
A safe low-level language
for computer algebra and its formally verified compiler

Cambium seminar

June 13, 2025

Guillaume Melquiond Josué Moreau

Reliability of computer algebra libraries

Examples of widely used libraries:
GMP: operations on arbitrarily large integers
BLAS: operations on vectors and matrices
FFTW: fast Fourier transform

Josué Moreau A safe language for computer algebra and its formally verified compiler 1 / 40

Reliability of computer algebra libraries

Examples of widely used libraries:
GMP: operations on arbitrarily large integers
BLAS: operations on vectors and matrices
FFTW: fast Fourier transform

Bug (GMP ≤ 5.1.1)

mpz_pown_ui(r, b, e, m) : 𝑟 ← 𝑏𝑒 mod 𝑚
Computes garbage if b is over 15000 decimals.

Bug (GMP 6.2.0)

MacOS Xcode 11 prior to 11.3 miscompiles GMP, leading to crashes and miscomputation.

Josué Moreau A safe language for computer algebra and its formally verified compiler 1 / 40

Implementations of computer algebra libraries

Libraries written in C and Fortran (and handwritten assembly)

Josué Moreau A safe language for computer algebra and its formally verified compiler 2 / 40

Implementations of computer algebra libraries

Libraries written in C and Fortran (and handwritten assembly)
Pros:

Do not get in the way of the user
Highly optimizing compilers

Josué Moreau A safe language for computer algebra and its formally verified compiler 2 / 40

Implementations of computer algebra libraries

Libraries written in C and Fortran (and handwritten assembly)
Pros:

Do not get in the way of the user
Highly optimizing compilers

Cons:
These languages are not safe
Difficult program verification (programs are already mathematically difficult to prove)
Compilers are too complicated for a total confidence in the generated code

Josué Moreau A safe language for computer algebra and its formally verified compiler 2 / 40

Capla

A language dedicated to computer algebra libraries:
low-level array manipulations, compilable to efficient code
safe (no undefined behaviors)
with semantics making the proof of programs simpler

A compiler, formally verified with Rocq
using CompCert as backend
semantics preservation
type safety and verified type-checker

Josué Moreau A safe language for computer algebra and its formally verified compiler 3 / 40

Table of contents

Language

Semantics

Compiler architecture and benchmarks

Type safety

Semantics preservation

Conclusion

Josué Moreau A safe language for computer algebra and its formally verified compiler 4 / 40

Language

Language
Expressiveness in the signature of functions

BLAS dot product (Fortran)
complex*16 function zdotu(n, zx, zy, incx, incy)
 integer incx, incy, n
 complex*16 zx(*), zy(*)

Documentation states that size of zx is 1 + (n − 1) ⋅ |incx|.

GMP square (C)
void mpn_sqr(mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n)

Documentation states:
Size of rp and s1p are respectively 2n and n.
No overlap between rp and s1p.

Josué Moreau A safe language for computer algebra and its formally verified compiler 6 / 40

Language
Example: multiplication of matrices

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
 for i = 0 .. m
 for j = 0 .. p {
 dest[i, j] = 0;
 for k = 0 .. n {
 dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
 }
 }
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 7 / 40

Language
Example: multiplication of matrices

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
 for i = 0 .. m
 for j = 0 .. p {
 dest[i, j] = 0;
 for k = 0 .. n {
 dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
 }
 }
}

Explicit sizes as parameters

Josué Moreau A safe language for computer algebra and its formally verified compiler 7 / 40

Language
Example: multiplication of matrices

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
 for i = 0 .. m
 for j = 0 .. p {
 dest[i, j] = 0;
 for k = 0 .. n {
 dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
 }
 }
}

Explicit sizes as parametersShare size across multiple arrays

Josué Moreau A safe language for computer algebra and its formally verified compiler 7 / 40

Language
Example: multiplication of matrices

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
 for i = 0 .. m
 for j = 0 .. p {
 dest[i, j] = 0;
 for k = 0 .. n {
 dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
 }
 }
}

Explicit sizes as parametersShare size across multiple arrays

Distinction between mutable/persistent arrays

Josué Moreau A safe language for computer algebra and its formally verified compiler 7 / 40

Language
Example: multiplication of matrices

fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
 for i = 0 .. m
 for j = 0 .. p {
 dest[i, j] = 0;
 for k = 0 .. n {
 dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
 }
 }
}

Explicit sizes as parameters

No undefined behavior
for array accesses
(dynamic check)

Share size across multiple arrays

Distinction between mutable/persistent arrays

Josué Moreau A safe language for computer algebra and its formally verified compiler 7 / 40

Language
Runtime checks

fun f(t: mut [i64; n], n k: u64)
 -> u64 {

 t[2] = 7;

 return n / k;
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 8 / 40

Language
Runtime checks

fun f(t: mut [i64; n], n k: u64)
 -> u64 {

 t[2] = 7;

 return n / k;
}

→

uint64_t f(int64_t* restrict t,
 uint64_t n, uint64_t k) {
 assert(2 < n);
 t[2] = 7;
 assert(k != 0);
 return (n / k);
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 8 / 40

