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Language features



Running example

What?

Why?

Modules

Effects

Theory

How?

Macros define compile-time functions:

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

Code generated by macros can be spliced into programs:

let pow5 x = $(pow <<x>> 5)

Compilation runs the macros to generate program fragments:

let pow5 x = x * x * x * x * x * 1



Language features from MetaML

What?

Why?

Modules

Effects

Theory

How?

From MetaML, typed quotation and splicing to construct code values:
Γ ⊢n+1 e : τ

Γ ⊢n ≪ e ≫ : τ expr

<< 1 >>
<< $x * $(...) >>
<<x>>

Γ ⊢n−1 e : τ expr
Γ ⊢n $e : τ

$x
$(pow x (n-1))

Code quotations are open and hygienic.

Not from MetaML: no cross-stage persistence and no run operation



Basic differences with MetaML

What?

Why?

Modules

Effects

Theory

How?

Compile-time code generation, not run-time code generation, via two features:

Macros are compile-time let bindings:
macro rec pow x n =

if n = 0 then ...

Top-level splices trigger compile-time code generation
let pow5 x = $(pow <<x>> 5)

During compilation they are evaluated to code values that are inserted in place

Extras (not covered today): generating deep patterns, recursive bindings



Elaboration

What?

Why?

Modules

Effects

Theory

How?

Compilation erases macros and expands top-level splices

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

(Erased!)

let pow5 x =
$(pow <<x>> 5)

let pow5 x =
x * x * x * x * x * 1

erase

expand



Applications



Motivation: DSL optimizations (currently unoptimized code)

What?

Why?

Modules

Effects

Theory

How?

Parsing libraries often involve abstraction overhead (table dispatch, closure
application):

let sexp = fix (fun s →
char '(' >>> star s >>> char ')'

<|> atom)

With staging: eliminate all overhead; generate code you’d write by hand



Motivation: make existing code-generating libraries safer

What?

Why?

Modules

Effects

Theory

How?

Ctypes uses an untyped code representation & generates a functor + a match

let print_endline = foreign "puts"
(string @→ returning int)

With staging: used a typed code representation and generate simple code



Motivation: avoid copy-and-paste optimizations

What?

Why?

Modules

Effects

Theory

How?

The standard library currently has lots of repetitive code:
let exists p a =

let n = length a in
let rec loop i =

if i = n then false
else if p (unsafe_get a i)

then true
else loop (succ i) in

loop 0

let for_all p a =
let n = length a in
let rec loop i =

if i = n then true
else if p (unsafe_get a i)

then loop (succ i)
else false in

loop 0

With staging: safely generate this same code from templates.

Programming patterns (unrolling, bounds checks) become template parameters



Motivation: very high-level programming

What?

Why?

Modules

Effects

Theory

How?

Libraries like Scrap Your Boilerplate are 10-20× slower than hand-written code.

let rec listify {T:TYPEABLE} p {D:DATA} x =
mkQ [] (single p) x @ concat (D.gmapQ (listify p) x)

With staging: eliminate overhead, make currently impractical programs practical



Integration with modules



Signatures and subtyping: the problem

What?

Why?

Modules

Effects

Theory

How?

Macros are defined in modules, so must interact with functors, subtyping, etc.
module Pow : sig

macro pow : int expr → int → int
expr
end = struct

let sq x = x * x
macro rec pow x n =

if n = 0 then << 1 >>
else if n mod 2 = 0 then

<< sq $(pow x (n/2)) >>
else << $x * $(pow x (n-1)) >>

end

let pow5 x = $(Pow.pow <<x>> 5)
⇝∗

let pow5 x = $(x * sq (sq x)) (* sq not bound! *)

Subject reduction failure!



Signatures and subtyping: the resolution

What?

Why?

Modules

Effects

Theory

How?

