
Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Abstract interpreters:
A monadic approach to modular verification

Sébastien MICHELLAND 1, Yannick ZAKOWSKI 2, Laure GONNORD 1

1 Université Grenoble-Alpes, Grenoble INP, LCIS (Valence)
2 Inria Lyon

November 25th, 2024

Pitching an internship...
Language
description

Semantic components
state, exceptions...

Control flow
combinators

Concrete
interpreter

L REUSABLE

L REUSABLE

(Semantic components)#

state, exceptions...

(Control flow
combinators)#

Abstract
interpreter

L REUSABLE

L REUSABLE

✓ CERTIFIED

✓ CERTIFIED

✓ CERTIFIED

Pitching an internship...
Language
description

Semantic components
state, exceptions...

Control flow
combinators

Concrete
interpreter

L REUSABLE

L REUSABLE

(Semantic components)#

state, exceptions...

(Control flow
combinators)#

Abstract
interpreter

L REUSABLE

L REUSABLE

✓ CERTIFIED

✓ CERTIFIED

✓ CERTIFIED

Pitching an internship...
Language
description

Semantic components
state, exceptions...

Control flow
combinators

Concrete
interpreter

L REUSABLE

L REUSABLE

(Semantic components)#

state, exceptions...

(Control flow
combinators)#

Abstract
interpreter

L REUSABLE

L REUSABLE

✓ CERTIFIED

✓ CERTIFIED

✓ CERTIFIED

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

1

Contributions in this paper

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 1/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Abstract interpreters: A monadic approach to modular verification
ICFP’24 • HAL • ACM • Source code

1. Abstract interpreters in layered monadic style
▶ Imp andAsm
▶ Key idea: proper understanding of control flow
▶ Analyzer defined by mirroring interpreter

2. Proof of soundness is now modular in terms of
language features
▶ Meta-theorems for composing components’

soundness proofs
▶ Components reusable across languages

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 2/27

https://hal.science/hal-04628727
https://dl.acm.org/doi/10.1145/3674646
https://gitlab.inria.fr/sebmiche/itree-ai

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

2

Abstract interpreters
a practical recipe

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 2/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

A naive analyzer

How to know possible values of variables at runtime?
▶ Run the program!

x ← input % 6;

y ← 12 - x;

z ← 3 * (y / x);

input=4

→ x=4

→ y=8

→ z=6

One output: (x, y, z) = (4, 8, 6)

▶ Ok, but... number of inputs? termination?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 3/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

AI (1/2): from collecting semantics to lattices

▶ Let’s collect all values anyway.

x ← input % 6;

y ← 12 - x;

z ← 3 * (y / x);

→ x ∈ {0, 1, 2, 3, 4, 5}
→ (x, y) ∈ {(0, 12), (1, 11), (2, 10), (3, 9), ...}
→ (x, y, z) ∈ {(1, 11, 33), (2, 10, 15), (3, 9, 9), ...}

All outputs:
(x, y, z) ∈ {(1, 11, 33), (2, 10, 15), (3, 9, 9), (4, 8, 6), (5, 7, 3)}

▶ Excessive amount of values!

▶ Approximate, but still safe.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 4/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

AI (1/2): from collecting semantics to lattices

▶ Let’s collect all values and split the variables.

x ← input % 6;

y ← 12 - x;

z ← 3 * (y / x);

→ x ∈ {0, 1, 2, 3, 4, 5}
→ y ∈ {7, 8, 9, 10, 11, 12}
→ z ∈ {3, 6, 9, 12, 15, ..., 33, 36}

Upper bound on possible outputs:
x ∈ {0, 1, 2, 3, 4, 5}, y ∈ {7, 8, 9, 10, 11, 12}, z ∈ {3, 6, 9, 12, 15, ..., 33, 36}

▶ Still too many values!
▶ Approximate, but still safe.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 4/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

AI (1/2): from collecting semantics to lattices

▶ Let’s collect all values and split the variables and approximate sets with intervals.

