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Comment faire des preuves avec la main



Some preliminary remarks: 

‣ You will see a protoype; one question is how to 
proceed from here on regarding software development 

‣ Dual motivation: 

- More intuitive way to do proofs 

- Quicker way to do proofs (very often) 
‣ We started looking at this through the HMI angle, and 

since then, we are excited !



Formal Proofs since 1879

Gottlob Frege 
Begriffsschrift

A language of formulae 
of pure thought, 
imitated from the language of 
arithmetic

(and also Cantor, Hilbert, 
Russell, Gödel…)



At the time: a branch of mathematics with no application



Enters the computer
1967N.G. de Bruijn 

Automath

1918-2012

First proof system 

Formal objects and formal proofs are actually 
constructed. 

They exist and are verified in the computer.

One modern proof-system : Coq



Why formal proofs ?

really really sure: 

‣When human life is at stake, 

‣When large amounts of money are at stake

Proofs that software is correct !

1. Because we can ! 

2. When we need to be sure !    



Formal proofs in practice
Two levels of formal language: 
1. Writing mathematical propositions (and objects). Like ∀ a b ∈ R, 

(a+b)2=a2+2ab+b2  
2. Writing the proofs themselves ("do an induction over n", "consider 

α ≡ ε² / 4", "by Tychonov's theorem, it suffices to prove…")

The first level is quite structured, well-understood, readable (fortunately) 

The second level is more messy: in proof-assistants, very often a kind of 
script language

⇒ do we really need text for the second level ?



Mais Gérard, 
t'as qu'à cliquer!



Typical blackboard : mainly level 1 (propositions, facts…)



It is useful to point to locations in the text
(Max Karoubi)



Dual polarities

It is generally to state: 

- either that we know this proposition at this stage (known 
lemma, hypothesis…) 

- or that we need to prove this proposition

Known fact
Let us chose a color code:

Goal

Why do we write a proposition ?



Demo part 1



Paradigm: Handling Evidence
Mortal(Socrates)Human(Socrates)

∀ X . Human(X)⇒ Mortal(X)

Bring the evidence where it is needed A A

But:  
- evidence for  A∧B   should also be evidence for A  (and for B) 
- evidence for  A  should also be evidence for  A∨B  
- evidence for A⇒B  transforms  B into A  

- More generally, we can modify subexpressions of propositions 

Let us play more with propositional logic

(or A into B)



[ A ⇒ B   ⊢   C ∨ (D ∧ B) ] C ∨ (D ∧ A)

C ∨ (D ∧ [ A ⇒ B   ⊢  B ])

C ∨ (D ∧ A ∧ [ B   ⊢  B ]) C ∨ (D ∧ A ∧ T ) C ∨ (D ∧ A)

Deep Inference 
(Calculus of Structures : K. Chaudhuri)

C ∨ [ A ⇒ B   ⊢   (D ∧ B) ]

R∨₂

Our set of rules 
subsumes all the 
given examples

See CPP 22 article

Theoretical basis: Deep Inference (Guglielmi et. al.)



Quantifiers

P(t) ⊢ ∃ x. P(x)                   T

P(t) ⊢ P(t)  

∀ x. P(x) ⊢ P(t)             T

P(t) ⊢ P(t) 
 

Two rules: A ⊢ ∃ x. P(x)  
∃ x. (A ⊢P(x))

A ⊢P(t)
or

∀ x. P(x) ⊢ A  
∃ x. (P(x) ⊢A)

P(t) ⊢A
or

(more rules for ∀ and ∃)



Equality
Equality, in a nutshell: 

- A relation over any type  (to write u=t, u and t must be of the same type) 
- Reflexive   (t=t  proved through a double click) 
- If t=u, then t and u verify the same properties

t=u  allows to replace t by u:   - in the goal
- in other hypotheses

The rule:  u=t  ⊢ A[t]    A[u]

- also works on a hypothesis 
- works like the axiom rule   A ⊢ A   T  (thus benefits from deep inference) 

∀ x, x≠ 0 ⇒ x/x = 1 ⊢ ∃ y z, R(y, z) ⇒ P(f(y/y))
    ∃ y z, R(y, z) ⇒  y ≠ 0 ⇒ P(f(1))



Handling the objects
The objects of Coq (of Type Theory) are basically pure functional 
programs, with data-types à la Caml/ML/Haskell…

Reasoning is modulo computation:  
- 2+2      4     (computes to 4) 
- there is no difference between 2+2 and 4 
- thus no difference between  2+2=4  and  4=4 
- 2+2=4  or   201+199 = 400  are proved by reflexivity.

0+x        x  
S x + y       S (x+y) but x+0 =   x 

x+(S y)   = S(x+y)
proved by  
induction

This is regular Type Theory. What we gain is the ability to 
point where to perform computation, induction…



A few (very) simple examples
nat := 
 |  0 : nat 
 |  S : nat → nat

ll := 
 |  nil : ll 
 |  cons : nat → ll → ll 

Properties of simple operators (+, \times, - …) 
functions about lists (concatenation, sorting)

In general: handles well the first lessons of a course of formal proofs



Demo part 2



Some conclusions & remarks
‣A new start for Gilles Kahn's last research project: "Proof-by-Pointing" in the 
90ties (but with better software library infrastructure) 
‣But also better theoretical infrastructure: deep inference ⇒ real proof theory 
questions 
‣Positive features or directions appear as the system is used 
‣Many possible directions (manipulating real analysis expressions, navigating 
in proofs…) 
‣Software development / architecture questions 
- Splitting features between front-end and back-end 
- Requires varied skills: logic, ML, front-end/JS… 
- The aim is essentially to deliver a nice & usable product vs. academic 

schedule


