A safe low-level language for computer algebra and its formally verified compiler

Cambium seminar

June 13, 2025

Guillaume Melquiond

Josué Moreau

Íngia -

Examples of widely used libraries:

- ► GMP: operations on arbitrarily large integers
- BLAS: operations on vectors and matrices
- ► FFTW: fast Fourier transform

Examples of widely used libraries:

- ► GMP: operations on arbitrarily large integers
- BLAS: operations on vectors and matrices
- FFTW: fast Fourier transform

Bug (GMP \leq 5.1.1)

mpz_pown_ui(r, b, e, m) : $r \leftarrow b^e \mod m$ Computes garbage if b is over 15000 decimals.

Bug (GMP 6.2.0)

MacOS Xcode 11 prior to 11.3 miscompiles GMP, leading to crashes and miscomputation.

Libraries written in C and Fortran (and handwritten assembly)

- Libraries written in C and Fortran (and handwritten assembly)
- Pros:
 - Do not get in the way of the user
 - Highly optimizing compilers

- Libraries written in C and Fortran (and handwritten assembly)
- Pros:
 - Do not get in the way of the user
 - Highly optimizing compilers
- Cons:
 - These languages are not safe
 - Difficult program verification (programs are already mathematically difficult to prove)
 - Compilers are too complicated for a total confidence in the generated code

A language dedicated to computer algebra libraries:

- Iow-level array manipulations, compilable to efficient code
- safe (no undefined behaviors)
- with semantics making the proof of programs simpler
- ► A compiler, formally verified with Rocq
 - using CompCert as backend
 - semantics preservation
 - type safety and verified type-checker

Language

Semantics

- Compiler architecture and benchmarks
- Type safety
- Semantics preservation
- Conclusion

BLAS dot product (Fortran)

complex*16 function zdotu(n, zx, zy, incx, incy)
integer incx, incy, n
complex*16 zx(*), zy(*)

▶ Documentation states that size of zx is $1 + (n - 1) \cdot |incx|$.

GMP square (C)

void mpn_sqr(mp_limb_t *rp, const mp_limb_t *s1p, mp_size_t n)

Documentation states:

- Size of rp and s1p are respectively 2n and n.
- No overlap between rp and s1p.

```
fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
  for i = 0 .. m
    for j = 0 .. p {
      dest[i, j] = 0;
      for k = 0 .. n {
         dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
      }
    }
}
```

```
fun mul_matrix(a: [i64; m, n], b: [i64; n, p], dest: mut [i64; m, p], m n p: u64) {
  for i = 0 .. m
  for j = 0 .. p {
    dest[i, j] = 0;
    for k = 0 .. n {
        dest[i, j] = dest[i, j] + a[i, k] * b[k, j];
      }
    }
}
```

Explicit sizes as parameters

Example: multiplication of matrices

Example: multiplication of matrices

Example: multiplication of matrices


```
fun f(t: mut [i64; n], n k: u64)
    -> u64 {
    t[2] = 7;
    return n / k;
}
```

```
fun f(t: mut [i64; n], n k: u64)
    -> u64 {
        t[2] = 7;
        t[2] = 7;
        return n / k;
    }
        uint64_t f(int64_t* restrict t,
        uint64_t n, uint64_t k) {
        assert(2 < n);
        t[2] = 7;
        assert(k != 0);
        return (n / k);
    }
}</pre>
```

Language Second example: Complex dot product in BLAS

```
fun zdotu(n: i32, zx: [f64; 1 + (n - 1) * incx, 2], incx: i32,
                  zy: [f64; 1 + (n - 1) * incy, 2], incy: i32,
          res: mut [f64; 2]) {
  res[0] = 0.; res[1] = 0.;
  if n <= 0 return;
  if incx == 1 & incy == 1 {
    for i: i32 = 0 ... n {
      res[0] = res[0] + (zx[i, 0] * zy[i, 0] - zx[i, 1] * zy[i, 1]);
      res[1] = res[1] + (zx[i, 1] * zy[i, 0] + zx[i, 0] * zy[i, 1]);
    }
  } else {
   let ix: i32 = 0, iy: i32 = 0;
    if (incx < 0) ix = (-n+1)*incx;
    if (incy < 0) iy = (-n+1)*incy;
    . . .
  } }
```

