
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

Snapshottable stores

CLÉMENT ALLAIN, INRIA, France
BASILE CLÉMENT, OCamlPro, France
ALEXANDRE MOINE, INRIA, France
GABRIEL SCHERER, INRIA, France

We say that an imperative data structure is snapshottable or supports snapshots if we can efficiently capture its
current state, and restore a previously captured state to become the current state again. This is useful, for
example, to implement backtracking search processes that update the data structure during search.

Inspired by Baker [1978], we present a snapshottable store, a bag of mutable references that supports
snapshots. Instead of capturing and restoring an array, we can capture an arbitrary set of references (of any
type) and restore all of them at once. This snapshottable store can be used as a building block to support
snapshots for arbitrary data structures, by simply replacing all mutable references in the data structure by
our store references. We present use-cases of a snapshottable store when implementing type-checkers and
automated theorem provers.

Our implementation is designed to provide a very low overhead over normal references, in the common
case where the capture/restore operations are infrequent. Read and write in store references are essentially as
fast as in plain references in most situations, thanks to a key optimization we call record elision. In comparison,
the common approach of replacing references by integer indices into a persistent map incurs a logarithmic
overhead on reads and writes, and sophisticated algorithms typically impose much larger constant factors.

The implementation, which is an extension of Baker [1978], is both fairly short and very hard to understand:
it relies on shared mutable state in subtle ways. We provide a mechanized proof of correctness of its core
using the Iris framework for the Coq proof assistant.

1 INTRODUCTION
1.1 Snapshots as a library
Consider an implementation of the Union-Find data structure offering the following interface:
type 'a node

val node : 'a -> 'a node

val find : 'a node -> 'a node

val union : ('a -> 'a -> 'a) -> 'a node -> 'a node -> unit

val equal : 'a node -> 'a node -> bool

val get : 'a node -> 'a

A Union-Find graph lets the user incrementally specify an equivalence relation between its nodes,
and efficiently query information about the equivalence classes. In our API, each equivalence class
carries a value at some type 'a. The user can grow the equivalence relation by unifying two nodes
(union), providing a merge function for the carried values. Unification is a destructive operation; it
modifies the nodes in-place. We can ask for a representant in each equivalence class (find), check
if two nodes belong to the same class (equal), and ask for the value carried by the class (get).
A typical implementation would use a data structure such as follows:

type 'a node = 'a data ref
type 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

Authors’ addresses: Clément Allain, INRIA, France; Basile Clément, OCamlPro, France; Alexandre Moine, INRIA, France;
Gabriel Scherer, INRIA, France.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

1:2 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

A node is just a mutable reference to some data, which indicates whether it currently is the
representative of its equivalence class, or points to another node closer to the representative. The
rank integer is used to decide who to elect as the new representative when merging two nodes.

Union-Find is a central data structure in several algorithms. For example, it is at the core of ML
type inference, which proceeds by repeated unification between type variables. Union-Find can
also be used to track equalities between type constructors, as introduced in the typing environment
when type-checking Guarded Algebraic Data Types (GADTs) for example.

When using a Union-Find data structure to implement a type system, it is common to need
backtracking, which requires the inference state to be snapshottable. For example:

(1) A single unification between two types during ML type inference translates into several
unifications between type variables, traversing the structure of the two types. If we discover
that the two types are in fact incompatible, we fail with a type error. However, we may want
to revert the unifications that were already performed, so that the error message shown to
the user does not include confusing signs of being halfway through the unification, or so
that the interactive toplevel session can continue in a clean environment.

(2) Production languages unfortunately have to consider backtracking to implement certain
less principled typing rules: try A, and if it fails revert to a clean state and try B instead.

(3) GADT equations are only added to the typing environment in the context of a given match
clause, and must then be rolled back before checking the other clauses.

We have encountered requirements (1) and (2) in the implementation of the OCaml type-checker,
and (1) and (3) in the development of Inferno [Pottier 2014], a prototype type-inference library
implemented in OCaml that aims to be efficient.

Now a question for the reader: how would you change the Union-Find implementation above to
support snapshots? The API needs to change a bit to let users talk about the whole Union-Find
graph – otherwise, they cannot even ask to go back to a previous version of the graph. The following
would be suitable, while still retaining the imperative flavor of the existing API:
type graph

type 'a node

val node : graph -> 'a -> 'a node

val get : graph -> 'a node -> 'a

val union : graph -> ('a -> 'a -> 'a) -> 'a node -> 'a node -> unit

val equal : graph -> 'a node -> 'a node -> bool

type snapshot

val capture : graph -> snapshot

val restore : graph -> snapshot -> unit

A first idea to approach our question is to browse the scientific literature for implementations of
Union-Find with backtracking, for example looking at Apostolico, Italiano, Gambosi and Talamo
[1994]. You would learn that there are algorithms in 𝑂 (log𝑛/log log𝑛) amortized running times,
and then deal with the rewarding but sizeable work of turning a dense 40 pages algorithmic paper
from the 90s into runnable code. (This works because Union-Find is a well-studied problem, you
would be less lucky with the same question on another, less common mutable data structure.)
Unfortunately, we are too lazy to do this. We would like a generic approach to add snapshots to an
imperative data structure, that does not require expert-level data structure knowledge.

There are two standard generic solutions that can be implemented with relatively little effort.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/inferno

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

Snapshottable stores 1:3

Full copy : take a snapshot by doing a full copy of the Union-Find graph.
This approach performs well in the case where snapshots are rare – in the extreme case
where no snapshots are taken, there is zero overhead. But it can become a performance
disaster when snapshots become more frequent, and the number of nodes modified between
two snapshots is small – you copy all the nodes, but only touch a few of them. In one of our
use-cases using Inferno, this approach makes type-inference 50× slower.

Full persistence : implement the graph on top of a pure, persistent data structure. A standard
approach is to change the type 'a data ref to become just an int index into a persistent
integer map. Implementing capture/restore is then trivial, a snapshot is just the persistent
map itself. See for example the Haskell library disjoint-set. However, this adds a logarithmic
overhead to each access or modification. In Inferno, we observed that this typically makes
type inference about 3× slower, even in cases where no backtracking is used. (Performance
is the reason why we stick to an imperative API instead of providing a functional API where
modification leaves the input state unchanged and returns an updated state.)

We present a new Store library, which provides generic snapshottability while performing well
in all situations: snapshots, easy and cheap. Unlike full persistence, it introduces no overhead when
backtracking is absent or infrequent. Unlike full copy, it performs well when backtracking sections
touch only a small subset of the structure.

Using our library for Union-Find requires changing the datatype definitions as follows:
type 'a node = 'a data Store.Ref.t

type 'a data =

| Link of 'a node

| Root of { rank: int; v : 'a }

The only change here is to replace the standard 'a ref type of OCaml mutable references by the
type 'a Store.Ref.t of store references in our Store library, which supports snapshots. In the
rest of the code, our Union-Find implementation would need to keep a store in its graph value, and
pass this store to the get and set operations on store references. These are trivial changes.

Summary. Our Store library introduces a notion of store, a bag of mutable references that lets you
capture and restore the state of all its references at once. Store can be used to easily make arbitrary
mutable data structures snapshottable, by replacing their mutable pointers by store references.

1.2 Notions of persistence
The standard notion of persistence used in the algorithmics literature is one where modification
operations return a different version of the data structure, without modifying the version provided
in input. There are in fact many nuances to persistence, described below.

functional data structures are fully immutable, as is idiomatic to implement persistent data
structures in functional programming languages. (functional is the terminology of Demaine,
Langerman and Price [2008], one may also call them pure data structures.) They typically
rely on sharing immutable substructures between different versions, and copying the paths
from those shared substructures to the root of the structure.
Functional data structures have the advantage that they are thread-safe by construction:
they can be accessed in parallel without any synchronization.

persistent data structures may be implemented using mutable state; a typical example would
be the Splay-tree data structure that performs imperative rebalancing under the hood. They
may not be thread-safe. In the case of our store, our persistent snapshots are persistent in

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/inferno
https://hackage.haskell.org/package/disjoint-set
https://gitlab.inria.fr/fpottier/inferno

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

1:4 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

this sense, and in particular they are not thread-safe – we cannot support restoring two
snapshots in parallel.

partial persistence is a weaker notion of persistence where only the “last” version of the data
structure may be updated, but read-only queries may be performed on arbitrary versions of
the structure. We could expose this capability for our backtracking stores, but we do not
have a clear use-case that would justify the additional implementation complexity.

confluent persistence is a stronger notion of persistence where two independent instances
of a persistent data structure may be merged together – for example, merging two persistent
sets or maps together. Some persistent data structures cannot offer confluence at a reasonable
cost. We have not implemented confluence for our stores; the user has to plan in advance
and allocate the separate data structures in the same underlying store.

semi-persistence is a weaker notion of persistence where only a linear chain of versions is
maintained at any point in time, rather than a tree of versions in the general case: acting on
a past version invalidates all the versions that are “after” this past version, and we cannot
access them anymore.
Our store provides persistent snapshots and also exposes a semi-persistent API based on
transactions that we describe in Section 4. This brings moderate performance benefits
for use-cases that do not need full persistence; we observed no improvement on some
benchmarks, 5%-10% speedups in others, and larger gains for some very specific workloads.

Use cases for persistence and semi-persistence. A semi-persistent approach suffices whenever we
only ever restore ancestors of the current version. This is the case for most backtracking problems.
For example, in a SAT/SMT solver, backtracking (when a conflict is found) goes back to a time
when fewer decisions were made, it never jumps “forward” into a saved search state where more
decisions had been made.

Some search algorithms do not perform a full depth-first search, they explore several positions
in the tree in parallel, iteratively refining the more promising positions, and they may “fork” new
search branches from the same promising position several times. Those require persistent snapshots.
Another trite example is saves in video games, where players can load previous saves to move
forward in game time, or go back to parallel/divergent play histories.
The original persistence use-case of Baker [1978] was the implementation of efficient dynamic

binding in a Lisp interpreter. Efficient Lisp interpreters at the time would have a semi-persistent
store for the dynamic environment, with a stack structure mirrorring the dynamic call stack of
the program – on function return they would “undo” bindings performed within the body of the
function, to return to the dynamic binding environment of the caller. But this approach does not
work when returning functions as first-class values, as the body of the functions (when called later)
should be evaluated in the dynamic environment where it was defined, whose definitions have
been undone in the meantime. Instead, Baker implemented a persistent store for its environments;
first-class functions would capture a snapshot at their definition site, to be restored at call-time.

1.3 Performance model
Following Baker [1978], we implement Store as a “journaled” data structure; the current version
of the store is represented in memory just like normal references, but we also keep a record of
past operations to be able to go back to previous versions. If the log of operations between two
snapshots 𝐴 and 𝐵 has size Δ, then the space cost of the log is 𝑂 (Δ), and restoring the state of 𝐴
when we are currently at 𝐵 takes times 𝑂 (Δ).

One may expect the number Δ of operations recorded to be exactly the number of operations
performed between the two snapshots. For Union-Find problems the number of reference updates

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

Snapshottable stores 1:5

remains relatively small, but in general this number of operations may be large, much larger than
the size of the data structure itself. We introduce a key optimization, record elision, where we
record at most one operation per store location updated between two consecutive snapshots. As a
result, our bound Δ is the number of distinct locations modified between the two snapshots, which
could be much smaller than the total number of operations. Record elision does not just improve
asymptotics, it is key to low-overhead implementation of set for store references.

We can benefit from record elision because our interface requires users to be explicit about where
they take snapshots, that is, where the backtracking points are in their programs. Record elision is
not available to the more elegant, more convenient and more functional interface of a persistent
store, which corresponds to taking a snapshot after each update operation.

In the specific case where each snapshot is restored at most once – this is a common property of
backtracking workloads, and enforced by our semi-persistent interface – one can amortize the cost
of snapshot restoration over each operation after the snapshot is taken, so restoring a snapshot
has 𝑂 (1) amortized complexity. This amortization does not work in the general case of persistent
snapshots; for example, one could keep alternating between two snapshots without performing
any operation in between. This bad interaction between persistence and amortized bounds is
a well-known problem in the algorithms literature, typically solved by sophisticated rebuilding
techniques [Chuang 1992, 1994]. We do not solve it, as our current use-cases do not need it.
When discussing our design choices, we mention constant factors a lot. Imagine that you are

implementing a type checker (with type inference) for your programming language, and suddenly
you realize that an oddball new feature 𝐹 that you want requires backtracking inference decisions,
which you did not need previously. You have to move your type-checker state to different data
structures that support snapshots. You need this new capability only for programs that use feature
𝐹 , but you pay the cost of the data structure all the time.1 If you are not careful about constant
factors, this implementation change could make your type-checker 2×, 5× or log(𝑛)× slower for
all programs, whether they use your new feature or not. This is not acceptable.

Contributions
We report on the implementation of snapshottable stores, a bag of mutable references that support
efficiently capturing and restoring its state to implement backtracking. This abstraction can be used
to easily add snapshots to complex imperative data structures. The implementation (1) is expressive,
it provides persistent and not just semi-persistent snapshots, (2) is efficient, as demonstrated by
benchmarks, and (3) its core mechanism is formally proved correct.

We claim the following contributions:
(1) The concept of “snapshottability” as a service worth providing in a reusable, generic way as

a small software library. When we looked at existing library ecosystems (in OCaml but also
Haskell, Scala, etc.) we found a few implementations of snapshottable stores in the wild, but
almost always as part of a larger program that uses it exclusively, not as a shared library.

(2) An efficient OCaml implementation of a storewith persistent snapshots. The implementation,
extending the journaled approach of Baker [1978], is short and subtle. It is heterogeneous,
references of different types can be tracked by the same store.

(3) A mechanized proof of correctness of persistent snapshots, using the Iris separation logic
framework in the Coq proof assistant.

(4) The record elision optimization which is key to an almost-zero overhead on the set oper-
ation on set-heavy workloads. Forms of record elision exist in previous semi-persistent

1You could think of dynamically switching from one data structure to another when feature 𝐹 occurs. This increases
implementation complexity, and you still have the problem of not-too-slow type inference for programs that do use 𝐹 .