x ← input % 6;

y ← 12 - x;

z ← 3 * (y / x);

→ x ∈ J0, 5K
→ y ∈ J12, 12K− J0, 5K = J7, 12K
→ z ∈ J3, 3K ∗ (J7, 12K / J0, 5K) = J3, 36K

Even upper bound on possible outputs:
x ∈ J0, 5K, y ∈ J7, 12K, z ∈ J3, 36K

▶ Tractable
▶ Approximate, but still safe.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 4/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

AI (2/2): handling control flow

▶ Control flow depends on values so we might take multiple paths.

x ← input % 6;

if x < 3

y ← x;

else

y ← 12 - x;

end

→ x ∈ {0, 1, 2, 3, 4, 5}
true for x = 0, 1, 2

→ y ∈ {0, 1, 2}
true for x = 3, 4, 5

→ y ∈ {7, 8, 9}
→ y ∈ {0, 1, 2} ∪ {7, 8, 9}

Bound on possible outputs: x ∈ {0, 1, 2, 3, 4, 5}, y ∈ {0, 1, 2, 7, 8, 9}

▶ Join paths with a set union.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 5/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

AI (2/2): handling control flow

▶ Control flow depends on values so we use algorithms that account for all paths.

x ← input % 6;

if x < 3

y ← x;

else

y ← 12 - x;

end

→ x ∈ J0, 5K
true for x ∈ J0, 2K
→ y ∈ J0, 2K
true for x ∈ J3, 5K
→ y ∈ J12, 12K− J3, 5K = J7, 9K
→ y ∈ J0, 2K ⊔ J7, 9K = J0, 9K

Bound on possible outputs: x ∈ J0, 5K, y ∈ J0, 9K

▶ Join paths with the approximation of a set union.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 5/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Abstract interpreters: recipe

▶ Interpret “normally” but replace as follows:

Concrete Abstract

Values 12 : int J12, 12K : interval
Operators a + b Ja1, a2K +# Jb1, b2K = Ja1 + b1, a2 + b2K
Conditions if e {c1} else {c2} end Approximate union of values in c1 and c2

Loops while e {c} Approximate fixpoint of c

1. Replace data types with subset approximations (lattices).
2. Replace control flow structures with specialized algorithms that account for all paths.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 6/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

3

Layered monadic interpreters

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 6/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Shallow vs. Deep

(Arguably) more traditional approach:
▶ Deeply embedded configurations Σ as an inductive
▶ Specify its semantics Σ→ Σ→ P

What we consider here:
▶ Deeply embedded configurations Σ as an inductive
▶ Shallow representation of those a monadic interpreter: J·K : Σ→ M

Potential benefits:
▶ If M is gentle, may be executable;
▶ J·K may be built out of reusable components;
▶ J·K may be build structurally over Σ.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 7/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Shallow vs. Deep

(Arguably) more traditional approach:
▶ Deeply embedded configurations Σ as an inductive
▶ Specify its semantics Σ→ Σ→ P

What we consider here:
▶ Deeply embedded configurations Σ as an inductive
▶ Shallow representation of those a monadic interpreter: J·K : Σ→ M

Potential benefits:
▶ If M is gentle, may be executable;
▶ J·K may be built out of reusable components;
▶ J·K may be build structurally over Σ.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 7/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Shallow vs. Deep

(Arguably) more traditional approach:
▶ Deeply embedded configurations Σ as an inductive
▶ Specify its semantics Σ→ Σ→ P

What we consider here:
▶ Deeply embedded configurations Σ as an inductive
▶ Shallow representation of those a monadic interpreter: J·K : Σ→ M

Potential benefits:
▶ If M is gentle, may be executable;
▶ J·K may be built out of reusable components;
▶ J·K may be build structurally over Σ.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 7/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Monads as models, monads as a programming abstraction

Monad M (for us): a family of types representing a class of effectful programs.
▶ M R is the type of programs returning an R .