Language Second example: Complex dot product in BLAS

```
fun zdotu(n: i32, zx: [f64; 1 + (n - 1) * incx, 2], incx: i32,
                  zy: [f64; 1 + (n - 1) * incy, 2], incy: i32,
          res: mut [f64; 2]) {
  res[0] = 0.; res[1] = 0.;
                                                           Dynamic test: 1 < 2
  if n <= 0 return;
  if incx == 1 & incy == 1 {
    for i: i32 = 0 ... n {
      res[0] = res[0] + (zx[i, 0] * zy[i, 0] - zx[i, 1] * zy[i, 1]);
      res[1] = res[1] + (zx[i, 1] * zy[i, 0] + zx[i, 0] * zy[i, 1]);
    }
  } else {
   let ix: i32 = 0, iy: i32 = 0;
    if (incx < 0) ix = (-n+1)*incx;
                                                   Dynamic test: i < 1 + (n - 1) \cdot incy
    if (incy < 0) iy = (-n+1)*incy;
    . . .
  } }
```

Language Second example: Complex dot product in BLAS

```
fun zdotu(n: i32, zx: [f64; 1 + (n - 1) * incx, 2], incx: i32,
                  zy: [f64; 1 + (n - 1) * incy, 2], incy: i32,
          res: mut [f64; 2]) {
  res[0] = 0.; res[1] = 0.;
                                                           Dynamic test: 1 < 2
  if n <= 0 return:
                                                           Trivially eliminated
  if incx == 1 & incy == 1 {
    for i: i32 = 0 ... n {
      res[0] = res[0] + (zx[i, 0] * zy[i, 0] - zx[i, 1] * zy[i, 1]);
      res[1] = res[1] + (zx[i, 1] * zy[i, 0] + zx[i, 0] * zy[i, 1]);
    }
  } else {
    let ix: i32 = 0, iy: i32 = 0;
    if (incx < 0) ix = (-n+1)*incx;
                                                   Dynamic test: i < 1 + (n - 1) \cdot incy
    if (incy < 0) iy = (-n+1)*incy;
                                             Eliminated but the compiler needs a bit of help
    . . .
  } }
```

Expressive signatures: non-mutable variables are trivially unmodified

```
fun f(a: [i64; 1], b: mut [i64; 1]) {
    let v = a[0];
    b[0] = 4;
    assert (a[0] == v); // 0k
}
```

- Expressive signatures: non-mutable variables are trivially unmodified
- Copy-restore semantics: no global memory, only local environments

```
fun f(a: [i64; 1], b: mut [i64; 1]) {
    let v = a[0];
    b[0] = 4;
    assert (a[0] == v); // 0k
}
```

- Expressive signatures: non-mutable variables are trivially unmodified
- Copy-restore semantics: no global memory, only local environments
- Efficient generated programs: use pointers instead of deep copies

```
fun f(a: [i64; 1], b: mut [i64; 1]) {
    let v = a[0];
    b[0] = 4;
    assert (a[0] == v); // 0k
}
void f(int64_t* a, int64_t* restrict b) {
    uint64_t v = a[0];
    b[0] = 4;
}
```

- Expressive signatures: non-mutable variables are trivially unmodified
- Copy-restore semantics: no global memory, only local environments
- Efficient generated programs: use pointers instead of deep copies
- Program verification: no need for separation logic for proofs

```
fun f(a: [i64; 1], b: mut [i64; 1]) {
    let v = a[0];
    b[0] = 4;
    assert (a[0] == v); // 0k
}
void f(int64_t* a, int64_t* restrict b) {
    uint64_t v = a[0];
    b[0] = 4;
}
```


$$\begin{split} r_0 &\leftarrow a_0 + a_1 \\ r_2 &\leftarrow b_0 + b_1 \\ t_0 &\leftarrow r_0 r_2 = (a_0 + a_1)(b_0 + b_1) \\ r_0 &\leftarrow a_0 b_0 \\ r_2 &\leftarrow a_1 b_1 \\ t_0 &\leftarrow t_0 - r_0 \\ t_0 &\leftarrow t_0 - r_2 = a_1 b_0 + a_0 b_1 \\ r_{1,2} &\leftarrow r_{1,2} + t_0 \end{split}$$

r_3	r_2	r_1	r_0

 t_1 t_0

$$\begin{array}{l} r_{0} \leftarrow a_{0} + a_{1} \\ r_{2} \leftarrow b_{0} + b_{1} \\ t_{0} \leftarrow r_{0}r_{2} = (a_{0} + a_{1})(b_{0} + b_{1}) \\ r_{0} \leftarrow a_{0}b_{0} \\ r_{2} \leftarrow a_{1}b_{1} \end{array}$$

r_3	$b_0 + b_1$	r_1	$a_0 + a_1$

 t_1 t_0

$$\begin{array}{l} t_0 \leftarrow t_0 - r_0 \\ t_0 \leftarrow t_0 - r_2 = a_1 b_0 + a_0 b_1 \\ r_{1,2} \leftarrow r_{1,2} + t_0 \end{array}$$

