
Actema
or

"How to do proofs by hand"

Mathis Bouverot-Dupuis, Kaustuv Chaudhuri, Pierre-Yves Strub,
Benjamin Werner

LIX, Ecole polytechnique
EPC Partout, Inria-Saclay

A
B

A
B

Cambium @Inria Paris, Nov 28th 2024

Comment faire des preuves avec la main

Some preliminary remarks:

‣ You will see a protoype; one question is how to
proceed from here on regarding software development

‣ Dual motivation:

- More intuitive way to do proofs

- Quicker way to do proofs (very often)
‣ We started looking at this through the HMI angle, and

since then, we are excited !

Formal Proofs since 1879

Gottlob Frege
Begriffsschrift

A language of formulae
of pure thought,
imitated from the language of
arithmetic

(and also Cantor, Hilbert,
Russell, Gödel…)

At the time: a branch of mathematics with no application

Enters the computer
1967N.G. de Bruijn

Automath

1918-2012

First proof system

Formal objects and formal proofs are actually
constructed.

They exist and are verified in the computer.

One modern proof-system : Coq

Why formal proofs ?

really really sure:

‣When human life is at stake,

‣When large amounts of money are at stake

Proofs that software is correct !

1. Because we can !

2. When we need to be sure !

Formal proofs in practice
Two levels of formal language:
1. Writing mathematical propositions (and objects). Like ∀ a b ∈ R,

(a+b)2=a2+2ab+b2
2. Writing the proofs themselves ("do an induction over n", "consider

α ≡ ε² / 4", "by Tychonov's theorem, it suffices to prove…")

The first level is quite structured, well-understood, readable (fortunately)

The second level is more messy: in proof-assistants, very often a kind of
script language

⇒ do we really need text for the second level ?

Mais Gérard,
t'as qu'à cliquer!

Typical blackboard : mainly level 1 (propositions, facts…)

It is useful to point to locations in the text
(Max Karoubi)

Dual polarities

It is generally to state:

- either that we know this proposition at this stage (known
lemma, hypothesis…)

- or that we need to prove this proposition

Known fact
Let us chose a color code:

Goal

Why do we write a proposition ?

Demo part 1

Paradigm: Handling Evidence
Mortal(Socrates)Human(Socrates)

∀ X . Human(X)⇒ Mortal(X)

Bring the evidence where it is needed A A

But:
- evidence for A∧B should also be evidence for A (and for B)
- evidence for A should also be evidence for A∨B
- evidence for A⇒B transforms B into A

- More generally, we can modify subexpressions of propositions

Let us play more with propositional logic

(or A into B)

[A ⇒ B ⊢ C ∨ (D ∧ B)] C ∨ (D ∧ A)

C ∨ (D ∧ [A ⇒ B ⊢ B])

C ∨ (D ∧ A ∧ [B ⊢ B]) C ∨ (D ∧ A ∧ T) C ∨ (D ∧ A)

Deep Inference
(Calculus of Structures : K. Chaudhuri)

C ∨ [A ⇒ B ⊢ (D ∧ B)]

R∨₂

Our set of rules
subsumes all the
given examples

See CPP 22 article

Theoretical basis: Deep Inference (Guglielmi et. al.)

Quantifiers

P(t) ⊢ ∃ x. P(x) T

P(t) ⊢ P(t)

∀ x. P(x) ⊢ P(t) T

P(t) ⊢ P(t)

Two rules: A ⊢ ∃ x. P(x)
∃ x. (A ⊢P(x))

A ⊢P(t)
or

∀ x. P(x) ⊢ A
∃ x. (P(x) ⊢A)

P(t) ⊢A
or

(more rules for ∀ and ∃)

Equality
Equality, in a nutshell:

- A relation over any type (to write u=t, u and t must be of the same type)
- Reflexive (t=t proved through a double click)
- If t=u, then t and u verify the same properties

t=u allows to replace t by u: - in the goal
- in other hypotheses

The rule: u=t ⊢ A[t] A[u]

- also works on a hypothesis
- works like the axiom rule A ⊢ A T (thus benefits from deep inference)

∀ x, x≠ 0 ⇒ x/x = 1 ⊢ ∃ y z, R(y, z) ⇒ P(f(y/y))
 ∃ y z, R(y, z) ⇒ y ≠ 0 ⇒ P(f(1))

Handling the objects
The objects of Coq (of Type Theory) are basically pure functional
programs, with data-types à la Caml/ML/Haskell…

Reasoning is modulo computation:
- 2+2 4 (computes to 4)
- there is no difference between 2+2 and 4
- thus no difference between 2+2=4 and 4=4
- 2+2=4 or 201+199 = 400 are proved by reflexivity.

0+x x
S x + y S (x+y) but x+0 = x

x+(S y) = S(x+y)
proved by
induction

This is regular Type Theory. What we gain is the ability to
point where to perform computation, induction…

A few (very) simple examples
nat :=
 | 0 : nat
 | S : nat → nat

ll :=
 | nil : ll
 | cons : nat → ll → ll

Properties of simple operators (+, \times, - …)
functions about lists (concatenation, sorting)

In general: handles well the first lessons of a course of formal proofs

Demo part 2

Some conclusions & remarks
‣A new start for Gilles Kahn's last research project: "Proof-by-Pointing" in the
90ties (but with better software library infrastructure)
‣But also better theoretical infrastructure: deep inference ⇒ real proof theory
questions
‣Positive features or directions appear as the system is used
‣Many possible directions (manipulating real analysis expressions, navigating
in proofs…)
‣Software development / architecture questions
- Splitting features between front-end and back-end
- Requires varied skills: logic, ML, front-end/JS…
- The aim is essentially to deliver a nice & usable product vs. academic

schedule

