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Convolution Neural Networks

CNNs are specifically designed for processing matrices of pixels .
They are used in:

▶ Image classification

▶ Image recognition

The core operation in a CNN is the convolution .
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Convolution Neural Networks

Training phase: process where the CNN learn patterns from data
already classified
Inference phase: application of a trained model to new, unseen
data to make classifications
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Convolution Operation

Input x

Filter w

k × k

Feature Map y

conv (3x3)

k−1∑
m=0

k−1∑
n=0

wm,n · xi+m,j+n = yi ,j
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Convolution Operation

Edge Detection Filter:

−1 −2 −1
0 0 0
1 2 1
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Multicore Scratchpad Architectures

▶ Multicore architectures utilize multiple processing units
(cores) to perform parallel computations

▶ Each core is equipped with a local
Scratchpad Memory (SPM) , a small, fast,
software-managed memory used to store frequently accessed
data

▶ The Shared Bus performs data transfer between
scratchpads and RAM

▶ Common in real-time and embedded systems due to
predictable memory access patterns
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Multicore Scratchpad Architectures

Feature SPM Cache
Management Manual (software) Automatic (hardware)
Predictability High, deterministic Low, dynamic
Performance Deterministic, software-tuned High if few misses
Use Cases Real-time, embedded General-purpose
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Multicore Scratchpad Architectures

Core0 SPM0 Core1 SPM1 Core2 SPM2

SharedBUS

RAM

= Memory Transfer (RAM to SPMs) via Bus
= Data Transfer (Inter-SPM Communication)
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Real-Time Systems

Sensor
Input

Conditioning
Unit

Input Interface
Real-Time
System

Actuator
Output

Conditioning
Unit

Output
Interface

▶ A real-time system is a computing system designed to perform
tasks within strict timing constraints.

▶ Processes input data (e.g., from sensors) and generates
responses (e.g., to actuators) in a predictable and timely
manner.

▶ Correctness of the system depends not only on the logical
results of computations but also on their timing.
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Real-Time Systems

Task

Time0 DC D D

R R R

T

Where:

▶ R: Release Time

▶ C: Execution time

▶ D: Deadline

▶ T: Period
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Real-Time Systems

Deadline Missed

Time0 DC D D

R R R

T

In a hard real-time system , missing a deadline means the task
was not completed on time, which can cause system failure or
unsafe behavior.

12 / 32



Timeline

� Motivations

� Convolution Neural Networks

� Multicore Scratchpad Architectures

� Real Time Systems

� Optimization Model

� Experiments

� Conclusion



Traditional Techniques for Optimizing Convolution

GEMM (General Matrix Multiplication):

▶ Converts convolution into matrix multiplication using im2col

▶ Leverages optimized BLAS libraries for efficiency.
▶ Overhead:

▶ Large memory usage due to im2col transformation (data
duplication)

▶ Additional preprocessing to reshape inputs and filters
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Traditional Techniques for Optimizing Convolution

14 / 32



System Model

Localized operation (v): a set of arithmetic operations to be
performed and the set of data to be loaded before starting the
computation.

▶ C(v): Computation time for arithmetic operations.

▶ M(v): Data required to be loaded into local memory before
computation.

Input Tensor

0, 0 0, 1 0, 2 0, 3

1, 0 1, 1 1, 2 1, 3

2, 0 2, 1 2, 2 2, 3

3, 0 3, 1 3, 2 3, 3

Filter

0, 0 0, 1

1, 0 1, 1

Localized Operation
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System Model

The localized operations are executed on a platform with the
following characteristics:

▶ P: Number of processing cores.

▶ M: Scratchpad memory size available per core.