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

1:6 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

𝐴 {r ↦→ 0}

(a)

𝐴

𝐵 {r ↦→ 1}

r = 0

(b)

𝐴 {r ↦→ 0}

𝐵

r = 1

(c)

𝐴

𝐵

𝐶 {r ↦→ 2}

r = 1

r = 0

(d)

Fig. 1. Version trees in the example program

implementations, but combining persistent snapshots and record elision is challenging and
Store is the first implementation to do so.

(5) An additional API of semi-persistent snapshots, which restricts ourselves to a linear history
of snapshots for further efficiency benefits.

(6) Benchmarks comparing the performance of our implementation with other approaches,
demonstrating that Store performs well on a broad variety of workloads.

2 A CORE STORE
2.1 Baker’s version trees
The starting point of our implementation is Baker’s version trees introduced in Baker [1978]. Baker’s
trick has been reused or rediscovered many times since, mostly in the context of implementing
persistent arrays: homogeneous structures indexed by small integers. O’Neill and Burton [1997]
give a pleasant survey of persistent arrays approaches and lists three works that reinvented Baker’s
trick in the late 80s.
In Baker’s work, the programmer can refer to many different persistent versions of a data

structure, but one is the “current version” on which access and update operations operate as usual
in constant time. The “current version” uses its standard representation – for example, the current
version of a Baker array is just an array. Older versions are represented by nodes in a version graph
(in fact a rooted tree), whose root is the current version, and where edges log operations that were
performed. Any older version can be restored by applying a “rerooting” operation on its node (it
becomes the new root of the graph) which reverts all the updates that happened between that older
version and the current version.

Consider the following Store user program:
let s = Store.create () in
let r = Store.Ref.make 0 in
let snap0 = Store.snapshot s in
let () = Store.Ref.set r 1 in
let () = Store.restore s snap0 in
let () = Store.Ref.set r 2

At the point of let r = Store.Ref.make 0, our version tree (shown in Figure 1a) has a single
node where the reference r has value 0. The mapping {𝑟 ↦→ 0} is not stored within the node 𝐴, it
describes the current state of the reference 𝑟 in the current state. We place it on 𝐴 to indicate that
𝐴 is the current root of the version tree, which is also indicated by the darker background.

Calling Store.Ref.set r 1 will create a second node 𝐵 in the version tree, which describes the
new current state (see Figure 1b). The node 𝐴 now points to 𝐵, with information on how to revert
to 𝐴 if desired – one should restore r to 0.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343

Snapshottable stores 1:7

Calling Store.restore s snap0 will reroot the version tree to have root 𝐴 again – 𝐴 was the
current node at the time where snap0 was captured (see Figure 1c). We do this by starting from the
snapshot node 𝐴, updating the current state by using the information stored on the edges. Note
that the edge between 𝐴 and 𝐵 has changed directions (now 𝐵 points to the new current root 𝐴),
and the information on the edge now describes how to restore the state of 𝐵 from the state of 𝐴.
At this point, calling Store.set s r 2 creates a new node 𝐶 from 𝐴, which becomes the new

current root, as shown in Figure 1d.
This representation provides constant-time access to the current state of the store, with the exact

same constant factors as OCaml native references – r can in fact just be a native reference.
A snapshot is just a node in the version tree. Restoring the snapshot means rerooting the tree

so that the snapshot node becomes the new current root – and the current state gets updated
accordingly. We sketch our implementation in Section 2.3. It is obviously linear in the length of the
path from the snapshot node to the current root node. The length of this path is the number of
operations that happened “after” the snapshot node, in a sense that will be made precise in the
next section.

2.2 A whiff of graph theory
In graph theory, an (undirected) tree is a certain kind of (undirected) graph: a graph that is acyclic
(no cycle in the graph) and connected (all nodes are reachable from each other). In other words, an
undirected tree is an undirected graph where there exists a unique path between all pairs of nodes.

The notion of "tree" that is common in programming corresponds to the notion of rooted tree in
graph theory, a tree with a designated root node. The choice of root uniquely determines a parent
relation that sends nodes to their parent, that is, relates 𝐴 to 𝐵 when 𝐴 has 𝐵 as parent – there is at
most one parent, and the root is the only node with no parents. If we look at a given undirected
tree 𝑇 , and two different choices of root 𝑀 and 𝑁 , there is a simple relation between the parent
relations of the𝑀-rooted and 𝑁 -rooted trees: all nodes have the same parent in both trees, except
on the (unique) path from𝑀 to 𝑁 where the parent relations are mutual inverses.

Over our version trees, there are two rooted trees (two choices of root) of interest:
(1) The current tree, whose root corresponds to the current state of the structure – 𝐶 at the end

of our example above.
(2) The historic tree, whose root is the initial node created when the store was first populated –

𝐴 in our example. (This is a slight simplification, there is a version tree node before r was
created that we are not showing in the version tree for simplicity.)

We call history of a node the path from this node to the historic root. The complexity of rerooting
from the current tree 𝐴 to a given snapshot tree 𝐵 is exactly the length of the unique path from 𝐴

to 𝐵 in the version tree.

2.3 Implementing version trees
We learned of Baker’s trick from Conchon and Filliâtre [2007], which use it to define persistent
arrays, on top of which they build a persistent Union-Find, with OCaml code fairly close to what
we show in this section. The core of Store, described here, has the following API:
type store

val create : unit -> store

module Ref : sig
type 'a t

val make : store -> 'a -> 'a t

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

1:8 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

val get : store -> 'a t -> 'a

val set : store -> 'a t -> 'a -> unit

end

type snapshot

val capture : store -> snapshot

val restore : store -> snapshot -> unit

The Ref module implements mutable references inside the store. The store must be passed
as argument to all operations on references, and it is an unchecked programming error to use a
reference with a store it does not belong to. The snapshot type represents persistent snapshots of
the state of the store at a given point in time. New snapshots for the current state are created with
capture, and the store state can be later reset to the snapshot state using restore.
The version tree is a graph of mutable nodes, whose value can be Mem to indicate that they are

the current root, or Diff if they log a reference write.
type node = data ref and data = Mem | Diff : 'a Ref.t * 'a * node -> data

If 𝐴 has 𝐵 as parent in the current tree, its data must be Diff(r, v,𝐵), where r is a reference
and v is the value of r, in 𝐴.

Finally, the store is just a mutable reference to the current root of the version tree, and a snapshot
remembers which node was the current root when it was captured2.
type store = { mutable root : node; } type snapshot = { root : node; }

Easy parts. Creating a new store or taking a snapshot are the obvious things:
let create = { root = ref Mem }

let capture store : snapshot = { root = store.root }

References have the same representation and get operation as standard OCaml references:
module Ref = struct
type 'a t = { mutable value : 'a; }

let make v = { value = v }

let get _s r = r.value

let set s r v = ... (* to be detailed below *)

end

The two difficult operations are Ref.set, which grows the version tree with a new node, and
restore, which reroots the version tree to a snapshot node.

Update operation: Ref.set. When we call set s r v, the current root of the version tree, which
was previously a Mem node, becomes a Diff node pointing to a new current root. The Diff node
carries the previous value of the reference, to be able to restore the reference to its previous value
later on.
let set s r new_val =

let old_val = r.value in
let new_root = ref Mem in
let old_root = s.root in
r.value <- new_val;

2In the actual implementation, we also remember the store, to fail at runtime if the user tries to use a snapshot with another
store.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

Snapshottable stores 1:9

old_root := Diff(r, old_val, new_root);

s.root <- new_root

The code is short, but reasoning about it is difficult. It helps to define amodel of the store and the
nodes in the version tree. A node 𝐴 models a functional mapping, denoted ⟦𝐴⟧, from references to
their values, as follows:

(1) The mapping of the Mem node maps each store reference to its current value.
(2) The mapping of a Diff(r, v, n) node is ⟦n⟧[r ↦→ v].
In other words, if 𝐵 is the parent of 𝐴 in the current tree, then the edge from 𝐴 to 𝐵 (stored in

𝐴’s data in the OCaml representation) records how to transform ⟦𝐵⟧ into ⟦𝐴⟧.
If we look at Ref.set again, we can now check that, given a current mapping𝑚, set s r v will

move us to a new current mapping𝑚[r ↦→ v] (with r.value <- new_val). Furthermore, since
old_val stores the value𝑚(r), the mapping of the old root (and hence of the existing version tree)
is preserved as it becomes𝑚[r ↦→ new_val] [r ↦→ old_val] =𝑚[r ↦→𝑚(r)] =𝑚.

Reroot, restore. The operation reroot(𝐴) makes an arbitrary node 𝐴 the new root of the current
tree – without changing the model of any snapshot node in the tree. A “simple” implementation of
reroot follows:

let rec reroot n =

match !n with
| Mem -> ()

| Diff (r, v, n') ->

reroot n';

let old_v = r.value in
r.value <- v;

n := Mem;

n' := Diff (r, old_v, n)

Before the call, n points to its parent node n', and
⟦n⟧ = ⟦n′⟧[r ↦→ v].
At this point, the current model is ⟦n′⟧.
The current model becomes ⟦n′⟧[r ↦→ v] = ⟦n⟧.
n becomes the current root, matching the current
model.
n' gets assigned model ⟦n⟧[r ↦→ old_v] = ⟦n′⟧
again.

Our actual (verified) implementation contains two improvements over this “simple” version.
(1) In this version, every recursive call in the Diff(r, v, n') case sets the data of both the

node n and of its parent node n' – which becomes its child in the modified version tree. This
means that the data of most nodes is set twice, first to Mem and then to their final data. Our
implementation avoids these redundant modifications by setting Mem only once at the end,
at the cost of a more complex specification for the recursive function, whose precondition
is conditioned on a future update.

(2) reroot reverts and reverses Diff nodes from the root of the version tree to the snapshot
node. This corresponds to undoing operations from the most recent operation to the old-
est operation, as it should be. The simple version does this via a non-tail-recursive call
reroot n' on the parent node n' before it handles the child n. Our implementation uses a
tail-recursive variant where we first accumulate Diff nodes in a list, most recent operation
at the head, and then traverse the list in order.

Finally, restore can be easily defined from reroot:
let restore (store : store) snapshot =

reroot snapshot.root;

store.root <- snapshot.root

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

1:10 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

Remark. This concludes the part of our exposition that is mostly a retelling of the core algorithm
of Baker [1978], with an OCaml realization inspired by Conchon and Filliâtre [2007]. We consider
what follows as original work.

2.4 Record elision
Record elision is a key optimization that changes the qualitative performance profile of the library.
The idea is simple: if we have already performed a set operation on some reference r in “the
current version” (since the last snapshot), we have created a Diff node with the value before that
operation; so if we perform a set on that reference again, there is no need to log anything, as the
older Diff node will already reset the reference to its previous value. This optimization is only
valid if no snapshot was taken after the previous Diff node, otherwise that snapshot would get the
wrong value of r on rerooting.

We do not wish to search the history on each set to check this property. In fact we cannot check
it with the previous definitions, as there is no trace in our graph data structure of which nodes have
been captured as snapshots. We solve both issues by introducing a notion of generation, an integer
that counts the number of snapshots taken in the history of a node. In particular, if two nodes
belong to the same history and have the same generation, there is no snapshot between them.

We keep track of generations in the store graph (the generation of the current root), in snapshots
(the generation of the snapshot node), in references (the generation of the last Diff node on this
reference), and Diff nodes.
type store = { mutable root : node; mutable generation : int; }

type 'a Ref.t = { mutable value : 'a; mutable generation : int; }

type snapshot = { store : store; root : node; generation : int; }

type node = data ref
and data = Mem | Diff : 'a Ref.t * 'a * int * node -> data

Creating a new snapshot increments the generation of the store:
let capture s =

let snap = { store = s; root = s.root; generation = s.generation; } in
s.generation <- s.generation + 1;

snap

All the magic happens in the Ref.set function which updates a store reference. (We use a lighter
gray color for code that is identical to the previous version.)
let set (s : store) (r : 'a Ref.t) (new_val : 'a) : unit =

if s.generation = r.generation

then r.value <- new_val

else
let old_val = r.value in
let old_gen = r.generation in
let new_root = ref Mem in
let old_root = s.root in
r.value <- new_val;

r.generation <- s.generation;

old_root := Diff(r, old_val, old_gen, new_root);

s.root <- new_root

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Snapshottable stores 1:11

By comparing the two integers s.generation and r.generation, we check whether a snapshot
was captured between the last recorded write to the reference and the current root. If no snapshot
was taken, then we do not record the new update in the version tree – it is useless, as any restore
call will restore an older value of the reference from the recorded write. We call this a record elision.
If a snapshot was taken, we update the generation of the reference: we have just recorded the write,
so we can elide all records for that reference until the next snapshot is taken.

In terms of model, calls to set r v where record elision takes place are harder to reason about,
because they mutate the mapping of existing nodes in the version tree: for all the nodes from the
current root (included) to the last Diff node on this reference excluded, their mapping gets mutated
from some𝑚 to𝑚[r ↦→ v]. In the absence of record elision, the mapping of all version tree nodes
was persistent: the data on the node may change but its mapping remained unchanged. Record
elision relaxes this property: the mapping of nodes that are captured by a snapshot is persistent,
but other nodes, in fact the nodes between the last snapshot and the current root, may see their
mapping changed by later operations. This weaker guarantee suffices, as we only provide persistent
snapshots to users, they cannot observe the mapping change for other nodes.

Performance impact. Record elision has a transformative performance impact on workflows that
use Ref.set heavily and snapshot capture rarely. (We generally assume that backtracking is rare
relative to reads and writes, but many workflows are rather dominated by reads so record elision
matters less.) Indeed, a record-elided Ref.set is just an integer comparison and a write, which is
basically the same as a write: in OCaml, polymorphic writes go through a write barrier, so the cost
of the write dominates the generation test. In the regime where most writes are elided, Ref.set is
essentially as fast as OCaml primitive references, providing the almost-zero overhead we advertised.
On the other hand, non-elided sets perform an extra write and two allocations. On a get/set
microbenchmark with 16 get for each set, disabling record elision made the test 6× slower.

