A High-Level Separation Logic
for Heap Space under Garbage Collection

Alexandre Moine Arthur Charguéraud Francois Pottier

Cambium Seminar, 28th November 2022

v d

lrrezia—

In a few Words

Verifying functional correctness is not enough

1/21

In a few Wor

Verifying functional correctness is not enough

We have to take resources into account.

1/21

In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

1/21

In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

= A program logic to verify heap space bounds...

1/21

In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

= A program logic to verify heap space bounds...

= ..for a high-level language...

1/21

In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

= A program logic to verify heap space bounds...
= ..for a high-level language...

= ...equipped with a garbage collector.

1/21

Formal Verification of Heap Space Bounds

Without a GC:

= alloc consumes space » free produces space

2/21

Formal Verification of Heap Space Bounds

Without a GC:

= alloc consumes space » free produces space

With a GC:

= There is no syntax for deallocation.
= The GC can run at any time to deallocates blocks.
= The GC can deallocate only unreachable blocks.

2/21

Formal Verification of Heap Space Bounds

Without a GC:

= alloc consumes space » free produces space

With a GC:

= There is no syntax for deallocation.
= The GC can run at any time to deallocates blocks.
= The GC can deallocate only unreachable blocks.

To formally prove that some space is reclaimable by the GC

= one has to prove that a block is unreachable,
= from the roots,
= following heap paths.
2/21

A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
I 0 ->10
| y::ys => (y+1)::(mapsucc ys)

3/21

A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
I 0 ->10
| y::ys => (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

3/21

A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
I 0 ->10
| y::ys => (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

3/21

A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
I 0 ->10
| y::ys => (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

= If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

3/21

A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
I 0 ->10
| y::ys => (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

= If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

= If xs is reachable from the evaluation context: O(length xs)

3/21

Good ol’ POPL’22

Spacelang, a low-level language by Madiot and Pottier [2022]. They

= Use space credits to account for free (reclaimable) space

ol

4/21

Good ol’ POPL’22

Spacelang, a low-level language by Madiot and Pottier [2022]. They
= Use space credits to account for free (reclaimable) space
ol
= Adapt pointed-by assertions to track predecessors

f(—ilA

4/21

Good ol’ POPL’22

Spacelang, a low-level language by Madiot and Pottier [2022]. They
= Use space credits to account for free (reclaimable) space
ol
= Adapt pointed-by assertions to track predecessors
0+ A
= |ntroduce a logical deallocation rule

01 [Viy V] x L4100 = on x ¢

4/21

Good ol’ POPL’22

Spacelang, a low-level language by Madiot and Pottier [2022]. They
= Use space credits to account for free (reclaimable) space
ol
= Adapt pointed-by assertions to track predecessors
0+ A
= |ntroduce a logical deallocation rule
01 [Viy V] x L4100 = on x ¢

= Target an assembly-like language, with explicit roots
= Trivializes the identification of roots
= Non-standard syntax and semantics

4/21

Good ol’ POPL’22

Spacelang, a low-level language by Madiot and Pottier [2022]. They

= Use space credits to account f
STORE 6(0) —0

s> (D)

w s (D) re @) \
rH< rH<DI> 71 [0;:0’]1’1

rH(f;, szf) froy B ¢ lasHol =T AN

£ —p s+ {0 L ArEY;

s (o) } s = Lol v cig LW {5} Y o g 1O
v q

UHqI}‘, Z), qu Lr\{s}
v’ g
P51 Vi, V] *x L4100 = on x 1/

= Target an assembly-like language, with explicit roots
= Trivializes the identification of roots
= Non-standard syntax and semantics
= Polluted reasoning rules

4/21

Contributions

Building on the work of Madiot and Pottier, we present a logic for

= a high-level, ML-style, language,
= with closures.

5/21

Contributions

Building on the work of Madiot and Pottier, we present a logic for
= a high-level, ML-style, language,
= with closures.

