,
1997], and the whole northeast of America suffered from a power outage [U.S.-Canada Power
System Outage Task Force, 2004]. Bugs can also introduce security vulnerabilities that can
have huge impacts. For example, Durumeric et al. [2014] estimate that the Heartbleed vul-
nerability, due to a bug, allowed attackers to remotely read the protected memory of more
than a quarter of the one million most visited websites.

These observations yield an ingenuous yet central question:

How to ensure that a program has no bugs?

Let us analyze this question. First, we need to understand what is a bug. A bug can be
defined as an unexpected behavior of a program. This definition implies that there exists
a set of expected behaviors for the considered program: this set is called its specification.
Second, we need to understand what it means to ensure the absence of bugs. A widely used
approach for unveiling bugs is to test the desired program, looking for undesired behaviors.
Yet, although testing is pervasively exploited, it has a fundamental drawback. Indeed, testing
only detects certain undesired behaviors, but in general cannot ensure that there are no
undesired behaviors. The reason is that the set of possible behaviors is generally extremely
large, and testing all behaviors one by one would thus take an unreasonable amount of time.
Another approach—that we take in this thesis—is to prove, through mathematical reasoning,
that all behaviors of a program are desired. Such proof is conducted by investigating the
source code, without executing it.

A more precise formulation of our first question is hence:

How to prove that a program satisfies its specification?

Such a question is not new and was arguably first formulated by Turing in his seminal
article “Checking a large routine” [Turing, 1949; Morris and Jones, 1984]. However, verify-
ing programs has proved to be very difficult in practice. Despite a considerable amount of
attention being dedicated toward this goal since Turing’s days, work remains to be done.
In particular, at the time of writing, there remain large classes of specifications for which
no satisfactory proof system exists. The present thesis proposes a proof system for such a
class. In detail, this thesis proposes a program logic that allows for establishing heap space
bounds—that is, an upper bound on the amount of memory that a program may require
to execute—for programs that are written in a high-level, concurrent programming language
with tracing garbage collection. Hence, the proposed techniques apply to program written in
languages such as OCaml or Java.

In summary, this thesis focuses on answering the motivating question:

How to prove heap space bounds for concurrent programs under tracing garbage collection?

15

16 CHAPTER 1. INTRODUCTION

This motivating question involves numerous keywords. We start by defining them more
precisely (§1.1). Then, we give a bird’s-eye overview of the state of the art of program
verification, focusing on the general area of program logics (§1.2). After setting up this
context, we comment on pre-existing work related to establishing heap space bounds and
justify our approach (§1.3). We then explain the answer we propose to our question and
present our contributions (§1.4). We finally comment on the research output of our work:
articles published and under review, as well as the mechanization in which we formalize all of
our results (§1.5).

1.1 General Concepts

Specifications of Programs Specifying a program—that is, describing a set of desired
behaviors for this program—is not an easy task. Usually, the specification concerns functional
correctness: this property ensures that the program does not crash and computes the correct
result. For example, we expect the calculator app on a smartphone to compute the correct
mathematical result of the input expression. Indeed, if we ask a calculator “what is the result
of 37 + 5?”, we expect an answer, and we expect this answer to be 42.

Yet, specifications go beyond functional correctness. For example, one might be interested
in security properties: the program should not leak secrets. One might also be interested in
cryptographic properties: an encrypted message should reveal as little information as possible
about the original message. In this thesis, we are interested in the resource consumption of
a program. A computer consumes two kinds of fundamental resources to run a program:
time and space. The computer’s processor needs time to execute basic computation steps.
Moreover, this processor interacts with the computer’s memory to read the input, and to store
intermediate computations and the final result. Other resources are also of interest, like the
energy consumption of various tasks, or the entropy usage—that is, the number of random
bits used—of probabilistic programs.

The amount of resources needed by a computer to run a program and return its result is
important information. For example, let us take time consumption. Recall the example of a
calculator app: if we ask a calculator “what is the result of 37 + 5?”, we expect the correct
answer to come quickly. Failing to deliver an answer in the expected time may have worse
consequences than having to calculate in our head. For example, web servers are targets of
denial of service attack (DoS). This type of attack floods the server with requests, in the hope
that the server takes so much time to answer all these requests that it becomes unusable for
other users. In some sense, space is even more critical than time. Indeed, a program that runs
out of space usually has little choice but to abort altogether. Moreover, the time invested
for this aborted computation is forever lost. Hence, running out of space is an undesirable
scenario, and programmers should write their programs in order to avoid it.

This thesis focuses on proving memory bounds, that is, the assurance that a program will
not run out of memory provided that a certain amount—the bound—is initially available. Let
us first explain what we mean here by “memory”.

A Reminder on Memory There are different types of memory in a computer that are
organized into a memory hierarchy. This hierarchy is organized from bottom to top, in
order of increasing efficiency but decreasing capacity. At the very bottom appears external
memory, which include hard disk drives (HDD), solid-state drives (SSD), or USB keys. This
type of memory is slow to operate, but usually not expansive and available in mass. At
the very top of this hierarchy appears processor registers and caches. These memories are
extremely fast but usually scarce. In between external memory and processor registers and
caches is an intermediate, efficient yet relatively scarce random access memory (RAM), also
called main memory or simply memory. In particular, the RAM is the memory the program
interacts with. This thesis focuses on proving bounds for the RAM (memory hereafter) usage

1.1. GENERAL CONCEPTS 17

of programs. Let us review how a program, and through it the programmer, interacts with the
memory. A large part of the interaction between the program and the memory is automated.
Indeed, programmers write their programs in high-level languages which are then compiled
(or translated) to basic instructions that the CPU understands. In a vast majority of the
implementations of high-level languages, a distinction is made between three parts of the
memory, which are handled differently: the read-only memory, the stack and the heap. Of
these three types of memory, only the heap may be directly managed by the programmer.
The read-only memory and the stack are automatically managed.

The read-only memory usually contains the code of the program itself, as well as static
variables, that is, data that is initialized before the program starts executing and that will
never change. For example, the two characters chains "You win" and "Try again" of a video
game may very well be static variables. Analyzing the size of the read-only memory is not
hard, as it is physically observable in the size of the compiled program.

The stack as well as the heap, are types of memory that can be read or written. In order
to understand the stack, recall that programs usually consist of a number of functions, with
a designated main function that is executed when the program begins. Each function can
have local variables, that is, short-lived memory that the programmer uses to store interme-
diate computations. These local variables are allocated when a function starts executing,
and forever destroyed when the function returns (that is, terminates). A central aspect is
that a function can call other functions. This scheme leads to a call stack, or simply stack.
Each function call has a designated stack frame, each storing the local variables of the called
function. Calling a new function automatically allocates a new stack frame for the callee,
which is destroyed when the callee terminates. Allocating memory on the stack is desirable
because the programmer does not have to worry about it. However, the stack has a usually
rather small size. Exceeding this pre-defined size raises a “stack overflow” which triggers the
end of the program. Nowadays, the stack is usually large. Thus, the stack overflow error is
rarely encountered by accident, and often rather reflects a diverging computation, making an
unbounded number of function calls. Because stack frames have a static size, proving that
a program has no stack overflow conceptually amounts to analyze the nesting of function
calls [Carbonneaux et al., 2014; Ferdinand et al., 2006].

The discipline of the stack is rigid, so very often, the programmer needs dynamic memory
allocation, which is more flexible. Such an allocation is made in the so-called heap, which can
be understood as the “far west” of memory, as there are very few rules for the heap. The
program manually requests memory by making an allocation. In return, the program obtains
a memory location, pointing to a memory block that can be read and written, passed around
between functions, and crucially that outlives a function call.

Memory Management How heap-allocated memory is freed? There are a range of ap-
proaches for deallocating heap memory, called memory management techniques. At the ex-
tremities of this range, there are two techniques: manual memory management and automatic
memory management.

In languages with manual memory management, like C and C++, the user manually deal-
locates heap memory by calling a primitive generally named free. Such a setting gives rise to
various types of bugs: negligent programmers can provoke “double free” bugs—when the same
location is deallocated twice—and “use after free” bugs—when a memory location is read or
written after deallocation. Another more subtle and dreadful type of bug is memory leaks.
Indeed, forgetting to free unused memory does not cause any immediate error. Yet, over
lengthy executions, the amount of available memory keeps decreasing until it is exhausted.

In languages with automatic memory management, like Python, Java, C♯, F♯, Scala,
Haskell and OCaml, there is no free operation. Indeed, heap objects that are guaranteed to
not be used anymore are automatically reclaimed from time to time. This technique eliminates
a-priori “double free” and “use after free” errors. However, memory leaks are not eliminated.

18 CHAPTER 1. INTRODUCTION

Indeed, a program could be written in such a way that it is impossible to automatically
guarantee that a part of the memory is not used beyond the considered program point,
preventing the automatic collection of this part of memory. Yet, memory leaks are far less
common with automatic memory management than with manual memory management.

There are two approaches to implementing automatic memory management. The first
approach is static: the compiler over-approximates for each program point the set of locations
that will not be used anymore, and automatically inserts a free operation. This approach is
exploited by region-based memory management [Tofte and Talpin, 1997; Tofte et al., 2004] or
more recently, to some extent, by Rust and its Box type. However, statically approximating by
which time a location will not be used can be difficult for the compiler, and static approaches
can make approximations that are too coarse, leading to an excessive consumption of memory.
The second and more widely-used approach is dynamic: the compiler inserts code that will
determine at runtime if a location can be safely deallocated or not. This automatic collection
is called garbage collection.

A first implementation of garbage collection is reference counting [Collins, 1960]. The idea
is to maintain, for each location, the number of references (from the stack or from the heap)
to this object. When this number reaches 0, the object becomes unreachable and can be freed.
Reference counting is appealing: the overall idea is simple, and space is conceptually freed as
soon as possible—that is, when the reference count drops to 0. Yet, reference counting has
drawbacks: it can be slow, as reference counting incurs additional reads and writes to account
for the reference count, and it cannot handle cycles as-is. Indeed, even if the programmer
drops the last reference to a cycle of memory locations, each location constituting this cycle
continues to bear a non-zero reference count.

A second implementation of garbage collection is tracing garbage collection [Jones et al.,
2012], introduced for the Lisp language [McCarthy, 1960], and now used for languages like
Python, Java, C♯, F♯, Scala, Haskell and OCaml. Tracing garbage collection is implemented
via a garbage collector (GC). The GC is itself a program that is part of a more global runtime
system, which consists of code added by the compiler for providing various services to the
program. The idea is that, from time to time, and in particular if there is a need for free
space, the runtime system pauses the program, launches the GC to deallocate unreachable
memory locations—that is, locations for which the program has “lost their address”. How can
the GC compute such a set of unreachable locations? First, the GC defines a set of roots. At
a first approximation, roots are the set of locations that occur in the stack—that is, the local
variables. Then, the GC conceptually “walks through the heap” and computes the set of all
locations that can be reached from the roots, following heap paths. Locations unreachable
by this process cannot be accessed by the program anymore and can be safely deallocated.
Indeed, the sole way for the program to access a location is either by having it at hand in
a local variable or by loading it from a heap block, which must itself be reachable. Tracing
garbage collection can handle arbitrary cycles and can be implemented efficiently.

This thesis focuses on heap space bounds of programs under tracing garbage collection.
Establishing such bounds is not trivial: while it is still clear where space is needed (that is,
when the program allocates memory), it is far less clear where space can be reclaimed by
the GC. Indeed, whether the GC can free a memory location or not depends on the reachability
of this location.

Concurrency Modern computers come with multi-core processors. In such a processor,
several processing units, or cores, execute instructions at the same time, asynchronously.
The programmer can hope, in certain circumstances, to divide the execution time by a factor
P by using P cores. Crucially, cores can share memory, and exchange information while
they execute. Yet, programming in such a shared-memory concurrent world, where cores may
interfere with each other through the shared memory, is an extremely subtle task [Herlihy
and Shavit, 2012].

1.2. PROVING PROGRAMS CORRECT 19

In particular, the manual management of memory in a concurrent setting is famously
difficult [Michael, 2004]. Indeed, one core could free a location that is in use by another core!
In fact, it is so difficult to manually manage memory in a concurrent setting that programmers
rely on semi-automatic memory management—that is, they explicitly call functions that will
free memory “when it is safe to do so”. These semi-automatic systems are called safe memory
reclamation (SMR) schemes. SMR schemes include hazard pointers [Michael, 2004; Michael
et al., 2023] and read-copy-update (RCU) [McKenney, 2004; McKenney et al., 2023].

In such a concurrent world, garbage collection comes to save the day: management of
memory is invisible to the user, anyway! Indeed, the language implementor takes the burden of
writing a concurrent GC, a notoriously difficult task [Jones et al., 2012]. Moreover, analyzing
the reachability of objects becomes an even harder task: a formal analysis needs to take every
core into account.

1.2 Proving Programs Correct

Since Turing’s days, two approaches for proving programs correct have been followed: mostly-
automatic proofs, and mostly-manual proofs.

Mostly Automatic Proof of Programs Many works have proposed automatic and semi-
automatic techniques to check that a program does not crash, or satisfy more precise speci-
fications. To list a few, these techniques include type systems [Pierce, 2002], static analysis
with abstract interpretation [Rival and Yi, 2020], and model-checking [Clarke et al., 2018].
These techniques have proven to scale well to large programs and have been widely adopted.
For example, one of the main selling points of the Rust language is its elegant type system.
Moreover, various static analyses and model checking are used at large in the industry. Yet,
because all of these techniques emphasize automation, they generally lack expressivity. In-
deed, these techniques focus on common and simple programming patterns whose verification
can be automated, rather than more complex patterns that require human help.

The present thesis rather focuses on a mostly-manual approach. In such an approach,
a human reasons on the program by hand, using a set of established reasoning rules, which
usually form a program logic. The use of program logics for proving programs correct requires
expertise and is more time-consuming than automated approaches; yet, it allows for verifying
more subtle specifications of more complex programs.

A Brief History of Program Logics Based on the seminal ideas of Floyd [1967], Hoare
[1969] proposes one of the first program logics. In Hoare logic, each instruction is annotated
by a precondition—the state before the command is executed—and a postcondition—the state
after the command is executed. Such a specification takes the form of a Hoare triple {P} t {Q}
where P is the precondition, t is the program being verified, and Q is the postcondition.
Hoare’s axiomatic approach splits the work to be done. First, the designer of a program logic
proves correct a set of axioms, let us say reasoning rules, which are generic and constitute the
program logic itself. Later, the user of the program logic can instantiate the reasoning rules
for the proof of the particular program they are trying to prove correct. However, early Hoare
logics were designed for reasoning about the global state of programs and did not scale well
to large or complex programs, where the global state becomes unmanageable in its entirety.

Separation Logic Separation Logic [O’Hearn, 2019] was a breakthrough in the area of
proof of programs. Separation Logic is a Hoare logic that was pioneered at the beginning of
the 21st century, with seminal articles by O’Hearn et al. [2001] and Reynolds [2002]. The
main idea of Separation Logic is amazingly simple, and in fact so simple that we may wonder
why it took more than 30 years to come up with. Indeed, the motto of Separation Logic is
locality : when reasoning about a computation, one only needs to take into account the parts

20 CHAPTER 1. INTRODUCTION

of the memory this computation reads and writes to. Phrased differently, one can prove that
a program is correct by taking into account only a small portion of the memory, forgetting
about the global (and potentially huge) state.

At a high level, Separation Logic assertions describe the content of the heap. The base
connective of Separation Logic assertions is the points-to assertion, written ℓ 7→ v, asserting
that the abstract memory location ℓ currently stores the value v. Then, the key idea of
Separation Logic is to introduce the separating conjunction of two assertions P and Q, written
P ∗ Q. The assertion P ∗ Q asserts that P and Q hold on disjoint parts of the heap. For
example, the assertion ℓ1 7→ v1 ∗ ℓ2 7→ v2 asserts not only that the location ℓ1 stores the value
v1 and the location ℓ2 stores the value v2, but also that ℓ1 and ℓ2 are distinct (since they
describe separated parts of the heap). This separating conjunction allows us to make precise
the locality promise of Separation Logic, via the Frame rule:

{P} t {Q}
{P ∗ R} t {Q ∗ R}

Frame

In this deduction-style presentation, the part above the horizontal bar is the premise, and the
part below is the conclusion: the horizontal bar has to be understood as an implication. In
short, the Frame rule asserts that, if the execution of program t updates a heap represented
by the assertion P into a heap represented by assertion Q, then it also does so with any larger
heap, extended by a portion of heap represented by the assertion R. This part of the heap is
left untouched by the execution of t. Therefore, the same assertion R can be introduced both
in the precondition and in the postcondition.

Concurrent Separation Logic Sequential Separation Logic was already a breakthrough,
but its emphasis on locality turned out to be extraordinarily well suited for concurrent pro-
grams. O’Hearn [2007] and Brookes [2007] introduce Concurent Separation Logic (CSL), for
which they received the 2016 Gödel prize [EATCS, 2016]. The citation summarizes:

For the last thirty years experts have regarded pointer manipulation as an unsolved
challenge for program verification and shared-memory concurrency as an even
greater challenge. Now, thanks to CSL, both of these problems have been elegantly
and efficiently solved; and they have the same solution.

Let us first explain why reasoning about concurrent programs is difficult. A thread is a se-
quence of instructions that the programmer requests to be executed sequentially, on the same
core. Concurrent programs can fork threads to be potentially executed concurrently, on dif-
ferent cores. We reason here on unstructured concurrency : there is no primitive to wait for
the termination of a thread. This approach contrasts with the less-expressive structured con-
currency, such as fork/join or async/finish, in which there is a primitive to wait for a thread
or a group of threads to terminate. The primitive to wait for the termination of threads can
be encoded in unstructured concurrency: we hence focus on the latter.

Then comes the question of how to model the interaction between threads through the
shared memory. Interaction only happens through the heap, which is shared among threads:
each thread is equipped with its own stack that is not shared. In the traditional model
of Lamport [1979], called sequential consistency, each thread takes turns executing atomic
operations, for example, a read or a write in the memory. The sequentially consistent model
is outdated for modern computers, which rely on relaxed memory models. Yet, it is still a
good approximation of the reality, which we follow in this thesis.

A concurrent computation in the sequentially consistent model is usually represented by
an interleaving, a particular sequential order of threads’ atomic operations. Thus, one of
the main difficulties of the verification of concurrent programs is the need to cater for every
possible interleaving. The number of possible interleaving explodes quickly, and it becomes
unbearable (and not modular anyway) to consider each interleaving one by one. That is where

1.2. PROVING PROGRAMS CORRECT 21

CSL comes to save the day. The first idea is to separate the memory that each thread interacts
with, leading to the following Par rule, allowing to reason on (t1 || t2), the parallel execution
of two threads t1 and t2.

{P1} t1 {Q1} {P2} t2 {Q2}
{P1 ∗ P2} (t1 || t2) {Q1 ∗ Q2}

Par

The premise contains two assertions, separated by a space: one has to prove the conjunction
of these two premises in order to deduce the conclusion of the rule. The Par rule allows
for reasoning on t1 and t2 in isolation, as if the other thread was not running. Indeed, the
reasoning rule asserts that, if it t1 has precondition P1 and postcondition Q1, and t2 has
precondition P2 and postcondition Q2, then any interleaving of t1 and t2 has precondition
P1∗P2 and postcondition Q1∗Q2. In summary, as the two threads read and modify separated
parts of memory, they do not interfere with each other.

Threads may need to communicate via shared memory. To cater for this need, CSL
originally offers critical sections to which can be tied invariants. A critical section is linked to
a lock, and corresponds to a sequence of instructions that are guaranteed to not be interleaved
with other critical sections: the sequence of instructions will be completely executed before
another such sequence is executed. An invariant is a property that the program preserves
between every critical section. The user of CSL can hence assume that an invariant holds
at the beginning of a critical section and must prove that this invariant continues to hold by
the time the critical section ends. Critical sections, implemented with locks, semaphores or
other mechanisms, correspond to coarse-grained concurrency. However, at the logical level,
one can assume a critical section around each atomic instruction, leading to fine-grained
concurrency [Parkinson et al., 2007].

In short, CSL’s approach circumscribes the difficulties: the user does not need to reason
about interference from other threads with the memory it owns, but needs to indeed cater for
interference on shared memory by making use of an invariant.

Iris CSL gave rise to numerous variants [Gotsman et al., 2007; Vafeiadis and Parkinson,
2007; Dinsdale-Young et al., 2013; Svendsen and Birkedal, 2014; da Rocha Pinto et al., 2014].
Observing and anticipating the growing number of variants of CSL, Parkinson [2010] ad-
vocated the need for a core logic, capturing the fundamental property of Separation Logic.
Iris [Jung et al., 2015, 2018b] proposes a such solution. Iris is a modern and powerful Con-
current Separation Logic which crucially offers user-defined higher-order ghost state. While
reasoning on the program, Iris allows for representing a ghost (or fictional) heap, that does
not exist at runtime, but facilitates the reasoning. In this ghost heap, each ghost location
is equipped with a camera (or resource algebra), which describes the operations available on
this ghost location. The Iris approach stands out because (1) the user can define cameras and
equip each ghost location with a camera that fits best the intended reasoning and (2) the ghost
state is higher-order, meaning that a ghost location can store an Iris assertion. Similarly to
the points-to assertion for physical locations, ghost locations are owned and can appear within
Separation Logic assertions. On top of the ghost state, Iris constructs and offers a generic
notion of invariant. Iris invariants allow sharing both physical and ghost locations among
threads, which enables reasoning about interference in fine-grained concurrent programs.

Iris was quickly adopted by a large fraction of the community, as demonstrated by a myriad
of works making use of Iris as their underlying logic [Kaiser et al., 2017; Jung et al., 2018a;
Frumin et al., 2018; Mével et al., 2020; de Vilhena and Pottier, 2021], including the present
thesis. As of May 2024, the website of the Iris project (https://iris-project.org/) lists
more than 100 articles making use of Iris.

Machine-Checked Verification Until now, we have described various techniques, includ-
ing Separation Logic, to prove that a program satisfies its specification. But there are two

https://iris-project.org/

22 CHAPTER 1. INTRODUCTION

questions. First, how to ensure that these techniques are sound, in the sense that they indeed
prove that a verified specification holds? Second, how to ensure that the user of these tech-
niques correctly applies them? For example, how to check that the rules of Separation Logic
are correctly applied during the verification of a program?

A pen-and-paper proof is not satisfactory. Indeed, a proof is similar to a program in
the sense that it is written by humans, and may also itself contain bugs. To mimic our
initial question: how to ensure that a proof contains no bugs? Proof assistants come to help.
A proof assistant checks, line by line, that the proof only applies correct reasoning rules of
an underlying proof system. Then, if one trusts the proof assistant as well as its underlying
proof system, one can trust the checked proof.

One can ask: what is the point? Indeed, we just changed “trusting the proof” into “trusting
the proof assistant”. The point is that we, as scientists, can trust the same small set of proof
assistants, and agree on the same set of foundational proof systems they apply.

Since the Automath project [de Bruijn, 1994], proof assistants have become more and
more popular. Widely-used proof assistants include Coq [The Coq Development Team, 2024],
Agda [The Agda Development Team, 2024], HOL [The HOL Development Team, 2024], and
Lean [The Lean Development Team, 2024].

Proof assistants allowed for gaining trust in complex mathematical proofs, like the proof
of the four-color theorem [Gonthier et al., 2008] or the Feit–Thompson odd order theo-
rem [Gonthier et al., 2013]. Proof assistants also allowed for both developing and gaining
trust in programs. CompCert [Leroy, 2024], a verified compiler for a large subset of C, was
the first realistic verified compiler—it is a large and complex software, and its verification was
a milestone. Numerous success stories followed, like the seL4 secure microkernel [Klein et al.,
2009], or the CakeML compiler [Kumar et al., 2014].

Mechanizing Program Logics The Iris Separation Logic framework, which we use, is
mechanized in Coq [Krebbers et al., 2017]. Let us describe the “standard recipe” to define an
Iris-based mechanized program logic, a recipe that we are going to follow in this thesis.

There are three steps. First, one needs to model the programming language in Coq.
This can be done by the means of a deep embedding : programs are represented by syntactic
constructs, and a binary relation between syntactic programs define the semantics of the
language, by relating two programs if the first can evolve in the second. Second, one needs
to prove a set of reasoning rules, in Coq using Iris. These rules allow for reasoning on
how a program evolves over time, without actually executing it. Third, one needs to prove
the adequacy theorem of the program logic, which asserts that the correct applications of the
reasoning rules on a program guarantees some property on its semantics. For example, almost
every program logic guarantees safety, that is, a verified program never crashes.

To verify a program, the user of the logic needs to follow three other steps. First, the user
writes a deeply embedded program in Coq. Second, the user writes the specification of the
program as a Separation Logic triple in Iris. Third, the user applies the reasoning rules, in
Coq, to verify that the program is correct, that is, the triple is true.

In the end, what needs to be trusted? First, we need to trust the fact that the underlying
logic of Coq itself is correct. This logic, a variant of the Calculus of Inductive Construc-
tions (CIC), is well-understood, stable, and accepted by the community. Second, we need to
trust that Coq correctly applies the rules of its underlying logic. This is less clear, and bugs
in Coq are regularly found. Yet, it is less likely to be a bug in Coq than in a human-written
proof. Recently, the MetaCoq project [Sozeau et al., 2020, 2023] helped to gain confidence
both in the underlying logic of Coq and its implementation. Indeed, MetaCoq started ver-
ifying an implementation of Coq in Coq itself, with as little axioms as possible. Third, we
need to trust that the programming language we model—its syntax and its semantics—is a
faithful representation of reality. In our case, the axiomatization of the behavior of the GC

1.3. VERIFICATION OF RESOURCE BOUNDS 23

is a crucial aspect, which we describe later on (§2.1, §4.6). Assuming these three points, one
can be sure that the result being proved with a mechanized program logic is correct.

1.3 Verification of Resource Bounds

This thesis focuses on verifying resource bounds, and in particular heap space bounds. Let
us briefly cover existing works.

The Resource Meter Approach Assuming that one is able to tell where in the code the
resource of interest is consumed and produced, and how much of it is consumed or produced,
reasoning about resource consumption can be reduced to reasoning about safety. To do so,
one can construct a variant of the program that is instrumented with a resource meter, that is,
a global variable whose value indicates what amount of the resource remains available. In
this instrumented program, one places assertions that cause a runtime failure if the value
of the meter becomes negative. If one can verify that the instrumented program has no
runtime failure (that is, is safe), then one has effectively established a bound on the resource
consumption of the original program.

The principle of a resource meter has been exploited in many articles, using various frame-
works for establishing safety. For instance, Crary and Weirich [2000] exploit a dependent type
system; Aspinall et al. [2007] exploit a VDM-style program logic; Carbonneaux et al. [2015]
exploit a Hoare logic; He et al. [2009] exploit Separation Logic. The manner in which one
reasons about the value of the meter depends on the chosen framework. In the most straight-
forward approach, the value of the meter is explicitly described in the pre- and postcondition
of every function. This is the case, for instance, in He et al.’s work [2009], where two distinct
meters are used to measure stack space and heap space. In a more elaborate approach [Atkey,
2011], which is made possible by Separation Logic, the meter is not regarded as an integer
value but as a bag of credits that can be individually owned. Time credits remove the need to
refer to the absolute value of the meter: instead, the specification of a function may indicate
that this function requires a number of credits and produces a number of credits.

Credits were extensively used to verify time bounds, using time credits. This approach of
credits was first implemented in Separation Logic by Charguéraud and Pottier [2019]. The
idea of time credits dates back to Atkey [2011] and Pilkiewicz and Pottier [2011]. The thesis
of Guéneau [2019] demonstrates advanced practical applications with fractional and negative
time credits. The idea of time credits is appealing for reasoning about heap space: can we
just use space credits? This thesis answers by the positive, and underlines the challenges of
this approach.

Verification of Heap Space Bounds, with Manual Memory Management In a
language with manual memory management, it is easy to tell where heap space is consumed
and produced: an allocation instruction consumes the amount of space that it receives as an
argument; a deallocation instruction recovers the space occupied by the heap block that is
about to be deallocated.

In such a setting, traditional Separation Logic extended with space credits, can be used
to establish verified heap space bounds. To the best of our knowledge, such a variant of
Separation Logic does not exist in the literature. However, Hofmann’s work on the typed
programming language LFPL [2000] can be viewed as a precursor of this idea: LFPL has
explicit allocation and deallocation, which consume and produce values of a linear type,
written ⋄, whose inhabitants behave very much like space credits.

Verification of Heap Space Bounds, with Tracing Garbage Collection In the pres-
ence of tracing garbage collection, there is no memory deallocation instruction. Thus, it is

24 CHAPTER 1. INTRODUCTION

not evident at which program points space can be reclaimed. The GC can be invoked at ar-
bitrary points in time, and may deallocate any subset of the unreachable blocks. (Recall that
an unreachable block is a block that is not reachable from any root via a path in the heap.)
Thus, reasoning about heap space in the presence of garbage collection requires reasoning
about roots and unreachability.

Madiot and Pottier [2022] make a first step towards addressing this problem. They extend
Separation Logic with several concepts. To keep track of free space, they use space credits.
They view memory deallocation as a logical operation: it is up to the person who verifies the
program to decide at which points this operation must be used and which memory blocks must
be logically deallocated. This decision is subject to a proof obligation: a memory block can
be logically deallocated only if it is unreachable. Unfortunately, the concept of unreachability
is not local: that is, this concept cannot be easily expressed in terms of Separation Logic
assertions. Therefore, Madiot and Pottier rephrase this proof obligation as follows: a memory
block can be logically deallocated if it has no predecessors and is not a root. To record the
predecessors of every memory block, they use pointed-by assertions [Kassios and Kritikos,
2013]. To record which blocks are roots, they focus their attention on a low-level language,
where the stack is explicitly represented in the heap as a collection of “stack cells”. Then,
a block is a root if and only if it is a stack cell.

In work published during this thesis [Moine et al., 2023], we scale Madiot and Pottier’s
ideas up to a high-level language, where the stack is implicit. We introduce Stackable asser-
tions to implicitly record which memory locations are “invisible roots”, that is, which memory
locations are roots because they appear in some indirect caller’s stack frame.

Neither of these articles focuses on concurrency. Madiot and Pottier [2022] technically
support concurrency, but only for a low-level language with stack variables explicitly allo-
cated in the heap, and without any concurrent example covered. Moine et al. [2023] do not
support it. By design, their Stackable assertion keeps track of a single stack. Extending it
with support for multiple stacks is a priori not straightforward.

1.4 Contributions and Overview

We now present a high-level view of the contributions we make in this thesis, and give an
overview of each chapter of this document.

Contribution 1: IrisFit, a Concurrent Separation Logic for Heap Space The main
contribution of this thesis is IrisFit, the first program logic that allows establishing safety,
functional correctness, and worst-case heap space bounds properties of concurrent programs,
in the presence of garbage collection. Moreover, IrisFit allows compositional reasoning, that is,
verifying each component in isolation.

IrisFit follows the resource meter approach and comes with space credits to keep track of
the free space. We make use and enhance the pointed-by-heap assertion [Madiot and Pottier,
2022] to keep track of heap-to-heap pointers and we introduce the pointed-by-thread assertion
to keep track of stack-to-heap pointers. Together, these assertions allow for proving that a
location is unreachable. When the user is able to do so, we propose a ghost deallocation rule,
following Madiot and Pottier [2022]. This rule intuitively consumes the pointed-by-thread
and pointed-by-heap assertions showing unreachability and produces space credits.

Compared with standard Separation Logic, in order to keep track of the reachability of
memory location, reasoning rules of IrisFit come with additional proof obligations. However,
we are able to offer to the user simplified reasoning rules via two mechanisms we introduce.
First, thanks to a dedicated mode, by pledging over a delimited syntactical scope not to
deallocate any heap block, the user gets back almost a standard Separation Logic. Second,
the user may record that some obligations were already satisfied thanks to a souvenir, dropping
these obligations the next time they appear during the proof.

1.4. CONTRIBUTIONS AND OVERVIEW 25

Contribution 2: Protected Sections and Polling Points Unless some care is taken,
concurrent programs under garbage collection can have a suboptimal worst-case heap space
complexity, that is, worse complexity than one might naively imagine. We propose pro-
gramming language features that let the programmer eliminate some of the worst-case sce-
narios that we have discovered. The new features that we propose include protected sec-
tions—sections of the code where garbage collection is globally disabled—and polling points—
instructions that block the current thread if garbage collection has been requested by one or
more other threads. The programmer can exploit the presence of protected sections to ob-
tain improved worst-case heap space complexity bounds. Polling points are meant to be
automatically inserted by the compiler.

Our protected sections and polling points are inspired by mechanisms found in real-world
language implementations, such as Ocaml 5’s “safe points”. However, we believe that our
design is better behaved and introduces an important distinction between a construct that
is inserted by the programmer and that is required to ensure good worst-case heap space
complexity (namely, protected sections), and a construct that can be automatically inserted
by the compiler and that is required to ensure liveness (namely, polling points).

We equip IrisFit with reasoning rules for protected sections, allowing a form of logical
deallocation “in advance”. These rules allow for logically deallocating a location that is reach-
able from “current” protected sections but with the proof obligation to show that this location
is unreachable by the time the protected sections end.

Contribution 3: Soundness of IrisFit We prove the soundness of IrisFit. More specif-
ically, we establish both a safety theorem, which guarantees that a verified program cannot
crash and in particular cannot exceed the heap space bound, and a liveness theorem, which
guarantees that, provided enough polling points are present, no thread can be forever blocked
by a memory allocation request.

Contribution 4: Understanding the Space Consumption and Impact of Closures
under Garbage Collection In most of functional programming languages, such as OCaml,
functions with free variables are compiled to closures [Landin, 1964; Appel, 1992]. In usual
program verification, closures receive no particular treatment. However, a closure is a heap-
allocated block that points to the code of the function and the values of its free variables.
Consequently, closures consume space and participate in the reachability of their environment:
they thus need to be handled with care when reasoning about heap space (§2.6). Closures
are pervasive in functional programs: understanding their space consumption is important.
In order to reason about closures, we program “closure conversion”, the compilation pass
which transforms the high-level notation of a function with free variables into low-level code
allocating and manipulating the closure heap block. We then prove reasoning rules for closure
creation and call. We first propose a low-level interface for closures, revealing the actual code
of the closure. From this interface, we derive a high-level interface, which hides the closure’s
code and only reveals its specification.

Contribution 5: Case Studies To illustrate IrisFit, we propose a range of case studies.
For each case study, we establish not only functional correctness, but also heap space bounds
of the various related functions.

First, IrisFit allows reasoning on sequential programs—that is, programs that do not
make use of concurrency primitives. We verify an implementation of immutable linked lists
and several functions over this data structure. In particular, we verify an implementation of
the concatenation of lists in continuation-passing-style, showcasing closures. To demonstrate
the compositionality of our approach, we verify several implementations of stacks, and explain
how to compose them. We showcase IrisFit’s ability to reason about circular data structures
through the verification of a circular singly-linked list.

26 CHAPTER 1. INTRODUCTION

Second, IrisFit allows reasoning on subtle concurrent programs. We first propose an
encoding of the fetch-and-add (FAA) primitive with protected sections, as an instructive
exercise. We verify a concurrent monotonic counter as a pair of closures sharing mutable
reference. We propose a library for a form of structured concurrency called async/finish. We
then present two case studies of lock-free data structures, that is, data structures that can
be used concurrently without blocking. Namely, we verify the correctness and establish heap
space bounds for Treiber’s stack [1986] and Michael and Scott’s queue [1996]. These two data
structures were already proved correct using Separation Logic and Iris [Krebbers et al., 2017;
Vindum and Birkedal, 2021]. The novelty of our contribution is their heap space bounds. In
particular, in order to establish their intuitive heap space bounds, we show how these two
data structures need to be fixed with protected sections.

Structure of This Document In Chapter 2, we introduce in more detail the high-level
ideas of LambdaFit, the language we study, and IrisFit, the program logic we equip our
language with. Next, in Chapter 3, we explain on the particular example of Treiber’s stack
why protected sections are needed to guarantee the intuitive worst-case heap space bound
of the functions of this data structure. After these intuitions and motivations, we present
in Chapter 4 the formal syntax and semantics of LambdaFit. We then dive into IrisFit: in
Chapter 5, we showcase the assertions of our program logic, and in Chapter 6 we present
the related reasoning rules. We next justify the soundness of our approach. In Chapter 7,
we comment on our safety and liveness theorems, and how they both follow from a core
soundness theorem. In Chapter 8, we sketch the proof of this core soundness theorem. After
that, in Chapter 9, we explain our encoding of closures and its associated reasoning rules. In
Chapter 10, we present the technique of triples with souvenir, relieving the user of some proof
obligations that were satisfied in the past. We then present our sequential case studies in
Chapter 11 and showcase our concurrent case studies in Chapter 12. In Chapter 13, we cover
the related work. Finally, in Chapter 14, we conclude with perspectives for future work.

1.5 Research Output: Publications and Mechanization

Publications The present thesis extends two articles.

• A High-Level Separation Logic for Heap Space under Garbage Collection,
Alexandre Moine, Arthur Charguéraud, and François Pottier,
Proceedings of the ACM on Programming Languages (issue POPL), 2023.

• Will it Fit? Verifying Heap Space Bounds of Concurrent Programs under
Garbage Collection with Separation Logic,
Alexandre Moine, Arthur Charguéraud, and François Pottier,
Submitted, 2024.

The POPL article presents a Separation Logic for heap space under garbage collection
for sequential programs. This article introduces a particular assertion for tracking roots in
a modular way, and specifies and verifies closures based on closure conversion. This article
also proposes the technique of triples with souvenir and illustrates the logic with a range of
sequential case studies including lists, stacks, and a “counter” object implemented with two
closures sharing a private mutable reference.

The submitted “Will it Fit?” article scales the earlier approach to a concurrent setting,
introduces protected sections and polling points, and provides a range of concurrent case
studies including Treiber’s lock-free stack.

The present thesis borrows text from these two articles that are co-authored with my two
advisors. Material for which I am the sole author includes parts of this introduction (§1.1,

1.5. RESEARCH OUTPUT: PUBLICATIONS AND MECHANIZATION 27

§1.2, §1.4), a detailed comment on the safety and liveness proofs (§7, §8), additional case
studies (§11.1, §11.5, §12.6), and the conclusion (§14).

Based on the ideas presented in this thesis, I led a collaboration with Sam Westrick and
Stephanie Balzer to propose a Separation Logic for proving disentanglement, a property of
parallel programs restricting the set of locations that parallel tasks are allowed to reach (§13.7).
This work is not covered in the present document but was published separately in the article
DisLog: A Separation Logic for Disentanglement [Moine, Westrick and Balzer, 2024].

Mechanization All of the results presented in this thesis are mechanized using the Coq
proof assistant and the Iris framework. I am the sole author of this mechanization, which is
freely available [Moine, 2024]. In detail, the syntax and semantics of our language, the validity
of the reasoning rules of our program logic, the safety theorem and the liveness theorem, and
our case studies are all machine-checked. More information about our mechanization may be
found in the conclusion section (§14.1).

Chapter 2

Key Ideas

The Jamaicans (1967).
Ba Ba Boom.

LambdaFit is a call-by-value λ-calculus with dynamic memory allocation, mutable state,
shared-memory concurrency, and tracing garbage collection. Its syntax and semantics are
standard, save for a few original aspects.

First, LambdaFit exhibits a number of non-standard features related with memory man-
agement. Its operational semantics defines the concept of a root and has explicit garbage col-
lection steps (§2.1). Furthermore, its operational semantics is parameterized with a maximum
heap size. A memory allocation request that would cause this limit to be exceeded is block-
ing (§2.2). There is a notion of protected section where garbage collection cannot take place
(§2.3) and a notion of polling point, an instruction that blocks the current thread if garbage
collection has been requested by other threads (§2.4). After detailing these aspects, we give
a high-level overview of how IrisFit provides reasoning rules for all these constructs (§2.5).

Second, LambdaFit is restricted to closed functions, also known as code pointers. We
encode closures as heap-allocated objects that store code and data (§2.6).

2.1 Roots and Garbage Collection

To be able to talk and reason about the heap space complexity of LambdaFit programs, we
must first equip LambdaFit with a semantics where garbage collection is explicit. Garbage
collection [Jones et al., 2012] deallocates some or all unreachable memory blocks, where a
block is reachable if there exists a path from some root, through the heap, to this block. Thus,
the semantics of LambdaFit, and the notion of heap space complexity, depend on an answer
to the question: what is a root?

How can the intuitive concept of a root be formally defined in the setting of a small-
step, substitution-based operational semantics? Before addressing this question, let us recall
a few fundamental aspects of such a semantics. In an operational semantics, a program
state, which represents the state of a running program, is a syntactic object. Here, because
we are interested in concurrent programs with dynamic memory allocation, a program state
includes a thread pool (a list of threads) and a heap (a finite map of memory locations to
memory blocks). In a small-step semantics, the manner in which the program state evolves
over time is described by a reduction relation, that is, a binary relation on program states.
In a substitution-based semantics, within the thread pool, each running thread is represented
as a closed term, that is, a term without free variables. The reduction rules ensure that,
whenever the scope of a variable is entered, a closed value is substituted for this variable.
Thus, a closed term that represents a running thread describes both the code that this thread
is about to execute and the data to which this thread has access. In particular, a memory
location ℓ is a closed value, and a closed term that represents a running thread can contain
memory locations.

In such a setting, what is a root? A simple, commonly agreed-upon answer is: a root is a
memory location ℓ that appears in at least one running thread t. By this, we mean that the
closed term t, which represents one of the currently running threads, contains one or more
occurrences of the memory location ℓ.

29

30 CHAPTER 2. KEY IDEAS

This convention is known as the free variable rule (FVR) [Felleisen and Hieb, 1992; Mor-
risett et al., 1995]. Intuitively, the FVR states that the (computable) set of memory blocks
that are reachable by the locations that appear in threads are a conservative approximation of
the (uncomputable) set of memory blocks that might be accessed in the future by any of the
threads. However, one must keep in mind that the FVR is not a static approximation of the
dynamic semantics. Instead, the FVR is part of the definition of the dynamic semantics. It
defines the concept of root, which in turn is used to define reachability and garbage collection.

The reader may wonder whether real-world programming languages respect the FVR. As
far as we know, many real-world implementations of garbage-collected languages, such as
OCaml, SML, Haskell, Scala, Java, and more, are meant to respect the FVR. Unfortunately,
this intention is often undocumented. A prominent example of a compiler that explicitly
respects the FVR is the CakeML verified compiler. Gómez-Londoño et al. [2020] and Gómez-
Londoño and Myreen [2021] prove that the CakeML compiler respects a cost model that is
defined at the level of the intermediate language DataLang that includes a form of the FVR.

2.2 Maximum Heap Size and Blocking Memory Allocation

The default operational semantics of LambdaFit is parameterized by a maximum heap size S,
and is designed in such a way that the heap size always remains less than or equal to S. This
property, which is stated by Lemma 2 (§4.9), is enforced as follows. Let us say that a memory
allocation request is large if it would cause the heap size to exceed S, that is, if the sum of
the current heap size and the number of requested words exceeds S. Otherwise, let us say
that the allocation is small. Then, a large memory allocation instruction is not allowed to
proceed: it is blocked. Once garbage collection takes place and is able to free enough space in
the heap, this memory allocation instruction may become small, therefore unblocked. Polling
points (§2.4) are another kind of instruction that can be blocked.

By blocking large memory allocation instructions, we ensure that one kind of undesirable
behavior, namely growing the heap too large, is eliminated a priori. Two kinds of undesir-
able behavior remain permitted by the operational semantics, namely crashes and deadlocks:
a thread can crash or become forever blocked. Under certain assumptions about the placement
of polling points, our program logic statically guarantees that these undesirable behaviors can-
not arise: this is stated by our safety and liveness theorems (Theorems 1 and 2).

An alternative approach would be to adopt a simpler oblivious operational semantics,
where no instruction is ever blocked and where there is no space limit. Then, a different kind
of undesirable behavior, namely deadlocks, is eliminated a priori. The undesirable behaviors
that remain permitted by the operational semantics are crashes and growing the heap too
large. In such a setting, our program logic, which is parameterized by an initial amount of
available space S, statically provides the following guarantees: first, no thread can crash;
second, when every thread is outside a protected section, the live heap space is bounded by S.
We define this alternative operational semantics and establish this result: this is our core
soundness theorem (Theorem 3). We use this theorem as a stepping stone in the proof of
Theorems 1 and 2.

In the oblivious semantics an instruction is never blocked, whereas in the default semantics
the same instruction can be blocked, the oblivious semantics is a superset of the default
semantics. A program has a wider set of possible behaviors in the oblivious semantics than in
the default semantics. This is why, with respect to the default semantics, our program logic
is able to offer a stronger static guarantee. Indeed, with respect to the default semantics, it
guarantees that the heap size never exceeds S, whereas with respect to the oblivious semantics
it guarantees that when every thread is outside a protected section the live heap space is at
most S.

In summary, there is a choice between two operational semantics for LambdaFit. This
choice influences which undesirable behavior is eliminated a priori and which ones are elim-

2.3. PROTECTED SECTIONS 31

inated by the program logic. Because the two semantics are not equivalent (one is a strict
subset of the other), this choice is not just a matter of presentation: by choosing the more
complex and more restrictive semantics, we can offer a simpler and stronger static guarantee.

2.3 Protected Sections

We equip LambdaFit with protected sections, that is, sections of the code where garbage collec-
tion cannot take place. As long as any thread is inside a protected section, garbage collection
is disabled. Thus, if some thread is blocked by a large memory allocation request (§2.2), then
this thread must wait until the GC has been allowed to run, which cannot take place until
every thread is outside a protected section.

A protected section is explicitly delimited by two special instructions, enter and exit, which
mark the beginning and end of the section. A single well-balanced construct “protected {t}”
would be insufficiently flexible, because a protected section typically has one entry point and
multiple exit points. This is illustrated by our implementation of Treiber’s stack enhanced
with protected sections (Figure 3).

Protected sections are subject to two restrictions. First, they cannot be nested. Second,
a protected section must not contain a memory allocation instruction, a “fork” instruction,1

a polling point (§2.4), or a function call.2 These restrictions ensure that a protected section
cannot contain a blocking instruction and can be exited in a bounded number of steps. The
syntax of LambdaFit does not enforce these restrictions; however, violating them causes
a runtime error, and is statically forbidden by our program logic.

Decorating a program with protected sections reduces the set of its possible behaviors:
indeed, as long as one thread is inside a protected section, garbage collection cannot take
place, so any thread that is in need of a large allocation must wait. Therefore, decorating
a program with protected sections can only reduce its worst-case heap space complexity. This
phenomenon is illustrated by the example of Treiber’s stack (§3).

2.4 Polling Points

The combination of blocking memory allocations (§2.2) and protected sections (§2.3) poten-
tially creates deadlocks, endangering liveness: that is, for some programs, there exist adver-
sarial schedules where a large memory allocation request is blocked forever because the GC
can never run. For example, imagine that thread A is blocked by a large memory allocation
request while threads B and C both are in an infinite loop whose body contains a protected
section. Then, the scheduler can interleave threads B and C in such a way that at all times one
of them is inside a protected section, thereby forever disabling garbage collection and blocking
thread A. We wish to forbid this scenario and to formally establish a liveness guarantee of
the form: always, eventually, every thread can make progress (Theorem 2).

To this end, we equip LambdaFit with polling points. A polling point is a synchronization
instruction, a form of barrier. A thread may proceed past a polling point only if no large
memory allocation request is currently outstanding. In other words, if any thread is currently
blocked by a large memory allocation request, then no thread can move past a polling point.
A polling point must not appear inside a protected section.

By inserting sufficiently many polling points into a program, one can ensure that every
memory allocation request is eventually satisfied. Indeed, as soon as one thread is blocked on

1In our operational semantics, “fork” does not allocate any memory in the heap. We could technically
allow “fork” inside a protected section without breaking any of our results. In the real world, though, “fork” is
likely to allocate memory. Because we forbid memory allocation inside a protected section, it seems natural
to disallow “fork” inside protected sections as well.

2Because loops are encoded as recursive functions, forbidding function calls inside protected sections also
forbids loops inside protected sections.

32 CHAPTER 2. KEY IDEAS

a large memory allocation request, every thread must eventually reach a polling point or a large
memory allocation request, where it, too, becomes blocked. At this point, since neither polling
points nor memory allocation instructions can appear inside a protected section, every thread
must be outside a protected section. Thus, garbage collection can, and must, take place.
If enough space becomes available—which our program logic statically guarantees!—then all
outstanding memory allocation requests can be satisfied.

In the scenario outlined above, provided a polling point is inserted in the loops of both
thread B and thread C, these two threads must eventually reach a polling point, where they
become blocked. The only permitted step is then a garbage collection step, which is expected
to free up enough memory to satisfy thread A’s large allocation request. Consequently, all
three threads become unblocked.