Record elision also has a transformative effect on the asymptotic complexity of store operations.
As we detailed in the introduction (Section 1.3), the key complexity parameter of Store is the size Δ
of the log between two consecutive snapshots. Without record elision, Δ is exactly the number
of write operations that happened since the previous snapshot, which can grow arbitrarily large.
Record elision reduces Δ to the number of different memory locations touched since the previous
snapshot, which is much more commonly (but not always) bounded.

Notes. If one tries to implement persistent data structures on top of Store by capturing a snapshot
after each write operation, then record elision never applies. This explains why we are not offering
a persistent API for Store. It also probably explains why we have not found a description of this
simple idea in the existing literature on more-or-less-persistent data structures.
It is tempting to think of generations as unique timestamps for snapshots, and indeed the two

concepts overlap in semi-persistent implementations. Scaling record elision to the persistent setting
required a more precise definition of generations that need not be unique. Preserving uniqueness in
the persistence setting would be an instance of the order maintenance problem, which has amortized
constant-time solutions (Bender, Cole, Demaine, Farach-Colton and Zito [2002]; but think of the
constant factors!) and is a common ingredient in persistent data structure design.

2.5 Liveness
An important consideration in our choice of data structure design is liveness. In garbage-collected
languages, the memory footprint of a data structure is determined by what other portions of
memory it references, keeps alive. Suppose for example that a user captures a snapshot of the
store, and then later drops all references to this snapshot. Can the memory corresponding to this
snapshot be collected, or is it kept alive by the global Store data structure?

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588

1:12 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

The version tree structure inherited from Baker [1978] has excellent liveness properties: pointers
in the data representation coincide with the parent relation of the current tree, so that referencing
the store only keeps the current root alive. In particular, if we do not reference any snapshot, then
the whole version tree (except for the root) can be collected. Locally, only the operations that are
needed to restore a snapshot that is still referenced are kept alive. This still holds if the user forgets
a reference: as long as a snapshot mentioning it is kept alive, the reference will be kept alive (one
could use weak pointers and ephemerons [Hayes 1997] to get better liveness properties there, at
significant complexity and runtime cost). On the other hand, if the user forgets both the reference
and all the snapshots mentioning them, then they can be collected. This is a common situation in
realistic workloads such as type-checking problems where we want to forget about the inference
variables created when typing a given subterm.

Another case where our implementation can “leak” values is when forgetting intermediate
snapshots: if there are three consecutive snapshots 𝐴, 𝐵 and 𝐶 with the same reference 𝑟 being
written both between 𝐴 and 𝐵 and between 𝐵 and 𝐶 , forgetting 𝐵 will still keep the value of 𝑟 in 𝐵

alive even though we can never restore 𝐵 again. We could consider an implementation using weak
pointers and finalizers to notice this and compress the log, but suspect that the cost in performance
and code complexity would not be worth it for most applications. Our semi-persistent interface (see
Section 4) provides a commit operation that does remove some (but not all) such unneeded records.
Most other implementation choices have worse liveness properties. Semi-persistent implemen-

tations based on a centralized journal often cannot forget any snapshot. Implementations based
on functional or imperative maps (with copy) can never forget references. Another common im-
plementation choice for persistent structures, the so-called fat nodes approach, keeps a list of all
past values in the reference itself. This makes it impossible to forget past versions or siblings, but it
allows the user to forget references.

We considered liveness properties seriously in our design, and it helped guide some implementa-
tion choices. We believe that the liveness properties of our implementation are adequate, and that
it does make a positive difference in practice with respect to implementation approaches that keep
all store operations alive – in the type-checking use-case, for example.

3 A COQ STORE
In this Section, we use Separation Logic to specify and verify the core of our approach: an imple-
mentation of snapshottable stores without record elision and transactions. We first introduce our
formal settings (Section 3.1), then present our specifications (Section 3.2) and finally comment some
details of the proof (Section 3.3).

3.1 Formal setting and Separation Logic reminder
Formally, we use the Iris Separation Logic framework [Jung, Krebbers, Jourdan, Bizjak, Birkedal
and Dreyer 2018]. We write our programs in an untyped call-by-value 𝜆-calculus with mutable
state, similar to the HeapLang language that comes with Iris.

In the following, we write Φ for an Iris assertion, Φ ∗ Φ′ for a separating conjunction, and Φ −∗ Φ′

for a separating implication. If 𝑃 is a proposition of the meta logic, we call 𝑃 pure and write ⌜𝑃⌝.
Triples take the form {Φ} 𝑒 {Ψ}, where Φ is the precondition, 𝑒 the verified expression and Ψ the
postcondition. A postcondition Ψ is of the form 𝜆𝑣 .Φ′, where the metavariable 𝑣 , which denotes
the resulting value of the expression 𝑒 , is bound in Φ′.

3.2 Specifications
Figure 2 presents the specification of our Coq store. To describe a store 𝑠 at the logical level, we
use the assertion store 𝑠 𝜎 denoting that 𝑠 is modeled by the (partial) mapping 𝜎 from references to

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

Snapshottable stores 1:13

Create
{True} create () {𝜆𝑠. store 𝑠 ∅}

Ref
{store 𝑠 𝜎} ref 𝑠 𝑣 {𝜆𝑟 . ⌜𝑟 ∉ dom(𝜎)⌝ ∗ store 𝑠 ([𝑟 :=𝑣]𝜎)}

Get
𝑟 ∈ dom(𝜎) 𝜎 (𝑟) = 𝑣

{store 𝑠 𝜎} get 𝑠 𝑟 {𝜆𝑣 ′ . ⌜𝑣 ′ = 𝑣⌝ ∗ store 𝑠 𝜎}

Capture
{store 𝑠 𝜎} capture 𝑠 {𝜆𝑡 . store 𝑠 𝜎 ∗ snapshot 𝑠 𝑡 𝜎}

Set
𝑟 ∈ dom(𝜎)

{store 𝑠 𝜎} set 𝑠 𝑟 𝑣 {𝜆(). store 𝑠 ([𝑟 :=𝑣]𝜎)}

Restore
{store 𝑠 𝜎 ∗ snapshot 𝑠 𝑡 𝜎′} restore 𝑠 𝑡 {𝜆(). store 𝑠 𝜎′}

Fig. 2. Interface of our Coq store

values. We write 𝜎 (𝑟) the value associated to reference 𝑟 in 𝜎 , [𝑟 :=𝑣]𝜎 the functional update of 𝜎
with the mapping 𝑟 ↦→ 𝑣 , and dom(𝜎) the domain of 𝜎 , or the set of created references. We first
present the specifications of the functions create, ref, get and set. We then devote our attention to
the functions involving snapshots, namely capture and restore.

Create asserts that create () has trivial precondition and returns a store 𝑠 with an empty model.
Ref asserts that ref 𝑠 𝑣 creates a new reference. The precondition consumes an assertion store 𝑠 𝜎
and the postcondition produces an assertion store 𝑠 ([𝑟 :=𝑣]𝜎), where 𝑟 is the returned reference.
The postcondition also asserts that 𝑟 is fresh. Get asserts that get 𝑠 𝑟 returns the value associated
to 𝑟 in the model of 𝑠 . The precondition consumes an assertion store 𝑠 𝜎 , and requires that 𝑟 is in
the domain of 𝑠 and is mapped to the value 𝑣 . The postcondition asserts that the function returns
the value 𝑣 , and restores the assertion store 𝑠 𝜎 . Set asserts that set 𝑠 𝑟 𝑣 correctly sets the value
associated to 𝑟 to 𝑣 in the model of 𝑟 . The precondition consumes an assertion store 𝑠 𝜎 and requires
that 𝑟 is in the domain of 𝜎 . The postcondition produces an assertion store 𝑠 ([𝑟 :=𝑣]𝜎).
We now devote our attention to snapshots. To describe a snapshot 𝑡 at the logical level, we

introduce the assertion snapshot 𝑠 𝑡 𝜎 . It asserts that 𝑡 is a valid snapshot of the store 𝑠 , whose model
was 𝜎 when the capture occurred. Crucially, the assertion snapshot 𝑠 𝑡 𝜎 is persistent [Vindum and
Birkedal 2021]. A persistent assertion is in particular duplicable. In our case, this means that the
following entailement holds: snapshot 𝑠 𝑡 𝜎 −∗ (snapshot 𝑠 𝑡 𝜎 ∗ snapshot 𝑠 𝑡 𝜎).
Capture asserts that capture 𝑠 creates a new snapshot. The precondition requires that 𝑠 is a

valid store of model 𝜎 . The postcondition asserts that the store was preserved and that the function
returned a snapshot 𝑡 such that snapshot 𝑠 𝑡 𝜎 holds. Restore shows that indeed, restore 𝑠 𝑡 updates
the model of 𝑠 to the model captured by 𝑡 . The precondition consumes the assertion store 𝑠 𝜎 and
snapshot 𝑠 𝑡 𝜎 ′, and the postcondition produces the updated assertion store 𝑠 𝜎 ′. Notice that there
is no need to repeat the assertion snapshot 𝑠 𝑡 𝜎 ′ in the postcondition. Thanks to persistence, the
user can duplicate the assertion before applying Restore.

3.3 Summary of the proof
To give intuition on our proofs, Figure 3 presents the definitions of the assertions occurring in our
specifications. We comment them below.

The definition of the store 𝑠 𝜎 assertion is central. It existentially quantifies over the root 𝑟 of the
current tree, a map 𝜎0 from location to values that we call the global store, representing the current
values of all references ever allocated with this particular store 𝑠 , the labeled graph 𝑔, a set of edges
from node to node labeled with the pair of a reference and its old value, and the map𝑀 of models,
associating to each node its model.𝑀 gives a formalism to the notation ⟦𝑛⟧ used in Section 2.3, by
posing ⟦𝑛⟧ ≜ 𝑀 (𝑛). The pure conjunction coming after describes the effective link between all
these ghost variables. It asserts that the model of the current root node is effiectievly 𝜎 , and that 𝜎

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686

1:14 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

store 𝑠 𝜎 ≜ ∃ 𝑟 𝜎0 𝑔𝑀. ⌜𝑀 (𝑟) = 𝜎0 ∧ 𝜎 ⊆ 𝜎0 ∧ coherent𝜎0 𝑔𝑀 ∧ rooted_dag𝑔 𝑟⌝ ∗
(∗(𝑛,(ℓ,𝑣),𝑛′) ∈𝑔 𝑛 ↦→ Diff ℓ 𝑣 𝑛′) ∗ (∗(ℓ,𝑣) ∈𝜎0 ℓ ↦→ 𝑣)
𝑠 ↦→ 𝑟 ∗ 𝑟 ↦→ Root ∗ snapshots_model 𝑠 𝑀

snapshots_model 𝑠 𝑀 ≜ ∃𝛾 𝐶. ⌜∀𝑛 𝜎. (𝑛, 𝜎) ∈ 𝐶 =⇒ ∃𝜎′ . 𝑀 (𝑛) = 𝜎′ ∧ 𝜎 ⊆ 𝜎′⌝ ∗
meta 𝑠 𝛾 ∗ •𝐶 𝛾

snapshot 𝑠 𝑡 𝜎 ≜ ∃𝛾 𝑛. meta 𝑠 𝛾 ∗ 𝑡 ↦→ (𝑠, 𝑛) ∗ ◦{(𝑛, 𝜎)} 𝛾

Fig. 3. Definition of our predicates

is included in the larger, global store 𝜎0. The proposition coherent𝜎0 𝑔𝑀 asserts the coherence of
the information (we omit the formal definition): the nodes occurring in labels of edges of 𝑔 are
indeed in the domain of 𝜎0, and that if there is a path in 𝑔 between the node 𝑛 and the node 𝑛′
labeled with a list of pairs or references and values, then applying this list of changes updates the
model of 𝑛 (as given by 𝑀) to the model of 𝑛′. The proposition rooted_dag𝑔 𝑟 asserts that 𝑔 is a
directed acyclic graph (DAG), and that each node can reach the root 𝑟 . Separation Logic strengthens
for free this property to the fact that 𝑔 is a tree. Indeed, the definition next asserts the Separation
Logic ownership of the graph of nodes, an iterated conjunction over 𝑔. In particular, it asserts that
nodes are unaliased: each node in 𝑔 has a unique successor. In conjunction with the fact that 𝑔 is a
DAG, it guarantees that 𝑔 is a tree. The definition then asserts the ownership of the global store as
an iterated conjunction over 𝜎0. In the third line, the definition asserts that the store 𝑠 points to
the node 𝑟 and that 𝑟 itself represents the Root constructor. The definition finally mentions the
assertion snapshots_model 𝑠 𝑀 , that we describe below.
The definition of the assertion snapshots_model 𝑠 𝑀 existentially quantifies over a ghost cell 𝛾

that will be used to give meaning to snapshosts, and 𝐶 , a set of pairs of nodes and models. Each
pair of a node and a model describes a snapshot of the node. Notice that this is not a map: a node
may have different snapshots, with different models. The pure proposition witnesses that indeed, if
a node 𝑛 and a model 𝜎 appear in 𝐶 , then 𝑛 has a larger “current” model in𝑀 . In the next line, the
definition makes use a meta token, an Iris technicality [Iris Development Team 2024] that allows
associating persistent information to a location. Here, the assertion meta 𝑠 𝛾 permanently attaches
the ghost location 𝛾 to the physical location 𝑠 . It then asserts the authoritative ownership of the set
𝐶 , written •𝐶 𝛾 . When confronted with a fragmentary ownership ◦𝐶′ 𝛾 , it allows deducing that
𝐶′ ⊆ 𝐶 . Formally, the ghost cell 𝛾 is equipped with the camera [Jung, Krebbers, Jourdan, Bizjak,
Birkedal and Dreyer 2018] 𝐴𝑢𝑡ℎ(𝑆𝑒𝑡 (𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛 ×𝑀𝑎𝑝 𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑉𝑎𝑙𝑢𝑒)).
The last line of Figure 3 shows the definition of the assertion snapshot 𝑠 𝑡 𝜎 . It existentially

quantifies over the ghost cell 𝛾 and a node 𝑛, asserts that 𝛾 is the unique ghost cell associated
to 𝑠 with the meta 𝑠 𝛾 assertion. It then asserts that the snapshot points to a pair containing the
store 𝑠 and the node 𝑛, and the fragmentary ownership ◦{(𝑛, 𝜎)} 𝛾 , witnessing that the pair (𝑛, 𝜎)
represents a valid snapshot. Persistence of the assertion snapshot 𝑠 𝑡 𝜎 reduces to the persistence of
◦{(𝑛, 𝜎)} 𝛾 , which is guaranteed by the camera being used.