Language
Second example: Complex dot product in BLAS

fun zdotu(n: i32, zx: [f64; 1 + (n - 1) * incx, 2], incx: i32,
 zy: [f64; 1 + (n - 1) * incy, 2], incy: i32,
 res: mut [f64; 2]) {
 res[0] = 0.; res[1] = 0.;
 if n <= 0 return;

 if incx == 1 && incy == 1 {
 for i: i32 = 0 .. n {
 res[0] = res[0] + (zx[i, 0] * zy[i, 0] - zx[i, 1] * zy[i, 1]);
 res[1] = res[1] + (zx[i, 1] * zy[i, 0] + zx[i, 0] * zy[i, 1]);
 }
 } else {
 let ix: i32 = 0, iy: i32 = 0;
 if (incx < 0) ix = (-n+1)*incx;
 if (incy < 0) iy = (-n+1)*incy;
 ...
 } }

Josué Moreau A safe language for computer algebra and its formally verified compiler 9 / 40

Language
Second example: Complex dot product in BLAS

fun zdotu(n: i32, zx: [f64; 1 + (n - 1) * incx, 2], incx: i32,
 zy: [f64; 1 + (n - 1) * incy, 2], incy: i32,
 res: mut [f64; 2]) {
 res[0] = 0.; res[1] = 0.;
 if n <= 0 return;

 if incx == 1 && incy == 1 {
 for i: i32 = 0 .. n {
 res[0] = res[0] + (zx[i, 0] * zy[i, 0] - zx[i, 1] * zy[i, 1]);
 res[1] = res[1] + (zx[i, 1] * zy[i, 0] + zx[i, 0] * zy[i, 1]);
 }
 } else {
 let ix: i32 = 0, iy: i32 = 0;
 if (incx < 0) ix = (-n+1)*incx;
 if (incy < 0) iy = (-n+1)*incy;
 ...
 } }

Dynamic test: 1 < 2

Dynamic test: i < 1 + (n − 1) ⋅ incy

Josué Moreau A safe language for computer algebra and its formally verified compiler 9 / 40

Language
Second example: Complex dot product in BLAS

fun zdotu(n: i32, zx: [f64; 1 + (n - 1) * incx, 2], incx: i32,
 zy: [f64; 1 + (n - 1) * incy, 2], incy: i32,
 res: mut [f64; 2]) {
 res[0] = 0.; res[1] = 0.;
 if n <= 0 return;

 if incx == 1 && incy == 1 {
 for i: i32 = 0 .. n {
 res[0] = res[0] + (zx[i, 0] * zy[i, 0] - zx[i, 1] * zy[i, 1]);
 res[1] = res[1] + (zx[i, 1] * zy[i, 0] + zx[i, 0] * zy[i, 1]);
 }
 } else {
 let ix: i32 = 0, iy: i32 = 0;
 if (incx < 0) ix = (-n+1)*incx;
 if (incy < 0) iy = (-n+1)*incy;
 ...
 } }

Dynamic test: 1 < 2

Dynamic test: i < 1 + (n − 1) ⋅ incy

Trivially eliminated

Eliminated but the compiler needs a bit of help

Josué Moreau A safe language for computer algebra and its formally verified compiler 9 / 40

Language
Aliasing

No aliasing between a mutable array and any other array
Expressive signatures: non-mutable variables are trivially unmodified

fun f(a: [i64; 1], b: mut [i64; 1]) {
 let v = a[0];
 b[0] = 4;
 assert (a[0] == v); // Ok
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 10 / 40

Language
Aliasing

No aliasing between a mutable array and any other array
Expressive signatures: non-mutable variables are trivially unmodified
Copy-restore semantics: no global memory, only local environments

fun f(a: [i64; 1], b: mut [i64; 1]) {
 let v = a[0];
 b[0] = 4;
 assert (a[0] == v); // Ok
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 10 / 40

Language
Aliasing

No aliasing between a mutable array and any other array
Expressive signatures: non-mutable variables are trivially unmodified
Copy-restore semantics: no global memory, only local environments
Efficient generated programs: use pointers instead of deep copies

fun f(a: [i64; 1], b: mut [i64; 1]) {
 let v = a[0];
 b[0] = 4;
 assert (a[0] == v); // Ok
}

→

void f(int64_t* a, int64_t* restrict b) {
 uint64_t v = a[0];
 b[0] = 4;
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 10 / 40

Language
Aliasing

No aliasing between a mutable array and any other array
Expressive signatures: non-mutable variables are trivially unmodified
Copy-restore semantics: no global memory, only local environments
Efficient generated programs: use pointers instead of deep copies
Program verification: no need for separation logic for proofs

fun f(a: [i64; 1], b: mut [i64; 1]) {
 let v = a[0];
 b[0] = 4;
 assert (a[0] == v); // Ok
}

→

void f(int64_t* a, int64_t* restrict b) {
 uint64_t v = a[0];
 b[0] = 4;
}

Josué Moreau A safe language for computer algebra and its formally verified compiler 10 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

𝑎 𝑏

𝑟3 𝑟2 𝑟1 𝑟0

𝑡1 𝑡0

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1

𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 11 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

𝑎1 𝑎0 𝑏1 𝑏0

𝑟3 𝑟2 𝑟1 𝑟0

𝑡1 𝑡0

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1

𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 11 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

𝑎1 𝑎0 𝑏1 𝑏0

𝑡1 𝑡0

𝑟3 𝑏0 + 𝑏1 𝑟1 𝑎0 + 𝑎1

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1

𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 11 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

𝑎1 𝑎0 𝑏1 𝑏0

𝑟3 𝑏0 + 𝑏1 𝑟1 𝑎0 + 𝑎1

𝑡1 (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1

𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 11 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

