
Optimizing CNN Inference on Multicore Scratchpad
Architectures in Real Time Systems

Chiara Daini1,2
1University of Lille, France

2Inria, Sycomores Team, France

November 29, 2024



Supervisors:

▶ Giuseppe Lipari: Professor at the University of Lille, head of
the SYCOMORES team

▶ Houssam Zahaf: Associate Professor at Nantes University

SYCOMORES Team:

▶ A joint team between Inria and the University of Lille

▶ Focus: Design and analysis of real-time embedded systems

▶ Domains: Safety-critical systems (avionics, automotive, IoT),
real-time scheduling, synchronous languages, static code
analysis and proof assistants



Optimizing CNN Inference on Multicore
Scratchpad Architectures in Real Time

Systems



Optimizing CNN Inference on Multicore
Scratchpad Architectures in Real Time

Systems



Optimizing CNN Inference on Multicore
Scratchpad Architectures in Real Time

Systems



Optimizing CNN Inference on Multicore
Scratchpad Architectures in Real Time

Systems



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Motivations

2 / 32



Motivations

2 / 32



Motivations

2 / 32



Motivations

2 / 32



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Convolution Neural Networks

CNNs are specifically designed for processing matrices of pixels .
They are used in:

▶ Image classification

▶ Image recognition

The core operation in a CNN is the convolution .

3 / 32



Convolution Neural Networks

Training phase: process where the CNN learn patterns from data
already classified
Inference phase: application of a trained model to new, unseen
data to make classifications

4 / 32



Convolution Neural Networks

Training phase: process where the CNN learn patterns from data
already classified
Inference phase: application of a trained model to new, unseen
data to make classifications

4 / 32



Convolution Operation

Input x

Filter w

k × k

Feature Map y

conv (3x3)

k−1∑
m=0

k−1∑
n=0

wm,n · xi+m,j+n = yi ,j

5 / 32



Convolution Operation

Input x

Filter w

k × k

Feature Map y

conv (3x3)

k−1∑
m=0

k−1∑
n=0

wm,n · xi+m,j+n = yi ,j

5 / 32



Convolution Operation

Input x

Filter w

k × k

Feature Map y

conv (3x3)

k−1∑
m=0

k−1∑
n=0

wm,n · xi+m,j+n = yi ,j

5 / 32



Convolution Operation

Edge Detection Filter:

−1 −2 −1
0 0 0
1 2 1



6 / 32



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Multicore Scratchpad Architectures

▶ Multicore architectures utilize multiple processing units
(cores) to perform parallel computations

▶ Each core is equipped with a local
Scratchpad Memory (SPM) , a small, fast,
software-managed memory used to store frequently accessed
data

▶ The Shared Bus performs data transfer between
scratchpads and RAM

▶ Common in real-time and embedded systems due to
predictable memory access patterns

7 / 32



Multicore Scratchpad Architectures

Feature SPM Cache
Management Manual (software) Automatic (hardware)
Predictability High, deterministic Low, dynamic
Performance Deterministic, software-tuned High if few misses
Use Cases Real-time, embedded General-purpose

8 / 32



Multicore Scratchpad Architectures

Core0 SPM0 Core1 SPM1 Core2 SPM2

SharedBUS

RAM

= Memory Transfer (RAM to SPMs) via Bus
= Data Transfer (Inter-SPM Communication)

9 / 32



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Real-Time Systems

Sensor
Input

Conditioning
Unit

Input Interface
Real-Time
System

Actuator
Output

Conditioning
Unit

Output
Interface

▶ A real-time system is a computing system designed to perform
tasks within strict timing constraints.

▶ Processes input data (e.g., from sensors) and generates
responses (e.g., to actuators) in a predictable and timely
manner.

▶ Correctness of the system depends not only on the logical
results of computations but also on their timing.

10 / 32



Real-Time Systems

Task

Time0 DC D D

R R R

T

Where:

▶ R: Release Time

▶ C: Execution time

▶ D: Deadline

▶ T: Period

11 / 32



Real-Time Systems

Deadline Missed

Time0 DC D D

R R R

T

In a hard real-time system , missing a deadline means the task
was not completed on time, which can cause system failure or
unsafe behavior.

12 / 32



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Traditional Techniques for Optimizing Convolution

GEMM (General Matrix Multiplication):

▶ Converts convolution into matrix multiplication using im2col

▶ Leverages optimized BLAS libraries for efficiency.
▶ Overhead:

▶ Large memory usage due to im2col transformation (data
duplication)

▶ Additional preprocessing to reshape inputs and filters

13 / 32



Traditional Techniques for Optimizing Convolution

14 / 32



System Model

Localized operation (v): a set of arithmetic operations to be
performed and the set of data to be loaded before starting the
computation.

▶ C(v): Computation time for arithmetic operations.

▶ M(v): Data required to be loaded into local memory before
computation.