4 SEMI-PERSISTENCE THROUGH TRANSACTIONS
4.1 Introduction
The capture and restore API presented in Section 2.3 is low-level in the sense that users have
to create persistent snapshots, keep track of them, and restore them manually. For some common
workloads, we provide high-level wrappers that are more convenient but also less expressive.
val temporarily : store -> (unit -> 'a) -> 'a

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

Snapshottable stores 1:15

val tentatively : store -> (unit -> 'a) -> 'a

These wrappers call the provided function, then restore the state of the Store to the state it had
prior to the call either unconditionally (temporarily) or if an exception is raised (tentatively).
Both functions can be implemented by capturing a snapshot before calling f, and restoring it

after the call if necessary. Snapshots created by these wrappers have interesting properties: not
only are they restored at most once, their use follows a rigid structure dictated by scoping rules.
This corresponds exactly to the notion of semi-persistence in the data-structure literature: there is a
stack of versions, and versions that are removed from the stack are no longer accessible. Imposing
such a linear (or affine) discipline on snapshots makes reasoning about the implementation easier,
and avoids the aliasing of mutable state that makes the implementation of restore so subtle
(Section 2.3).

One could provide an entirely different implementation of Store that only provides a semi-
persistent API. It can be expected to be slightly faster, perhaps simpler to implement, but would
provide less functionality than the persistent API of Store. Instead, we describe in this section
an extension of the Store API with semi-persistence in the same implementation, providing a
combination of both capabilities. We call this API transactional, because each semi-persistent
snapshot (or transaction) is terminated by either keeping (commit) or discarding (rollback) the
changes within. Users are expected to stick to the simple persistent API and the convenience
wrappers temporarily and tentatively, which are implemented using the semi-persistent API
for performance. In more advanced scenarios, users can directly use the transactional API, which is
more difficult to use but can bring additional performance improvements.

4.2 Transactions for semi-persistence
Besides the high-level wrappers mentioned earlier, the transactional API is as follows:
type transaction

val transaction : store -> transaction

val rollback : store -> transaction -> unit

val commit : store -> transaction -> unit

A transaction represents an interval in the program execution during which an ephemeral
copy of the store is preserved. The transaction is created by calling transaction, and terminated
by calling either rollback or commit. rollback is similar to restore in the persistent API: it
resets the state of the store to the one it had when the transaction started. commit terminates
transaction, but the state of the store is unchanged – it merely discards the ephemeral snapshot.

Transactions can be nested following a stack-like discipline: transactions are valid when created,
and terminating a transaction invalidates it and all the transactions that were valid when it was
created. Using an invalid transaction is a programming error and raises an Invalid_argument
exception.
As a simple example of use of transactions, we can implement the tentatively convenience

wrapper using the transactional API:

let tentatively store f =

let trans = Store.transaction store in
match f () with
| v -> Store.commit store trans; v

| exception exn -> Store.rollback store trans; raise exn

4.3 Combining the persistent and semi-persistent APIs
It is possible to write and reason about programs that combine both APIs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

1:16 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

𝐴

(a) Initial state

𝐴 𝑇𝐴

(b) After transaction

𝐴 𝑇𝐴 𝐵

(c) Before rollback

Fig. 4. Version graph during a transaction

Just like new transactions, capturing a persistent snapshot while a transaction is active creates a
dependency on that transaction, and the snapshot becomes invalid if a transaction it depends on is
terminated or invalidated. In other words, transactions weaken the persistency of snapshots.

Moreover, we allow leaving the scope of a transaction by restoring a snapshot captured before the
transaction was created. In that case, the transaction is not invalidated: it becomes inactive instead,
and can become active again when restoring a snapshot from inside the transaction. More precisely:
transactions and snapshots can be valid or invalid, and transactions can also be active or inactive.
Both depend on the transactions that were active and valid at the time of their creation. Terminating
a transaction invalidates it and all the transactions and snapshots that depend on it. Restoring a
snapshot makes all currently active transactions inactive, then makes all the transactions that the
snapshot depends on active again. Terminating a transaction that is either inactive or invalid is a
programming error.
These rules on the interactions between persistent snapshots and transactions are arguably

complex, but provide great flexibility. For instance, they allow calling a function (maybe from a
third-party library) that implements its own search sub-procedure using the full Store API in
any context, without impacting existing snapshots and transactions. They also allow moving to a
different context and then coming back, which is relevant for algebraic effects that are performed
inside a transaction but whose handler needs to consult another state in the store history.

4.4 Implementing transactions
Transactions are implemented by adding a new kind of information in the graph, transaction nodes.
Starting a transaction when the current root of the version tree is 𝐴 (shown in Figure 4a) creates a
new transaction node 𝑇𝐴 that tracks the transaction (shown in Figure 4b). This does not affect the
values of references: node 𝑇𝐴 has the same mapping as node 𝐴.

When the transaction is terminated, arbitrary nodes may have been added, as shown in Figure 4c.
We remove the transaction node 𝑇𝐴 from the graph – that is, we mark the node as invalid. We also
remove (invalidate) all historic descendants of 𝑇𝐴, so in particular the correction of the version tree
is preserved. The initial state is restored: 𝐴 becomes the current root again (Figure 4a). This is only
valid if the current root of the version tree was “inside” the transaction, that is, if it is a node that is
a current descendant of𝑇𝐴. We keep track of that information in the transaction node (it is updated
by reroot) and fail if the current root is not inside the transaction; otherwise, the transformation
would end up with two root nodes in the version tree, the previous root and 𝐴.

“Removing” a node is implemented by marking it, or one of its current descendants, as Invalid.
Which nodes to mark is an implementation detail, as long as restore, commit, and rollback
encounter an invalid node and fail before modifying the current state. Our current implementation
marks each transaction node – 𝑇𝐴 and any child transaction – as well as the current root 𝐵.

Calling restore on a persistent snapshot must update the current state to apply the Diff nodes
along the path, but also revert the edges of those Diff nodes and update their data to allow restoring
in the other direction later. For transactions, rollback only updates the current state without
touching the Diff nodes, leading to a small but measurable efficiency gain.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833

Snapshottable stores 1:17

5 TESTING AND BENCHMARKS
5.1 Testing Store with Monolith

We used François Pottier’s Monolith library to test our implementation of Store. Monolith [Pottier
2021] is an OCaml testing framework that implements a specific form of state-based property-
based testing called model-based testing. It takes a description of the API to be tested, a reference
implementation (model) of the API, generates random sequences of API calls and checks that the
real implementation matches the model.

To test Store, we wrote a reference implementation, designed to be as simple and clear as possible
without any efficiency requirement; one could consider it an executable specification. The property
we ask Monolith to check is that the real and reference implementations agree. The reference
implementation represents functional mappings as a persistent map from unique integer indices
(representing references). This is a homogeneous representation (all references must have the
same value type) for simplicity: we only use integer values in tests. Each snapshot carries such a
functional mapping, as well as a list of transactions that it depends on (as described in Section 4.3).
A transaction is a snapshot, with a mutable boolean flag indicating whether it is still valid. Finally, a
store is represented by a mutable reference to a snapshot; the active transactions are the transactions
that the current snapshot depends on. The data definitions of our reference implementation is
available in Appendix A.

We mention our testing approach explicitly because we have found it unreasonably effective. The
fuzzer we get from Monolith behaves, in our experience, exactly like a correctness oracle. After
any code change, you run the fuzzing test, and either it finds a bug in a few seconds or the code is
correct. If it finds a bug, it starts looking for a smaller test sequence that also fails, and waiting for
about 10 seconds will consistently produce a small, readable sequence of operations that can be
replayed to understand what is going on.
Writing complex code with a correctness oracle at hand is a liberating experience. Wondering

about why a particular line of code is necessary? Remove it, run the testsuite, and you see. Thinking
of reordering two state changes and wondering if there is an interaction between them? Just try it.
We believe that model-based testing is unreasonably useful for Store because (1) we have a

relatively small and simple API, so all interesting interactions are covered by random search and
(2) we gave a lot of thought to expressing clear specifications, which in turn make it easy to write a
precise reference implementation.

5.2 Microbenchmarks
We studied the performance of our Store library on synthetic microbenchmarks that let us simulate
a variety of different usage scenarios. These benchmarks perform almost only reference operations,
so they magnify the performance differences between implementations compared to real-world
programs – where most of the time is typically spent elsewhere. We would typically consider
overheads of up to 30% as small – unlikely to be noticeable in real-world programs, 2×-5× as
moderate, and above 10× as large.

Our main goal is to establish that if users need some form of backtracking in a (possibly small) part
of their program, using Store is always a good choice, they will not suffer a noticeable performance
degradation compared to a library that supports fewer features, in particular compared to third-
party libraries specialized for semi-persistence, and compared to built-in OCaml references when
no backtracking at all is used. Before our work on Store, when François Pottier needed a Union-
Find implementation with (non-nested) backtracking, he implemented the union-find library as a
functor over a store-like interface, so that users that do not need backtracking do not pay a cost
– they instantiate the functor with built-in references. We want to encourage users to drop this

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/monolith
https://gitlab.inria.fr/fpottier/monolith
https://gitlab.inria.fr/fpottier/monolith
https://gitlab.inria.fr/fpottier/monolith
https://gitlab.inria.fr/fpottier/unionfind

834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882

1:18 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

parametrization strategy and use Store unconditionally, by showing that Store has best-in-class
performance for all relevant workloads.

Implementations. We compare the following implementations:
Store Our implementation.
Ref Native OCaml references; they do not support backtracking of any kind, and they are the

gold standard for “raw” get/set operations.
TransactionalRef A “journaled” store by François Pottier, implemented in union-find for

the needs of Inferno, that only supports non-nested (semi-persistent) transactions.
BacktrackingRef An earlier “journaled” implementation of Store that we wrote, that only

supports semi-persistence. A single dynamic array (the “log”) stores all antioperations, and
ephemeral snapshots are denoted by positions inside this array. BacktrackingRef performs
a record elision optimization.

Facile The backtrackable (semi-persistent) references of the Facile library, a well-established
constraint-programming framework for OCaml, written with performance in mind.3
Facile uses a “journaled” implementation with record elision, similar to ours. (Record
elision is easier to implement for semi-persistent implementations, so it is more common
there.)

Map An implementation using persistent maps (the Map module of the OCaml standard
library):𝑂 (log𝑛) get/set, but𝑂 (1) capture/restore. This corresponds to the “full persis-
tence” approach we mentioned in the introduction. We expect it to be quite slow due to the
logarithmic factor.

Vector an implementation using dynamic arrays, provided by the union-find library, where
backtracking operations copy the array. This corresponds to the “full copy” approach
we mentioned in the introduction. It has fast get/set operations (𝑂 (1)), but very slow
capture/restore operations (𝑂 (𝑛) in the number of references).
We expect Vector to be a solid baseline for the use-cases we had inmindwhen implementing
Store – infrequent backtracking operations so get/set dominate performance.

Benchmarks. We consider the following synthetic benchmarks.
Raw creates 1024 references, then performs a series of 32 reads and 4 writes per reference in

a loop repeated 1000 times.
Transactional is the same as Raw, except that each iteration of the loop is performed in a

failed transaction. We iterate 600 times.
We also run the following variants, to simulate a variety of workloads:
get 128 reads per reference, no writes, 200 iterations
set few no reads, only 64 references are written to (once) in total, that is only 1

16 of all
references, 40000 iterations

set 1 no reads, each reference is written exactly once, 6400 iterations
set 16 no reads, each reference is written 16 times, 600 iterations

Capture-heavy is the same as Transactional, but with different parameters to test the case
where backtracking operations are much more frequent, with only a few reference accesses
per transaction. We perform 16 writes and 64 reads per transaction in total, spread over
4 references in the “small” version (all references are touched in a single transaction) and
1024 references in the “large” version (most references are untouched in each transaction).

3Facile was written in 2005, and found to be comparable with state-of-the-art constraint solvers of the time: slower than
Ilog Solver 4.3, faster than ECLiPSe 5.2.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/unionfind
https://gitlab.inria.fr/fpottier/inferno
http://facile.recherche.enac.fr/
https://gitlab.inria.fr/fpottier/unionfind

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931

Snapshottable stores 1:19

Backtracking is the same as Raw, except that each iteration of the loop starts a new nested
transaction level. All transactions are failed (rolled back) once the loop completes. The loop
is repeated 1000 times, which is also the nesting depth.

10

20

30 Ref

TransactionalRef

BacktrackingRef

Store

Facile

Vector

Map

2.5

5.0

7.5

Raw Transactional Capture-heavy
default get set few set 16 set small large

0.0

0.5

1.0

1.5

2.0

Ti
m
e
(r
el
at
iv
e)

Bac
ktr

ack
ing

Fig. 5. Micro-benchmark results

Results summary. The results of the microbenchmarks are summarized in Figure 5. The results
are normalized relative to the Store implementation to show relative performance in the different
tasks. The absolute benchmarks results are available in the appendices.

For reasons of space, we only provide a high-level summary of the results here. Detailed analyses
of each benchmark are included in Appendix B.
Our general conclusion is that TransactionalRef, BacktrackingRef and Store are the best

implementations, they perform very reliably over all benchmarks, with essentially no overhead
over built-in references in the Raw benchmark. With the exception of the “set 1” variant where
Vector shines, they are always the best implementations. For the benchmarks where they are
supported they have very close performance.

BacktrackingRef is able to perform as well as TransactionalRef despite supporting nested
transactions, and Store performs as well as those two despite supporting both persistent snapshots
and semi-persistent transactions. The performance of Facile is slower than expected: its imple-
mentation of rollback incurs an indirect call for each record. This suggests that our objective for
Store of always being a good choice – despite supporting more features – is reached. It also shows
the advantage of providing snapshottable stores as an independent library that can be optimized
once.