𝑎1 𝑎0 𝑏1 𝑏0

𝑡1 (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑎1𝑏1 𝑎0𝑏0

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1

𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 11 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

typedef long long int i64;
typedef unsigned long long int u64;

void karatsuba(i64* r, i64* a, i64* b,
 i64* t, u64 n) {
 ...
 u64 k = n / 2;
 add(r, a, a + k, k);
 add(r + 2 * k, b, b + k, k);
 karatsuba(t, r, r + 2 * k,
 t + 2 * k, k);
 karatsuba(r, a, b, t + 2 * k, k);
 karatsuba(r + 2 * k, a + k, b + k,
 t + 2 * k, k);
 sub(t, t, r, 2 * k);
 sub(t, t, r + 2 * k, 2 * k);
 add(r + k, r + k, t, 2 * k);
}

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)

𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1

𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 12 / 40

Language
Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

fun karatsuba(r: mut [i64; 2 * n], a b: [i64; n], t: mut [i64; 2 * n], u: u64) {
 ...
 let k = n / 2;
 let [a0: ..k; a1: k..] = a;
 let [b0: ..k; b1: k..] = b;
 let [t0: ..(2 * k); t1: ..] = t;
 { let [r0: ..(2 * k); r2: ..] = r;
 add(r0[..k], a0, a1, k);
 add(r2[..k], b0, b1, k);
 karatsuba(t0, r0[..k], r2[..k], t1, k);
 karatsuba(r0, a0, b0, t1, k);
 karatsuba(r2, a1, b1, t1, k);
 decr(t0, r0, 2 * k);
 decr(t0, r2, 2 * k); }
 incr(r[k..(3 * k)], t0, 2 * k);
}

𝑟0 ← 𝑎0 + 𝑎1
𝑟2 ← 𝑏0 + 𝑏1
𝑡0 ← 𝑟0𝑟2 = (𝑎0 + 𝑎1)(𝑏0 + 𝑏1)
𝑟0 ← 𝑎0𝑏0
𝑟2 ← 𝑎1𝑏1
𝑡0 ← 𝑡0 − 𝑟0
𝑡0 ← 𝑡0 − 𝑟2 = 𝑎1𝑏0 + 𝑎0𝑏1
𝑟1,2 ← 𝑟1,2 + 𝑡0

Josué Moreau A safe language for computer algebra and its formally verified compiler 12 / 40

Semantics

Semantics
Reading into an array

Structured values: 𝑣 ⩴ Vint 𝑛 | … | Varr [𝑣1, 𝑣2, …] Local environments: 𝐸 : 𝑥 ⇀ 𝑣

𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒ Vint64𝑛 𝑛 < sz𝑡 Read
𝐸 ⊢ 𝑡[𝑒] ⇒ 𝐸(𝑡)[𝑛]

Josué Moreau A safe language for computer algebra and its formally verified compiler 14 / 40

Semantics
Reading into an array

Structured values: 𝑣 ⩴ Vint 𝑛 | … | Varr [𝑣1, 𝑣2, …] Local environments: 𝐸 : 𝑥 ⇀ 𝑣

typing
⎴𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒

typing
⎴⎴⎴Vint64𝑛 𝑛 < sz𝑡 Read

𝐸 ⊢ 𝑡[𝑒] ⇒ 𝐸(𝑡)[𝑛]

Josué Moreau A safe language for computer algebra and its formally verified compiler 14 / 40

Semantics
Reading into an array

Structured values: 𝑣 ⩴ Vint 𝑛 | … | Varr [𝑣1, 𝑣2, …] Local environments: 𝐸 : 𝑥 ⇀ 𝑣

typing
⎴𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒

typing
⎴⎴⎴Vint64𝑛

error
⎴⎴⎴𝑛 < sz𝑡 Read

𝐸 ⊢ 𝑡[𝑒] ⇒ 𝐸(𝑡)[𝑛]

Josué Moreau A safe language for computer algebra and its formally verified compiler 14 / 40

Semantics
Error rules

𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒ Vint64𝑛 𝑛 < sz𝑡 Read
𝐸 ⊢ 𝑡[𝑒] ⇒ 𝐸(𝑡)[𝑛]

Josué Moreau A safe language for computer algebra and its formally verified compiler 15 / 40

Semantics
Error rules

𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒ Vint64𝑛 𝑛 < sz𝑡 Read
𝐸 ⊢ 𝑡[𝑒] ⇒ 𝐸(𝑡)[𝑛]

𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒ error
ReadPathErr

𝐸 ⊢ 𝑡[𝑒] ⇒ error

𝑡 ∈ 𝐸 𝐸 ⊢ 𝑒 ⇒ Vint64𝑛 𝑛 ≥ sz𝑡 ReadErr
𝐸 ⊢ 𝑡[𝑒] ⇒ error

Josué Moreau A safe language for computer algebra and its formally verified compiler 15 / 40

Semantics
Error rules

𝐸 ⊢ 𝑒1 ⇒ Vint 𝑛1 𝐸 ⊢ 𝑒2 ⇒ Vint 𝑛2

𝑛2 ≠ 0 𝑛1 ≠ min_int ∨ 𝑛2 ≠ −1 Divs
𝐸 ⊢ divs(𝑒1, 𝑒2) ⇒ Vint (𝑛1/𝑛2)

∀𝑗 < 𝑖, 𝐸 ⊢ 𝑒𝑗 ⇒ 𝑣𝑗 𝐸 ⊢ 𝑒𝑖 ⇒ error
DivsErr𝑖

𝐸 ⊢ divs(𝑒1, 𝑒2) ⇒ error

…
𝑛1 = min_int ∧ 𝑛2 = −1 DivsErrOvf
𝐸 ⊢ divs(𝑒1, 𝑒2) ⇒ error

…
𝑛2 = 0 DivsErrZero

𝐸 ⊢ divs(𝑒1, 𝑒2) ⇒ error

Josué Moreau A safe language for computer algebra and its formally verified compiler 16 / 40