In principle, polling points could be manually inserted by the programmer, but that would
be tedious. In practice, we expect a compiler to automatically insert polling points where
needed. In §7.2, we prove that a particular polling point insertion strategy, inspired by that
of the OCaml 5 compiler, does indeed insert enough polling points to guarantee liveness.

2.5 A Concurrent Separation Logic for Heap Space

This thesis presents IrisFit, a concurrent Separation Logic for LambdaFit. IrisFit shares
many features with pre-existing Separation Logics. The behavior of a program fragment is
described by a triple, an assertion whose parameters include a precondition (an assertion
that describes the initial state), the program fragment of interest, and a postcondition (an
assertion that describes the final state). In IrisFit, a triple also includes a thread identifier,
as the logic assigns a unique name to each thread. A rich vocabulary of logical connectives,
including points-to assertions, separating conjunction, and many more, is used to construct
assertions, which encode both knowledge of the current state and permission to update this
state in certain ways.

What sets IrisFit apart from traditional Separation Logics? IrisFit borrows ideas from
previous Separation Logics equipped with support for reasoning about heap space in the
presence of garbage collection [Madiot and Pottier, 2022; Moine et al., 2023] and scales them
up to a concurrent setting. Space credits keep track of available space and serve as permissions
to allocate memory. Furthermore, several kinds of assertions record which memory locations
are reachable and in what way they can be reached. Pointed-by-heap assertions [Madiot
and Pottier, 2022] keep track of predecessors of each location in the heap. Pointed-by-thread
assertions (new in this thesis) keep track of the threads in which each location is a root.
Like previous logics [Madiot and Pottier, 2022; Moine et al., 2023], IrisFit features a ghost
deallocation rule. Because the programming language does not have an explicit memory
deallocation instruction, it is up to the user of the logic to decide where to apply this rule.
This rule requires proof that the memory block of interest is unreachable. This proof takes the
form of pointed-by-heap and pointed-by-thread assertions, which are consumed; space credits
are produced in their stead. A novelty of our approach is that logical deallocation does not
require or consume the points-to assertion.

A crucial novel aspect of IrisFit is its ability to take advantage of protected sections while
reasoning. Indeed, IrisFit offers a relaxed way of keeping track of roots inside protected
sections. Ordinarily, pointed-by-thread assertions record which locations are roots, and as
long as a location is a root, this location cannot be logically deallocated. Inside a protected
section, however, an exception to this regime is made: the logic keeps track of a set of
temporary roots. The user can turn an ordinary root into a temporary root (and vice-versa).
The logic requires that, by the time the protected section ends, no temporary roots remain.
Thus, by that time, every temporary root must no longer be a root (or must have been
turned back into an ordinary root). Crucially, inside a protected section, the condition under
which logical deallocation is permitted is: if a location ℓ is not an ordinary root in any

2.6. CLOSURES 33

thread, and if ℓ has no live heap predecessors, then it can be logically deallocated. In other
words, even though physical garbage collection is disabled inside protected sections, logical
deallocation remains permitted, and is oblivious to the existence of temporary roots.3 Finally,
perhaps surprisingly, because the points-to assertion survives logical deallocation and enables
read and write access, a temporary root that has already been logically deallocated can still
be accessed before the protected section ends. This pattern appears while verifying lock-free
data structures (§12.5).

2.6 Closures

To model the space complexity of programs that involve closures [Landin, 1964; Appel, 1992],
we must somehow reflect the fact that a closure is a heap-allocated object. It has an address,
a size, and may hold pointers to other objects. Thus, a closure has both direct and indirect
impacts on space complexity: it occupies some space; and, by pointing to other objects, it
keeps these objects live (reachable), preventing the GC from reclaiming the space that they
occupy.

Therefore, we cannot use the standard small-step and substitution-based semantics of the
λ-calculus, where a λ-abstraction is a value that does not have an address or a size. Instead,
two approaches come to mind. One approach is to view a λ-abstraction as a primitive expres-
sion (not a value) whose evaluation causes the allocation of a closure. Another approach is to
adopt a restricted calculus that offers only closed functions (as opposed to λ-abstractions with
free variables) and to define closure construction and closure invocation as macros, or canned
sequences of instructions, on top of this restricted calculus. As shown by Paraskevopoulou
and Appel [2019], these two approaches yield the same space cost model. Furthermore, pro-
vided suitable syntax is chosen, the end user does not see the difference: it is just a matter of
presentation in the metatheory.

We choose the second approach, because we find it simpler. In so doing, we follow Gómez-
Londoño et al. [2020], who define the CakeML cost model at the level of DataLang, the
language that serves as the target of closure conversion.

Thus, we equip LambdaFit with closed functions, which we also refer to as code pointers.
We write µptrf. λx⃗. t for a (recursive, multi-argument) closed function, and write (v u⃗)ptr for
the invocation of the code pointer v with arguments u⃗. LambdaFit does not have primi-
tive closures. This allows us to present a program logic for LambdaFit and to establish the
soundness of this logic without worrying about closures. Once this is done, we define closure
construction µclof. λx⃗. t and closure invocation (ℓ u⃗)clo as macros, and we extend our pro-
gram logic with high-level reasoning rules for closures (§9). This allows end users to reason
about these macros without expanding them and without even knowing how they are defined.
In summary, LambdaFit can macro-express closures, and our logic allows reasoning about
closures in the same way as if they were primitive constructs.

Our construction of closures as macros is the same as in our previous paper [Moine et al.,
2023]. Our treatment of closures in the logic, however, has been generalized to multiple
threads and simplified by describing closures via persistent predicates (§9.3, §9.5).

3Because the GC cannot run while any thread is inside a protected section, it cannot observe the existence
of a temporary root. Therefore, there is no reason why the existence of a temporary root should prevent
logical deallocation.

Chapter 3

Why Treiber’s Stack Needs
Protected Sections

Gottschalk, L. M. (1857).
Souvenir de Porto-Rico, marche des Gibaros.

To motivate the interest of protected sections for establishing space bounds, we use the
example of Treiber’s stack, a lock-free, linearizable stack [Treiber, 1986]. We first present
a naive implementation of this data structure without protected sections (§3.1). We point
out that this implementation has an unsatisfying worst-case heap space complexity: there are
scenarios where a successful pop operation does not allow any memory cell to be freed (§3.2).
All memory can eventually be recovered, but this requires waiting until all threads have
completed their interaction with the stack. This situation is unpleasant: pop cannot be given
a simple logical specification of the form “a successful pop frees up one list cell worth of heap
space”. We show that, by annotating the code with protected sections, one can eliminate
these undesirable scenarios and obtain the desired specification (§3.3). Near the end of this
paper (§12.5), we present the details of how we formally establish this specification in IrisFit.

3.1 Naive Implementation of Treiber’s Stack

Treiber’s stack is implemented as a mutable reference to an immutable linked list, whose
head corresponds to the top of the stack. Pseudo-code is presented in Figure 1.

The function call create() creates a new stack, represented as a fresh reference to an
empty list nil. The nil value takes up no heap space: it is in fact an integer value.

The functions push and pop make crucial use of the atomic compare-and-swap (CAS)
instruction. Each of them is implemented as a “CAS loop”: it prepares an operation and
attempts to atomically commit this operation using a CAS instruction. If the CAS succeeds,
the function returns; otherwise, the loop continues with another attempt. Here, each loop is
encoded as a tail-recursive function.

The function push s v inserts a new element v in a stack s. First, s is dereferenced (line 4)
so as to obtain the address h of the head of the linked list. Then, a new list cell h' is allocated
(line 5). The “data” and “tail” fields are initialized with v (line 6) and h (line 7). Then,
a CAS instruction attempts to update the content of s from h to h' (line 8). If this attempt

1 let create () = ref nil

2

3 let rec push s v =

4 let h = !s in

5 let h' = new_cell () in

6 set_data h' v;

7 set_tail h' h;

8 if compare_and_swap s h h'

9 then ()

10 else push s v

11 let rec pop s =

12 let h = !s in

13 if is_nil h

14 then pop s

15 else

16 let h' = tail h in

17 if compare_and_swap s h h'

18 then data h

19 else pop s

Figure 1: An unsafe-for-space implementation of Treiber’s stack

35

36 CHAPTER 3. WHY TREIBER’S STACK NEEDS PROTECTED SECTIONS

Initial state Problematic state

Figure 2: Initial and problematic states of the scenario.
Boxes are blocks whose location appears at their top left. Circled locations indicate roots.

is successful, push returns (line 9); otherwise, it means that a concurrent push or pop has
succeeded. In this case, another attempt is made (line 10).

The function pop s extracts the top element of the stack s. First, the head h of the linked
list is read (line 12). If the list is empty, pop makes another attempt (line 14), waiting for
the stack to become nonempty. Otherwise, the “tail” field of the cell h is read so as to obtain
the address h' of the next list cell (line 16). Then, a CAS instruction attempts to update the
content of s from h to h' (line 17). If this attempt is successful, pop reads the “data” field of
the cell h and returns its value (line 18); otherwise, it means that a concurrent push or pop

has succeeded. In this case, another attempt is made (line 19).
Treiber’s stack is linearizable [Herlihy and Wing, 1990], in the sense that push and pop

atomically take effect at a certain point between the function call and return.

3.2 Space Usage of Treiber’s Stack without Protected Sections

What is the space usage of push and pop? Let us write W for the number of memory words
occupied by one list cell. A successful push operation consumes W memory words, as it
allocates one single list cell. Symmetrically, a successful pop operation should intuitively free
up W memory words. Indeed, the list cell being extracted from the list becomes unused, so
one might hope that the GC could reclaim it.

However, this intuition is false: when pop returns, although the extracted list cell is indeed
unused, it is not necessarily unreachable. Indeed, the extracted list cell might still be a root of
other threads that are still in the process of executing a push or pop operation (which is about
to fail) on the exact same cell. This issue leads to a problematic worst-case space complexity:
a thread that holds a list cell as a root causes all descendants of this cell to remain reachable.

A Problematic Scenario and a Solution Here is a problematic scenario where a cell
extracted by a successful pop remains reachable by other threads, preventing its immediate
reclamation. Figure 2 pictures the initial state and the problematic state of the scenario.
Suppose that the stack s consists of a single list cell whose address is ℓ. Suppose that thread A
attempts to push a new value onto s, while thread B attempts to pop a value off s. Thread A
starts making progress while thread B is asleep. Thread A begins to execute push. At line 4,
its local variable h is bound to the address ℓ. At line 5, it allocates a new list cell at address ℓ′;
its local variable h' is bound to ℓ′. At line 7, the “tail” field of the new cell is set to ℓ. Then,
suppose thread A falls asleep. thread B wakes up and successfully pops one value off the
stack. The reference s now stores the value nil. The cell ℓ has been extracted by pop and is
no longer logically part of the stack. The cell ℓ′ has not yet been inserted by push and is not
logically part of the stack.

Because the cell ℓ has been extracted by a pop operation that has successfully completed,
one might expect this cell to be now unreachable. However, this is not the case. Thread A has
fallen asleep between lines 7 and 8. At this point, the local variables h and h' are still needed
in the future: they occur on line 8. Therefore, the locations ℓ and ℓ′ are roots in thread A.
Besides, even if ℓ was not a root, it would still be reachable via the root ℓ′, since the “tail”

3.3. SPACE USAGE OF TREIBER’S STACK WITH PROTECTED SECTIONS 37

1 let create () = ref nil

2

3 let rec push s v =

4 let h' = new_cell () in

5 set_data h' v;

6 enter ; let h = !s in

7 set_tail h' h;

8 if compare_and_swap s h h'

9 then exit

10 else (exit ; push s v)

11 let rec pop s =

12 enter ; let h = !s in

13 if is_nil h

14 then (exit ; pop s)

15 else

16 let h' = tail h in

17 if compare_and_swap s h h'

18 then (let v = data h in exit ; v)

19 else (exit ; pop s)

Figure 3: A safe-for-space implementation of Treiber’s stack
Protected section entry and exit points are highlighted.

field of the cell ℓ′ contains the pointer ℓ. This is problematic: a cell that has been extracted
by pop is still reachable after pop has returned. So, if the GC is invoked at this point, it cannot
collect this cell. Therefore, it is impossible to claim (and to prove) that pop frees up W words
of memory!

How can this problem be addressed? A possible approach is to somehow forbid this unde-
sirable behavior. For example, forbidding thread A from falling asleep at this particular point,
between lines 7 and 8, might come to mind, but does not seem practical. Instead, we remark
that blocking garbage collection while thread A is asleep at this point solves the problem, too.
If some other thread signals that it needs memory, then, instead of immediately invoking
the GC, we suggest to first wait until thread A wakes up, executes the CAS instruction at
line 8, and reaches line 10. Recall the scenario that we are considering: thread B has suc-
cessfully executed pop after the location ℓ was read from s by thread A at line 4. Therefore,
the CAS instruction in thread A must fail, and thread A must reach line 10. By this time,
the variables h and h' are no longer needed, so the locations ℓ and ℓ′ are no longer roots.
Moreover, ℓ′ does not appear in the heap at all, and ℓ can be reached only via ℓ′: therefore,
both ℓ and ℓ′ are unreachable. If the GC is now allowed to run, then it can reclaim these cells.
In this approach, one can hope to prove that “pop frees up W words of memory”, in the sense
that “once pop has returned, as soon as garbage collection is allowed to take place, W words
of memory will be freed up”.

3.3 Space Usage of Treiber’s Stack with Protected Sections

We introduce protected sections in Treiber’s stack to prevent garbage collection between
the moment a thread reads the address of the head cells and the moment the CAS operation
is executed.

The modified pseudo-code that we propose appears in Figure 3. With respect to the
original code in Figure 1, two main changes are made. First, protected sections, delimited
by enter and exit instructions, are inserted into push and pop. Second, the allocation of a
new list cell in push must be anticipated (moved higher up in the code), because memory
allocations are forbidden inside protected sections (§2.3). The protected sections in Figure 3
are placed in such a way that, outside these sections, no list cell that is part of the data
structure is a root. Therefore, when garbage collection takes place, necessarily at the time
when no thread is inside a protected section, it is the case that no internal list cell is a root.
This guarantee is strong enough to allow us to prove that “pop frees up W words of memory”.
Intuitively, the list cell addresses that are read inside protected sections can be registered
in our logic as temporary roots, allowing for their logical deallocation after a successful pop
operation. More details about this statement and about its proof are given in (§12.5).

Chapter 4

Syntax and Semantics of
LambdaFit

Janequin, C. (1537).
Le chant des oyseaulx.

In this chapter, we formally present the syntax of LambdaFit (§4.1) and its small-step
reduction relations. We begin with our model of memory, that is, our view of the heap as
a collection of memory blocks, and our notion of heap size (§4.2). We define thread pools
and configurations (§4.3). Then, we introduce a series of reduction relations which, together,
form the dynamic semantics of LambdaFit. The head reduction relation (§4.4) describes one
elementary step of computation by one thread. The step relation (§4.5) allows head reduction
to take place under an evaluation context. It represents one step of computation by one
thread. The garbage collection relation (§4.6) describes the effect of the GC on the heap.
The action relation (§4.7) and the main reduction relation (§4.9) describe the evolution of
a complete system. There, each step is either a garbage collection step or a step of one
thread. The main reduction relation is obtained from the action relation by restricting it to
a subset of enabled actions (§4.8). This chapter covers the default operational semantics of
LambdaFit, with blocking instructions and which gets stuck when the initial maximum heap
size is exceeded (§2.2). The oblivious operational semantics, without blocking instructions
and which ignores space constraints, is presented later on (§7.3).

4.1 Syntax

The syntax of LambdaFit appears in Figure 4. A value v is a piece of data that fits in one
word of memory. A value can be the unit value (), a Boolean value b, an integer value z,
a memory location ℓ (drawn from an infinite set L), or a code pointer µptrf. λx⃗. t. Such a code
pointer is a closed, recursive, multi-argument function. The side condition fv(t) ⊆ {f} ∪ x⃗
ensures that the function is closed: that is, the only variables that may appear in the body of
the function are f (a self-reference, allowing the function to invoke itself) and x⃗ (the formal
parameters of the function).

The syntax of terms (also known as expressions) includes a number of standard sequential
constructs, such as sequencing, conditionals, code pointer invocations, and primitive opera-
tions. The heap allocation expression alloc n allocates a fresh memory block of size n and
returns its address. The field at offset i in the memory block at address x is read by the “load”
expression x[i] and written by the “store” expression x[i]←y.

Two standard concurrency-related constructs are “fork” and CAS. The expression fork t
spawns a new thread whose code is t. The compare-and-swap expression CAS ℓ[i] v v′ atomi-
cally loads a value from block ℓ at offset i , compares this value with v, and, in case they are
equal, overwrites this value with v′. Its Boolean result indicates whether the write took place.

The instructions enter and exit mark the beginning and end of a protected section (§2.3).
The poll instruction is a polling point (§2.4).

39

40 CHAPTER 4. SYNTAX AND SEMANTICS OF LAMBDAFIT

Primitives ⊙ ::= && | || | + | − | × | ÷ | =

Values v, w ::= () | b ∈ {false, true} | z ∈ Z | ℓ ∈ L | µptrf. λx⃗. t where fv(t) ⊆ {f} ∪ x⃗

Terms t, u ::= v value
x variable
letx = t in t sequencing
if t then t else t conditional
(t u⃗)ptr code pointer invocation
t ⊙ t primitive operation
alloc t heap allocation

t[t] heap load
t[t]← t heap store
fork t thread creation
CAS t[t] t t compare-and-swap
enter entering a protected section
exit exiting a protected section
poll polling point

Contexts K ::= letx = □ in t | if □ then t else t | □ ⊙ t | v ⊙ □
alloc □ | □[t] | v[□] | □[t]← t
v[□]← t | v[v]←□ | (□ u⃗)ptr | (v (v⃗ ++□++ u⃗))ptr
CAS□[t] t t | CAS v[□] t t | CAS v[v]□ t | CAS v[v] v□

Statuses g ::= In | Out

Figure 4: LambdaFit: syntax

4.2 Memory Blocks, Stores, and Heap Size

A memory block is either a tuple of values, written v⃗, or a special deallocated block, written �.
A store σ (or heap) is a finite map of locations to memory blocks. We write ∅ to denote the
empty store.

Our semantics does not recycle memory locations. When a heap block at address ℓ is
reclaimed by the GC, the store is updated with a mapping of ℓ to �. The address ℓ continues
to exist and is never re-used. Naturally, in an implementation, memory locations would
be recycled. However, we work at a higher level of abstraction. The reasoning rules of our
program logic guarantee that a memory allocation always produces a fresh address. One could
in principle prove that our semantics is equivalent to a lower-level semantics where locations
are recycled. The argument would be that LambdaFit does not offer any means for observing
a location’s actual number, preventing the user from testing if a location was reused or not.
We have not done such a proof.

We assume that the space usage (in words) of a block of n fields is size(n), where size
is a mathematical function of N to N. If, for instance, every memory block is preceded by
a one-word header, then the function size would be defined by size(n) = n + 1. LambdaFit
and IrisFit are independent of the definition of size. For our case studies (§11, §12), we chose
size(n) = n. We write size(v⃗) as a shorthand for size(n), where n is the length of the list v⃗.
We define size(�) to be 0, reflecting the fact that a deallocated block occupies no space.

We define the size of a store σ as the sum of the sizes of its blocks. Thus, we do not
measure the physical size of the heap, that is, how much memory has been borrowed from the
operating system. Instead, we measure the total size of the memory blocks that are currently
allocated. We ignore fragmentation.

4.3 Thread Pools and Configurations

A thread t is just a term. A thread’s status g is either In or Out. The status records whether the
thread is currently inside or outside a protected section. A thread pool θ is a list of pairs (t, g)
of a thread t and its status g. A thread identifier π is an integer index into a thread pool.

A configuration c is a pair (θ, σ) of a thread pool θ and a store σ. The initial configuration
for a program t consists of a thread pool that contains just the thread (t,Out) and the

4.3. THREAD POOLS AND CONFIGURATIONS 41

HeadLetVal
letx = v in t / g /σ head−−−→ [v/x]t / g /σ / ε

HeadCall
v = µptrf. λx⃗. t |x⃗| = |w⃗|

(v w⃗)ptr / Out /σ head−−−→ [v/f][w⃗/x⃗]t / Out /σ / ε

HeadIfTrue
if true then t1 else t2 / g /σ

head−−−→ t1 / g /σ / ε

HeadIfFalse
if false then t1 else t2 / g /σ

head−−−→ t2 / g /σ / ε

HeadEnter
enter / Out /σ

head−−−→ () / In /σ / ε

HeadExit
exit / In /σ

head−−−→ () / Out /σ / ε

HeadPrim
v1 ⊙ v2

pure−−−→ v

v1 ⊙ v2 / g /σ head−−−→ v / g /σ / ε

HeadAlloc
ℓ /∈ dom(σ) 0 < n σ′ = [ℓ :=()n]σ

alloc n / Out /σ head−−−→ ℓ / Out /σ′ / ε

HeadLoad
σ(ℓ) = w⃗ 0 ≤ i < |w⃗| w⃗(i) = v

ℓ[i] / g /σ head−−−→ v / g /σ / ε

HeadStore
σ(ℓ) = w⃗ 0 ≤ i < |w⃗| σ′ = [ℓ :=[i :=v]w⃗]σ

ℓ[i]←v / g /σ head−−−→ () / g /σ′ / ε

HeadCASFailure
σ(ℓ) = w⃗ 0 ≤ i < |w⃗|

w⃗(i) ̸= v

CAS ℓ[i] v v′ / g /σ head−−−→ false / g /σ / ε

HeadCASSuccess
σ(ℓ) = w⃗ 0 ≤ i < |w⃗|

w⃗(i) = v σ′ = [ℓ :=[i :=v′]w⃗]σ

CAS ℓ[i] v v′ / g /σ head−−−→ true / g /σ′ / ε

HeadPoll
poll / Out /σ head−−−→ () / Out /σ / ε

HeadFork
fork t / Out /σ head−−−→ () / Out /σ / t

Figure 5: The head reduction relation

StepHead

t / g /σ head−−−→ t′ / g′ /σ′ / t?

t / g /σ step−−→ t′ / g′ /σ′ / t?

StepCtx

t / g /σ step−−→ t′ / g′ /σ′ / t?

K[t] / g /σ step−−→ K[t′] / g′ /σ′ / t?

Figure 6: The step relation

Edge
σ(ℓ) = w⃗ w⃗(i) = ℓ′

ℓ⇝σ ℓ′

GC

dom(σ′) = dom(σ)
∀ℓ. ℓ ∈ dom(σ) =⇒{

σ′(ℓ) = σ(ℓ)
∨ σ′(ℓ) = � ∧ ¬ (∃r ∈ R, r ⇝∗

σ ℓ)

R ⊢ σ gc−→ σ′

Figure 7: The garbage collection relation

42 CHAPTER 4. SYNTAX AND SEMANTICS OF LAMBDAFIT

empty store ∅. We write init(t) for this initial configuration. We define the heap size of a
configuration as the size of its store: size((θ, σ)) = size(σ).

4.4 The Head Reduction Relation

The head reduction relation t / g /σ head−−−→ t′ / g′ /σ′ / t? describes an evolution of the term t
with status g and store σ to a term t′ with status g′ and store σ′, optionally forking off a new
thread t?. The metavariable t? denotes an optional term: it is either a term t or ε, which
means that no thread was forked off.

The head reduction relation describes how an instruction is executed under the assumption
that this instruction is enabled, that is, not blocked. The definition of enabled instructions,
which describes under what conditions an instruction is blocked, is given later on (§4.8).

The head reduction relation is defined by the rules in Figure 5.
HeadLetVal, HeadIfTrue, HeadIfFalse, HeadPrim are standard.
HeadLoad, HeadStore, HeadCASSuccess and HeadCASFailure, which describe

memory accesses, are also standard. These rules require that the memory location ℓ be valid:
this is expressed by the premise σ(ℓ) = w⃗. Furthermore, they require the integer value i to be
a valid index into the memory block at address ℓ: this is expressed by the premise 0 ≤ i < |w⃗|.
We write w⃗(i) for the i-th value in the sequence w⃗, and [i :=v]w⃗ for the sequence obtained by
updating the sequence w⃗ at index i with the value v. We write [ℓ := w⃗]σ for the store obtained
by updating the store σ at address ℓ with the block w⃗. Hence, [ℓ := [i := v]w⃗]σ describes an
update of the i-th field of the block at location ℓ.

HeadEnter and HeadExit cause the thread to change its status from Out to In and
vice-versa. By design, no reduction rule describes the effect of enter when the thread’s status
is In or the effect of exit when the thread’s status is Out. Such a situation is considered
a runtime error: the thread is stuck.

HeadCall, HeadAlloc, HeadFork, and HeadPoll require the thread’s status to
be Out. Thus, inside a protected section, a function call, a memory allocation request, a
“fork” instruction, or a polling point causes a runtime error (§2.3). Aside from this, HeadCall
and HeadFork are standard. HeadAlloc allocates a block of n fields at a fresh memory
location and initializes each field with a unit value. We write ()n for a sequence of n unit
values. HeadPoll indicates that a polling point is a no-operation: poll acts as a form of
barrier (§4.8), and is otherwise effectless.

4.5 The Step Relation

The step relation has the same shape as the head reduction relation (§4.4). It takes the form
t / g /σ step−−→ t′ / g′ /σ′ / t?. It is inductively defined by the rules StepHead and StepCtx
in Figure 6. These rules allow one head reduction step under a stack of evaluation contexts.
An evaluation context K is a term with a hole written □ at depth exactly 1. The syntax
of evaluation contexts, presented in Figure 4, dictates a left-to-right, call-by-value evaluation
strategy. We write K[t] for the term obtained by filling the hole of the evaluation context K
with the term t.

4.6 The Garbage Collection Relation

Several concepts related with garbage collection are defined in Figure 7. The edge rela-
tion ℓ⇝σ ℓ′, defined by the rule Edge, means that the block at location ℓ contains a pointer

4.7. THE ACTION RELATION 43

ActionThread
θ(π) = (t, g) t / g /σ step−−→ t′ / g′ /σ′ / t?

θ′ = [π :=(t′, g′)]θ ++ [(t?,Out)]

(θ, σ) action−−−−→π (θ′, σ′)

ActionGC
locs(θ) ⊢ σ gc−→ σ′ σ ̸= σ′

(θ, σ) action−−−−→gc (θ, σ
′)

Figure 8: The action relation

to location ℓ′.1 When this relation holds, we say that ℓ is a predecessor of ℓ′. The reachability
relation ℓ⇝∗

σ ℓ′ is the reflexive-transitive closure of the edge relation.
The garbage collection relation R ⊢ σ gc−→ σ′, defined by the rule GC, describes the effect

of the GC. This relation means that a garbage collection phase can transform the store σ into
a store σ′, while respecting the set of roots R, a set of memory locations. This relation is
non-deterministic: the GC may reclaim any unreachable memory block, but need not reclaim
every such block. According to the first premise of the rule GC, the stores σ and σ′ have the
same domain: garbage collection does not create or destroy any memory locations. According
to the second premise, at each memory location ℓ, either nothing happens (σ′(ℓ) = σ(ℓ)) or
a memory block becomes deallocated (σ′(ℓ) = �). The second case is permitted only if ℓ is
not reachable from any of the roots in the set R.

4.7 The Action Relation

The relations defined so far describes how a thread makes a step (§4.5) and how the GC makes
a step (§4.6). We now define a relation that interleaves these two kinds of steps. It is a labeled
transition relation: each step is labeled with an action a, which is either a thread identifier π
or the fixed token “gc”. The action relation c action−−−→a c′ relates two configurations c and c′ and
is labeled with an action. It is defined by the two rules in Figure 8. ActionThread allows
a step by one thread whose identifier is π. This thread evolves from (t, g) to (t′, g′): the thread
pool is updated accordingly. The heap, which is shared between all threads, evolves from σ
to σ′. A new thread t? possibly appears: if so, the thread pool is extended with the new entry
(t?,Out). ActionGC describes a garbage collection step. The roots provided to the GC are
locs(θ), that is, the locations that occur in the thread pool: this is the FVR (§2.1). The side
condition σ ̸= σ′ prevents the GC from stuttering. We would otherwise not be able to prove
that every thread is eventually able to make progress (Theorem 2).

4.8 Enabled Actions

Two LambdaFit instructions possibly have a blocking behavior: a large memory allocation in-
struction is blocking (§2.2); if a large memory allocation request is outstanding, then a polling
point is blocking (§2.4). Furthermore, while any thread is inside a protected section, garbage
collection is disabled (§2.3). To reflect these aspects, we now wish to define under what
conditions an action is enabled (allowed to proceed) or disabled (blocked).

The distinction between small and large memory allocation requests depends on the max-
imum heap size S (§2.2): Therefore, the notion of enabled action depends on the parameter S,
and so does the main reduction relation, which is defined in the next subsection (§4.9).

To define enabled actions, a few auxiliary predicates are needed. They appear in Figure 9.
The proposition IsAlloc n t means that the next instruction of the thread t is “alloc n”.

In other words, this thread is now requesting a new memory block of n fields. Similarly, the
proposition IsPoll t means that the next instruction of the thread t is “poll”.

1A value either is a location or contains no location at all. Thus, in Edge, we write just w⃗(i) = ℓ′ instead
of the seemingly more general condition ℓ′ ∈ locs(w⃗(i)).

44 CHAPTER 4. SYNTAX AND SEMANTICS OF LAMBDAFIT

IsAllocHead
IsAlloc n (alloc n)

IsAllocCtx
IsAlloc n t

IsAlloc n (K[t])

IsPollHead
IsPoll poll

IsPollCtx
IsPoll t

IsPoll (K[t])

AllocFits
∀n. IsAlloc n t =⇒ size(σ) + n ≤ S

AllocFitsσ t

EveryAllocFits
∀t g. (t, g) ∈ θ =⇒ AllocFitsσ t

EveryAllocFits (θ, σ)

EnabledThread
c = (θ, σ) θ(π) = (t, g)

AllocFitsσ t
IsPoll t =⇒ EveryAllocFits c

Enabled c π

AllOutside
∀t g. (t, g) ∈ θ =⇒ g = Out

AllOutside (θ, σ)

EnabledGC
AllOutside c

Enabled c gc

Figure 9: Enabled actions and auxiliary predicates

EnabledAction
Enabled c a c action−−−−→a c′

c enabled action−−−−−−−−−→a c′

Main
c enabled action−−−−−−−−−→a c′

c main−−−→ c′

Figure 10: The main reduction relation

The proposition AllocFits t σ means that, if the next instruction in thread t is an allocation
request, then it is a small one: that is, there is currently enough free space in the store σ to
satisfy it. When this is the case, we say that thread t fits. The proposition EveryAllocFits c
means that, in the configuration c, every thread fits.

The proposition Enabled c a means that, in the configuration c, action a is enabled. It is
defined by the rules EnabledThread and EnabledGC in Figure 9. For a thread π to be
enabled, it must be the case that (1) thread π fits and (2) if thread π is at a polling point
then every thread fits. For garbage collection to be enabled, it must be the case that every
thread is currently outside a protected section.

The following simple lemma states that if every thread fits then every action is enabled.
It is used in the proof of our liveness theorem (§7.2).

Lemma 1 (All Enabled). If EveryAllocFits c holds, then, for every thread identifier π that is
valid with respect to the configuration c, Enabled c π holds.

4.9 The Main Reduction Relation

The auxiliary relation c enabled action−−−−−−−−→a c′, defined in Figure 10, is the restriction of the action
relation to enabled actions. The main reduction relation c main−−−→ c′ is obtained from this
auxiliary relation by abstracting away the action a. Thus, a step in the main reduction
relation corresponds to an enabled action by some thread or by the GC.

By design of our semantics, the maximum heap size S is never exceeded. This is an
immediate consequence of the fact that large memory allocation requests are blocked.

Lemma 2 (Heap Size). If size(c) ≤ S and c main−−−→ c′ then size(c′) ≤ S.

This lemma is not used anywhere; it serves to document the design of the semantics.

Chapter 5

Program Logic: Assertions

Pink Floyd (1970).
Atom Heart Mother.

This chapter offers an overview of the various kinds of assertions that play a role in IrisFit.
We introduce the syntax of each assertion, its intuitive meaning, and the ghost reasoning rules
that help understand this meaning, such as splitting and joining rules. We informally explain
the life cycle of each assertion: where it typically appears, where it is exploited, and where
it is consumed. A presentation of the reasoning rules for terms is deferred to the following
chapter (§6).

We begin with a presentation of triples (§5.1) and ghost updates (§5.2). Then, we briefly
present the standard points-to assertion (§5.3), the novel “sizeof ” assertion (§5.4), and space
credits (§5.5). We then devote our attention to the assertions that record reachability or
unreachability information, namely the pointed-by-heap assertion (§5.6), the novel pointed-
by-thread assertion (§5.7), the novel “inside” and “outside” assertions (§5.8), and deallocation
witnesses (§5.9). Finally, we explain liveness-based cancellable invariants (§5.10), a useful
idiom that expresses that a certain invariant holds as long as a certain location is live.

IrisFit is a variant of the Iris program logic [Jung et al., 2018b, §6–7] and is built on top
of the Iris base logic [Jung et al., 2018b, §5]. We write Φ for an assertion, ⌜P⌝ for a pure
assertion, Φ ∗ Φ′ for a separating conjunction, and Φ −∗ Φ′ for a separating implication. We
express the logical equivalence of two assertions as Φ ≡ Φ′. A postcondition Ψ is a function
of a value to an assertion: in other words, it is the form λv.Φ.

5.1 Triples

A triple takes the form {Φ} π : t {Ψ}. Its intuitive meaning is that if the store satisfies the
assertion Φ then it is safe for thread π to execute the term t; furthermore, if and when this
computation terminates and produces a value v, then the store satisfies the assertion Ψ v.
A triple is a persistent assertion. Persistent assertions form a subclass of assertions [Jung
et al., 2018b, §2.3]. Once a persistent assertion holds, it holds forever. In particular, persistent
assertions are duplicable.

Even though the main reduction relation (§4.9) is parameterized with a maximum heap
size S, the meaning of triples is independent of S. Indeed, triples are internally defined in
terms of the oblivious reduction relation (§7.3), which does not depend on S. Therefore,
none of the reasoning rules mentions S. Our program logic is compositional: each program
component can be verified in isolation and without knowledge of S.

Formally, a triple is also parameterized by a mask [Jung et al., 2018b, §2.2]. Masks
prevent the user from opening an invariant twice. As our treatment of invariants and masks
is standard, we omit masks everywhere except for the formal definition of triples, which we
present later on (§8.1).

We write {Φ} π : t {λℓ.Φ′}, where the metavariable ℓ denotes a memory location, as
syntactic sugar for {Φ} π : t {λv. ∃ℓ. ⌜v = ℓ⌝ ∗ Φ′}. We adopt the convention that multi-line
assertions are implicitly joined by a separating conjunction.

45

46 CHAPTER 5. PROGRAM LOGIC: ASSERTIONS

Consequence
Φ π locs(t) Φ′ {Φ′} π : t {Ψ′} ∀v. Ψ′ v π locs(v) Ψ v

{Φ} π : t {Ψ}

Frame
{Φ} π : t {Ψ}

{Φ ∗ Φ′} π : t {λv. Ψ v ∗ Φ′}

Figure 11: Structural reasoning rules

5.2 Ghost Updates

Iris features ghost state and ghost updates [Jung et al., 2018b, §5.4]. A ghost update is
written Φ⇛ Φ′. It is an assertion, which means that (up to an update of the ghost state) the
assertion Φ can be transformed into Φ′.

In IrisFit, it is sometimes necessary for a ghost update to refer to “the identifier of the
current thread” or to “the roots of the current thread”. For this purpose, we introduce a custom
ghost update, written Φ π V Φ′, whose extra parameters are a thread identifier π and a
set of memory locations V . It is strictly weaker than a standard ghost update: the law
(Φ⇛ Φ′) −∗ (Φ π V Φ′) is valid.

Custom ghost updates are exploited in the Consequence rule, which appears in Fig-
ure 11. This rule allows strengthening the precondition and weakening the postcondition of
a triple. Updating the precondition requires a custom ghost update where the parameter V is
instantiated with locs(t). Indeed, this set represents the roots at the point where this update
takes place. Updating the postcondition requires a custom ghost update where V instantiated
with locs(v), where v denotes the value of the term t. Indeed, these are the roots at the point
where that update takes place.

When a custom ghost update is independent of the parameters π and V , we omit them:
we write Φ Φ′ for ∀π V. Φ π V Φ′. Examples of custom ghost updates appear in Fig-
ures 15, 16, and 17 and are discussed in the following sections.

The Frame rule, also shown in Figure 11, retains its standard form.

5.3 Points-to Assertions

IrisFit features standard points-to assertions of the form ℓ 7→p w⃗, where p is either a fraction
in the semi-open interval (0, 1] or the discarded fraction □ [Vindum and Birkedal, 2021]. In
the latter case, the points-to assertion is persistent.

Rules Points-to assertions can be split and joined in the usual way, and a points-to assertion
that carries a fraction p can be permanently transformed into one that carries the discarded
fraction □. We do not show these standard rules.

Life cycle A points-to assertion appears when a memory block is allocated. It is required
(and possibly updated) when this block is accessed by a load, store, or CAS instruction (§6.2).
It is not required or consumed when this block is logically deallocated (§6.1). This is an
original feature of IrisFit. In particular, keeping access to the points-to assertion after logical
deallocation allows, within a protected section, recovering the space associated to a location
while allowing further reads and writes to this location (§12.5, §12.6).

5.4 Sizeof Assertions

The assertion sizeof ℓ n means that there is or there used to be a block of size n at address ℓ.
It is persistent: indeed, once the size of a block has been fixed, it can never be changed.

5.5. SPACE CREDITS 47

ℓ 7→p w⃗ −∗ ℓ 7→p w⃗ ∗ sizeof ℓ (size(w⃗)) SizeOfPointsTo
sizeof ℓ n ∗ sizeof ℓm −∗ ⌜n = m⌝ SizeOfConfront

sizeof ℓ n is persistent SizeOfPersist

Figure 12: Reasoning rules of the “sizeof ” assertion

⌜True⌝ ⇛ ♢0 ZeroSC
♢(n1 + n2) ≡ ♢n1 ∗ ♢n2 SplitJoinSC

Figure 13: Reasoning rules for space credits

Rules Two reasoning rules allow introducing and exploiting “sizeof ” assertions (Figure 12).
SizeOfPointsTo creates a “sizeof ” assertion out of a points-to assertion. SizeOfCon-
front states that two “sizeof ” assertions for the same address must agree on the size of the
block at this address.

Life cycle The “sizeof ” assertion is produced by SizeOfPointsTo. This assertion is
consulted by the logical deallocation rules (§6.1, §6.6) to determine the number of space
credits that must be produced.

5.5 Space Credits

To reason about free space, we use space credits [Madiot and Pottier, 2022; Moine et al., 2023].
The assertion ♢n denotes the unique ownership of n space credits. It can be understood as
a permission to allocate n words of memory. At a lower level of understanding, this assertion
means that n memory words are currently free or can be freed by the GC once it is given
a chance to run. This interpretation of space credits is the same as the earlier papers cited
above; however, in these previous papers, garbage collection was allowed to take place at any
time, whereas in the present paper, garbage collection is enabled only when all threads are
outside protected sections.

Space credits are measured using non-negative rational numbers, similarly as in our ear-
lier paper Moine et al. [2023]. Of course, a physical word of memory cannot be split, so the
total number of space credits in existence is a natural number; so are the numbers involved
in the reasoning rules for memory allocation and deallocation. Still, rational numbers appear
essential in certain amortized complexity analyses, as illustrated by the example of chun-
ked stacks [Moine et al., 2023]. Rational credits also appear in amortized time complexity
analyses [Charguéraud and Pottier, 2019; Mével et al., 2019].

Rules Figure 13 presents two basic reasoning rules about space credits. ZeroSC asserts
that zero credits can be forged out of thin air. SplitJoinSC asserts that space credits can
be split and joined.

Life cycle Space credits are consumed by memory allocation (§6.2) and produced by logical
deallocation (§6.1). Because there is no way of creating space credits out of nothing, a program
or program component is usually verified under the assumption that a number of space credits
are provided. This is apparent in the statement of our safety theorem (§7.1). This theorem
states that, if a program is verified under the precondition ♢S, then setting the maximum
heap size to S allows this program to be safely executed.

48 CHAPTER 5. PROGRAM LOGIC: ASSERTIONS

(ℓ←[q1 L1 ∗ ℓ← [q2 L2) −∗ ℓ← [q1+q2 (L1 ⊎ L2) JoinPBHeap

ℓ← [q1+q2 (L1 ⊎ L2) −∗ (ℓ← [q1 L1 ∗ ℓ← [q2 L2) if

{
q1 = 0⇒ NoPositive(L1)

q2 = 0⇒ NoPositive(L2)
SplitPBHeap

ℓ← [q L −∗ ℓ← [q (L ⊎ {+ℓ′}) if q > 0 CovPBHeap

Figure 14: Reasoning rules for the pointed-by-heap assertion

5.6 Pointed-By-Heap Assertions

Our pointed-by-heap assertions are the “pointed-by” assertions of our earlier paper [Moine
et al., 2023]. They generalize the “backpointer” mechanism introduced by Kassios and Kri-
tikos [2013]. The longer name “pointed-by-heap” avoids confusion with our novel “pointed-
by-thread” assertions (§5.7). To make this thesis self-contained, we recall what form these
assertions take, what they mean, and what purpose they serve.

A pointed-by-heap assertion for the location ℓ′ keeps track of a multiset L of predecessors
of ℓ′ (§4.6). It takes the form ℓ′ ←[q L, where L is a signed multiset of locations and q is
a possibly-null fraction, that is, a rational number in the closed interval [0; 1].

Signed multisets Signed multisets [Hailperin, 1986], also known as generalized sets [Whit-
ney, 1933; Blizard, 1990] or hybrid sets [Loeb, 1992], are a generalization of multisets: they
allow an element to have negative multiplicity. A signed multiset is a total function of ele-
ments to Z. The disjoint union operation ⊎ is the pointwise addition of multiplicities. We
write +x for a positive occurrence of x and −x for a negative occurrence of x. For example,
{+x; +x}⊎{−x} is {+x}. We write NoNegative(L) when no element has negative multiplicity
in L. Symmetrically, we write NoPositive(L) when no element has positive multiplicity in L.

Possibly-Null Fractions In traditional Separation Logics with fractional permissions [Boy-
land, 2003; Bornat et al., 2005], a fraction is a rational number in the semi-open interval (0, 1].
If there exists a share that carries the fraction 1, then no other shares can separately exist.
With possibly-null fractions, the fraction 0 is allowed, so a full pointed-by-heap assertion
ℓ′ ←[1 L does not exclude the existence of a separate pointed-by-heap assertion with fraction
zero, say ℓ′ ←[0 L′.

Nevertheless, we enforce the following null-fraction invariant : in a pointed-by-heap asser-
tion ℓ′ ←[q L, if the fraction q is 0, then no location can have positive multiplicity in L; or,
in short, q = 0 implies NoPositive(L).

Signed multisets and possibly-null fractions allow us to use the assertion ℓ′ ← [0 {−ℓ}
as a permission to remove one occurrence of ℓ from the predecessors of ℓ′. The assertion
ℓ′ ←[0 {−ℓ} allows formulating the reasoning rule for store instructions (§6.2) in a simpler way
than would otherwise be possible.

Over-Approximation of Live Predecessors We say that a location ℓ is dead if it has
been allocated and logically deallocated already (§5.9). We say that it is live if it has been
allocated but not logically deallocated yet.

The true purpose of pointed-by-heap assertions is to keep track of live predecessors. A
dead predecessor is irrelevant: increasing its multiplicity in a multiset of predecessors is sound;
decreasing it is sound, too. As far as live predecessors are concerned, only over-approximation
is permitted. Increasing the multiplicity of a live predecessor is sound; decreasing it is not.

In light of this, and in light of the null-fraction invariant, a full pointed-by-heap as-
sertion ℓ′ ←[1 L, where the fraction is 1, guarantees that the multiset L contains all live
predecessors of the location ℓ′. In particular, the assertion ℓ′ ←[1 ∅ guarantees that ℓ′ has

5.7. POINTED-BY-THREAD ASSERTIONS 49

ℓ⇐\p1+p2 (Π1 ∪Π2) ≡ (ℓ⇐\p1 Π1 ∗ ℓ⇐ \p2 Π2) FracPBThread
ℓ⇐\p Π1 −∗ ℓ⇐ \p (Π1 ∪Π2) CovPBThread

⌜ℓ /∈ V ⌝ ∗ ℓ⇐ \p {π} π V ℓ⇐ \p ∅ TrimPBThread

Figure 15: Reasoning rules for the pointed-by-thread assertion

no live predecessors. Such full knowledge of the live predecessors is required by the logical
deallocation rule (§6.1, §6.6).

Rules Pointed-by-heap assertions obey the splitting, joining, and weakening rules in Fig-
ure 14. JoinPBHeap joins two pointed-by-heap assertions by adding the fractions q1 and q2
and by adding the signed multisets L1 and L2. In the reverse direction, SplitPBHeap splits
a pointed-by-heap assertion. Its side condition ensures that the null-fraction invariant is pre-
served. CovPBHeap asserts that a pointed-by-heap assertion (whose fraction is nonzero) is
covariant in its multiset: that is, over-approximating the multiset of predecessors is sound. It
is a direct consequence of SplitPBHeap, instantiated with q2 ≜ 0 and L2 ≜ {−ℓ′}. In the
reverse direction, the rule CleanPBHeap, which is discussed later on (§5.9), allows removing
a dead predecessor from a multiset of predecessors.

Life cycle A full pointed-by-heap assertion for the location ℓ appears when this location
is allocated. Fractional pointed-by-heap assertions are required, updated, and produced by
store instructions. For example, consider a store instruction that updates the field ℓ[i] and
overwrites the value ℓ′1 with the value ℓ′2. The reasoning rule for this instruction (§6.2) requires
a pointed-by-heap assertion ℓ′2 ←[q ∅, which it transforms into ℓ′2 ← [q {+ℓ}. Furthermore, the
pointed-by-heap assertion ℓ′1 ←[0 {−ℓ} is produced. A full pointed-by-heap assertion for the
location ℓ is consumed when ℓ is logically deallocated.

Notation We define a generalized pointed-by-heap assertion v ←[q L whose first argument
is a value, as opposed to a memory location. If v is a location ℓ′, then this assertion is defined
as ℓ′ ←[q L. Otherwise, it is defined as ⌜True⌝. Furthermore, we write v ←[>0

q L for the
assertion ⌜q > 0⌝ ∗ v ←[q L. This notation is used in the reasoning rule Store (§6.2), among
other places.

5.7 Pointed-By-Thread Assertions

The pointed-by-heap assertions presented in the previous section record which heap blocks
contain pointers to a location ℓ. This information is useful but is not sufficient for our
purposes. The logic must also record which threads have access to ℓ, that is, in which threads
ℓ is a root. For this purpose, we introduce two distinct yet cooperating mechanisms. The
first mechanism, presented here, is the pointed-by-thread assertion. The second mechanism,
presented next (§5.8), is the “inside” assertion. When the fact that ℓ is a root in thread π is
recorded by a pointed-by-thread assertion, we say that ℓ is an ordinary root in thread π; when
this fact is recorded by an “inside” assertion, we say that ℓ is a temporary root in thread π.
The motivation for this distinction has been presented earlier (§2.3, §3).

A pointed-by-thread assertion takes the form ℓ⇐\p Π, where p is a fraction in the semi-open
interval (0; 1] and Π is a set of thread identifiers. These assertions intuitively generalize the
Stackable assertions of our earlier paper [Moine et al., 2023] to a multi-threaded setting.

A full pointed-by-thread assertion ℓ ⇐\1 Π, where the fraction is 1, guarantees that Π is
the set of all threads in which ℓ is an ordinary root. Such full knowledge is required by the
logical deallocation rule (§6.1, §6.6).

50 CHAPTER 5. PROGRAM LOGIC: ASSERTIONS

inside π T ∗ outside π −∗ ⌜False⌝ InsideNotOutside
inside π T ∗ ℓ⇐\p {π} inside π (T ∪ {ℓ}) ∗ ℓ⇐ \p ∅ AddTemporary

inside π T ∗ ℓ⇐ \p ∅ inside π (T \ {ℓ}) ∗ ℓ⇐\p {π} RemTemporary
inside π T π V inside π (T ∩ V) TrimInside

Figure 16: Reasoning rules for “inside” and “outside” assertions

Rules Figure 15 presents the splitting, joining, weakening, and trimming rules associated
with the pointed-by-thread assertion. FracPBThread allows splitting and joining pointed-
by-thread assertions. CovPBThread asserts that a pointed-by-thread assertion is covariant
in the set Π: that is, over-approximating Π is sound. TrimPBThread allows trimming
a pointed-by-thread assertion, that is, removing the thread identifier π from a pointed-by-
thread assertion for the location ℓ, provided it is evident that ℓ is no longer a root in thread π.
This rule is expressed as a custom ghost update: it transforms ℓ ⇐\p {π} into ℓ ⇐\p ∅,
provided ℓ is not a member of the set V , which denotes the set of roots of the thread π (recall
§5.2). The condition ℓ ̸∈ V means indeed that ℓ is not a root in thread π.