Constructors
▶ ret (r : R) : M R Pure computation
▶ bind (p : M T) (k : T → M R) : M R Sequence
▶ And monad-specific operations.

Famously central to Haskell, but can also be used in the Coq language (Gallina).
▶ ret (fibonacci n / 4) : M nat

▶ bind p (fun x ⇒ ret (x + 1)) : M nat (assuming p : M nat)

And relators, and equations...

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 8/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Monads as models, monads as a programming abstraction

Monad M (for us): a family of types representing a class of effectful programs.
▶ M R is the type of programs returning an R .

Constructors
▶ ret (r : R) : M R Pure computation
▶ bind (p : M T) (k : T → M R) : M R Sequence
▶ And monad-specific operations.

Famously central to Haskell, but can also be used in the Coq language (Gallina).
▶ ret (fibonacci n / 4) : M nat

▶ bind p (fun x ⇒ ret (x + 1)) : M nat (assuming p : M nat)

And relators, and equations...

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 8/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Monads as models, monads as a programming abstraction

Monad M (for us): a family of types representing a class of effectful programs.
▶ M R is the type of programs returning an R .

Constructors
▶ ret (r : R) : M R Pure computation
▶ bind (p : M T) (k : T → M R) : M R Sequence
▶ And monad-specific operations.

Famously central to Haskell, but can also be used in the Coq language (Gallina).
▶ ret (fibonacci n / 4) : M nat

▶ bind p (fun x ⇒ ret (x + 1)) : M nat (assuming p : M nat)

And relators, and equations...

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 8/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Monads as models, monads as a programming abstraction

Monad M (for us): a family of types representing a class of effectful programs.
▶ M R is the type of programs returning an R .

Constructors
▶ ret (r : R) : M R Pure computation
▶ bind (p : M T) (k : T → M R) : M R Sequence
▶ And monad-specific operations.

Famously central to Haskell, but can also be used in the Coq language (Gallina).
▶ ret (fibonacci n / 4) : M nat

▶ bind p (fun x ⇒ ret (x + 1)) : M nat (assuming p : M nat)

And relators, and equations...

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 8/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

A lightweight extension: monad transformer

State monad transformer for state S adds to a given monad M:
▶ get : (stateT M) S

▶ set (s : S) : (stateT M) unit

Failure monad transformer adds:
▶ abort : (failT M) ∅

Example (executable inside of Coq).
▶ if x = 0 then abort else set (100/x) : failT (stateT M) unit

failT (stateT M) is (almost) fine for Imp, but other languages have different features.
▶ How can theorems talk about “any monad stack”?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 9/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

The freer monad

Freer monad for events (E : Type→ Type) has ret, bind and:
▶ trigger (e : E T) : freerM E T (Not executable)

E is a description of the language’s operations’ signatures.
▶ Variant stateE := Get : stateE S | Set (s : S) : stateE unit
▶ Variant failE := Abort : failE ∅

▶ freerM stateE ≈ stateT Id

▶ freerM (failE+ stateE) ≈ failT (stateT Id)

freerM E doesn’t implement the events, but it’s useful as an intermediate representation.

Interaction Trees [XZHH+20]: (itree E) is (freerM E) with non-termination

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 10/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

The freer monad

Freer monad for events (E : Type→ Type) has ret, bind and:
▶ trigger (e : E T) : freerM E T (Not executable)

E is a description of the language’s operations’ signatures.
▶ Variant stateE := Get : stateE S | Set (s : S) : stateE unit
▶ Variant failE := Abort : failE ∅

▶ freerM stateE ≈ stateT Id

▶ freerM (failE+ stateE) ≈ failT (stateT Id)

freerM E doesn’t implement the events, but it’s useful as an intermediate representation.

