
Léon Gondelman, Jonas Kastberg Hinrichsen,

Mário Pereira, Amin Timany, Lars Birkedal

Verifying Reliable Sessions Over an Unreliable
Network in Distributed Separation Logic

Cambium, Paris
January 16, 2023

https://jihgfee.github.io/

Communicating processes

• Network communication & message-passing concurrency: 
 
—> coordination is done via exchanging messages (not via shared memory) 
 
—> communication protocols and ownership transfer play central role. 

• One can expect that specification and reasoning about network and  
concurrency should exhibit common patterns and similar program logics.

Session types

high-level typing pattern to show safety for  
message-passing style concurrency

Actris Framework

• Dependent Separation Protocols:

• Specifications for message-passing concurrency:

high-level specification pattern to reason about for  
reliable message-passing communication [Hinrichsen et al. 2020]

Network Communication

Actris Session Type-based Reasoning

• provides a high-level model of reliable communication (Actris Ghost Theory)

• has been applied so far only to reason about message-passing concurrency,  
 where the communication layer itself is reliable.

Network communication is fundamentally unreliable and asynchronous

• messages are lost, arrive out of order, got duplicated, or forged by adversary

• network partitions make it impossible to distinguish, in a finite amount of time, 
 between delayed messages and lost messages (e.g. due to remote's crash)

How can we design a program logic  
 for reliable network communication 
 using session-typed based reasoning  
 as high-level specification pattern?

Research Question

Aneris: A Mechanised Logic for Modular
Reasoning about Distributed Systems

Morten Krogh-Jespersen, Amin Timany ?, Marit Edna Ohlenbusch,
Simon Oddershede Gregersen , and Lars Birkedal

Aarhus University, Aarhus, Denmark

Abstract. Building network-connected programs and distributed sys-
tems is a powerful way to provide scalability and availability in a digital,
always-connected era. However, with great power comes great complexity.
Reasoning about distributed systems is well-known to be difficult.
In this paper we present Aneris, a novel framework based on separation
logic supporting modular, node-local reasoning about concurrent and
distributed systems. The logic is higher-order, concurrent, with higher-
order store and network sockets, and is fully mechanized in the Coq proof
assistant. We use our framework to verify an implementation of a load
balancer that uses multi-threading to distribute load amongst multiple
servers and an implementation of the two-phase-commit protocol with
a replicated logging service as a client. The two examples certify that
Aneris is well-suited for both horizontal and vertical modular reasoning.

Keywords: Distributed systems · Separation logic · Higher-order logic ·

Concurrency · Formal verification

1 Introduction

Reasoning about distributed systems is notoriously difficult due to their sheer
complexity. This is largely the reason why previous work has traditionally focused
on verification of protocols of core network components. In particular, in the
context of model checking, where safety and liveness assertions [29] are consid-
ered, tools such as SPIN [9], TLA+ [23], and Mace [17] have been developed.
More recently, significant contributions have been made in the field of formal
proofs of implementations of challenging protocols, such as two-phase-commit,
lease-based key-value stores, Paxos, and Raft [7, 25, 30, 35, 40]. All of these
developments define domain specific languages (DSLs) specialized for distributed
systems verification. Protocols and modules proven correct can be compiled to
an executable, often relying on some trusted code-base.

Formal reasoning about distributed systems has often been carried out by
giving an abstract model in the form of a state transition system or flow-chart in
the tradition of Floyd [5], Lamport [21, 22]. A state is normally taken to be a
? This research was carried out while Amin Timany was at KU Leuven, working as a

postdoctoral fellow of the Flemish research fund (FWO).

AnerisLang, an OCaml-like language with

• UDP sockets primitives (msgs can be dropped, reordered or duplicated)
• Well-defined formal operational semantics

• Compiler from a subset of OCaml

Aneris Program Logic, a logic with
• All features from the Iris Framework (on top of which it is built in Coq)

• Proof rules to reason about node-local concurrency

• Proof rules to reason about UDP network communication

Aneris Project

(ESOP 20)

Original Aneris Paper

Hoare Logic Higher-Order Concurrent Separation Logic Distributed Separation Logic

We connect of the dependent session protocols of Actris to distributed
systems, without extending the trusted code base of Aneris or Actris.