Language Non-aliasing policy and pointer arithmetic (Karatsuba algorithm on polynomials)

```
typedef long long int i64;
typedef unsigned long long int u64;
void karatsuba(i64* r, i64* a, i64* b,
               i64* t. u64 n) {
  . . .
  u64 \ k = n / 2;
  add(r, a, a + k, k):
  add(r + 2 * k, b, b + k, k);
  karatsuba(t, r, r + 2 * k,
            t + 2 * k, k):
  karatsuba(r, a, b, t + 2 * k, k);
  karatsuba(r + 2 * k, a + k, b + k,
           t + 2 * k. k):
  sub(t, t, r, 2 * k);
  sub(t, t, r + 2 * k, 2 * k);
  add(r + k, r + k, t, 2 * k);
}
```

$$\begin{array}{l} r_{0} \leftarrow a_{0} + a_{1} \\ r_{2} \leftarrow b_{0} + b_{1} \\ t_{0} \leftarrow r_{0}r_{2} = (a_{0} + a_{1})(b_{0} + b_{1}) \\ r_{0} \leftarrow a_{0}b_{0} \\ r_{2} \leftarrow a_{1}b_{1} \\ t_{0} \leftarrow t_{0} - r_{0} \\ t_{0} \leftarrow t_{0} - r_{2} = a_{1}b_{0} + a_{0}b_{1} \\ r_{1,2} \leftarrow r_{1,2} + t_{0} \end{array}$$

```
fun karatsuba(r: mut [i64; 2 * n], a b: [i64; n], t: mut [i64; 2 * n], u: u64) {
  . . .
  let k = n / 2:
  let [a0: ..k; a1: k..] = a;
  let [b0: ...k; b1: k...] = b:
  let [t0: ..(2 * k); t1: ..] = t;
  { let [r_0: ...(2 * k): r_2: ...] = r:
    add(r0[..k], a0, a1, k);
                                                                        r_0 \leftarrow a_0 + a_1
    add(r2[..k], b0, b1, k);
                                                                        r_2 \leftarrow b_0 + b_1
                                                                        t_0 \leftarrow r_0 r_2 = (a_0 + a_1)(b_0 + b_1)
    karatsuba(t0, r0[..k], r2[..k], t1, k);
    karatsuba(r0, a0, b0, t1, k);
                                                                        r_0 \leftarrow a_0 b_0
    karatsuba(r2, a1, b1, t1, k);
                                                                        r_2 \leftarrow a_1 b_1
    decr(t0, r0, 2 * k);
                                                                        t_0 \leftarrow t_0 - r_0
    decr(t0, r2, 2 * k); }
                                                                        t_0 \leftarrow t_0 - r_2 = a_1 b_0 + a_0 b_1
  incr(r[k..(3 * k)], t0, 2 * k);
                                                                        r_{1.2} \leftarrow r_{1.2} + t_0
```

}

Semantics

Structured values: $v = Vint n \mid ... \mid Varr [v_1, v_2, ...]$ Local environments: $E: x \rightarrow v$

$$\begin{array}{ccc} t \in E & E \vdash e \Rightarrow {\rm Vint}_{64}n & n < {\rm sz}_t \\ \hline & E \vdash t[e] \Rightarrow E(t)[n] \end{array} \end{array} {\rm Read}$$

Structured values: $v = Vint n \mid ... \mid Varr [v_1, v_2, ...]$ Local environments: $E: x \rightarrow v$

$$\begin{array}{ccc} \stackrel{\mathrm{typing}}{t \in E} & E \vdash e \Rightarrow & \overbrace{\mathsf{Vint}_{64}n}^{\mathrm{typing}} & n < \mathsf{sz}_t \\ & E \vdash t[e] \Rightarrow E(t)[n] \end{array}$$