Key solved challenges:

= Reasoning about roots in a garbage collected A-calculus
= Reasoning about closures and the heap paths they introduce

5/21

Contributions

Building on the work of Madiot and Pottier, we present a logic for
= a high-level, ML-style, language,
= with closures.
Key solved challenges:
= Reasoning about roots in a garbage collected A-calculus
= Reasoning about closures and the heap paths they introduce
Solved technical challenges:

= Modularity of specifications

= Theory and examples are fully mechanized in Coq on top of Iris

Iris| ..

The Roots of the Problem

What are the roots considered by real-life GCs?

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap
let a= (ref4)inlet b= (ref2)inla+1!b 0

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap
let a= (ref4)inlet b= (ref2)inla+1!b 0
— leta=1¢, inlet b= (ref2)inla+!b {l, =4}

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap

let a= (ref4) inlet b= (ref2)inla+1b 0
— leta=1¢, inlet b= (ref2)inla+!b {l, =4}
— let b= (ref2)in 4+ !b {l, =4}

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap

let a= (ref4) inlet b= (ref2)inla+1b 0
— leta=1¢, inlet b= (ref2)inla+!b {l, =4}
— let b= (ref2)in 4+ !b {l, =4}
— let b=/, inll,+1b {ly:=4,0,:=2}

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap

let a= (ref4) inlet b= (ref2)inla+1b 0
— leta=1¢, inlet b= (ref2)inla+!b {l, =4}
— let b= (ref2)in 4+ !b {l, =4}
— let b=/, inll,+1b {ly:=4,0,:=2}
— Wa+ Wy {ly:=4,0p:=2}

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap
let a= (ref4) inlet b= (ref2)inla+1b 0
let a = ¢, inlet b= (ref2)inla+!b {l, =4}
let b= (ref2)in 4+ !b {l, =4}
let b=/, inll,+1b {ly:=4,0,:=2}

W, + 1 {Ea = AL [= 2}
4+, {lo=F 0y =2}

Letbll

6/21

The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap
let a= (ref4) inlet b= (ref2)inla+1b 0
let a = ¢, inlet b= (ref2)inla+!b {l, =4}
let b= (ref2)in 4+ !b {l, =4}
let b=/, inll,+1b {ly:=4,0,:=2}

Wa+ Wy {ly:=4,0p:=2}
4+, {lo=F 0y =2}
¥ 6 {Lo=7, Lp=72}

6/21

Lettll

Term Heap
let b= (ref2)in 4+ !b {l, =4}

7/21

Term Heap
let b= (ref2)in 4+ !b {l, =4}

While reasoning about (ref 2)

= The location ¢, is a root of the evaluation context!

= The GC cannot reclaim the space of /,.

7/21

Term Heap
let b= (ref2)in 4+ !b {l, =4}

While reasoning about (ref 2)

= The location ¢, is a root of the evaluation context!

= The GC cannot reclaim the space of /,.

From a formal verification point of view:

= Roots may occur in the evaluation context.
= We need to prevent the logical deallocation of such invisible roots.

= Other visible roots may be found by inspecting the term under focus.

7/21

Free as a Ghost Update

Introducing the Stackable ¢ p assertion to track invisible roots (p € (0, 1]).

Main property of the Stackable assertion

Stackable ¢ 1 asserts that / is not an invisible root.

8/21

Free as a Ghost Update

Introducing the Stackable ¢ p assertion to track invisible roots (p € (0, 1]).

Main property of the Stackable assertion

Stackable ¢ 1 asserts that / is not an invisible root.

We refine the FREE rule of Madiot and Pottier.

/ is not a visible root ¢ is not an invisible root

l |
31 [vay ey vn] % L4410 % "0 & locs(t)? * Stackable {1 = onx i/

TZ is not pointed-by any reachable block

8/21

Handling Invisible Roots

The Stackable assertion is splittable

Stackable ¢ (p + q) = Stackable ¢ p x Stackable { q

The construction let x = t; in t, may create invisible roots.

While reasoning about t1, we withhold the Stackable assertions of locs(t2).

9/21

Handling Invisible Roots

The Stackable assertion is splittable

Stackable ¢ (p + q) = Stackable ¢ p x Stackable { q

The construction let x = t; in t, may create invisible roots.

