
Compile-time Computation for Caml

Tsung-Ju Chiang Maite Kramarz Michael Lee Ka Wing Li
Javier Martinez Olivier Nicole Dima Szamozvancev Leo White

Ningning Xie Jeremy Yallop
funded by Jane Street and Ahrefs

INRIA, December 2024

Language features

Running example

What?

Why?

Modules

Effects

Theory

How?

Macros define compile-time functions:

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

Code generated by macros can be spliced into programs:

let pow5 x = $(pow <<x>> 5)

Compilation runs the macros to generate program fragments:

let pow5 x = x * x * x * x * x * 1

Language features from MetaML

What?

Why?

Modules

Effects

Theory

How?

From MetaML, typed quotation and splicing to construct code values:
Γ ⊢n+1 e : τ

Γ ⊢n ≪ e ≫ : τ expr

<< 1 >>
<< $x * $(...) >>
<<x>>

Γ ⊢n−1 e : τ expr
Γ ⊢n $e : τ

$x
$(pow x (n-1))

Code quotations are open and hygienic.

Not from MetaML: no cross-stage persistence and no run operation

Basic differences with MetaML

What?

Why?

Modules

Effects

Theory

How?

Compile-time code generation, not run-time code generation, via two features:

Macros are compile-time let bindings:
macro rec pow x n =

if n = 0 then ...

Top-level splices trigger compile-time code generation
let pow5 x = $(pow <<x>> 5)

During compilation they are evaluated to code values that are inserted in place

Extras (not covered today): generating deep patterns, recursive bindings

Elaboration

What?

Why?

Modules

Effects

Theory

How?

Compilation erases macros and expands top-level splices

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

(Erased!)

let pow5 x =
$(pow <<x>> 5)

let pow5 x =
x * x * x * x * x * 1

erase

expand

Applications

Motivation: DSL optimizations (currently unoptimized code)

What?

Why?

Modules

Effects

Theory

How?

Parsing libraries often involve abstraction overhead (table dispatch, closure
application):

let sexp = fix (fun s →
char '(' >>> star s >>> char ')'

<|> atom)

With staging: eliminate all overhead; generate code you’d write by hand

Motivation: make existing code-generating libraries safer

What?

Why?

Modules

Effects

Theory

How?

Ctypes uses an untyped code representation & generates a functor + a match

let print_endline = foreign "puts"
(string @→ returning int)

With staging: used a typed code representation and generate simple code

Motivation: avoid copy-and-paste optimizations

What?

Why?

Modules

Effects

Theory

How?

The standard library currently has lots of repetitive code:
let exists p a =

let n = length a in
let rec loop i =

if i = n then false
else if p (unsafe_get a i)

then true
else loop (succ i) in

loop 0

let for_all p a =
let n = length a in
let rec loop i =

if i = n then true
else if p (unsafe_get a i)

then loop (succ i)
else false in

loop 0

With staging: safely generate this same code from templates.

Programming patterns (unrolling, bounds checks) become template parameters

Motivation: very high-level programming

What?

Why?

Modules

Effects

Theory

How?

Libraries like Scrap Your Boilerplate are 10-20× slower than hand-written code.

let rec listify {T:TYPEABLE} p {D:DATA} x =
mkQ [] (single p) x @ concat (D.gmapQ (listify p) x)

With staging: eliminate overhead, make currently impractical programs practical

Integration with modules

Signatures and subtyping: the problem

What?

Why?

Modules

Effects

Theory

How?

Macros are defined in modules, so must interact with functors, subtyping, etc.
module Pow : sig

macro pow : int expr → int → int
expr
end = struct

let sq x = x * x
macro rec pow x n =

if n = 0 then << 1 >>
else if n mod 2 = 0 then

<< sq $(pow x (n/2)) >>
else << $x * $(pow x (n-1)) >>

end

let pow5 x = $(Pow.pow <<x>> 5)
⇝∗

let pow5 x = $(x * sq (sq x)) (* sq not bound! *)

Subject reduction failure!

Signatures and subtyping: the resolution

What?

Why?

Modules

Effects

Theory

How?