Details on Facile. The performance of Facile is disappointing on set-heavy benchmark. This
comes from the fact that Facile has no explicit commit implementation, we simply keep the

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

1:20 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

snapshot around on successful transactions. In our detailed analysis in Appendix B we refined the
Transactional benchmark into commit-only and abort-only workloads, and we see that Facile
is in fact competitive with other semi-persistent implementations on the abort-only workloads.

Details on Vector. Vector performs surprisingly well, despite an extra indirection and bound
checking. But it suffers from very bad behaviors on “large support” workloads, where only a few
references are modified per transaction. Our “Capture-heavy (large)” test simulates them, and their
Vector is 6× slower than Store. We believe that this situation is the most common in real-world
workloads, and have observed even worse behaviors, for example Vector is 52× slower on one of
our Inferno macro-benchmarks.

The best case for Vector is when each reference is modified exactly once per transaction. Indeed,
all other implementations need to perform extra work on set that corresponds to a sort of per-
reference copy-on-write; if we set all references after a snapshot, the total copy work should be at
least as much as copying the dynarray on capture, with worse constant factors. We do observe
excellent performance for Vector in the “set 1” variant of Transactional, which simulates this.
But we do not know of programs in the wild with similar workloads.

If there are fewer references set per transaction, as in our “set few” variant, Vector is doing worse
than journaled implementations. (Empirically we observed a break-even point on this benchmark
when a fourth of the references are set per transaction.) On the other hand, when each reference is
modified many times per transaction, as in the “set 16” variant, then journaled implementations
benefit from record elision, reducing the advantage of Vector.

5.3 Macrobenchmarks
In order to validate the conclusions from microbenchmarks in more realistic scenarios, we adapted
existing programs, that perform some sort of backtracking, to use the Store interface. This gives a
more realistic view of performance differences one can expect in practice. We detail the various
macro-benchmarks in Appendix C, with only a brief summary here.

Time Relative
Store 0.21s 1.0x
Vector 0.28s 1.3x
Map 0.88s 4.2x

(a) Inferno type checking
(without GADTs)

Time Relative
Store 0.02s 1x
Map 0.08s 4x
Vector 1.3s 70x

(b) Inferno type checking
(GADT example)

Time Relative
T-Ref 0.03s 1x
Store 0.03s 1x
Map 0.09s 3x
Vector 1.78s 52x

(c) Inferno type inference
(short transactios)

Implementation Time Relative
base (hand-optimized) 1.35s 1.00
Store 1.63s 1.20
Store (persistent) 1.76s 1.30
Vector 4.03s 2.99

(d) Sudoku solver

Fig. 6. Macro benchmarks

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno

981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029

Snapshottable stores 1:21

Inferno re-checks the explicitly-typed programs elaborated by its type-inference engine. Our
original use-case for Store was the introduction of GADTs, which requires backtracking changes
to a Union-Find of type equations.
Figure 6a measures type-checking a large explicitly-typed term that does not actually contain

GADTs (the common case). Store is noticeably faster than Vector, the previous best choice.
Figure 6b measures type-checking a small explicitly-typed GADT example. Vector behaves

terribly (this is a “large support” situation) and Store is much better than other choices.
Figure 6c measures Inferno type inference on a ML program. As mentioned earlier, Inferno uses

(non-nested) transactions to roll back partial unifications in case of unification failure, and the
TransactionalRef implementation of François Pottier was written specifically for this use-case.
Our results show that Store can replace TransactionalRef for this use-case.
Finally, Figure 6d represents results on a backtracking-heavy program, an optimized Sudoku

solver implemented in OCaml by Alain Frisch in 2005. The original implementation uses a hand-
optimized “full copy” approach, taking a copy of the Sudoku board state on backtracking points.
(Our test is on a 25 × 25 board.) Our results show that replacing the hand-optimized backtracking
logic by Store only results in a 20% overhead, that using the persistent API instead is slightly
slower, and that Vector would be much worse, 3× slower than the original implementation.

6 RELATEDWORK
6.1 Snapshottable references
We searched the software ecosystem for previous libraries providing “snapshots as a service” (not
just the OCaml ecosystem but also Haskell, Scala, Rust), and were surprised not to find any.4 Some
larger systems implement snapshottable references internally for their own purpose, in particular
SAT/SMT solvers and constraint solvers; but they did not seem to consider releasing this as its
independent library. In our experience, designing Store as an independent library led us to consider
a variety of workloads more thoroughly, and improved our design and implementation.

Union-Find. The inspiration to think of “snapshottable store” as a library of its own came from
the union-find OCaml library, which provides a Union-Find implementation parametrized over a
“store”, a few simplistic store implementations, and the StoreTransactionalRef implementation
supporting non-nested snapshots.

Coincidentally, the closest library we found to “snapshots as a service” is the Rust crate ena, which
implements a Union-Find data structure and provides an undo_log module offering a snapshot
abstraction. This crate was extracted from the codebase of rustc, the Rust compiler, to be shared
with other Rust projects with a need for Union-Find. The implementation of undo_log5 provides a
semi-persistent interface with a transactional flavor (commit and rollback), implemented with a
global dynamic array of changes to undo. In particular, snapshots are not persistent, with dynamic
checks and explicit panics if invalid snapshots are used. It implements the simplest form of record
elision, which is to skip any logging when no valid snapshots exist.

ena supports arbitrary edit actions with undo callbacks (“custom operations”), but provides
built-in support for creating and setting references. Those references are stored in a large dynamic
array, with indices passed to the user. In consequence, a given undo log is parametrized over a

4The undo-redo Rust crate is the closest we found. It keeps a history of “edit events” on some structure, and can call an
“undo” callback associated to each event. It seems designed to record events at the scale of human interactions – human
modifications to a document, etc. – rather than fine-grained changes, and would be fairly inefficient for our use-cases.
It provides “record”, with a linear history (like most semi-persistent implementations) and “histories”, which allows a
branching history with a git-like model of explicit branches.
5https://github.com/rust-lang/ena/blob/12584218/src/undo_log.rs

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/unionfind
https://github.com/rust-lang/ena/
https://github.com/evenorog/undo
https://github.com/rust-lang/ena/blob/12584218/src/undo_log.rs

1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078

1:22 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

fixed type of values, and references of different types cannot be combined in a single undo log –
this makes using them more cumbersome for some applications, see our discussion of the Rust
type-checker in Appendix D. In contrast, our heterogeneous store can contain references of any
type.

Search monads. If we cannot find “snapshots as a service”, we looked for such code bundled into
a larger abstraction, namely a backtracking/search library. We have not found interesting code to
snapshot state in search monads or logic programming monads.

Software Transactional Memory. Software Transactional Memory libraries are designed for con-
currency rather than sequential use. In particular, their main concern is to detect races with another
transaction running concurrently. STM libraries typically do implement a form of journaling, but
with different requirements that makes a comparison difficult. In particular, the implementations
that we studied cannot implement record elision, as they need to track the previous and final
value of each transaction variable – they cannot elide all tracking even if the variable was already
modified by the continuation.

Bespoke implementations in types, solvers. We surveyed implementations of snapshottable stores
hidden inside type checkers (we surveyed GHC, Scala 2 and 3, Rust, OCaml), SAT/SMT solvers
(CVC5 explicitly mentions, but all solvers implement something like this) and a few constraint
solvers. For reasons of space, this content is moved in Appendix D.
We found that most implementations are specialized for semi-persistent snapshots, solvers

implement record elisions while type checkers are typically more naive. The OCaml type-checker
implementation stands out (their implementation is independent from ours) in having a Baker-
inspired structure that would allow persistent snapshots. ocamlc also implements a weaker form
of record elision based on the birth-date of references rather than the time of the last write, that
seems to work very well for type-checking workflows thanks to a generational phenomenon: most
type variables are modified shortly after they are created.

6.2 Mutable and persistent interfaces
Our API provides a mutable interface: mutation operations modify the input store directly:
update : store * params -> unit. Another choice would be to provide a persistent interface,
where mutation operations leave the input store unchanged, and return another store containing
the modification. We write pstore to emphasize that the store is persistent:
val update : pstore * params -> pstore

Functional programming typically encourages persistent data structures, whose transparential
referency helps for program reasoning. Using linear types (when provided by the source language)
can provide similar benefits for mutable interfaces, reformulated using a linear function that
consumes its input:
val update : store * params ⊸ store

Conversely, the mutable (or linear) interface is often preferred for performance reasons. Some
structures have efficient persistent implementations, but other structures have mutable versions
with better complexity or noticeably lower constant factors.

Some implementations expose a persistent interface only, but they rely on reference-counting
schemes to know when the input store is uniquely owned, and perform a mutable update in that
case – they dynamically switch to the linear API. See for example Puente [2017], [Stokke 2018], or
the Functional but In-Place style popularized by Koka [Reinking, Xie, de Moura and Leijen 2021].
This has the potential to be a “best of both worlds” solution, but only in systems where the cost of

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Snapshottable stores 1:23

reference counting is already paid by the runtime or accepted as standard practice – it is a diffuse
cost that must be paid by all users to enable this capability.

6.3 Transient views of persistent data structures
Some persistent data structures provide a transient view into the data structure, on which muta-
ble updates can be applied imperatively, which can then be turned back into a persistent state:
val transient : pstate -> state

val persistent : state -> pstate

val mutably : (* higher-order combinator *)

pstate -> (state -> unit) -> pstate

The transient combinator can be used, for example, to efficiently add a lot of elements at once
into a persistent collection. This is a pattern popularized by the Clojure community [Hickey and
contributors 2024], based on seminal ideas by Bagwell [2001]. Transient data structures can be
found in many languages. For example, transient vectors and hash-maps can be found in Scala’s
standard library, but also in the JavaScript library immutable.js [Byron 2024], and in the Python
library pyrsistent [Gustafsson 2023]. The C++ library immer [Puente 2017] provides transients
Relaxed Radix Balanced (RRB) vectors.

Our interface is the other way around: we expose the mutable API by default, but our snapshots
are persistent, letting users capture persistent versions at point of interest in their code, typically
around an operation they may want to backtrack over.
The two styles are equally expressive: we can implement a persistent store API with transient

views, and conversely a mutable-with-snapshot API can be built on top of persistent-with-transient-
views APIs. Our work focuses on enabling forms of persistence for data structures that are typically
provided with a mutable API only, with an easy migration path for existing users.

Moine, Charguéraud and Pottier [2022] proposes the only formal verification of a transient data
structure that we are aware of. They verify both functional correctness and time complexity of a
transient stack in Separation Logic, using CFML [Charguéraud 2022]. They represent the shared
mutable state between snapshots using a dedicated assertion, which complexifies specifications.
Thanks to Iris support for monotone ghost state, we remove the need for this assertion.

6.4 State-of-the-art algorithms
The value proposition of our work is to provide an easy way to equip an imperative data structure
with backtracking – more generally, persistent snapshots. We of course do not expect the result to
be competitive with specialized algorithms.

The standard complexity of a Union-Find implementation is𝑂 (𝑛𝛼 (𝑛)) for a sequence of 𝑛 union
and find operations, with a 𝑂 (log𝑛/log log𝑛) worst-case complexity for each operation in the
sequence. If we require backtracking support (an operation to undo the last union operation),
Westbrook and Tarjan [1989] prove a lower-bound of Ω(𝑛 log𝑛/log log𝑛) for 𝑛 operations, and
Apostolico, Italiano, Gambosi and Talamo [1994] provide an optimal implementation providing an
𝑂 (log𝑛/log log𝑛) worst-case bound per union and find operation, with a total space cost of𝑂 (𝑛)
for the whole sequence of operations. Their backtrack : graph -> int -> unit operation runs
in time 𝑂 (1), and it is in fact able to undo the 𝑛 most recent union operations.

We have not implemented this algorithm, nor are we aware of existing implementations, but our
intuition is that this algorithm would have noticeably higher constant factors than the traditional
Union-Find implementation. In contrast, our approach requires no new algorithmic expertise (except
to implement our Store library once and for all), it provides a much worse complexity of 𝑂 (𝑛) for
the backtracking operation (that is infrequent in the workloads we are considering, relatively to
find and get queries), and very low constant factor overheads for existing operations – which

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176

1:24 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

are performance-critical for our workloads. Our space overhead is 𝑂 (𝑛), as with state-of-the-art
algorithms.

Demaine, Langerman and Price [2008] presents a persistent trie data structure, which is unrelated
to our current interest, but it is of interest to us for two reasons. First, to our non-expert knowledge
it presents a state-of-the-art implementation of persistent dynamic arrays (which can be resized
dynamically), using a sophisticated “rebuilding” approach to interleave resizing work with updates
– if you know of Okasaki’s technique to amortize the reversal of a list to implement a persistent
queue, think of a much harder version of this idea. Second, it contains a very useful, detailed
discussion of notions of persistence used in algorithmic research, which we tried to summarize in
our introduction. Coming back to persistent (resizable) arrays: the standard approach for persistent
arrays comes from Dietz [1989], where each access operation has cost 𝑂 (log log𝑛) in expectation
(it is randomized), where 𝑛 is the total number of operations performed so far. This dependence on
the number of operations is problematic for many use-cases, including ours – we only have such
a dependence on backtrack operations, and want to avoid them on access operations. Demaine,
Langerman and Price [2008] lowers it to 𝑂 (log logΔ), where Δ is the total size of the array.

Driscoll, Sarnak, Sleator and Tarjan [1989] exposes generic techniques to add partial persistence
and full persistence to existing data structures; they are not exposed as support libraries, applying
them requires changing the data structure and its operations in a systematic way. These techniques
apply to all data structures that can be seen as a graph of nodes with bounded in-degree – there is a
global bound on the number of parents of each node. The techniques are designed to provide 𝑂 (1)
access to any version in the tree, and typically have higher constant factors than we would like. As
it happens, the usual Union-Find data structure does not have bounded in-degrees, as an arbitrary
number of nodes can point to the same representant.

6.5 Static checking and formal verification
Conchon and Filliâtre [2008] presents a static checking discipline for semi-persistent data structures,
based on ghost updates in Why3, a programming language designed for deductive verification.
One could also use linear types or unique ownership to capture semi-persistence. Our OCaml
implementation performs no static checking, but we invalidate our data structures at runtime in
such a way that incorrect use results in a clear dynamic failure rather than unspecified behavior.