Interaction Trees [XZHH+20]: (itree E) is (freerM E) with non-termination

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 10/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

The freer monad

Freer monad for events (E : Type→ Type) has ret, bind and:
▶ trigger (e : E T) : freerM E T (Not executable)

E is a description of the language’s operations’ signatures.
▶ Variant stateE := Get : stateE S | Set (s : S) : stateE unit
▶ Variant failE := Abort : failE ∅

▶ freerM stateE ≈ stateT Id

▶ freerM (failE+ stateE) ≈ failT (stateT Id)

freerM E doesn’t implement the events, but it’s useful as an intermediate representation.

Interaction Trees [XZHH+20]: (itree E) is (freerM E) with non-termination

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 10/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Algebraic effects and their handlers?

Freer monad for events (E : Type→ Type) has ret, bind and:
▶ trigger (e : E T) : freerM E T (Not executable)

Operations have signatures, but little semantics. What can we do?
▶ Extend the signature to a theory: we get algebraic effects;
▶ Look for their handlers.

▶ Provide a handler : E ⇝ M;
▶ Double check you built a model of your algebra;
▶ Get a lifting to computations : FreerE ⇝ M.

If you are happy with one shot continuations, implementing this in Coq is easy.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 11/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

A layered interpreter for Imp

Imp program: if x = 0 { abort() } else { x = 100/x }

Initial denotation

Get

Set Abort

Concrete if

: itree (failE + stateE)

Handling failure

Get

Set

Concrete if for
failT

abort

: failT (itree stateE)

Handling memory

get

Concrete if for
failT ◦ stateT

abortset

: failT (stateT (itree ∅))

▶ Control flow structures: sequence (drawn) and if change signature when handled.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 12/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

A layered interpreter for Imp

Imp program: if x = 0 { abort() } else { x = 100/x }

Initial denotation

Get

Set Abort

Concrete if

: itree (failE + stateE)

Handling failure

Get

Set

Concrete if for
failT

abort

: failT (itree stateE)

Handling memory

get

Concrete if for
failT ◦ stateT

abortset

: failT (stateT (itree ∅))

▶ Control flow structures: sequence (drawn) and if change signature when handled.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 12/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

A layered interpreter for Imp

Imp program: if x = 0 { abort() } else { x = 100/x }

Initial denotation

Get

Set Abort

Concrete if

: itree (failE + stateE)

Handling failure

Get

Set

Concrete if for
failT

abort

: failT (itree stateE)

Handling memory

get

Concrete if for
failT ◦ stateT

abortset

: failT (stateT (itree ∅))

▶ Control flow structures: sequence (drawn) and if change signature when handled.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 12/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Where I would like to get to

A semantics for (sequential) LLVM IR
built as a layered interpreter using itrees.
▶ Jourdan et al. analyse C (Verasco),
▶ Bodin et al. analyse Javascript,
▶ We would like to analyze LLVM IR?

For now, we tackle Imp andAsm, but
exploring a new methodology.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 13/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Abstract interpreters: A monadic approach to modular verification
ICFP’24 • HAL • ACM • Source code

1. Abstract interpreters in layered monadic style
▶ Imp andAsm
▶ Key idea: proper understanding of control flow
▶ Analyzer defined by mirroring interpreter

2. Proof of soundness is now modular in terms of
language features
▶ Meta-theorems for composing components’

soundness proofs
▶ Components reusable across languages

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 14/27

https://hal.science/hal-04628727
https://dl.acm.org/doi/10.1145/3674646
https://gitlab.inria.fr/sebmiche/itree-ai

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

4

Layered monadic abstract interpreters
there’s got to be a better name

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 14/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

On the nature of the “abstract semantics” we build

Abstract interpreter

Interpreter
Input:

Program Analysis

Abstract semantics/program

Program +
Interpreter

No input Analysis

Very important

The abstract semantics is a hybrid of both the analyzed program and analyzer.
Like an abstract interpreter partially evaluated on a given input program.

▶ Can we even build abstract programs with the layered event handling process?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 15/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Hybrid flow impacts event handling

The abstract semantics is a hybrid of both the analyzed program and analyzer.