Input Tensor

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Filter

0, 0 0, 1

1, 0 1, 1

Localized Operation

15 / 32



System Model

The localized operations are executed on a platform with the
following characteristics:

▶ P: Number of processing cores.

▶ M: Scratchpad memory size available per core.

Additionally, the CNN must meet the specified deadline, D.

16 / 32



System Model

Mapping function: gives for a localized operation v the core p
where v is allocated:

map(v) = p

Operation Merge: A merge of a set of localized operations M,
e.g. M = {v1, v2}, is a new localized operation v ′ such that:

▶ ∀(v1, v2) ∈ M2 : map(v1) = map(v2) = map(v ′)

and the localized operation v ′ is defined as:

▶ C(v ′) =
∑

v∈M C(v)

▶ M(v ′) =
⋃

v∈M,pred(v)/∈MM(v)

17 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Example merge

18 / 32



Optimizer

The goal of the optimizer is to find the optimal mapping of the
localized operations V to cores, such that:

▶ The mapping function map(v) assigns each localized
operation v to a core p, respecting the deadline D

▶ The memory constraint has to be satisfied, meaning that the
total memory required for operations assigned to each core
does not exceed the available scratchpad memory M.

19 / 32



Optimizer

Integer Linear Programming (ILP) : optimization of a linear
objective function under linear constraints where some or all
variables are constrained to integer values

Maximize: cT x ,

subject to: Ax ≤ b,

x ∈ Zm.

20 / 32



Optimizer

Operation Mapping Variable:

api ,l =

{
1 if v li is mapped to core p,

0 otherwise.

Here, l represents the layer in the neural network, and v li refers to
the i-th localized operation within layer l .

Constraint:
Ensure that each operation is assigned to exactly one core:∑

p∈[1..P]

api ,l = 1

21 / 32



Optimizer

Memory Transfer Variables:

▶ bi ,l(x , y): pixel required for operation v li .

▶ upl (x , y): binary variable indicating if data is loaded on core p.

Constraint:
upl (x , y) =

∨
i∈[1..Nl ]

api ,l · bi ,l(x , y)

22 / 32



Optimizer

23 / 32



Optimizer

23 / 32



Optimizer

23 / 32



Optimizer

Execution Time:
The total execution time is divided into two components: the time
required to transfer data to the scratchpad memory (SPM) and the
time needed to perform computations. It is expressed as:

tlp = tlp(mem) + tlp(op)

Memory Constraint:
The total memory usage on each core must not exceed the
available scratchpad memory M:∑

x ,y

upl (x , y) ≤ M

24 / 32



Distributed ILP

Decouple layers and solve independently, distributing the
computational load across cores to minimize execution time. The
objective for each hidden layer is:

∗t lp = min max
p∈[1..P]

{tlp}

For the last layer L, the constraint is:

tLp +
∑

l∈[1..L−1]

∗t lp ≤ D

25 / 32



Distributed ILP

v00

v01

v02

v03

v04

v10

v11

v13

v20

v21

v30

v31

v32

v33

minmaxp∈[1..P]{tlp}

minmaxp∈[1..P]{tlp}

tLp +
∑

l∈[1..L−1]
∗t lp ≤ D

minmaxp∈[1..P]{tlp}

26 / 32



Global ILP
Optimize all layers together, considering dependencies and
interactions. The overall execution time constraint is:∑

l∈[1..L−1]

tlp ≤ D

v00

v01

v02

v03

v04

v10

v11

v13

v20

v21

v30

v31

v32

v33

∑
l∈[1..L−1] t

l
p ≤ D

27 / 32



Experiments

10 20 30 40 50

0

20

40

60

80

100

Image Size (m × m)

P
er
ce
n
ta
g
e
o
f
re
d
u
ct
io
n
o
f
m
em

or
y
u
sa
g
e
(%

) GEMM

Distributed

Global

28 / 32



Experiments

▶ Granularity γ groups multiple operations into indivisible units.

▶ Grouped operations tend to follow a sequential pattern, as the
optimizer favors adjacent pixels.

▶ This pattern arises from the row-major order storage of the
image, where adjacent pixels are naturally grouped.

a0 a1 a2 a3

a0 a1

γ
=

1
γ
=

2

29 / 32



Experiments

30 / 32



Conclusion

▶ We proposed an abstract model considering the memory
structure of multicore scratchpad-based architectures to
minimize memory interference.

▶ Two implementation strategies were developed:
▶ The first optimizes layers independently using intermediate

deadlines.
▶ The second serializes the optimization of all layers.

31 / 32



Future Work

▶ Consider handling multiple simultaneous tasks and include
schedulability analysis in the optimization process

▶ Explore automatic task code generation

▶ Aim to improve communication cost estimations, potentially
enhancing overall system performance

▶ Extend the model to other architectures by modifying the
memory model, enabling its application to diverse hardware
platforms

32 / 32



Thank you!