A curious reader may wonder whether and why TrimPBThread remains sound in com-
bination with the Bind rule. Indeed, Bind lets the user focus on a subterm, therefore implies
that the set V is a strict subset of the set of all roots of the current thread. This aspect is
explained later on (§6.4).

Life cycle A full pointed-by-thread assertion ℓ ⇐\1 {π} appears when a location ℓ is al-
located by a thread π. A fractional pointed-by-thread assertion is ordinarily required and
updated by load instructions: when a thread π obtains the location ℓ as the result of a load
instruction, an assertion ℓ ⇐ \p ∅ is updated to ℓ ⇐\p {π}. If the thread π is currently out-
side a protected section, such an update is mandatory. If the thread π is currently inside a
protected section, then it can be avoided by recording ℓ as a temporary root (§6.3). Once ℓ
is no longer a root in any thread, TrimPBThread can be used to obtain ℓ ⇐ \1 ∅, which is
consumed by the logical deallocation of ℓ.

Notation We define a generalized pointed-by-thread assertion v ⇐\p Π, whose first argument
is a value, as opposed to a memory location. If v is a location ℓ, then this assertion is defined
as ℓ ⇐ \p Π. Otherwise, it is defined as ⌜True⌝. Besides, we write an iterated conjunction of
pointed-by-thread assertions under the form M ⇐\ Π, where M is a finite map of memory
locations to fractions and Π is a set of thread identifiers. This assertion is defined by the
following equation: M ⇐\ Π ≜ ∗(ℓ, p)∈M (ℓ⇐\p Π).

5.8 Inside and Outside Assertions

The assertion outside π means that the thread π is currently outside a protected section. The
assertion inside π T means that thread π is currently inside a protected section and that the
set of its temporary roots (§2.5) is T . The set T is a set of memory locations.

Rules Figure 16 presents a number of reasoning rules related to “inside” and “outside”
assertions. InsideNotOutside states that a thread cannot be both inside and outside a
protected section. AddTemporary converts an ordinary root to a temporary root. The
pointed-by-thread assertion ℓ ⇐ \p {π} is transformed to ℓ ⇐\p ∅; meanwhile, ℓ is added
to the set of temporary roots carried by the “inside” assertion. In the reverse direction,
RemTemporary converts a temporary root to an ordinary root. TrimInside trims the set
of temporary roots by removing any locations that are no longer roots in the current thread.
It is analogous to TrimPBThread.

5.9. DEALLOCATION WITNESSES 51

† ℓ ℓ′ ←[0 {−ℓ} CleanPBHeap
† ℓ ∗ ℓ← [>0

q L ⌜False⌝ DeadPBHeap
† ℓ ∗ ℓ⇐ \p Π ⌜False⌝ DeadPBThread

⌜ℓ ∈ V ⌝ ∗ † ℓ ∗ outside π π V ⌜False⌝ NoDanglingRootOut
⌜ℓ ∈ (V \ T)⌝ ∗ † ℓ ∗ inside π T π V ⌜False⌝ NoDanglingRootIn

†ℓ is persistent DeadPersist

Figure 17: Reasoning rules for deallocation witnesses

Life cycle The assertion outside π appears when thread π is created and is consumed when
this thread terminates. This will be visible in the statement of Theorem 1, which describes the
creation and termination of the main thread, and in the reasoning rule for “fork” instructions
(§6.2). The assertion outside π is required and preserved by the instructions that must not
appear inside a protected section, namely memory allocations, function calls, “fork” instruc-
tions, and polling points. Entering a protected section transforms outside π into inside π ∅;
exiting a protected section causes the reverse transformation.

5.9 Deallocation Witnesses

The persistent assertion † ℓ is a deallocation witness for the location ℓ. This assertion guar-
antees that ℓ has been logically deallocated, that is, ℓ is dead.

The fact that ℓ is dead implies that ℓ cannot be reached from an ordinary root. However,
this does not imply that ℓ is unreachable: indeed, this location could still be reachable via a
temporary root.

The assertion † ℓ can be read as a permission to remove ℓ from the multiset of predecessors
carried by a pointed-by-heap assertion. Indeed, the purpose of pointed-by-heap assertions is
to keep track of live predecessors (§5.6).

A deallocation witness x ̸7→ appears in Incorrectness Separation Logic [Raad et al.,
2020]. Contrary to us, this assertion is non-persistent. In RustBelt [Jung et al., 2018a] an
ended lifetime κ is denoted with a persistent dead token written [†κ]. Persistent deallocation
witnesses appear in Madiot and Pottier’s work [2022] and in our earlier paper [Moine et al.,
2023]. These two papers do not have protected sections, therefore have no distinction between
ordinary and temporary roots. There, a dead location is unreachable.

Rules Figure 17 presents reasoning rules for deallocation witnesses. CleanPBHeap re-
quires a deallocation witness for ℓ and produces ℓ′ ← [0 {−ℓ}, allowing ℓ to be removed from
the predecessors of an arbitrary location ℓ′. DeadPBHeap and DeadPBThread reflect the
fact that logical deallocation consumes full pointed-by-heap and pointed-by-thread assertions.
Therefore, the assertions † ℓ and ℓ ← [q L cannot coexist, except in the special case where q
is zero, and the assertions † ℓ and ℓ ⇐\p Π cannot coexist. However, in contrast with our
earlier work [Madiot and Pottier, 2022; Moine et al., 2023], our deallocation witness is com-
patible with the points-to assertion. Indeed, our logical deallocation rule does not consume
the points-to assertion. NoDanglingRootOut and NoDanglingRootIn both state that
a dead location cannot be an ordinary root. A dead location can, however, be a temporary
root: indeed, our logical deallocation rule allows deallocating a temporary root (§6.1).

52 CHAPTER 5. PROGRAM LOGIC: ASSERTIONS

5.10 Liveness-Based Cancellable Invariants

An Iris invariant [Jung et al., 2018b, §2.2] is written in the form Φ .1 It is a persistent
assertion, whose meaning is that the assertion Φ in the rectangular box holds at all times.
The assertion Φ itself is usually not persistent. An invariant can be temporarily accessed so
as to gain access to the assertion Φ.

A cancellable invariant [Jung et al., 2018b, §7.1.3] is an invariant that comes with a
teardown mechanism, allowing the user to recover ownership of the assertion Φ once the
invariant is canceled. This is a one-shot mechanism: once a cancellable invariant is torn
down, it cannot be restored. Naturally, accessing a cancellable invariant requires proving that
this invariant has not been torn down already.

In IrisFit, a form of liveness-based cancellable invariants (LCIs, for short) naturally arises.
An LCI is tied to a memory location ℓ, and remains in force as long as this location is live.
When the location ℓ is logically deallocated, all LCIs associated with ℓ are implicitly torn
down. Therefore, to access an LCI associated with the location ℓ, one must prove that this
location is still live: that is, one must prove that † ℓ implies ⌜False⌝. This can be done using
any of the rules DeadPBHeap, DeadPBThread, NoDanglingRootOut, and NoDan-
glingRootIn in Figure 17. When the location ℓ is logically deallocated, the assertion Φ can
be recovered at the same time. We have used LCIs to reason about closures (§9.4), about
Treiber’s stack (§12.5) and Michael and Scott’s queue (§12.6).

The implementation of LCIs is simple. A liveness-based cancellable invariant tied to the
location ℓ, whose content is the assertion Φ, is just † ℓ ∨ Φ , that is, a plain Iris invariant whose
content is the disjunction † ℓ ∨ Φ. By proving that † ℓ is contradictory, the user excludes the
left-hand disjunct, therefore obtains access to Φ. In particular, when one is about to logically
deallocate ℓ, the assertion ℓ ⇐\ ∅ is at hand, so † ℓ is excluded. One can therefore open the
invariant, extract Φ, deallocate ℓ, and close the invariant by supplying † ℓ, keeping Φ. This
technique is a somewhat unusual variation on the “golden idol” technique [Kaiser et al., 2017],
with the persistent assertion † ℓ in the role of the “bag of sand”.

1Formally, an invariant also carries a namespace, a technicality that prevents the user from accessing the
invariant twice and obtaining two copies of Φ at the same time. For simplicity, we hide namespaces here.

Chapter 6

Program Logic: Reasoning Rules

Rachmaninoff, S. (1934).
Rhapsody on a Theme of Paganini.

In this chapter, we present the reasoning rules of IrisFit. Because most of our design is
guided by the desire for a flexible logical deallocation rule, we begin with a presentation of
this rule, in the simplified case where a single memory location is deallocated (§6.1). Then,
we present the reasoning rules for terms (§6.2), devoting special attention to protected sec-
tions (§6.3) and to the Bind rule, whose form is non-standard (§6.4). The standard statement
of the Bind rule can be recovered when the user enters a restricted mode where certain rules
are disabled (§6.5). Finally, we present the general form of the logical deallocation rule, which
can deallocate cycles (§6.6).

6.1 Logical Deallocation

As in the previous papers by Madiot and Pottier [2022] and Moine et al. [2023], a key aspect
of IrisFit is to provide a logical deallocation rule. This rule produces space credits: by logically
deallocating a memory block, the user recovers the space credits that were consumed when
this block was allocated. It can be applied to a memory location ℓ as soon as one can prove
that this memory location is eligible for collection during the next garbage collection phase.

As in the previous work cited above, if ℓ is unreachable then it can be logically deallocated.
Furthermore, what is new in this thesis, if ℓ is reachable only via temporary roots (that is,
via roots that will disappear by the time all protected sections are exited), then it can also
be logically deallocated.

This reasoning rule may seem surprising, as it involves a form of anticipation: it exploits
the fact that ℓ will be eligible for collection once all protected sections have been exited, yet it
produces space credits immediately, at the point where the rule is applied. Intuitively, this is
safe because a space credit serves to justify an allocation and (by design of our operational
semantics) a large allocation request blocks until all protected sections have been exited.
Hence, by the time extra free space is needed, any location that has been logically deallocated
is effectively unreachable.

In §6.6, we present the general form of the logical deallocation rule, which can deallocate
multiple memory locations at once, even if they form a cycle. Here, we present FreeOne,
a simplified rule that is also useful in practice and that deallocates a single location ℓ:

sizeof ℓ n ∗ ℓ←[1 ∅ ∗ ℓ⇐\1 ∅ ♢size(n) ∗ † ℓ FreeOne

FreeOne is expressed as a ghost update. It consumes three assertions: the “sizeof ”
assertion sizeof ℓ n, the pointed-by-heap assertion ℓ ←[1 ∅, and the pointed-by-thread asser-
tion ℓ⇐\1 ∅. The assertion sizeof ℓ n indicates that the memory block at address ℓ has size n.
The assertion ℓ ← [1 ∅ guarantees that ℓ has no predecessor in the heap, that is, no memory
block contains the pointer ℓ. The assertion ℓ⇐\1 ∅ guarantees that ℓ is not an ordinary root
of any thread: that is, if ℓ is a root at all in a thread π, then it must be a temporary root
for this thread (§2.5, §5.8). Together, the last two assertions imply that ℓ will be eligible for
collection in the next garbage collection phase.

On the right-hand side of the ghost update, FreeOne produces two assertions, namely the
recovered space credits ♢n and the deallocation witness † ℓ. As noted earlier (§5.9), the latter

53

54 CHAPTER 6. PROGRAM LOGIC: REASONING RULES

IfTrue
{Φ} π : t1 {Ψ}

{Φ} π : if true then t1 else t2 {Ψ}

IfFalse
{Φ} π : t2 {Ψ}

{Φ} π : if false then t1 else t2 {Ψ}

LetVal
{Φ} π : [v/x]t {Ψ}

{Φ} π : letx = v in t {Ψ}

Prim
v1 ⊙ v2

pure−−−→ w

{⌜True⌝} π : v1 ⊙ v2 {λv. ⌜v = w⌝}

CallPtr
v = µptrf. λx⃗. t |x⃗| = |w⃗|

{outside π ∗ Φ} π : [v/f][w⃗/x⃗]t {Ψ}
{outside π ∗ Φ} π : (v w⃗)ptr {Ψ}

Val
{⌜True⌝} π : v {λv′. ⌜v′ = v⌝}

Poll
{outside π} π : poll {λ(). outside π}

Alloc
0 < n

{
♢n

outside π

}
π : alloc size(n)

λℓ.

ℓ 7→1 ()n

ℓ←[1 ∅
ℓ⇐ \1 {π}
outside π


Load

0 ≤ i < |w⃗| w⃗(i) = v{
ℓ 7→p w⃗
v ⇐ \p′ ∅

}
π : ℓ[i]

λv′.
⌜v′ = v⌝
ℓ 7→p w⃗

v ⇐ \p′ {π}


Store

0 ≤ i < |w⃗| w⃗(i) = v
ℓ 7→1 w⃗
v′ ← [>0

q ∅

 π : ℓ[i]←v′

λ().
ℓ 7→1 [i :=v′]w⃗
v′ ←[>0

q {+ℓ}
v ←[0 {−ℓ}


CASSuccess

0 ≤ i < |w⃗| w⃗(i) = v

{
ℓ 7→1 w⃗
v′ ← [>0

q ∅

}
π : CAS ℓ[i] v v′

λb.

⌜b = true⌝
ℓ 7→1 [i :=v′]w⃗
v′ ←[>0

q {+ℓ}
v ←[0 {−ℓ}



CASFailure
0 ≤ i < |w⃗| w⃗(i) ̸= v{

ℓ 7→p w⃗
}

π : CAS ℓ[i] v v′
{
λb.
⌜b = false⌝
ℓ 7→p w⃗

}

Fork
dom(M) = locs(t)

(∀π′. {outside π′ ∗ M ⇐\ {π′} ∗ Φ} π′ : t {λ(). outside π′})
{outside π ∗ M ⇐ \ {π} ∗ Φ} π : fork t {λ(). outside π}

Figure 18: Syntax-directed reasoning rules, without Bind and rules for protected sections

assertion is a permission to remove ℓ from the predecessor multisets of other locations. Thus,
by iterated application of FreeOne, acyclic chains of unreachable blocks can be logically
deallocated.

FreeOne can be applied to a reachable location if this location is a temporary root
inside a protected section. Our logic thereby allows such a location to be read or written post
mortem, after it has been logically deallocated. This is made possible by the fact that the
points-to assertion survives logical deallocation. This pattern appears, for example, in the
verification of Treiber’s stack (§12.5).

Our logical deallocation rule differs from the one proposed in our earlier paper [Moine
et al., 2023]. Indeed, while their rule consumes a points-to assertion for the location ℓ, ours
does not. The points-to assertion is not needed to guarantee that the location is unreachable,
nor is it needed to prevent a location from being deallocated twice. The size of the deallocated
block is obtained in this thesis from the “sizeof ” assertion, whereas in the previous paper this
assertion did not exist, so the size was obtained from a points-to assertion.

6.2. REASONING RULES FOR TERMS 55

6.2 Reasoning Rules for Terms

Figure 18 presents most of the syntax-directed reasoning rules of IrisFit, except for the rules
that are specific to protected sections and the Bind rule, which are presented later on (§6.3,
§6.4). In every rule, the thread identifier π represents the current thread, that is, the thread
about which one is reasoning (§5.1).

IfTrue, IfFalse, LetVal, Prim and Val are standard rules.
CallPtr governs calls to (recursive, closed) functions, also known in this thesis as code

pointers. Its only unusual aspect is the presence of the assertion outside π, which ensures that
the current thread is currently outside a protected section. The presence of this assertion
forbids function calls inside protected sections.

Similarly, Poll forbids polling points inside a protected section. Outside of this aspect,
a polling point is a no-operation.

Alloc exhibits three differences with the allocation rule of Separation Logic. First, it
requires and consumes size(n) space credits, so as to pay for the space occupied by the new
block. Second, the presence of the assertion outside π forbids allocation inside a protected
section. Third, in addition to a points-to assertion for the new block, allocation produces
pointed-by-heap and pointed-by-thread assertions. These assertions indicate that there is
initially no pointer from the heap to the new block, and that this new block is a root for the
current thread (and only for this thread).

As in standard Separation Logic, Load requires a (fractional) points-to assertion for
the memory location ℓ that is accessed. Furthermore, it requires a pointed-by-thread asser-
tion v ⇐\p ∅ for the value v that is read from memory. This assertion is updated to v ⇐ \p {π},
reflecting the fact that the value v becomes a root for the current thread.

As in standard Separation Logic, Store requires a full points-to assertion ℓ 7→1 v⃗ and
produces an updated assertion ℓ 7→1 [i := v′]v⃗. Furthermore, it performs bookkeeping of
predecessor multisets, so as to reflect the fact that the value v that was stored in the field
ℓ[i] is overwritten with the value v′. First, to reflect the creation of an edge from ℓ to the
value v′, an assertion of the form v′ ←[q ∅ is changed to v′ ←[q {+ℓ}. Here, because ℓ has
positive multiplicity in {+ℓ}, the null-fraction invariant requires that q be positive; it cannot
be 0. Second, to reflect the deletion of an edge from ℓ to the value v, the assertion v ←[0 {−ℓ}
appears in the postcondition. As explained earlier (§5.6), this assertion is a permission to
remove one occurrence of ℓ from a multiset of predecessors of v.

CASSuccess is similar to Store, but returns the Boolean value true rather than the unit
value. Because a failed CAS does not modify the heap or create a new root, CASFailure is
standard.

Fork reasons about the operation of spawning a new thread whose code is the term t.
This operation must take place outside a protected section. Its impact on roots is as follows.
Suppose, for a moment, that fork t is the last instruction in the parent thread. Then, the
locations that occur in the term t cease to be roots of the parent thread π and become roots
of the child thread π′. The reasoning rule reflects this intuition by updating a group of
pointed-by-thread assertions. The iterated pointed-by-thread assertion M ⇐\ {π} is taken
away from the parent thread, and the updated assertion M ⇐\ {π′} is transmitted to the child
thread. M is a map of locations to fractions, whose domain is the set locs(t). This is a form
of trimming, similar in effect to the rules TrimPBThread and TrimInside.

If fork t is not the last instruction in the parent thread, then the user must use the rea-
soning rules Bind and Fork in combination. The interaction between the Bind rule and the
“trimming” rules is discussed later on (§6.4, §6.5).

Still looking at Fork, an arbitrary assertion Φ is transmitted from the parent thread to
the child thread. The assertion outside π′ is made available in the child thread, reflecting the
fact that a new thread initially runs outside a protected section. The child thread t must be
verified with the nontrivial postcondition outside π′, thereby disallowing a thread to terminate
while inside a protected section.

56 CHAPTER 6. PROGRAM LOGIC: REASONING RULES

Enter
{outside π} π : enter {λ(). inside π ∅}

Exit
{inside π ∅} π : exit {λ(). outside π}

LoadInside
0 ≤ i < |w⃗| w⃗(i) = v{

ℓ 7→p w⃗
inside π T

}
π : ℓ[i]

{
λv′.

⌜v′ = v⌝ ∗ ℓ 7→p w⃗
inside π (locs(v) ∪ T)

} StoreDead
0 ≤ i < |w⃗|{

ℓ 7→1 w⃗
† ℓ

}
π : ℓ[i]←v′

{
λ(). ℓ 7→1 [i :=v′]w⃗

}
CASSuccessDead

0 ≤ i < |w⃗| w⃗(i) = v{
ℓ 7→1 w⃗
† ℓ

}
π : CAS ℓ[i] v v′

{
λb.

⌜b = true⌝
ℓ 7→1 [i :=v′]w⃗

}

Figure 19: Reasoning rules: protected-section-specific rules

In our Coq formalization, the postconditions of many reasoning rules contain a later
credit [Spies et al., 2022]. Later credits play a role in eliminating the “later” modality. They
are orthogonal to the main concern of this thesis, namely the analysis of space complexity, so
we hide them in the presentation of our reasoning rules. We do explain how later credits are
used in our case study of the async-finish library (§12.4).

6.3 Reasoning about Protected Sections

Within a protected section, the reasoning rules presented in the previous section (§6.2) can
still be used, except for CallPtr, Alloc, and Poll, which require the assertion outside π.
In addition, a number of reasoning rules, shown in Figure 19, specifically concern protected
sections.

Enter allows entering a protected section. This rule transforms the assertion outside π
into the assertion inside π ∅, thereby witnessing that the current thread is now inside a pro-
tected section and has no temporary roots.

Conversely, Exit allows exiting a protected section. By consuming the assertion inside π ∅,
this rule requires the user to prove that the current thread has no remaining temporary roots.

LoadInside allows reading a value v from a location ℓ in the heap. The locations that
appear in the value v become temporary roots of the current thread: the assertion inside π T
is updated to inside π (T ∪ locs(v)). In contrast with Load, no pointed-by-thread assertion
is required or updated. In fact, the location ℓ or some locations in the set locs(v) might be
logically deallocated already.

StoreDead allows writing a logically deallocated block. The rule requires and updates
a points-to assertion. A deallocation witness † ℓ is also required. Compared with Store, no
pointed-by-heap assertion is required or updated. Indeed, there is no need to do so. Pointed-
by-heap assertions keep track of which blocks are reachable via ordinary roots; but, because
the block at address ℓ is logically deallocated, it is not reachable via ordinary roots. This is
reminiscent of CleanPBHeap.

Although StoreDead does not require an “inside” assertion, it can be used only inside
a protected section. Indeed, the rule applies to a store instruction ℓ[i]←v′, where the address ℓ
occurs. This means that ℓ is a root, yet ℓ is also logically deallocated. This is possible only if
the current thread is currently inside a protected section. Indeed, outside a protected section,
a logically deallocated location cannot be a root (NoDanglingRootOut, §5.9).

CASSuccessDead is analogous to StoreDead. It concerns a successful CAS instruction
on a logically deallocated location. Because a failed CAS does not write anything, the rule
CASFailure can be applied to a logically deallocated location without change.

6.4. REASONING UNDER EVALUATION CONTEXTS 57

Bind
dom(M) = locs(K) {Φ} π : t {Ψ′} ∀v. {M ⇐\ {π} ∗ Ψ′ v} π : K[v] {Ψ}

{M ⇐ \ {π} ∗ Φ} π : K[t] {Ψ}

Figure 20: Reasoning rules: the Bind rule

6.4 Reasoning under Evaluation Contexts

A proof in Separation Logic is traditionally carried out under an unknown context. That
is, one reasons about a term t without knowing in what evaluation context K this term
is placed. There are specific points in the proof where this unknown context grows and
shrinks. As an archetypal example, consider the sequencing construct letx = t1 in t2. To
reason about this construct, one first focuses on the term t1, thereby temporarily forgetting
the frame letx = □ in t2, which is pushed onto the unknown context. After the verification
of t1 is completed, this focusing step is reversed: the frame letx = □ in t2 is popped and one
continues with the verification of t2. These focusing and defocusing steps are described by
the “Bind” rule [Jung et al., 2018b, §6.2].

In our setting, however, a complication arises. An evaluation context contains memory
locations. When one applies the Bind rule, so as to temporarily forget about this evaluation
context, one must still somehow record that these locations are roots. We use pointed-by-
thread assertions for this purpose.

Suppose we wish to decompose the sequence letx = t1 in t2 into a subterm t1 and an
evaluation context letx = □ in t2. For simplicity, let us further assume that locs(t2) is a
singleton set {ℓ}. This implies that, while t1 is being executed, the location ℓ is a root. In
this specific case, our Bind rule takes the following form:

Particular Case of Bind
locs(t2) = {ℓ} {Φ} π : t1 {Ψ′} ∀v. { ℓ⇐ \p {π} ∗ Ψ′ v} π : [v/x]t2 {Ψ}

{ ℓ⇐\p {π} ∗ Φ} π : letx = t1 in t2 {Ψ}

What is unusual, compared with the standard Bind rule of Separation Logic, is that the
fractional pointed-by-thread assertion ℓ⇐\p {π} (highlighted in the above rule) is required in
the beginning, taken away from the user while focusing on the term t1, and given back to the
user once she is done reasoning about t1 and ready to reason about t2. In other words, this
assertion is forcibly framed out while reasoning about t1.

The assertion ℓ ⇐\p {π} records that ℓ is a root in thread π. By taking it away from the
user and by giving it back once she is done reasoning about t1, we ensure that the information
that “ℓ is a root in thread π” is carried up to this point and cannot be prematurely destroyed.

What could go wrong if we did not do this? Then, the user would be allowed to keep
the full pointed-by-thread assertion ℓ⇐\1 {π} while reasoning about t1. Technically, the user
would do so by instantiating Φ with ℓ⇐\1 {π} in the Bind rule. Then, the user would focus
on establishing the first premise, {ℓ⇐\1 {π}} π : t1 {Ψ′}. Now suppose ℓ ̸∈ locs(t1), that is, ℓ
does not occur in t1. Then, the user could apply TrimPBThread to transform the assertion
ℓ ⇐\1 {π} into ℓ ⇐\1 ∅. Oops! The assertion ℓ ⇐\1 ∅ means that ℓ is not a root. Yet ℓ really
is still a root, as it occurs in the evaluation context that has been abstracted away, namely
letx = □ in t2.

Besides TrimPBThread, two reasoning rules, namely Fork and TrimInside, involve
a form of “trimming” of sets of thread identifiers. The soundness of these rules relies on the
fact that Bind forcibly frames out fractional pointed-by-thread assertions.

The general form of our Bind rule, shown in Figure 20, extends this idea to an arbitrary
evaluation context K, in which an arbitrary number of locations may occur. Then, for every
location in locs(K), a fractional pointed-by-thread assertion is forcibly framed out.

58 CHAPTER 6. PROGRAM LOGIC: REASONING RULES

SwitchMode
{Φ} é/π : t {Ψ}
{Φ} m/π : t {Ψ}

BindNoTrim
{Φ} é/π : t {Ψ′} ∀v. {Ψ′ v} m/π : K[v] {Ψ}

{Φ} m/π : K[t] {Ψ}

Figure 21: Reasoning rules: additional mode-specific rules

6.5 Locally Trading Trimming for a Simpler and More Powerful
Bind Rule

Forcing pointed-by-thread assertions to be framed out at each application of Bind is cumber-
some, and can be restrictive, as there are situations where no pointed-by-thread assertion is
at hand. (An example appears later on in this section.) Fortunately, such forced framing is
unnecessary if the user promises not to exploit any of the trimming rules TrimPBThread,
Fork and TrimInside. Thus, we introduce a mode that the user may choose to enter at
any time, in which the trimming rules are disabled and, in exchange, a simpler, more power-
ful Bind rule is made available.

We parameterize IrisFit triples with a mode m, which is either the normal mode or
the “no trim” mode é. Thus, in general, our triples have the form {Φ} m/π : t {Ψ}, and
our custom ghost update has the form Φ π V

m Φ′. All of the reasoning rules presented
so far are polymorphic in the mode, except for the trimming rules TrimPBThread, Fork,
and TrimInside, which are disabled in “no trim” mode. The public specification of a function
is always stated in the normal mode. The “no trim” mode is intended for local use, inside
the body of a function. The “no trim” mode is an adaptation of the “NoFree” mode of our
earlier paper [Moine et al., 2023].

Figure 21 presents two new reasoning rules, SwitchMode and BindNoTrim, which
allow entering “no trim” mode and taking advantage of it.

When read from bottom to top, SwitchMode lets the user locally enter “no trim” mode,
whenever she so wishes, in a subproof. When read from to top to bottom, this rule asserts
that if a triple holds in “no trim” mode then it also holds in normal mode. Indeed, every
reasoning rule that is available in “no trim” mode is available in normal mode as well.

BindNoTrim is the standard Bind rule of Separation Logic, but imposes a switch to
“no trim” mode é in its left-hand premise. Thus, unlike our Bind rule, it does not force
pointed-by-thread assertions to be framed out. Because of this, it must disable the trimming
rules while the user reasons about the subterm t.

We remark that, inside a protected section, one can switch to “no trim” mode without loss
of expressive power. Indeed, there, the trimming rules are never needed. Fork is forbidden
inside protected sections; the effect of TrimPBThread can be simulated by AddTempo-
rary; and all uses of TrimInside can be postponed until the protected section is about to
be exited.

At a high level, BindNoTrim is needed for reasoning about code that, within a protected
section, reads or writes in a location after it has been logically deallocated. Indeed, in this
case, Bind can be too restrictive. To illustrate this case, consider the following code, where
we assume that the location r is not accessible via the heap and is not known to any thread
other than the current thread:

enter ; (letx = t inx+ r[0]) ; exit

Just after entering the protected section, the user may wish to logically deallocate r, in order to
recover the corresponding space credits without waiting for the end of the protected section.
In this case, just after entering the protected section, she would use AddTemporary to
obtain a pointed-by-thread assertion r ⇐\ ∅, then use FreeOne to logically deallocate r,
consuming this pointed-by-thread assertion. Thereafter, the user may wish to decompose the

6.6. LOGICAL DEALLOCATION OF CYCLES 59

⌜True⌝ −∗ ∅,0 ∅ CloudEmpty

P ,
n
D ∗ sizeof ℓm

ℓ⇐ \1 ∅ ∗ ℓ← [1 L ∗ ⌜NoNegative(L)⌝ −∗ (P ∪ L) ,
(n+m)

(D ∪ {ℓ}) CloudAdd

⌜P ⊆ D⌝ ∗ P ,
n
D ♢n ∗ ∗

ℓ∈D

† ℓ CloudFree

Figure 22: Reasoning rules: logical deallocation

let construct. Yet, the Bind rule cannot be used, as it would require a (fractional) pointed-
by-thread assertion for r, which no longer exists, because the fraction 1 was consumed by
FreeOne. Fortunately, BindNoTrim is applicable.

6.6 Logical Deallocation of Cycles

Figure 22 presents our rules for deallocating an unreachable heap fragment, as opposed to a
single location. This fragment may contain an arbitrary number of heap blocks, which may
point to each other in arbitrary ways. In particular, these pointers may form one or more
cycles.

These rules make use of the “cloud” assertion P ,nD, whose parameters P (for “pre-
decessors”) and D (for “domain”) are sets of locations, and whose parameter n is a natural
integer. This assertion means that the memory blocks at locations D have total size n, that
the locations D are not roots in any thread, and that these locations can be reached only via
the locations P . We refer to P also as the entry points of the cloud.

If P ⊆ D holds, then the locations in the set D are reachable only via D itself. In other
words, the set D is closed under predecessors. This means that the locations in the set D are
in fact unreachable, and can safely be logically deallocated. This explains the side condition
P ⊆ D in the logical deallocation rule CloudFree. We do not require P ⊆ D to hold at all
times: while constructing large “cloud” assertions out of smaller “cloud” assertions, one must
allow the sets P and D to be unrelated.

Figure 22 presents two cloud construction rules as well as the logical deallocation rule,
which consumes a cloud.

Out of nothing, CloudEmpty creates an empty cloud ∅,0 ∅.
CloudAdd adds the memory block at location ℓ to an existing cloud P ,nD. This

consumes the full pointed-by-thread assertion ℓ⇐\1 ∅, which guarantees that ℓ is not a root in
any thread, and the full pointed-by-heap assertion ℓ←[1 L, which guarantees that L contains
all of the predecessors of the location ℓ in the heap. A “sizeof ” assertion determines the
size m of the memory block at address ℓ. CloudAdd produces an extended cloud, where L
is added to the cloud’s entry points, m is added to the cloud’s size, and ℓ is added to the
cloud’s domain.

CloudFree logically deallocates a cloud that is closed under predecessors, that is, a
cloud such that P ⊆ D holds. The “cloud” assertion is consumed. In exchange for it, the
rule produces n space credits, where n is the size of the cloud. Furthermore, it produces a
deallocation witness for every location in the cloud.

The rule FreeOne that was presented earlier (§6.1) is derived from the rules in Figure 22.

Chapter 7

Safety, Liveness and Core
Soundness Theorems

Dave Brubeck Quartet (1959).
Take Five.

In this chapter, we state a safety theorem and a liveness theorem about programs that
have been verified using IrisFit.

The safety theorem (§7.1) guarantees that no thread crashes. More precisely, it states
that if a thread is enabled (in the sense of §4.8), then this thread is not stuck: either it has
reached a value or it can make a step.

The liveness theorem (§7.2) guarantees that no thread can be blocked forever. More
precisely, under the assumption that there is a polling point in front of every function call,
we prove that every thread is eventually enabled. Furthermore, we prove that inserting a
polling point in front of every function call preserves safety. Thus, after a source program
without polling points has been verified with IrisFit, one can let a compiler automatically
insert polling points, and obtain both safety and liveness for this instrumented program.

We also present a core soundness theorem (§7.3), from which the previous theorems fol-
low. The core soundness theorem spells out the guarantee that is offered by IrisFit when
a LambdaFit program is executed under a simplified oblivious semantics that has neither
garbage collection nor blocking instructions.

We then sketch the proof of these theorems. First, we show that the core soundness
theorem implies the safety theorem (§7.4). Second, we show that the safety theorem implies
the liveness theorem (§7.5). Chapter 8 is dedicated to the proof of the core soundness theorem
itself. The proofs of the lemmas involved are sometimes fairly technical; when omitted, these
proofs can be found in our mechanization [Moine, 2024].

7.1 Safety

A concurrent Separation Logic typically comes with a safety guarantee, formulated in the
form: “no thread can crash”. A slightly more precise statement is: “always, every thread is
not stuck ”. In other words, in every reachable configuration of the system, every thread either
has terminated or is able to make a reduction step. A thread that has not reached a value and
is unable to make a step is stuck : by convention, this is considered an undesirable situation,
akin to a crash.

In our setting, however, this statement must be amended, because LambdaFit has blocking
instructions. A blocking instruction is sometimes disabled (§4.8), therefore unable to make
a step; yet, this situation is not considered a crash.

First, our amended safety guarantees that: “always, every thread that is enabled is not
stuck”. A thread that is not enabled is considered blocked: this is a normal situation. Second,
our amended safety guarantees two additional properties which together implies that reachable
configurations are not globally stuck, that is, “always, at least one thread or the GC can take
a step”.

Figure 23 presents the formal definitions we need for our safety theorem. First, the prop-
erty NotStuck c π asserts that the thread π is not stuck in the configuration c: either the
thread associated to π in θ has reached a value and is outside a protected section (Not-

61

62 CHAPTER 7. SAFETY, LIVENESS AND CORE SOUNDNESS THEOREMS

NotStuckVal
θ(π) = (v,Out)

NotStuck (θ, σ) π

NotStuckStep
c enabled action−−−−−−−−−→π c′

NotStuck c π

Safe
∀π. Enabled c π =⇒ NotStuck c π

Safe c

GloballyNotStuck
(∃c′. (θ, σ) main−−−→ c′) ∨ (∀t g. (t, g) ∈ θ =⇒ ∃v. t = v)

GloballyNotStuck (θ, σ)

Always
∀c′. c main−−−→∗ c′ =⇒ P c′

Always P c

PollAndAllocAreOut
∀t g. (t, g) ∈ θ ∧ (IsPoll t ∨ ∃n. IsAlloc n t) =⇒ g = Out

PollAndAllocAreOut (θ, σ)

GCCanMakeEveryAllocFit
AllOutside c =⇒ (EveryAllocFits c ∨ ∃c′. c enabled action−−−−−−−−−→gc c

′ ∧ EveryAllocFits c′)
GCCanMakeEveryAllocFit c

StronglySafe
Safe c PollAndAllocAreOut c GCCanMakeEveryAllocFit c

StronglySafe c

Figure 23: Predicates used to state the soundness theorem

StuckVal), or the thread π is enabled and can take an action step (NotStuckStep).
The property Safe c asserts that all threads that are enabled are not stuck (Safe). We can
paraphrase the Safe c property by saying that every thread is either not stuck, or not enabled.

The proposition Always P c asserts that the execution of c reaches only configurations
that satisfy the predicate P (Always). A notable configuration is the initial configuration
of a program t, which is defined as the thread pool containing solely the thread t outside a
protected section, and the empty store.

We could state a theorem asserting that Always Safe (init(t)) holds for a program t ver-
ified in IrisFit. However, we aim for a stronger theorem Always StronglySafe (init(t)), where
StronglySafe extends Safe with two additional properties presented in Figure 23: the properties
PollAndAllocAreOut and GCCanMakeEveryAllocFit. The property PollAndAllocAreOut c asserts
that, for every thread in c, if its next instruction is a polling point or an allocation, then this
thread is outside a protected section. The property GCCanMakeEveryAllocFit c asserts that,
if all threads are outside protected sections, then either every allocation fits, or there exists a
step of the GC after which every allocation fits.

The proposition StronglySafe c is a conjunction of Safe c and the above two properties
(StronglySafe). Our soundness theorem asserts that a program t verified with our program
logic with a precondition containing S space credits and the outside assertion is always strongly
safe, starting from the initial configuration associated with t.

Theorem 1 (Safety). Assume that, for every thread identifier π, the following triple holds:

{♢S ∗ outside π} π : t {λ . outside π}

Then Always StronglySafe (init(t)) holds.

Proof. The proof of this theorem is sketched in §7.3.

Figure 23 also presents the GloballyNotStuck c property (GloballyNotStuck). This
property asserts that the configuration c = (θ, σ) either can take a main step—that is, either
a thread or the GC can take a step—or every thread has reached a value. The following
lemma shows that a strongly safe configuration is globally not stuck, and is used for the proof
of the liveness theorem (§7.5).

7.2. LIVENESS 63

Lemma 3 (Globally Not Stuck). If StronglySafe c holds then GloballyNotStuck c holds.

Proof. If all threads in c consist of a value, GloballyNotStuck c holds. Otherwise, there exists
one thread, call its identifier π, that is not a value.

There are two cases, depending on whether EveryAllocFits c holds.
First case, EveryAllocFits c holds. By applying Lemma 1 to this assumption, we deduce

that all threads are enabled. Hence, in particular, the thread π is enabled. By definition, the
assumption StronglySafe c implies Safe c, which implies that the thread π can take a step.
Therefore, GloballyNotStuck c holds.

Second case, ¬EveryAllocFits c holds. There are two subcases, depending on whether
AllOutside c holds. First subcase, AllOutside c holds. By definition, StronglySafe c implies
GCCanMakeEveryAllocFit c, which states that either every allocation fits, or the GC can take
a step after which every allocation fits. Since we are in case that not every allocation fits,
we deduce that the GC can take a step, hence GloballyNotStuck c holds. Second subcase,
¬AllOutside c holds, hence there exists a thread π′ inside a protected section. By definition,
the assumption StronglySafe c implies PollAndAllocAreOut c. Hence, because π′ is inside a
protected section, it cannot be at a polling point or an allocation. Therefore Enabled c π′

holds. From Safe c, we deduce that NotStuck c π′ holds, hence GloballyNotStuck c holds.

Interestingly, the mere Safe c property does not suffice to ensure that c is globally not
stuck. Indeed, the property Safe c trivially holds if no thread of c is enabled.

We now pose an auxiliary lemma asserting that Always is monotonic.

Lemma 4. If, for every configuration c, P1 c implies P2 c, then, for every configuration c,
Always P1 c implies Always P2 c.

Hence, if a program t is verified in IrisFit, Safety Theorem 1 shows that it is always
strongly safe, and by combining lemmas Lemma 3 and Lemma 4, we can deduce that it is
safe and globally not stuck.

The reader may wonder why we mention the stronger StronglySafe property if, in the end,
the property of interest is the weaker GloballyNotStuck. The reason is compositionality : as we
will see in §7.5, we show that the insertion of polling points preserves StronglySafe, and hence
ensures GloballyNotStuck by Lemma 3. Therefore, we can use Safety Theorem 1 to prove that
if a program t is verified in IrisFit, then, even after inserting polling points, the program t
reaches only globally not stuck configurations. A direct proof that the insertion of polling
points preserves GloballyNotStuck seems more difficult.

7.2 Liveness

The Safety Theorem 1 guarantees that no thread can crash, but allows a thread to become
blocked. Therefore, a liveness guarantee is also desirable: one would like to be assured that
always, every thread is eventually enabled. In other words, there is no execution scenario
where certain threads remain blocked forever, in the sense that they never become enabled
after some point.

In fact, we are able to offer a stronger guarantee: we prove that always, eventually, every
allocation fits. In other words, in every execution scenario, infinitely often, the system reaches
a point where no allocation request is blocked due to a lack of memory. This property is
indeed stronger, because it captures the fact that, at a certain point, every thread is enabled
at once. (By Lemma 1, the property always, eventually, every allocation fits implies that
always, eventually, all threads are enabled at the same time; which, in turn, implies that
always, every thread is eventually enabled.)

However, our liveness guarantee is subject to a condition: the program must contain
enough polling points. To see why this is necessary, imagine a program where thread A is
blocked on a large allocation request and thread B is running in an infinite loop, without

64 CHAPTER 7. SAFETY, LIVENESS AND CORE SOUNDNESS THEOREMS

HoldsNow
P c

AfterAtMost n P c

HoldsAfter
n > 0 (∃c′. c main−−−→ c′)

(∀c′. c main−−−→ c′ =⇒ AfterAtMost (n− 1) P c′)

AfterAtMost n P c

Eventually
AfterAtMost n P c

Eventually P c

Figure 24: Predicates used to state the liveness theorem

allocating memory or encountering a polling point. Then, there exists a scenario where
thread B runs forever, the GC is never invoked, and thread A never becomes unblocked.
Thus, the desired liveness property does not hold. However, suppose that a polling point is
inserted in the loop: thread B is not allowed to proceed past this polling point. Then, in
every scenario, a garbage collection step eventually takes place, at which time both thread A
and thread B become unblocked.

How can one tell whether a program has enough polling points? Or, in other words, where
polling points must be inserted so that the program has enough polling points? We propose
a simple approach, which is to insert a polling point in front of every function call.1 This
insertion strategy ensures that every thread must reach a polling point in a bounded number
of steps. Prior to inserting polling points, we require the program to be in administrative
normal form (ANF), as defined below.

Definition 1 (Administrative Normal Form). A program t is in administrative normal form
if, in every function call of t, the function itself and the actual arguments are variables or
values, as opposed to arbitrary expressions.

The ANF condition guarantees that the polling point that is inserted in front of the
function call is executed after the actual arguments have been computed and just before the
function is invoked. Otherwise, inserting a polling in front of function calls is not safe. For
example, the program enter; (f exit)ptr is always safe (provided that f is safe), but the program
enter; poll; (f exit)ptr is not, as it contains a polling point inside a protected section.

Up to this administrative ANF condition, we prove that our polling point insertion strategy
preserves safety and ensures liveness. We refer to this polling point insertion strategy as addpp.

Definition 2 (addpp). Let t be a term. The term addpp(t) is obtained by inserting a polling
point in front of every function call in the term t.

Figure 24 introduces a few auxiliary predicates that appear in the statement of the live-
ness theorem. The proposition AfterAtMost n P c means that, out of the configuration c,
every execution path reaches a configuration that satisfies P in at most n steps. The propo-
sition AfterAtMost n P c is inductively defined by the rules HoldsNow and HoldsAfter.
HoldsAfter guarantees not only that the predicate continues to hold after any possible step,
but also that there exists such a step. The proposition Eventually P c means that in a bounded
number of steps, out of the configuration c, every execution path reaches a configuration that
satisfies P . It is defined by the rule Eventually, via an existential quantification over n.
(The explicit depth bound n provides a stronger guarantee than just the plain inductive.
Indeed, AfterAtMost is infinitely branching due to the non-determinism of allocation, and one

1LambdaFit does not have loops: instead, loops must be simulated via tail-recursive functions. Thus,
inserting a polling point in front of every function call effectively implies inserting a polling point inside every
loop as well. Incidentally, because function calls are forbidden inside protected sections, a polling point is
never inserted into a protected section, satisfying our restriction that polling points in protected sections
are forbidden. Our polling point insertion strategy is loosely inspired by the (undocumented) polling point
insertion strategy of the OCaml compiler. The OCaml compiler inserts a polling point at the beginning of every
function (except possibly small leaf functions), inside every loop, and views memory allocation instructions as
polling points.

7.3. THE OBLIVIOUS SEMANTICS AND THE CORE SOUNDNESS 65

Oblivious
c action−−−−→π c′

c oblivious−−−−−→ c′

NotStuckObliviousVal
θ(π) = (v,Out)

NotStuckOblivious (θ, σ)π

NotStuckObliviousStep
c action−−−−→π c′

NotStuckOblivious c π

Figure 25: The oblivious reduction relation and associated predicates

cannot extract a depth bound from an infinitely branching inductive [Bertot and Castéran,
2004].)

Our final theorem states that if the program t has been verified using IrisFit, under the
exact same conditions as in the Safety Theorem 1, then the program addpp(t), in which
enough polling points have been inserted, is safe and live.

Theorem 2 (Combined Safety and Liveness after Polling Point Insertion). Suppose that the
term t is in administrative normal form. Assume that, for every thread identifier π, the
following triple holds:

{♢S ∗ outside π} π : t {λ . outside π}

Let t′ stand for the term addpp(t). Then, both of the following propositions hold:

1. Always StronglySafe (init(t′))

2. Always (Eventually EveryAllocFits) (init(t′)).

Proof. The proof of this theorem is sketched in §7.5.

This statement reflects how we envision the practical use of IrisFit. We expect the user
to verify a program t in which polling points have not yet been inserted. Thus, the user need
not know where polling points will be placed; in fact, the user need not be aware of polling
points at all. As explained earlier, the uninstrumented verified program t enjoys safety but
not liveness. Nevertheless, the theorem guarantees that, once enough polling points have been
inserted, the program becomes safe and live.

7.3 The Oblivious Semantics and the Core Soundness

A provocative yet fundamental remark is that IrisFit has nothing to do with garbage collec-
tion. Indeed, its deallocation rule is purely logical. More generally, its reasoning rules are
independent of when garbage collection takes place, or whether it takes place at all. In reality,
IrisFit is concerned with the live heap space of a program, that is, the sum of the sizes of the
reachable blocks.

The Safety Theorem 1 and the Combined Safety and Liveness Theorem 2 both follow
from a core soundness result, which is expressed with respect to the oblivious semantics,
an alternative semantics in which no garbage collection takes place and no instructions are
blocking (§2.2). This core soundness theorem states that IrisFit offers safety and maximum
live heap space guarantees.

This oblivious semantics takes the form of an oblivious reduction relation c oblivious−−−−−→ c′,
defined by the rule Oblivious in Figure 25. The relation c oblivious−−−−−→ c′ holds if and only if one
thread π of c takes a step. There are three interesting facts about the oblivious relation. First,
no instruction is blocking: instructions are always enabled. Second, the oblivious relation does
not depend on a parameter S: the size of the heap does not matter. Third, there is no garbage
collection step: there is no need to collect space.

The transitive closure of the oblivious reduction relation interleaves the actions of all
threads in arbitrary ways.

66 CHAPTER 7. SAFETY, LIVENESS AND CORE SOUNDNESS THEOREMS

In this setting, we must redefine what it means for a thread to be “not stuck”. The
proposition NotStuckOblivious c π, also defined in Figure 25, serves this purpose. A thread is
not stuck if either it has reached a value outside a protected section, or it can make a step.

Let us write livespace(R, σ) for the total size of the fragment of the store σ that is reachable
from the roots R. Let us write livespace(c) for the live heap space of the configuration c =
(θ, σ). It is defined by livespace((θ, σ)) = livespace(locs(θ), σ).

Our core soundness theorem states that, for a program t verified with S space credits, in
every configuration that is reachable (with respect to the oblivious semantics), the following
two properties hold. First, no thread is stuck. Second, if every thread is outside a protected
section, then the live heap size is at most S.

Theorem 3 (Core Soundness). Assume that, for every thread identifier π, the following triple
holds.

{♢S ∗ outside π} π : t {λ . outside π}

Then, for every configuration c such that init(t) oblivious−−−−−→∗ c,

1. for every identifier π of a thread in c, the property NotStuckOblivious c π holds;

2. AllOutside c implies livespace(c) ≤ S.

Proof. The proof of this theorem is sketched in §8.

This statement may seem surprisingly weak, as it offers no guarantee about livespace(c) at
a time where AllOutside c does not hold, that is, at a time where at least one thread is inside
a protected section. Moreover, this statement offers a safety guarantee; it does not offer any
liveness guarantee. Nevertheless, as we will see, this core soundness theorem is sufficiently
strong to derive both the Safety Theorem 1 and the Combined Safety and Liveness Theorem 2.