While reasoning about t1, we withhold the Stackable assertions of locs(t2).

The LET rule for a context with only one location:

locs(tp) = {¢}
{6}t {V'} Vv .{ V' v} [v/x]ta {W}
{ O} let x =ty in tp {V}

9/21

Handling Invisible Roots

The Stackable assertion is splittable

Stackable ¢ (p + q) = Stackable ¢ p x Stackable { q

The construction let x = t; in t, may create invisible roots.

While reasoning about t1, we withhold the Stackable assertions of locs(t2).

The LET rule for a context with only one location:

locs(tp) = {¢}
{0} 0 {V'} Vv.{Stackable { p * V' v} [v/x]t, {W}

{Stackable ¢ p x ®} let x = t1 in tp {V}

9/21

What is left?

In the rest of this talk

1. Other reasoning rules
2. Back to mapsucc
3. The Soundness Theorem

4. Closures

10/21

Allocation and Load

Pointed-by and Stackable assertions are created by ALLOC.

01 ()n
I AL
{on} alloc n { 044 0 % Stackable ¢ 1}

11/21

Allocation and Load

Pointed-by and Stackable assertions are created by ALLOC.
14 —1 ()n
I L.
{on} aoc { 0 <+) % Stackable ¢ 1}

LoAD is the standard Separation Logic rule.

0<i<|w

-

{tmpw} i {)\v. Y= W’(i)j}

11/21

STORE is more complex: it modifies heap antecedents.

0<i<|w w(i)=v
6'—)1!/?/ ff—>1 [i = V’]W/
Vieip A L]V AV i, A {40}
vV <o {—f}
Proof Pearl

12/21

Two specifications for mapsucc

Pointed-by and Stackable assertions often go together
l+p,A = (i, A x Stackable ¢ p

Split rule: C(ptpy) (AW AY) = L=p A * £=p, A

13/21

Two specifications for mapsucc

Pointed-by and Stackable assertions often go together

l+p,A = (i, A x Stackable ¢ p

Split rule: C(ptpy) (AW AY) = L=p A * £=p, A

If ¢ is unreachable from the evaluation context:

{List Ll x £+ @} mapsucc { {)\f’. List (map (+1) L) ¢ x £ < @}

13/21

Two specifications for mapsucc

Pointed-by and Stackable assertions often go together

l+p,A = (i, A x Stackable ¢ p

Split rule: C(ptpy) (AW AY) = L=p A * £=p, A

If ¢ is unreachable from the evaluation context:

{List Ll x £+ @} mapsucc { {)\f’. List (map (+1) L) ¢ x £ < @}

If £ may be reachable:

List L0 % £, A , List L{ % £y A
mapsuccl S N\,
o(3 x length L) List (map (+1) L) ¢/ % £ <=1 ()

13/21

The Soundness Theorem

Our semantics

= is parameterized by a maximal heap size S

= interleaves reduction steps and GC steps

14/21

The Soundness Theorem

Our semantics

= is parameterized by a maximal heap size S

= interleaves reduction steps and GC steps

An allocation is stuck if, after a full GC, there is not enough free space.

14/21

The Soundness Theorem

Our semantics

= is parameterized by a maximal heap size S

= interleaves reduction steps and GC steps

An allocation is stuck if, after a full GC, there is not enough free space.

Soundness Theorem

If {oS} t {¥} holds, then t cannot reach a stuck configuration.

Reformulation: the live heap space of any execution of t cannot exceed S.

14/21

Closures

We encode closures as derived constructions using closure conversion

= closure creation and call are not in the syntax,
= but we provide macros implementing them,
= and provide reasoning rules about those macros!

15/21

Closures

We encode closures as derived constructions using closure conversion

= closure creation and call are not in the syntax,
= but we provide macros implementing them,
= and provide reasoning rules about those macros!

A closure is Allocating a closure

a heap allocated block consumes space credits
pointing to its environment | updates pointed-by assertions

15/21

Closures

We encode closures as derived constructions using closure conversion

= closure creation and call are not in the syntax,
= but we provide macros implementing them,
= and provide reasoning rules about those macros!

