Actema Oľ "How to do proofs by hand" Comment faire des preuves avec la main

Cambium @Inria Paris, Nov 28th 2024

Mathis Bouverot-Dupuis, Kaustuv Chaudhuri, Pierre-Yves Strub, **Benjamin Werner**

> LIX, Ecole polytechnique EPC Partout, Inria-Saclay

Some preliminary remarks:

- You will see a protoype; one question is how to proceed from here on regarding software development
- Dual motivation:
 - More intuitive way to do proofs
 - Quicker way to do proofs (very often)
- We started looking at this through the HMI angle, and since then, we are excited !

Formal Proofs since 1879

Gottlob Frege Begriffsschrift

A language of formulae of pure thought, imitated from the language of arithmetic

(and also Cantor, Hilbert, Russell, Gödel...)

BEGRIFFSSCHRIFT,

EINE DER ARITHMETISCHEN NACHGEBILDETE

FORMELSPRACHE

DES REINEN DENKENS.

At the time: a branch of mathematics with no application

1918-2012

Enters the computer

N.G. de Bruijn Automath

First proof system

Formal objects and formal proofs are actually constructed.

They exist and are verified in the computer.

One modern proof-system : Coq

1967

Why formal proofs ?

- 1. Because we can !
- 2. When we need to be sure ! really really sure:
 - When human life is at stake,

When large amounts of money are at stake

Proofs that software is correct !

Two levels of formal language:

- 1. Writing mathematical propositions (and objects). Like \forall a b \in R, $(a+b)^2 = a^2 + 2ab + b^2$
- 2. Writing the proofs themselves ("do an induction over *n*", "consider $\alpha = \epsilon^2 / 4^{"}$, "by Tychonov's theorem, it suffices to prove...")
 - The first level is quite structured, well-understood, readable (fortunately)
 - The second level is more messy: in proof-assistants, very often a kind of script language

 \Rightarrow do we really need text for the second level ?

ange + nenome \$= \$ Stuechelberg > Muitary of TN alsc J. En 20

Typical blackboard : mainly level 1 (propositions, facts...)

It is useful to *point* to *locations* in the text

(Max Karoubi)

Why do we write a proposition ?

It is generally to state:

- either that we know this proposition at this stage (known lemma, hypothesis...)
- or that we *need* to prove this proposition

Let us chose a color code:

Known fact

Goal

Demo part 1

Paradigm: Handling Evidence

Human(Socrates)

Mortal(Socrates)

Α

 $\forall X . Human(X) \Rightarrow Mortal(X)$

Bring the evidence where it is needed

But:

- evidence for $A \land B$ should also be evidence for A (and for B)
- evidence for A should also be evidence for $A \lor B$
- evidence for $A \rightarrow B$ transforms B into A (or A into B)
- More generally, we can modify subexpressions of propositions

Let us play more with propositional logic

Theoretical basis: Deep Inference (Guglielmi et. al.)

Quantifiers

$P(t) \vdash \exists x. P(x) \qquad \blacktriangleright \qquad \\ \land \qquad P(t) \vdash P(t) \qquad \checkmark$

Two rules:

 $A \vdash \exists x. P(x)$

 $\vdash P(t) \qquad \blacktriangleright \qquad \checkmark \qquad P(t) \vdash P(t) \qquad \checkmark$ $\forall x. P(x) \vdash P(t)$

(more rules for \forall and \exists)

$\begin{cases} \exists x. (A \vdash P(x)) \\ or \\ A \vdash P(t) \end{cases}$

Equality

Equality, in a nutshell:

- A relation over any type (to write u=t, u and t must be of the same type)
- Reflexive (t=t proved through a double click)
- If t=u, then t and u verify the same properties

t=u allows to replace t by u: - in the goal

The rule: $u=t \vdash A[t] \blacktriangleright A[u]$

- also works on a hypothesis
- works like the axiom rule $A \vdash A \triangleright T$ (thus benefits from deep inference)

 $\forall x, x \neq 0 \Rightarrow x/x = 1 \vdash \exists y z, R(y, z) \Rightarrow P(f(y/y))$

► $\exists y z, R(y, z) \Rightarrow y \neq 0 \Rightarrow P(f(1))$

- in other hypotheses

Handling the objects

The objects of Coq (of Type Theory) are basically pure functional programs, with data-types à la Caml/ML/Haskell...

Reasoning is *modulo computation*:

- $-2+2 \rightarrow 4$ (computes to 4)
- there is *no difference* between 2+2 and 4
- thus no difference between 2+2=4 and 4=4
- 2+2=4 or 201+199 = 400 are proved by reflexivity.

 $\begin{array}{ccc} 0+x & \blacktriangleright & x \\ S & x + y & \blacktriangleright & S & (x+y) \end{array}$ but

> This is regular Type Theory. What we gain is the ability to point where to perform computation, induction...

x+0 = xx+(Sy) = S(x+y) proved by induction

A few (very) simple examples

Properties of simple operators (+, \times, - ...) functions about lists (concatenation, sorting)

In general: handles well the first lessons of a course of formal proofs

nil : ll
cons : nat \rightarrow ll \rightarrow ll

Demo part 2

- A new start for Gilles Kahn's last research project: "Proof-by-Pointing" in the 90^{ties} (but with better software library infrastructure)
- But also better theoretical infrastructure: deep inference \Rightarrow real proof theory questions
- Positive features or directions appear as the system is used
- Many possible directions (manipulating real analysis expressions, navigating) in proofs...)
- Software development / architecture questions
 - Splitting features between front-end and back-end
 - Requires varied skills: logic, ML, front-end/JS...
 - The aim is essentially to deliver a nice & usable product vs. academic schedule