7.4 Deriving Safety from Core Soundness

We begin with some auxiliary lemmas of which we omit the proofs for brevity.
The following lemma connects a reduction chain of the main reduction relation (with

garbage collection) to a reduction chain of the oblivious reduction relation (without garbage
collection), with a single garbage collection step “at the end”. Intuitively, because the oblivious
semantics has no space limit, the GC can wait.

Lemma 5. If c main−−−→∗ (θ, σ) then, there exists a store σ0 such that c oblivious−−−−−→∗ (θ, σ0) and
locs(θ) ⊢ σ0

gc−→ σ.

The following lemma connects the notion of “not being stuck” from the core soundness
theorem with the one of the safety theorem, with a possible garbage collection.

Lemma 6. If locs(θ) ⊢ σ0
gc−→ σ and if Enabled (θ, σ)π, then NotStuckOblivious (θ, σ0)π

implies NotStuck (θ, σ) π.

The following lemma asserts that a garbage collection always preserves or reduces the size
of a store.

Lemma 7. If R ⊢ σ gc−→ σ′, then size(σ′) ≤ size(σ).

We then define the full garbage collection collect(R, σ) of a store σ from a set of roots R.

Definition 3 (collect). We write collect(R, σ) for the store that is obtained by re-binding to �

every location in σ that is unreachable from R.

The following lemma asserts that the live heap space corresponds to the size of the heap
after a full garbage collection.

7.5. DERIVING LIVENESS FROM SAFETY 67

Lemma 8. livespace(R, σ) = size(collect(R, σ))

The following lemma asserts that the collect function is monotonically increasing with
respect to the GC pre-order.

Lemma 9. If R ⊢ σ gc−→ σ′ then R ⊢ collect(R, σ) gc−→ collect(R, σ′)

We are now ready to sketch the proof of Safety Theorem 1, assuming that the Core
Soundness Theorem 3 holds.

Proof. Let t be a program such that the premise of Safety Theorem 1 holds, that is, (Fact 1)
for every thread identifier π, the triple {♢S ∗ outside π} π : t {λ . outside π} holds.

Our goal is to prove Always StronglySafe (init(t)). By definition (Always), let us consider
a configuration (θ, σ) such that we have (Fact 2) init(t) main−−−→∗ (θ, σ). Our goal is now to
establish StronglySafe (θ, σ).

We are going to instantiate the core soundness theorem a first time. To that end, we need
to exhibit a reduction chain of the oblivious reduction relation oblivious−−−−−→. We apply Lemma 5 to
Fact 2. This application provides us with a store σ0 such that (Fact 3) init(t) oblivious−−−−−→∗ (θ, σ0)
and (Fact 4) locs(θ) ⊢ σ0

gc−→ σ.
We now invoke the Core Soundness Theorem 3 with Facts 1 and 3, and obtain in particular

its first consequence (Fact 5): for every thread π of θ, NotStuckOblivious (θ, σ0)π holds.
Recall that our goal is StronglySafe (θ, σ) which consists of the conjunction of the three

propositions: Safe (θ, σ), PollAndAllocAreOut (θ, σ) and GCCanMakeEveryAllocFit (θ, σ).
First, we prove Safe (θ, σ). In this endeavor, we establish NotStuck (θ, σ) π for every π in

c. This property follows from applying Lemma 6 to Facts 4 and 5.
Second, we prove PollAndAllocAreOut (θ, σ). We make use of the semantics of LambdaFit.

Let us suppose a thread t′ that is facing an allocation or a polling point. We know from Fact 5
that NotStuckOblivious holds, hence t′ can take a step in the oblivious semantics. Recall that
this semantics allows the evaluation of allocations and polling points only outside protected
sections. Therefore, t′ must be outside a protected section.

Third, we prove GCCanMakeEveryAllocFit (θ, σ). This property assumes that (Fact 6) all
threads of (θ, σ) are outside and asserts that either every allocation fits, or there exists a step
of the GC after which every allocation fits. We distinguish two cases. If EveryAllocFits (θ, σ)
holds, then the result holds. Otherwise, we show that after a full garbage collection, every
allocation fits: that is, we show that EveryAllocFits (θ, collect(R, σ)). By definition (Ev-
eryAllocFits), let t′ be a thread of (θ, σ) and n a natural number such that IsAlloc n t′

holds. By definition (AllocFits), we have to prove that size(collect(locs(θ), σ)) + n ≤ S.
In order to do so, we are going to apply again the Core Soundness Theorem 3, but “a step

after” the configuration (θ, σ). First, we make use of Fact 5 to obtain a new threadpool θ′ and a
new store σ′ corresponding to the reduction of t′ from the configuration (θ, σ). Thus, we know
that (Fact 7) size(σ′) = size(σ0)+n, and that (Fact 8) init(t) oblivious−−−−−→∗ (θ, σ0)

oblivious−−−−−→ (θ′, σ′).
We now use the Core Soundness Theorem 3 with Facts 1 and 8. Its second consequence is
livespace(locs(θ′), σ′) ≤ S. From Lemma 8, we deduce that size(collect(locs(θ′), σ′)) ≤ S.
Making use of Fact 7, a simple induction allows us to transform this hypothesis into (Fact 9)
size(collect(locs(θ), σ0))+n ≤ S. Indeed, only an allocation of size n was made between σ0 and
σ′. Aside, we know from Lemma 9 that locs(θ) ⊢ collect(locs(θ), σ0)

gc−→ collect(locs(θ), σ).
From Lemma 7, we deduce that (Fact 10) size(collect(locs(θ), σ)) ≤ size(collect(locs(θ), σ0)).

Hence, by combining Facts 9 and 10, we have that size(collect(locs(θ), σ)) + n ≤ S.

7.5 Deriving Liveness from Safety

We now sketch the proof of the Combined Safety and Liveness Theorem 2 assuming that the
Safety Theorem 1 holds.

68 CHAPTER 7. SAFETY, LIVENESS AND CORE SOUNDNESS THEOREMS

CrashOrHoldsNow
P c

CrashOrAfterAtMostnP c

CrashOrHoldsAfter
n > 0 (∀c′. c main−−−→ c′ =⇒ CrashOrAfterAtMost (n− 1)P c′)

CrashOrAfterAtMostnP c

CrashOrEventually
CrashOrAfterAtMostnP c

CrashOrEventuallyP c

Figure 26: Predicates for the liveness condition

Let us recall the hypotheses of Theorem 2: let t be a term in administrative normal form
such that {♢S ∗ outside π} π : t {λ . outside π} holds for every π. By the Safety Theorem 1,
we know that Always StronglySafe (init(t)) holds, that is, t is strongly safe.

7.5.1 Strong Safety Preservation

Our goal is to deduce the first point of Theorem 2, that is, Always StronglySafe (init(addpp(t)))
holds. We enunciate a lemma allowing us to conclude directly. The following lemma asserts
that, if t is in administrative normal form, then the strong safety of addpp(t) amounts to the
strong safety of t.

Lemma 10 (Strong Safety Preservation). Suppose that t is in administrative normal form.
Always StronglySafe (init(t)) implies Always StronglySafe (init(addpp(t)))

Proof. The goal is Always StronglySafe (init(addpp(t))). By definition (Always), let us con-
sider a configuration (θ, σ) such that we have init(addpp(t)) main−−−→∗ (θ, σ). Our goal is to prove
StronglySafe (θ, σ). The main difficulty lies in characterizing the “shape” of the thread pool θ
and of the store σ.

We show that every thread of θ is almost the result of a call to addpp on some term. Indeed,
there are two cases for a thread t′ in θ: either there exists a term t0 such that t′ = addpp(t0),
or t′ is facing a function call and a polling point was “just” eliminated. In fact, there are
two cases: either t′ is of the form let = () in (t′1 t⃗s)ptr (because the polling point reduced to
the unit value), or t′ is of the form (t′1 t⃗s)ptr (because the substitution of the unit value just
occurred). In both cases, thanks to the ANF hypothesis, we know that t′1 and t⃗s consist only
of values.

We also show that every code pointer occurring in the store σ results in a call to addpp
on some other term.

With this precise shape of θ and σ at hand, we reconstruct a thread pool θo and a store σo
such that each thread of θ corresponds to almost the result of a call to addpp on a thread of θ0
and the store σ corresponds to a call to addpp on every code pointer of σo. We then show that
init(t) main−−−→∗ (θo, σo). From the hypothesis that Always StronglySafe (init(t)), we deduce that
StronglySafe (θo, σo). It is then a formality to show our goal, that is, StronglySafe (θ, σ).

7.5.2 A Generic Liveness Condition

Our goal is to deduce the second point of Theorem 2, asserting that every allocation will
eventually fit, that is, Always (Eventually EveryAllocFits) (init(addpp(t))) holds. Although the
theorem fixes a specific polling point insertion strategy, namely addpp, we do in fact support
other strategies. We present below a sufficient condition that guarantees liveness, supposing
that the program is strongly safe.

Let us now explain the idea behind our generic liveness condition. In the definition of the
property AfterAtMost n P c (Figure 24), the rule HoldsAfter requires that the configu-
ration c can take a proper step, guaranteeing that the universal quantification over possible

7.5. DERIVING LIVENESS FROM SAFETY 69

next steps is not vacuously true. However, recall that our Safety Theorem 1 guarantees in
particular that any reachable configuration is globally not stuck (Lemma 3). Hence, if the
program is verified in IrisFit, there is no need to manually verify this additional step existence
in the premise of HoldsAfter.

We hence propose a new property CrashOrAfterAtMostnP c, presented in Figure 26, which
is similar to AfterAtMost n P c, except that CrashOrAfterAtMost does not rule out globally
stuck configurations, that is, configurations in which no thread nor the GC can take a step.
The property CrashOrAfterAtMostnP c ensures that either P will be true after at most n steps
of computation, or the program terminates or crashes before reaching n steps of computation.
Indeed, the premise of CrashOrHoldsAfter does not require the existence of a possible
step. Similarly to Eventually P c, we introduce the property CrashOrEventuallyP c.

We can hence propose a generic liveness condition that “splits the proof burden” between
safety and liveness.

Lemma 11 (Liveness Condition). If Always GloballyNotStuck (init(t)) holds, and if
Always (CrashOrEventually EveryAllocFits) (init(t)) holds, then
Always (Eventually EveryAllocFits) (init(t)) holds too.

Recall our goal to deduce the second point of Theorem 2, that is, we want to prove
Always (Eventually EveryAllocFits) (init(t′)), where t′ stands for addpp(t). We make use of
Lemma 11. We have to prove Always GloballyNotStuck (init(t′)). Thanks to the facts that
StronglySafe implies GloballyNotStuck (Lemma 3) and that Always is monotonic (Lemma 4),
we reduce the goal to proving Always StronglySafe (init(t′)). This goal follows from the fact
that t is strongly safe and that strong safety is preserved by addpp (Lemma 10).

Hence, the goal is to prove Always (CrashOrEventually EveryAllocFits) (init(addpp(t))).
This result is stated for reference as the following lemma

Lemma 12 (Satisfaction of the Liveness Condition after Polling Point Insertion).
For every t, Always (CrashOrEventually EveryAllocFits) (init(addpp(t))) holds.

Interestingly, this lemma holds without precondition. At a very high level, the proof
sketch follows the proof of Lemma 10: we first characterize which kind of configurations can
be reached from init(addpp(t)) (this time, without an ANF hypothesis). For every reachable
configuration, we then exhibit an upper bound after which EveryAllocFits holds, or the program
crashed. The details can be found in our mechanization [Moine, 2024].

Chapter 8

Proof of the Core Soundness
Theorem

Beethoven, L. (1795).
Rondo a capriccio “Rage Over a Lost Penny”.

The goal of this chapter is to sketch the proof of the Core Soundness Theorem 3, from which
we have derived the Safety Theorem 1 and the Combined Safety and Liveness Theorem 2.
In this endeavor, we devote our attention to the internals of IrisFit. First, we define the
Separation Logic triple in terms of a weakest precondition modality (§8.1). Then, we present
auxiliary definitions (§8.2–§8.3) which appear in the definition of the key state interpretation
predicate, itself giving meaning to assertions (§8.4). We finally sketch the proof of the core
soundness theorem (§8.5).

8.1 Definition of the Weakest Precondition Modality

In Iris-based program logics, the triple is usually defined in terms of a weakest precondi-
tion (WP) modality [Jung et al., 2018b]. In these standard approaches, the WP takes the
form wp E tΨ, where E is a mask (we explain masks afterwards), t is a term and Ψ a post-
condition. The assertion wp E tΨ means that it is safe to execute t and that, if this execution
terminates on a value v, then Ψ v holds. We follow this standard approach and define our triple
in terms of a WP. Our WP takes the form wp Emπ tΨ, where m is the mode (§6.5) and π is
a ghost thread identifier (§5.1). The Separation Logic triple {Φ} m/π : t {Ψ}E with a mask as
an additional formal parameter is then defined in a standard manner as �(Φ −∗ wp Emπ tΨ).
The � modality ensures that triples are persistent, which is not the case of the WP modality.

Masks prevent from opening the same invariant twice. Intuitively, a mask E syntactically
records the invariants that the user has not yet opened. In particular, the mask ⊤ allows for
opening any of the existing invariants, and ∅ prevents the opening of any invariant. Addi-
tionally, masks appear as parameters of ghost updates for two purposes. First, opening an
invariant is a ghost update, and one needs to check if the current mask E allows it. Second,
after such an opening, the name of the invariant must be removed from the current mask.
Formally, we write a ghost update as Φ ⇛E1 E2Φ

′ where E1 is the mask before the ghost update
takes place, and E2 the mask after the ghost update took place. In fact, this binary ghost
update is defined in terms of a lower level unary ghost update modality, written |⇛E1 E2Φ

′. The
standard Iris library [The Iris Developement Team, 2024] defines Φ ⇛E1 E2Φ

′ as Φ −∗ |⇛E1 E2Φ
′.

Our treatment of masks is standard. Hence, apart from the formal definition of our WP, we
entirely omit masks. We refer the interested reader to our mechanization [Moine, 2024].

Figure 27 first defines the property reducible t g σ, which asserts that the thread t with
status g and store σ can take a step. Figure 27 then presents the formal definition of our
WP modality. It makes use of a state interpretation predicate, written interp, which links the
physical state to the ghost state. The overall form of the definition of our WP is standard.
At a high level, it consists of a guarded fixpoint and asserts that the considered term is either
a value that satisfies the postcondition, or is reducible—that is, can take a step—and for every
possible term it reduces to, the WP continues to hold. Moreover, if a thread is forked, its WP
holds, too. We next comment in detail the definition of the assertion wp E πm tΨ presented
in Figure 27.

71

72 CHAPTER 8. PROOF OF THE CORE SOUNDNESS THEOREM

reducible t g σ ≜ ∃t′ g′ σ′ t?. t / g /σ step−−→ t′ / g′ /σ′ / t?

(1) wp Emπ tΨ ≜ ∀N κω σM g.
(2) ⌜κ(π) = (M, locs(t)) ∧ ω(π) = g⌝ −∗ interpN mκω σ ⇛E ∅
(3) ⌜∃v. t = v⌝ ∗ |⇛∅ E (interpN mκω σ ∗ Ψ t)
(4) ∨ ⌜reducible t g σ⌝ ∗
(5) ∀t′ g′ σ′ t?. ⌜t / g /σ step−−→ t′ / g′ /σ′ / t?⌝ −∗ £1 −∗ ▷ |⇛∅ E
(6) wp Emπ t′ Ψ ∗
(7) let κ′ ≜ [π :=(M, locs(t′))]κ in
(8) let ω′ ≜ [π :=g′]ω in
(9) ⌜t? = ε⌝ ∗ interpN mκ′ ω′ σ′

(10) ∨ ⌜t? ̸= ε⌝ ∗ let N ′ ≜ N + 1 in
(11) interpN ′ m ([N ′ :=(locs(t?), ∅)]κ′) ([N ′ :=Out]ω′)σ′ ∗
(12) wp⊤mN ′ t? (λ . outside N ′)

Figure 27: Definition of the weakest precondition (WP) modality
In this figure, m is a mode, π a thread identifier, t a term, Ψ a postcondition, N the maximal thread
identifier in circulation, κ a roots map, ω a status map, σ a store, M a map of invisible roots, g a

status, and t? a potentially forked thread. The resource £1 is a later credit.

The WP definition universally quantifies several variables (line 1). The variable N repre-
sents the maximal thread identifier in circulation. It is used to determine the ghost thread
identifier of new threads. The variable κ represents the roots map. It associates to each thread
identifier the tuple of its map of invisible roots (the roots of the evaluation context), and the
set of visible roots. The map of invisible roots is a map that associates, to each location in
the set of invisible roots, the fraction of pointed-by-heap assertion given by the user during
an application of Bind. The set of visible roots represents the set of roots in the term under
focus, after applications of Bind. The variable ω represents the status map, it associates to
each thread is status. The variable σ represents the store. The variable M represents the
map of invisible roots of π. The variable g represents the status of π.

Next, the WP requires that the variables are coherent (line 2). First, it assumes that κ
associates to π the tuple M and locs(t). Second, it also assumes that ω associates to π the
status g. Third, the WP requires the state interpretation predicate to hold, with parameters
the maximal thread identifier, the mode, the roots map, the status map and the store.

Then, the WP expresses a disjunction over two cases. The first case (line 3) asserts that t is
a value, and that the state interpretation predicate holds and that the postcondition holds on
the said value. The second case (lines 4–12) is more complex. First, it asserts that the term t
with status g and store σ is reducible. Second, the WP quantifies over the possible term t′,
status g′, store σ′ and potentially forked thread t? to which the previous configuration can take
a step (line 5). The WP also mentions a later credit £1 [Spies et al., 2022]. This later credit
appears in the postcondition of our reasoning rules (§6.2). The definition then asserts, below
a later modality, that the WP for t′ continues to hold with the same postcondition (line 6),
and that two cases are possible. First (line 9), if no thread is forked (t? = ε), the state
interpretation predicate is returned with the roots map and status map properly updated.
Second, (line 10) if a thread is forked (t? ̸= ε), the state interpretation predicate is also
returned properly updated for both the parent thread, and the child thread, the latter being
assigned the thread identifier N ′. Moreover, the WP of the child thread must hold too, and
return the outside N ′ assertion if it terminates (line 12).

It remains to define the predicate interp, which we do in the next sections.

8.2 Auxiliary Definitions

We now define the auxiliary properties we need to state the state interpretation predicate.

8.2. AUXILIARY DEFINITIONS 73

8.2.1 General Definitions

We start with the notion of valid and deallocated locations.

Definition 4 (Valid locations). We say that a location ℓ is valid in store σ if ℓ is bound in σ,
that is, if ℓ has been allocated, regardless of whether it has been subsequently deallocated.

Definition 5 (Deallocated locations). We say that a location ℓ is deallocated in a store σ
when σ(ℓ) = �.

Next, we define the notion of a closed store with respect to a set of locations R. Intuitively,
it means that every location reachable from R are valid. The semantics of LambdaFit ensures
that at any point of the evaluation of a program, the current store is closed with respect to
the roots of the threads. In the following definition, we write successors(σ, ℓ) to denote the
set of locations found in the block associated to ℓ in σ.

Definition 6 (Closedness). A store σ is closed with respect to a set of roots R, which we
write closedRσ, if:

• All the locations in R are valid, that is, R ⊆ dom(σ).

• Successors are valid, that is, for any valid location ℓ, successors(σ, ℓ) ⊆ dom(σ).

The oblivious semantics (§7.3) does not deallocate any block. Yet, the user logically deal-
locates blocks by the mean of the FreeOne rule. Hence, it is useful to introduce a distinction
between the physical store σ that exists at runtime with the oblivious semantics and the log-
ical store τ that the programmer has in mind when carrying-out proofs [Madiot and Pottier,
2022]. In the physical store, blocks are never deallocated. In the logical store, the user of the
logic explicitly deallocates blocks.

Given a set of roots R, the physical store σ and the logical store τ are related: for each
location, either their content coincides or the location was deallocated in the logical store.
Additionally, if a location in τ points to a non-deallocated block, all its successors are non-
deallocated. The roots themselves are non-deallocated in τ .

Definition 7 (Linkedness). Two stores σ and τ are linked with respect to a set of locations R,
written linkedRσ τ if:

• For any location ℓ that is valid in both σ and τ , either σ(ℓ) = τ(ℓ) or ℓ is deallocated
in τ .

• For any location ℓ and block w⃗, if τ(ℓ) = w⃗ then no location in w⃗ is deallocated in τ .

• The locations in R are not deallocated in τ .

To track temporary roots, we use a map written η. This map associates every thread with
either a set of locations (the set of temporary roots) if the thread is inside a protected section,
and to the special token ε when the thread is outside a protected section.

Definition 8 (Synchronization of the status map and map of temporary roots). A status
map ω is synchronized with the map of temporary roots η, written syncoutω η if, every thread
identifier π, ω(π) = In if and only if η(π) ̸= ε.

8.2.2 Pointed-by-Heap Store

To define pointed-by-heap assertions, we follow Madiot and Pottier [2022] and introduce a
pointed-by-heap store (which Madiot and Pottier call a predecessor map), written α, from lo-
cations to (unsigned) multisets of locations. Intuitively, the pointed-by-heap store α describes
an over-approximation of the transposed graph of a logical store τ . Madiot and Pottier define
the consistency between a pointed-by-heap store and a logical store as follows.

74 CHAPTER 8. PROOF OF THE CORE SOUNDNESS THEOREM

Definition 9 (Consistence). A pointed-by-heap store α is consistent with a logical store τ
written consistent τ α, if:

• The domain of α corresponds to the non-deallocated locations:
dom(τ) \ deallocated(τ) = dom(α), where deallocated(τ) = {ℓ | τ(ℓ) = �}.

• For any location ℓ, the locations of α(ℓ) are valid in τ .

• For any two locations ℓ and ℓ′ in dom(α), the multiplicity of ℓ′ in successors(τ, ℓ) is
less than or equal to the multiplicity of ℓ in α(ℓ′).

Recall that IrisFit tolerates leftover pointed-by-heap assertions of the form ℓ←[0 L, where ℓ
is deallocated and L contains only negative elements. The specificity of these null fractions is
that they may remain even after a deallocation: null fractions are not gathered at the point
of logical deallocation. To cater for these leftover assertions, we introduce a leftover map µ,
a map of locations to signed multisets where all elements have a nonpositive occurrence. In
the end, pointed-by-heap assertions are justified by the union α ∪ µ.

Definition 10 (Strong Consistence). A store τ , a pointed-by-heap store α, and a leftover
map µ are strongly consistent, written as a ternary predicate stronglyConsistent τ αµ, if:

• τ and α are consistent: consistent τ α

• dom(µ) = dom(τ)

• Locations in µ have a nonpositive multiplicity: for every location ℓ, the multiplicity of
each element in µ(ℓ) is nonpositive.

• Non-zero elements in the codomain of µ must be themselves deallocated: for any two
locations ℓ and ℓ′, if ℓ′ has a non-zero multiplicity in µ(ℓ), then τ(ℓ′) = �.

8.2.3 Pointed-by-Thread Store

To give meaning to pointed-by-thread assertions, we introduce the pointed-by-thread store,
written ρ, which is a map from locations to sets of thread identifiers. This pointed-by-thread
store can be understood as the transposed graph of the roots map κ, minus the elements
from the map of temporary roots. Indeed, recall that temporary roots are not tracked by the
pointed-by-thread discipline. In the definition below, we abuse notation and write κ(π) for
the union of the domain of the map of invisible roots and the set of visible roots.

Definition 11 (Faithfulness). A pointed-by-thread store ρ is faithful to a roots map κ, a
logical store τ and a map of temporary roots η, written faithfulκ τ η ρ when:

• dom(ρ) ⊆ dom(τ)

• if a location ℓ is deallocated in τ , then it is not in the domain of ρ

• for every thread π and location ℓ such that ℓ ∈ (κ(π) \ η(π)) we have that π ∈ ρ(ℓ)

8.3 Resource Algebras

In Iris, the content of ghost cells should belong to a camera, which corresponds, roughly
speaking, to a “step-indexed resource algebra”. The concept of resource algebras is itself a
generalization of Partial Commutative Monoids (PCMs) [Jung et al., 2018b]. As step-indexing
is not relevant to the definition of our assertions, we simplify the intuition of the following
resource algebras. Each resource algebra comes with a binary composition law written x · y
for x and y members of the resource algebra. Moreover, resource algebras come with a notion
of validity, a unary predicate that distributes over the composition law (that is, if x ·y is valid,
both x and y are valid). Crucially, ghost cells contain only valid elements.

8.3. RESOURCE ALGEBRAS 75

Definition 12 (Signed multisets with generalized fraction). The structure “Signed Multisets
with Generalized Fraction (SMGF) over a countable set L” is the resource algebras whose
elements are of Q × SMultiset(L), where for every element (q,X), if q = 0, then X contains
only elements with a nonpositive multiplicity. The composition law is defined as (q1, X1) ·
(pz, X2) ≜ (q1 + q2, X1 ⊎X2). Valid elements are those with a fraction in the interval [0; 1].

We next briefly review the standard resource algebra we use to set up the ghost state.
They are all mentioned by Jung et al. [2018b], except for the set resource algebra, the ra-
tional numbers resource algebra, and the option resource algebra, which ship with the Iris
mechanization [The Iris Developement Team, 2024].

Authoritative The resource algebra Auth(A) describes the authoritative resource algebra
over the resource algebra A. This resource algebra gives access to •x, the authoritative
ownership of x, and ◦ y, the fragmentary ownership of y. Together, these two resources entail
that y ≼ x, which means that there exists an element z of the algebra such that x = y · z. We
omit the composition law and validity definition.

Agreement The resource algebra Ag(A) allows multiple parties to agree on a particular
member of A. Members of this resource algebras are either ag(x) for some x ∈ A or a bottom
value . The composition law sends every composition to , except for the composition ag(x) ·
ag(x) which is sent to ag(x). The only valid element is ag(x).

Sum The resource algebra A1 + A2 describes the sum of the resource algebras A1 and A2.
Members of this resource algebra can either be inl(x1) for some x1 ∈ A1, inr(x2) for some x2 ∈
A2, or a bottom value . The composition law sends two members of the same algebra to
their underlying composition, and every other combination to . The element inl(x1) is valid
if x1 is valid, and similarly inr(x2) is valid if x2 is valid. The bottom value is not valid.

Product The resource algebra A1 × A2 describes the product between the resource alge-
bra A1 and A2. The composition law composes independently each member of the pair.

Rational numbers Rational numbers Q define a resource algebra with the composition
law being the addition. Making use of the validity predicate, we then restrict the set X of
possible fractions. We abuse notations and write Q∩X to denote the resource algebra whose
elements are in Q and validity is restricted to X. For example, standard Separation Logic
fractions corresponds to Q ∩ (0; 1].

Fractional Algebra We define the resource algebra Frac(A) as ((Q ∩ (0; 1]) × A). The
resource algebra Frac(A) intuitively corresponds to the “fractional” version of A, where each
element comes with a particular fraction.

Set The resource algebra SetMono(A) describes the sets of elements of X, with the union
as the composition law. Every element of this resource algebra is valid. This algebra is
monotonic in the sense that, because the composition law is the union and not the disjoint
union, once an element is added to a ghost cell with the resource algebra SetMono(A), it
cannot be removed.

Option The resource algebra Option(A) describes the resource algebra A with an additional
unit value ε. The composition law of Option(A) is the composition law of A with ε as an
additional unit. The unit value ε is valid, and the validity of other elements amounts to their
validity in A.

76 CHAPTER 8. PROOF OF THE CORE SOUNDNESS THEOREM

Finite map The resource algebra X →fin A describes the resource algebra of finite maps
from the type X to the resource algebra A. The composition law is the union, composing the
elements of two pre-existing keys. A finite map is valid if and only if all its values are valid.

8.4 State Interpretation and Definition of Assertions

We now introduce the ghost cells used to define our assertions. Each ghost cell is equipped
with a resource algebra. We realize thread identifiers with natural numbers N.

Definition 13 (Ghost state). We introduce four ghost cells γd, γh, γt and γs equipped with
the following resource algebras.

Ghost cell Used to define Associated resource algebra
γd Space Credits Auth(Q ∩ [0,∞))

γh Pointed-by-heap Auth(L →fin SMGF(L))

γt
Pointed-by-thread,
deallocation witness Auth(L →fin Frac(SetMono(N)) + Ag(1))

γs Inside and outside assertions Auth(N →fin Option(SetMono(L)))

Our resource algebras are all authoritative: the state interpretation holds the authoritative
resource, while various assertions are defined as fragmentary resources. Space credits are
non-negative rational numbers. Pointed-by-heap assertions are represented with a map from
locations to signed multisets with generalized fractions of locations (Definition 12). Pointed-
by-thread assertions and the deallocation witness are represented using the same ghost cell:
indeed the two are mutually exclusive, a location is either a root for a (possibly empty) set of
threads, or logically deallocated.1 Finally, “outside” and “inside” assertions are defined using
a map from thread identifiers to an optional set of locations. The case ε is used to assert that
the thread is outside a protected section, the other case being used to track temporary roots.

Figure 28 unveils the definitions occurring in our state interpretation predicate. Figure 29
presents the definition of the assertions of IrisFit. These definitions are mostly standard,
except for the later line of the definition of interp, which is related to the trimming rules. We
comment on this novelty below. In these definitions, given a fraction p and a map m from X to
A, we write p.m for the map {(k, (p, v)) | (k, v) ∈ m}. Given a set s, we write [s := inr(ag(1))]
the map whose keys are in s and whose values are all equal to the agreement over the unit 1.
We next comment on how the definitions of Figure 28 give meanings to the assertions defined
in Figure 29.

Points-to assertions The assertion store σ gives meaning to the points-to assertion. To re-
alize points-to assertions, Iris defines a certain piece of ghost state, defines an assertion Heap σ
that ties a store σ to this ghost state, and defines the base points-to assertion pointsto ℓ p blk
in terms of this ghost state [Jung et al., 2018b, §6.3.2]. This machinery is implemented
within the Iris gen_heap library [The Iris Developement Team, 2024], which we build on.
Moreover, the gen_heap library allows for associating persistent information to locations via
a mechanism of “meta” assertions. In our case, we associate to each location ℓ the number
of fields of its associated block. Indeed, Figure 29 defines the assertion sizeof ℓ n as meta ℓ n.
(We omit the namespace parameter of the “meta” assertions allowing the user to associate
multiple persistent data to a location.) The definition of our points-to assertion ℓ 7→p v⃗
is pointsto ℓ p v⃗ ∗ sizeof ℓ (size(v⃗)). This definition allows the user to extract a sizeof asser-
tion from a points-to assertion without requiring access to the state interpretation predicate,
via SizeOfPointsTo.

1We could have used another ghost cell for deallocation witnesses.

8.4. STATE INTERPRETATION AND DEFINITION OF ASSERTIONS 77

store σ ≜ Heap σ ∗ ∗(ℓ,w⃗)∈σ meta ℓ (size(w⃗))

pbh τ ≜ ∃αµ. ⌜stronglyConsistent τ αµ⌝ ∗ • (1.α ∪ 0.µ)
γh

pbt κ τ η ≜ ∃ρ ξ. ⌜faithfulκ τ η ρ ∧ ξ ⊆ dom(τ)⌝ ∗ • (inl.1.ρ ∪ [ξ := inr(ag(1))])
γt

protected η ≜ • η γs

spacecredits τ ≜ • (S − size(τ))
γd

interpN mκω σ ≜ ∃τ η.

⌜dom(κ) = dom(ω) = dom(η) = {0..N}⌝ ∗ // agreement on thread ids

⌜dom(σ) = dom(τ)⌝ ∗ // agreement on heap locations

⌜closed (roots(κ))σ⌝ ∗ // physical heap is closed

⌜linked (logicalroots(κ, η))σ τ⌝ ∗ // physical and logical heaps are linked

⌜size(τ) ≤ S⌝ ∗ // size of the logical heap is bounded

⌜syncoutω η⌝ ∗ // statuses are synchronized

store σ ∗ pbh τ ∗ pbt κ τ η ∗
// ghost resources

protected η ∗ spacecredits τ ∗

if m =

// invisible rootsthen ∗(π,(M,_))∈κ M ⇐ \ {π}

else ⌜True⌝

Figure 28: Definition of the state interpretation predicate

ℓ 7→p v⃗ ≜ pointsto ℓ p v⃗ ∗ sizeof ℓ (size(v⃗)) ♢c ≜ ◦ c γd

ℓ← [q L ≜ ◦ [ℓ := (q, L)]
γh

sizeof ℓ n ≜ meta ℓ n

ℓ⇐\p Π ≜ ∃Π′. ⌜Π′ ⊆ Π⌝ ∗ ◦ [ℓ := inl(p,Π′)]
γt

outside π ≜ ◦ [π := ε]
γs

M ⇐\ Π ≜ ∗(ℓ,p)∈M ℓ⇐ \p Π inside πΠ ≜ ◦ [π := Π]
γs

† ℓ ≜ ◦ [ℓ := inr(ag(1))]
γt

Figure 29: Definition of assertions

78 CHAPTER 8. PROOF OF THE CORE SOUNDNESS THEOREM

Pointed-by-heap assertions The assertion pbh τ gives meaning to the pointed-by-heap
assertion. It quantifies over a pointed-by-heap store α and a leftover store µ, which must
be strongly consistent with the logical store τ . The authoritative assertion • (1.α ∪ 0.µ)

γh

is linked to the definition of pointed-by assertions. The map 1.α ∪ 0.µ is the union of the
the map α where every value is given the fraction 1 and the and the map µ where every
value is given the fraction 0. Recall from §8.2.2 that the pointed-by-heap store α contains
the predecessors of allocated predecessors. The leftover map µ has only nonpositive signed
multisets, with fraction 0, and records every leftover assertion. We define the pointed-by-heap
assertion by ℓ←[q L ≜ ◦ [ℓ := (q, L)]

γh . In particular, if q = 1, then one can deduce that L
is an over-approximation of the predecessors of ℓ.

Pointed-by-thread and deallocation witness assertions The assertion pbt κ τ η gives
meaning to the pointed-by-thread assertion, as well as the deallocation witness. It existen-
tially quantifies over a pointed-by-thread store ρ and a leftover set of location ξ, and asserts
that the former is faithful to the latter with the map of temporary roots η (Definition 11). It
also requires the leftover set to be included in the domain of the logical store. The authorita-
tive assertion • (inl.1.ρ ∪ [ξ := inr(ag(1))])

γt is linked to the definition of pointed-by-thread
assertions as well as the deallocation witnesses. The map inl.1.ρ∪ [ξ := inr(ag(1))] is the union
of the map ρ where every value is given the fraction 1 and put in the left part of a sum, and of
the map whose keys are the elements of ξ and value ag(1) put in the right part of a sum. Fig-
ure 29 defines the pointed-by-thread assertion ℓ⇐\p Π as ∃Π′. ⌜Π′ ⊆ Π⌝ ∗ ◦ [ℓ := inl(p,Π′)]

γt ,
that is, the assertion ℓ ⇐\p Π asserts the ownership of some thread-predecessors of ℓ, in-
cluded in Π. This definition allows us to easily derive CovPBThread. We then define
the deallocation witness †ℓ as ◦ [ℓ := inr(ag(1))]

γt . These definitions allow for easily deriv-
ing DeadPBThread, since ℓ ⇐\p Π excludes † ℓ as the former is a member of the left part
of a sum and the latter a member of the right part of a sum.

Inside and outside assertions The assertion protected η gives meaning to the asser-
tions inside π T and outside π assertions from the map of temporary roots η. Indeed, the
assertion protected η is defined as the authoritative ownership • η γs . Then, Figure 29 de-
fines both assertions inside π T and outside π as fragmentary ownership of η.

Space credits The assertion spacecredits τ gives meaning to space credits. Indeed, we define
the assertion spacecredits τ as • (S − size(τ))

γd , that is, the authoritative ownership of the
number of space credits in circulation: the maximal heap size S minus the size of the current
logical store. We then define space credits as fragmentary ownership of this total amount and
pose ♢c ≜ ◦ c γd .

On roots Recall that a roots map κ is a map from thread identifiers to a pair of a map M
of locations to fractions (the invisible roots of the thread) and a set S of locations (the
visible roots of the thread). Given a map of temporary roots η, that is, a map from a thread
identifier to a set of locations T , we define the set of all roots of all threads minus their
temporary roots as

logicalroots(κ, η) ≜
⋃

(π,(M,S))∈κ, (π,T)∈η

((dom(M) ∪ S) \ T)

We then define the set of all roots as roots(κ) ≜ logicalroots(κ, ∅).

Definition of the state interpretation Figure 28 finally defines the state interpretation
predicate itself interpN mκω σ, where N is the maximal thread identifier in circulation, m
is the current mode, κ is the roots map, ω the status map and σ the physical store. The

8.5. PROVING THE CORE SOUNDNESS THEOREM 79

definition quantifies existentially over the logical store τ and the map of temporary roots η.
The state interpretation first asserts that the domains of the roots map κ, the status map ω
and the map of temporary roots η are all equal to the set of thread identifiers from 0 to N .
The predicate then asserts that the physical store σ and logical store τ have the same domain.
The state interpretation records that the physical store is closed (Definition 6) with respect
to all the roots of κ. It also records that the physical store is linked with the logical store,
with the set of roots logicalroots(κ, η) (Definition 7). Then, the state interpretation records
that the logical store τ has a size less than or equal to the maximum size S. It also records
that the status map ω is synchronized with the map of temporary roots η (Definition 8).
The definition then records the ghost state associated to the points-to, the pointed-by-heap,
and the pointed-by-thread assertions, as well as the “inside” and “outside” assertions and
space credits.

Innovative Aspect of the State Interpretation Predicate The last three lines of the
definition of interp are innovative. If the mode m is then the state interpretation holds
the fractions of pointed-by-thread assertions associated to the invisible map from the roots
map κ. These fractions of pointed-by-thread assertions are exactly the ones given by the user
while applying Bind.

The fact that the interpretation predicate holds a fraction of pointed-by-thread assertions
of invisible roots allows for verifying “trimming” rules (that is, TrimPBThread, Fork and
TrimInside, as explained in §6.4). Let us focus on TrimPBThread. Recall that this
reasoning rule allows for updating an assertion ℓ⇐\p {π} into ℓ⇐\p ∅ if ℓ is not a root of the
term under focus in π. The proof of TrimPBThread looks as follows. Either ℓ is not a root of
the evaluation context of π, and the trimming can be done without further work. Otherwise,
ℓ is a root of the evaluation context of π. In this case, there is a corresponding assertion
ℓ ⇐\p′ {π} stored inside the state interpretation predicate! We hence use FracPBThread
to update ℓ⇐\p {π} ∗ ℓ⇐ \p′ {π} into ℓ⇐\p ∅ ∗ ℓ⇐\p′ {π}.

This approach also motivates the mode é: if the user did not provide pointed-by-thread
assertions while applying Bind, our proof for TrimPBThread does not stand anymore!

Definition of the parameterized ghost update In IrisFit, several reasoning rules are
expressed as a parameterized ghost update Φ π V Φ′, applying only on a thread π with visible
roots V . As explained in §6.5, this ghost update is also parameterized by a mode m. The
parameterized ghost update Φ π V

m Φ′ is defined as a primitive ghost update ⇛ allowing
temporary access to the state interpretation predicate.

Φ π V
m Φ′ ≜ ∀N κω σ. ⌜snd(κ(π)) = V ⌝ ∗ Φ ∗ interpN mκω σ ⇛ Φ′ ∗ interpN mκω σ

8.5 Proving the Core Soundness Theorem

In order to prove the Core Soundness Theorem 3, we imitate the soundness (or adequacy)
proof of the standard Iris WP [Jung et al., 2018b, §6.4], as our WP is structurally similar.
We sketch the proof below.

Recall that a thread pool θ is a list of pairs of a thread and a status. In the following,
we use the index in the list as a thread identifier. We define the concrete roots map, written
rootsmap(θ) as the map associating to each thread t in θ the tuple of the empty map and the
set locs(t). We define the concrete status map, written statusmap(θ) as the map associating
each thread with its status. We finally define the concrete state interpretation of a thread
pool θ and a store σ written interp0 (θ, σ), as follows:

interp0 (θ, σ) ≜ interp (|θ|) () (rootsmap(θ)) (statusmap(θ))σ

80 CHAPTER 8. PROOF OF THE CORE SOUNDNESS THEOREM

Preserve

⌜(θ1, σ1)
oblivious−−−−−→n (θ2, σ2)⌝ ∗ £n

interp0 (θ2, σ2) ∗ wps θ1
▷⇛n

⊤,∅ ∅,⊤ interp0 (θ2, σ2) ∗ wps θ2

Progress
⌜θ(t, g) = π⌝ ∗ interp0 (θ, σ) ∗ wps θ ⇛∅ ⊤ ⌜NotStuckOblivious (θ, σ)π⌝

LiveSpace
⌜AllOutside (θ, σ)⌝ ∗ interp0 (θ, σ) −∗ ⌜livespace(locs(θ), σ) ≤ S⌝

InterpInit
⌜locs(t) = ∅⌝ ⇛ ∃γd γh γt γs. interp0 ([(t,Out)], ∅) ∗ ♢S ∗ outside π0

Figure 30: Lemmas for the proof of the Core Soundness Theorem

Let θ be a thread pool, we write wps θ for the iterated conjunction of the WP of each
thread in θ. Precisely:

wps θ ≜ ∗
0≤π<|θ| ∧ θ(π)=(t,_)

wp⊤π t (λ . outside π)

We now present the key lemmas used in our proof of the core soundness theorem. These
lemmas are gathered in Figure 30.

Preserve intuitively asserts that reduction steps preserve the state interpretation and
the WP. The premise of the rule requires that c1

oblivious−−−−−→n c2, that is, there is a reduction
of length n between the configuration c1 and c2. The rule also consumes £n, the concrete
interpretation predicate and the WPs. The assertion Φ ▷⇛n

⊤,∅ ∅,⊤Φ
′ is an abbreviation for the

mouthful assertion Φ ⇛⊤ ∅ ▷⇛n
∅ ∅ ⇛∅ ⊤ Φ′, where ▷⇛n

∅ ∅ represents n ghost updates ⇛∅ ∅
separated by one later modality ▷ . In short, ▷⇛n

⊤,∅ ∅,⊤ allows first for a ghost update removing
the possibility of opening invariants, second for n ghost updates without invariants, and
third for a last ghost update restoring the ability to open invariants. After all these ghost
updates, Preserve asserts that the concrete state interpretation of (θ, σ) holds, and the WPs
of the threads of θ2 hold too.

Progress asserts that, for a configuration (θ, σ), if the concrete state interpretation holds
as well as the WPs, then no thread of the configuration is stuck. This is a direct consequence
of the definition of the WP.

LiveSpace is key to our endeavor: if all threads are outside protected sections, then the
state interpretation predicate asserts that the live heap space is bounded by the maximal
heap size.

InterpInit asserts that we can construct the adequate state interpretation predicate
for the initial configuration of a single thread outside a protected section, with an empty
store, under the assumption that this thread contains no location. This lemma produces the
adequate state interpretation, the initial amount of space credits ♢S and the outside assertion
for the initial thread of identifier π0 = 0. In the statement of this lemma, we make explicit the
existential quantification of the ghost cells parameterizing all the logic and described in §8.4.
Indeed, its InterpInit that “allocates” these names, which are implicit parameters elsewhere.

The last piece of the puzzle is the soundness theorem of Iris with later credits [Spies
et al., 2022]. We present here the theorem as it appears in Iris’ mechanization [The Iris
Developement Team, 2024].

Theorem 4 (Adequacy of Iris with later credits). Let ϕ be a pure proposition. If £n ⇛⊤ ∅
▷⇛n

∅ ∅ ⌜ϕ⌝ holds in Iris with later credits, then ϕ holds.

8.5. PROVING THE CORE SOUNDNESS THEOREM 81

We now sketch the proof of the Core Soundness Theorem 3, assembling building blocks.
We restate the theorem below, with a more precise statement, revealing ghost cells and the
need for a closed term.

Theorem 5 (Core Soundness, precise). Let t be a closed term. Assume that the following
assertion holds

∀γd γh γt γs π. {♢S ∗ outside π} π : t {λ . outside π}

Then, for every configuration c such that init(t) oblivious−−−−−→∗ c,

1. for every identifier π of a thread in c, the property NotStuckOblivious c π holds;

2. AllOutside c implies livespace(c) ≤ S.

Proof. Let c = (θ, σ) such that ([(t,Out)], ∅) oblivious−−−−−→∗ (θ, σ). The reduction chain hypoth-
esis ([(t,Out)], ∅) oblivious−−−−−→∗ (θ, σ) guarantees that there exists a natural number n such that
([(t,Out)], ∅) oblivious−−−−−→n (θ, σ).

Let us select the goal (1). Let π be a valid index in θ. We apply Theorem 4, instantiating ϕ
with NotStuckOblivious (θ, σ)π. We now switch to an Iris proof and face the following goal:

£n ∗
(∀γd γh γt γs π. {♢S ∗ outside π} π : t {λ . outside π}) ⇛⊤ ∅ ▷⇛n

∅ ∅ ⌜NotStuckOblivious (θ, σ)π⌝

We use InterpInit to allocate the ghost cells names, the concrete state interpretation, the
initial space credits, and the “outside” assertion for the initial thread identifier π0 = 0. We
specialize the universal quantification in front of the triple with our fresh ghost cells names
and the initial thread identifier. We now face the goal:

£n ∗ interp0 ([(t,Out)], ∅) ∗
♢S ∗ outside π0 ∗

{♢S ∗ outside π0} π : t {λ . outside π0}
⇛⊤ ∅ ▷⇛n

∅ ∅ ⌜NotStuckOblivious (θ, σ)π⌝

By definition, we have that {♢S ∗outside π0} π : t {λ . outside π0} unfolds to the assertion
�(♢S ∗ outside π0 −∗ wp π t (λ . outside π0)). We remove the persistence modality and
make use of the initial space credits and outside π0 assertions to satisfy the precondition of
the wand, and now face the goal:

£n ∗
interp0 ([(t,Out)], ∅) ∗ wp π t (λ . outside π)

⇛⊤ ∅ ▷⇛n
∅ ∅ ⌜NotStuckOblivious (θ, σ)π⌝

Knowing that ([(t,Out)], ∅) oblivious−−−−−→n (θ, σ), the premise of the above entailment is exactly the
one of Preserve, with thread pool [(t,Out)] and store ∅. We make use of Preserve as well
as the various rules of connectives, and we are left to prove that:

interp0 (θ, σ) ∗ wps θ ⇛∅ ⊤ ⌜NotStuckOblivious (θ, σ)π⌝

We conclude with Progress.
The proof of the goal (2) is entirely similar, except that we instantiate ϕ with the space

inequality livespace(locs(θ), σ) ≤ S and that, at the end, we use LiveSpace to conclude on
the live heap space.

Chapter 9

Closures

Poulenc, F. (1962).
Clarinet Sonata.

As explained earlier (§2.6), LambdaFit does not have primitive closures. Instead, we define
closure construction µclof. λx⃗. t and closure invocation (ℓ u⃗)clo as macros, which expand to
sequences of primitive LambdaFit instructions. These macros implement flat closures [Appel,
1992, Chapter 10]. That is, a closure is represented as a record whose fields store a code pointer
(at offset 0) and a series of values (at offset 1 and beyond). The implementation of these
macros (§9.2) is the same as in our earlier paper [Moine et al., 2023]. Our reasoning rules for
closure construction, invocation, and deallocation are improved versions of the rules presented
in our earlier paper [Moine et al., 2023]. The main improvement is that the assertions that
describe closures are now persistent. From an end user’s point of view, this makes closures
much easier to work with. Internally, this is made possible by using liveness-based cancellable
invariants (§5.9).

Our reasoning rules for closures are abstract and do not reveal how closures are imple-
mented. They reveal only how much space a closure occupies and which pointers it keeps live.
A user can apply these rules without knowing how closures are internally represented.

Our construction of the reasoning rules for closures is in two layers. First, we introduce
a low-level assertion Closure E f x⃗ t ℓ, which asserts that, at location ℓ in the heap, one finds
a closure that behaves like the function µf.λx⃗. t under the environment E. Crucially, in this
assertion, the term µf.λx⃗. t can have free variables, whose values are given by E. This as-
sertion does not reveal how a closure is represented in memory, but does reveal its code. We
give an overview of this low-level API (§9.3), then describe some details of its implementa-
tion (§9.4). Second, we define a high-level assertion Spec nE P ℓ, which describes the behavior
of a closure in a more abstract way. It asserts that, at location ℓ, one finds a closure that
corresponds to a n-ary function, whose behavior is described by the predicate P , and whose
environment is E. The exact type and meaning of P are explained later on; roughly speaking,
it is a Hoare triple. Although the environment E does not participate in the description of
the behavior of the closure, it remains needed in order to reason about the pointers that
it contains and about the size of the closure block. We give an overview of this high-level
API (§9.5), then describe its implementation (§9.6). Only the high-level layer is exposed to
the end user; the low-level layer remains internal.

