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Some preliminary remarks:

» You Will see a protoype; one question is how to
proceed from here on regarding software development

» Dual motivation:
- More intuitive way to do proofs
- Quicker way to do proofs (very often)

» We started looking at this through the HMI angle, and
since then, we are excited !
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Enters the computer

N.G. de Bruijn 1967
Automath

-irst proof system

—ormal objects and formal proofs are actually
constructed.

They exist and are verified in the computer.




Why formal proofs ?
1. Because we can |

2. When we need to be sure |

really really sure:
»When human life is at stake,

»When large amounts of money are at stake

Proofs that software is correct |



Formal proofs in practice

wo levels of formal language:

1. Writing mathematical propositions (and objects). Like v a b € R,
(a+b)2=a2+2ab+b2

2. Writing the proofs themselves ("do an induction over n', “consider
a=¢e2/4" "oy Tychonov's theorem, it suffices to prove...")

The ftirst level is quite structured, well-understood, readable (fortunately)

The second level is more messy: in proof-assistants, very often a kind of
script language

= do we really need text for the second level ?
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" Typical blackboard : mainly level 1 (propositions, facts...)



(ax Karoubi)

It Is useftul to pointto locations in the text



Dual polarities
Why do we write a proposition 7

't Is generally to state:

- either that we know this proposition at this stage (known
lemma, hypothesis...)

- or that we need to prove this proposition

et us chose a color code:
Known fact

Goal



Demo part 1



Paradigm: Handling Evidence

Human(Socrates)

v X . Human(X)= Mortal(X)

Mortal(Socrates)

Bring the evidence where it Is needeo A “ A
But:
- evidence for AAB should also be evidence for A (and for B)
- evidence for A should also be evidence for AvB
- evidence for A=B transforms B into A (or A into B)

- More generally, we can modify subexpressions of propositions

Let us play more with propositional logic
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Theoretical basis: Deep Inference (Guglielmi et. al.)



Quantifiers

P(t) = 3 x. P(x) g T
A
P(t) — P(t) v

3 X. (A FP(x))

Two rules: A 3 X. P(x) > { or
A FP(t)

v X. P(x) ~ P(t) > T

A coern ¥ { 3 x. (P(x) FA)
vX.PxX)~A P> or
P(t) FA

(more rules for v and 3)



Equality
Equality, In a nutshell:

- Arelation over any type (to write u=t, u and t must be of the same type)
- Reflexive (t=t proved through a double click)
- It t=u, then t and u verity the same properties

.

.
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t=u allows to replace t by u: =-in the goal
- In other hypotheses

The rule: u=t +~ A[t] P> A[U]

- also works on a hypothesis
- works like the axiom rule A~ A P> T (thus benefits from deep inference)

vx,x20=x/x=1 +3yz Ry z)= P(f(yly))
> ayz Ry, z)= y=0=P{f1))



Handling the objects

The objects of Coqg (of Type Theory) are basmally oure functional
programs, with data-types a la Caml/ML/Haskell..

Reasoning is modulo computation:

- 242 P 4 (computes to 4)

- there i1s no difference between 2+2 and 4

- thus no difference between 2+2=4 and 4=4

- 2+2=4 or 201+199 = 400 are proved by reflexivity.

but

0+x P> x Xx+0 = X } proved by
X+(SY) = S(X+Y)

Sx+y P S(x+y) induction

This is regular Type Theory. gain is the ability to |
point where to perform computation, induction... |




A few (very) simple examples

nat := 1l :=
| O : nat | nil : 11
| S : nat - nat | cons : nat - 11 - 11
Properties of simple operators (+, \times, - ...)

functions about lists (concatenation, sorting)

In general: handles well the first lessons of a course of formal proofs



Demo part 2



Some conclusions & remarks

» A new start for Gilles Kahn's last research project: "Proof-by-Pointing" in the
90tes (but with better software library infrastructure)

» But also better theoretical infrastructure: deep inference = real proof theory
guestions

» Positive features or directions appear as the system is used

»Many possible directions (manipulating real analysis expressions, navigating
N proofs...)

» Software development / architecture questions
- Splitting features between front-end and back-end
- Requires varied skKills: logic, ML, front-end/JS...

- The aim is essentially to deliver a nice & usable product vs. academic
schedule