Structured values: $v = Vint n \mid ... \mid Varr [v_1, v_2, ...]$ Local environments: $E : x \rightharpoonup v$

$$\begin{array}{ccc} \stackrel{\text{typing}}{t \in E} & E \vdash e \Rightarrow \overbrace{\mathsf{Vint}_{64}n}^{\text{typing}} & \overbrace{n < \mathsf{sz}_t}^{\text{error}}_{\text{READ}} \\ & E \vdash t[e] \Rightarrow E(t)[n] \end{array}$$

$$\begin{array}{c|c} t \in E & E \vdash e \Rightarrow \mathsf{Vint}_{64}n & n < \mathsf{sz}_t \\ & E \vdash t[e] \Rightarrow E(t)[n] \end{array} \mathsf{Read} \end{array}$$

$$\begin{array}{c|c} t \in E & E \vdash e \Rightarrow \texttt{error}_{\texttt{ReadPathErr}} \\ E \vdash t[e] \Rightarrow \texttt{error} \end{array} \xrightarrow{\texttt{ReadPathErr}} \begin{array}{c|c} t \in E & E \vdash e \Rightarrow \texttt{Vint}_{64}n & n \geq \texttt{sz}_t \\ E \vdash t[e] \Rightarrow \texttt{error} \end{array} \xrightarrow{\texttt{ReadErr}} \end{array}$$

$$\begin{array}{c|c} E \vdash e_1 \Rightarrow \texttt{Vint} & n_1 & E \vdash e_2 \Rightarrow \texttt{Vint} & n_2 \\ \hline n_2 \neq 0 & n_1 \neq \texttt{min_int} \lor n_2 \neq -1 \\ \hline E \vdash \texttt{divs}(e_1, e_2) \Rightarrow \texttt{Vint} & (n_1/n_2) \end{array}$$

$$\frac{\forall j < i, E \vdash e_j \Rightarrow v_j \qquad E \vdash e_i \Rightarrow \texttt{error}}{E \vdash \texttt{divs}(e_1, e_2) \Rightarrow \texttt{error}} \\ \text{DivsErr}_i$$

$$\begin{array}{l} & \dots \\ & \underline{n_1 = \min_{\rm int} \land n_2 = -1} \\ & E \vdash {\rm divs}(e_1, e_2) \Rightarrow {\rm error} \end{array} \\ \end{array}$$

 $\texttt{Owned} \geq \texttt{Mutable} \geq \texttt{Shared}$

$$E(ec{a}) = ec{v}$$
 $ec{v} \in f.sig_args$
f.params $= ec{x}$ $E_f = build_env(ec{x}, ec{v})$

$$\overline{(E, \langle y = \mathbf{f}(\vec{a}) \rangle, k)} \to (E_{\mathbf{f}}, \mathbf{f}. \mathbf{body}, \mathbf{Kreturnto}(y, E, m, k)) \overset{\mathrm{Call}}{\longrightarrow} \mathbf{Call} = \mathbf{Call} \mathbf{f}(\vec{a}) \mathbf{f$$

$$\begin{split} E(\vec{a}) &= \vec{v} & \vec{v} \in \texttt{f.sig_args} \\ \texttt{f.params} &= \vec{x} & E_\texttt{f} = \texttt{build_env}(\vec{x}, \vec{v}) \\ \forall i, \texttt{f.perm}(x_i) \leq \texttt{perm}(a_i) \end{split}$$

$$\overline{(E, \langle y = \mathbf{f}(\vec{a}) \rangle, k) \rightarrow (E_{\mathbf{f}}, \mathbf{f}.\mathbf{body}, \mathbf{Kreturnto}(y, E, m, k))}^{\mathrm{CALL}}$$

$$\begin{split} E(\vec{a}) &= \vec{v} & \vec{v} \in \texttt{f.sig_args} \\ \texttt{f.params} &= \vec{x} & E_\texttt{f} = \texttt{build_env}(\vec{x}, \vec{v}) \\ & \forall i, \texttt{f.perm}(x_i) \leq \texttt{perm}(a_i) \\ & \forall i j, \texttt{f.perm}(x_i) \geq \texttt{Mutable} \land i \neq j \Rightarrow a_i \neq a_j \end{split}$$