9.1 Environments

We write fvclo(f, x⃗, t) for a list of the free variables of the function µf.λx⃗. t, that is, for a list
of the variables in the set fv(t) \ {f, x⃗}. The order in which the variables occur in this list is
not relevant, but is fixed: this is reflected in the fact that fvclo is a function of f , x⃗, and t.

An environment E is a list of pairs (v, q) of a value v and a nonzero fraction q. This
fraction is used in a pointed-by-heap assertion, as follows: we write E ← [L for the conjunction
∗(v, q)∈E v ← [q L. The assertion E ←[L can be understood as a collective fractional pointed-
by-heap assertion that covers every memory location that occurs in the environment E.

The length and order of the list E are intended to match the length and order of the list
fvclo(f, x⃗, t). An environment E is not a runtime object: it is a mathematical object that we
use as a parameter of the predicates Closure and Spec.

83

84 CHAPTER 9. CLOSURES

Closure construction:
µclof. λx⃗. t ≜
let f = alloc (n+ 1) in
f [0]←codeclo(f, x⃗, t);
f [i+ 1]←yi; # for each i in [0, n)
f

Closure invocation:
(v w⃗)clo ≜
(v[0] (v :: w⃗))ptr

Closure code pointer:
codeclo(f, x⃗, t) ≜
µptr_. λ(f :: x⃗).
let yi = f [i+ 1] in # for each i in [0, n)
t

Side condition:
fvclo(f, x⃗, t) = [y0; . . . ; yn−1]

Figure 31: Macros for closure construction and invocation

MkClo
y⃗ = fvclo(f, x⃗, t) E = zip v⃗ q⃗ |v⃗| = |y⃗| f /∈ x⃗{

♢(size(1 + |E|)) ∗ outside π
E ←[∅

}
π : [v⃗/y⃗] (µclof. λx⃗. t)

{
λℓ.

outside π ∗ Closure E f x⃗ t ℓ
ℓ⇐ \ {π} ∗ ℓ← [∅

}
CallClo

y⃗ = fvclo(f, x⃗, t) E = zip v⃗ q⃗ |x⃗| = |w⃗|
locs(v⃗) = dom(M) {outside π ∗ M ⇐\ {π} ∗ Φ} π : [v⃗/y⃗][ℓ/f][w⃗/x⃗]t {Ψ}

{Closure E f x⃗ t ℓ ∗ outside π ∗ M ⇐\ {π} ∗ Φ} π : (ℓ w⃗)clo {Ψ}

Closure E f x⃗ t ℓ ∗ ℓ← [∅ ∗ ℓ⇐ \ ∅ ♢(size(1 + |E|)) ∗ † ℓ ∗ E ←[∅ CloFree
Closure E f x⃗ t ℓ is persistent CloPersist

Figure 32: Low-level API for closures

9.2 Closure Implementation

The definitions of the closure macros µclof. λx⃗. t and of (ℓ v⃗)clo appear in Figure 31. Both
macros generate LambdaFit syntax: that is, the result of their expansion is a LambdaFit
expression. We write t1 ; t2 is as sugar for letx = t1 in t2 where x /∈ fv(t2).

The code produced by the macro µclof. λx⃗. t allocates a block of size n+ 1, stores a code
pointer in the first field, stores the values currently bound to the variables y0, . . . , yn−1 in the
remaining fields, and returns the address of this block. The variables y0, . . . , yn−1 are the free
variables of the function µf.λx⃗. t, that is, fvclo(f, x⃗, t).

The code pointer is produced by the auxiliary macro codeclo(f, x⃗, t). It is a closed function
whose parameters are f (the closure itself) followed with x⃗. This function loads the values
stored in the closure and binds them to the variables y0, . . . , yn−1 before executing the body t.

The code produced by the closure invocation macro (v v⃗)clo first fetches the code pointer
that is stored in the first field of the closure, then invokes this code pointer, passing it the
closure v itself as well as the actual arguments v⃗.

9.3 Low-Level Closure API

Our low-level reasoning rules for closures, shown in Figure 32, involve the predicate Closure,
describing the layout of a closure in memory. Its definition appears in the next section (§9.4).

The rule MkClo specifies a closure construction operation. The term, which is written
[v⃗/y⃗]µclof. λx⃗. t, is the application of the substitution [v⃗/y⃗] to the closure construction macro
µclof. λx⃗. t. In this substitution, the variables y⃗ are the free variables of the function µf.λx⃗. t.
The reason why we must be prepared to reason about a term of this form is that the premise
of LetVal gives rise to substitutions which (after being propagated down) become blocked
in front of the opaque macro µclof. λx⃗. t. The values v⃗ that appear in this substitution are

9.4. LOW-LEVEL CLOSURE API: IMPLEMENTATION DETAILS 85

the values “captured” by the closure, that is, the values that are stored in the closure when it
is constructed.

In the second premise of MkClo, an environment E is built by pairing up the values v⃗
with nonzero fractions q⃗. Then, according to the precondition in MkClo, closure construction
consumes E ←[∅. In other words, for each memory location that occurs in E, it consumes
a fractional pointed-by-heap assertion. This records the fact that there exists a pointer from
the closure to each such memory location.

According to the precondition in MkClo, closure construction consumes size(1 + |E|)
space credits, reflecting the space needed to store a code pointer and the values v⃗.

Because closure construction involves an allocation, MkClo requires the thread π to be
outside a protected section.

According to the postcondition in MkClo, closure construction produces a memory lo-
cation ℓ. Pointed-by-heap and pointed-by-thread assertions for this memory location are
produced, indicating that it is fresh. Furthermore, the assertion Closure E f x⃗ t ℓ, which guar-
antees that there is a well-formed closure at address ℓ, is also produced. In this thesis, in con-
trast with our earlier work [Moine et al., 2023], this assertion is persistent [Jung et al., 2018b,
§2.3]. This means that the knowledge that there is a closure at address ℓ can be shared with-
out any restriction. The pointed-by-heap and pointed-by-thread assertions ℓ ⇐ \ {π} ∗ ℓ ←[∅
are not persistent. Indeed, these assertions allow deallocating the closure, and our program
logic ensures that every object is deallocated at most once.

The rule CallClo closely resembles the rule CallPtr for primitive function calls (Fig-
ure 18). One difference is that CallClo requires the assertion Closure E f x⃗ t ℓ, which
describes the closure. Another difference is that, whereas a primitive function µptrf. λx⃗. t
must be closed, a general function can have a nonempty list of free variables y⃗, an alias for
fvclo(f, x⃗, t). In the last premise of CallClo, which requires reasoning about the function’s
body, the variables y⃗ are replaced with the values v⃗ captured at closure construction time,
which are recorded in the environment E.

The precondition of CallClo requires a pointed-by-thread assertion M ⇐\ {π}, where
the domain of the map M includes all of the locations that appear in v⃗, that is, all of
the locations that appear in the closure’s environment. This assertion is not consumed: it
appears again in the precondition of the triple that forms the last premise of CallClo. In
other words, it is transmitted from the caller to the callee. The presence of this assertion
is imposed to us by the fact that, when the closure is invoked, these values are read from
memory: the load instructions that appear in the definition of codeclo(f, x⃗, t) in Figure 31
require pointed-by-thread assertions for the values that are read. If desired, the pointed-by-
thread assertion M ⇐\ {π} can be transmitted back from the callee to the caller via a suitable
instantiation of the postcondition Ψ. Alternatively, it may be consumed by the callee to
justify a logical deallocation operation.

Together, the rules MkClo and CallClo express the correctness of our closure con-
struction and invocation macros. They guarantee that a closure at address ℓ constructed by
[v⃗/y⃗]µclof. λx⃗. t, when invoked with actual arguments w⃗, behaves indistinguishably from the
term [v⃗/y⃗][ℓ/f][w⃗/x⃗]t. This is the operational behavior that is expected of a closure.

CloFree logically deallocates a closure. It resembles FreeOne, but, instead of a “sizeof ”
assertion, requires the abstract assertion Closure E f x⃗ t ℓ. Like FreeOne, it produces space
credits and a deallocation witness for the closure. Furthermore, CloFree lets the user recover
the pointed-by-heap assertion E ←[∅, thereby undoing the effect of MkClo.

9.4 Low-Level Closure API: Implementation Details

Figure 33 presents the internal definition of the assertion Closure E f x⃗ t ℓ. It records two
pure facts: the name f is disjoint from the parameters x⃗ and the length of the environment E
matches the number of free variables of the closure.

86 CHAPTER 9. CLOSURES

Closure E f x⃗ t ℓ ≜ ⌜f /∈ x⃗ ∧ |E| = |fvclo(f, x⃗, t)|⌝ ∗
ℓ 7→□ (codeclo(f, x⃗, t) :: map fst E) ∗

† ℓ ∨ E ← [{+ℓ}

Figure 33: Definition of the predicate Closure

MkSpec
y⃗ = fvclo(f, x⃗, t) E = zip v⃗ q⃗ |v⃗| = |y⃗| f /∈ x⃗ n = |x⃗|

∀w⃗. □
(
Spec nE P ℓ −∗ P ℓ w⃗ ([v⃗/y⃗][ℓ/f][w⃗/x⃗]t)

){
♢(size(1 + |E|)) ∗ outside π

E ←[∅

}
π : [v⃗/y⃗] (µclof. λx⃗. t)

{
λℓ.

outside π ∗ Spec nE P ℓ
ℓ⇐ \ {π} ∗ ℓ← [∅

}
CallSpec

E = zip v⃗ q⃗ dom(M) = locs(v⃗) |w⃗| = n
(∀u. P ℓ w⃗ u −∗ {outside π ∗ M ⇐ \ {π} ∗ Φ} π : u {Ψ})

{Spec nE P ℓ ∗ outside π ∗ M ⇐\ {π} ∗ Φ} π : (ℓ w⃗)clo {Ψ}

�
(
∀w⃗ t. P1 ℓ w⃗ t −∗ P2 ℓ w⃗ t

)
∗ Spec nE P1 ℓ −∗ Spec nE P2 ℓ SpecWeak

Spec nE P ℓ ∗ ℓ←[∅ ∗ ℓ⇐ \ ∅ ♢(size(1 + |E|)) ∗ † ℓ ∗ E ←[∅ SpecFree
Spec nE P ℓ is persistent SpecPersist

Figure 34: High-level API for closures

Then, a points-to assertion states that the location ℓ points to a block of size 1 + |E|,
whose first field contains the code of the closure, codeclo(f, x⃗, t), and whose remaining fields
contain the values recorded in the environment E. Because this points-to assertion carries a
discarded fraction □ [Vindum and Birkedal, 2021], it is a persistent points-to assertion. This
reflects the fact that the closure is immutable.

The last component in this definition is a liveness-based cancellable invariant (§5.10): a
persistent assertion that we can tear down and regain full ownership when we deallocate ℓ.

Since every assertion involved in its definition is persistent, the assertion Closure E f x⃗ t ℓ
is itself persistent.

The liveness-based cancellable invariant contains the pointed-by-heap assertion E ←[{+ℓ},
which means that every memory location in E is pointed to by the closure. In the proof of
the reasoning rule CloFree, we tear down the liveness-based cancellable invariant, and gain
back the assertion E ←[{+ℓ}. Because ℓ is now dead, we use the CleanPBHeap rule to
change E ←[{+ℓ} into E ←[∅. This explains how, in the proof of CloFree, we are able to
produce the assertion E ←[∅.

9.5 High-Level Closure API

The user of a program logic is ultimately interested in the specification of a function, not
in the details of its implementation. Yet, the predicate Closure E f x⃗ t ℓ reveals the code of
the closure. As a result, a user naturally wishes to hide this information via an existential
quantification over this code. This pattern is common enough and technical enough that
we offer a higher-level API where this existential quantification is built in. To this end, we
introduce the assertion Spec nE P ℓ (defined further on in §9.6), where n is the arity of the
function, E is the environment of the closure, P describes the behavior of the closure, and ℓ
is the location of the closure in memory.

Like the Closure predicate (§9.3, §9.4), and unlike the Spec predicate presented in our
previous paper [Moine et al., 2023], the predicate Spec is persistent. This enables a better

9.6. HIGH-LEVEL CLOSURE API: IMPLEMENTATION DETAILS 87

Spec nE P ℓ ≜
∃ f x⃗ t P ′.
⌜|x⃗| = n⌝ ∗ Closure E f x⃗ t ∗
let v⃗ = map fst E in
let y⃗ = fvclo(f, x⃗, t) in
let body w⃗ = [v⃗/y⃗][ℓ/f][w⃗/x⃗]t in
▷□(∀w⃗. Spec nE P ′ ℓ −∗ P ′ ℓ w⃗ (body w⃗)) ∗
▷□(∀w⃗ u. P ′ ℓ w⃗ u −∗ P ℓ w⃗ u)

Figure 35: Definition of the predicate Spec

separation of concerns between the persistent assertion Spec nE P ℓ, which views the closure
as an eternal service provider, and the affine assertion ℓ ⇐\ {π} ∗ ℓ ←[∅, which views the
closure as an object in memory, allowing it to participate in the object graph and (at some
point) to be logically deallocated.

Figure 34 presents the reasoning rules associated with the Spec predicate. Let us first
examine the rule CallSpec. In many ways, this rule is the same as the low-level rule Call-
Clo. The main difference is that, to prove that the call (ℓ w⃗)clo admits the postcondition Ψ,
the user must check that the entailment ∀u. P ℓ w⃗ u −∗ {outside π ∗M ⇐ \ {π} ∗ Φ} π : u {Ψ}
holds. Intuitively, u denotes the instantiated function body that was visible in CallClo;
however, this function body is now abstracted away by the universal quantification over u.
The predicate P represents the specification of the function, and is typically instantiated
with a triple. For example, in the specification of a closure of arity 1 whose effect is to
increment a reference r that it receives as an argument, the predicate P takes the form:
λℓ w⃗ u. ∀ r n. ⌜w⃗ = [r]⌝ −∗ {r 7→ [n]} π : u {λ(). r 7→ [n+1]}. In short, the user must prove an
entailment stating that the specification needed by the caller follows from the specification P .

Let us now consider the rule MkSpec. It is again quite similar to the low-level rule Mk-
Clo. The premise on the second line ensures that P is a valid description of the behavior of
the function body, whose concrete form [v⃗/y⃗][w⃗/x⃗]t is visible. In comparison with the low-level
API (§9.3), the work of reasoning about the function body is shifted from the closure invoca-
tion site to the closure construction site. Moreover, while establishing P ℓ w⃗ ([v⃗/y⃗][ℓ/f][w⃗/x⃗]t),
the user is allowed to assume Spec nE P ℓ: this allows verifying recursive calls.

The rule SpecWeak is a consequence rule: it allows weakening the assertion Spec nE P1 ℓ
into Spec nE P2 ℓ, under the hypothesis that P1 is stronger than P2.

The rule SpecFree is similar to the rule CloFree.

9.6 High-Level Closure API: Implementation Details

Figure 35 presents the definition of the assertion Spec nE P ℓ. This is a guarded recursive
definition: Spec appears (under a “later” modality) in its own definition. The definition is
existentially quantified over the code of the closure, represented by f , x⃗, and t. It is also
existentially quantified over a predicate P ′ that is required to be stronger than P . This lets
us establish SpecWeak.

Chapter 10

Triples with Souvenir

Yom (2016).
The Old Man.

In this chapter, we introduce triples with souvenir, a syntactic sugar that allows for simpler
reasoning rules—in particular, a simpler Bind rule—while reasoning about code that lies out-
side a protected section. We first present the reasoning rules of triples with souvenir (§10.1),
then cover how they are defined (§10.2).

10.1 Those Who Cannot Remember the Past Are Condemned
to Repeat It

IrisFit, as presented until this point, can be cumbersome to use, for two unrelated reasons.
One reason is that the user must give up pointed-by-thread assertions at each application

of Bind, even in the common case where such a fraction has been framed already at a previous
application of Bind, which encloses the current application. This obligation to split off and
give up pointed-by-thread assertions becomes especially heavy when a variable x denotes
a location and has a long live range, that is, when this location remains a root throughout
a long sequence of instructions. In such a situation, at each point in the sequence, the user is
required to split off and give up a fractional pointed-by-thread assertion for x. The problem
is partly mitigated by the “no trim” mode é (§6.5). However, this mode is designed for very
local use, and cannot be exploited if trimming is needed.

A second reason is that, typically, the large majority of instructions are placed outside
protected sections. Yet, the user must provide the assertion outside π at each application of
the outside rules Alloc, CallPtr, Fork, Poll, MkSpec, and CallSpec. This is not
difficult, but the presence of this assertion creates visual clutter in pre- and postconditions.

To alleviate both problems at once, we introduce triples with souvenir, following our earlier
work [Moine et al., 2023]. A triple with souvenir takes the form [R] {Φ}π : t {Ψ}, where R
is a set of locations for which the user has already given up a pointed-by-thread assertion.
Recording this souvenir (or remembrance) relieves the user from the obligation of giving up
another pointed-by-thread assertion at future applications of the Bind rule. Furthermore,
a triple with souvenir implicitly carries an outside π assertion: this allows for more concise
statements of the outside rules.

For each reasoning rule in Figure 18, we provide a new rule (not shown) that operates
on triples with souvenir and that is polymorphic in R. This is done simply by inserting [R]

BindWithSouvenir
dom(M) = locs(K) \R [R ∪ locs(K)] {Φ}π : t {Ψ′} ∀v. [R] {M ⇐ \ {π} ∗ Ψ′ v}π : K[v] {Ψ}

[R] {M ⇐ \ {π} ∗ Φ}π : K[t] {Ψ}

AddSouvenir
[{ℓ} ∪R] {Φ}π : t {Ψ}

[R] {ℓ⇐\p {π} ∗ Φ}π : t {λv. ℓ⇐\p {π} ∗ Ψ v}

ForgetSouvenir
R′ ⊆ R [R′] {Φ}π : t {Ψ}

[R] {Φ}π : t {Ψ}

Figure 36: Key reasoning rules for triples with souvenir

89

90 CHAPTER 10. TRIPLES WITH SOUVENIR

[R] {Φ}π : t {Ψ} ≜
∀M. R = dom(M) =⇒

{Φ ∗ outside π ∗ M ⇐\ {π}} π : t {λv. Ψ v ∗ outside π ∗ M ⇐\ {π}}

Figure 37: Definition of triples with souvenir

in front every triple that appears in the rule. We do not provide new reasoning rules for
protected sections, as triples with souvenir are applicable only outside protected sections.

The new reasoning rules that make use of souvenirs appear in Figure 36. BindWith-
Souvenir is what we aimed for: it is our motivation for introducing triples with souvenir. It
closely resembles Bind, but does not require the user to give up pointed-by-thread assertions
for the locations that are already part of the souvenir R. The first premise requires the domain
of M (a map of locations to nonzero fractions) to cover all roots of the evaluation context K,
except those that are already in the souvenir R. In other words, if a location already appears
in R then there is no need to again split off and give up a pointed-by-thread assertion for this
location. Furthermore, BindWithSouvenir augments the current souvenir by changing R
to R ∪ locs(K) in its second premise. Thus, nested applications of this rule do not require
repeatedly and redundantly giving up pointed-by-thread assertions. The rule AddSouvenir
extends the current souvenir with a location ℓ. This requires the user to frame out (that is,
temporarily give up) a pointed-by-thread assertion for ℓ. The rule ForgetSouvenir shrinks
the current souvenir.

By exploiting triples with souvenir, each of the outside rules mentioned above can be
given a more concise statement. For example, the reasoning rule Poll can be more concisely
formulated as PollWithSouvenir:

Poll
{outside π} π : poll {λ(). outside π}

PollWithSouvenir
[R]{⌜True⌝} π : poll {λ(). ⌜True⌝}

10.2 Internals of Souvenirs

The definition of triples with souvenir appears in Figure 37. A triple with souvenir [R] {Φ}π :
t {Ψ} is expressed as an ordinary triple where the assertions outside π and M ⇐\ {π} are
framed out. That is, these assertions appear in the pre- and postcondition, so they are
required and preserved, but they are not made available to a user who views a triple with
souvenir as an abstract assertion. The domain of the map M is the set R: this ensures that,
for every location in this set, a fractional pointed-by-thread assertion is indeed framed out.

A triple with souvenir describes a piece of code whose execution begins and ends outside
a protected section: it cannot be used to describe a code fragment that lies inside a protected
section. To establish a triple with souvenir about a whole protected section, the user must
unfold the definition of triples with souvenir and drop down to the level of standard triples.
Then, all of the reasoning rules for standard triples are applicable.

In our mechanization [Moine, 2024], we use a more general triple that allows both “no trim”
mode (§6.5) without a souvenir and normal mode with a souvenir. This general triple always
frames out an “outside” assertion. In our case studies, this is the triple that we use most of
the time.

Chapter 11

Sequential Case Studies

Vaughan, S. (1954).
Lullaby of Birdland.

Before diving into the deep waters of concurrent cases studies (§12), we first showcase
sequential cases studies. We start by presenting our generic approach for representing con-
tainers (§11.1). Then, we explain how to reason about linked lists reversal and concatena-
tion (§11.2). We next focus on a continuation-passing-style (CPS) implementation of the
concatenation of lists, illustrating the use of closures (§11.3). We then present a specification
for a stack abstract data type (§11.4). The first implementation demonstrates a usage of our
linked lists. The second implementation relies on a mutable array. The third implementation
is a generic construction of a stack as a stack of stacks. It demonstrates modular reasoning
as well as an amortized space complexity analysis that exploits rational space credits. We
conclude this chapter by commenting on an implementation of circular singly-linked lists,
showcasing the reasoning about cycles in IrisFit and specifically their deallocation (§11.5).

We present here “sequential” case studies in the sense that it is unsafe for two concurrent
threads to use two functions of the API without proper synchronization. However, our speci-
fications allow for two threads to synchronize (via a lock or another mechanism) and use one
after the other two functions of the API.

In this chapter and the following one, for each case study, we present the code, the speci-
fication, and a few insights from the proof. These insights contain Iris proof details and can
be skipped by non-experts.

For establishing concrete heap bounds, we pose that a block of n fields is represented by n
memory words, that is, we pose size(n) = n. Another practical choice, such as size(n) = n+1,
would only affect the constant values that appear behind diamond symbols in specifications.

11.1 Containers: A Generic Approach

The following cases studies (§11.4–11.5), as well as Treiber’s stack (§12.5) and Michael and
Scott’s queue (§12.6) showcase containers, that is, data structures representing collections
of objects. All of these case studies follow the same approach, which we summarize in this
section: this approach envisions how we specify and verify containers in IrisFit.

First, as in standard Separation Logic, a container is a value and has a model : the mathe-
matical data structure represented by the container. For example, if the container implements
a (possibly mutable) list, the model is a mathematical list of the values being stored. The
representation predicate is a Separation Logic assertion that relates the container to its model.

In our setting, the model contains not only values, but also two fractions per value: one for
an associated pointed-by-thread assertion and one for an associated pointed-by-heap assertion.
Following our example of a list, the model is a mathematical list of triples (v, p, q) of a value v
and two positive fractions p and q.

Each time a value v is added to the container, the user provides a fraction p of the
associated pointed-by-thread assertion v ⇐\p {π} as well as a (positive) fraction q of the
associated pointed-by-heap assertion v ←[>0

q ∅. The user gets back these two assertions when
the value is removed from the container. What are these assertions used for?

First, the pointed-by-thread assertion allows the functions of the container’s API to manip-
ulate the stored values. Indeed, recall that loading a value from the heap requires updating a

91

92 CHAPTER 11. SEQUENTIAL CASE STUDIES

fraction of its pointed-by-thread assertion (Load). Moreover, Bind frames pointed-by-thread
assertions of locations of the evaluation context. Hence, we embark on the representation
predicate a fraction of pointed-by-thread for each value being stored in the container. This
approach is more convenient than requiring the user to provide pointed-by-threads assertions
for all the values being loaded in the premise of each specification of the API.

Second, the pointed-by-heap assertion allows not revealing the internal pointers of the
data structure. We already followed this approach for closures (§9.2). Indeed, the values
being stored inside a container are pointed by internal heap blocks of the data structure, and
this information must be recorded inside a pointed-by-heap assertion. Yet, we do not want to
reveal the exact location of internal pointers of the data structure: after all, they are internal.
Hence, we rather embark on the representation predicate a fraction of pointed-by-heap for
each value, used to record the internal heap blocks pointing to the value.

We note that our approach has two limitations. First, it leads the user to manipulate a lot
of fractions. Indeed, the user must provide two fractions per value inserted in the container,
which can be tedious to provide in practice. One way to overcome this limitation in practice
is to equip every value with the same fraction of pointed-by-thread and -heap, but it leads
to a lack of expressivity: if a fraction 1/n is fixed a-priori, then the user will not be able to
insert the same value more than n times in the container. Second, our approach does not scale
well with persistent containers. Indeed, in our approach, “peeking” a value from a container
(that is, loading the value without removing it) updates the model of the container. Indeed,
the “peek” operation needs to update a fraction of the pointed-by-thread of a loaded value.
This fraction must be given to the user (in order for trimming the set of predecessors threads,
for example), but another fraction must also be kept inside the representation predicate to
allow for another peek later on. This reason explains why our representation predicates for
closures (§9.3, §9.5) do not follow the general recipe we describe here.

11.2 Linked Lists and Linked List Reversal

In this section, we present our encoding of lists. We also comment on the implementation
and specification of two standard functions on lists: rev_append and rev .

Code The constructor “nil” is implemented by the unit value (). The constructor “cons” is
implemented by a block of size 2, whose first offset stores the head, and the second offset the
tail. This representation is faithful to space consumption in OCaml: constant constructors
are compiled into integers, which are not heap allocated.

We define the list API with functions nil , is_nil , head , tail and cons in Figure 38.
We make use of this API to implement rev_append and rev . This function rev_append

expects two lists xs and ys and returns a list whose elements are the elements of xs in reverse
order followed by the elements of ys. This function rev_append is recursive and is defined
by induction over its first argument xs. The function rev expects a list xs and returns a
new list with the element of xs in reverse order. The definition of rev makes a direct use of
rev_append .

Specifications The assertion list L xs asserts that xs represents a well-formed linked list
whose logical model is L, a mathematical list of triples of a value v and two positive fractions
p and q, following our general recipe for containers (§11.1).

We omit the specifications of base functions on lists. The specifications of rev_append
and rev appear in Figure 38. For each of these two functions, we propose two specifications,
depending on whether their first argument should be kept or can be logically deallocated.
Moreover, these four specifications are independent of the choice of the current thread π,
reflecting the fact that these specifications can be used by arbitrary threads.

11.2. LINKED LISTS AND LINKED LIST REVERSAL 93

nil ≜ µptr . λ[]. ()

is_nil ≜ µptr . λ[xs]. xs = ()

head ≜ µptr . λ[xs]. xs[0]

tail ≜ µptr . λ[xs]. xs[1]

cons ≜ µptr . λ[v, xs].

let ys = alloc 2 in

ys[0]←v ; ys[1]←xs ; ys

rev_append ≜ µptrf. λ[xs; ys].

if (is_nil xs)ptr then ys else

letx = (head [xs])ptr in

letxs′ = (tail [xs])ptr in

let ys′ = (cons [x; ys])ptr in

(f [xs′; ys′])ptr

rev ≜ µptr . λ[xs].

let ys = (nil [])ptr in

(rev_append [xs; ys])ptr

[locs(xs)]

 ♢(2× |Lx|)
list Lx xs ∗ list Ly ys
ys⇐ \ {π} ∗ ys← [∅

 π : (rev_append [xs; ys])ptr

λzs.
list Lx xs

list (rev(12Lx) ++ Ly) zs
zs⇐ \ {π} ∗ zs← [∅


[∅]

list Lx xs ∗ list Ly ys
xs⇐ \ {π} ∗ xs← [∅
ys⇐ \ {π} ∗ ys← [∅

 π : (rev_append [xs; ys])ptr

{
λzs.

list (rev(Lx) ++ Ly) zs
zs⇐ \ {π} ∗ zs← [∅

}

[locs(xs)]

{
♢(2× |Lx|)
list Lx xs

}
π : (rev [xs])ptr

λzs.
list Lx xs

list (rev(12Lx)) zs
zs⇐ \ {π} ∗ zs← [∅


[∅]

{
list Lx xs

xs⇐ \ {π} ∗ xs← [∅

}
π : (rev [xs])ptr

{
λzs.

list rev(L) zs
zs⇐\ {π} ∗ zs← [∅

}

Figure 38: Code and specification of linked list reversal

We first comment on the specifications for rev_append . The first specification of the call
(rev_append [xs; ys])ptr allows the caller to retain the root xs: this is expressed by a souvenir
on locs(xs) (recall that xs is either a location or the unit value, hence locs(xs) produces
either the singleton holding the location or the empty set). The first specification asserts that
rev_append has linear heap space complexity: it requires 2 × |L| space credits. The second
specification requires the caller to provide (and give up) a unique pointer to xs and asserts that
rev_append has constant heap space complexity. Indeed, in this case, rev_append requires
zero space credits because, at each step, one cell of the list xs can be logically freed before one
new list cell is allocated. Both specifications require a unique pointer on ys, that is its full
pointed-by-thread and its full empty pointed-by-heap assertions. This is necessary because
ys becomes a suffix of the list that is returned by rev_append . If the caller was allowed to
keep a copy of the pointer ys, then this copy would become a pointer from the outside to an
internal cell, a situation which our definition of list forbids.

The two specifications differ slightly in their postconditions. The postcondition of the
second specification describes the output list as list (rev(Lx) ++ Ly) zs. The postcondition
of the first specification is more complex because the values contained in the input list xs
become shared between the input list xs and the output list zs. We express this by splitting
fractions: 1

2Lx denotes a copy of the list Lx where the fraction associated with every value
has been halved.

The two specifications for rev that appear at the bottom of Figure 38 are then obtained
by specializing ys to nil.

Proof Insights The assertion list Lx xs is defined in Figure 39 This predicate describes a
list without sharing, that is, each cons block is the only one to point to its tail.

The definition of list L xs has a standard overall structure [Reynolds, 2002]. The novelty
comes with the presence of pointed-by-thread and -heap assertions. The assertion list L xs is

94 CHAPTER 11. SEQUENTIAL CASE STUDIES

list L xs ≜
⌜L = [] ∧ xs = ()⌝

∨ ∃v p q L′ xs′. ⌜L = (v, p, q) :: L′⌝ ∗
xs 7→ [v;xs′] ∗ v ⇐ \p ∅ ∗ v ← [>0

q {+xs} ∗
xs′ ⇐\ ∅ ∗ xs′ ←[{+xs} ∗ list L′ xs′

Figure 39: Internals of linked lists

defined by induction over L. If L = [], this predicate boils down to the pure assertion xs = ().
Otherwise, if L = (v, p, q) ::L′, the predicate begins with the points-to assertion xs 7→ [v;xs′],
which describes a 2-field cell. The value xs′ of the following cell is existentially quantified.
Moreover, the assertion contains the pointed-by-thread v ⇐\p ∅ and pointed-by-heap v ←[>0

q

{+xs} of the stored value v. Then, the assertion contains the full pointed-by-thread xs′ ⇐\ ∅
and pointed-by-heap xs′ ←[{+xs} of the next cell xs′. The pointed-by-thread is empty (xs′

is internal and is not a root of any thread), and the pointed-by-heap contains only xs as a
predecessor. These two assertions mean that there are no other pointers (from the heap or
the stack) to xs′. The definition concludes with the recursive ownership of the list list L′ xs′.

With this definition, there can be no direct pointers from the outside to an internal cell.
The ability to express this property is unusual: indeed, via points-to assertions, traditional
Separation Logic can express unique ownership, that is, control who may dereference a pointer;
however, it cannot express the fact that a pointer is unique. The predicate list in traditional
Separation Logic does forbid two valid linked lists from sharing a suffix, but does not rule
out the existence of a rogue pointer (without any access permission) from the outside into a
linked list.

11.3 Continuation-Passing Style

To demonstrate our ability to reason about use of closures, we present a function that con-
structs the concatenation of two linked lists and is written in continuation-passing-style (CPS).
This style leads to a nontrivial chain of closures which are allocated and deallocated over the
time of a recursion. More precisely, The continuations involved in this example are one-shot,
that is, called only once. They are self-destructing continuations: in our proofs, we logically
deallocate them as soon as they are invoked.

Code Our implementation appears in Figure 40. The main function, append , expects two
linked lists xs and ys. It first allocates a (recursive) closure aux , described below, which
closes over ys. Then, it invokes this closure, with a closure for the identity function as a
continuation.

The function aux expects two arguments: a linked list xs and a continuation (a closure) k.
If xs is nil, then it applies the closure k to the linked list ys. Otherwise, it allocates a new
closure k′, whose purpose is to “cons” the element x in front of the linked list produced by
the concatenation of xs′ and ys. The closure k′ captures the values of k, x and xs. After
allocating this closure, aux invokes itself with arguments xs′ and k′.

Specifications Like rev_append and rev (§11.2), append admits two specifications pre-
sented in Figure 40, which differ in their assumption about xs. If the linked list xs comes
with a full empty pointed-by-thread and pointed-by-heap, then it can be logically deallocated,
which pays for the space occupied by the new list that is constructed; otherwise, this space
must be paid for. Besides, internally, append needs a certain amount of temporary storage,
whose size is linear in the length of the list xs, and which is released when append returns.

11.4. SEQUENTIAL STACKS 95

append ≜ µptr . λ[xs; ys].

let aux = µclof. λ[xs; k].

if (is_nil [xs])ptr then (k [ys])clo else
letx = (head [xs])ptr in

letxs′ = (tail [xs])ptr in

let k′ = µclo . λ[r].

let p = (cons [x; r])ptr in (k [p])clo in

(f [xs′; k′])clo in

let id = µclo . λ[x]. x in

(aux [xs; id])clo

[locs(xs)]

 ♢(2× 3× |Lx|+ 3)
list Lx xs ∗ list Ly ys
ys⇐ \ {π} ∗ ys← [∅

 π : (append [xs; ys])ptr

λzs.

♢(3× |Lx|+ 3)
list (12Lx) xs

list (12Lx ++ Ly) zs
zs⇐ \ {π} ∗ zs←[∅


[∅]


♢(3× |Lx|+ 3)

list Lx xs ∗ list Ly ys
xs⇐ \ {π} ∗ xs← [∅
ys⇐ \ {π} ∗ ys← [∅

 π : (append [xs; ys])ptr

λzs.
♢(3× |Lx|+ 3)

list (Lx ++ Ly) zs
zs⇐ \ {π} ∗ zs←[∅


Figure 40: Code and specification of linked list concatenation in continuation-passing style

This temporary storage is described by the space credits that appear both in the precondition
and in the postcondition.

The number 3× |Lx| that appear in these specifications, where |Lx| denotes the length of
the linked list Lx, corresponds to the space usage of the linked chain of continuations that is
formed in the heap. In the first triple, an additional 2 × |Lx| credits are needed, because of
the allocation of new linked list cells. One credit is used by the identity closure. Another two
credits are used by the closure aux .

Proof Insights This example serves mainly as an exercise of our reasoning rules on closures.
Proof details can be found in our mechanization [Moine, 2024].

11.4 Sequential Stacks

We verify three implementations of sequential stacks: an unbounded-capacity mutable stack
implemented as a linked list, a bounded-capacity stack implemented as an array, and a functor
that constructs a stack of stacks. We show that they all satisfy the same specifications, up to
a potential capacity bound and their space complexity.

Code Our stacks are potentially bounded, meaning that some implementations can store only
a fixed amount of elements. Each of our three implementations provides a function create to
allocate a new stack, push to push elements onto a non-full stack, and pop to pop elements
from a non-empty stack. Two additional operations (not shown) allow testing whether a stack
is empty and testing whether a stack is full.

The first implementation is an unbounded stack as a reference on an immutable list.
The second implementation is a bounded stack as a mutable pair where one field holds

the logical size of the stack and one field holds a pointer to a (fixed-capacity) array. Every
unused cell in this array is filled with a unit value.

96 CHAPTER 11. SEQUENTIAL CASE STUDIES

{
♢A

}
π : (create [])ptr

{
λℓ.

stack ℓ []
ℓ⇐ \ {π} ∗ ℓ← [∅

}
[{ℓ}]


⌜|L| < C⌝

stack ℓL ∗ ♢B
v ⇐ \p {π} ∗ v ← [>0

q ∅

 π : (push [ℓ; v])ptr
{
λ(). stack ℓ ((v, p, q) :: L)

}
[{ℓ}]

{
stack ℓ ((v, p, q) :: L)

}
π : (pop [ℓ])ptr

{
λv.

stack ℓL ∗ ♢B
v ⇐ \p {π} ∗ v ←[>0

q ∅

}

stack ℓL ∗ ℓ⇐ \ ∅ ∗ ℓ←[∅ ♢(A+B × |L|) ∗ ∗
(v,p,q)∈L

(v ⇐ \p ∅ ∗ v ← [>0
q ∅)

Figure 41: Specification of possibly-bounded sequential stacks
In this figure, A, B and C are constants determined from the implementation.

The third implementation is generic: it is a functor that expects two implementations
of stacks, say X-stacks and Y -stacks, and produces a new implementation, say Z-stacks. A
Z-stack is implemented as a pair made of (1) a nonempty Y -stack storing the elements at the
top of the stack, and (2) a X-stack of full Y -stacks, storing all the remaining elements. As a
result, a Z-stack is bounded if and only if both X and Y stacks are bounded. By applying
the functor to our previous two implementations of stacks as arrays and stacks as linked lists,
one obtains a time- and space-efficient implementation of chunked stacks, that is, linked lists
of fixed-capacity arrays.

We omit the exact code of our implementations for brevity. The interested reader may
find it in our mechanization [Moine, 2024].

Specifications Figure 41 presents the common interface of all our stacks. This interface is
parameterized with a capacity C, which is either an integer or +∞, the latter denoting an
unbounded stack. The interface is also parameterized with two constants: A is the number
of credits required to allocate an empty stack, and B is the number of credits required by a
push operation.

The specifications rely on the abstract predicate stack L ℓ, which asserts that at address ℓ
there is a valid stack whose elements are described by the mathematical list L. Following our
recipe for containers (§11.1), L is a list of triples of value and two nonzero fractions. According
to our specifications, create consumes A space credits and produces a fresh empty stack; push
consumes B space credits and a fractional handle for the value that is inserted into the stack;
pop gives up these assertions. In addition, push requires the number of elements in the stack
to be less than the stack’s capacity C. This requirement is trivially satisfied if C is +∞.
Finally, the logical deallocation of a stack allows recovering all of the space occupied by the
stack, namely A+B × |L| space credits, where |L| is the number of elements of the stack.

Our three implementations of stacks (not shown) differ in their space complexity. Each of
them is verified with respect to a particular instantiation of the parameters A, B, and C.

Recall that the first implementation consists of a reference on an immutable list. The
reference occupies 1 word, an empty list occupies 0 word, and each list cell occupies 2 words.
This stack has unbounded capacity. Hence, this implementation satisfies our common interface
for the parameters A = 1, B = 2, and C = +∞.

Recall that the second implementation consists of a mutable pair of an array and an offset.
Let us call T the fixed capacity of the array. This implementation satisfies our interface with
creation cost A = T + 1, insertion cost B = 0, and bounded capacity C = T .

Recall that our third implementation is generic: it is a functor that expects two imple-
mentations of stacks, X-stacks and Y -stacks, and produces a new implementation, Z-stacks.
To simplify the explanations, we assume that Y -stacks are bounded—an assumption that our
formalization does not make. Let us write X.A and X.B and X.C for the space complexity

11.5. A CIRCULAR SINGLY-LINKED LIST 97

copy2 ≜ µptr . λ[s; t].

t[0]←s[0] ; t[1]←s[1]

ccons ≜ µptr . λ[v; c].

letxs = c[0] in

if xs = () then

let ys = alloc 2 in

ys[0]←v ; ys[1]←ys

c[0]←ys

else

let ys = alloc 2 in

(copy2 [xs; ys])ptr

xs[0]←v ; xs[1]←ys

cnext ≜ µptr . λ[c].

letxs = c[0] in

if xs = () then () else c[0]←xs[1]

cnil ≜ alloc 1

cuncons ≜ µptr . λ[c].

letxs = c[0] in

let v = xs[0] in let ys = xs[1] in

(if xs = ys then c[0]←() else (copy2 [ys;xs])ptr) ;

v

cappend ≜ µptr . λ[cxs; cys].

let ys = cys[0] in

if ys = () then () else

letxs = cxs[0] in

cxs[0]←ys ;

if xs = () then () else

let v = xs[0] in letxs′ = xs[1] in

(copy2 [ys;xs])ptr ;

ys[0]←v ; ys[1]←xs′

[{c}]
{
clist Lc

}
π : (cnext [c])ptr

{
λ(). clist (rot1(L)) c

}
[{c}]

{
clist L1 c1 ∗ clist L2 c2
c2 ⇐ \ {π} ∗ c2 ←[∅

}
π : (cappend [c1; c2])ptr

{
λ().

♢1
clist (L1 ++ L2) c1

}

Figure 42: Code and specification of circular singly-linked lists

parameters of X-stacks, and likewise for Y -stacks. We formally establish that our Z-stacks
have creation cost A = X.A + Y.A + 2, insertion cost B = Y.B + (Y.A + X.B)/Y.C, and
capacity C = X.C× (1+Y.C). The insertion cost is of particular interest. An empty Y-stack
is allocated and pushed on the X-stack only every Y .C push operations on the Z-stack : this
explains the fractional cost (Y.A+X.B)/Y.C. Obtaining this bound requires rational space
credits and an amortized analysis, which involves defining a suitable potential function and
saving space credits in the definition of stack for Z-stacks.

By applying the functor to our previous two implementations of stacks as arrays and stacks
as linked lists, one obtains a time- and space-efficient implementation of chunked stacks, that
is, linked lists of fixed-capacity arrays.

11.5 A Circular Singly-Linked List

To demonstrate our ability to reason about circular data structures, we specify and verify
circular singly-linked lists. Although circular doubly-linked lists are more useful in practice,
verifying circular singly-linked lists is already a nontrivial and an interesting exercise which
captures the difficulty in terms of pointers and space usage. We posit that the specifications
and proofs of circular doubly linked-list can follow the same pattern.

Code We encode circular lists as a reference on either the unit value (), denoting an empty
circular list, or on a circular chain of 2-cell blocks. As for non-circular lists (§11.2), the first
offset of this block stores a value and its second offset stores the next block. If any, we refer to
the first list cell pointed by the main reference as the “focus” of the list. Our implementation of
circular lists is non-persistent. In particular, there is no sharing possible and every operation
requires the full ownership of its arguments.

98 CHAPTER 11. SEQUENTIAL CASE STUDIES

seg Lxs ys ≜ ∃v p q L′ xs′.

⌜L = (v, p, q) :: L′⌝ ∗ xs 7→ [v;xs′] ∗ v ← [>0

q {+xs} ∗ v ⇐\p ∅ ∗
xs′ ⇐ \ 1

2
∅ ∗ xs′ ← [1

2
{+xs} ∗

(⌜L′ = [] ∧ xs′ = ys⌝ ∨ xs′ ⇐\ 1
2
∅ ∗ xs′ ← [1

2
∅ ∗ seg L′ xs′ ys)

clist Lc ≜

⌜L = []⌝ ∗ c 7→ [()]

∨ ⌜L ̸= []⌝ ∗ ∃xs. c 7→ [xs] ∗ xs⇐ \ 1
2
∅ ∗ xs←[1

2
{+c} ∗ seg Lxsxs

Figure 43: Internals of circular singly-linked lists

The code appears on top of Figure 42. The auxiliary function copy2 takes two 2-cell
blocks s and t, and copies the content of s, the source, to t, the target. The function cnil
takes no argument and returns a 1-cell block pointing to unit, that is, an empty circular
list. The function ccons takes a value v and a list c and adds a new list cell in focus. The
function cuncons takes a non-empty list c, removes the focused cell, and returns the value its
store. These three functions—cnil, ccons and cuncons—form a “stack” API.

Interestingly, circular lists come with two additional functions with constant time com-
plexity, improving the usually linear time complexity of their implementation on non-circular
lists. The function cnext takes a circular list as an argument and rotate its content of one
block. If the list is empty, it is left untouched. Otherwise, the current focus is switched to its
successor. The function cappend concatenates in place two circular lists and stores the result
in the first argument.

Specifications Our specifications make use of a representation predicate clist Lc, asserting
that the circular list c has model L, a mathematical list of triples of a value v and two
positive fractions p and q. The functions with a stack API—cnil, ccons and cuncons—obey
the specifications presented in Figure 41, where cnil is create, ccons is push, and cuncons
is pop. The predicate stack is clist , the cost of creation A is 1—the space occupied by a
reference—and the cost of a cell B is 2—the space occupied by a 2-cell block.

Crucially, our circular list also obeys the logical deallocation specification of stacks pre-
sented in Figure 41. The user can logically deallocate the circular list as soon as its sole entry
point, the reference, is unreachable.

The specifications of cnext and cappend at the bottom of Figure 42. The specification
of (cnext [c])ptr is a souvenir on c and requires that c represents a circular list of model L.
The function call updates the model from L to rot1(L), where rot1([]) = [] and rot1(x :: L) =
L ++ [x]. The specification of (cappend [c1; c2])ptr is a souvenir on c1. The precondition
consumes the assertions witnessing that c1 is a circular list of model L1 and c2 is a circular
list of model L2. The precondition also consumes the full pointed-by-thread and empty
pointed-by-heap if c2. The postcondition produces one space credit corresponding to the
reference c2, which is logically deallocated, as well as the representation predicate of c1 which
now represents L1 ++ L2.

Proof Insights Figure 43 presents the definitions of our assertions. First, the asser-
tion seg Lxs ys asserts that xs represents a non-empty segment of a list whose first block is xs
and last block is ys. This predicate is a variation of the list predicate (§11.2). However, seg
stores only half of the pointed-by-thread and pointed-by-heap assertions of the focused cell.
The definition of clist Lc appears after and cases over whether the model L is nil. If L = [],
then c points to the unit value. If L ̸= [], then there exists a focused cell xs that forms a

11.5. A CIRCULAR SINGLY-LINKED LIST 99

circular fragment of model L. Moreover, the other halves of the pointed-by-thread and -heap
assertions of this focused cell are stored.

The point of interest of these proofs is the logical deallocation. To logically deallocate a
list c of model L, we first logically deallocate the reference c. If the list is empty, the proof
is finished. Otherwise, if the list is non-empty, we have to logically deallocate a cycle. By
induction over L, we construct a “could” assertion (§6.6). Then, because the cloud has no
other entry point than the reference c, we use CloudFree and recover space credits and the
empty pointed-by-thread and -heap assertions of the stored values.

Chapter 12

Concurrent Case Studies

Schubert, F. (1824).
String Quartet No. 14 “Death and the Maiden”.

We showcase the features of IrisFit for concurrency via a series of representative case
studies. We first present logically atomic triples [da Rocha Pinto et al., 2014; Jung et al., 2015],
a standard way of specifying operations on concurrent data structures (§12.1), and explain how
to combine them with souvenirs. We begin our case studies with an encoding of the fetch-and-
add operation in LambdaFit; the encoding considered makes use of protected sections (§12.2).
Then, we present an implementation of a concurrent counter object, implemented as a pair of
closures that share an internal reference (§12.3). We continue with a library for async/finish
parallelism, which we encode on top of our implementation of fetch-and-add (§12.4). Last but
not least, we present two lock-free data structures. First, we present our version of Treiber’s
stack (§12.5), which exploits protected sections, along the lines sketched earlier (§3). Second,
our version of Michael and Scott’s queue (§12.6), a concurrent lock-free queue [Michael and
Scott, 1996] which we equip with protected sections.

12.1 Atomic Triples

Our specifications for fetch-and-add (§12.2), for Treiber’s stack (§12.5) and for Michael and
Scott’s queue (§12.6) involve logically atomic triples, also known simply as atomic triples
[da Rocha Pinto et al., 2014; Jung et al., 2015]. In our work, an atomic triple takes the form:

[R]

〈
Φprivate

∀x⃗. Φpublic

〉
π : t

〈
λv. Φ′

private

Φ′
public

〉
The parameter R between square brackets is a souvenir (§10). We construct our atomic

triples on top of our triples with souvenir in the same way that atomic triples are usually
constructed on top of ordinary triples. Intuitively, atomic triples with a souvenir, written [R],
are atomic triples whose private pre- and postconditions are extended with pointed-by-thread
assertions covering R (that is, M ⇐\ {π} with R = domM) and with the assertion outside π.

The private precondition Φprivate and the private postcondition λv. Φ′
private play the same

role as the precondition and postcondition of a standard triple. The private precondition is
given up by thread π when the execution of the term t begins; the private postcondition is
gained by thread π when the execution of the term t ends. They are private in the sense that
they are invisible to other threads.