Semantics
Writing into an array

perm(𝑡) ≥ Mutable 𝐸 ⊢ 𝑒 ⇒ Vint64𝑛 𝑛 < sz𝑡 …
𝐸 ⊢ 𝑒′ ⇒ 𝑣 primitive(𝑣)

Write
(𝐸, ⟨𝑡[𝑒] = 𝑒′⟩, 𝑘) → (𝐸[𝑡 ← 𝐸(𝑡)[𝑛 ← 𝑣]], ⟨⟩, 𝑘)

Owned ≥ Mutable ≥ Shared

Josué Moreau A safe language for computer algebra and its formally verified compiler 17 / 40

Semantics
Function call and return

Function call:

𝐸(⃗𝑎) = ⃗𝑣 ⃗𝑣 ∈ f.sig_args
f.params = ⃗𝑥 𝐸f = build_env(⃗𝑥, ⃗𝑣)

Call
(𝐸, ⟨𝑦 = f(⃗𝑎)⟩, 𝑘) → (𝐸f, f.body, Kreturnto(𝑦, 𝐸, 𝑚, 𝑘))

Josué Moreau A safe language for computer algebra and its formally verified compiler 18 / 40

Semantics
Function call and return

Function call:

𝐸(⃗𝑎) = ⃗𝑣 ⃗𝑣 ∈ f.sig_args
f.params = ⃗𝑥 𝐸f = build_env(⃗𝑥, ⃗𝑣)

∀𝑖, f.perm(𝑥𝑖) ≤ perm(𝑎𝑖)

Call
(𝐸, ⟨𝑦 = f(⃗𝑎)⟩, 𝑘) → (𝐸f, f.body, Kreturnto(𝑦, 𝐸, 𝑚, 𝑘))

Josué Moreau A safe language for computer algebra and its formally verified compiler 18 / 40

Semantics
Function call and return

Function call:

𝐸(⃗𝑎) = ⃗𝑣 ⃗𝑣 ∈ f.sig_args
f.params = ⃗𝑥 𝐸f = build_env(⃗𝑥, ⃗𝑣)

∀𝑖, f.perm(𝑥𝑖) ≤ perm(𝑎𝑖)
∀𝑖 𝑗, f.perm(𝑥𝑖) ≥ Mutable ∧ 𝑖 ≠ 𝑗 ⇒ 𝑎𝑖 ≠ 𝑎𝑗

Call
(𝐸, ⟨𝑦 = f(⃗𝑎)⟩, 𝑘) → (𝐸f, f.body, Kreturnto(𝑦, 𝐸, 𝑚, 𝑘))

Josué Moreau A safe language for computer algebra and its formally verified compiler 18 / 40

Semantics
Function call and return

Function call:

𝐸(⃗𝑎) = ⃗𝑣 ⃗𝑣 ∈ f.sig_args
f.params = ⃗𝑥 𝐸f = build_env(⃗𝑥, ⃗𝑣)

∀𝑖, f.perm(𝑥𝑖) ≤ perm(𝑎𝑖)
∀𝑖 𝑗, f.perm(𝑥𝑖) ≥ Mutable ∧ 𝑖 ≠ 𝑗 ⇒ 𝑎𝑖 ≠ 𝑎𝑗

valid_call(𝐸, f, ⃗𝑎)

Call
(𝐸, ⟨𝑦 = f(⃗𝑎)⟩, 𝑘) → (𝐸f, f.body, Kreturnto(𝑦, 𝐸, 𝑚, 𝑘))

Josué Moreau A safe language for computer algebra and its formally verified compiler 18 / 40

Semantics
Function call and return

Function call:

𝐸(⃗𝑎) = ⃗𝑣 ⃗𝑣 ∈ f.sig_args
f.params = ⃗𝑥 𝐸f = build_env(⃗𝑥, ⃗𝑣)

∀𝑖, f.perm(𝑥𝑖) ≤ perm(𝑎𝑖)
∀𝑖 𝑗, f.perm(𝑥𝑖) ≥ Mutable ∧ 𝑖 ≠ 𝑗 ⇒ 𝑎𝑖 ≠ 𝑎𝑗

valid_call(𝐸, f, ⃗𝑎)
𝑚 = {(𝑎𝑖, 𝑥𝑖) | f.perm(𝑥𝑖) = Mutable}

Call
(𝐸, ⟨𝑦 = f(⃗𝑎)⟩, 𝑘) → (𝐸f, f.body, Kreturnto(𝑦, 𝐸, 𝑚, 𝑘))

Josué Moreau A safe language for computer algebra and its formally verified compiler 18 / 40

Semantics
Function call and return

Function call:

𝐸(⃗𝑎) = ⃗𝑣 ⃗𝑣 ∈ f.sig_args
f.params = ⃗𝑥 𝐸f = build_env(⃗𝑥, ⃗𝑣)

∀𝑖, f.perm(𝑥𝑖) ≤ perm(𝑎𝑖)
∀𝑖 𝑗, f.perm(𝑥𝑖) ≥ Mutable ∧ 𝑖 ≠ 𝑗 ⇒ 𝑎𝑖 ≠ 𝑎𝑗

valid_call(𝐸, f, ⃗𝑎)
𝑚 = {(𝑎𝑖, 𝑥𝑖) | f.perm(𝑥𝑖) = Mutable}

Call
(𝐸, ⟨𝑦 = f(⃗𝑎)⟩, 𝑘) → (𝐸f, f.body, Kreturnto(𝑦, 𝐸, 𝑚, 𝑘))