 $\overline{(E, \langle y = \mathbf{f}(\vec{a}) \rangle, k)} \to (E_{\mathbf{f}}, \mathbf{f}. \mathbf{body}, \mathbf{Kreturnto}(y, E, m, k)) \overset{\mathrm{Call}}{\longrightarrow} \mathbf{Call}$

$$\begin{split} E(\vec{a}) &= \vec{v} & \vec{v} \in \texttt{f.sig_args} \\ \texttt{f.params} &= \vec{x} & E_\texttt{f} = \texttt{build_env}(\vec{x}, \vec{v}) \\ & \forall i, \texttt{f.perm}(x_i) \leq \texttt{perm}(a_i) \\ & \forall i j, \texttt{f.perm}(x_i) \geq \texttt{Mutable} \land i \neq j \Rightarrow a_i \neq a_j \\ & \texttt{valid_call}(E, \texttt{f}, \vec{a}) \end{split}$$

 $\overline{(E, \langle y = \mathbf{f}(\vec{a}) \rangle, k)} \to (E_{\mathbf{f}}, \mathbf{f}. \mathbf{body}, \mathbf{Kreturnto}(y, E, m, k)) \overset{\mathrm{Call}}{\longrightarrow} \mathbf{Call}$

$$\begin{split} E(\vec{a}) &= \vec{v} \qquad \vec{v} \in \mathsf{f.sig_args} \\ \texttt{f.params} &= \vec{x} \qquad E_{\mathsf{f}} = \mathsf{build_env}(\vec{x},\vec{v}) \\ &\forall i, \texttt{f.perm}(x_i) \leq \mathsf{perm}(a_i) \\ &\forall i \, j, \texttt{f.perm}(x_i) \geq \mathsf{Mutable} \land i \neq j \Rightarrow a_i \neq a_j \\ & \mathsf{valid_call}(E, \mathsf{f}, \vec{a}) \\ & m = \{(a_i, x_i) \mid \texttt{f.perm}(x_i) = \mathsf{Mutable}\} \\ \hline (E, \langle y = \mathsf{f}(\vec{a}) \rangle, k) \rightarrow (E_{\mathsf{f}}, \texttt{f.body}, \mathsf{Kreturnto}(y, E, m, k)) \\ \end{split} \\ \end{split}$$

$$\begin{split} E(\vec{a}) &= \vec{v} \qquad \vec{v} \in \mathsf{f.sig_args} \\ \texttt{f.params} &= \vec{x} \qquad E_{\mathsf{f}} = \mathsf{build_env}(\vec{x},\vec{v}) \\ \forall i, \texttt{f.perm}(x_i) \leq \mathsf{perm}(a_i) \\ \forall i \, j, \texttt{f.perm}(x_i) \geq \mathsf{Mutable} \land i \neq j \Rightarrow a_i \neq a_j \\ \texttt{valid_call}(E, \texttt{f}, \vec{a}) \\ m &= \{(a_i, x_i) \mid \texttt{f.perm}(x_i) = \mathsf{Mutable}\} \\ \hline (E, \langle y = \texttt{f}(\vec{a}) \rangle, k) \rightarrow (E_{\mathsf{f}}, \texttt{f.body}, \mathsf{Kreturnto}(y, E, m, k)) \\ \end{split} \\ \end{split} \\ \end{split}$$

Function return:

$$\begin{split} E(t) = \operatorname{Varr} \vec{v} & E(e) = \operatorname{Vint}_{64} i & E(\operatorname{sz}_t) = \operatorname{Vint}_{64} n & i \leq n \\ & \cdots \\ o_j = \left\{ x \mid \operatorname{sz}_{u_j} = \operatorname{sz}_x \right\} \\ E' = (E \setminus (o_1 \cup o_2 \cup \{t\})) \begin{bmatrix} \operatorname{sz}_{u_1} \leftarrow \operatorname{Vint}_{64} i, & \operatorname{sz}_{u_2} \leftarrow \operatorname{Vint}_{64} (n-i), \\ u_1 \leftarrow \operatorname{Varr} \left(\vec{v}_{0..(i-1)} \right), & u_2 \leftarrow \operatorname{Varr} \left(\vec{v}_{i..(n-1)} \right) \end{bmatrix} \\ \hline (E, \langle u_1, u_2 \leftarrow \operatorname{split}(t, e) \{s\} \rangle, k) \to (E', \langle s \rangle, \operatorname{Kjoin}(t, u_1, u_2, k)) \end{split}$$

$$\frac{E(u_1) = \operatorname{Varr} \vec{v} \qquad E(u_2) = \operatorname{Varr} \vec{w} \qquad \dots}{(E, \langle \rangle, \operatorname{Kjoin}(t, u_1, u_2, k)) \to ((E \setminus \{u_1, u_2\})[t \leftarrow \operatorname{Varr} (v + w)], \langle \rangle, k)}$$