The characteristic feature of atomic triples is the presence of a public precondition Φpublic

and of a public postcondition Φ′
public. An atomic triple guarantees that the public precondi-

tion Φpublic continuously holds until a certain point in time, the linearization point [Herlihy and
Wing, 1990], where it is atomically transformed into the public postcondition Φ′

public [Birkedal
et al., 2021]. Technically, an atomic triple involves a quantification over a list of variables x⃗,
which scopes over Φpublic, Φ′

private, and Φ′
public. The existentially quantified public precondi-

tion ∃x⃗. Φpublic continuously holds until the linearization point is reached. There, a specific
instantiation of the variables x⃗ becomes fixed. For this specific choice of x⃗, the public precon-
dition is transformed into the public postcondition Φ′

public, and the value v that is eventually
returned satisfies Φ′

private.

101

102 CHAPTER 12. CONCURRENT CASE STUDIES

Interaction of Atomic Triples with Invariants Atomic triples can interact with invari-
ants. Let us recall how invariants are used without atomic triples, expose the problem atomic
triples address, and how we are going to write our specifications.

An invariant (§5.10) is a persistent assertion written Φ whose meaning is that the as-
sertion Φ in the rectangular box holds at all times. Such an invariant allows in particular to
share Φ among threads. Indeed, the protected resource Φ can be temporarily accessed while
reasoning on atomic expressions—that is, expressions that evaluate to a value in a single step
of computation, like a load, a store, or a CAS, for example. By “temporarily accessed”, we
mean that the user can open an invariant before reasoning on an atomic expression, adding
the assertion ▷Φ to the context. The assertion extracted from an invariant is guarded by
a later ▷ modality, which avoids paradoxes with high-order ghost state [Jung et al., 2018b,
§5.5]. The user then has the obligation to close the invariant after reasoning on the atomic
expression, by giving back the exact same assertion ▷Φ (an assertion entailed by Φ), hence
restoring the invariant.

One limitation of the API of invariants we presented above is that an invariant can be
accessed only while reasoning on an atomic step of computation. Hence, a Separation Logic
triple specifying a concurrent method with several steps of computation is not satisfactory,
as the user will not be able to use invariants to store shared resources. Atomic triples come
to save the day. Indeed, an atomic triple makes the promise that the public precondition is
updated into the public postcondition atomically. At the Iris level, this promise means that
the user can open an invariant in the public precondition and has the obligation to close it in
the atomic postcondition, as if the expression was atomic.

The later modality that appears while opening an invariant is tedious to eliminate in
practice. Indeed, the user can eliminate a later modality only by matching up with an actual
computation step. Thanks to later credits (§6.2), one may use an earlier computation step to
“pay” for the elimination of one later modality. Our async/finish library (§12.4) presents a use
case. Yet, later modalities are difficult to deal with, and pollute specifications. Thankfully,
later modalities can often be removed for free. Indeed, there exists a large class of timeless
assertions [Jung et al., 2018b, §5.7] for which we have ▷Φ ⇛ Φ. Intuitively, these are the
assertions that do not depend on the so-called step-index. Most of the “ground” assertions:
the points-to, the pointed-by-thread, the pointed-by-heap, the deallocation witness, and space
credits are timeless. Timelessness is preserved by most of the connectives, except for the later
modality, invariants, various fancy updates, and triples themselves. Because working with
timeless assertions is convenient, we design the assertions that are meant to be shared within
invariants (for example, representation predicates of data structures) to be timeless assertions.

12.2 Fetch-and-Add

The “fetch-and-add” (FAA) operation atomically increments the content of an integer reference
and returns the previous content of the reference. Although this operation is commonly
provided in hardware, implementing it in LambdaFit is a fairly instructive exercise. Indeed,
this code and its proof offer a typical example of the use of protected sections.

Code In our setting, FAA takes three parameters: an address l, an offset i , and the desired
increment n, an integer value. We encode FAA as a tail-recursive function whose body
contains a CAS instruction enclosed in a protected section. The code is shown in Figure 44.
The recursive function is named f ; its parameters are l, i and n. Initially, the content of the
memory at address l and offset i is loaded into the variable m. Then, a protected section
is entered, and a CAS instruction attempts to update the content of the memory from m
to m+ n. In case of success, the protected section is exited and the value m is returned. In
case of failure, the protected section is also exited, and a recursive call is performed, so as to
try again.

12.2. FETCH-AND-ADD 103

faa ≜ µptrf. λ[l, i , n].

letm = l[i] in

enter ; if CAS l[i]m (m+ n)

then (exit ; m)

else (exit ; (f [l, i , n])ptr)

FAA

[∅]
〈

ℓ⇐ \p {π}
∀v⃗ m. ⌜v⃗(i) = m⌝ ∗ ℓ 7→ v⃗

〉
π : (faa [ℓ, i , n])ptr

〈
λm′. ⌜m′ = m⌝
ℓ 7→ ([i :=(m+ n)]v⃗) ∗ ℓ⇐ \p ∅

〉

Figure 44: Code and specification of fetch-and-add

Thanks to the protected section, as soon as the CAS instruction succeeds, the memory
location l can be considered as a temporary root, as opposed to an ordinary root. Indeed, as
soon as CAS succeeds, it is known that the first branch of the conditional construct will be
taken, so the protected section will be exited via the first exit instruction, where l is no longer
a root.

Consider the equivalent body of FAA without protected sections whose last instructions
are if CAS l[i]m (m+ n) thenm else (f [l, i , n])ptr. If the CAS succeeds, the expression reduces
to if true thenm else (f [l, i , n])ptr. However, in this expression, l would still be considered a
root (that is to say, an ordinary root), because it occurs inside the “else” branch, and according
to the FVR (§2.1), every location that occurs in the code that lies ahead is a root. This is
an issue in the case where another thread reads the just-committed value stored in l, decide
it does not need l anymore, and would like to reuse its space. We present such a scenario in
our async/finish case study (§12.4).

Specification Our specification of FAA appears at the bottom of Figure 44. The private
precondition consumes a pointed-by-thread assertion for the location ℓ, carrying some frac-
tion p and the current thread identifier π. The public precondition requires that ℓ points to
a block v⃗ and that the value stored at offset i in this block be m. The private postcondition
asserts that the result of FAA is m. The public postcondition asserts that FAA atomically
updates m into m + n. Crucially, it also produces an updated pointed-by-thread assertion
for ℓ, carrying the same fraction p and an empty set of thread identifiers. This postcondi-
tion means that as soon as the linearization point is reached, ℓ is not a root in the thread π
any more. Capturing this property will reveal crucial for reasoning about our async/finish
library (§12.4).

Proof Insights We next explain how we use the reasoning rules of protected sections (Fig-
ure 19) for verifying that FAA obeys its specification. Upon entering the protected section,
we use Enter and transform the assertion outside π into the assertion inside π ∅. Then, we
face the CAS instruction, a possible linearization point. We open the public precondition,
and gain the points-to assertion for ℓ. By case analysis on the value that is currently stored
at address l and offset i , we consider the case where CAS succeeds and the case where it
fails. We do so before reasoning on the if statement. Let us focus on the case where it suc-
ceeds. We use CASSuccess, which updates the points-to assertion, and effectively execute
the linearization point. At this point, the atomic triple requires us to prove that the public
postcondition holds. Using AddTemporary, we make ℓ a temporary root: applying this
rule changes the assertions ℓ ⇐\p {π} and inside π ∅ into ℓ ⇐\p ∅ and inside π {ℓ}. By giving
up the points-to and pointed-by-thread assertions, we fulfill the public postcondition. Then,
we use IfTrue and enter the first branch of the “ if” statement. There, TrimInside lets us

104 CHAPTER 12. CONCURRENT CASE STUDIES

ref ≜ µptr . λ[x].

let r = alloc 1 in

r[0]←x ; r

pair ≜ µptr . λ[x, y].

let r = alloc 2 in

r[0]←x ; r[1]←y ; r

ignore ≜ µptr . λ[x]. ()

create ≜ µptr . λ[].

let r = (ref [0])ptr in

let i = µclo . λ_. (ignore [(faa [r, 0, 1])ptr])ptr in

let g = µclo . λ_. r[0] in

(pair [i , g])ptr

(counter i g (p1 + p2) (n1 + n2)) ≡ (counter i g p1 n1 ∗ counter i g p2 n2)

[∅]
{
♢7

}
π : (create [])ptr

λℓ. ∃i g .

ℓ 7→ [i ; g] ∗ counter i g 1 0
ℓ⇐ \ {π} ∗ ℓ← [∅
i ⇐\ ∅ ∗ i ← [{+ℓ}
g ⇐\ ∅ ∗ g ← [{+ℓ}


[∅]

{
counter i g p n

}
π : (i [])clo

{
λ(). counter i g p (n+ 1)

}
[∅]

{
counter i g p n

}
π : (g [])clo

{
λm.

⌜n ≤ m ∧ (p = 1 =⇒ n = m)⌝
counter i g p n

}
 counter i g 1n

i ⇐ \ ∅ ∗ i ← [∅
g ⇐ \ ∅ ∗ g ← [∅

 (
♢5

)

Figure 45: Code and specification of a concurrent monotonic counter

change the assertion inside π {ℓ} to inside π ∅. This allows us to exit the protected section
using Exit. We finish the proof with Val.

12.3 A Concurrent Counter Object

Our next example is a concurrent monotonic “counter” object, whose internal state is stored
in a mutable reference, and whose access is mediated by a pair of closures: a closure i which
increments the counter; a closure g which gets its current value. This is an example of a
procedural abstraction [Reynolds, 1975], also known as an object : indeed, “an object is a
value exporting a procedural interface to data or behavior” [Cook, 2009]. Crucially, a counter
can be used concurrently by several threads.

Code The top of Figure 45 presents the code that we verify. The function call (ref [x])ptr
allocates a mutable reference, that is, a block of size 1. The function call (pair [x, y])ptr
allocates a mutable pair, that is, a block of size 2. The function call (ignore [x])ptr ignores its
argument and returns the unit value. The function call (create [])ptr returns a fresh “counter”,
that is, a pair of two closures i and g . Both closures point to an internal reference r, which is
initialized to the value 0. The closure i uses our fetch-and-add function (§12.2) and ignores
its result.

Specifications Figure 45 presents the specification of our concurrent counter. It is inspired
by a specification that appears in lecture notes [Birkedal and Bizjak, 2023, §8.7]. It relies on
an abstract assertion counter i g p n where i is the location of the “increment” closure, g is the
location of the “get” closure, p ∈ (0; 1] is a fraction that represents a share of the ownership
of the counter, and n, a natural number, represents a past contribution to the current value
of the counter. If p is 1 then the contribution n is in fact the current value of the counter.

The equivalence rule in Figure 45 shows that “counter ” assertions can be split and joined;
both the fraction and the contribution are then split or joined by addition. This allows a
counter to be used in a concurrent setting: the user can split the “counter ” predicate into

12.3. A CONCURRENT COUNTER OBJECT 105

counterInv γ ℓ ≜ ∃m. ℓ 7→ [m] ∗ • (1,m)
γ

share γ p n ≜ ◦ (p, n) γ

incrspec γ ℓ ≜ λ t. ∀π pn.
[{ℓ}] {counterInv γ ℓ ∗ share γ p n}π : t {λ(). share γ p (n+ 1)}

getspec γ ℓ ≜ λ t. ∀π pn.
[{ℓ}] {counterInv γ ℓ ∗ share γ p n}π : t {λm. ⌜n ≤ m ∧ (p = 1 =⇒ n = m)⌝ ∗ share γ p n}

counter p n i g ≜ ∃γ ℓ.
meta i γ ∗ counterInv γ ℓ ∗ share γ p n ∗ ℓ⇐ \p ∅ ∗
Spec 0 [(ℓ, 1/2)] (incrspec γ ℓ) i ∗ Spec 0 [(ℓ, 1/2)] (getspec γ ℓ) g

Figure 46: Internals of the concurrent counter

several parts and give a part to each participating thread. In the end, the user can gather all
the parts, draw conclusions about the final value of the counter, and logically deallocate it.

The specification of (create [])ptr states that this call consumes 7 space credits (1 credit
for the shared reference, 2 credits for each closure, and 2 credits for the pair). It returns a
pair ℓ of two locations i and g such that counter i g 1 0 holds. This assertion captures the full
ownership of the counter, and specifies that its current value is 0.

Figure 45 also shows the specifications of calls to i and g . Both calls require an assertion
of the form counter i g p n. The postcondition of a call to the “increment” closure contains an
updated assertion counter i g p (n+1). The postcondition of a call to the “get” closure contains
an unmodified “counter ” assertion. Furthermore, it guarantees that the natural number m
that is returned by this call is no less than the past contribution n and, in the case where p
is 1, is equal to the past contribution.

Last, Figure 45 shows the reasoning rule for deallocating a counter. This rule requires
full ownership of the counter as well as pointed-by-heap and pointed-by-thread assertions for
the closures i and g , with fraction 1 and empty sets—this witnesses that both closures are
unreachable. In exchange, the rule produces 5 spaces credits. The 2 credits corresponding to
the pair produced by create can be recovered independently.

Proof Insights Figure 46 presents the internals of our counter, based on standard ghost
state [Birkedal and Bizjak, 2023, §8.7] and on our Spec predicates (§9.5). The assertion
counterInv γ ℓ is an invariant describing the content of the shared reference ℓ, which must point
to a natural number m. This number m is authoritatively registered with fraction 1 inside
the ghost cell γ, which is equipped with the resource algebra Auth(Frac(N)), the authoritative
fractional resource algebra of natural numbers, with the addition as binary operation.

The assertion share γ p n represents a share n with fraction p of the natural number stored
inside the shared reference ℓ. The share is materialized by the fragmentary ownership of the
pair (p, n) in the ghost cell γ. Thanks to these definitions, we have the following two rules:

share γ (p1 + p2) (n1 + n2) ≡ share γ p1 n1 ∗ share γ p2 n2

• (1,m)
γ ∗ share γ p n −∗ ⌜n ≤ m ∧ (p = 1 =⇒ n = m)⌝

The first of these rules allows for splitting and joining a share, and the second allows for
deducing the postcondition of the get closure. Then we present the two specifications of the
increment and get closures, namely the predicates incrspec γ ℓ and getspec γ ℓ. These two
“specifications” are meant to be plugged inside a Spec predicate, and are hence functions.
Here, these functions ignore their two firsts parameters: the first parameter, the location of
the closure, is not needed as the two closures are not recursive, and the second parameter, the
list of actual arguments of the closure, is not needed as the two functions take no arguments.

106 CHAPTER 12. CONCURRENT CASE STUDIES

The third argument t represents the body of the closure. The two specifications are then a
triple with souvenir over t.

The last piece of the puzzle is the definition of counter i g p n. This definition existentially
quantifies over the name of the ghost cell γ and the location of the shared reference ℓ. The
definition makes use of a meta assertion meta i γ to permanently tie the ghost cell γ to
the location of the increment closure i . The definition then asserts that ℓ is a valid logical
counter via the invariant counterInv γ ℓ. The definition also asserts the ownership of a share
n with fraction p, and stores an empty pointed-by-thread assertion for ℓ with fraction p. This
latter assertion ℓ ⇐\p ∅ allows satisfying the side condition of the reasoning rule for closure
call (CallSpec), which requires updating pointed-by-thread assertions of locations from the
closure’s environment. The pointed-by-thread assertion of ℓ is trimmed by the time the closure
call end, in order to restore the assertion share.

Moreover, the assertion counter i g p n contains Spec assertions for the two closures i and g .
The first argument of these Spec assertions is the arity of the closure they describe; in both
cases, this arity is 0. The second argument is the environment of the closures. Each one maps
the shared location ℓ to the fraction 1

2 , which means that each closure owns one half of the
pointed-by-heap assertion for the location ℓ. The third argument is the actual specification
of the closure, and the last the location of the closure itself.

12.4 An Async/Finish Library

The async/finish paradigm was introduced in X10 [Charles et al., 2005], as a generalization
of the spawn/sync mechanism of Cilk [Blumofe et al., 1995], spawn/sync itself being a gen-
eralization of the binary fork/join paradigm. The async/finish paradigm allows spawning
an arbitrary number of tasks before waiting at a common join point. More precisely, the
construct “async” allows spawning new tasks, whereas “finish” performs synchronization: it
blocks until all previously spawned tasks terminate. In this section, we show how to encode
these two constructs in LambdaFit using a shared mutable reference that is updated using
a fetch-and-add operation (§12.2). We then provide specifications in IrisFit, and show that the
space credits associated to the shared reference can be recovered as soon as “finish” returns.1

A strength of our specification is that it allows for nested spawns: a spawned task can itself
spawn tasks.

Code The code of our async/finish library is presented in the top part of Figure 47. The
library uses a reference that we call the session. A session is a channel through which tasks
communicate. It stores the number of currently running tasks.

The function (create [])ptr returns a fresh session, with zero running tasks.
The function (async [l, f])ptr expects a session l and a closure f as arguments. It first

atomically increments the session, hence recording the existence of a new running task, then
forks off a thread that invokes the closure f with no arguments. When this invocation termi-
nates, it atomically decrements the session, thereby recording that this task is finished.

The function (finish [l])ptr consists of an active waiting loop. This loop ends when it
observes that the session contains the value 0, which guarantees that all previously spawned
tasks have terminated.

Specifications We present the specification of our async/finish library at the bottom of
Figure 47.

According to AFCreate, (create [])ptr consumes one space credit, which corresponds
to the space occupied by the session, and returns a location ℓ such that AF ℓ holds. This

1That is to say, as soon as every task reaches the linearization point of the fetch-and-add operation to signal
that it is done. A task may still execute instructions past the linearization point before actually terminating.

12.4. AN ASYNC/FINISH LIBRARY 107

create ≜ µptr . λ[].

(ref [0])ptr

async ≜ µptr . λ[l, f].

(faa [l, 0, 1])ptr ;

fork ((f [])clo ; (ignore [(faa [l, 0,−1])ptr])ptr)

finish ≜ µptrf. λ[l].

if l[0] = 0

then ()

else (f [l])ptr

AFCreate
[∅]{♢1} π : (create [])ptr {λℓ. AF ℓ ∗ ℓ⇐ \ 1

2
{π} ∗ ℓ← [1 ∅}

AFAsync
∀π′. [{ℓ}]{f ⇐ \p {π′} ∗ Φ} π′ : (f [])clo {λ(). Ψ}

[{ℓ}]{AF ℓ ∗ f ⇐ \p {π} ∗ Φ} π : (async [ℓ, f])ptr {λ(). spawned ℓΨ}

AFFinish
[∅]{AF ℓ ∗ ℓ⇐ \ 1

2
{π}} π : (finish [ℓ])ptr {λ(). finished ℓ}

FinishedSpawned
finished ℓ ∗ spawned ℓΨ ⇛ Ψ

FinishedFree
finished ℓ ∗ ℓ← [1 ∅ ♢1

AFPersistent
AF ℓ is persistent

FinishedPersistent
finished ℓ is persistent

Figure 47: Code and specification of an async/finish library

persistent assertion guarantees that ℓ is a session. The postcondition also provides pointed-
by-thread and pointed-by-heap assertions for the location ℓ. The pointed-by-heap assertion
carries the fraction 1

2 ; the other half is hidden from the user.
The specification of (async [ℓ, f])ptr is stated as a triple featuring a souvenir on ℓ. This

means that, for the duration of this call, ℓ is a root. The precondition requires ℓ to be a session.
A fractional pointed-by-thread assertion for the closure f , as well as an arbitrary assertion Φ,
are consumed and transmitted to the new task, which invokes the closure f . The premise of
the rule AFAsync requires the user to prove that, under an arbitrary thread identifier π′, this
invocation is safe and satisfies some postcondition Ψ. The postcondition of (async [ℓ, f])ptr
provides a witness that this task was spawned, in the form of the assertion spawned ℓΨ. This
assertion is not persistent: it can be understood as a unique permission to collect Ψ once the
task is finished.

The specification of f in the premise of AFAsync is again a triple with a souvenir of ℓ.
This formulation allows f to itself use async. Using an ordinary triple there would place a
stronger requirement on f and would forbid the use of async inside f .

According to AFFinish, (finish [ℓ])ptr consumes the pointed-by-thread assertion that was
produced by create. This forbids any further use of the session ℓ: indeed, both AFAsync
and AFFinish require a pointed-by-thread assertion for ℓ.2 The postcondition contains the
persistent assertion finished ℓ, which witnesses that this session has been ended.

The ghost update FinishedSpawned states that if the witness finished ℓ is at hand then
the assertion spawned ℓΨ can be converted to Ψ. This reflects the idea that if the session
associated with ℓ has been ended, then all of its tasks must have terminated: so, a permission
to collect Ψ can indeed be converted to Ψ. The ghost update FinishedFree states that if
the session has ended then abandoning the pointed-by-heap assertion for ℓ allows recovering
the space credit associated with the session ℓ.

2In the case of AFAsync, this is implicit in the fact that the conclusion of the rule is a triple with a
souvenir on ℓ.

108 CHAPTER 12. CONCURRENT CASE STUDIES

Proof Insights The assertion AF ℓ is internally defined as an Iris invariant. Among other
things, this invariant imposes a protocol on the pointed-by-thread assertion for the session ℓ.
Initially, the invariant contains a pointed-by-thread assertion carrying the fraction 1

2 and an
empty set; the other half is given to the user by AFCreate. Each spawned task gets a
fraction of this assertion: indeed, spawning a task involves “fork”, and our Fork rule requires
updating a pointed-by-thread assertion so as to reflect the fact that ℓ is a root of the new
thread. When a task signals that it is finished, it surrenders its fractional pointed-by-thread
assertion, carrying an empty set of thread identifiers. Hence, once every task has terminated,
the invariant again contains ℓ⇐\ 1

2
∅.

How and when exactly does a task signal that it is finished? This is done via a fetch-and-
add (FAA) operation, which decrements the count of active tasks, and takes effect precisely
at the linearization point of this FAA operation. Hence, as soon as this linearization point is
reached, the invariant requires this task to surrender its fractional pointed-by-thread assertion.
Fortunately, our specification of FAA (§12.2) allows this: the pointed-by-thread assertion
ℓ⇐\p ∅ appears in the public postcondition in FAA.

The absence of a “later” modality in front of Ψ in FinishedSpawned may seem surprising
to an expert reader. Indeed, because the assertion Ψ has transited through an invariant, one
might expect it to be guarded by such a modality. The usual way to eliminate a “later”
modality is through a physical step, yet this rule is a ghost update. Fortunately, IrisFit
supports and takes advantage of later credits (§6.2). A later credit is a piece of ghost state
that is produced by a physical step and that can later be used to eliminate a “later” modality.
With each spawned task, we are able to internally associate one later credit, which we obtain
from the function call (async [ℓ, f])ptr. By exploiting this later credit, we can eliminate the
“later” modality in front of Ψ before giving this assertion back to the user.

12.5 Treiber’s Stack

Code The code that we verify is the code of Figure 3, translated to LambdaFit syntax.
Recall that Treiber’s stack consists of a reference on an immutable list. In LambdaFit, we
encode a reference with a block of size 1. As for sequential lists (§11.2), an empty list is
represented by (), the unit value. A list cell is a block of size 2 whose first offset stores the
content of the cell, and the second offset stores the successor of the list.

For simplicity, we specify and verify only create, push, pop and logical deallocation. The
functions push, pop are encoded as a “CAS loop”, looping if contention occurs. However,
it is possible to distinguish separated functions try_push and try_pop: each one tries to
commit the corresponding operation, and returns an error code if contention occurs rather
than looping. More precisely, try_pop returns either the popped value or an error code inside
a heap-allocated sum. The specification of try_pop would hence require additional space
credits accounting for the space required by the sum.

Specifications Figure 48 presents our specification of Treiber’s stack. The stack is described
in terms of the representation predicate stack ℓL, where ℓ is the location of the stack and L is
its mathematical model. This model is a list of triples (v, p, q) of a value v and two positive
fractions p and q, following our recipe for containers (§11.1).

The assertion stack ℓL is not fractional: it represents the full ownership of the stack.
StackTimeless witnesses that stack ℓL is a timeless assertion—that is, it can be extracted
from an invariant without a later modality. This timeless property is important, as the
assertion stack ℓL is meant to be shared among threads within an invariant.

According to StackCreate, creating a new stack consumes one space credit. This is the
size of the reference that holds the address of the top list cell. The result is a fresh location ℓ
that represents an empty stack.

12.5. TREIBER’S STACK 109

StackCreate
[∅]{♢1} π : (create [])ptr {λℓ. stack ℓ [] ∗ ℓ⇐\ {π} ∗ ℓ←[∅}

StackPush

[{ℓ}]
〈
♢2 ∗ v ⇐ \p {π} ∗ v ← [>0

q ∅
∀L. stack ℓL

〉
π : (push [ℓ; v])ptr

〈
λ(). ⌜True⌝
stack ℓ ((v, p, q) :: L)

〉
StackPop

[{ℓ}]
〈

⌜True⌝
∀v p q L. stack ℓ ((v, p, q) :: L)

〉
π : (pop [ℓ])ptr

〈
λw. ⌜w = v⌝ ∗ v ⇐\p {π}
stack ℓL ∗ ♢2 ∗ v ← [>0

q ∅

〉
StackFree
stack ℓL ∗ ℓ⇐ \ ∅ ∗ ℓ←[∅ ♢(1 + 2× |L|) ∗ ∗

(v,p,q)∈L

(v ⇐ \p ∅ ∗ v ← [>0

q ∅)

StackTimeless
stack ℓL is timeless

Figure 48: Specification of Treiber’s stack

The specification of (push [ℓ; v])ptr, expressed by StackPush, is an atomic triple with a
souvenir on ℓ. The private precondition requires two space credits, which is the size of a new
list cell, as well as fractional pointed-by-heap and pointed-by-thread assertions for the value v
that is pushed onto the stack. Together, the public pre- and postconditions indicate that the
model of the stack is atomically updated from L to (v, p, q) :: L at the linearization point.

The specification of (pop [ℓ])ptr, expressed by StackPop, is also an atomic triple with
a souvenir on ℓ. The public pre- and postconditions indicate that the model of the stack is
atomically updated from (v, p, q)::L to L. Furthermore, according to the public postcondition,
two space credits are produced, as well as a pointed-by-heap assertion for v carrying an empty
multiset of predecessors, is produced, as a pointer from the stack to v has been destroyed.

Our specification of “pop” exhibits a certain asymmetry: whereas the space credits and
the pointed-by-heap assertion appear in the public postcondition, which means that they are
produced at the linearization point, the pointed-by-thread assertion appears in the private
postcondition. which means that it is produced when the function returns. The space credits
and the pointed-by-heap assertion can be produced because, as soon as the linearization
point occurs, we are able to logically deallocate the list cell and to argue that a pointer
from the stack to v has been destroyed. However, the pointed-by-thread assertion cannot be
surrendered as part of the public postcondition, because the value v is read from the heap
after the linearization point has been passed.

Last, StackFree logically deallocates a possibly nonempty stack. The assertion stack ℓL,
as well as empty pointed-by-thread and pointed-by-heap assertions for ℓ, are consumed. A
number of space credits are produced, which reflects the overall size occupied by the stack
data structure in the heap: one credit for the toplevel reference, plus two credits per list cell.
The pointed-by-thread and pointed-by-heap assertions associated with every triple (v, p, q) in
the stack are also produced. In the common case where L is an empty list, this rule can be
significantly simplified.

We show that the specifications presented in Figure 48 entails the specifications for se-
quential stacks presented earlier (§11.4), with the parameters A = 1, B = 2, and C = +∞.
The instantiation demonstrates that our concurrent specification refines our sequential speci-
fication. In short, we prove that Treiber’s concurrent lock-free stack can be used sequentially.

Proof Insights As argued earlier (§3), the main difficulty of the proof is to produce space
credits when a “pop” operation succeeds. Producing these credits requires logically deallo-

110 CHAPTER 12. CONCURRENT CASE STUDIES

cating the list cell, name it ℓ, that is being extracted. This logical deallocation requires
exhibiting both an empty pointed-by-thread assertion ℓ ⇐\ ∅ and an empty pointed-by-heap
assertion ℓ ←[∅ for this cell. Yet, neither of these assertions is easy to obtain. Indeed,
internal list cells may be roots of ongoing concurrent “push” or “pop” operations, compro-
mising the availability of an empty pointed-by-thread. Moreover, an internal list cell may be
pointed by an internal block of an ongoing “push”, compromising the availability of an empty
pointed-by-heap.

Let us discuss the pointed-by-thread assertion ℓ ⇐ \ ∅ first. The difficulty is that “push”
and “pop” are invisible readers [Alistarh et al., 2018]: these operations read the top of the stack
(that is, the address of a list cell) without synchronization. Such a read normally requires
updating a pointed-by-thread assertion for the cell whose address is thus obtained. However,
here, we do not wish to record that this cell is pointed to by the current thread. Fortunately,
these reads occur inside protected sections. Hence, we use LoadInside, which updates an
“inside” assertion instead of a pointed-by-thread assertion. This allows the stack’s invariant to
keep an empty pointed-by-thread assertion, at all times, for every list cell. Such an invariant
allows a successful “pop” operation to extract this empty pointed-by-thread assertion out of
the invariant. Maintaining empty pointed-by-thread assertions for locations that are acquired
only inside protected sections is a typical idiom.

Next, let us discuss the pointed-by-heap ℓ←[∅ assertion. Here, the difficulty is that a list
cell ℓ may be pointed to by a new cell ℓ′ that has just been allocated by an ongoing “push”
operation. This scenario was discussed earlier (§3.2). Hence, each ongoing “push” needs to
register the list cell ℓ′ this thread constructs as a predecessor of the internal list cell ℓ the
location ℓ′ points to within the pointed-by-heap assertion of ℓ. Now, how can “pop” obtain the
assertion ℓ←[1 ∅ that is required to allow logical deallocation? We answer this question via an
original technique that we dub logical deallocation by proxy : the thread that successfully pops
the list cell ℓ also takes care of logically deallocating the predecessor cells ℓ′ that have been
allocated by ongoing “push” operations.3 This technique reminds of (physical) concurrent
helping between threads [Herlihy and Shavit, 2012, §6.4], when a thread helps another thread
to make progress.

The logical deallocation of the locations ℓ and ℓ′ is made possible by the protected section
in “push”. This approach has a somewhat unexpected consequence: in the proof of “push”, it
may be the case that the cell ℓ′ has been logically deallocated by another thread, yet “push”
still needs to access this cell. Fortunately, IrisFit allows this: for example, the proof of “push”
makes use of the rule StoreDead.

Proof Details The definition of stack ℓL and its auxiliary assertions appears in Figure 49.
The idea of our invariant is to offer a way for threads to register predecessors of internal list
cells using ghost state. In this endeavor, the pointed-by-heap assertion of each list cell is
split into two halves. One is kept inside the representation predicate of the list, registering
the pointer from the potential predecessor cell. The other half is kept inside a dedicated
predicate cells for threads to register predecessors. These predecessors are registered inside
a ghost multiset G of pairs of locations (ℓ, ℓ′): the list cell ℓ being pointed-by the private
block ℓ′ of an ongoing “push”. For each private block ℓ′, there is a most one pair (ℓ, ℓ′) in G.

In detail, our definitions in Figure 49 make use of two ghost cells. First, γ1 is equipped with
the resource algebra Auth(SetMono(L)), the authoritative resource algebra over a monotonic
(that is, ever-growing) set of locations. This ghost cell keeps track of the list cells of the
stack. Its fragmentary elements are persistent. Second, γ2 is equipped with the resource
algebra Auth(Multiset(L × L)), the authoritative resource algebra of a multiset of pairs of
locations. This ghost cell keeps track of potential private locations of every ongoing “push”
operation pointing to list cells.

3Note that these ongoing “push” operations will fail, because the top list cell that they have previously
observed has been replaced.

12.5. TREIBER’S STACK 111

reg γ1x ≜ ⌜x = ()⌝ ∨ ◦ {x} γ1

innerList γ1 xL ≜
⌜L = [] ∧ x = ()⌝

∨ ∃v p q x′ L′. ⌜L = (v, p, q) :: L′⌝ ∗ x 7→□ [v;x′] ∗
v ← [>0

q {+x} ∗ v ⇐ \p ∅ ∗
x′ ⇐\1 ∅ ∗ reg γ1x

′ ∗ x′ ← [1
2
{+x} ∗

innerList γ1 x
′ L′

inner γ1 ℓL ≜ ∃x. ℓ 7→ [x] ∗ x⇐\1 ∅ ∗ reg γ1x ∗ x←[1
2
{+ℓ} ∗ innerList γ1 xL

volatile ℓ′ nΦ ≜ (sizeof ℓ′ n ∗ ℓ′ ⇐ \1 ∅ ∗ ℓ′ ← [1 ∅) ∨ († ℓ′ ∗ ♢n ∗ Φ)

outsiders γ1 γ2 G ≜ •G γ2 ∗ ∗
(ℓ,ℓ′)∈G

volatile ℓ′ 2 († ℓ)

cells γ1 G ≜ ∃A. •A γ1 ∗ ∗
ℓ∈A

(
† ℓ ∨ ∃L. ℓ← [1

2
L ∗ ⌜∀ℓ′. ℓ′ #L ≤ (ℓ, ℓ′)#G⌝

)
stack ℓL ≜ ∃γ1 γ2 G. meta ℓ (γ1, γ2) ∗ innerList γ1 ℓL ∗ cells γ1 G ∗ outsiders γ1 γ2 G

Figure 49: Internals of Treiber’s stack

The assertion reg γ1x asserts that either x is the empty list (denoted by the unit value),
or x is registered as a list cell in γ1. This is a persistent assertion.

The assertion innerList γ1 xL asserts that x represents the internal list of the Treiber’s
stack. This assertion is a variation of the list representation predicate (§11.2, Figure 39),
where the points-to is made immutable, and only half of the pointed-by-heap assertion of the
cell is stored. The assertion reg γ1x witnesses that the cell x is registered as a list cell.

The assertion inner γ1 ℓL is just a small wrapper around the main reference ℓ over the
underlying list x.

The assertion cells γ1G stores half of the pointed-by-heap assertion of every list cell.
These cells are represented by the set A, stored authoritatively in γ1. Then, we constrain
the multiplicity of elements of A in the multiset G. We write x#X for the multiplicity of
the element x in the multiset X. For each cell of A, either it is deallocated, or there exists a
multiset of predecessors L such that the multiplicity of every ℓ′ in L is less than or equal to
the multiplicity of the pair (ℓ, ℓ′) in the multiset G. This fact records that every predecessor
ℓ′ of ℓ are correctly registered in G (We use multisets even if the multiplicities are always 1
or 0, because proving that predecessors are all distinct is more work than just handling the
general case.)

The assertion volatile ℓ′ nΦ is a high-level combinator, which asserts either (1) the own-
ership of the resources needed to deallocate ℓ′, or (2) the proof that ℓ′ was deallocated as
well as the ownership of Φ. Indeed, the assertion volatile ℓ′ nΦ is defined as a disjunction,
with either (1) the “sizeof ” assertion of ℓ′ as well as its empty pointed-by-heap and -thread
assertions, or (2) the deallocation witnesses of ℓ′, its associated space credits, and Φ.

The assertion outsiders γ1 γ2G is where the magic happens. This assertion stores author-
itatively G inside γ2. Then, for every pair of a list cell ℓ and a private block ℓ′, the assertion
outsiders asserts that ℓ′ is volatile, and if ℓ′ was deallocated, then ℓ was deallocated too.

The assertion stack ℓL gather the pieces by existentially quantifying over the two names
of the two ghost cells and the ghost multiset G, fixing the two ghost names with a meta
assertion and asserting the ownership of the assertions described above.

A thread executing “push” must register the private list cell ℓ′ pointing to a cell ℓ by
adding a pair (ℓ, ℓ′) in G. This forces the thread to give up the empty pointed-by-thread
and -heap assertions of ℓ′ in order to satisfies volatile ℓ′ 2 († ℓ). To witness its addition to
multiset G, the thread obtains the fragmentary assertion ◦ {+(ℓ, ℓ′)} γ2 . Moreover, at each
step, the thread executing “push” has to deal with the two alternatives presented in the

112 CHAPTER 12. CONCURRENT CASE STUDIES

assertion volatile ℓ′ 2 († ℓ): either ℓ′ is still allocated, or it was logically deallocated by another
thread and so do ℓ.

When a thread successfully pops a cell ℓ from the list, this thread gains back the empty
pointed-by-thread assertion of ℓ with fraction 1 and half of the pointed-by-heap assertion
of ℓ from the assertion inner . The other half lies in cells, and is not empty: it may contain
predecessors, all registered in G. Thanks to the assertion outsiders, we are able to logically
deallocate all these predecessors, materializing our “logical deallocation by proxy”. With both
empty halves of the pointed-by-heap assertion of ℓ, and its empty pointed-by-thread, we can
finally logically deallocate ℓ.

12.6 Michael and Scott’s Queue

Michael and Scott’s queue is a lock-free and linearizable queue [Michael and Scott, 1996].
Originally, the queue proposed by Michael and Scott is represented by a non-empty list, with
two distinguished cells: the sentinel, a cell whose successor contains the next element to
dequeue, and the tail, a cell which conceptually contains the last element to dequeue. Note
the use of the word “conceptually”: the particularity of Michael and Scott’s queue is that the
tail is allowed to lag behind, that is, to point to some cell between the sentinel and the effective
last cell.

Due to this particularity, the verification of Michael and Scott’s queue is non-trivial. In the
Separation Logic world, the first proof was conducted by Vindum and Birkedal [2021]. They
prove that Michael and Scott’s fine-grained lock-free queue refines a coarse-grained queue
protected with a lock. As we will see, we reuse a large part of their proof.

In the presence of tracing garbage collection, the code of Michael and Scott’s queue needs
two modifications.

First, the queue exhibits the same issue as Treiber’s stack and as every lock-free data
structure: functions of the API are invisible readers—that is, they do not synchronize with
other threads before reading an internal location of the data structure. This absence of
synchronization implies that, without a protected section, a thread can hold an internal
location of the data structure as a root for an arbitrary amount of time, preventing the
deallocation of the said location. We show how protected sections fix this issue.

Second, the direct translation of the original code of Michael and Scott in a garbage-
collected memory setting has a space leak. Indeed, in the original code, the sentinel cell usually
contains the last dequeued value. This fact is not an issue in the manual memory management
setting of Michael and Scott. Indeed, the original code ensures to never access this garbage
value stored in the sentinel cell, allowing the user to manually deallocate this value, and
create a “safe” dangling pointer. However, in the setting of tracing garbage collection and
without modification of the code, the sentinel block keeps reachable the last dequeued value.
This leak was also identified by the developers of the saturn library, which implements in
OCaml standard lock-free data structures [Karvonen, 2023a]. To fix the leak, we need to
add an additional write (in order to overwrite the value that has just been dequeued) after a
successful dequeue. This modification has an impact on the proof: the argument of Vindum
and Birkedal [2021] is based on the fact that the underlying list is immutable (except for the
last cell). With our additional write, the list is no longer immutable, so the argument needs
to be adapted.

Interestingly, the code that Vindum and Birkedal [2021] verify as well as the implementa-
tion of Michael and Scott’s queue in saturn at the time of writing [The saturn Developement
Team, 2024], does not suffer from the space leak: for reasons unrelated to space usage, they
introduce an indirection between each cell of the data structure. This indirection solves the
matter. Indeed, the mutable pair representing the queue now stores pointers to list cells.
When a dequeue operation is performed, the sentinel is updated to store the pointer to the
next list cell, and not the direct location of the former first cell of the list. Hence, this former

12.6. MICHAEL AND SCOTT’S QUEUE 113

create ≜ µptr . λ[].

let c = alloc 2 in

(pair [c, c])ptr

enqueue ≜ µptrf. λ[q, v].

let c = alloc 2 in

c[0]←v ;

enter ;

let t = q[1] in

letx = t[1] in

if x = () then

if CAS t[1] () c

then (CAS q[1] t c ; exit)

else (exit ; (f [q, v])ptr)

else

(CAS q[1] t x ; exit ; (f [q, v])ptr)

dequeue ≜ µptrf. λ[q].

enter ;

let s = q[0] in

let t = q[1] in

letx = s[1] in

if s = t then

if x = ()

then (exit ; (f [q])ptr)

else (CAS q[1] t x ; exit ; (f [q])ptr)

else

if CAS q[0] s x

then (let v = x[0] inx[0]←() ; exit ; v)

else (exit ; (f [q])ptr)

QueueCreate
{♢4} π : create () {λℓ. queueInv ℓ ∗ queue ℓ [] ∗ ℓ⇐ \ {π} ∗ ℓ← [∅}

QueueEnqueue

[{ℓ}]
〈

queueInv ℓ ∗ ♢2 ∗ v ⇐ \p {π} ∗ v ← [>0

q ∅
∀L. queue ℓL

〉
π : (enqueue [ℓ, v])ptr

〈
λ(). ⌜True⌝
queue ℓ (L++ [(v, p, q)])

〉
QueueDequeue

[{ℓ}]
〈

queueInv ℓ
∀v p q L. queue ℓ ((v, p, q) :: L)

〉
π : (dequeue [ℓ])ptr

〈
λw. ⌜w = v⌝ ∗ v ⇐ \p {π} ∗ v ←[>0

q ∅
queue ℓL ∗ ♢4

〉
QueueFree
queueInv ℓ ∗ queue ℓL ∗ ℓ⇐\ ∅ ∗ ℓ← [∅ ♢(4 + 2× |L|) ∗ ∗

(v,p,q)∈L

(v ⇐\p ∅ ∗ v ← [>0

q ∅)

QueueInvPersistent
queueInv ℓ is persistent

QueueTimeless
queue ℓL is timeless

Figure 50: Code and specification of Michael and Scott’s queue

list cell can be garbage collected, as well as the value it points-to if needed. However, the
“indirection” solution is unsatisfactory: indirections are usually costly.

Code Our implementation of Michael and Scott’s queue appears in the upper part of Fig-
ure 50. Operationally, as previously explained, the elements of the queue are stored in a mostly
immutable non-empty list. Again, the empty list is represented with the unit value () and
a list cell with a block of size 2. Moreover, we do not specify or verify try_enqueue and
try_dequeue variants.

The queue itself consists of a mutable pair whose two fields store the address of two
(non-necessarily distinct) cells of the underlying list: the sentinel and the tail—as previously
explained the latter does not necessarily correspond to the last cell of the list, has the tail
may be lagging behind. At all times, the sentinel is a cell storing a garbage value (which must
be not allocated on the heap, we chose the unit value), and whose successor is either empty
(if the queue is empty), or another list cell storing the first element of the queue. The tail
points to a list cell between the head and the last cell of the list.

114 CHAPTER 12. CONCURRENT CASE STUDIES

The function call create () allocates an empty queue. First, a list cell c is created, con-
taining no value nor successor: both fields are initialized to () by “alloc”. The initial state of
the queue, a mutable pair, is returned: the sentinel (the first component of the pair) is c, and
the tail (the second component of the pair) is also c.

The function call (enqueue [q, v])ptr adds the value v at the end of the queue q. First,
a new list cell c is created, with content set to v. Then, a protected section is entered. Indeed,
the next instruction acquires the tail t, which is an internal cell. Then, the successor of t is
acquired and named x. If x = (), we know that t was indeed the last list cell. Hence, a CAS
is attempted to update the successor of t from () to c.

First, if the CAS succeeds, the enqueue operation is a success, but the tail is now lagging
behind: it points to t, whereas the last list cell is now c. Another CAS is made to attempt to
update the tail pointer from t to c, the new last pointer. Whatever the result, the protected
section is exited and the function terminates.

Second, if the CAS fails, another thread interfered with the queue: another attempt to
enqueue is made with a recursive call. If x ̸= (), it means that the original tail t was lagging
behind. An effort is made to advance the queue pointer with a CAS, and another attempt to
enqueue is made with a recursive call.

The function call (dequeue [q])ptr removes an element from the queue q, and actively loops
if the queue is empty. A protected section is first entered. The sentinel s, the tail t and the
successor x of the sentinel (the cell containing the first element of the queue) are acquired.

Then a test is performed on whether s is equal to = t.
If so, either the tail is lagging behind (that is, x ̸= ()), or the queue is empty. If the tail

is lagging, an attempt is made to advance it. In both cases, the protected section is exited,
and another attempt is made.

If s is distinct from t, a CAS is made to attempt to update the sentinel from s to x. If
it succeeds, the value stored in x is loaded and overwritten. Then the protected section is
exited, and the value is returned. If the CAS fails, the protected section is exited and another
attempt is made. The additional write overwriting x prevents a space leak. We note that this
write is not needed if the value being dequeued is not allocated on the heap.

Specifications The lower part of Figure 50 presents our specifications of Michael and Scott’s
queue. The queue is described in terms of two abstract assertions. First, queueInv ℓ asserting
that ℓ represents a valid queue. This first assertion is persistent (QueueInvPersistent).
Second, queue ℓL asserting that the current content of the queue ℓ is L. This model follows our
recipe for containers (§11.1) and consists of a list of triples (v, p, q) of a value v and two positive
fractions p and q. This second assertion is not persistent, but is timeless (QueueTimeless).
This is important: the assertion queue ℓL is meant to be shared within an invariant.

According to QueueCreate, creating a new queue consumes four space credits: two for
the initial list cell and two for the mutable pair. The result is a fresh location ℓ that represents
a valid queue with an empty content.

The specification of (enqueue [ℓ, v])ptr, expressed by QueueEnqueue, is an atomic triple
with a souvenir on ℓ. The private precondition requires that ℓ be a valid queue. It also
requires two space credits to account for the new list cell, as well as fractional pointed-by-
heap and pointed-by-thread assertions for the value v that is enqueued Together, the public
precondition and postcondition indicate that the model of the queue is atomically updated
from L updated to (v, p, q) ++ [L] at the linearization point.

The specification of (dequeue [ℓ])ptr, expressed by QueueDequeue, is also an atomic
triple with a souvenir on ℓ. The private precondition requires that ℓ be a valid queue. The
public precondition and postcondition indicate that the model of the queue is atomically
updated from (v, p, q) :: L to L. Furthermore, according to the public postcondition, at the
linearization point, two space credits are produced. The empty pointed-by-heap and the
pointed-by-thread assertion of the value being dequeued are returned in the public postcon-

12.6. MICHAEL AND SCOTT’S QUEUE 115

dition. Contrary to Treiber’s stack, the pointed-by-heap assertion cannot be returned in the
public postcondition: the additional write that removes the heap edge between the sentinel
cell and the dequeued value occurs after the linearization point. We note that, adding com-
plexity to the specification, a fraction of the pointed-by-heap assertion could be produced in
both the public and the private postconditions.

QueueFree concludes the reasoning rules for Michael and Scott’s queue. This rule log-
ically deallocates a (possibly nonempty) queue. The assertions queueInv ℓ and queue ℓL are
consumed, as well as well as empty pointed-by-thread and -heap assertions for ℓ. A number of
space credits are produced, which reflect the overall size occupied by the queue data structure
in the heap: two credits for the mutable pair, two credits for the sentinel cell, and two credits
per remaining list cell. The pointed-by-thread and -heap assertions associated with every
triple (v, p, q) in the queue are also produced.

We note a small difference between the specifications of Michael and Scott’s queue and
Treiber’s stack (§12.5). Indeed, for Treiber’s stack, there was no need for a “stackInv ” asser-
tion. This is due to a limitation of atomic triples, in which we lose access to the whole public
precondition after the commit point. However, for Michael and Scott’s queue, the structure is
modified after the commit point, to advance a possibly-lagging tail. To allow for verifying this
pattern, we must somehow keep access to the data structure after the commit point, which
we achieve through the additional invariant “queueInv ”. Hiding this invariant queueInv inside
the assertion queue is not possible, as it would make the assertion queue not timeless.

Proof Insights For functional correctness, we reuse a large part of the argument of Vindum
and Birkedal [2021]. Their argument is based on reachability between list cells: the sentinel
can reach the tail, and the tail can reach the last cell. Vindum and Birkedal represent these
reachability invariants using persistent points-to assertions. Yet, our points-to assertions
cannot be persistent, since a write operation must be made when a cell becomes a sentinel after
a successful dequeue operation, to avoid a space leak. Thankfully, this write operation impacts
only the data of the list cell, and not the overall linkage between cells. Hence, by making
use of ghost state, we “cut” the points-to assertions of list cells into per-field permissions: one
ephemeral part for the data field (the first offset), and one persistent part for the successor
field (the second offset). The part of the proof concerning functional correctness is then almost
identical to the proof of Vindum and Birkedal.

Concerning space reasoning, we make use of the reasoning rules of protected sections
to logically deallocate the ex-sentinel after a successful dequeue. This is roughly the same
approach as for Treiber’s stack: thanks to protected sections, we logically deallocate a cell
even if it is a root inside a protected section of an ongoing enqueue or dequeue operation.
Interestingly, there is no need for the “logical deallocation by proxy” technique of Treiber’s
stack: because enqueuing is made at the end of the list structure, a new cell has no allocated
successor—it points to “nil”. This contrasts with Treiber’s stack, in which new cells are pushed
at the beginning of the list, and hence point to the first block of the list.

