
Irene Yoon | Cambium Seminar | 24/05/24

Velliris
A Relational Separation Logic for LLVM IR
Irene Yoon, Simon Spies, Youngju Song, Lennard Gäher, Derek Dreyer, Steve Zdancewic

1

Vellvm 2.0 Overview

optimizations/	
transformations

VIR

analysis

Vellvm [Zakowski	et	al.	-	ICFP	2021]	
Modular	and	executable	semantics	for	LLVM	IR

[Beck	et	al.	-	ICFP	2024	(conditionally	accepted)]	
Infinite/finite	memory	model	for	LLVM	IR

[Yoon	et	al.	-	Today's	talk]	
Relational	separation	logic	for	LLVM	IR

[Zaliva	et	al.]	
Verified	HELIX	front-end	

[Yoon	et	al.	-	ICFP	2022]	
Meta-theory	for	layered	monadic	interpreters

https://github.com/vellvm/vellvm

Selected	publications	and	drafts*

*	:	all	results	mechanized	in	the	Coq	Proof	Assistant2

https://github.com/vellvm/vellvm-legacy

Vellvm 2.0
Interaction Tree based semantics for LLVM IR

3

Interaction Trees (itrees)

github.com/DeepSpec/InteractionTrees

Vellvm

github.com/vellvm/vellvm

Used to build

(Re)

[Xia	et	al.	2020]	 A generic toolkit to define and reason about the
semantics of interactive systems

Semantics: Compositional, Modular, Executable

Reasoning: Equational, termination sensitive

VIR: a compositional, modular and
executable formal semantics for (sequential)

LLVM IR

Benefits of ITree-based reasoning

• Proof of block-merging
optimization

• Reasoning about control flow is
simple (if it does not change the
trace of events)

Reasoning about control flow

blk1++blk2

blk1

blk2

≈cfg cfg

4

Weak bisimulation on Interaction Trees

• Program and are related to each other (i.e. bisimilar) w.r.t. a value relation

• If one program diverges, the other must diverge in a similar way (& vice versa.)

• If one program terminates, the other must terminate in a similar way (& vice
versa.) and the returned values are related by the value relation

et es R

R

Termination-sensitive relational reasoning

et ≈R es "eutt" e
s

r

s

r
≈ e

5

Benton-style relational Hoare reasoning

• "eutt" can be seen as a partial (e.g. without a proof of termination) relational Hoare
triple with a trivial precondition

• A partial Hoare triple can be instantiated by taking the diagonal:

Let's reason about programs via Hoare triples (quadruple)!

et ≈R es { ⊤ } et ≈ es { R }

{ ⊤ } e {Q} := e ≈λx,y. x=y ∧ Q x e

6

Benton-style relational Hoare reasoning

• There are not many transformations that preserve interactions
with state

• After one step of interpretation (of a state with carrier type S)
⟦ - ⟧, we see a state-passing tree (S -> itree F (S * A)). The post-
condition on eutt relates both values and the final state.

Let's reason about programs via Hoare triples (quadruple)!

et es≈Q ⟦⟧ ⟧⟦ σt σs

7

• We can have relational pre- and post-conditions about the initial and final states of programs

et es≈Q ⟦⟧ ⟧⟦ σt σs{P}et ≈ es{Q} := ∀σt, σs . P(σt, σs) ⇒

Global state invariants and assumptions

• The pre- and post- condition must carry global invariants about the state

A need for modularity

et es≈Q ⟦⟧ ⟧⟦ σt σs{P}et ≈ es{Q} := ∀σt, σs . P(σt, σs) ⇒
Given	a	stateful	interpretation	function	⟦	-	⟧,

1. LLVM IR transformations make assumptions over memory regions that call for
localized reasoning

2. Stack-allocated regions allocated using "alloca" are automatically collected upon
function return, and local variables live in the scope of a function: it would be nice
for the logic to be aware of this stack discipline

8

In particular, in the setting of LLVM IR..

... and global invariants are difficult to work with!

Example: Loop invariant code motion
What invariants does the compiler assume for its optimizations?

•LLVM	optimizations	(1)	reorder	(or	modify/remove)	memory-related	instructions,	
and	(2)	often	make	certain	assumptions	about	external	calls	while	doing	so	

•By	adding	an	annotation	at	the	generated	LLVM	IR	(function	attribute)	for	the	
C	code	above,	one	can	specify	that	the	function	only	accesses	memory	through	
its	arguments

"	function	can	only	affect	memory	
accessible	by	the	arguments	passed	on	

to	the	function	"9

Another example: Load-after-store on "promotable" locations
Compilers want to use assumptions from static analysis passes

•LLVM	IR	transformation	often	uses	assumptions	derived	from	analysis	passes	
(e.g.	alias	analysis),	and	from	the	perspective	of	verifying	optimizations,	we	
need	a	way	to	state	these	assumptions

%a = alloca i32
...
store i32 6, i32 %a
...
%b = load %a
ret %b
...