Additionally, the CNN must meet the specified deadline, D.
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System Model

Mapping function: gives for a localized operation v the core p
where v is allocated:

map(v) = p

Operation Merge: A merge of a set of localized operations M,
e.g. M = {v1, v2}, is a new localized operation v ′ such that:

▶ ∀(v1, v2) ∈ M2 : map(v1) = map(v2) = map(v ′)

and the localized operation v ′ is defined as:

▶ C(v ′) =
∑

v∈M C(v)

▶ M(v ′) =
⋃

v∈M,pred(v)/∈MM(v)
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Example merge
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Optimizer

The goal of the optimizer is to find the optimal mapping of the
localized operations V to cores, such that:

▶ The mapping function map(v) assigns each localized
operation v to a core p, respecting the deadline D

▶ The memory constraint has to be satisfied, meaning that the
total memory required for operations assigned to each core
does not exceed the available scratchpad memory M.
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Optimizer

Integer Linear Programming (ILP) : optimization of a linear
objective function under linear constraints where some or all
variables are constrained to integer values

Maximize: cT x ,

subject to: Ax ≤ b,

x ∈ Zm.
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Optimizer

Operation Mapping Variable:

api ,l =

{
1 if v li is mapped to core p,

0 otherwise.

Here, l represents the layer in the neural network, and v li refers to
the i-th localized operation within layer l .

Constraint:
Ensure that each operation is assigned to exactly one core:∑

p∈[1..P]

api ,l = 1
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Optimizer

Memory Transfer Variables:

▶ bi ,l(x , y): pixel required for operation v li .

▶ upl (x , y): binary variable indicating if data is loaded on core p.

Constraint:
upl (x , y) =

∨
i∈[1..Nl ]

api ,l · bi ,l(x , y)
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Optimizer
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Optimizer

Execution Time:
The total execution time is divided into two components: the time
required to transfer data to the scratchpad memory (SPM) and the
time needed to perform computations. It is expressed as:

tlp = tlp(mem) + tlp(op)

Memory Constraint:
The total memory usage on each core must not exceed the
available scratchpad memory M:∑

x ,y

upl (x , y) ≤ M
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Distributed ILP

Decouple layers and solve independently, distributing the
computational load across cores to minimize execution time. The
objective for each hidden layer is:

∗t lp = min max
p∈[1..P]

{tlp}

For the last layer L, the constraint is:

tLp +
∑

l∈[1..L−1]

∗t lp ≤ D
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Distributed ILP

v00

v01

v02

v03

v04

v10

v11

v13

v20

v21

v30

v31

v32

v33

minmaxp∈[1..P]{tlp}

minmaxp∈[1..P]{tlp}

tLp +
∑

l∈[1..L−1]
∗t lp ≤ D

minmaxp∈[1..P]{tlp}
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Global ILP
Optimize all layers together, considering dependencies and
interactions. The overall execution time constraint is:∑

l∈[1..L−1]

tlp ≤ D

v00

v01

v02

v03

v04

v10

v11

v13

v20

v21

v30

v31

v32

v33

∑
l∈[1..L−1] t

l
p ≤ D
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Experiments

10 20 30 40 50

0

20

40

60

80

100

Image Size (m × m)

P
er
ce
n
ta
g
e
o
f
re
d
u
ct
io
n
o
f
m
em

or
y
u
sa
g
e
(%

) GEMM

Distributed

Global

28 / 32



Experiments

▶ Granularity γ groups multiple operations into indivisible units.

▶ Grouped operations tend to follow a sequential pattern, as the
optimizer favors adjacent pixels.

▶ This pattern arises from the row-major order storage of the
image, where adjacent pixels are naturally grouped.

a0 a1 a2 a3

a0 a1

γ
=

1
γ
=

2

29 / 32



Experiments
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Conclusion

▶ We proposed an abstract model considering the memory
structure of multicore scratchpad-based architectures to
minimize memory interference.

▶ Two implementation strategies were developed:
▶ The first optimizes layers independently using intermediate

deadlines.
▶ The second serializes the optimization of all layers.
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Future Work

▶ Consider handling multiple simultaneous tasks and include
schedulability analysis in the optimization process

▶ Explore automatic task code generation

▶ Aim to improve communication cost estimations, potentially
enhancing overall system performance

▶ Extend the model to other architectures by modifying the
memory model, enabling its application to diverse hardware
platforms
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Thank you!