Handling events with failT adds the ability to crash. But:

A potentially-crashing
tool that analyses

pure programs
is not

A tool that analyses
potentially-crashing

programs

We need “monad transformers” that extend the analysis, not the analyzer.

So:
1. Implement control flow analyses that know about states/crashes
2. Enable these features during event handling

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 16/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Hybrid flow impacts event handling

The abstract semantics is a hybrid of both the analyzed program and analyzer.

Handling events with failT adds the ability to crash. But:

A potentially-crashing
tool that analyses

pure programs
is not

A tool that analyses
potentially-crashing

programs

We need “monad transformers” that extend the analysis, not the analyzer. So:
1. Implement control flow analyses that know about states/crashes
2. Enable these features during event handling

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 16/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

The key: parameterized control flow algorithms

Example: parametrized sequence.

Can handle pure programs
▶ may_exit always false, step always OK

Can handle programs in stateT

▶ Tn = S × ..., Un = S × ...

Can handle programs in failT

▶ Un = option..., use step/may_exit

Event handling in abstract program:
1. Replace events as usual
2. Update control flow algorithms’

parameters to add state/failure/etc

Concrete seq. Abstract seq.

p

?

k

U1

step

OK:T1 ERROR:U2

U2

p

k

merge

U1

step

T1

U2

U2

if may_exit

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 17/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

The lens that clears it up: monad of control flow

We are in fact describing a freer monad with explicit control flow operations.

Monad of control flow aflow for events (E : Type→ Type) has ret, bind and:
▶ trigger (e : E R) Freer monad
▶ seq (p : aflow E T) (k : T → aflow E R) ⟨params...⟩ Source sequence
▶ if (p 1 p 2 : aflow E R) ⟨params...⟩ Source conditional
▶ ... do, while, cfg...

New notion of event handling:
1. Replace events like before
2. Also update parameters of control flow analysis algorithms to enable state/failure

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 18/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

And now: a monadic abstract program

Need abstract events because their parameters/return values become lattices.

Initial denotation

Get#

Set# Abort#

Abstract if

: aflow (failE# + stateE#)

Handling failure

Get#

Set# abort#

Abstract if for failT#

: failT# (aflow stateE#)

Handling memory

get#

set# abort#

Abstract if for
failT# ◦ stateT#

: failT# (stateT# (aflow ∅))

This time the if changes a lot with each handling.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 19/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Deriving both programs from a single denotation

Get

Set Abort

Concrete if

: itree (failE + stateE)

if x = 0
{ abort() }

else
{ x = 100/x }

SurfaceAST

J·K

Get#

Set# Abort#

Abstract if

: aflow (failE# + stateE#)

Shared SurfaceAST representation:
▶ Control flow combinator tree (later projected to itree and aflow)
▶ Leaves are ret or trigger with pairs: (2, J2, 2K), (Get, Get#)

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 20/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Technical aside: combinators, a closer look

We keep aflow E R fairly minimal:
▶ Ret (x : R)

▶ Trigger (e : E R)

▶ Seq (f1 : aflow E U1) (f2 : T1 → aflow E R)
(step : U1 → T1) (may_exit : U1 → bool) (merge : bool → U1 → R → R)

▶ Fixpoint (. . .)

▶ TailMrec (. . .)

Higher level combinators (if, do, cfg,..) are analyzes implemented directly in aflow.
: They still must specify how state and fail update their parameters!

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 21/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Our implementation

Our Coq development: https://gitlab.inria.fr/sebmiche/itree-ai

Everything formalized and packaged in a library.
▶ Monad theory, aflow, shared denotations with SurfaceAST

▶ Basic lattices and non-relational domains
▶ Control flow: seq, if, do, while, cfg

Enough to write two case studies, i.e., abstract interpreters for:
▶ Imp with arithmetic, state, and failure handled as three successive layers;
▶ Asm with two layers of state (registers and heap).
⇝ And of course, executable through extraction.