Function return:
Return

(𝐸f, ⟨return 𝑣⟩, Kreturnto(𝑦, 𝐸, ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗(𝑎, 𝑥), 𝑘)) → (𝐸[⃗𝑎 ← ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝐸f(𝑥)][𝑦 ← 𝑣], ⟨⟩, 𝑘)

Josué Moreau A safe language for computer algebra and its formally verified compiler 18 / 40

Semantics
Split

𝐸(𝑡) = Varr ⃗𝑣 𝐸(𝑒) = Vint64𝑖 𝐸(sz𝑡) = Vint64𝑛 𝑖 ≤ 𝑛
…

𝑜𝑗 = {𝑥 | sz𝑢𝑗
= sz𝑥}

𝐸′ = (𝐸 \ (𝑜1 ∪ 𝑜2 ∪ {𝑡}))[sz𝑢1
← Vint64𝑖, sz𝑢2

← Vint64(𝑛 − 𝑖),
𝑢1 ← Varr (⃗𝑣0..(𝑖−1)), 𝑢2 ← Varr (⃗𝑣𝑖..(𝑛−1))

]

(𝐸, ⟨𝑢1, 𝑢2 ← split(𝑡, 𝑒){𝑠}⟩, 𝑘) → (𝐸′, ⟨𝑠⟩, Kjoin(𝑡, 𝑢1, 𝑢2, 𝑘))

𝐸(𝑢1) = Varr ⃗𝑣 𝐸(𝑢2) = Varr �⃗� …

(𝐸, ⟨⟩, Kjoin(𝑡, 𝑢1, 𝑢2, 𝑘)) → ((𝐸 \ {𝑢1, 𝑢2})[𝑡 ← Varr (𝑣 ++ 𝑤)], ⟨⟩, 𝑘)

Josué Moreau A safe language for computer algebra and its formally verified compiler 19 / 40

Semantics
Dynamic allocation

perm(𝑡) = Owned 𝐸 ⊢ 𝑒 ⇒ Vint64𝑛 …
𝑡 ∉ 𝑘

𝑜 = {𝑥 | sz𝑡 = sz𝑥}
Alloc

(𝐸, ⟨𝑡 ← alloc(i32, 𝑒)⟩, 𝑘) → ((𝐸 \ 𝑜)[𝑡 ← Varr [0, 0, …]][sz𝑡 ← Vint64𝑛], ⟨⟩, 𝑘)

perm(𝑡) = Owned …
𝑡 ∉ 𝑘 Free

(𝐸, ⟨free 𝑡⟩, 𝑘) → (𝐸 \ {𝑡, sz𝑡}, ⟨⟩, 𝑘)

Josué Moreau A safe language for computer algebra and its formally verified compiler 20 / 40

Compiler architecture and benchmarks

Compiler architecture and benchmarks
Compiler architecture

Capla L1 Assembly

Formally verified translation

no UB

Formally verified typechecker

Type inference,
simplifications

Josué Moreau A safe language for computer algebra and its formally verified compiler 22 / 40

Compiler architecture and benchmarks
Compiler architecture

Capla L1 Assembly

Formally verified translation

no UB

C#minor

UB++

Formally verified typechecker

CompCert

Type inference,
simplifications

Copy-restore semantics Pointers/locations semantics

Josué Moreau A safe language for computer algebra and its formally verified compiler 22 / 40

Compiler architecture and benchmarks
Compiler architecture

Capla L1 Assembly

Formally verified translation

no UB

L2

UB

C#minor

UB++

Formally verified typechecker

CompCert

Type inference,
simplifications

Dynamic tests

Copy-restore semantics Pointers/locations semantics

Josué Moreau A safe language for computer algebra and its formally verified compiler 22 / 40

Compiler architecture and benchmarks
Compiler architecture

Capla L1 Assembly

Formally verified translation

no UB

L2

UB

C#minor

UB++

Formally verified typechecker

CompCert

Type inference,
simplifications

Dynamic tests

Copy-restore semantics Pointers/locations semantics

CUnverified GCC, Clang, …

Josué Moreau A safe language for computer algebra and its formally verified compiler 22 / 40

Compiler architecture and benchmarks
Benchmarks

CompCert

zdotu 2.25
saxpy 5.37
sgemv 2.86
dgemv 1.73
dtrsv (N) 2.87
dtrsv (T) 2.30
mpn_addmul_1 2.74
mpn_mul 3.62
mpn_mul (with assembly) 1.59

≥ 1: slower than the original implementation
Input vectors/matrices are small enough to minimize cache misses
Reference x86-64 BLAS/LAPACK 3.12.0 (Fortran) and GMP 6.3.0 (handwritten assembly)
LLVM 19.1.7 and GCC 14.2.1, optimization level -O2 -ftree-vectorize

Josué Moreau A safe language for computer algebra and its formally verified compiler 23 / 40

Compiler architecture and benchmarks
Benchmarks

CompCert GCC LLVM

zdotu 2.25 1.01 0.93
saxpy 5.37 4.25 0.78
sgemv 2.86 1.32 0.96
dgemv 1.73 1.03 0.59
dtrsv (N) 2.87 1.32 1.78
dtrsv (T) 2.30 1.14 1.35
mpn_addmul_1 2.74 1.19 1.08
mpn_mul 3.62 1.93 1.80
mpn_mul (with assembly) 1.59 1.42 1.42