$$\begin{array}{ll} \operatorname{perm}(t) = \operatorname{Owned} & E \vdash e \Rightarrow \operatorname{Vint}_{64}n & \dots \\ & t \notin k \\ & o = \{x \mid \operatorname{sz}_t = \operatorname{sz}_x\} \\ \hline (E, \langle t \leftarrow \operatorname{alloc}(\operatorname{i32}, e) \rangle, k) \rightarrow ((E \setminus o)[t \leftarrow \operatorname{Varr}[0, 0, \dots]][\operatorname{sz}_t \leftarrow \operatorname{Vint}_{64}n], \langle \rangle, k) \end{array}$$

$$\begin{array}{c} \texttt{perm}(t) = \texttt{0wned} & \dots \\ \hline t \notin k \\ \hline (E, \langle \texttt{free } t \rangle, k) \rightarrow (E \setminus \{t, \texttt{sz}_t\}, \langle \rangle, k) \end{array} \\ \texttt{Free} \end{array}$$

Compiler architecture and benchmarks

	CompCert	
zdotu	2.25	
saxpy	5.37	
sgemv	2.86	
dgemv	1.73	
dtrsv(N)	2.87	
dtrsv(T)	2.30	
<pre>mpn_addmul_1</pre>	2.74	
mpn_mul	3.62	
<pre>mpn_mul (with assembly)</pre>	1.59	

- $\blacktriangleright \geq 1$: slower than the original implementation
- Input vectors/matrices are small enough to minimize cache misses
- ▶ Reference x86-64 BLAS/LAPACK 3.12.0 (Fortran) and GMP 6.3.0 (handwritten assembly)
- LLVM 19.1.7 and GCC 14.2.1, optimization level -02 -ftree-vectorize

	CompCert	GCC	LLVM
zdotu	2.25	1.01	0.93
saxpy	5.37	4.25	0.78
sgemv	2.86	1.32	0.96
dgemv	1.73	1.03	0.59
dtrsv(N)	2.87	1.32	1.78
dtrsv(T)	2.30	1.14	1.35
<pre>mpn_addmul_1</pre>	2.74	1.19	1.08
mpn_mul	3.62	1.93	1.80
<pre>_mpn_mul (with assembly)</pre>	1.59	1.42	1.42

- $\blacktriangleright \geq 1$: slower than the original implementation
- Input vectors/matrices are small enough to minimize cache misses
- ▶ Reference x86-64 BLAS/LAPACK 3.12.0 (Fortran) and GMP 6.3.0 (handwritten assembly)
- LLVM 19.1.7 and GCC 14.2.1, optimization level -02 -ftree-vectorize

	CompCert	GCC	LLVM	GCC with	LLVM with
				assertions	assertions
zdotu	2.25	1.01	0.93	1.06	0.82
saxpy	5.37	4.25	0.78	3.68	0.78
sgemv	2.86	1.32	0.96	1.32	0.87
dgemv	1.73	1.03	0.59	0.68	0.53
dtrsv(N)	2.87	1.32	1.78	0.92	1.60
dtrsv(T)	2.30	1.14	1.35	0.91	0.90
mpn_addmul_1	2.74	1.19	1.08	-	_
mpn_mul	3.62	1.93	1.80	-	_
_mpn_mul (with assembly)	1.59	1.42	1.42	-	_

- $\blacktriangleright \geq 1$: slower than the original implementation
- Input vectors/matrices are small enough to minimize cache misses
- ▶ Reference x86-64 BLAS/LAPACK 3.12.0 (Fortran) and GMP 6.3.0 (handwritten assembly)
- LLVM 19.1.7 and GCC 14.2.1, optimization level -02 -ftree-vectorize

Main difficulty of typing: tracking initialized variables.

Typing judgments

 $\{V\}\ c\ \{V'\}$

Meaning:

The execution of *c* requires the variables of *V* to be initialized and ensures that the variables of *V*' are initialized.