But are those analyzer sound?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 22/27

https://gitlab.inria.fr/sebmiche/itree-ai

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Our implementation

Our Coq development: https://gitlab.inria.fr/sebmiche/itree-ai

Everything formalized and packaged in a library.
▶ Monad theory, aflow, shared denotations with SurfaceAST

▶ Basic lattices and non-relational domains
▶ Control flow: seq, if, do, while, cfg

Enough to write two case studies, i.e., abstract interpreters for:
▶ Imp with arithmetic, state, and failure handled as three successive layers;
▶ Asm with two layers of state (registers and heap).
⇝ And of course, executable through extraction.

But are those analyzer sound?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 22/27

https://gitlab.inria.fr/sebmiche/itree-ai

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

5

All the proofs are now much easier

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 22/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Trying it out: proving an Imp analyzer
Syntax and semantics USER

Using concrete/abstract control flow pairs from library

Numerical domain: Z interval lattice REUSABLE

Soundness of layer #1 (failT): assertion assert()

▶ Imp-specific because involves truth values USER

Soundness of layer #2 (stateT): variables x , y , z ← ...

▶ Basically just a map lattice string→ value REUSABLE

Soundness of flow analysis algorithms Meta-theory
Composing layers’ soundness proofs LIBRARY

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 23/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Bird’s eye view

The sound’ invariant maintains that:
▶ the control flow structure of both computations match;
▶ matching events and values are related through Galois connections.

If programmed through the DSL, for free.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 24/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Bird’s eye view

We need to preserve sound’ by failure interpretation:
▶ the user defined handlers must be proven sound;
▶ the library does the rest.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 24/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Bird’s eye view

We keep going...
Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 24/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Bird’s eye view

Finally, we unfold the implementation of the abstract algorithms: each pair is proven
relatively sound in the library, allowing us to conclude.

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 24/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Certified analysis checklist

Obligation Who When

Mirroring of concrete/abstract denotations User Every language
Lattice and domains (intervals...) User Only once
Language features (state, failure...) User Only once
Soundness of parametrized flow algorithms Library Every flow structure
Soundness of event handling steps Library Every flow structure
Composition of event handling steps Library Only one

Analyses for languages features are thus:
▶ Modular (proven independently then composed)
▶ Reusable (break, local variables, abort()... often the same)

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 25/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

6

Conclusion

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 25/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

More details in the paper, and even more in the code!

The paper: https://hal.science/hal-04628727 (ICFP’24)
The code: https://gitlab.inria.fr/sebmiche/itree-ai

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 26/27

https://hal.science/hal-04628727
https://gitlab.inria.fr/sebmiche/itree-ai

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Conclusion

Monad-based abstract interpreters are modular and their proofs are too!

Novelties
▶ Abstract interpreters in layered monadic style + soundness tools
▶ Identifying the freer monad of control flow

Insights and future work
▶ Scaling up: new effects; less structured control flow; better analysis algorithms;

combining domains...
▶ Performances: at the moment, unfold into itrees, then extract.

Thoughts?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 27/27

This paper Abstract interpreters Layered monadic interpreters Combining both concepts Free proofs Conclusion

Conclusion

Monad-based abstract interpreters are modular and their proofs are too!

Novelties
▶ Abstract interpreters in layered monadic style + soundness tools
▶ Identifying the freer monad of control flow

Insights and future work
▶ Scaling up: new effects; less structured control flow; better analysis algorithms;

combining domains...
▶ Performances: at the moment, unfold into itrees, then extract.

Thoughts?

Cambium Seminar (Inria, Paris) Abstract interpreters: a monadic approach to modular verification 27/27

	Contributions in this paper
	Abstract interpreters a practical recipe
	Layered monadic interpreters
	Layered monadic abstract interpreters there's got to be a better name
	All the proofs are now much easier
	Conclusion