≥ 1: slower than the original implementation
Input vectors/matrices are small enough to minimize cache misses
Reference x86-64 BLAS/LAPACK 3.12.0 (Fortran) and GMP 6.3.0 (handwritten assembly)
LLVM 19.1.7 and GCC 14.2.1, optimization level -O2 -ftree-vectorize

Josué Moreau A safe language for computer algebra and its formally verified compiler 23 / 40

Compiler architecture and benchmarks
Benchmarks

CompCert GCC LLVM GCC with
assertions

LLVM with
assertions

zdotu 2.25 1.01 0.93 1.06 0.82
saxpy 5.37 4.25 0.78 3.68 0.78
sgemv 2.86 1.32 0.96 1.32 0.87
dgemv 1.73 1.03 0.59 0.68 0.53
dtrsv (N) 2.87 1.32 1.78 0.92 1.60
dtrsv (T) 2.30 1.14 1.35 0.91 0.90
mpn_addmul_1 2.74 1.19 1.08 – –
mpn_mul 3.62 1.93 1.80 – –
mpn_mul (with assembly) 1.59 1.42 1.42 – –

≥ 1: slower than the original implementation
Input vectors/matrices are small enough to minimize cache misses
Reference x86-64 BLAS/LAPACK 3.12.0 (Fortran) and GMP 6.3.0 (handwritten assembly)
LLVM 19.1.7 and GCC 14.2.1, optimization level -O2 -ftree-vectorize

Josué Moreau A safe language for computer algebra and its formally verified compiler 23 / 40

Type safety

Type safety
Typing

Main difficulty of typing: tracking initialized variables.

Typing judgments

{𝑉 } 𝑐 {𝑉 ′}

Meaning:
The execution of 𝑐 requires the variables of 𝑉 to be initialized and ensures that the
variables of 𝑉 ′ are initialized.

Backward typing: typing from the end of the function to the beginning.

Josué Moreau A safe language for computer algebra and its formally verified compiler 25 / 40

Type safety
Assignment

Γ ⊢ 𝑒 : 𝜏, 𝑉𝑒 Γ(𝑥) = 𝜏

{𝑉 \ {𝑥} ∪ 𝑉𝑒} 𝑥 = 𝑒 {𝑉 }

Γ ⊢ 𝑒′ : 𝜏 , 𝑉𝑒′ Γ(𝑥) = array 𝜏
Γ ⊢ 𝑒 : int64, 𝑉𝑒

{𝑉 ∪ 𝑉𝑒′ ∪ 𝑉𝑒 ∪ {𝑥}} 𝑥[𝑒] = 𝑒′ {𝑉 }

Josué Moreau A safe language for computer algebra and its formally verified compiler 26 / 40

Type safety
Dynamic allocation

Γ ⊢ 𝑒 : int64, 𝑉𝑒

{𝑉 \ {𝑡, sz𝑡} ∪ 𝑉𝑒} 𝑡 ← alloc(i32, 𝑒) {𝑉 }

{𝑡, sz𝑡} ∩ 𝑉 = ∅

{𝑉 ∪ {𝑡, sz𝑡}} free 𝑡 {𝑉 }

Josué Moreau A safe language for computer algebra and its formally verified compiler 27 / 40

Type safety
Blocks

{𝑉 ′} 𝑠 {(𝑉 , 𝑉 :: 𝑋)}

{𝑉 ′} {𝑠} {(𝑉 , 𝑋)} {𝑋[𝑛]} exit 𝑛 {(𝑉 , 𝑋)}

Josué Moreau A safe language for computer algebra and its formally verified compiler 28 / 40

Type safety
Sequence and loop

{𝑉1} 𝑠1 {(𝑉2, 𝑋)} {𝑉2} 𝑠2 {(𝑉 , 𝑋)}

{𝑉1} 𝑠1; 𝑠2 {(𝑉 , 𝑋)}

avoid double free
⎴⎴⎴⎴⎴⎴⎴{𝑉 ″} 𝑠 {(𝑉 ′, 𝑋)} {𝑉 ′} 𝑠 {(𝑉 , 𝑋)}

{𝑉 ″} loop 𝑠 {(𝑉 , 𝑋)}

Josué Moreau A safe language for computer algebra and its formally verified compiler 29 / 40

Type safety
Type safety

Invariants

1 The content of the local environment has the expected type.

2 The needed variables are initialized.

3 Array sizes are valid (i.e., at most the actual size of array values).

Theorem (Type safety)

Given a successfully typed 𝐿1 program,
if all the invariants hold in a non-final 𝐿1 state 𝑠,
then there exists a state 𝑡 such that 𝑠 → 𝑡 and all the invariants hold in 𝑡.

APPROVED

Josué Moreau A safe language for computer algebra and its formally verified compiler 30 / 40

Semantics preservation

Semantics preservation
Semantics preservation

Forward simulation: each step in Capla implies a sequence of no-UB steps in assembly
and execution states are still related

current
state

next
state

current
state

next
state

Capla
instruction

assembly
instructions

local
environments

registers +
stack + heap

Josué Moreau A safe language for computer algebra and its formally verified compiler 32 / 40

Semantics preservation
Semantics preservation

Forward simulation: each step in Capla implies a sequence of no-UB steps in assembly
and execution states are still related

current
state

next
state

current
state

next
state

Capla
instruction

assembly
instructions

local
environments

registers +
stack + heap

Cminor / ASM is deterministic, so forward simulation implies backward simulation.