Backward typing: typing from the end of the function to the beginning.

$$\begin{array}{ccc} \Gamma \vdash e: \tau, V_e & \Gamma(x) = \tau \\ \hline \{V \setminus \{x\} \cup V_e\} \; x = e \; \{V\} \end{array} \end{array} \begin{array}{c} \Gamma \vdash e': \tau, V_{e'} & \Gamma(x) = \operatorname{array} \tau \\ & \Gamma \vdash e: \operatorname{int}_{64}, V_e \\ \hline \{V \cup V_{e'} \cup V_e \cup \{x\}\} \; x[e] = e' \; \{V\} \end{array} \end{array}$$

$$\label{eq:relation} \begin{split} \Gamma \vdash e: \mathsf{int}_{64}, \underbrace{V_e}_{\{V \setminus \{t, \mathsf{sz}_t\} \cup V_e\} \ t \leftarrow \mathsf{alloc}(\mathsf{i32}, e) \ \{V\}}_{\{V \cup \{t, \mathsf{sz}_t\}\}} & \qquad \{t, \mathsf{sz}_t\} \cap V = \emptyset \\ \hline \{V \cup \{t, \mathsf{sz}_t\}\} \ \text{free} \ t \ \{V\} \end{split}$$

$\frac{\{V'\} \ s \ \{(V,V :: X)\}}{\{V'\} \ \{s\} \ \{(V,X)\}}$

 $\{X[n]\}$ exit n $\{(V,X)\}$

$\frac{\{V_1\}\ s_1\ \{(V_2,X)\}}{\{V_1\}\ s_1;s_2\ \{(V,X)\}}$

Invariants

- 1 The content of the local environment has the expected type.
- 2 The needed variables are initialized.
- 3 Array sizes are valid (*i.e.*, at most the actual size of array values).

Theorem (Type safety)

Given a successfully typed L_1 program, if all the invariants hold in a non-final L_1 state s, then there exists a state t such that $s \to t$ and all the invariants hold in t.

Semantics preservation

Forward simulation: each step in Capla implies a sequence of no-UB steps in assembly and execution states are still related

Forward simulation: each step in Capla implies a sequence of no-UB steps in assembly and execution states are still related

Cminor / ASM is deterministic, so forward simulation implies backward simulation.

Memory element:

 $Mem \equiv option(block \times offset \times element \ size \times list(Mem))$

Memory element:

 $Mem \equiv option(block \times offset \times element size \times list(Mem))$

Vint $n \rightarrow \text{None}$ Varr $\vec{v} \rightarrow \text{Some}\left(b, o, s, \vec{l}\right)$ Memory element:

 $Mem \equiv option(block \times offset \times element size \times list(Mem))$

 $\begin{array}{rcl} \text{Vint} n & \to & \text{None} \\ \text{Varr} \ \vec{v} & \to & \text{Some} \ \left(b, o, s, \vec{l} \right) \end{array}$

Translation function:

 $T: \mathsf{path} \to \mathsf{Mem}$

 $\forall k,k < |\vec{v}| \Rightarrow M[b,o+k \cdot s] \sim v_k$

Semantics preservation Semantics preservation from L_2 to C#minor: separation

 $\forall k,k < |\vec{v}'| \Rightarrow M'[b,o+k \cdot s] \sim v'_k$

$$\begin{split} & \mathsf{separated_mem}_p(\mathsf{None},_) \ = \ \mathsf{true} \\ & \mathsf{separated_mem}_p(_,\mathsf{None}) \ = \ \mathsf{true} \\ & \mathsf{separated_mem}_{\mathsf{Shared}} \ = \ \mathsf{true} \\ & \mathsf{separated_mem}_{\mathsf{Mutable}}((b_1,o_1,e_1,l_1),(b_2,o_2,e_2,l_2)) \ = \ b_1 \neq b_2 \\ & \qquad \lor o_1 + e_1 \cdot |l_1| \leq o_2 \\ & \qquad \lor o_2 + e_2 \cdot |l_2| \leq o_1 \\ & \qquad \mathsf{separated_mem}_{\mathsf{Owned}}((b_1,o_1,e_1,l_1),(b_2,o_2,e_2,l_2)) \ = \ b_1 \neq b_2 \end{split}$$

$$\texttt{separated}(T) = \forall i \ p \ i' \ p', i \cdot p \neq i' \cdot p' \Rightarrow \texttt{separated}_\texttt{mem}_{\texttt{perm}(i)}(\texttt{tr}(i \cdot p), \texttt{tr}(i' \cdot p'))$$

Theorem (Forward simulation)

```
Let s \underset{L_2}{\rightarrow} t, then for every state s' s.t. s \Leftrightarrow s', either

|t| < |s|, or

	b 	ext{ there exists } t' 	ext{ s.t. } s' \underset{C\#minor}{\rightarrow^*} t' 	ext{ and } t \Leftrightarrow t'.
```

Theorem (Compiler correction - backward simulation)

Let
$$s \xrightarrow{}_{ASM} t$$
, then for every state s' s.t. $s' \Leftrightarrow s$, either

$$\blacktriangleright |t| < |s|$$
, Ol

▶ there exists
$$t'$$
 s.t. $s' \xrightarrow{}_{L_1}^+ t'$ and $t' \Leftrightarrow t$.