This Work

Key contribution

We achieve this

(1) by developing reliable communication library on top of  
 Aneris' basic unreliable network primitives

(2) by proving the high-level Actris-like specifications of this library  
 in Aneris, which involved coming up with a session escrow pattern

I. The API of the library

�PDNH�VHUYHU��
VRFNHW�

&OLHQW�6HUYHU�6HVVLRQ�

UHFY

VHQG

VHQG

UHFY

FRQQHFW

PDNH¬FOLHQW�
VRFNHW�

OLVWHQ

DFFHSW

6WDUW�6HUYHU�&RQQHFW�&OLHQW�

&RQQHFWLRQ�5HTXHVW�

FKDQQHO�
GHVFULSWRU

FKDQQHO�
GHVFULSWRU

• BSD sockets-like primitives

• 4-handshake connection

• buffered bidirectional channels

• sequence-ids/acknowledgments/ 
 retransmission mechanisms

• ~ 350 lines of OCaml

Some design choices:

• distinction between active/passive 
 sockets and channels

• data transfer of serialisable values

Our Library

OCaml API

Explicit distinction between active/passive
socket and channel descriptor datatypes

OCaml API

How client serialises values

to be send to the server

How server deserialises values

received from the client

OCaml API

How server serialises values

to be send to the client

How client deserialises values

received from the server

Example: echo server

II. Specification

• the user parameters provided by the user

Spec 1/4 : Params & Resources

• and the abstract specification resources provided by the library

Our specification of the API primitives is dependent on

Spec 2/4 : Client Setup

channel endpoint ownership

Spec 3/4 : Server Setup

channel endpoint ownership

Spec 4/4 : Send and Receive

These specs are similar to the Actris specs for message-passing 
concurrency and they are the same for both channel endpoints.

Workflow

• (Step 1) Writing the program(s) in the OCaml subset (done by user)

• (Step 2) Translating the programs to AnerisLang (done by compiler)

• (Step 3) Defining a Dependent Separation Protocol (done by user)

• (Step 4) Verifying each node individually (done by user)

• (Step 5) Applying the adequacy theorem to obtain a closed proof, i.e.,  
 a proof in Coq independent of Iris and Aneris, (done by user).

Step1: Write OCaml sources. Step 2. Generate Coq definition

Step 3: Define the dependent separation protocol.

Echo Server Proof (1/3)

Echo Server Proof (2/3)

Step 4. Instantiate the following class for echo server…

Echo Server Proof (3/3)

…and verify each node separately (modular proof).

Step 5. Apply the adequacy theorem to obtain a closed proof, i.e.,  
a proof in Coq independent of Iris and Aneris.

Case study: Remote Procedure Call

So far :

from Aneris rules to reason about UDP  
to the logical rules for Client-Server Sessions

Distributed components :

 from rules for Client Server Sessions  
 to the Remote Procedure Call (RPC) library

 
The RPC abstraction specification allows to reason about distributed applications  
(e.g. key-value store) without any reasoning about network-level communication at all.

• The API exposes just one service handler, but in which  
the types of request and response are polymorphic and higher-order.

• instantiating those types with sum-types (for requests), and (for responses)  
allows us to encode an RPC service that handles multiple procedures calls e.g., 
as a pair of procedures of type and .