Solution: closure conversion. Export an environment alongside the macro:
module Pow : sig (* slightly simplified *)
module type CLO = sig val square : int → int end
module %Clo : CLO
module %M(C: CLO) : sig macro pow : int expr → int → int expr end

end = ...

and pass in the environment when invoking the macro
let pow5 x = $(Pow.%M(<<Pow.%Clo>>).pow <<x>> 5)
⇝
let pow5 x = x * Pow.%Clo.sq (Pow.%Clo.sq x) (* no extrusion! *)



Interactions with effects



Pure code and quotation

What?

Why?

Modules

Effects

Theory

How?

In staged pure programs generated code shape follows the evaluation trace:

[pow <<x>> 2]
⇝ if [2 = 0] then <<1>>

else <<x * $(pow x (2-1))>>
⇝ [if false then <<1>>

else <<x * $(pow x (2-1))>>]
⇝ <<x * $(pow x ([2-1]))>>
⇝ <<x * $([pow x 1])>>
⇝ <<x * $(if [1 = 0] then <<1>>

else <<x * $(pow x (1-1))>>)>>
⇝ <<x * $[if false then <<1>>

else <<x * $(pow x (1-1))>>])>>

⇝ <<x * $<<x * $(pow x [1-1])>>>>
⇝ <<x * $<<x * $([pow x 0])>>>>
⇝ <<x * $<<x *

$(if [0 = 0] then <<1>>
else <<x * $(pow x (0-1))>>)>>>>

⇝ <<x * $<<x *
$([if true then <<1>>

else <<x * $(pow x (0-1))>>])>>>>
⇝ <<x * $<<x * [$<<1>>]>>>>
⇝ <<x * [$<<x * 1>>]>>
⇝ <<x * x * 1>>

(slightly simplified)

Code generated in a splice cannot escape the surrounding quotation.



Effects and quotation

What?

Why?

Modules

Effects

Theory

How?

With effects, code generating programs can reorder quotations:
try << x + $(perform (Chuck <<y>>)) >> with
effect Chuck v, k → << $v + $(continue k <<3>>) >>
⇝∗

<< y + (x + 3) >>

This is good for code motion transformations, but problematic for safety:
match << fun x → $(perform (Chuck <<x>>)) >> with

| _ → << 0 >>
| effect Chuck v, k → v

⇝∗ <<x>> (* x free! *)

Plan: use effects to detect scope extrusion (inspired by MetaOCaml).



Metatheoretical properties



Soundness

What?

Why?

Modules

Effects

Theory

How?

Run-time soundness: well-typed programs don’t go wrong

Elaboration soundness: well-typed programs elaborate to well-typed programs
(Elaboration includes compile-time evaluation)

For typed quotations, soundness implies scope-safety

Calculus: basic modules, ground-type references, quotation, macros, top-level splices

Mechansiation for module-free fragment extended with run-time code generation



Phase separation

What?

Why?

Modules

Effects

Theory

How?

Phase separation: compile-time computations not needed for run-time evaluation

Implication: we can discard the compile-time heap

Implication: we can erase macros when running programs

For programmers: separation between the generating code and the generated code

Calculus: basic modules, ground-type references, quotation, macros, top-level splices

Mechansiation for module-free fragment extended with run-time code generation



Practical matters



Implementation (based on OCaml 5.3)

What?

Why?

Modules

Effects

Theory

How?

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

(letrec
(pow/270
(function x/271 n/272[int]
(if (== n/272 0) [2: [0: [0: 1]]]
(makeblock 8 14
(makeblock 0 x/271

(makeblock 0
(apply pow/270 x/271 (- n/272 1)) 0))

<location>)))) ...)

compile

type 'a expr = Lambda.lambda

Splice-free quotes: structured constants

Quotes with splices: makeblock

Quotes with bindings compile to gensym

Not shown: scope extrusion check



Progress

What?

Why?

Modules

Effects

Theory

How?

design theory

quotes 3 3 3 3

macros 3 3 3 3

elaboration 3 3 3

modules 7 7 7

scope extrusion 7

pattern generation 7 7

let rec generation 3 3 7