A closure is Allocating a closure

a heap allocated block consumes space credits
pointing to its environment | updates pointed-by assertions

| will show you very simple closures

= non-recursive = environment of size 1

= no argument

15/21

Playing with Closures: Counter Objects

let counter () =
let r = ref O in
((fun) -> incr r) , (fun O —> !r))

16/21

Playing with Closures: Counter Objects

let counter () =
let r = ref O in
((fun) -> incr r) , (fun O —> !r))

{Counter ig n} (1 ()elo {)\,. Counter i g (n+ 1)}
{

Counter i g n} (g))elo {)\m. "m = n"x Counter i g n}

16/21

Playing with Closures: Counter Objects

let counter () =
let r = ref O in
((fun) -> incr r) , (fun O —> !r))

{Counter ig n} (1 ()elo {)\,. Counter i g (n+ 1)}
{Counter ig n} (g))elo {)\m. “m = n"x Counter i g n}

di,g. b= [i;g]*xl<+10
{07} (counter ())ptr § AL i1 {€} * g <=1 {(}
Counter i g 0

16/21

Specifying Closures

We introduce the Spec assertion

Spec EPf

17/21

Specifying Closures

We introduce the Spec assertion
Spec EPf

Definition of the Counter predicate

¢ [n] *
Counterign = 3. Spec [(¢, %)] (B) =
Spec [(¢,3)] (Pget) &

17/21

Specifying Closures

We introduce the Spec assertion
Spec EPf

Definition of the Counter predicate

¢ [n] *
Counterign = 3. Spec [(¢, %)] (B) =
Spec [(¢,3)] (Pget) &

The specification predicate P abstracts away the closure code.

Phoar & Av.Vn Al [n]} u{ . l— [n+1]}
Pget £ Au.Vn {—[n]} u{Am."m=n" x £ [n]}

1> 11>

17/21

Closure Creation

Closure creation is subtle to reason about

= the semantics is substitution-based,
= hence, the environment is substituted

= hence, we need to specify a substitution of the environment!

18/21

Closure Creation

Closure creation is subtle to reason about

= the semantics is substitution-based,
= hence, the environment is substituted

= hence, we need to specify a substitution of the environment!

v(t)={r} E=I[(t,p)] P ([¢/r]t)
{<>2 * £ <p @} [¢/r] (Aeio ()- 1) {/\f. Spec EPf x f < @}

18/21

The Call of a Closure

Reasoning about a call:

term describing the call

I
(Vu.Pu — {d}u{V}

{Spec E P f «®} (f ())cio {Av. Spec E P f x W v}

19/21

The Call of a Closure

Reasoning about a call:

term describing the call

I
(Vu.Pu — {d}u{V}

{Spec E P f «®} (f ())cio {Av. Spec E P f x W v}

The general case is challenging, as a closure may:

= Call itself.

= Become unreachable just after a call,

19/21

The Call of a Closure

Reasoning about a call:

term describing the call

I
(Vu.Pu — {d}u{V}

{Spec E P f «®} (f ())cio {Av. Spec E P f x W v}

The general case is challenging, as a closure may:

= Call itself.

= Become unreachable just after a call,
and self-destruct.

Read the Paper

= Recursive and self-destructive closures

= Simplified handling of Stackable assertions

= Simplified mode without logical free

= CPS-style example with append

= Amortized analysis with rational space credits (list of arrays)
= |llustration of modularity with stacks