RPC Spec (1/4)

RPC Spec (2/4)

As before, we use the dependent specification pattern, starting 
with user’s parameters and library’s abstract resources:

RPC Spec (3/4)

Client-side Server-side

RPC Spec (4/4)

Client-side Server-side

RPC Verification (1/3)

RPC Verification (2/3)

Dependent Separation Protocol:

RPC Verification (3/3)

 
Unreliable Network Communication 

Reliable Sessions Library

Sequentially Consistent
Lazily Replicated KV store

Distributed Lock  
Manager

Remote
Procedure Call

 
… Clients | Applications … 

Modular reasoning about distributed applications

(Distributed Key-Value Store with Leader-Followers)

III. Verification

Verification (of established sessions)

To understand what is the crux of the verification (for the code when session is
established), we need to take a look on

1. how resources are transferred for unreliable communication in Aneris Logic

2. how the reliable transfer is modelled in Actris Ghost Theory

 The proof then proceeds in two steps:

1. connecting Actris Ghost Theory & Aneris Logic (Session Escrow Pattern)

2. verifying the implementation (API send/receive and internal procedures)

Resource Transfer in Aneris

In Aneris, safe transfer of spatial resources (associated with a sent message)
over the unreliable network is achieved by

• storing the spatial resources in a shared logical context (Iris invariant),

• and then sending a duplicable witness over the network

This (escrow pattern) enables retransmission (as the witness is duplicable),  
and safe transfer (as the spatial resources can only be taken out once).

However, it does not allow dependencies between the resources stored in the 
shared logical context (indeed, there might be several resources in transit).

Actris Ghost Theory (Fragment)

 Reliable transfer is modelled using logical buffers which

• describe symmetrically for each direction the messages in transit

• are governed (inside an Iris invariant) by the shared resource

Session Escrow Pattern

Actris Ghost Theory allows dependencies between the resources
stored in the shared logical context 
 
However,

 - as such it does not use an escrow pattern, which is needed to connect  
 Actris logical state with the spatial transfer using duplicable witnesses

- the duplicable witnesses must appropriately reflect the Actris logical state  
 so that resources can be acquired in accordance to their dependence.

• We introduce additional logical buffers Tl, Rl, Tr, Rr as a glue. 
 
 (Tl, Tr) describe the history of sent messages; 
 (Rl, Rr) describe the history of received messages (by the application).

• Various relations hold between Actris, glue, and physical buffers:

Message Histories

• Rr is prefix of Tl and Rl is prefix of Tr

• v1 = Tl − Rr and v2 = Tr − Rl

(Internal-Coh)

(Actris-Coh)

• sbufl is suffix of Tl and sbufr is suffix of Tr (SBuf-Coh)

• rbufl is prefix of (Tr − Rl) and rbufr is prefix of (Tl − Rr) (Rbuf-Coh)

Session Escrow Pattern

Shared logical context (Iris invariant):

The monotonic list ghost theory :

Duplicable witnesses: ,

Session Escrow Pattern

Verification

Other Observations (1/3)

• The internal procedures that enforce the fault-tolerance are also (mostly)
the same for clients and servers, and so are our proofs.

Other Observations (2/3)

• The 4-handshake is different for each side and requires some effort in
verification as it encodes an STS with several edge and absurd cases.

Client Server

network

• The implementation/verification of server side is more difficult, because the
server must maintain a table of known clients with their connection state  
and a channel description queue for the established connections.

Other Observations (3/3)

V. Conclusion & Future Directions

• Graceful/Abrupt session ending : detectable connection failures, reconnection

• Cryptography/Security: 4-way handshake procedure / authentification / QUIC

• Network Partitions : group membership/consensus built on top of our library

• Group Communication : client-service communication

• Transparency : verified libs for distributed/multithreaded programs (e.g. Functory)

• (and maybe your insights/ideas !)

Possible Future Directions

Thank you !

Backup slides

Client Implementation

Server Implementation

Hoare Logic Higher-Order Concurrent Separation Logic Distributed Separation Logic

Remark: the proof rules for UDP primitives are low-level, but what we need is  
to achieve expressive specifications that abstract away most of low-level details!

POSSIBLE SOLUTIONS general-purpose
solution

trusted  
code base

high-level
specification

implement and verify reliability ad hoc for each application

extend Aneris semantics and logics with reliable sessions primitives

implement and verify a transport layer library on top of UDP

ServersessionClient

Aneris Distributed Separation Logic

(a) socket handle resource

(b) message history resources

Aneris Distributed Separation Logic

(c) socket protocol predicate

Aneris Distributed Separation Logic