Conchon and Filliâtre [2007] propose persistent arrays and a persistent Union-Find library written
in OCaml, and verify them in Coq. (The Union-Find implementation is built on the persistent arrays,
so in particular it has bad liveness properties, it retains the memory of all nodes forever.) They
use a shallow embedding of OCaml in Coq with an explicit heap, and express specifications
using dependent types. This approach leads to verbose specifications. On the contrary, we benefit
from Separation Logic and provide simpler specifications. Conchon and Filliâtre [2007] verify
the termination of functions of the library, which we do not. We posit that we can enhance our
specifications and proofs with time credits [Charguéraud and Pottier 2019] to verify both the
termination and the time complexity of our implementation. Our proof does establish that the
version graph remains acyclic, which is the key argument needed for termination.

7 FUTUREWORK
Verification. We verified the persistent core of Store, forcing us to build a very good mental

model of the subtle implementation, without record elision. The next step is the verification of
record elision. We have already sketched the proof and do not expect any conceptual difficulty.
In particular, the specifications of Section 3.2 remain the same: record elision is only an internal
optimization. After, it would be nice to include complexity bounds in the specifications, and to

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225

Snapshottable stores 1:25

extend the mechanized proofs to the semi-persistent API, which requires invalidating snapshots
(and transactions).

Custom operations. Store currently supports a single mutable datatype, namely references. This
is enough, as all mutable datatypes can be built on top of mutable references. For example, one can
define a snapshottable dynamic array as a store reference over an array of store references, and
build snapshottable hashtables on top of it.

We believe however that some datatypes would benefit performance-wise from being integrated
more directly into our stores, by extending our version nodes with higher-level operations – adding
a value to a dynamic array, writing a table at a given key, etc.
One could of course hardcode such higher-level operations in the Store implementation (the

backtrackable trail of Z3 is hardcoded in this way), but we would prefer to let users define “custom
operations” following a certain abstract interface (the context-depedent objects of CVC5 provide
this). We have started working on this abstract interface and played with several iterations of this
idea; in particular, we believe that it is possible to combine custom operations with record elision.
A difficulty is to find the right balance between generality and performance: some interfaces are
more expressive than others, but they suffer from higher constant factors.

Confluence. Consider a user manipulating two snapshottable union-find graphs, each with its
own store. They may decide to “merge” the graphs together – and start unifying nodes from
both sides. We do not provide support for this. It is possible to just keep a product of stores, and
restore/capture them together (rustc does this), but better support for this use-case could be useful
in some scenarios – that we have not encountered yet.

Rebuilding. Journaled implementations, including Store, are optimized for “single-threaded”
computations where switching from one snapshot to another is rare. Their performance breaks
down if trying, for example, to evolve two different versions in lockstep. This is a limit to the
generality of our implementation. Improving on this probably requires being able to track several
copies of the “global state” simultaneously. For example, one could ask to rebuild a given snapshot, a
costly operation that would turn it into an independent copy of the state – in particular, its validity
would not depend on active transactions anymore.

The algorithmics literature studies how to perform this rebuilding implicitly, whenever edit
chains become long enough that it is worth it – the most elaborate works in this direction are
Chuang [1992, 1994]. This introduces other costs, in particular in space, and makes it harder for
users to reason about performance. We would rather keep this an explicit operation.
Our current implementation choice, where each reference really has a unique field storing its

current state – instead of being an index into a copiable structure – is in tension with rebuilding,
we do not see how to do it. It seems challenging to offer this capability without hurting constant
factors and/or our memory-liveness properties (Section 2.5).

Acknowledgments hidden for anonymity.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274

1:26 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

ACKNOWLEDGMENTS
Acknowledgments.

REFERENCES
Alberto Apostolico, Giuseppe F. Italiano, Giorgio Gambosi, and Maurizio Talamo. 1994. The Set Union Problem with

Unlimited Backtracking. SIAM J. Comput. 23, 1 (1994), 50–70.
Phil Bagwell. 2001. Ideal Hash Trees. Technical Report. EPFL. http://infoscience.epfl.ch/record/64398
Henry G. Baker. 1978. Shallow binding in Lisp 1.5. Commun. ACM 21, 7 (jul 1978), 565–569. https://doi.org/10.1145/359545.

359566
Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt, Makai Mann, Abdalrhman Mohamed,

Mudathir Mohamed, Aina Niemetz, Andres Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng,
Cesare Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
I (Lecture Notes in Computer Science, Vol. 13243), Dana Fisman and Grigore Rosu (Eds.). Springer, 415–442. https:
//doi.org/10.1007/978-3-030-99524-9_24

Michael A. Bender, Richard Cole, Erik D. Demaine, Martin Farach-Colton, and Jack Zito. 2002. Two Simplified Algorithms
for Maintaining Order in a List. In Proceedings of the 10th Annual European Symposium on Algorithms (ESA 2002) (Lecture
Notes in Computer Science, Vol. 2461). 152–164.

François Bobot, Bruno Marre, Guillaume Bury, Stéphane Graham-Lengrand, and Hichem Rami Ait El Hara. 2022. Colibri2: a
constraint-programming solver for smtlib. https://colibri.frama-c.com

Lee Byron. 2024. Immutable.js library for JavaScript. https://github.com/immutable-js/immutable-js/
Arthur Charguéraud. 2022. The CFML tool and library. http://www.chargueraud.org/softs/cfml/.
Arthur Charguéraud and François Pottier. 2019. Verifying the Correctness and Amortized Complexity of a Union-Find

Implementation in Separation Logic with Time Credits. Journal of Automated Reasoning 62, 3 (March 2019), 331–365.
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf

Tyng-Ruey Chuang. 1992. Fully persistent arrays for efficient incremental updates and voluminous reads. In ESOP ’92: 4th
European symposium on programming. 110–129.

Tyng-Ruey Chuang. 1994. A randomized implementation of multiple functional arrays. In ACM conference on LISP and
functional programming. 173–184.

Sylvain Conchon and Jean-Christophe Filliâtre. 2007. A Persistent Union-Find Data Structure. In ACM SIGPLAN Workshop
on ML. ACM Press, Freiburg, Germany, 37–45. http://www.lri.fr/~filliatr/ftp/publis/puf-wml07.pdf

Sylvain Conchon and Jean-Christophe Filliâtre. 2008. Semi-Persistent Data Structures. In 17th European Symposium on
Programming (ESOP’08). http://www.lri.fr/~filliatr/ftp/publis/spds-rr.pdf

Erik Demaine, Stefan Langerman, and Eric Price. 2008. Confluently Persistent Tries for Efficient Version Control. Algorithmica
57 (07 2008), 462–483. https://doi.org/10.1007/s00453-008-9274-z

Paul F. Dietz. 1989. Fully persistent arrays. In Algorithms and Data Structures. 67–74.
J R Driscoll, N Sarnak, D D Sleator, and R E Tarjan. 1989. Making data structures persistent. J. Comput. System Sci. 38, 1

(1989), 86–124. https://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf
Tobias Gustafsson. 2023. Pyrsistent library for Python. https://github.com/tobgu/pyrsistent
Barry Hayes. 1997. Ephemerons: a new finalization mechanism. SIGPLAN Not. 32, 10 (oct 1997), 176–183. https://doi.org/

10.1145/263700.263733
Hickey and contributors. 2024. Clojure ReferenceManual on Transient Data Structuresransient. https://clojure.org/reference/

transients.
Iris Development Team. 2024. iris.base_logic.lib.gen_heap. https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.

gen_heap.html.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground

up: A modular foundation for higher-order concurrent separation logic. Journal of Functional Programming 28 (2018),
e20. https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf

Alexandre Moine, Arthur Charguéraud, and François Pottier. 2022. Specification and verification of a transient stack. In
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs (Philadelphia, PA, USA)
(CPP 2022). Association for Computing Machinery, New York, NY, USA, 82–99. https://doi.org/10.1145/3497775.3503677

Melissa E. O’Neill and F. Warren Burton. 1997. A new method for functional arrays. J. Funct. Program. 7, 5 (sep 1997),
487–513. https://doi.org/10.1017/S0956796897002852

François Pottier. 2014. Hindley-Milner elaboration in applicative style. In International Conference on Functional Programming
(ICFP). http://cambium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://infoscience.epfl.ch/record/64398
https://doi.org/10.1145/359545.359566
https://doi.org/10.1145/359545.359566
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://colibri.frama-c.com
https://github.com/immutable-js/immutable-js/
http://www.chargueraud.org/softs/cfml/
http://cambium.inria.fr/~fpottier/publis/chargueraud-pottier-uf-sltc.pdf
http://www.lri.fr/~filliatr/ftp/publis/puf-wml07.pdf
http://www.lri.fr/~filliatr/ftp/publis/spds-rr.pdf
https://doi.org/10.1007/s00453-008-9274-z
https://www.cs.cmu.edu/~sleator/papers/another-persistence.pdf
https://github.com/tobgu/pyrsistent
https://doi.org/10.1145/263700.263733
https://doi.org/10.1145/263700.263733
https://clojure.org/reference/transients
https://clojure.org/reference/transients
https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.gen_heap.html
https://plv.mpi-sws.org/coqdoc/iris/iris.base_logic.lib.gen_heap.html
https://people.mpi-sws.org/~dreyer/papers/iris-ground-up/paper.pdf
https://doi.org/10.1145/3497775.3503677
https://doi.org/10.1017/S0956796897002852
http://cambium.inria.fr/~fpottier/publis/fpottier-elaboration.pdf

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323

Snapshottable stores 1:27

François Pottier. 2021. Strong Automated Testing of OCaml Libraries. In JFLA 2021 - 32es Journées Francophones des Langages
Applicatifs. Saint Médard d’Excideuil, France. https://inria.hal.science/hal-03049511

Juan Pedro Bolívar Puente. 2017. Persistence for the masses: RRB-vectors in a systems language. Proc. ACM Program. Lang.
1, ICFP, Article 16 (aug 2017), 28 pages. https://doi.org/10.1145/3110260

Alex Reinking, Ningning Xie, Leonardo deMoura, and Daan Leijen. 2021. Perceus: garbage free reference counting with reuse.
In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation
(Virtual, Canada) (PLDI 2021). 96–111. https://doi.org/10.1145/3453483.3454032

Bodil Stokke. 2018. im crate in Rust: in-place mutation. https://docs.rs/im/latest/im/index.html#in-place-mutation
Simon Friis Vindum and Lars Birkedal. 2021. Contextual refinement of the Michael-Scott queue. In Certified Programs and

Proofs (CPP). 76–90. https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
Jeffery Westbrook and Robert E. Tarjan. 1989. Amortized Analysis of Algorithms for Set Union with Backtracking. SIAM J.

Comput. 18, 1 (1989), 1–11. https://doi.org/10.1137/0218001

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://inria.hal.science/hal-03049511
https://doi.org/10.1145/3110260
https://doi.org/10.1145/3453483.3454032
https://docs.rs/im/latest/im/index.html#in-place-mutation
https://cs.au.dk/~birke/papers/2021-ms-queue-final.pdf
https://doi.org/10.1137/0218001

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372

1:28 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

A MONOLITH INTERFACE

type 'a sref = { key : int; default : 'a }

type 'a mapping = 'a Map.Make(Int).t

type 'a snapshot = { state : 'a mapping;

transactions : 'a transaction list; }

and 'a transaction = { snapshot : 'a snapshot;

mutable terminated : bool; }

and 'a store = 'a snapshot ref

B DETAILED MICROBENCHMARKS RESULTS AND ANALYSES
We introduce our microbenchmarks in Section 5.2, but for reasons of space we only gave a high-level
summary of the results. The current appendix contains more details on our benchmarking setup,
the results of each benchmark, and a summary analysis of the results.

B.1 Methodology
Performing accurate microbenchmarks is very difficult.
We account for runtime noise by running benchmarks many times, and can provide intervals /

error estimates (we use the hyperfine tool). All the micro benchmarks are run on a machine with
an AMD Ryzen Threadripper 3990X processor and 264Go of RAM. Hyper-threading and frequency
scaling are disabled, the frequency is set to its maximum of 2.9GHz, and the benchmarks are run
sequentially on a single isolated core, so that the noise level of running the same binary repeatedly
is very low.

Other sources of measurement biases are harder to detect and control. Our general approach is
to ensure that we know how to explain the benchmark results, and carefully study each result that
we do not understand – more often than not, this comes from a measurement bias that must be
fixed to give accurate results. For example, we found performance swings of up to 10% due to code
alignment effects. (We now run our benchmarks with 16 different alignments to control this.)

In our opinion, themain threat to validity of the results below is that we have had access one noise-
controlled benchmarking machine with a specific AMD ThreadRipper processor, and that some of
the fine-grained qualitative comparisons may be different on other processors or architectures. This
is an issue with microbenchmarks, which give a very detailed view of performance but are more
sensitive to system differences. The macrobenchmark discussed in Section 5.3 are more robust in
that regard.

B.2 Benchmark parameters
All benchmarks are purely synthetic, and they are parametrized by the following environment
variables.

ROUNDS the benchmark does *something* in a loop, ROUNDS time; the total time should
scale linearly with this variable (but this may not be just a for loop, there may be an
environment growing from one round to the next).

NCREATE, NREAD, NWRITE : the logarithm of the number of references to create,read,write
each round.

We use three sets of parameters to simulate different workloads:
default represents our default workload where backtracking operations are rare, and reads

dominate writes. We use NCREATE=10, NREAD=16, NWRITE=12, with 4*1024 writes

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421

Snapshottable stores 1:29

and 32*1024 writes per transaction. All references are touched in each transactio in each
transactionn, so this is an ideal case for Vector.

capture-heavy tests a limit case where backtracking operations are much more frequent,
with only a handful of get/set calls per transaction. We use NCREATE=2, NWRITE=4,
NREAD=6, with 16 writes and 64 reads per transaction (spread over 4 references).

capture-heavy-large-support is a variant of capture-heavy where there are many refer-
ences around, but only a few of them are touched by each transaction. We use NCREATE=10,
NWRITE=4, NREAD=6, with 16 writes and 64 reads per transaction (spread over 1024 refer-
ences; most references are untouched at each round).