Last, one of the proofs of Vindum and Birkedal makes use of a prophecy variable [Jung
et al., 2020] due to a “free” operation. As they verify in another proof, such a prophecy
variable is not needed in the presence of a GC. Even in the presence of protected sections, we
do not need a prophecy variable either.

Chapter 13

Related Work

Queen (1975).
Bohemian Rhapsody.

13.1 Polling Points

A stop-the-world event may be viewed as an asynchronous interruption: a thread that requests
garbage collection stops the execution of all other threads. Such an interruption can be imple-
mented using hardware interrupts, but this scheme can be expensive and non-portable [Feeley,
1993]. Another approach is to let the compiler insert explicit tests for interruptions into the
code. These tests appear in the literature under various names, including polling points [Fee-
ley, 1993], GC points [Agesen, 1998], yield points [Lin et al., 2015], and safe points [Sivara-
makrishnan et al., 2020]. Let us refer to them collectively as safe points. Safe points are
typically inserted by the compiler in such a way that no computation can run forever without
encountering a safe point. When a thread encounters a safe point, it tests whether some other
thread has requested garbage collection. If so, it pauses and passes control to the runtime
system. Once all threads have paused in this way, the runtime system performs a global
garbage collection phase.

Safe points are used in the Jalapeño/Jikes RVM [Alpern et al., 1999, 2005] and in OCaml 5
[Sivaramakrishnan et al., 2020]. The existence of safe points is not revealed to the programmer,
who is not expected to know about their existence and is given no means of controlling their
placement. As an experimental feature, the OCaml 5 compiler does offer a [@poll error]

attribute [Jaffer, 2021]. This attribute is placed on a function definition. An attempt by the
compiler to insert a safe point into a function that carries this attribute causes a compile-time
error. This lets the programmer check that a function body does not contain any safe point,
therefore is (de facto) a protected section. At this time, there is not a clear consensus whether
this feature is useful and corresponds to the needs of expert programmers.

Safe points, as described above, and polling points, as proposed in this thesis, are two
related yet distinct concepts. Indeed, in our view, safe points play two distinct roles. On the
one hand, they are polling points, in the sense of this thesis: they are points where a thread
must stop and allow garbage collection to take place if it has been requested. On the other
hand, at the same time, they are delimiters (that is, starting points and ending points) of
protected sections: indeed, the GC cannot run unless every thread has reached a safe point.
We believe that our design, where protected sections and polling points are separate concepts,
is better behaved. In particular, it enjoys monotonicity properties: inserting a new polling
point, creating a new protected section, or enlarging an existing protected section restricts the
set of possible behaviors of the program.1 In contrast, in a setting where only a “safe point”
construct is offered by the language, inserting a new safe point creates one more program
point where the GC is allowed to run, therefore can enlarge the set of possible behaviors of
the program and compromise the program’s worst-case heap space complexity. In short, in
such a setting, automated safe point insertion is arguably unsafe!

1Polling points must be inserted only outside protected sections. In our setting, inserting a new polling
point does not create a new opportunity for the GC to run, because outside protected sections, the GC is
everywhere allowed to run.

117

118 CHAPTER 13. RELATED WORK

In our approach, the user explicitly inserts enough protected sections to (verifiably) obtain
the desired worst-case heap space complexity, then lets the compiler implicitly insert enough
polling points to guarantee liveness, without endangering the program’s space complexity.
This is expressed by Theorem 2.

13.2 Protected Sections

In the production systems that we are aware of, the concept that seems closest to our pro-
tected sections appears in the .NET runtime system, where it was introduced in 2015, with
performance in mind [Lander, 2015]. The API of the GC module [Microsoft, 2024] provides
a method TryStartNoGCRegion(Int64) and a method EndNoGCRegion(). A “NoGC region” is
not quite a protected section in our sense, though, as allocation is permitted inside a “NoGC
region”. The integer parameter of the method TryStartNoGCRegion is a request for a certain
amount of free heap space: garbage collection takes place at this point so as to guarantee that
this much free space exists. Allocation requests within the “NoGC region” are then served out
of this pre-allocated free space. However, if the runtime system runs out of free space while
some thread is inside a “NoGC region”, then garbage collection will take place.

Beside performance, another possible motivation for temporarily disabling garbage collec-
tion is safety. Feeley [1993, §1.2.1] discusses why “critical sections”—sections in which the GC
must not run—may be needed for safety reasons. He takes the example of a store instruction
that stores a 64-bit pointer into memory and that is decomposed into two 32-bit stores. In
between the two 32-bit stores, the memory is in an inconsistent state and must not be read
by the GC.

To the best of our knowledge, our paper is the first where a notion of protected section
is introduced for complexity reasons, that is, with the aim of guaranteeing tighter worst-case
heap space complexity bounds.

13.3 Reasoning about Space without a GC

Hofmann [1999, 2003] introduces space credits in the setting of an affine type system for the
λ-calculus. Hofmann [2000] and Aspinall and Hofmann [2002] adapt the idea to LFPL, a
first-order functional programming language without GC and with explicit destructive pat-
tern matching. There, a value of type ♢ exists at runtime and can be understood as a pointer
to a free block in the heap. Subsequent work aims at automating space complexity anal-
yses. In particular, Hofmann and Jost [2003] propose an affine type system where types
carry space credits. Hofmann and Jost [2006] and Hofmann and Rodriguez [2009, 2013] ana-
lyze a variant of Java where garbage collection has been replaced with explicit deallocation.
RaML [Hoffmann et al., 2012a,b, 2017] analyzes a fragment of OCaml, also without GC and
with explicit destructive pattern matching. Niu and Hoffmann [2018] present a type-based
amortized space analysis for a pure, first-order programming language where destructive pat-
tern matching can be applied to shared objects, an unusual feature. Their system performs
significant over-approximations: when a data structure becomes shared, the logic charges the
cost of creating a copy of this data structure. As far as we understand, this analysis can be
used to reason in a sound yet very conservative way about a programming language with GC.
Kahn and Hoffmann [2021] present a system that is equipped with more flexible typing rules
than its predecessors and can thus derive tighter resource consumption bounds. Hoffmann and
Jost [2022] offer a survey of two decades of work on automated amortized resource analysis
(AARA).

Nguyen et al. [2007] propose an automated verification system based on Separation Logic.
They allow user-defined inductive predicates, which can be indexed with sizes (often the depth
of the data structure). They are not concerned about heap space. He et al. [2009] re-use an
existing Separation Logic-based program verifier, Hip/Sleek, to reason about stack and heap

13.4. REASONING ABOUT SPACE WITH A GC 119

space. They consider a C-like imperative language with explicit deallocation instructions. To
reason about space, they instrument the program with two global variables stk and heap of
type int , which represent the available space in the stack and the heap, respectively.

Following the ideas of LFPL, Lorenzen et al. [2023] introduce a calculus with “reuse”
credits. Explicit destructive pattern matching produces reuse credits, which can be used to
satisfy a new allocation. Because they want to reuse space in place, they need to cater for
fragmentation: reuse credits need to describe contiguous memory. This contiguity requirement
is guaranteed by the fact reuse credits cannot be joined. The goal of Lorenzen et al. [2023]
is to statically detect fully in-place functions—that is, functions that do not need to allocate
new memory. This includes, for example, functions that reuse the heap space occupied by
their arguments.

Chin et al. [2005, 2008] present a type system that automatically keeps track of data
structure sizes. The type system incorporates an alias analysis, which distinguishes between
shared and unique objects and allows unique objects to be explicitly deallocated. Shared
objects can never be logically deallocated. Specifications indicate how much memory a method
may need (a high-water mark) and how much memory it releases, in terms of the sizes of the
arguments and results.

Compared with type systems, program logics offer weaker automation but greater expres-
siveness. Aspinall et al. [2007] propose a VDM-style program logic, where postconditions
depend not only on the pre-state, post-state, and return value, but also on a cost. Atkey
[2011] extends Separation Logic with an abstract notion of resource, such as time or space,
and introduces an assertion that denotes the ownership of a certain amount of resources.

All of the work cited above concerns languages with explicit memory deallocation, where
there is no need to reason about unreachability. Reasoning about unreachability in the setting
of a static analysis or program logic is a central challenge.

13.4 Reasoning about Space with a GC

In the setting of Java bytecode, Albert et al. [2007, 2013] infer recurrence equations that
describe the heap space consumption of a first-order method, expressed as a function of
the sizes of its arguments. Their system relies on an external analysis that infers object
lifetimes and determines when objects can be deallocated. Their system characterizes several
quantities at a program point via recurrence equations: these include total memory allocation,
live memory (that they call “active memory”), and peak heap space consumption. Albert
et al. [2015] explored how to scale their approach to more generic “non-cumulative resources”
(that is, resources that can be consumed and produced), like heap and stack space. Albert
et al. [2019] propose an extension for concurrent distributed systems.

Also in the setting of Java, Braberman et al. [2006, 2008] and Garbervetsky et al. [2011]
synthesize a formula that bounds the amount of memory allocated by a method, as a function
of its parameters. The tool of Garbervetsky et al. [2011] first infers scope-based memory
regions and then infers their sizes. They do not support recursion.

Hur et al. [2011] propose a Separation Logic for the combination of a low-level language
with explicit deallocation and a high-level language with a GC. Their concern is that when the
location ℓ is deallocated by the GC, the assertion ℓ 7→ v cease to be valid in the standard model
of Separation Logic in which the points-to assertion describes the physical state. In order to
solve the issue, they make use of the indirection of a logical state, with respect to which the
points-to assertion is defined. They then enforce the invariant that the physical state and
the logical state coincide on the reachable fragment. We follow a similar approach (§8). Hur
et al. [2011] allow the GC invariant to be temporarily broken within “GC-unsafe” sections.
Contrary to us, they are not interested in space complexity.

Madiot and Pottier [2022] and Moine et al. [2023] propose Separation Logics that allow
reasoning about space in the presence of a GC.

120 CHAPTER 13. RELATED WORK

The logic presented by Madiot and Pottier [2022] concerns a low-level language with
explicit stack cells. Its reasoning rules are intended to support concurrency, but the paper
does not provide any case study.

The logic presented in our previous paper [Moine et al., 2023] concerns a high-level lan-
guage, where the call stack is implicit, but is restricted to a sequential setting. This paper
also introduces support for closures. The logic relies on a distinction between visible roots—
the roots of the term under focus—and invisible roots—the roots of the evaluation context.
The logic keeps track of invisible roots using a Stackable assertion, and introduces the idea
that Stackable assertions must be “forcibly framed out” at applications of the Bind rule. We
re-use this idea in our own Bind rule (§6.4), but replace Stackable assertions with pointed-
by-thread assertions, which are better suited to a concurrent setting. In so doing, we remove
the distinction between visible roots and invisible roots, which does not seem to make sense
in a concurrent setting; our pointed-by-thread assertions keep track of all (ordinary) roots. In
contrast, Moine et al. [2023] do not keep track of visible roots via an a dedicated assertion:
indeed, in their setting, it suffices to inspect the term under focus to determine the set of vis-
ible roots. This allows them to offer a standard Load rule, whereas our Load rule updates
a pointed-by-thread assertion for the value that is loaded (§6.2).

Our mechanization [Moine, 2024] includes an encoding inside IrisFit of our previous logic
for sequential programs [Moine et al., 2023]. This encoding demonstrates that our concurrent
program logic can be used to reason about sequential programs with no overhead.

13.5 Space-Related Results for Compilers

Paraskevopoulou and Appel [2019] prove that, in the presence of a GC, closure conversion is
safe for space: that is, it does not change the space consumption of a program. They view
closure conversion as a transformation from a CPS-style λ-calculus into itself. This calculus is
equipped with two different environment-based big-step operational semantics. The “source”
semantics implicitly constructs a closure for each function definition by capturing the relevant
part of the environment and storing it in the heap. The “target” semantics performs no
such construction: it requires every function to be closed. In either semantics, the roots
are defined as the locations that occur in the environment. Up to the stylistic difference
between a substitution-based semantics and an environment-based semantics, this definition
is equivalent to the “free variable rule” (FVR) [Morrisett et al., 1995].

Besson et al. [2019] prove that (an enhanced version of) CompCert [Leroy, 2024] preserves
memory consumption when compiling C programs.

In a sequential setting, Gómez-Londoño et al. [2020] prove that the CakeML compiler
respects a cost model that is defined at the level of the intermediate language DataLang,
which serves as the target of closure conversion. Our cost model is analogous to theirs. Our
work and theirs are complementary: whereas they prove that the CakeML compiler respects
the DataLang cost model, we show how to establish space complexity bounds about source
programs, based on a similar cost model. One could in principle adapt IrisFit to DataLang.
Then, one would be able to use IrisFit to establish a space complexity bound about a source
CakeML program, to compile this program down to machine code using the CakeML compiler,
and to obtain a machine-checked space complexity guarantee about the compiled code.

13.6 Safe Memory Reclamation Schemes

Manual memory management can be so difficult in a concurrent setting that programmers
often rely on semi-automatic safe memory reclamation (SMR) schemes. Two main families
exist, namely hazard pointers [Michael, 2004; Michael et al., 2023] and read-copy-update
(RCU) [McKenney, 2004; McKenney et al., 2023]. The two families offer roughly similar
APIs. First, the user declares hazardous locations for a delimited scope. While it is marked

13.7. DISENTANGLEMENT 121

hazardous, a location is not deallocated. Second, the user can retire a location to indicate
that this location is no longer needed. The SMR implementation deallocates a retired location
once it is not marked hazardous by any thread.

RCU seems particularly close to our concept of a protected section. Indeed, RCU declares
every pointer hazardous inside a certain section of the code. Yet, there is not a perfect analogy
between the two. Indeed, garbage collection provides a strong guarantee: no dangling pointer
can exist. SMR schemes, on the contrary, tolerate dangling pointers. Hence, with RCU,
a location that the code mentions, but without reading or writing it, does not need to be
protected. For example, the “push” operation of Treiber’s stack does not need an RCU
section [Jung et al., 2023, mechanization], whereas the “pop” operation does need one. Indeed,
the push operation never accesses the content of an internal list cell. Hence, it is not dangerous
if such a location is deallocated in the meantime.

Equipping SMR schemes with abstract Separation Logic specifications and verifying them
has long been a challenge. Treiber’s stack has been the first data structure based on haz-
ard pointers to be verified. This task was tackled several times using different variants of
Concurrent Separation Logic [Parkinson et al., 2007; Fu et al., 2010]. Tofan et al. [2011]
verify Treiber’s stack both with hazard pointers and with garbage collection (though without
a heap space complexity analysis). They show that a large part of the main invariant can
be shared between the two proofs. Gotsman et al. [2013] provide the first general framework
for verifying programs using SMR schemes in Separation Logic, making use of temporal logic
reasoning. Jung et al. [2023] provide a more abstract framework, where temporal reasoning
is replaced with ownership arguments. Their work unveils a close relationship between RCU
and garbage collection. Indeed, RCU allows accessing any location that was not retired when
the current RCU section was entered. (There is a loose analogy with our liveness-based can-
cellable invariants: to access such an invariant, one must eliminate the case where ℓ has been
logically deallocated.) To prove that a location is not retired at a certain point in time, Jung
et al. [2023] express the topology of data structures using pointed-by-heap assertions, which
they borrow from our prior paper [Moine et al., 2023].

Outside the Separation Logic world, Meyer and Wolff [2019] propose an API for SMR
schemes in the form of an observer automaton, inspired by the temporal reasoning of Gotsman
et al. [2013]. Meyer and Wolff [2019] make use of the observer automaton to decorrelate the
verification of lock-free data structures from the SMR implementation.

13.7 Disentanglement

Disentanglement [Raghunathan et al., 2016; Guatto et al., 2018; Westrick et al., 2020] is
a property of parallel programs which intuitively asserts that “parallel tasks remain oblivious
to each other allocations”. Disentangled programs can be equipped with efficient memory
management. Indeed, if the program is disentangled, then one can supply each parallel task
with its own local heap. Each task can then allocate and reclaim memory independently of
other tasks. This approach allows for faster memory management than for arbitrary con-
current programs, where the GC must take into account every running thread. Recall for
example that in OCaml5 threads synchronize before running the GC. Arora et al. [2021]
present a provably-efficient memory manager for disentangled programs, and Arora et al.
[2023] show how to handle entanglement at runtime without losing too much efficiency.

Related to our work, the semantics of disentanglement [Westrick et al., 2020, 2022] follows
the free variable rule: the informal idea “parallel tasks remain oblivious to each other alloca-
tions” is formalized by the following invariant: if a location is a root (that is, a free variable) of
a task, then this root must have been allocated either by the task itself or by one of its parent
in the so-called parallel task tree. With our experience of IrisFit, the fact that disentanglement
relies on the free variable rule led to a collaboration with Sam Westrick and Stephanie Balzer
to propose a Separation Logic for verifying that a program is disentangled [Moine et al., 2024].

Chapter 14

Conclusion

Piazzolla, A. (1970).
Las Cuatro Estaciones Porteñas, Primavera Porteña.

We have presented LambdaFit, a lambda-calculus with shared-memory concurrency and
tracing garbage collection. In particular, LambdaFit is equipped with protected sections,
a new, realistic construct that programmers can and sometimes must exploit to ensure that
fine-grained concurrent data structures have the desired worst-case heap space complexity. We
believe that protected sections are a necessary part of a concurrent programmer’s toolbox,
and that they should be considered for inclusion in high-level languages.

Furthermore, we have presented IrisFit, a Concurrent Separation Logic with space cred-
its, which allows expressing and verifying worst-case heap space bounds about LambdaFit
programs. IrisFit features pointed-by-heap and pointed-by-thread assertions, which offer a
compositional means of keeping track of the various ways through which a memory block
is reachable. These assertions can be used to prove that a block is unreachable, or more
accurately, that by the time the garbage collector is allowed to run, this block will be un-
reachable. IrisFit provides special treatment of temporary roots within protected sections and
is thereby able to take advantage of protected sections to establish stronger worst-case heap
space bounds.

In particular, IrisFit provides an answer to our motivating question (§1):

How to prove heap space bounds for concurrent programs under tracing garbage collection?

This thesis shows that IrisFit satisfies three desired criteria.
First, IrisFit is expressive and allows mimicking intuitive reasoning on heap space, thanks

in particular to logical deallocation. Indeed, logical deallocation permits reasoning as if space
is available as soon as a location becomes unreachable, while the GC has perhaps not yet run.
IrisFit also supports other intuitive patterns, ranging from amortized analysis with rational
space credits (§5.5) to logical deallocation of inner cells of lock-free data structures before
they are truly unreachable, thanks to protected sections (§6.3).

Second, IrisFit is usable in practice. For example, we verify that an implementation of
closure conversion is correct and we derive reasoning rules for closures (§9). We also tackle
a wide variety of case studies, including standard sequential data structures (§11.5, §11.4),
CPS definitions (§11.3), and sequential circular lists (§11.5). Moreover, we show that IrisFit
allows establishing modular bounds at every level of abstraction: instruction, functions, and
modules (§11.4). We also emphasize the purposefulness of IrisFit for fine-grained concur-
rent programs, including a concurrent counter implemented as a pair of closures (§12.3), an
async/finish library (§12.4) and lock-free data structures such as Treiber’s stack (§12.5) and
Michael and Scott’s queue (§12.6).

Third, IrisFit, its soundness proof, and all its case studies are entirely mechanized. We
comment on the mechanization in the next section.

14.1 Mechanization

All of our results are mechanized in the Coq proof assistant using the Iris library [Jung et al.,
2018b] and its dedicated Proof Mode [Krebbers et al., 2018]. Our definitions and proofs are

123

124 CHAPTER 14. CONCLUSION

available in electronic form [Moine, 2024]. Discounting blank lines and comments, the defini-
tion of LambdaFit and of its oblivious semantics occupy roughly 2700 lines of code (LOC);
the construction of IrisFit, including the reasoning rules and the core soundness theorem,
represent 9300LOC; the definition of the default semantics of LambdaFit and the proof of
the safety and liveness theorems take up 4400LOC; and the verification of the case stud-
ies represents 7200LOC. In addition to these numbers, we encapsulate the mechanization of
possibly-null fractions and signed multisets in a library of 1700LOC. Additionally, we re-use
as a library about 1900LOC of proofs establishing results about reachability within the heap
from Madiot and Pottier [2022]. We provide tactics that facilitate reasoning with IrisFit and
achieve a basic level of automation thanks to the Diaframe library [Mulder et al., 2022].

14.2 Perspectives

In this section, we present venues for future work. We first focus on direct future work for
IrisFit (§14.2.1), then we present connections with OCaml (§14.2.2) and finish with broader
perspectives (§14.2.3).

14.2.1 Improvements and Extensions of IrisFit

Improved User Experience Our mechanization of IrisFit comes with basic automation,
but a lot remains to be done to improve the user’s experience. First, we use Diaframe [Mul-
der et al., 2022] to a fraction of its power. We would like to use the tool more thoroughly
in order to automatize basic goals. We would also like to use Diaframe’s features for concur-
rency. These features include the support for logical atomic triples [Mulder and Krebbers,
2023] and the support for “connections”, improving the automation of goals with disjunctions,
which often appear while reasoning with invariants [Mulder et al., 2023]. Another avenue
for improvement is the automation of goals related to sets of locations (for example, in the
premise of BindWithSouvenir and TrimPBThread). We currently rely on the great
set_solver tactic [The Coq-std++ Team, 2023]. Yet, for large terms, computation time can
be a bottleneck and we would like to improve the situation.

Additional Case Studies While we verify several case studies, there is room for more. In
particular, we would like to apply IrisFit to larger (in terms of number of LOC) examples as
well as subtler concurrent examples. For the latter, Harris’s list [Harris, 2001] and multi-CAS
algorithms such as RDCSS [Harris et al., 2002] are interesting candidates.

A General Approach for Sharing A function that allocates a data structure similar
to one of its argument usually come with two variants of its specifications. Either the said
argument is unreachable from other parts of the program, and the space of the argument can
be reused for allocating the new data structure, or the argument may be reachable, and space
credits must be required in the precondition to satisfy the allocations. Yet, this approach
lacks generality and has two drawbacks. First, this approach leads to an explosion of possible
specifications. For example in §11.3, we show two specifications for list append, depending
on whether the first list being appended has predecessors or not. But there are more possible
scenarii, that often appear in functional programming: indeed, only a segment of the list may
be shared. In this case, space credits must be required only for non-shared list cells. Second,
this approach duplicates the proof effort: the proof of the specification logically deallocating an
unreachable argument differs from the proof of a specification with provisioned space credits.

We would like to understand what could be a unique specification that fits all use cases, and
how to prove the program correct in one pass. If these two goals prove impossible, we would
like to devise a mechanism to generate and automatically verify a family of specifications.

14.2. PERSPECTIVES 125

Immutable Data Structures At present, IrisFit offers no special support for immutable
data structures: every memory block is considered mutable by default, and it is up to the user
to exploit the logical tools offered by Iris, such as invariants, to indicate that a memory block
is immutable. In this thesis, we have done so in the special case of closures (§9): we have
been able to describe the behavior of a closure via a persistent predicate, while still allowing
for its deallocation. We would like to investigate whether this approach can be extended to
all immutable data structures. If this approach can be extended, the user would benefit from
less bookkeeping of fractions of pointed-by-heap assertions.

Coarse-Grained Specifications Specifications in IrisFit are fine-grained : they mention
exactly, via the pointed-by-heap assertion, which location is pointed by which location and
with which fraction. For containers (§11.1), we are able to temper this fine graininess and hide
the exact predecessors of elements by capturing a fraction of their pointed-by-heap assertion
inside the representation predicate. Yet, the need to precisely keep track of predecessors of
locations, either by mentioning explicitly these predecessors or by fragmenting the pointed-by-
heap assertion of the location, is tedious and unneeded in most cases. Indeed, programmers
often think of coarser regions, portions of the heap storing multiple blocks which may all
point to each other. At a high-level, only the reachability between regions matters. We
currently propose an API for dead and unreachable regions (§6.6). We would like to enhance
this support to live regions, add reasoning rules to reason about the reachability between
regions, and relax existing reasoning rules while mutating blocks inside a particular region.
The literature on region-based memory management [Tofte and Talpin, 1997; Tofte et al.,
2004] and related type systems [Fluet et al., 2006; Birkedal et al., 2012; Elsman, 2023] may
be of some inspiration.

In detail, we envision logical regions that the user could allocate and fill with locations
while reasoning. Within a region, a location is assumed to be pointed by every other location
of the region. With such an approach, one could design a StoreWithin reasoning rule which
can be used when a location is stored inside a block that lives in the same region. Such a
rule would only require the user to prove that the stored location and the block are indeed
in the same region, via perhaps a persistent witness. Interestingly, this StoreWithin rule
would not mention the pointed-by-heap assertion. Then, one would have, to keep track of the
entry-points and exit-points of regions with new assertions. We speculate that keeping track
of these high-level entry and exit points will be simpler than mentioning every particular heap
link with the pointed-by-heap assertion.

Asymptotic Space Reasoning Specifications in IrisFit mention exact space bounds. With
large data structures, for which the exact bound matters, this is fine. However, for smaller
auxiliary data structures, programmers often think of asymptotic space complexities, and not
the exact bound. Yet, formalizing asymptotic complexities is not an easy job. This problem
was studied by Guéneau [2019] in the context of verifying time complexity bounds with time
credits. We wonder to what extent we could reuse parts of Guéneau’s approach for space.
One challenge is that constant factors matter for space credits. For example, specifying the
constructor of a pair as consuming a constant amount of space credits lacks information.
Indeed, how to satisfy this constant amount of space credits? Reusing the space occupied
by an unreachable list cell is safe, whereas reusing the space of an unreachable reference is
not. Indeed, even if these two structures occupy a constant amount of heap space, a list cell
occupies two memory words (similarly to a pair) whereas a reference occupies a single word.

IrisFit as a Foundation for Type Systems In §13, we covered a large number of auto-
mated approaches for the inference and verification of heap space bounds, often using type
systems. An interesting venue for future work is to investigate if IrisFit can be used to provide
foundational guarantees to these approaches. Indeed, this is the technique of semantic typ-

126 CHAPTER 14. CONCLUSION

let before_pattern_matching_compilation (f:unit -> unit) (p: (int*int)) : int =

match p with (x,_) -> f (); x

let after_pattern_matching_compilation (f:unit -> unit) (p: (int*int)) : int =

f (); (fst p)

Figure 51: Pattern matching may extend the lifetime of variables

ing [Timany et al., 2024], one could encode and prove correct in IrisFit the reasoning rules
applied by automated systems.

14.2.2 Links with OCaml

Protected Sections It would be interesting to offer and document protected sections to
OCaml users. As we previously discussed (§13.2), we do not foresee any difficulty in order
to implement protected sections by relying on OCaml’s safe points. Indeed, it suffices to
insert safe points outside of protected sections to guarantee the validity of heap space bounds
established with IrisFit.

Protected sections are not only interesting from the point of view of space consumption.
For example, in OCaml, hardware threads are mapped to domains, and only one lightweight
thread (that is, a user-level thread, called pthread in the C/C++ world) can execute per
domain. Lightweight threads are useful in practice: for example, one can install a lightweight
thread per domain to handle asynchronous I/O. Interestingly, within a single domain, the
OCaml runtime system interrupts lightweight threads only at safe points. Hence, as identified
by Karvonen [2023b], one could use the control of safe points placement (via the limited
existing [@poll error], or via the proposed protected sections) to ensure that some portion
of code is executed atomically with respect to other lightweight threads on the same domain.
Such a use of protected sections is interesting, as actual synchronization primitives like CAS
are expensive, whereas plain reads and writes are much cheaper. Hence, within a single
domain, one can implement an efficient CAS as

let lightweight_compare_and_set r seen v =

enter; if !r = seen then (l := v; exit; true) else (exit; false)

Hence, if multiple lightweight threads need to interact on the same data structure, one could
use “atomic” lightweight thread operations like lightweight_thread_compare_and_set to im-
prove efficiency.

Unsafe for Space Code Transformations At the time of writing, OCaml performs code
transformations that may extend the reachability of heap objects. These transformations are
clearly “unsafe for space”: by extending the reachability of a heap object, the compiler pushes
back the time by which this object will be collected by the GC.

One motivation to extend the lifetime of locations is to limit the number of simultaneously
active variables by postponing field access as much as possible.

The compilation of pattern matching is a good example, where the compiler may extend
the lifetime of matched variables. Consider the two functions presented in Figure 51. They
are compiled into the same assembly code. Yet, before_pattern_matching_compilation may
have a lower heap space bound than after_pattern_matching_compilation. Indeed, in the
former, the pair p is unreachable just after the pattern matching and can hence be collected
by the GC before the call to f, which can reuse the space of the pair. However, in the latter, p
is a root of the evaluation context while executing f, and the space of p cannot be reused.

Another example of extended lifetimes appears with closures, where the environment is
not immediately loaded. Instead, the closure block, storing the environment, is kept reachable
and loaded when needed.

14.2. PERSPECTIVES 127

let before_dce (r : bool ref) : bool =

let w = Weak.ref r in

let x = Weak.get w in

if true then (x <> None) else !r

let after_dce (r : bool ref) : bool =

let w = Weak.ref r in

let x = Weak.get w in

(x <> None)

Figure 52: Impact of dead code elimination (DCE) on weak pointers

let before_cse (p : (int * int)) : int =

let w = Weak.ref p in

let x = fst p in

if Weak.get w <> None then x+fst p else x

let after_cse (p : (int * int)) : int =

let w = Weak.ref p in

let x = fst p in

if Weak.get w <> None then x+x else x

Figure 53: Impact of common sub-expression elimination (CSE) on weak pointers

Ideally, a compiler should document more precisely the list of its transformations that
may extend the reachability of a heap object. Moreover, the compiler should provide a way of
disabling such optimizations, in order to generate compiled code that respects space bounds
established at the source level.

14.2.3 Broader Perspectives

Weak Pointers and Ephemerons Weak pointers [Jones et al., 2012, §12.2] are pointers
that are not followed by the GC: they do not participate in the reachability of the value they
point to. As a consequence, the GC can deallocate the content of a weak pointer, even if
the weak pointer is reachable. Hence, dereferencing a weak pointer either fails and returns
a special value None showing that the GC deallocated the pointed value, or succeeds and
returns the said pointed value. Ephemerons [Hayes, 1997] generalize weak pointers. They are
implemented in OCaml and in Haskell. An ephemeron is a memory block of size 2, storing
a key and a value. The ephemeron weakly points to its key—that is, an ephemeron does not
participate in the reachability of its key. Crucially, the GC considers reachable the value only
if the key is considered reachable.

Ephemerons are useful in practice as they allow for “adding information” to an object
without participating in its reachability. Ephemerons are often used to implement weak hash
tables, where each pair of a key and a value is implemented with an ephemeron. Weak hash
tables are themselves used to implement hash-consing, a crucial technique to prevent space-
usage blowups of functional programs.

Yet, weak pointers and ephemerons all the more are difficult to reason about. Indeed,
certain transformations of the compiler may shorten the reachability of heap objects. While
shortening the lifetime of a heap object is not an issue for heap space bounds, this is prob-
lematic for weak pointers: the programmer could argue at the source level that the value of a
weak pointer is reachable (and hence that dereferencing the weak pointer succeeds), but this
reachability argument could be broken by the compiler!

Transformations shortening reachability are common, and include for example dead code
elimination (DCE) and common sub-expression elimination (CSE).

For dead code elimination, consider the contrived example presented in Figure 52. The
source program is on the left and the transformed program is on the right. In the source
program, a weak reference w is created on the parameter r, and immediately after, the content
of the weak reference is loaded and named x. Because r is mentioned in the dead “else” branch
of the following conditional, one can be sure that x is not None (since such a case would show
that the GC deallocated r). Yet, because the “else” branch is dead (that is, will never be
executed), the elimination of dead code transforms the source program on the left of Figure 52
into the version on the right. However, in this transformed program, r is unreachable by the
time Weak.get is executed. Hence the GC could have deallocated r, and the variable x may
hence be None.

128 CHAPTER 14. CONCLUSION

For common sub-expression elimination (CSE), let us consider the example presented in
Figure 53, which we simplify from Donnelly et al. [2006, §5]. Again, the source program is
on the left and the transformed program is on the right. A weak reference on the argument
p, a pair, is made, then the first component of the pair is named x. Then a test is made to
check if the GC deallocated p. This cannot be the case, as p is a root of the “then” branch.
Hence the source program always returns 2. Yet, the compiler might transform the code by
observing that fst p appears two times in the code, and by replacing the last occurrence
by x. The resulting code appears on the right side of Figure 53. It is not possible anymore to
guarantee that the program returns 2, as the GC may have deallocated p by the time Weak.get

is executed.
The only existing formal semantics for weak pointers that we are aware of [Donnelly

et al., 2006] resorts to asserting that dereferencing a weak pointer may always fail. This
semantics is unsatisfactory: it does not allow verifying the correctness of hash-consed-based
equality, for example. Let us sketch the issue. The core of the approach of hash-consing is
to share structurally-equal objects. This is done by maintaining a weak hash set (a weak
hash table with no values) of every object ever allocated. When the user wants to allocate a
new heap object, they first test whether the object is in the hash set and still allocated, or
not. If yes, the existing version is returned, and otherwise, the object is indeed allocated and
stored. The set of hash-consing is weak as otherwise, the set would maintain reachable every
object ever allocated. By having a weak hash set, the GC can still collect unused objects.
Hash-consing ensures that at most one version of each object is in circulation. The user can
hence reduce testing the structural equality of two objects by testing the equality of their
addresses. However, with semantics where dereferencing a weak pointer can always fail, the
whole approach falls down. Indeed, it would mean that we have to consider that the GC
deallocated some object, and hence allocate a new version of it, while the original object is
still in use elsewhere in the code.

Programmers make use of weak pointers and ephemerons, and play with their strange
behavior. For example, [Peyton Jones et al., 1999, §5.4] propose a code that follows the
pattern below:

let weird (r:int ref) : int =

let w = Weak.ref r in

if Weak.get = None then !r else 42

In this function, a weak reference w is created on the argument r. Then, a test is made on
the result of Weak.get w. Interestingly, the branch handling the case None mentions r. Hence,
we can be sure that Weak.get w does not return None, since r appears in the continuation. But
this means that the said branch is dead, and eliminating it removes the mention of r, which
in turn allows Weak.get w to return None, rendering the branch live! This example is a more
evolved version of the impact of dead code elimination that we mentioned above. Quoting
Peyton Jones et al. [1999], “this sort of weirdness is typical of weak pointers”.

It could be interesting to investigate how to provide a satisfying semantics for weak pointers
and ephemerons. After devising such a semantics, we would like to propose a program logic
allowing the verification of programs making use of these constructs. An interesting goal
would be to make use of space credits to specify and verify a hash-consing that internally
makes us of ephemerons.

Finalizers A finalizer (or finaliser) [Jones et al., 2012, §12.1] is a method that is called
by the GC when it deallocates a particular location. Finalizers may be useful when the
program also manipulates manually managed memory. Through a finalizer, the programmer
can manually deallocate memory at the same time as some automatically managed memory.

Similarly to weak pointers and ephemerons, finalizers allow for observing the reachability
of the locations they are attached to, and their semantics is not well understood. We would
like to investigate this topic. We would also like to propose reasoning rules for finalizers.

14.2. PERSPECTIVES 129

Indeed, finalizers are strange beasts: they are often given as input the very object being
deallocated by the GC. Hence, finalizers have access to an “unreachable” location. Thus,
finalizers can potentially resurrect this unreachable location, for example, by writing it in
a reachable heap cell. Resurrecting a location is arguably a bad practice: it breaks the
intuitive reasoning that an unreachable collection will eventually be collected. To prevent
this practice, one could imagine making use of an approach similar to protected sections: by
the time the finalizer ends, the user should prove that the location it was given as an argument
is unreachable.

Finalizers are also not easy to reason about because the programmer cannot predict when a
finalizer will run, as the programmer does not control when the GC runs. This fact complicates
a hypothetical API for a finalizer: when should its precondition be satisfied? Indeed, in some
subtle scenarii, the finalizer may depend on resources that do not exist by the time the
finalizer is installed. This is morally correct, as we have the guarantee that the finalizer will
not run until the associated location is again unreachable. Another question is: when does
the postcondition of a finalizer should be made available to the user? As there is no way to
observe the GC in LambdaFit, it seems difficult to answer this question. If we add a primitive
calling the GC in the language, one could imagine a reasoning rule updating an assertion † ℓ
as well as an assertion asserting that a finalizer with postcondition Ψ was installed on ℓ into
the assertion Ψ. Interestingly, with weak pointers, one could observe that a location was
deallocated by the GC, and deduce that the associated finalizer must have run and obtain its
associated postcondition.

In part because finalizers are so difficult to reason about, they were deprecated in Java 18
[Christian and Marks, 2021]. To this date, finalizers are still offered by Haskell and OCaml,
for example.

Safe Encapsulation IrisFit allows for reasoning about unreachability. By making use
of the pointed-by-heap and pointed-by-thread assertions, one can prove that some location
cannot be accessed outside a particular abstraction boundary: the location is encapsulated,
or private. (This notion supposes that the language does not permit forging locations out of
thin air.) We identify two cases where one could want such encapsulation results, either using
IrisFit directly, adapting a relational logic for establishing contextual refinements such as
ReLoc [Frumin et al., 2021], or applying the “Theorems for free” of Separation Logic [Birkedal
et al., 2021].

The first case consists of data structures relying on a private “dummy” element, generally
a fresh location, that is used to fill empty slots. Yet, the correctness of the approach rests
on the fact that the user has no access to this dummy element. Otherwise, the user could
insert the dummy element into the data structure, and one would not be able to distinguish
between an empty slot from a non-empty one. Currently, the general approach is to resort in
revealing the existence of the dummy element in the specifications, such that the user is able
to prove that the values being inserted are distinct from it. For example, in other work [Moine
et al., 2024, §6.3], we present a lock-free set making use of a dummy element. Leaning out
details about concurrency, these specifications involve a predicate set ℓ d S asserting that the
location ℓ represents a set S with a user-chosen dummy element d, passed as an argument
when creating the set. The specification of this set looks like:

SetCreate
{⌜True⌝} create d {λℓ. set ℓ d ∅}

SetInsert
x ̸= d

{set ℓ d S} insert ℓ x {λ(). set ℓ d (S ∪ {x})}

Notice the premise of SetInsert, requiring that the element being inserted is not the dummy
element d. One solution to hide this dummy element could be to store its points-to assertion
inside the representation predicate, and update SetInsert to frame an arbitrary fraction of
the points-to assertion of the element being inserted. By using the fact that the full points-
to assertion of a location excludes the existence of other points-to assertions of the same

130 CHAPTER 14. CONCLUSION

location, one could deduce that the value being inserted cannot be the dummy element. Yet,
this solution is unsatisfactory, as the points-to assertion of the element being inserted may
be hard to exhibit for the user (especially in a concurrent setting, where points-to assertions
may reside inside an invariant).

A second case consists of robustness properties: for safety reasons, one may want to verify
that a data structure does not leak an internal reference, and hence that this reference cannot
be modified by any client of the data structure. This is a “light” safety property it makes
the hypothesis that the client is well-formed and cannot break abstraction boundaries (for
example, in OCaml, a “well-formed” client cannot use Obj.magic, the primitive casting a value
of any type to any other type). The Necessity approach [Mackay et al., 2022] for proving
such robustness properties is parametric with respect to a technique for proving “assertion
encapsulation”. Even if their formal setting is different than ours, it would be interesting to
investigate if IrisFit could be used to prove such properties.

Bibliography

Mozart, W. A. (1787).
Don Giovanni, “Madamina, il catalogo è questo”.

Ole Agesen. 1998. GC Points in a Threaded Environment. Technical Report SMLI TR-98-70.
Sun Microsystems, Inc. https://dl.acm.org/doi/10.5555/974974

Elvira Albert, Jesús Correas, and Guillermo Román-Díez. 2019. Peak resource analysis of
concurrent distributed systems. Journal of Systems and Software 149 (2019), 35–62. https:

//doi.org/10.1016/j.jss.2018.11.018

Elvira Albert, Jesús Correas Fernández, and Guillermo Román-Díez. 2015. Non-cumulative
Resource Analysis. In Tools and Algorithms for the Construction and Analysis of Systems,
Christel Baier and Cesare Tinelli (Eds.). Springer, 85–100. https://doi.org/10.1007/

978-3-662-46681-0_6

Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. 2007. Heap space analysis for
Java bytecode. In International Symposium on Memory Management. 105–116. http:

//cliplab.org/papers/jvm-heap-ismm07.pdf

Elvira Albert, Samir Genaim, and Miguel Gómez-Zamalloa. 2013. Heap space analysis for
garbage collected languages. Science of Computer Programming 78, 9 (2013), 1427–1448.
https://doi.org/10.1016/j.scico.2012.10.008

Dan Alistarh, William Leiserson, Alexander Matveev, and Nir Shavit. 2018. ThreadScan:
Automatic and Scalable Memory Reclamation. ACM Trans. Parallel Comput. 4, 4, Article
18 (May 2018). https://doi.org/10.1145/3201897

Bowen Alpern, C. Richard Attanasio, John J. Barton, Anthony Cocchi, Susan Flynn Hummel,
Derek Lieber, Ton Ngo, Mark F. Mergen, Janice C. Shepherd, and Stephen E. Smith. 1999.
Implementing Jalapeño in Java. In Object-Oriented Programming, Systems, Languages, and
Applications (OOPSLA). 314–324. https://doi.org/10.1145/320384.320418

Bowen Alpern, Steve Augart, Stephen M. Blackburn, Maria A. Butrico, Anthony Cocchi,
Perry Cheng, Julian Dolby, Stephen J. Fink, David Grove, Michael Hind, Kathryn S.
McKinley, Mark F. Mergen, J. Eliot B. Moss, Ton Anh Ngo, Vivek Sarkar, and Martin
Trapp. 2005. The Jikes Research Virtual Machine project: Building an open-source research
community. IBM Syst. J. 44, 2 (2005), 399–418. https://doi.org/10.1147/sj.442.0399

Andrew W. Appel. 1992. Compiling with Continuations. Cambridge University Press. http:

//www.cambridge.org/9780521033114

Jatin Arora, Sam Westrick, and Umut A. Acar. 2021. Provably Space-Efficient Parallel Func-
tional Programming. Proceedings of the ACM on Programming Languages 5, POPL (jan
2021). https://doi.org/10.1145/3434299

Jatin Arora, Sam Westrick, and Umut A. Acar. 2023. Efficient Parallel Functional Program-
ming with Effects. Proceedings of the ACM on Programming Languages 7, PLDI (jun 2023).
https://doi.org/10.1145/3591284

David Aspinall, Lennart Beringer, Martin Hofmann, Hans-Wolfgang Loidl, and Alberto
Momigliano. 2007. A program logic for resources. Theoretical Computer Science 389, 3
(2007), 411–445. https://doi.org/10.1016/j.tcs.2007.09.003

131

https://dl.acm.org/doi/10.5555/974974
https://doi.org/10.1016/j.jss.2018.11.018
https://doi.org/10.1016/j.jss.2018.11.018
https://doi.org/10.1007/978-3-662-46681-0_6
https://doi.org/10.1007/978-3-662-46681-0_6
http://cliplab.org/papers/jvm-heap-ismm07.pdf
http://cliplab.org/papers/jvm-heap-ismm07.pdf
https://doi.org/10.1016/j.scico.2012.10.008
https://doi.org/10.1145/3201897
https://doi.org/10.1145/320384.320418
https://doi.org/10.1147/sj.442.0399
http://www.cambridge.org/9780521033114
http://www.cambridge.org/9780521033114
https://doi.org/10.1145/3434299
https://doi.org/10.1145/3591284
https://doi.org/10.1016/j.tcs.2007.09.003

132 BIBLIOGRAPHY

David Aspinall and Martin Hofmann. 2002. Another Type System for In-Place Up-
date. In European Symposium on Programming (ESOP) (Lecture Notes in Computer Sci-
ence, Vol. 2305). Springer, 36–52. https://homepages.inf.ed.ac.uk/da/papers/readonly/

readonly.pdf

Robert Atkey. 2011. Amortised Resource Analysis with Separation Logic. Logical Methods in
Computer Science 7, 2:17 (2011), 1–33. https://lmcs.episciences.org/685/pdf

Yves Bertot and Pierre Castéran. 2004. Interactive Theorem Proving and Program De-
velopment – Coq’Art: The Calculus of Inductive Constructions. Springer. https:

//www.labri.fr/perso/casteran/CoqArt/coqartF.pdf

Frédéric Besson, Sandrine Blazy, and Pierre Wilke. 2019. CompCertS: a Memory-Aware
Verified C Compiler Using a Pointer as Integer Semantics. Journal of Automated Reasoning
63, 2 (2019), 369–392. https://doi.org/10.1007/s10817-018-9496-y

Lars Birkedal and Aleš Bizjak. 2023. Lecture notes on Iris: Higher-order concurrent sepa-
ration logic. (2023). https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf

Unpublished.

Lars Birkedal, Thomas Dinsdale-Young, Armaël Guéneau, Guilhem Jaber, Kasper Svend-
sen, and Nikos Tzevelekos. 2021. Theorems for free from separation logic specifications.
Proceedings of the ACM on Programming Languages 5, ICFP (2021), 1–29. https:

//doi.org/10.1145/3473586

Lars Birkedal, Filip Sieczkowski, and Jacob Thamsborg. 2012. A Concurrent Logical Relation.
In Computer Science Logic (Leibniz International Proceedings in Informatics, Vol. 16).
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 107–121. https://doi.org/10.4230/

LIPIcs.CSL.2012.107

Wayne D. Blizard. 1990. Negative membership. Notre Dame Journal of Formal Logic 31, 3
(1990), 346–368. https://doi.org/10.1305/ndjfl/1093635499

Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,
Keith H. Randall, and Yuli Zhou. 1995. Cilk: an efficient multithreaded runtime sys-
tem. In Principles and Practice of Parallel Programming (PPoPP). ACM, 207–216. https:

//doi.org/10.1145/209936.209958

Richard Bornat, Cristiano Calcagno, Peter O’Hearn, and Matthew Parkinson. 2005. Per-
mission accounting in separation logic. In Principles of Programming Languages (POPL).
259–270. http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf

John Boyland. 2003. Checking Interference with Fractional Permissions. In Static Analysis
Symposium (SAS) (Lecture Notes in Computer Science, Vol. 2694). Springer, 55–72. https:

//doi.org/10.1007/3-540-44898-5_4

Víctor A. Braberman, Federico Javier Fernández, Diego Garbervetsky, and Sergio Yovine.
2008. Parametric prediction of heap memory requirements. In International Symposium on
Memory Management. 141–150. https://dl.acm.org/doi/10.1145/1375634.1375655

Víctor A. Braberman, Diego Garbervetsky, and Sergio Yovine. 2006. A Static Analysis for Syn-
thesizing Parametric Specifications of Dynamic Memory Consumption. Journal of Object
Technology 5, 5 (2006), 31–58. https://www.jot.fm/issues/issue_2006_06/article2.pdf

Stephen Brookes. 2007. A semantics for concurrent separation logic. Theoretical Computer
Science 375, 1–3 (2007), 227–270. https://doi.org/10.1016/j.tcs.2006.12.034

https://homepages.inf.ed.ac.uk/da/papers/readonly/readonly.pdf
https://homepages.inf.ed.ac.uk/da/papers/readonly/readonly.pdf
https://lmcs.episciences.org/685/pdf
https://www.labri.fr/perso/casteran/CoqArt/coqartF.pdf
https://www.labri.fr/perso/casteran/CoqArt/coqartF.pdf
https://doi.org/10.1007/s10817-018-9496-y
https://iris-project.org/tutorial-pdfs/iris-lecture-notes.pdf
https://doi.org/10.1145/3473586
https://doi.org/10.1145/3473586
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.4230/LIPIcs.CSL.2012.107
https://doi.org/10.1305/ndjfl/1093635499
https://doi.org/10.1145/209936.209958
https://doi.org/10.1145/209936.209958
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/permissions_paper.pdf
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/3-540-44898-5_4
https://dl.acm.org/doi/10.1145/1375634.1375655
https://www.jot.fm/issues/issue_2006_06/article2.pdf
https://doi.org/10.1016/j.tcs.2006.12.034

BIBLIOGRAPHY 133

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation logic. SIGLOG News
3, 3 (2016), 47–65. http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_

news_9.pdf

Quentin Carbonneaux, Jan Hoffmann, Tahina Ramananandro, and Zhong Shao. 2014. End-to-
end verification of stack-space bounds for C programs. In Programming Language Design
and Implementation (PLDI). 270–281. http://flint.cs.yale.edu/flint/publications/

veristack.pdf

Quentin Carbonneaux, Jan Hoffmann, and Zhong Shao. 2015. Compositional certified resource
bounds. In Programming Language Design and Implementation (PLDI). 467–478. https:

//www.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf

Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized
Complexity of a Union-Find Implementation in Separation Logic with Time Credits. Jour-
nal of Automated Reasoning 62, 3 (March 2019), 331–365. http://cambium.inria.fr/

~fpottier/publis/chargueraud-pottier-uf-sltc.pdf

Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kielstra,
Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. 2005. X10: an object-oriented
approach to non-uniform cluster computing. In Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA). 519–538. https://doi.org/10.1145/1094811.