Josué Moreau A safe language for computer algebra and its formally verified compiler 32 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

Memory element:

Mem ≡ option(block × offset × element size × list(Mem))

Josué Moreau A safe language for computer algebra and its formally verified compiler 33 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

Memory element:

Mem ≡ option(block × offset × element size × list(Mem))

Vint 𝑛 → None

Varr ⃗𝑣 → Some (𝑏, 𝑜, 𝑠, ⃗𝑙)

Josué Moreau A safe language for computer algebra and its formally verified compiler 33 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

Memory element:

Mem ≡ option(block × offset × element size × list(Mem))

Vint 𝑛 → None

Varr ⃗𝑣 → Some (𝑏, 𝑜, 𝑠, ⃗𝑙)

Translation function:

𝑇 : path → Mem

Josué Moreau A safe language for computer algebra and its formally verified compiler 33 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

𝐸0[𝑖] 𝑇0[𝑖]

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

𝑝

𝐸0[𝑖]

𝐸0[𝑖 ⋅ 𝑝]

𝑝

𝑇0[𝑖]

𝑇0[𝑖 ⋅ 𝑝]

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

𝑝

𝐸0[𝑖]

Varr ⃗𝑣

𝑝

𝑇0[𝑖]

(𝑏, 𝑜, 𝑠, ⃗𝑙)

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

𝑝

𝐸0[𝑖]

Varr ⃗𝑣

𝑝

𝑇0[𝑖]

(𝑏, 𝑜, 𝑠, ⃗𝑙)

∀𝑘, 𝑘 < | ⃗𝑣| ⇒ 𝑀[𝑏, 𝑜 + 𝑘 ⋅ 𝑠] ∼ 𝑣𝑘

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

Function call
(𝑖 ⋅ 𝑝, 𝑗) ∈ 𝑚

𝑝

𝐸0[𝑖]

Varr ⃗𝑣

𝑝

𝑇0[𝑖]

(𝑏, 𝑜, 𝑠, ⃗𝑙)

∀𝑘, 𝑘 < | ⃗𝑣| ⇒ 𝑀[𝑏, 𝑜 + 𝑘 ⋅ 𝑠] ∼ 𝑣𝑘

Varr ⃗𝑣

𝐸1[𝑗]

(𝑏, 𝑜, 𝑠, ⃗𝑙)

𝑇1[𝑗]

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

Function call
(𝑖 ⋅ 𝑝, 𝑗) ∈ 𝑚

𝑝

𝐸0[𝑖]

Varr ⃗𝑣

𝑝

𝑇0[𝑖]

(𝑏, 𝑜, 𝑠, ⃗𝑙)

Varr ⃗𝑣′

𝐸′
1[𝑗]

(𝑏, 𝑜, 𝑠, ⃗𝑙′)

𝑇 ′
1 [𝑗]

∀𝑘, 𝑘 < | ⃗𝑣′| ⇒ 𝑀 ′[𝑏, 𝑜 + 𝑘 ⋅ 𝑠] ∼ 𝑣′
𝑘

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

∀𝑘, 𝑘 < | ⃗𝑣′| ⇒ 𝑀 ′[𝑏, 𝑜 + 𝑘 ⋅ 𝑠] ∼ 𝑣′
𝑘

𝑝

(𝐸0 +𝑚 𝐸′
1)[𝑖]

Varr ⃗𝑣′

𝑝

(𝑇0 +𝑚 𝑇 ′
1)[𝑖]

(𝑏, 𝑜, 𝑠, ⃗𝑙′)

Josué Moreau A safe language for computer algebra and its formally verified compiler 34 / 40

Semantics preservation
Semantics preservation from 𝐿2 to C#minor: separation

separated_mem𝑝(None, _) = true

separated_mem𝑝(_, None) = true

separated_memShared = true

separated_memMutable((𝑏1, 𝑜1, 𝑒1, 𝑙1), (𝑏2, 𝑜2, 𝑒2, 𝑙2)) = 𝑏1 ≠ 𝑏2

∨ 𝑜1 + 𝑒1 ⋅ |𝑙1| ≤ 𝑜2

∨ 𝑜2 + 𝑒2 ⋅ |𝑙2| ≤ 𝑜1

separated_memOwned((𝑏1, 𝑜1, 𝑒1, 𝑙1), (𝑏2, 𝑜2, 𝑒2, 𝑙2)) = 𝑏1 ≠ 𝑏2

separated(𝑇) = ∀𝑖 𝑝 𝑖′ 𝑝′, 𝑖 ⋅ 𝑝 ≠ 𝑖′ ⋅ 𝑝′ ⇒ separated_memperm(𝑖)(tr(𝑖 ⋅ 𝑝), tr(𝑖′ ⋅ 𝑝′))

Josué Moreau A safe language for computer algebra and its formally verified compiler 35 / 40

Semantics preservation
Semantics preservation

Theorem (Forward simulation)

Let 𝑠 →
𝐿2

𝑡, then for every state 𝑠′ s.t. 𝑠 ⇔ 𝑠′, either

|𝑡| < |𝑠|, or
there exists 𝑡′ s.t. 𝑠′ →∗

C#minor
𝑡′ and 𝑡 ⇔ 𝑡′.

APPROVED

Theorem (Compiler correction - backward simulation)

Let 𝑠 →
ASM

𝑡, then for every state 𝑠′ s.t. 𝑠′ ⇔ 𝑠, either
|𝑡| < |𝑠|, or
there exists 𝑡′ s.t. 𝑠′ →+

𝐿1
𝑡′ and 𝑡′ ⇔ 𝑡.