Conclusion

- Safe language for computer algebra
 - Suitable for array-based programs
 - Non-aliasing policy for mutable memory
 - Simple semantics for easier program reasoning
- Correct compiler to assembly

```
// BLAS triangular system solving
fun dtrsv(uplo trans diag: u8, n: i32,
    a: [f64; n, lda], lda: i32,
    x: mut [f64; 1+(n-1)*incx], incx: i32)
```

- Correctness and safety (WIP split) proofs are verified with Rocq ~10,000 lines of code, ~11,000 lines of spec, ~17,000 lines of proof
- Unverified C backend for performance

- Big-step semantics with proof of soundness
- Weakest Precondition computation (work by Oliver Turner) with proof of soundness
- Used on small proofs

Future work:

- Prove the soundness of the weakest precondition computation with the small-step semantics
- Improve usability while proving a function

This work is part of the ERC Fresco project: https://fresco.gitlabpages.inria.fr/capla/ language/index.html

Goal: Turn Rocq into a computer algebra system

```
fun mpn addmul 1(rp: mut [u64; n],
                 up: [u64; n],
                 n v0: u64) -> u64 {
  assert (n \ge 1):
  let u0 crec c p1 p0 r0: u64; crec = 0;
  for i : u64 = 0 ... n \{
    u0 = up[i];
    p0 = u0 * v0;
    p1 = builtin umulh64(u0, v0);
    r0 = rp[i];
    p0 = r0 + p0;
    c = (u64) (r0 > p0);
    p1 = p1 + c;
    r0 = p0 + crec;
    c = (u64) (p0 > r0);
    crec = p1 + c;
    rp[i] = r0;
  }
  return crec; }
```

Appendix

$$\begin{split} (E,s,k) \leftrightarrow \left(M,\hat{E},\operatorname{comp}(s),\hat{k}\right) &\equiv \exists \vec{T}, \begin{cases} \operatorname{separated}(T) \\ E \stackrel{T_0}{\longleftrightarrow} \left(\hat{E},M\right) \\ (E,k) \stackrel{\vec{T}}{\leftrightarrow} \left(M,\hat{k}\right) \end{cases} \\ E \stackrel{T}{\leftrightarrow} \left(\hat{E},M\right) &\equiv \forall (i)E[i] \sim \hat{E}[i] \wedge \forall (p)E[p] \stackrel{T}{\sim} M \\ (E,\operatorname{Kseq}(s,k)) \stackrel{\vec{T}}{\leftrightarrow} \left(M,\operatorname{Kseq}\left(\operatorname{comp}(s),\hat{k}\right)\right) &\equiv (E,k) \stackrel{\vec{T}}{\leftrightarrow} \left(M,\hat{k}\right) \end{cases} \\ (E_1,\operatorname{Kreturnto}(E_0,m,k)) \stackrel{T_1:::T_0:::\vec{T}}{\longleftrightarrow} \left(M,\operatorname{Kreturnto}\left(\widehat{E_0},\hat{k}\right)\right) &\equiv \begin{cases} \operatorname{separated}(T_0+_mT) \\ (E_0+_mE_1) \stackrel{T_0+_mT}{\longleftrightarrow} \left(\widehat{E_0},M\right) \\ (E_0+_mE_1,k) \stackrel{T_0+_mT:::\vec{T}}{\longleftrightarrow} \left(M,\hat{k}\right) \end{cases} \end{split}$$

	Code	Specification	Proof
Parser and type inference for L_0 (OCaml)	6972	-	-
Syntax and types of L_1 and L_2	1270	-	404
Common semantics definitions and proofs	_	1975	1734
Semantics of L_1	_	1191	734
Semantics of L_2	_	469	96
Type checking and type safety of L_1	927	1590	3267
Compilation from L_1 to L_2	456	1486	3992
Compilation from L_2 to C#minor	513	2793	6169
Miscellaneous	_	1428	1275
Total	10138	10932	17671