%a = alloca i32
...
store i32 6, i32 %a
...
ret 6
...

10

•"promotable"	register:	no	aliasing,	no	storing	to	memory

•Iris	[Jung	et	al.]:	a	higher-order	
concurrent	separation	logic	framework	

•Highly	reusable	and	influential	in	
consolidating	variants	of	separation	
logics	

•Used	for	various	other	realistic	
semantics	(RustBelt,	RefinedC,	Iris-
WASM,	etc). [illustration	by	Ilya	Sergey]

The	genealogy	of	separation	logics

P * Q

•Separation	logic	[O.	Hearn	et	al.]

Separation Logic
Localized reasoning about resources for all!

11

+ =

VIR

Semantics*

Iris

Program	logic

Velliris

Relational	separation	logic	for	LLVM	IR!

Can we bring the niceties of separation logic to
LLVM IR?

12

Simuliris : relational Hoare logic in Iris
[Gäher et al.]

• Focusing rules on source and target programs

• Termination-sensitive simulations in Iris

13

(Typical) Recipe to use Iris

(1)	Ingredient:	an	abstract	view	on	state	(ghost	theory)	using	separation	logic	
resources	

		Iris	has	a	notion	of	resource	algebras	and	generic	constructions	of	resource	

algebras	suitable	for	read-only	map,	permission-based	ownership,	etc.

14

?For	expository	purposes,	an	example	of	a	much	simpler	resource	algebra.	

Given	a	partial	commutative	monoid	

Given	a	heap	which	is	a	partial	map	from	addresses	to	integers,	

we	can	define	an	ownership	predicate							where

we	can	define	a	ghost	theory	:

(Typical) Recipe to use Iris

(2)	Ingredient:	a	small-step	semantics		

Given	the	small-step	semantics	and	ghost	theory,	a	Hoare	triple	can	be	derived	
via	the	typical	weakest	precondition	model	of	Iris	

15

?

Roadmap

1. A taste of the stack-based ghost theory for LLVM IR

2. Memory-relevant attributes in LLVM IR

3. Model : A relational weakest-precondition model for Interaction Trees in Iris

4. Adequacy

16

VIR State

• The state of VIR: Global * (Local * LocalStack) * (Mem * FrameStack)

• The stack resources need to managed upon function entry and exit

• The ghost theory in Velliris deals with this deallocation by keeping track of the stack
frame and the associated set of stack-allocated locations.

17

Reasoning about local environments
Stack frame rules (not to be confused with the frame rule)

18

We are currently at stack frame "i", and we know that the local
environment stores "v" for "id".

We are at index "i" on the stack frame.
Ghost resources

At frame index "i", we have access to local id "id" with value "v" stored on it.

At frame index "i", "L" is the domain of the local environment.

(Source side) Hoare triples

We are currently at stack frame "i", and we can
extend the local domain and get a new local
environment predicate.

Function calls in Vellvm
Function calls, stack-allocated resources

19

Stack-allocated resources

• Each function call allocates a new stack frame

Function calls, stack-allocated resources

20

We are currently at stack frame "i", and if we push a new memory frame and local frame
with arguments "args", we update the current frame index, and get a empty memory
frame and local domain and ownership over arguments "args" pushed onto the stack.

Event rules
Atomic proof rules over events

21

"Undefined behavior subsumes all behavior"

and

"The simulation holds only if the source program
does not go wrong"

Need to build atomic proof rules
over the sum of events on VIR

Instruction rules
Example: Alloca instruction

22

• Given atomic proof rules, it is straightforward to build rules over denotations on syntax

Denotation of an alloca instruction

Roadmap

1. A taste of the stack-based ghost theory for LLVM IR

2. Memory-relevant attributes in LLVM IR

3. Model : A relational weakest-precondition model for Interaction Trees in Iris

4. Adequacy

23

•LLVM	optimization	and	analysis	passes	often	use	
memory	attributes,	lightweight	specifications	about	
how	a	function	may	affect	memory

•Logical	interpretation	of	memory	attributes	using	
permission-based	ownership	

•Can	reason	about	reordering	across	calls	and	
transformations	that	take	advantage	of	memory	attributes

"	function	f	only	reads	from	arguments	
passed	on	to	the	function	"

Memory attributes in LLVM IR

24

External call semantics

• Pre-existing VIR semantics: external calls could not affect memory

Let's fix the naïve semantics!