1094852

Wei-Ngan Chin, Huu Hai Nguyen, Corneliu Popeea, and Shengchao Qin. 2008. Analysing
memory resource bounds for low-level programs. In International Symposium on Memory
Management. 151–160. https://www7.in.tum.de/~popeea/research/memory.ismm08.pdf

Wei-Ngan Chin, Huu Hai Nguyen, Shengchao Qin, and Martin C. Rinard. 2005. Memory
Usage Verification for OO Programs. In Static Analysis Symposium (SAS) (Lecture Notes
in Computer Science, Vol. 3672). Springer, 70–86. https://doi.org/10.1007/11547662_7

Brent Christian and Stuart Marks. 2021. JEP 421: Deprecate Finalization for Removal.
https://openjdk.org/jeps/421

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, Roderick Bloem, et al. 2018. Hand-
book of model checking. Vol. 10. Springer.

George E. Collins. 1960. A method for overlapping and erasure of lists. Commun. ACM 3,
12 (1960), 655–657. https://doi.org/10.1145/367487.367501

William R. Cook. 2009. On understanding data abstraction, revisited. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). 557–572. http://www.

cs.utexas.edu/~wcook/Drafts/2009/essay.pdf

Karl Crary and Stephanie Weirich. 2000. Resource bound certification. In Principles of
Programming Languages (POPL). 184–198. http://www.cs.cornell.edu/talc/papers/

resource_bound/res.pdf

Pedro da Rocha Pinto, Thomas Dinsdale-Young, and Philippa Gardner. 2014. TaDA: A
Logic for Time and Data Abstraction. In European Conference on Object-Oriented Program-
ming (ECOOP) (Lecture Notes in Computer Science, Vol. 8586), Richard E. Jones (Ed.).
Springer, 207–231. https://vtss.doc.ic.ac.uk/publications/daRochaPinto2014TaDA.pdf

N.G. de Bruijn. 1994. The Mathematical Language Automath, its Usage, and Some of its
Extensions. In Selected Papers on Automath, R.P. Nederpelt, J.H. Geuvers, and R.C. de
Vrijer (Eds.). Studies in Logic and the Foundations of Mathematics, Vol. 133. Elsevier,
73–100. https://doi.org/10.1016/S0049-237X(08)70200-3

http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_news_9.pdf
http://siglog.hosting.acm.org/wp-content/uploads/2016/07/siglog_news_9.pdf
http://flint.cs.yale.edu/flint/publications/veristack.pdf
http://flint.cs.yale.edu/flint/publications/veristack.pdf
https://www.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf
https://www.cs.yale.edu/homes/hoffmann/papers/amort_imp15.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
https://www7.in.tum.de/~popeea/research/memory.ismm08.pdf
https://doi.org/10.1007/11547662_7
https://openjdk.org/jeps/421
https://doi.org/10.1145/367487.367501
http://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf
http://www.cs.utexas.edu/~wcook/Drafts/2009/essay.pdf
http://www.cs.cornell.edu/talc/papers/resource_bound/res.pdf
http://www.cs.cornell.edu/talc/papers/resource_bound/res.pdf
https://vtss.doc.ic.ac.uk/publications/daRochaPinto2014TaDA.pdf
https://doi.org/10.1016/S0049-237X(08)70200-3

134 BIBLIOGRAPHY

Paulo Emílio de Vilhena and François Pottier. 2021. A Separation Logic for Effect Handlers.
Proceedings of the ACM on Programming Languages 5, POPL (Jan. 2021). http://cambium.

inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and
Hongseok Yang. 2013. Views: compositional reasoning for concurrent programs. In Prin-
ciples of Programming Languages (POPL). 287–300. http://cs.au.dk/~birke/papers/

views.pdf

Kevin Donnelly, J. J. Hallett, and Assaf J. Kfoury. 2006. Formal semantics of weak references.
In International Symposium on Memory Management. 126–137. https://doi.org/10.1145/

1133956.1133974

Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman, Mathias Payer,
Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey, and J. Alex Halderman. 2014.
The Matter of Heartbleed. In Internet Measurement Conference (IMC). https://doi.org/

10.1145/2663716.2663755

EATCS. 2016. Gödel Prize Citation. https://eatcs.org/index.php/component/content/

article/1-news/2280-2016-godel-prize.

Martin Elsman. 2023. Garbage-Collection Safety for Region-Based Type-Polymorphic Pro-
grams. Proceedings of the ACM on Programming Languages 7, PLDI (jun 2023). https:

//doi.org/10.1145/3591229

Marc Feeley. 1993. Polling Efficiently on Stock Hardware. In Functional Programming Lan-
guages and Computer Architecture (FPCA). 179–190. https://doi.org/10.1145/165180.

165205

Matthias Felleisen and Robert Hieb. 1992. The Revised Report on the Syntactic Theories
of Sequential Control and State. Theoretical Computer Science 103, 2 (1992), 235–271.
https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf

Christian Ferdinand, Reinhold Heckmann, and Bärbel Franzen. 2006. Static Memory and
Timing Analysis of Embedded Systems Code. In European Symposium on Verification and
Validation of Software Systems. https://www.absint.com/aiT_StackAnalyzer.pdf

Jean-Christophe Filliâtre. 2011. Deductive software verification. Software Tools for Technology
Transfer 13, 5 (2011), 397–403. https://doi.org/10.1007/s10009-011-0211-0

R. W. Floyd. 1967. Assigning meanings to programs. In Mathematical Aspects of Computer
Science (Proceedings of Symposia in Applied Mathematics, Vol. 19). American Mathemati-
cal Society, 19–32. https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf

Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear Regions Are All
You Need. In European Symposium on Programming (ESOP) (Lecture Notes in Com-
puter Science, Vol. 3924). Springer, 7–21. http://ttic.uchicago.edu/~fluet/research/

substruct-regions/ESOP06/esop06.pdf

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2018. ReLoC: A Mechanised Relational
Logic for Fine-Grained Concurrency. In Logic in Computer Science (LICS). 442–451. https:

//iris-project.org/pdfs/2018-lics-reloc-final.pdf

Dan Frumin, Robbert Krebbers, and Lars Birkedal. 2021. ReLoC Reloaded: A Mechanized
Relational Logic for Fine-Grained Concurrency and Logical Atomicity. Logical Methods in
Computer Science 17, 3 (2021). https://arxiv.org/abs/2006.13635v3

http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf
http://cambium.inria.fr/~fpottier/publis/de-vilhena-pottier-sleh.pdf
http://cs.au.dk/~birke/papers/views.pdf
http://cs.au.dk/~birke/papers/views.pdf
https://doi.org/10.1145/1133956.1133974
https://doi.org/10.1145/1133956.1133974
https://doi.org/10.1145/2663716.2663755
https://doi.org/10.1145/2663716.2663755
https://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
https://eatcs.org/index.php/component/content/article/1-news/2280-2016-godel-prize
https://doi.org/10.1145/3591229
https://doi.org/10.1145/3591229
https://doi.org/10.1145/165180.165205
https://doi.org/10.1145/165180.165205
https://www2.ccs.neu.edu/racket/pubs/tcs92-fh.pdf
https://www.absint.com/aiT_StackAnalyzer.pdf
https://doi.org/10.1007/s10009-011-0211-0
https://people.eecs.berkeley.edu/~necula/Papers/FloydMeaning.pdf
http://ttic.uchicago.edu/~fluet/research/substruct-regions/ESOP06/esop06.pdf
http://ttic.uchicago.edu/~fluet/research/substruct-regions/ESOP06/esop06.pdf
https://iris-project.org/pdfs/2018-lics-reloc-final.pdf
https://iris-project.org/pdfs/2018-lics-reloc-final.pdf
https://arxiv.org/abs/2006.13635v3

BIBLIOGRAPHY 135

Ming Fu, Yong Li, Xinyu Feng, Zhong Shao, and Yu Zhang. 2010. Reasoning about Op-
timistic Concurrency Using a Program Logic for History. In International Conference on
Concurrency Theory (CONCUR) (Lecture Notes in Computer Science, Vol. 6269). Springer,
388–402. https://doi.org/10.1007/978-3-642-15375-4_27

Diego Garbervetsky, Sergio Yovine, Víctor A. Braberman, Martín Rouaux, and Alejandro
Taboada. 2011. Quantitative dynamic-memory analysis for Java. Concurrency and Com-
putation Practice and Experience 23, 14 (2011), 1665–1678. https://doi.org/10.1002/

cpe.1656

Alejandro Gómez-Londoño and Magnus O. Myreen. 2021. A flat reachability-based mea-
sure for CakeML’s cost semantics. In Implementation of Functional Languages (IFL). 1–9.
https://doi.org/10.1145/3544885.3544887

Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira Taqdees Syeda, Magnus O. Myreen,
and Yong Kiam Tan. 2020. Do you have space for dessert? A verified space cost semantics
for CakeML programs. Proceedings of the ACM on Programming Languages 4, OOPSLA
(2020), 204:1–204:29. https://doi.org/10.1145/3428272

Georges Gonthier et al. 2008. Formal proof–the four-color theorem. Notices of the AMS 55,
11 (2008), 1382–1393. https://www.ams.org/notices/200811/tx081101382p.pdf

Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Gar-
illot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, et al. 2013.
A machine-checked proof of the odd order theorem. In Interactive Theorem Proving (ITP),
Sandrine Blazy, Christine Paulin-Mohring, and David Pichardie (Eds.). Springer, 163–179.
https://doi.org/10.1007/978-3-642-39634-2_14

Alexey Gotsman, Josh Berdine, Byron Cook, Noam Rinetzky, and Mooly Sagiv. 2007. Local
Reasoning for Storable Locks and Threads. In Asian Symposium on Programming Languages
and Systems (APLAS) (Lecture Notes in Computer Science, Vol. 4807). Springer, 19–37.
http://dx.doi.org/10.1007/978-3-540-76637-7_3

Alexey Gotsman, Noam Rinetzky, and Hongseok Yang. 2013. Verifying Concurrent Memory
Reclamation Algorithms with Grace. In European Symposium on Programming (ESOP)
(Lecture Notes in Computer Science, Vol. 7792). Springer, 249–269. https://software.

imdea.org/~gotsman/papers/recycling-esop13.pdf

Adrien Guatto, Sam Westrick, Ram Raghunathan, Umut A. Acar, and Matthew Fluet. 2018.
Hierarchical memory management for mutable state. In Principles and Practice of Parallel
Programming (PPoPP). https://doi.org/10.1145/3178487.3178494

Armaël Guéneau. 2019. Mechanized Verification of the Correctness and Asymptotic Complex-
ity of Programs. Ph. D. Dissertation. Université de Paris. https://tel.archives-ouvertes.

fr/tel-02437532

Theodore Hailperin. 1986. Formalization of Boole’s Logic. In Boole’s Logic and Probability.
Studies in Logic and the Foundations of Mathematics, Vol. 85. Elsevier, 135–172. https:

//www.sciencedirect.com/science/article/pii/S0049237X08702477

Timothy L. Harris. 2001. A Pragmatic Implementation of Non-blocking Linked-Lists. In
International Conference on Distributed Computing (DISC). Springer, 300–314. https:

//www.cl.cam.ac.uk/research/srg/netos/papers/2001-caslists.pdf

Timothy L. Harris, Keir Fraser, and Ian A. Pratt. 2002. A Practical Multi-word Compare-
and-Swap Operation. In Distributed Computing, Dahlia Malkhi (Ed.). Springer, 265–279.
https://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf

https://doi.org/10.1007/978-3-642-15375-4_27
https://doi.org/10.1002/cpe.1656
https://doi.org/10.1002/cpe.1656
https://doi.org/10.1145/3544885.3544887
https://doi.org/10.1145/3428272
https://www.ams.org/notices/200811/tx081101382p.pdf
https://doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-540-76637-7_3
https://software.imdea.org/~gotsman/papers/recycling-esop13.pdf
https://software.imdea.org/~gotsman/papers/recycling-esop13.pdf
https://doi.org/10.1145/3178487.3178494
https://tel.archives-ouvertes.fr/tel-02437532
https://tel.archives-ouvertes.fr/tel-02437532
https://www.sciencedirect.com/science/article/pii/S0049237X08702477
https://www.sciencedirect.com/science/article/pii/S0049237X08702477
https://www.cl.cam.ac.uk/research/srg/netos/papers/2001-caslists.pdf
https://www.cl.cam.ac.uk/research/srg/netos/papers/2001-caslists.pdf
https://www.cl.cam.ac.uk/research/srg/netos/papers/2002-casn.pdf

136 BIBLIOGRAPHY

Barry Hayes. 1997. Ephemerons: A New Finalization Mechanism. In Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA), Mary E. S. Loomis, Toby
Bloom, and A. Michael Berman (Eds.). ACM, 176–183. https://doi.org/10.1145/263698.

263733

Guanhua He, Shengchao Qin, Chenguang Luo, and Wei-Ngan Chin. 2009. Memory Us-
age Verification Using Hip/Sleek. In Automated Technology for Verification and Analy-
sis (ATVA) (Lecture Notes in Computer Science, Vol. 5799). Springer, 166–181. https:

//dro.dur.ac.uk/6241/

Maurice Herlihy and Nir Shavit. 2012. The Art of Multiprocessor Programming, Revised
Reprint (1st ed.). Morgan Kaufmann Publishers Inc.

Maurice P. Herlihy and Jeannette M. Wing. 1990. Linearizability: a correctness condition
for concurrent objects. ACM Transactions on Programming Languages and Systems 12, 3
(July 1990), 463–492. https://doi.org/10.1145/78969.78972

C. A. R. Hoare. 1969. An axiomatic basis for computer programming. Commun. ACM 12,
10 (1969), 576–580. http://doi.acm.org/10.1145/363235.363259

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012a. Multivariate amortized resource
analysis. ACM Transactions on Programming Languages and Systems 34, 3 (2012), 14:1–
14:62. https://www.cs.cmu.edu/~janh/assets/pdf/HoffmannAH10.pdf

Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. 2012b. Resource Aware ML. In Computer
Aided Verification (CAV) (Lecture Notes in Computer Science, Vol. 7358). Springer, 781–
786. http://dx.doi.org/10.1007/978-3-642-31424-7_64

Jan Hoffmann, Ankush Das, and Shu-Chun Weng. 2017. Towards automatic resource bound
analysis for OCaml. In Principles of Programming Languages (POPL). 359–373. http:

//www.cs.cmu.edu/~janh/papers/HoffmannDW17.pdf

Jan Hoffmann and Steffen Jost. 2022. Two decades of automatic amortized resource analysis.
Mathematical Structures in Computer Science 32, 6 (2022), 729–759. https://doi.org/

10.1017/S0960129521000487

Martin Hofmann. 1999. Linear Types and Non-Size-Increasing Polynomial Time Compu-
tation. In Logic in Computer Science (LICS). 464–473. https://doi.org/10.1109/LICS.

1999.782641

Martin Hofmann. 2000. A type system for bounded space and functional in-place update.
Nordic Journal of Computing 7, 4 (2000), 258–289. http://www.dcs.ed.ac.uk/home/mxh/

nordic.ps.gz

Martin Hofmann. 2003. Linear types and non-size-increasing polynomial time computa-
tion. Information and Computation 183, 1 (2003), 57–85. https://doi.org/10.1016/

S0890-5401(03)00009-9

Martin Hofmann and Steffen Jost. 2003. Static prediction of heap space usage for first-
order functional programs. In Principles of Programming Languages (POPL). 185–197.
http://www2.tcs.ifi.lmu.de/~jost/research/POPL_2003_Jost_Hofmann.pdf

Martin Hofmann and Steffen Jost. 2006. Type-Based Amortised Heap-Space Analysis.
In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science,
Vol. 3924). Springer, 22–37. https://www2.tcs.ifi.lmu.de/~jost/research/hofmann_

jost_esop06_postfinal.pdf

https://doi.org/10.1145/263698.263733
https://doi.org/10.1145/263698.263733
https://dro.dur.ac.uk/6241/
https://dro.dur.ac.uk/6241/
https://doi.org/10.1145/78969.78972
http://doi.acm.org/10.1145/363235.363259
https://www.cs.cmu.edu/~janh/assets/pdf/HoffmannAH10.pdf
http://dx.doi.org/10.1007/978-3-642-31424-7_64
http://www.cs.cmu.edu/~janh/papers/HoffmannDW17.pdf
http://www.cs.cmu.edu/~janh/papers/HoffmannDW17.pdf
https://doi.org/10.1017/S0960129521000487
https://doi.org/10.1017/S0960129521000487
https://doi.org/10.1109/LICS.1999.782641
https://doi.org/10.1109/LICS.1999.782641
http://www.dcs.ed.ac.uk/home/mxh/nordic.ps.gz
http://www.dcs.ed.ac.uk/home/mxh/nordic.ps.gz
https://doi.org/10.1016/S0890-5401(03)00009-9
https://doi.org/10.1016/S0890-5401(03)00009-9
http://www2.tcs.ifi.lmu.de/~jost/research/POPL_2003_Jost_Hofmann.pdf
https://www2.tcs.ifi.lmu.de/~jost/research/hofmann_jost_esop06_postfinal.pdf
https://www2.tcs.ifi.lmu.de/~jost/research/hofmann_jost_esop06_postfinal.pdf

BIBLIOGRAPHY 137

Martin Hofmann and Dulma Rodriguez. 2009. Efficient Type-Checking for Amortised Heap-
Space Analysis. In Computer Science Logic (Lecture Notes in Computer Science, Vol. 5771).
Springer, 317–331. https://doi.org/10.1007/978-3-642-04027-6_24

Martin Hofmann and Dulma Rodriguez. 2013. Automatic Type Inference for Amor-
tised Heap-Space Analysis. In European Symposium on Programming (ESOP) (Lecture
Notes in Computer Science, Vol. 7792). Springer, 593–613. https://doi.org/10.1007/

978-3-642-37036-6_32

Chung-Kil Hur, Derek Dreyer, and Viktor Vafeiadis. 2011. Separation Logic in the Presence
of Garbage Collection. In Logic in Computer Science (LICS). 247–256. http://people.

mpi-sws.org/~dreyer/papers/gcsl/paper.pdf

Sadiq Jaffer. 2021. OCaml Compiler Pull Request 10462: Add [@poll error] attribute. https:
//github.com/ocaml/ocaml/pull/10462.

Richard Jones, Antony Hosking, and Eliot Moss. 2012. The Garbage Collection Handbook.
Chapman and Hall/CRC. https://gchandbook.org/

Jaehwang Jung, Janggun Lee, Jaemin Choi, Jaewoo Kim, Sunho Park, and Jeehoon Kang.
2023. Modular Verification of Safe Memory Reclamation in Concurrent Separation Logic.
Proceedings of the ACM on Programming Languages 7, OOPSLA2 (2023), 828–856. https:

//doi.org/10.1145/3622827

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2018a. RustBelt:
securing the foundations of the Rust programming language. Proceedings of the ACM
on Programming Languages 2, POPL (2018), 66:1–66:34. https://people.mpi-sws.org/

~dreyer/papers/rustbelt/paper.pdf

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek
Dreyer. 2018b. Iris from the ground up: A modular foundation for higher-order concurrent
separation logic. Journal of Functional Programming 28 (2018), e20. https://people.

mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany,
Derek Dreyer, and Bart Jacobs. 2020. The Future is Ours: Prophecy Variables in Separation
Logic. Proceedings of the ACM on Programming Languages 4, POPL (Jan. 2020), 45:1–
45:32. https://plv.mpi-sws.org/prophecies/paper.pdf

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
and Derek Dreyer. 2015. Iris: monoids and invariants as an orthogonal basis for con-
current reasoning. In Principles of Programming Languages (POPL). 637–650. http:

//plv.mpi-sws.org/iris/paper.pdf

David M. Kahn and Jan Hoffmann. 2021. Automatic amortized resource analysis with the
quantum physicist’s method. Proceedings of the ACM on Programming Languages 5, ICFP
(2021), 1–29. https://doi.org/10.1145/3473581

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017.
Strong Logic for Weak Memory: Reasoning About Release-Acquire Consistency in Iris.
In European Conference on Object-Oriented Programming (ECOOP). 17:1–17:29. https:

//people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf

Vesa Karvonen. 2023a. Saturn Issue 63: Michael_scott_queue space safety. https://github.
com/ocaml-multicore/saturn/issues/63.

https://doi.org/10.1007/978-3-642-04027-6_24
https://doi.org/10.1007/978-3-642-37036-6_32
https://doi.org/10.1007/978-3-642-37036-6_32
http://people.mpi-sws.org/~dreyer/papers/gcsl/paper.pdf
http://people.mpi-sws.org/~dreyer/papers/gcsl/paper.pdf
https://github.com/ocaml/ocaml/pull/10462
https://github.com/ocaml/ocaml/pull/10462
https://gchandbook.org/
https://doi.org/10.1145/3622827
https://doi.org/10.1145/3622827
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/rustbelt/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://plv.mpi-sws.org/prophecies/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
http://plv.mpi-sws.org/iris/paper.pdf
https://doi.org/10.1145/3473581
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
https://people.mpi-sws.org/~dreyer/papers/iris-weak/paper.pdf
https://github.com/ocaml-multicore/saturn/issues/63
https://github.com/ocaml-multicore/saturn/issues/63

138 BIBLIOGRAPHY

Vesa Karvonen. 2023b. Using [@poll error] attribute to implement
systhread safe data structures. https://discuss.ocaml.org/t/

using-poll-error-attribute-to-implement-systhread-safe-data-structures/12804

Ioannis T. Kassios and Eleftherios Kritikos. 2013. A Discipline for Program Verification Based
on Backpointers and Its Use in Observational Disjointness. In European Symposium on
Programming (ESOP) (Lecture Notes in Computer Science, Vol. 7792). Springer, 149–168.
https://doi.org/10.1007/978-3-642-37036-6_10

Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell,
Harvey Tuch, and Simon Winwood. 2009. seL4: formal verification of an OS kernel. In
Symposium on Operating Systems Principles (SOSP). ACM, 207–220. https://doi.org/

10.1145/1629575.1629596

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser,
Amin Timany, Arthur Charguéraud, and Derek Dreyer. 2018. MoSeL: a general, extensible
modal framework for interactive proofs in separation logic. Proceedings of the ACM on
Programming Languages 2, ICFP (2018), 77:1–77:30. https://doi.org/10.1145/3236772

Robert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive proofs in higher-order
concurrent separation logic. In Principles of Programming Languages (POPL). http:

//cs.au.dk/~birke/papers/ipm-conf.pdf

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. 2014. CakeML: a
verified implementation of ML. In Principles of Programming Languages (POPL). 179–192.
https://cakeml.org/popl14.pdf

Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs. IEEE Trans. Computers 28, 9 (1979). https://doi.org/10.1109/

TC.1979.1675439

Rich Lander. 2015. Announcing .NET Framework 4.6. https://devblogs.microsoft.com/

dotnet/announcing-net-framework-4-6/.

Peter J. Landin. 1964. The Mechanical Evaluation of Expressions. Computer Journal 6, 4
(Jan. 1964), 308–320. https://doi.org/10.1093/comjnl/6.4.308

Gérard Le Lann. 1997. An analysis of the Ariane 5 flight 501 failure-a system engineer-
ing perspective. In Proceedings International Conference and Workshop on Engineering of
Computer-Based Systems. 339–346. https://doi.org/10.1109/ECBS.1997.581900

Xavier Leroy. 2024. The CompCert C compiler. http://compcert.org/.

Nancy G. Leveson and Clark S. Turner. 1993. An investigation of the Therac-25 accidents.
Computer 26, 7 (1993), 18–41. https://doi.org/10.1109/MC.1993.274940

Yi Lin, Kunshan Wang, Stephen M. Blackburn, Antony L. Hosking, and Michael Norrish.
2015. Stop and go: understanding yieldpoint behavior. In International Symposium on
Memory Management. 70–80. https://doi.org/10.1145/2754169.2754187

Daniel Loeb. 1992. Sets with a negative number of elements. Advances in Mathematics 91, 1
(1992), 64–74. https://www.sciencedirect.com/science/article/pii/0001870892900119

Anton Lorenzen, Daan Leijen, and Wouter Swierstra. 2023. FP2: Fully in-Place Functional
Programming. Proceedings of the ACM on Programming Languages 7, ICFP (Aug. 2023),
275–304. https://doi.org/10.1145/3607840

https://discuss.ocaml.org/t/using-poll-error-attribute-to-implement-systhread-safe-data-structures/12804
https://discuss.ocaml.org/t/using-poll-error-attribute-to-implement-systhread-safe-data-structures/12804
https://doi.org/10.1007/978-3-642-37036-6_10
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/3236772
http://cs.au.dk/~birke/papers/ipm-conf.pdf
http://cs.au.dk/~birke/papers/ipm-conf.pdf
https://cakeml.org/popl14.pdf
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
https://devblogs.microsoft.com/dotnet/announcing-net-framework-4-6/
https://devblogs.microsoft.com/dotnet/announcing-net-framework-4-6/
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1109/ECBS.1997.581900
http://compcert.org/
https://doi.org/10.1109/MC.1993.274940
https://doi.org/10.1145/2754169.2754187
https://www.sciencedirect.com/science/article/pii/0001870892900119
https://doi.org/10.1145/3607840

BIBLIOGRAPHY 139

Julian Mackay, Susan Eisenbach, James Noble, and Sophia Drossopoulou. 2022. Necessity
specifications for robustness. Proceedings of the ACM on Programming Languages 6, OOP-
SLA2 (oct 2022). https://doi.org/10.1145/3563317

Jean-Marie Madiot and François Pottier. 2022. A Separation Logic for Heap
Space under Garbage Collection. Proceedings of the ACM on Programming Lan-
guages 6, POPL (Jan. 2022), 718–747. http://cambium.inria.fr/~fpottier/publis/

madiot-pottier-diamonds-2022.pdf

John McCarthy. 1960. Recursive functions of symbolic expressions and their computation by
machine, Part I. Commun. ACM 3, 4 (April 1960), 184–195. https://doi.org/10.1145/

367177.367199

Paul McKenney, Michael Wong, Maged M. Michael, Andrew Hunter, Daisy Hollman, JF
Bastien, Hans Boehm, David Goldblatt, Frank Birbacher, Erik Rigtorp, Tomasz Kamiński,
Olivier Giroux, David Vernet, and Timur Doumler. 2023. Read-Copy Update (RCU).
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf

Paul E. McKenney. 2004. Exploiting deferred destruction: an analysis of read-copy-update
techniques in operating system kernels. Ph. D. Dissertation. Oregon Health & Science Uni-
versity. http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf

Roland Meyer and Sebastian Wolff. 2019. Decoupling lock-free data structures from memory
reclamation for static analysis. Proceedings of the ACM on Programming Languages 3,
POPL (Jan. 2019). https://doi.org/10.1145/3290371

Maged M. Michael. 2004. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Transactions on Parallel and Distributed Systems 15, 6 (2004), 491–504. https:

//doi.org/10.1109/TPDS.2004.8

Maged M. Michael and Michael L. Scott. 1996. Simple, fast, and practical non-blocking and
blocking concurrent queue algorithms. In Symposium on Principles of Distributed Comput-
ing (PODC). ACM, 267–275. https://doi.org/10.1145/248052.248106

Maged M. Michael, Michael Wong, Paul McKenney, Andrew Hunter, Daisy Hollman, JF
Bastien, Hans Boehm, David Goldblatt, Frank Birbacher, and Mathias Stearn. 2023. Haz-
ard Pointers for C++26. https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/

p2530r3.pdf

Microsoft. 2024. Documentation of the GC class of the .NET 8.0 framework. https:

//learn.microsoft.com/en-us/dotnet/api/system.gc?view=net-8.0

Alexandre Moine. 2024. Formal Verification of Heap Space Bounds under Garbage
Collection - Mechnization. https://github.com/nobrakal/irisfit The last commit
at the time of writing is archived at https://archive.softwareheritage.org/swh:1:

snp:8c4b8d3adc356c2b9c1f370c2c4e4f191f9eeff0;origin=https://github.com/nobrakal/

irisfit.

Alexandre Moine, Arthur Charguéraud, and François Pottier. 2023. A High-Level Separation
Logic for Heap Space under Garbage Collection. Proceedings of the ACM on Programming
Languages 7, POPL (Jan. 2023), 718–747. https://doi.org/10.1145/3571218

Alexandre Moine, Sam Westrick, and Stephanie Balzer. 2024. DisLog: A Separation Logic for
Disentanglement. Proceedings of the ACM on Programming Languages 8, POPL, Article
11 (jan 2024). https://doi.org/10.1145/3632853

https://doi.org/10.1145/3563317
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
https://doi.org/10.1145/367177.367199
https://doi.org/10.1145/367177.367199
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2545r4.pdf
http://www.rdrop.com/~paulmck/RCU/RCUdissertation.2004.07.14e1.pdf
https://doi.org/10.1145/3290371
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1109/TPDS.2004.8
https://doi.org/10.1145/248052.248106
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2530r3.pdf
https://learn.microsoft.com/en-us/dotnet/api/system.gc?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.gc?view=net-8.0
https://github.com/nobrakal/irisfit
https://archive.softwareheritage.org/swh:1:snp:8c4b8d3adc356c2b9c1f370c2c4e4f191f9eeff0;origin=https://github.com/nobrakal/irisfit
https://archive.softwareheritage.org/swh:1:snp:8c4b8d3adc356c2b9c1f370c2c4e4f191f9eeff0;origin=https://github.com/nobrakal/irisfit
https://archive.softwareheritage.org/swh:1:snp:8c4b8d3adc356c2b9c1f370c2c4e4f191f9eeff0;origin=https://github.com/nobrakal/irisfit
https://doi.org/10.1145/3571218
https://doi.org/10.1145/3632853

140 BIBLIOGRAPHY

Francis L. Morris and Clifford B. Jones. 1984. An Early Program Proof by Alan Turing.
Annals of the History of Computing 6, 2 (1984), 139–143. https://doi.org/10.1109/MAHC.

1984.10017

J. Gregory Morrisett, Matthias Felleisen, and Robert Harper. 1995. Abstract Models of
Memory Management. In Functional Programming Languages and Computer Architecture
(FPCA). 66–77. https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf

Ike Mulder, Łukasz Czajka, and Robbert Krebbers. 2023. Beyond Backtracking: Connections
in Fine-Grained Concurrent Separation Logic. Proceedings of the ACM on Programming
Languages 7, PLDI (jun 2023). https://doi.org/10.1145/3591275

Ike Mulder and Robbert Krebbers. 2023. Proof Automation for Linearizability in Separa-
tion Logic. Proceedings of the ACM on Programming Languages 7, OOPSLA1 (apr 2023).
https://doi.org/10.1145/3586043

Ike Mulder, Robbert Krebbers, and Herman Geuvers. 2022. Diaframe: automated verifi-
cation of fine-grained concurrent programs in Iris. In Programming Language Design and
Implementation (PLDI). 809–824. https://doi.org/10.1145/3519939.3523432

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2019. Time credits and time re-
ceipts in Iris. In European Symposium on Programming (ESOP) (Lecture Notes in Com-
puter Science, Vol. 11423). Springer, 1–27. http://cambium.inria.fr/~fpottier/publis/

mevel-jourdan-pottier-time-in-iris-2019.pdf

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: A Concur-
rent Separation Logic for Multicore OCaml. Proceedings of the ACM on Program-
ming Languages 4, ICFP (June 2020). http://cambium.inria.fr/~fpottier/publis/

mevel-jourdan-pottier-cosmo-2020.pdf

Huu Hai Nguyen, Cristina David, Shengchao Qin, and Wei-Ngan Chin. 2007. Automated Veri-
fication of Shape and Size Properties Via Separation Logic. In Verification, Model Checking
and Abstract Interpretation (VMCAI) (Lecture Notes in Computer Science, Vol. 4349).
Springer, 251–266. https://dro.dur.ac.uk/6213/

Yue Niu and Jan Hoffmann. 2018. Automatic Space Bound Analysis for Functional Pro-
grams with Garbage Collection. In Logic for Programming Artificial Intelligence and Rea-
soning (LPAR) (EPiC Series in Computing, Vol. 57). 543–563. https://easychair.org/

publications/paper/dcnD

Peter W. O’Hearn. 2007. Resources, Concurrency and Local Reasoning. Theoretical Computer
Science 375, 1–3 (May 2007), 271–307. http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/

concurrency.pdf

Peter W. O’Hearn. 2019. Separation logic. Commun. ACM 62, 2 (2019), 86–95. https:

//doi.org/10.1145/3211968

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Pro-
grams that Alter Data Structures. In Computer Science Logic (Lecture Notes in Computer
Science, Vol. 2142). Springer, 1–19. http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/

localreasoning.pdf

Zoe Paraskevopoulou and Andrew W. Appel. 2019. Closure conversion is safe for space.
Proceedings of the ACM on Programming Languages 3, ICFP (2019), 83:1–83:29. https:

//doi.org/10.1145/3341687

https://doi.org/10.1109/MAHC.1984.10017
https://doi.org/10.1109/MAHC.1984.10017
https://www.cs.cmu.edu/~rwh/papers/gc/fpca95.pdf
https://doi.org/10.1145/3591275
https://doi.org/10.1145/3586043
https://doi.org/10.1145/3519939.3523432
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-time-in-iris-2019.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf
http://cambium.inria.fr/~fpottier/publis/mevel-jourdan-pottier-cosmo-2020.pdf
https://dro.dur.ac.uk/6213/
https://easychair.org/publications/paper/dcnD
https://easychair.org/publications/paper/dcnD
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
http://www.cs.ucl.ac.uk/staff/p.ohearn/papers/concurrency.pdf
https://doi.org/10.1145/3211968
https://doi.org/10.1145/3211968
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/localreasoning.pdf
http://www0.cs.ucl.ac.uk/staff/p.ohearn/papers/localreasoning.pdf
https://doi.org/10.1145/3341687
https://doi.org/10.1145/3341687

BIBLIOGRAPHY 141

Matthew Parkinson. 2010. The Next 700 Separation Logics. In Verified Software: Theories,
Tools, Experiments, Gary T. Leavens, Peter O’Hearn, and Sriram K. Rajamani (Eds.).
Springer, 169–182. https://doi.org/10.1007/978-3-642-15057-9_12

Matthew J. Parkinson, Richard Bornat, and Peter W. O’Hearn. 2007. Modular verification of
a non-blocking stack. In Principles of Programming Languages (POPL). 297–302. https:

//doi.org/10.1145/1190216.1190261

Simon Peyton Jones, Simon Marlow, and Conal Elliott. 1999. Stretching the storage manager:
weak pointers and stable names in Haskell. In Implementation of Functional Languages
(IFL) (LNCS). Springer. https://www.microsoft.com/en-us/research/publication/

stretching-the-storage-manager-weak-pointers-and-stable-names-in-haskell/

Benjamin C. Pierce. 2002. Types and Programming Languages. MIT Press.

Alexandre Pilkiewicz and François Pottier. 2011. The essence of monotonic state. In Types
in Language Design and Implementation (TLDI). http://cambium.inria.fr/~fpottier/

publis/pilkiewicz-pottier-monotonicity.pdf

Azalea Raad, Josh Berdine, Hoang-Hai Dang, Derek Dreyer, Peter W. O’Hearn, and Jules
Villard. 2020. Local Reasoning About the Presence of Bugs: Incorrectness Separation Logic.
In Computer Aided Verification (CAV) (Lecture Notes in Computer Science, Vol. 12225).
Springer, 225–252. https://plv.mpi-sws.org/ISL/

Ram Raghunathan, Stefan K. Muller, Umut A. Acar, and Guy E. Blelloch. 2016. Hierarchi-
cal memory management for parallel programs. In International Conference on Functional
Programming (ICFP). https://doi.org/10.1145/2951913.2951935

John C. Reynolds. 1975. User-defined Types and Procedural Data Structures as Complemen-
tary Approaches to Data Abstraction. Technical Report 1278. Carnegie Mellon University.
http://repository.cmu.edu/compsci/1278/

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In
Logic in Computer Science (LICS). 55–74. http://www.cs.cmu.edu/~jcr/seplogic.pdf

Xavier Rival and Kwangkeun Yi. 2020. Introduction to static analysis: an abstract
interpretation perspective. Mit Press. https://mitpress.mit.edu/9780262043410/

introduction-to-static-analysis/

K. C. Sivaramakrishnan, Stephen Dolan, Leo White, Sadiq Jaffer, Tom Kelly, Anmol Sahoo,
Sudha Parimala, Atul Dhiman, and Anil Madhavapeddy. 2020. Retrofitting Parallelism
onto OCaml. Proceedings of the ACM on Programming Languages 4, ICFP (Aug. 2020),
113:1–113:30. https://doi.org/10.1145/3408995

Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster, Fabian
Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. 2020. The Meta-
Coq Project. Journal of Automated Reasoning (Feb. 2020). https://doi.org/10.1007/

s10817-019-09540-0

Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Botsch Nielsen, Nicolas
Tabareau, and Théo Winterhalter. 2023. Correct and Complete Type Checking and Cer-
tified Erasure for Coq, in Coq. (April 2023). https://inria.hal.science/hal-04077552

Unpublished.

Simon Spies, Lennard Gäher, Joseph Tassarotti, Ralf Jung, Robbert Krebbers, Lars Birkedal,
and Derek Dreyer. 2022. Later credits: resourceful reasoning for the later modality.
Proceedings of the ACM on Programming Languages 6, ICFP (2022), 283–311. https:

//doi.org/10.1145/3547631

https://doi.org/10.1007/978-3-642-15057-9_12
https://doi.org/10.1145/1190216.1190261
https://doi.org/10.1145/1190216.1190261
https://www.microsoft.com/en-us/research/publication/stretching-the-storage-manager-weak-pointers-and-stable-names-in-haskell/
https://www.microsoft.com/en-us/research/publication/stretching-the-storage-manager-weak-pointers-and-stable-names-in-haskell/
http://cambium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
http://cambium.inria.fr/~fpottier/publis/pilkiewicz-pottier-monotonicity.pdf
https://plv.mpi-sws.org/ISL/
https://doi.org/10.1145/2951913.2951935
http://repository.cmu.edu/compsci/1278/
http://www.cs.cmu.edu/~jcr/seplogic.pdf
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://mitpress.mit.edu/9780262043410/introduction-to-static-analysis/
https://doi.org/10.1145/3408995
https://doi.org/10.1007/s10817-019-09540-0
https://doi.org/10.1007/s10817-019-09540-0
https://inria.hal.science/hal-04077552
https://doi.org/10.1145/3547631
https://doi.org/10.1145/3547631

142 BIBLIOGRAPHY

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates.
In European Symposium on Programming (ESOP) (Lecture Notes in Computer Science,
Vol. 8410). Springer, 149–168. http://cs.au.dk/~birke/papers/icap-conf.pdf

The Agda Development Team. 2024. The Agda Programing Language. https://wiki.

portal.chalmers.se/agda/pmwiki.php

The Coq Development Team. 2024. The Coq Proof Assistant. http://coq.inria.fr/

The Coq-std++ Team. 2023. Coq-std++: An extended standard library for Coq. https:

//gitlab.mpi-sws.org/iris/stdpp

The HOL Development Team. 2024. The HOL Theorem Prover. https://

hol-theorem-prover.org/

The Iris Developement Team. 2024. The Iris Project. https://gitlab.mpi-sws.org/

iris/iris/ The last commit at the time of writing is archived at https://archive.

softwareheritage.org/swh:1:snp:a3b01e150fc67626d9c4082c0b205863017382c6;origin=

https://gitlab.mpi-sws.org/iris/iris.

The Lean Development Team. 2024. The Lean Theorem Prover. https://

leanprover-community.github.io/

The saturn Developement Team. 2024. Michael and Scott’s queue im-
plementation in saturn. https://archive.softwareheritage.org/swh:1:

cnt:2c60ec92098f9f95e72debec5a85155e8e0bb28e;origin=https://github.com/

ocaml-multicore/saturn;path=/src_lockfree/michael_scott_queue.ml

Amin Timany, Robbert Krebbers, Derek Dreyer, and Lars Birkedal. 2024. A
Logical Approach to Type Soundness. (2024). https://iris-project.org/pdfs/

2024-jacm-logical-type-soundness.pdf To appear in Jounral of the ACM.

Bogdan Tofan, Gerhard Schellhorn, and Wolfgang Reif. 2011. Formal Verification of a Lock-
Free Stack with Hazard Pointers. In Theoretical Aspects of Computing (ICTAC) (Lecture
Notes in Computer Science, Vol. 6916). Springer, 239–255. https://opus.bibliothek.

uni-augsburg.de/opus4/frontdoor/index/index/docId/55403

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A Retrospective on
Region-Based Memory Management. Higher-Order and Symbolic Computation 17, 3 (Sept.
2004), 245–265. https://doi.org/10.1023/B:LISP.0000029446.78563.a4

Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management. Information
and Computation 132, 2 (1997), 109–176. http://www.irisa.fr/prive/talpin/papers/

ic97.pdf

R. Kent Treiber. 1986. Systems programming: Coping with parallelism. https://dominoweb.

draco.res.ibm.com/reports/rj5118.pdf

Alan Turing. 1949. Checking a Large Routine. Report of a Conference on High Speed Auto-
matic Calculating Machines (1949), 67–69. See the corrected and commented version by
Francis L. Morris and Clifford B. Jones: An Early Program Proof by Alan Turing. Annals
of the History of Computing 6, 2 (1984).

U.S.-Canada Power System Outage Task Force. 2004. Final report on the August 14, 2003
blackout in the United States and Canada : causes and recommendations. https://www3.

epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1165.pdf

http://cs.au.dk/~birke/papers/icap-conf.pdf
https://wiki.portal.chalmers.se/agda/pmwiki.php
https://wiki.portal.chalmers.se/agda/pmwiki.php
http://coq.inria.fr/
https://gitlab.mpi-sws.org/iris/stdpp
https://gitlab.mpi-sws.org/iris/stdpp
https://hol-theorem-prover.org/
https://hol-theorem-prover.org/
https://gitlab.mpi-sws.org/iris/iris/
https://gitlab.mpi-sws.org/iris/iris/
https://archive.softwareheritage.org/swh:1:snp:a3b01e150fc67626d9c4082c0b205863017382c6;origin=https://gitlab.mpi-sws.org/iris/iris
https://archive.softwareheritage.org/swh:1:snp:a3b01e150fc67626d9c4082c0b205863017382c6;origin=https://gitlab.mpi-sws.org/iris/iris
https://archive.softwareheritage.org/swh:1:snp:a3b01e150fc67626d9c4082c0b205863017382c6;origin=https://gitlab.mpi-sws.org/iris/iris
https://leanprover-community.github.io/
https://leanprover-community.github.io/
https://archive.softwareheritage.org/swh:1:cnt:2c60ec92098f9f95e72debec5a85155e8e0bb28e;origin=https://github.com/ocaml-multicore/saturn;path=/src_lockfree/michael_scott_queue.ml
https://archive.softwareheritage.org/swh:1:cnt:2c60ec92098f9f95e72debec5a85155e8e0bb28e;origin=https://github.com/ocaml-multicore/saturn;path=/src_lockfree/michael_scott_queue.ml
https://archive.softwareheritage.org/swh:1:cnt:2c60ec92098f9f95e72debec5a85155e8e0bb28e;origin=https://github.com/ocaml-multicore/saturn;path=/src_lockfree/michael_scott_queue.ml
https://iris-project.org/pdfs/2024-jacm-logical-type-soundness.pdf
https://iris-project.org/pdfs/2024-jacm-logical-type-soundness.pdf
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/55403
https://opus.bibliothek.uni-augsburg.de/opus4/frontdoor/index/index/docId/55403
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
http://www.irisa.fr/prive/talpin/papers/ic97.pdf
http://www.irisa.fr/prive/talpin/papers/ic97.pdf
https://dominoweb.draco.res.ibm.com/reports/rj5118.pdf
https://dominoweb.draco.res.ibm.com/reports/rj5118.pdf
https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1165.pdf
https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1165.pdf

BIBLIOGRAPHY 143

Viktor Vafeiadis and Matthew Parkinson. 2007. A Marriage of Rely/Guarantee and Separation
Logic. In International Conference on Concurrency Theory (CONCUR), Luís Caires and
Vasco T. Vasconcelos (Eds.). Springer, 256–271. https://people.mpi-sws.org/~viktor/

papers/concur2007-marriage.pdf

Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott
queue. In Certified Programs and Proofs (CPP). 76–90. https://cs.au.dk/~birke/papers/

2021-ms-queue-final.pdf

Sam Westrick, Jatin Arora, and Umut A. Acar. 2022. Entanglement Detection with Near-Zero
Cost. Proceedings of the ACM on Programming Languages 6, ICFP (aug 2022). https:

//doi.org/10.1145/3547646

Sam Westrick, Rohan Yadav, Matthew Fluet, and Umut A. Acar. 2020. Disentanglement in
Nested-Parallel Programs. Proceedings of the ACM on Programming Languages 4, POPL
(jan 2020). https://doi.org/10.1145/3371115

Hassler Whitney. 1933. Characteristic Functions and the Algebra of Logic. Annals of Math-
ematics 34, 3 (1933), 405–414. http://www.jstor.org/stable/1968168

https://people.mpi-sws.org/~viktor/papers/concur2007-marriage.pdf
https://people.mpi-sws.org/~viktor/papers/concur2007-marriage.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://doi.org/10.1145/3547646
https://doi.org/10.1145/3547646
https://doi.org/10.1145/3371115
http://www.jstor.org/stable/1968168

	Introduction
	General Concepts
	Proving Programs Correct
	Verification of Resource Bounds
	Contributions and Overview
	Research Output: Publications and Mechanization

	Key Ideas
	Roots and Garbage Collection
	Maximum Heap Size and Blocking Memory Allocation
	Protected Sections
	Polling Points
	A Concurrent Separation Logic for Heap Space
	Closures

	Why Treiber's Stack Needs Protected Sections
	Naive Implementation of Treiber's Stack
	Space Usage of Treiber's Stack without Protected Sections
	Space Usage of Treiber's Stack with Protected Sections

	Syntax and Semantics of LambdaFit
	Syntax
	Memory Blocks, Stores, and Heap Size
	Thread Pools and Configurations
	The Head Reduction Relation
	The Step Relation
	The Garbage Collection Relation
	The Action Relation
	Enabled Actions
	The Main Reduction Relation

	Program Logic: Assertions
	Triples
	Ghost Updates
	Points-to Assertions
	Sizeof Assertions
	Space Credits
	Pointed-By-Heap Assertions
	Pointed-By-Thread Assertions
	Inside and Outside Assertions
	Deallocation Witnesses
	Liveness-Based Cancellable Invariants

	Program Logic: Reasoning Rules
	Logical Deallocation
	Reasoning Rules for Terms
	Reasoning about Protected Sections
	Reasoning under Evaluation Contexts
	Locally Trading Trimming for a Simpler and More Powerful Bind Rule
	Logical Deallocation of Cycles

	Safety, Liveness and Core Soundness Theorems
	Safety
	Liveness
	The Oblivious Semantics and the Core Soundness
	Deriving Safety from Core Soundness
	Deriving Liveness from Safety

	Proof of the Core Soundness Theorem
	Definition of the Weakest Precondition Modality
	Auxiliary Definitions
	Resource Algebras
	State Interpretation and Definition of Assertions
	Proving the Core Soundness Theorem

	Closures
	Environments
	Closure Implementation
	Low-Level Closure API
	Low-Level Closure API: Implementation Details
	High-Level Closure API
	High-Level Closure API: Implementation Details

	Triples with Souvenir
	Those Who Cannot Remember the Past Are Condemned to Repeat It
	Internals of Souvenirs

	Sequential Case Studies
	Containers: A Generic Approach
	Linked Lists and Linked List Reversal
	Continuation-Passing Style
	Sequential Stacks
	A Circular Singly-Linked List

	Concurrent Case Studies
	Atomic Triples
	Fetch-and-Add
	A Concurrent Counter Object
	An Async/Finish Library
	Treiber's Stack
	Michael and Scott's Queue

	Related Work
	Polling Points
	Protected Sections
	Reasoning about Space without a GC
	Reasoning about Space with a GC
	Space-Related Results for Compilers
	Safe Memory Reclamation Schemes
	Disentanglement

	Conclusion
	Mechanization
	Perspectives