Solution: closure conversion. Export an environment alongside the macro:
module Pow : sig (* slightly simplified *)
module type CLO = sig val square : int → int end
module %Clo : CLO
module %M(C: CLO) : sig macro pow : int expr → int → int expr end

end = ...

and pass in the environment when invoking the macro
let pow5 x = $(Pow.%M(<<Pow.%Clo>>).pow <<x>> 5)
⇝
let pow5 x = x * Pow.%Clo.sq (Pow.%Clo.sq x) (* no extrusion! *)

Interactions with effects

Pure code and quotation

What?

Why?

Modules

Effects

Theory

How?

In staged pure programs generated code shape follows the evaluation trace:

[pow <<x>> 2]
⇝ if [2 = 0] then <<1>>

else <<x * $(pow x (2-1))>>
⇝ [if false then <<1>>

else <<x * $(pow x (2-1))>>]
⇝ <<x * $(pow x ([2-1]))>>
⇝ <<x * $([pow x 1])>>
⇝ <<x * $(if [1 = 0] then <<1>>

else <<x * $(pow x (1-1))>>)>>
⇝ <<x * $[if false then <<1>>

else <<x * $(pow x (1-1))>>])>>

⇝ <<x * $<<x * $(pow x [1-1])>>>>
⇝ <<x * $<<x * $([pow x 0])>>>>
⇝ <<x * $<<x *

$(if [0 = 0] then <<1>>
else <<x * $(pow x (0-1))>>)>>>>

⇝ <<x * $<<x *
$([if true then <<1>>

else <<x * $(pow x (0-1))>>])>>>>
⇝ <<x * $<<x * [$<<1>>]>>>>
⇝ <<x * [$<<x * 1>>]>>
⇝ <<x * x * 1>>

(slightly simplified)

Code generated in a splice cannot escape the surrounding quotation.

Effects and quotation

What?

Why?

Modules

Effects

Theory

How?

With effects, code generating programs can reorder quotations:
try << x + $(perform (Chuck <<y>>)) >> with
effect Chuck v, k → << $v + $(continue k <<3>>) >>
⇝∗

<< y + (x + 3) >>

This is good for code motion transformations, but problematic for safety:
match << fun x → $(perform (Chuck <<x>>)) >> with

| _ → << 0 >>
| effect Chuck v, k → v

⇝∗ <<x>> (* x free! *)

Plan: use effects to detect scope extrusion (inspired by MetaOCaml).

Metatheoretical properties

Soundness

What?

Why?

Modules

Effects

Theory

How?

Run-time soundness: well-typed programs don’t go wrong

Elaboration soundness: well-typed programs elaborate to well-typed programs
(Elaboration includes compile-time evaluation)

For typed quotations, soundness implies scope-safety

Calculus: basic modules, ground-type references, quotation, macros, top-level splices

Mechansiation for module-free fragment extended with run-time code generation

Phase separation

What?

Why?

Modules

Effects

Theory

How?

Phase separation: compile-time computations not needed for run-time evaluation

Implication: we can discard the compile-time heap

Implication: we can erase macros when running programs

For programmers: separation between the generating code and the generated code

Calculus: basic modules, ground-type references, quotation, macros, top-level splices

Mechansiation for module-free fragment extended with run-time code generation

Practical matters

Implementation (based on OCaml 5.3)

What?

Why?

Modules

Effects

Theory

How?

macro rec pow x n =
if n = 0 then << 1 >>
else << $x * $(pow x (n-1)) >>

(letrec
(pow/270
(function x/271 n/272[int]
(if (== n/272 0) [2: [0: [0: 1]]]
(makeblock 8 14
(makeblock 0 x/271

(makeblock 0
(apply pow/270 x/271 (- n/272 1)) 0))

<location>)))) ...)

compile

type 'a expr = Lambda.lambda

Splice-free quotes: structured constants

Quotes with splices: makeblock

Quotes with bindings compile to gensym

Not shown: scope extrusion check

Progress

What?

Why?

Modules

Effects

Theory

How?

design theory

quotes 3 3 3 3

macros 3 3 3 3

elaboration 3 3 3

modules 7 7 7

scope extrusion 7

pattern generation 7 7

let rec generation 3 3 7