• Event transformer: transforms an event into a
state-passing event

With this simple change, external calls are aware of
memory

25

How do we reason about function calls?

• `eutt` is not enough: we cannot rely on syntactic trace equivalence for function calls

• e.g. call foo (%p1) can be related to call foo (%p2) if %p1 and %p2 store
related pointers

• Locations in public bijection (related pointers)

26

Simuliris [Gäher et al.]-style public resources

How to reason about public resources

• We can store and load from public resources if
they haven't been checked out by others yet

first approximation: Simuliris [Gäher et al.]-style public resources

Has this been checked
out yet?

27

Function attribute specifications

• Based on the function attribute, the simulation checks whether the patron should have full
access to the material (or a partial scan) (i.e. permission-based ownership), and makes sure
that all resources have been safely returned.

Attribute specifications

28

Nothing's been checked
out, so anyone can have

full access to public
resources!

Let's check the access
privileges ...

Roadmap

1. A taste of the stack-based ghost theory for LLVM IR

2. Memory-relevant attributes in LLVM IR

3. Model : A relational weakest-precondition model for Interaction Trees in Iris

4. Adequacy

29

Building an Iris framework for VIR

Typical	recipe

(2)	Ingredient:	a	small-step	semantics		

Given	a	small-step	semantics,	a	Hoare	
triple	can	be	derived	via	the	typical	
weakest	precondition	model*	of	Iris	

(technically,	a	Banach	guarded	fixpoint)*

(1)	Ingredient:	an	abstract	view	on	state		

(ghost	theory)	using	separation	logic		

resources	

What	we	have	(and	need)

(2)	Ingredient:	ITree-based	semantics	

A	new	weakest	precondition	model*	of	
Iris	for	stateful	ITrees	

(technically,	a	Knaster-Tarski	mixed	
fixpoint)*

(1)	Ingredient:	A	ghost	theory	for	VIR	

			resources	

30

Weakest precondition
Behind the scenes...

fixed interpretation level *

*(with modified interpretation for calls)

Q.	What	is	the	stateful	interpretation	
function	⟦	-	⟧	?

A.

←	(little	trick	with	enums	to	avoid	extra	destruct	on	match	cases,	
since	we	don't	have	native	variants	or	inductive	types	in	Iris)

(sim_coind	takes	the	mixed	greatest-least	fixpoint	of	sim_expr_inner)

Roadmap

1. A taste of the stack-based ghost theory for LLVM IR

2. Memory-relevant attributes in LLVM IR

3. Model : A relational weakest-precondition model for Interaction Trees in Iris

4. Adequacy

32

Adequacy

33

instantiated to VIR where , are related by a state relationσt σs

.
fix
.

For ITrees and without external calls,et es

(for an abstract language)

.
fix
.

(LLVM IR).
fix
.

et es≈ ⟦⟧ ⟧⟦ σt σs

adequacy

(Corollary)

where , are related by a state relationσt σs

.
fi

et es≈ ⟦⟧ ⟧⟦ σt σs(Theorem)

Roadmap

1. A taste of the stack-based ghost theory for LLVM IR

2. Memory-relevant attributes in LLVM IR

3. Model : A relational weakest-precondition model for Interaction Trees in Iris

4. Adequacy

34

Back to: Proving LICM

•Example:	proof	of	simulation	for	a	simple	loop	invariant	code	motion	algorithm	

•Benefits:	can	reorder	memory-relevant	instructions	with	function	calls	(could	
not	be	expressed	before)	

•Benefits:	Hoare-style	reasoning	over	loops;	proof	does	not	require	explicit	
coinduction

35

Velliris:	A	relational	separation	logic	framework	for	
LLVM	IR

•A	relational,	coinductive	weakest	precondition	model	of	Iris	which	supports	a	
monadic	semantics	based	on	the	Interaction	Trees	framework	

•A	relational	separation	logic	and	ghost	theory	for	VIR	resources	

•Logical	interpretation	for	memory-relevant	attributes	

•Examples:	collection	of	simple	examples	and	proof	of	simple	loop	invariant	code	
motion	algorithm	

•Logical	relation	and	contextual	refinement	(omitted)	

•(Ongoing)	case	study:	Verification	of	Mem2Reg	algorithm

Contributions

Thank	you!

:	results	mechanized	in	the	Coq	Proof	Assistant

36

Development:	~40k	LOC	(and	ongoing...)