B.3 Colibri2
ompared to the microbenchmarks summary in Section 5.2, we include an additional third-party
implementation, Colibri2. Colibri2 [Bobot, Marre, Bury, Graham-Lengrand and Rami Ait El Hara
2022] is a constraint-programming and SMT solver written in OCaml, with an implementation of
backtrackable references.
We wanted to measure the performance of Colibri2 because it is uses a different design from

our implementation or Facile. It uses a “fat node” representation where the previous values of
each reference are stored within the reference itself. The work of restoring an earlier version is
done lazily, on demand. rollback is constant-time and does not update references; when we get a
reference we check that it has the current version or rewind the reference state. Note that storing
the history locally in each reference improves the memory-liveness properties compared to our
implementation, where each snapshot retains old versions of all references it recorded.

As you will see in this section, we found that this on-demand approach has a noticeable overhead
due to the extra check in the performance-critical operation get. We discussed this with the authors
of Colibri2, and in January 2024 they changed their implementation to be very close to ours. (The
numbers below correspond to the previous, distinctive implementation.)

B.4 Commit-only and abort-only results
In the results that we have shown in the summary in Section 5.2, the Transactional benchmark
and its Capture-heavy variant test a mix of successful and failed transactions, commit and restore.
On the other hand, our third-party implementations Facile and Colibri2 were written for solver-
backtracking use cases and do not implement a dedicated commit operation. It is possible to just
do nothing on commit – we leave the snapshot in history, they support nested snapshots, but this
provides noticeably worse performance than our implementations that compress the history on
commit – new records can be elided.
In this more detailed section, we provide a more fine-grained comparison by separating the

Transactional and Capture-heavy benchmarks in two variants, an abort-only variant and a
commit-only variant. This changes the qualitative comparison, as Facile becomes competitive
with our semi-persistent implementations in the abort-only scenarios.

Figure 7 provides an overview of the abort-only results, and Figure 8 an overview of the commit-
only results.

B.5 Per-benchmark results and analysis
B.5.1 Raw.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470

1:30 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

10

20

30 Ref

TransactionalRef

BacktrackingRef

Store

Facile

Colibri2

Vector

Map

2.5

5.0

7.5

Raw Transactional (abort-only) Capture-heavy
default get set few set 16 set small large

0.0

0.5

1.0

1.5

2.0

Ti
m
e
(r
el
at
iv
e)

Bac
ktr

ack
ing

Fig. 7. Micro-benchmark results (abort-only)

Time (ms) Relative
Implementation
Ref 77.8 ± 0.65 1.00 ± 0.01
BacktrackingRef 79.6 ± 1.27 1.02 ± 0.02
Store 80.6 ± 0.33 1.04 ± 0.01
Facile 82.8 ± 0.31 1.06 ± 0.01
TransactionalRef 88.3 ± 0.45 1.14 ± 0.01
Vector 126.5 ± 0.06 1.63 ± 0.01
Colibri2 233.8 ± 0.08 3.01 ± 0.03
Map 2038.1 ± 17.47 26.20 ± 0.31

Ref is the gold standard for this benchmark. Store, BacktrackingRef and Facile have a small
overhead (2%-3%). TransactionalRef is a bit slower (12% overhead): it performs two writes per
set instead of one. Vector is even slower (67% overhead), probably due to additional indirections
and bound checks, and Map is an order of magnitude slower than the rest (25-27 times).

TransactionalRef has a slower set operation in the absence of backtracking (two polymorphic
writes instead of one), but it keeps the same code in the presence of backtracking (thanks to
its restriction to non-nested transactions). It will perform better (relatively to BacktrackingRef,
Facile, Store) in the Transactional benchmarks that follow.

B.5.2 Transactional, abort-only. In a transactional scenario, Ref cannot be used. Store, TransactionalRef,
BacktrackingRef and Facile are the fastest and all within 5% of each other; Vector is about 40%
slower, Colibri2 is about 2× slower and Map is 22× slower.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519

Snapshottable stores 1:31

10

20

30 TransactionalRef

BacktrackingRef

Store

Facile

Colibri2

Vector

Map

2.5

5.0

7.5

Transactional (commit-only) Capture-heavy
default get set few set 16 set small large

0.0

0.5

1.0

1.5

2.0

Ti
m
e
(r
el
at
iv
e)

Fig. 8. Micro-benchmark results (commit-only)

Time (ms) Relative
Mixed get/set workload
Store 70.1 ± 0.64 1.00 ± 0.01
TransactionalRef 71.0 ± 0.12 1.01 ± 0.01
Facile 72.2 ± 0.56 1.03 ± 0.01
BacktrackingRef 73.6 ± 0.23 1.05 ± 0.01
Vector 97.3 ± 0.05 1.39 ± 0.01
Colibri2 149.3 ± 0.29 2.13 ± 0.02
Map 1560.4 ± 5.07 22.26 ± 0.22

Get-only workload. Vector is 70% slower than the other implementations on the “get” variant,
partially due to performing many unnecessary copies.

Time (ms) Relative
Get
BacktrackingRef 73.7 ± 0.02 1.00 ± 0.00
Facile 73.7 ± 0.03 1.00 ± 0.00
Store 73.7 ± 0.02 1.00 ± 0.00
TransactionalRef 73.7 ± 0.10 1.00 ± 0.00
Vector 129.1 ± 0.02 1.75 ± 0.00

Continued on next page

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568

1:32 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

Time (ms) Relative
Get
Colibri2 164.8 ± 0.02 2.24 ± 0.00
Map 2021.1 ± 11.93 27.42 ± 0.16

Varying ratios of set. For set-only benchmarks we measure three different ratios of write: in
“set few”, only one out of 16 references is modified (once) at each round. In “set 1”, each reference is
modified exactly once. In “set 16”, each reference is modified 16 times.

Time (ms) Relative
Set few
TransactionalRef 43.4 ± 1.01 1.00 ± 0.03
Facile 47.6 ± 1.92 1.10 ± 0.05
Store 51.9 ± 1.75 1.20 ± 0.05
BacktrackingRef 56.9 ± 0.84 1.31 ± 0.04
Colibri2 69.1 ± 1.47 1.59 ± 0.05
Vector 127.1 ± 1.13 2.93 ± 0.07
Map 175.5 ± 1.62 4.04 ± 0.10

Time (ms) Relative
Set1
Vector 52.9 ± 0.29 1.00 ± 0.01
TransactionalRef 101.0 ± 0.42 1.91 ± 0.01
Facile 117.7 ± 4.62 2.22 ± 0.09
Store 128.1 ± 3.30 2.42 ± 0.06
BacktrackingRef 140.6 ± 2.33 2.66 ± 0.05
Colibri2 183.2 ± 4.85 3.46 ± 0.09
Map 530.3 ± 5.45 10.02 ± 0.12

Time (ms) Relative
Set16
Vector 53.3 ± 0.08 1.00 ± 0.00
Store 59.0 ± 0.82 1.11 ± 0.02
BacktrackingRef 62.5 ± 0.46 1.17 ± 0.01
Facile 63.7 ± 0.40 1.19 ± 0.01
TransactionalRef 69.9 ± 0.19 1.31 ± 0.00
Colibri2 89.7 ± 0.25 1.68 ± 0.01
Map 845.5 ± 5.54 15.85 ± 0.11

Vector shines on the “set” variant where it is 2× faster than other implementations. The “set”
variant is the best-case scenario for the “full copy” approach, since all other implementations
degrade to also doing a full copy with worse constant factors. This advantage goes away if many
set operations are performed in a transaction and record elision kicks in: in the “16 set” variant,

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617

Snapshottable stores 1:33

Vector is only about 10-15% faster than the other implementations. It also goes away if only
a subset of the references are modified: in the “set few” variant, it is 3× slower than the best
implementation.6.
The relative performance of TransactionalRef can be explained by its set implementation:

while its elided write is slower than the other journaled implementations, its non-elided write is
simpler due to not supporting nesting. This gives it a performance boost in scenarios that do not
allow record elision (the “set” variant and the “large” capture-heavy variant); that goes away as
the number of writes per reference increases (in the “16 set” variant and “small” capture-heavy
varieant).

More generally, the difference in performance between the journaled implementations boils
down to relative efficiency of elided and non-elided writes. The default and set 16 configurations
compare write performance, and the set and set few configurations compare non-elided write
performance. TransactionalRef has a single write implementation that is faster than non-elided
writes of other implementations but slower than their elided writes. Facile has fast non-elided
writes, but slow elided writes. Store has fast elided writes, but slow non-elided writes (with an
extra caml_modify compared to Facile). BacktrackingRef has slow elided and non-elided writes.

Colibri2 is generally slow, partially due to get operations being slower but also set operations
are slower in general.

Capture-heavy variants. The Map implementation has a much smaller overhead in the “small”
capture-heavy variant; however, even in this ideal scenario (few references and few read/write
operations per transaction), it is still twice as slow as the journaled implementations. When the
number of references increases, the logarithmic overhead shows up, as in the “large” capture-heavy
variant – where Vector also performs much worse.

Time (ms) Relative
Capture-heavy, small support
Facile 41.4 ± 0.62 1.00 ± 0.02
TransactionalRef 44.4 ± 0.38 1.07 ± 0.02
Store 45.3 ± 0.52 1.10 ± 0.02
BacktrackingRef 47.8 ± 0.37 1.16 ± 0.02
Vector 54.5 ± 0.55 1.32 ± 0.02
Colibri2 68.7 ± 0.94 1.66 ± 0.03
Map 84.3 ± 0.86 2.04 ± 0.04

Time (ms) Relative
Capture-heavy, large support
TransactionalRef 60.3 ± 0.56 1.00 ± 0.01
Facile 64.1 ± 0.91 1.06 ± 0.02
Store 70.5 ± 2.17 1.17 ± 0.04
BacktrackingRef 74.0 ± 0.42 1.23 ± 0.01
Colibri2 99.0 ± 0.46 1.64 ± 0.02

Continued on next page

6In this particular benchmark, we find that the break-even point is when around one-fourth of the references are modified
per transaction.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666

1:34 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

Time (ms) Relative
Capture-heavy, large support
Map 323.5 ± 3.85 5.37 ± 0.08
Vector 429.6 ± 0.51 7.13 ± 0.07

B.6 Transactional, commit-only
The results for commit-only transactional benchmarks are similar for most implementations, except
for Facile and Colibri2 which do not support efficient commit operations. TransactionalRef
and BacktrackingRef have very fast commit operations. Store is marginally slower but still
competitive.

Time (ms) Relative
Mixed get/set workload
Store 69.2 ± 0.41 1.00 ± 0.01
BacktrackingRef 70.1 ± 0.35 1.01 ± 0.01
TransactionalRef 70.6 ± 0.10 1.02 ± 0.01
Vector 97.0 ± 0.03 1.40 ± 0.01
Facile 125.9 ± 0.25 1.82 ± 0.01
Colibri2 226.2 ± 0.32 3.27 ± 0.02
Map 1602.4 ± 5.21 23.16 ± 0.16

Time (ms) Relative
Get
BacktrackingRef 73.7 ± 0.01 1.00 ± 0.00
TransactionalRef 73.7 ± 0.02 1.00 ± 0.00
Store 73.7 ± 0.02 1.00 ± 0.00
Facile 73.7 ± 0.02 1.00 ± 0.00
Vector 129.1 ± 0.07 1.75 ± 0.00
Colibri2 184.1 ± 0.04 2.50 ± 0.00
Map 2002.2 ± 18.20 27.17 ± 0.25

Time (ms) Relative
Set few
TransactionalRef 41.4 ± 0.63 1.00 ± 0.02
BacktrackingRef 42.4 ± 0.78 1.02 ± 0.02
Store 44.0 ± 1.45 1.06 ± 0.04
Vector 125.0 ± 0.46 3.02 ± 0.05
Map 176.6 ± 1.97 4.26 ± 0.08
Colibri2 279.4 ± 0.81 6.74 ± 0.10
Facile 300.4 ± 0.63 7.25 ± 0.11

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715

Snapshottable stores 1:35

Time (ms) Relative
Set 1
Vector 52.5 ± 0.06 1.00 ± 0.00
TransactionalRef 100.9 ± 1.06 1.92 ± 0.02
Store 115.9 ± 1.25 2.21 ± 0.02
BacktrackingRef 118.5 ± 2.41 2.26 ± 0.05
Map 601.2 ± 3.32 11.46 ± 0.06
Colibri2 722.7 ± 1.05 13.77 ± 0.02
Facile 736.5 ± 1.61 14.04 ± 0.03

Time (ms) Relative
Set 16
Vector 53.3 ± 0.12 1.00 ± 0.00
Store 58.1 ± 0.38 1.09 ± 0.01
BacktrackingRef 60.7 ± 0.93 1.14 ± 0.02
TransactionalRef 69.8 ± 0.13 1.31 ± 0.00
Facile 119.0 ± 0.27 2.23 ± 0.01
Colibri2 139.1 ± 0.34 2.61 ± 0.01
Map 867.2 ± 8.36 16.28 ± 0.16

Time (ms) Relative
Capture-heavy, small support
BacktrackingRef 36.8 ± 0.26 1.00 ± 0.01
Store 37.5 ± 0.57 1.02 ± 0.02
TransactionalRef 37.8 ± 0.54 1.03 ± 0.02
Vector 47.1 ± 0.16 1.28 ± 0.01
Map 76.9 ± 0.30 2.09 ± 0.02
Facile 100.4 ± 0.90 2.73 ± 0.03
Colibri2 120.4 ± 0.75 3.27 ± 0.03

Time (ms) Relative
Capture-heavy, large support
BacktrackingRef 53.7 ± 0.62 1.00 ± 0.02
TransactionalRef 53.9 ± 1.02 1.00 ± 0.02
Store 54.4 ± 1.03 1.01 ± 0.02
Colibri2 297.0 ± 0.53 5.53 ± 0.06
Facile 300.1 ± 0.96 5.59 ± 0.07
Map 322.0 ± 5.64 5.99 ± 0.13
Vector 419.6 ± 0.48 7.81 ± 0.09

B.6.1 Backtracking.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764

1:36 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

Time (ms) Relative
Implementation
Vector 164.3 ± 0.12 1.00 ± 0.00
Store 208.1 ± 0.72 1.27 ± 0.00
Facile 221.8 ± 2.20 1.35 ± 0.01
BacktrackingRef 235.6 ± 1.50 1.43 ± 0.01
Colibri2 396.9 ± 0.71 2.42 ± 0.00
Map 2647.8 ± 7.74 16.12 ± 0.05

This benchmark tests deeply nested backtracking chains, with our standard set parameters where
all references are set 4 times and read 16 time in each round. This scenario is again favorable to our
full-copy baseline Vector, with “journaled” implementations being somewhat slower at 29%-43%
overhead. Map remains very slow, 16× slower than Vector. (TransactionalRef does not support
nested transactions, so it cannot be used here.)