= Fun technical contributions: fraction zero and signed multisets

20/21

er
d the Pap
Rea

d
ive an
Sive
Recu". h:
] Simplified

) Simplified

- CPS-style

ey, Py il
* 2055 A Hig, vy g, Paragi,, Logie [ori*leap | tiset
Lapg 7, Lop;] Ary cle , [mlary?ﬂ?}[3(7pag<'s j mu
o i op r cn/z'(atlorz labj, © Safey, ang uadiuw/ ra"/'et‘tné'
i, by Vang g,
rogra!n, thay s ¢ Proy, thay thig pmgran; oy ot Crasy, ang colnpu!es a rom-ct Fesuyy
In the ey of, educhve pmgmrn ver:i)‘ca!iolz /[‘,Ilhitre 201, . a program is Ualy, veriﬁed th
the he’p of 4 /:rﬂgfaln o, i, thay s, 4 Set ofdedu ion Tujeg who.:s Y Bica) Soundue:x hag Aeen
iz demonxlraled Once ,, 4 fo al], Sepdrallon Log;. [l\'eynolds 2002] ang Concurrenl Separatimz
ort Logi, [liwolced\ ang ¢, 'Hewn E g o O Hegy, %) are ekalnplex of, logieg
thay o, <o, o.uuon ing 4 U 70gr <o, 'on)
a) mp, P08y 'y
n g, re:t‘n(‘c llo, 2 g
u P
tre Share, or,
L}
N
F un gy
" Pics 70 g
Ilmmlmn nthe/h!mgc [¢
Oty Oy Wt
© 2023 up;ug/.l /,,./,1 by lthe,
mmeue«zgr/: ARy,
o g

ey,
ARy,
115, 35715,

20/21

Conclusion

We present a logic targeting

= a high-level language,

= with closures,

= equipped with a garbage collector,
= that obeys the free variable rule,

= and is fully mechanized in Coq on top of Iris.

21/21

Conclusion

We present a logic targeting

= a high-level language,

= with closures,

= equipped with a garbage collector,
= that obeys the free variable rule,

= and is fully mechanized in Coq on top of Iris.

Future work:

= Concurrency, lock-free data structures (ongoing)
= Weak pointers and ephemerons

= Links with the formal cost semantics of CakeML

21/21

Thank you for your attention!

alexandre.moine [at] inria.fr
arthur.chargueraud [at] inria.fr
francois.pottier [at] inria.fr

Logical Deallocation of Lists

List L x "0 ¢ locs(t)? x £<+>1 0 = o3 xlength L)

Triples with Souvenir

Stackable assertions are easy to manage in practice.

Introducing triples with souvenir (R) {®} t {V}
“Give a Stackable assertion once and that'’s it”

Triples with Souvenir

Stackable assertions are easy to manage in practice.

Introducing triples with souvenir (R) {®} t {V}
“Give a Stackable assertion once and that'’s it”

LETADDSOUVENIR
locs(ty) = {¢}
(RU{£}){®} t1 {V'} Vv. (R) {Stackable ¢ p « V' v} [v/x]t2 {V}

(R) {Stackable £ px ®}let x =ty in tp {V}

Triples with Souvenir

Stackable assertions are easy to manage in practice.

Introducing triples with souvenir (R) {®} t {V}
“Give a Stackable assertion once and that’s it”

LETADDSOUVENIR
locs(ty) = {¢}
(RU{£}){®} t1 {V'} Vv. (R) {Stackable ¢ p « V' v} [v/x]t2 {V}

(R) {Stackable £ px ®}let x =ty in tp {V}

LETINSOUVENIR
locs(ty) = {¢} lteR

(R {e}u{V} v.(R{V v}v/xt2 {¥}
(R){®}let x =ty in tr {V}

The NoFree Mode

= Stackable assertions are needed to prevent logical deallocation.

= |f the user pledges to not deallocate, no tracking is needed.

LETNOFREE
(L {ou{V} Vv (R){V v} [v/x]t {V}
(R)y {®}let x =ty in tp {V}

A new consequence rule

New ghost update parameterized by the visible roots.

@ 3locs(t) @’ {cbl} t {W}
{¢} t{V}

Our logical FREE rule.

31 [V, ey V] % €410 % "0 & V7 x Stackable {1 =\ on x {/

References i

Jean-Marie Madiot and Francois Pottier. A separation logic for heap space
under garbage collection. Proceedings of the ACM on Programming
Languages, 6(POPL), January 2022. URL http://cambium.inria.
fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf.

http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf
http://cambium.inria.fr/~fpottier/publis/madiot-pottier-diamonds-2022.pdf

	Appendix