APPROVED

Josué Moreau A safe language for computer algebra and its formally verified compiler 36 / 40

Conclusion

Conclusion
Conclusion

Safe language for computer algebra
Suitable for array-based programs
Non-aliasing policy for mutable memory
Simple semantics for easier program
reasoning

// BLAS triangular system solving
fun dtrsv(uplo trans diag: u8, n: i32,
 a: [f64; n, lda], lda: i32,
 x: mut [f64; 1+(n-1)*incx], incx: i32)

Correct compiler to assembly
Correctness and safety (WIP split) proofs are verified with Rocq
∼10,000 lines of code, ∼11,000 lines of spec, ∼17,000 lines of proof

Unverified C backend for performance

Josué Moreau A safe language for computer algebra and its formally verified compiler 38 / 40

Conclusion
Work in progress - Proof of programs

Big-step semantics with proof of soundness
Weakest Precondition computation (work by Oliver Turner)
with proof of soundness
Used on small proofs

Future work:
Prove the soundness of the weakest precondition computation with the small-step
semantics
Improve usability while proving a function

Josué Moreau A safe language for computer algebra and its formally verified compiler 39 / 40

Conclusion
Conclusion

This work is part of the ERC Fresco project:
https://fresco.gitlabpages.inria.fr/capla/
language/index.html

Goal: Turn Rocq into a computer algebra
system

fun mpn_addmul_1(rp: mut [u64; n],
 up: [u64; n],
 n v0: u64) -> u64 {
 assert (n >= 1);
 let u0 crec c p1 p0 r0: u64; crec = 0;
 for i : u64 = 0 .. n {
 u0 = up[i];
 p0 = u0 * v0;
 p1 = __builtin_umulh64(u0, v0);
 r0 = rp[i];
 p0 = r0 + p0;
 c = (u64) (r0 > p0);
 p1 = p1 + c;
 r0 = p0 + crec;
 c = (u64) (p0 > r0);
 crec = p1 + c;
 rp[i] = r0;
 }
 return crec; }

Josué Moreau A safe language for computer algebra and its formally verified compiler 40 / 40

https://fresco.gitlabpages.inria.fr/capla/language/index.html
https://fresco.gitlabpages.inria.fr/capla/language/index.html

Appendix

Appendix

(𝐸, 𝑠, 𝑘) ↔ (𝑀, 𝐸, comp(𝑠), �̂�) ≡ ∃ ⃗𝑇 ,

{
{
{
{
{
{
{
{
{separated(𝑇)

𝐸 ↔
𝑇0 (𝐸, 𝑀)

(𝐸, 𝑘) ↔
⃗𝑇
(𝑀, �̂�)

𝐸 ↔
𝑇

(𝐸, 𝑀) ≡ ∀(𝑖)𝐸[𝑖] ∼ 𝐸[𝑖] ∧ ∀(𝑝)𝐸[𝑝] ∼𝑇 𝑀

(𝐸, Kseq(𝑠, 𝑘)) ↔
⃗𝑇
(𝑀, Kseq(comp(𝑠), �̂�)) ≡ (𝐸, 𝑘) ↔

⃗𝑇
(𝑀, �̂�)

(𝐸1, Kreturnto(𝐸0, 𝑚, 𝑘)) ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔
𝑇1 :: 𝑇0 :: T⃗

(𝑀, Kreturnto(𝐸0, �̂�)) ≡

{
{
{
{
{
{
{
{
{separated(𝑇0 +𝑚 𝑇)

(𝐸0 +𝑚 𝐸1) ↔↔↔↔↔↔↔↔↔↔↔
𝑇0 +𝑚 𝑇

(𝐸0, 𝑀)

(𝐸0 +𝑚 𝐸1, 𝑘) ↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔↔
𝑇0 +𝑚 𝑇 :: ⃗𝑇

(𝑀, �̂�)

Josué Moreau A safe language for computer algebra and its formally verified compiler 42 / 40

Appendix
Proof in Coq

Code Specification Proof
Parser and type inference for 𝐿0 (OCaml) 6972 – –
Syntax and types of 𝐿1 and 𝐿2 1270 – 404
Common semantics definitions and proofs – 1975 1734
Semantics of 𝐿1 – 1191 734
Semantics of 𝐿2 – 469 96
Type checking and type safety of 𝐿1 927 1590 3267
Compilation from 𝐿1 to 𝐿2 456 1486 3992
Compilation from 𝐿2 to C#minor 513 2793 6169
Miscellaneous – 1428 1275
Total 10138 10932 17671

Josué Moreau A safe language for computer algebra and its formally verified compiler 43 / 40

	Reliability of computer algebra libraries
	Implementations of computer algebra libraries
	Capla
	Table of contents
	Language
	Expressiveness in the signature of functions
	Example: multiplication of matrices
	Runtime checks
	Second example: Complex dot product in BLAS
	Aliasing
	Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

	Semantics
	Reading into an array
	Error rules
	Writing into an array
	Function call and return
	Split
	Dynamic allocation

	Compiler architecture and benchmarks
	Compiler architecture
	Benchmarks

	Type safety
	Typing
	Assignment
	Dynamic allocation
	Blocks
	Sequence and loop
	Type safety

	Semantics preservation
	Semantics preservation
	Semantics preservation from L2 to C#minor: separation
	Semantics preservation

	Conclusion
	Conclusion
	Work in progress - Proof of programs
	Conclusion

	Proof in Coq