B.6.2 Persistent API. Finally, we use the Backtracking benchmark, which performs deeply nested
backtracking, to measure the performance difference between the persistent and semi-persistent
operations of Store – we run the same workload with the tentatively function reimplemented
on top of capture/restore. On this test, we observe a 50% overhead for the persistent API.

Time (ms) Relative
Implementation
Backtracking-abort 210.2 ± 0.30 1.00 ± 0.00
Backtracking-persistent 314.7 ± 1.46 1.50 ± 0.01

Remark. We conclude that there are some workloads where the semi-persistent API provides a
noticeable performance difference. The difference, however, remains fairly small for a microbench-
mark, and would typically not be noticeable for many end-user applications.

C MACROBENCHMARKS DETAILS
This appendix contains the full details on the macrobenchmarks mentioned in Section 5.3.

C.1 System F type-checking in Inferno
The Inferno project implements type-inference for a small ML language, and for well-typed terms it
produces a “witness” or an “elaboration”, which is an explicitly-typed version of the input program
in a variant of System F. Inferno includes a type-checker for this explicitly language, which is much
simpler than type inference and can be used to catch bugs in the type inference machinery.
This explicit type checker uses a Union-Find data structure to check equality between types.

We worked on a prototype extension of Inferno with GADTs, which required to add backtracking
to the Union-Find graph of System F types to support local type-equality assumptions that are
undone when leaving the scope of a GADT equation.
This was our initial motivation for implementing Store, and an ideal scenario for journaled

implementations. Vector is a bad choice because we are in the “large support” worst-case: most
backtracking points (that is, pattern-matching clauses containing GADTs) are short-lived and
modify only a few Union-Find nodes. On the other hand, Map introduces an important overhead,
even when the code does not use GADTs.

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno

1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813

Snapshottable stores 1:37

Now that we have Store implemented we can replace Vector with it and compare performance.
We use Inferno’s own performance test, which is to generate a large random term (with a generator
design to produce well-typed terms), infer its type and check its explicitly-typed version.
The results in Figure 6a show that in this real program performing many other operations

than Store operations, using Vector is 1.3× slower than using our Store implementation, and
using Map is 4.2× slower. Adopting Store is easy and comes with a direct, noticeable performance
improvement.

The large random term type-checked in the test above does not contain any GADTs7 (the random
generator does not know about them), so no snapshots are actually taken when running this test.
This is a best case for Vector – it does not suffer from the “large support” situation.

We do not have good, representative test programs that contain a reasonable frequency of GADT
constructs, but as a limit case we checked the performance of the type-checker on a small GADT
example – a very short program that only checks GADT features, checked 1000 times in a loop. The
results (below) should be taken with a grain of salt, as this is closer to microbenchmark territory
again. For this limit test shown in Figure 6b, the System F type-checker remains 4× slower with
Map than with Store, but using Vector now performs terribly, almost 70× slower, due to the “large
support” situation.

C.2 System F type inference with GADTs (Inferno)
The previous test measures the performance of type-checking of explicitly-typed terms in Inferno.
Inferno also uses a Union-Find data structure during inference of ML terms, performing inference
via unification as usual. As we explained previously, Inferno implements a transactional behavior
for unification of types: a single unification constraint is decomposed in many variable-variable
unifications, but if any of those fail, we revert all changes to the inference state caused by this
unification constraint in order to generate clear error messages. We measure the type-inference
work for (again) a large randomly-generated ML term, with our Union-Find graph instantiated by
different store implementations.

This workload has a relatively high number of backtracking points, most of which perform little
work (most type-type unification are on small types that perform few variable-variable unifications).
This workload is a worst-case scenario for full-copy implementations such as Vector, but it is
a best case for full-persistence implementations such as Map. There are no nested transactions,
so François Pottier’s TransactionalRef implementation can be used – in fact, it was designed
precisely for this use-case, so it is the gold standard for this test.
We see in Figure 6c that Store has the same performance as TransactionalRef despite being

much more general; Map is much slower, and Vector is unacceptably slow.

C.3 Sudoku solver
We wanted to test backtracking programs that are not doing type-checking of any form. We are
interested in using Store in SAT or SMT context, but SAT/SMT engines have deeply ingrained
forms of backtracking and it is not so easy to port existing solvers to Store. Instead we looked for
Sudoku solvers written as constraint-solving programs, which are typically simpler. We found an
OCaml implementation of a Sudoku solver8 written by Alain Frisch in 2005 with performance in
mind, and we adapted it to use Store.

7The implementation of the type-checker must support GADTs, and thus use a snapshottable store. For this specific
benchmark without GADTs, we tried using built-in references out of curiosity, and the performance is the same as Store.
8http://alain.frisch.fr/sudoku.html

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
https://gitlab.inria.fr/fpottier/inferno
http://alain.frisch.fr/sudoku.html

1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862

1:38 Clément Allain, Basile Clément, Alexandre Moine, and Gabriel Scherer

A constraint-based Sudoku solver operates on a “board state”, which tracks the possible values
(the “domain”) of each board position. Whenever the domain of a board position is refined, we
propagate constraints to other positions whose domain could be refined in turn (in the same row,
column or block). Once all constraints have been propagated fully, we have to perform backtracking:
choose a yet-undetermined position, and try each of the possible value of its domain – backtracking
any state change after each attempt fails. Sudoku solvers must represent the board state efficiently
(this solver uses an array of integers, where integers are used as bitsets to represent the domains),
propagate constraints efficiently, and use good heuristics to decide which position to backtrack on.
Alain Frisch’s Sudoku solver uses a hand-crafted “full copy” implementation, that copies the

full board state at each backtracking point. The implementation is careful about reusing buffers to
avoid allocations when possible. The state is fixed and relatively small, so copy is cheap – we used
a test benchmark on a 25×25 sudoku board, so the state is an array of 625 integers.

base is Alain Frisch’s hand-crafted implementation, and it remains the fastest. Store adds
20% overhead. Store (persistent) uses our persistent API rather than our semi-persistent API;
it performs slightly worse at 30% overhead. Finally, Vector is 3× slower. Vector is noticeably
slower because it induces a memory representation that is less compact than the hand-written
implementation9 and cannot reuse buffers.
Our conclusion is that even though Store does not beat a hand-crafted full-copy implementa-

tion of backtracking in this case, its low overhead remains acceptable on backtracking-intensive
programs. Using Store instead of carefully copying temporary buffers may be a good deal for some
programmers.

D RELATEDWORK: BESPOKE IMPLEMENTATIONS IN TYPERS AND SOLVERS
Type checkers. The GHC type-checker does not implement backtracking of any form.
The Scala 2 type-checker implements journaled backtracking for its type inference variables,

a simple semi-persistent implementation with a global list of undo actions.10. No record elision.
Interestingly, another custom undo log is maintained in the function inliner – the project could
benefit from generic snapshottability support.

The Scala 3 type-checker implements a snapshot/restore interface for the entire type-checking
state11, but the snapshot logic is intentionally trivial as all this state is maintained in fully persistent
data structures. (Looking for use-cases of the snapshot function shows all the places where the
type-checker resorts to backtracking.)

The Rust type-checker implements “undo logs” for its mutable state, using the undo_log module
of the ena crate we mentioned earlier. Because undo logs are homogeneous, different components
of the type-checking state are stored in different undo logs. A module in the type-checker gathers
all these logs12, with a single function to snapshot and restore them all at once.

The OCaml type-checker implements a snapshottability mechanism for its type variables, whose
implementation is also inspired by (or a rediscovery of) Baker.13. The implementation seems to
support full persistence, but it seems that it is only used in a semi-persistent way in the compiler
codebase. This implementation performs a simplified form of record elision, based on the birth

9To measure the importance of the compact memory implementation, we replaced the int array implementation of Alain
Frisch by an exactly equivalent int ref array implementation, introducing one indirection in the memory represent. This
introduces a 48% overhead, larger than Store.
10https://github.com/scala/scala/blob/577ab8e0/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala#L26-L76
11https://github.com/lampepfl/dotty/blob/7f410a/compiler/src/dotty/tools/dotc/core/TyperState.scala#L29-L43
12https://github.com/rust-lang/rust/blob/9afdb8d1/compiler/rustc_infer/src/infer/undo_log.rs#L19-L32
13https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L490-L514, https://github.com/ocaml/ocaml/blob/
572aeb5f/typing/types.ml#L755-L759, https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L851-L874

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://github.com/scala/scala/blob/577ab8e0/src/reflect/scala/reflect/internal/tpe/TypeConstraints.scala#L26-L76
https://github.com/lampepfl/dotty/blob/7f410a/compiler/src/dotty/tools/dotc/core/TyperState.scala#L29-L43
https://github.com/rust-lang/rust/blob/9afdb8d1/compiler/rustc_infer/src/infer/undo_log.rs#L19-L32
https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L490-L514
https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L755-L759
https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L755-L759
https://github.com/ocaml/ocaml/blob/572aeb5f/typing/types.ml#L851-L874

1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911

Snapshottable stores 1:39

date of the reference rather than the timestamp or generation of its last write. Indeed, each type
variable has a unique identifier implemented as consecutive integers starting at 0, which can also
serve as a “birth date” for the type variable. The snapshot implementation tracks the value of the
type identifier counter when the last snapshot was taken. When performing a write on a type, it
performs record elision if the type has a higher identifier than the last snapshot – it was created
after the snapshot was taken. This heuristic is less precise than our record elision, but it comes
for free once type identifiers are there. It seems fairly effective for a type-checker due to a sort of
generational phenomenon: most type variables are modified a lot shortly after they are created,
and more rarely afterward. (Disabling this form of elision makes type-checking about 5% slower on
some files of the compiler codebase.)

Constraint solvers and SAT/SMT solvers. Based on discussions with implementors of automated
theorem projects, we conjecture that all SMT solvers include some version of a general snapshottable
store – but of course they did not tell anyone until we explicitly asked them. The only explicit
mentionwe found is in the recent overview paper on CVC5, Barbosa, Barrett, Brain, Kremer, Lachnitt,
Mann, Mohamed, Mohamed, Niemetz, Nötzli, Ozdemir, Preiner, Reynolds, Sheng, Tinelli and Zohar
[2022], which describes “Context-Dependent Data Structures” (Section 2.4)14, and currently supports
context-dependent maybe/option values, append-only lists, dequeues, insert-only hashsets, and
hashmaps. Z3 simply adds support for adding arbitrary edit events on the “trail”, and does not
seem to support record elision.15 The implementations in SMT solvers are semi-persistent, and
their API is influenced by the internal vocabulary of SAT search algorithms; typically, one does not
backtrack to a given snapshot, but to a “decision level”.

Constraint-based solvers seem to also implement semi-persistent snapshottable structures, and
we have found implementations of record elision, which is relatively natural in the semi-persistent
case. We mentioned Facile, an OCaml implementation, but for example the Java constraint solver
choco-solver also has support for generic “trails”, and performs record elision16.

14https://github.com/cvc5/cvc5/blob/92caabc7/src/context/context.h
15https://github.com/Z3Prover/z3/blob/2880ea39/src/util/trail.h
16https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/
EnvironmentTrailing.java, https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/
chocosolver/memory/trailing/StoredInt.java#L33-L48

Proc. ACM Program. Lang., Vol. 1, No. 1, Article 1. Publication date: January 2024.

http://facile.recherche.enac.fr/
https://github.com/cvc5/cvc5/blob/92caabc7/src/context/context.h
https://github.com/Z3Prover/z3/blob/2880ea39/src/util/trail.h
https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/EnvironmentTrailing.java
https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/EnvironmentTrailing.java
https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/StoredInt.java#L33-L48
https://github.com/chocoteam/choco-solver/blob/efb697ea/solver/src/main/java/org/chocosolver/memory/trailing/StoredInt.java#L33-L48

	Abstract
	1 Introduction
	1.1 Snapshots as a library
	1.2 Notions of persistence
	1.3 Performance model

	2 A core store
	2.1 Baker's version trees
	2.2 A whiff of graph theory
	2.3 Implementing version trees
	2.4 Record elision
	2.5 Liveness

	3 A Coq store
	3.1 Formal setting and Separation Logic reminder
	3.2 Specifications
	3.3 Summary of the proof

	4 Semi-persistence through transactions
	4.1 Introduction
	4.2 Transactions for semi-persistence
	4.3 Combining the persistent and semi-persistent APIs
	4.4 Implementing transactions

	5 Testing and benchmarks
	5.1 Testing !Store! with !Monolith!
	5.2 Microbenchmarks
	5.3 Macrobenchmarks

	6 Related Work
	6.1 Snapshottable references
	6.2 Mutable and persistent interfaces
	6.3 Transient views of persistent data structures
	6.4 State-of-the-art algorithms
	6.5 Static checking and formal verification

	7 Future Work
	Acknowledgments
	References
	A Monolith interface
	B Detailed microbenchmarks results and analyses
	B.1 Methodology
	B.2 Benchmark parameters
	B.3 Colibri2
	B.4 Commit-only and abort-only results
	B.5 Per-benchmark results and analysis
	B.6 Transactional, !commit!-only

	C Macrobenchmarks details
	C.1 System F type-checking in Inferno
	C.2 System F type inference with GADTs (Inferno)
	C.3 Sudoku solver

	D Related Work: bespoke implementations in typers and solvers

