A High-Level Separation Logic
for Heap Space under Garbage Collection

Alexandre Moine  Arthur Charguéraud  Francois Pottier

Cambium Seminar, 28th November 2022

v d

lrrezia—



In a few Words

Verifying functional correctness is not enough

1/21



In a few Wor

Verifying functional correctness is not enough

We have to take resources into account.

1/21



In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

1/21



In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

= A program logic to verify heap space bounds...

1/21



In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

= A program logic to verify heap space bounds...

= ..for a high-level language...

1/21



In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

= A program logic to verify heap space bounds...
= ..for a high-level language...

= ...equipped with a garbage collector.
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Formal Verification of Heap Space Bounds

Without a GC:

= alloc consumes space » free produces space

With a GC:

= There is no syntax for deallocation.
= The GC can run at any time to deallocates blocks.
= The GC can deallocate only unreachable blocks.

To formally prove that some space is reclaimable by the GC

= one has to prove that a block is unreachable,
= from the roots,
= following heap paths.
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A Motivating Example: mapsucc
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I 0 ->10
| y::ys => (y+1)::(mapsucc ys)
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A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
I 0 ->10
| y::ys => (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

= If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

= If xs is reachable from the evaluation context: O(length xs)
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= Target an assembly-like language, with explicit roots
= Trivializes the identification of roots
= Non-standard syntax and semantics
= Polluted reasoning rules
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= a high-level, ML-style, language,
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Contributions

Building on the work of Madiot and Pottier, we present a logic for
= a high-level, ML-style, language,
= with closures.
Key solved challenges:
= Reasoning about roots in a garbage collected A-calculus
= Reasoning about closures and the heap paths they introduce
Solved technical challenges:

= Modularity of specifications

= Theory and examples are fully mechanized in Coq on top of Iris

Iris| ..
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In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap
let a= (ref4) inlet b= (ref2)inla+1b 0
let a = ¢, inlet b= (ref2)inla+!b {l, =4}
let b= (ref2)in 4+ !b {l, =4}
let b=/, inll,+1b {ly:=4,0,:=2}

Wa+ Wy {ly:=4,0p:=2}
4+,  {lo=F 0y =2}
¥ 6 {Lo=7, Lp=72}
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Term Heap
let b= (ref2)in 4+ !b {l, =4}

While reasoning about (ref 2)

= The location ¢, is a root of the evaluation context!

= The GC cannot reclaim the space of /,.

From a formal verification point of view:

= Roots may occur in the evaluation context.
= We need to prevent the logical deallocation of such invisible roots.

= Other visible roots may be found by inspecting the term under focus.
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Free as a Ghost Update

Introducing the Stackable ¢ p assertion to track invisible roots (p € (0, 1]).

Main property of the Stackable assertion

Stackable ¢ 1 asserts that / is not an invisible root.
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Free as a Ghost Update

Introducing the Stackable ¢ p assertion to track invisible roots (p € (0, 1]).

Main property of the Stackable assertion

Stackable ¢ 1 asserts that / is not an invisible root.

We refine the FREE rule of Madiot and Pottier.

/ is not a visible root ¢ is not an invisible root

l |
31 [vay ey vn] % L4410 % "0 & locs(t)? * Stackable {1 = onx i/

TZ is not pointed-by any reachable block
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Handling Invisible Roots

The Stackable assertion is splittable

Stackable ¢ (p + q) = Stackable ¢ p x Stackable { q

The construction let x = t; in t, may create invisible roots.

While reasoning about t1, we withhold the Stackable assertions of locs(t2).
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Handling Invisible Roots

The Stackable assertion is splittable

Stackable ¢ (p + q) = Stackable ¢ p x Stackable { q

The construction let x = t; in t, may create invisible roots.

While reasoning about t1, we withhold the Stackable assertions of locs(t2).

The LET rule for a context with only one location:

locs(tp) = {¢}
{0} 0 {V'}  Vv.{Stackable { p * V' v} [v/x]t, {W}

{Stackable ¢ p x ®} let x = t1 in tp {V}
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What is left?

In the rest of this talk

1. Other reasoning rules
2. Back to mapsucc
3. The Soundness Theorem

4. Closures
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Allocation and Load

Pointed-by and Stackable assertions are created by ALLOC.

01 ()n
I AL
{on} alloc n { 044 0 % Stackable ¢ 1}
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Allocation and Load

Pointed-by and Stackable assertions are created by ALLOC.
14 —1 ()n
I L.
{on} aoc { 0 <+ ) % Stackable ¢ 1}

LoAD is the standard Separation Logic rule.

0<i<|w

-

{tmpw} i {)\v. Y= W’(i)j}
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STORE is more complex: it modifies heap antecedents.

0<i<|w w(i)=v
6'—)1!/?/ ff—>1 [i = V’]W/
Vieip A L]V AV i, A {40}
vV <o {—f}
Proof Pearl
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Two specifications for mapsucc

Pointed-by and Stackable assertions often go together
l+p,A = (i, A x Stackable ¢ p

Split rule: C(ptpy) (AW AY) = L=p A * £=p, A
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Two specifications for mapsucc

Pointed-by and Stackable assertions often go together

l+p,A = (i, A x Stackable ¢ p

Split rule: C(ptpy) (AW AY) = L=p A * £=p, A

If ¢ is unreachable from the evaluation context:

{List Ll x £+ @} mapsucc { {)\f’. List (map (+1) L) ¢ x £ < @}

If £ may be reachable:

List L0 % £, A , List L{ % £y A
mapsuccl S N\,
o(3 x length L) List (map (+1) L) ¢/ % £ <=1 ()

13/21



The Soundness Theorem

Our semantics

= is parameterized by a maximal heap size S

= interleaves reduction steps and GC steps
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The Soundness Theorem

Our semantics

= is parameterized by a maximal heap size S

= interleaves reduction steps and GC steps

An allocation is stuck if, after a full GC, there is not enough free space.

Soundness Theorem

If {oS} t {¥} holds, then t cannot reach a stuck configuration.

Reformulation: the live heap space of any execution of t cannot exceed S.
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Closures

We encode closures as derived constructions using closure conversion

= closure creation and call are not in the syntax,
= but we provide macros implementing them,
= and provide reasoning rules about those macros!
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Closures

We encode closures as derived constructions using closure conversion

= closure creation and call are not in the syntax,
= but we provide macros implementing them,
= and provide reasoning rules about those macros!

A closure is Allocating a closure

a heap allocated block consumes space credits
pointing to its environment | updates pointed-by assertions

| will show you very simple closures

= non-recursive = environment of size 1

= no argument
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Playing with Closures: Counter Objects

let counter () =
let r = ref O in
((fun ) -> incr r) , (fun O —> !r))
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Playing with Closures: Counter Objects

let counter () =
let r = ref O in
((fun ) -> incr r) , (fun O —> !r))

{Counter ig n} (1 ()elo {)\,. Counter i g (n+ 1)}
{Counter ig n} (g ))elo {)\m. “m = n"x Counter i g n}

di,g. b= [i;g]*xl<+10
{07} (counter ())ptr § AL i1 {€} * g <=1 {(}
Counter i g 0
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Specifying Closures

We introduce the Spec assertion

Spec EPf
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Specifying Closures

We introduce the Spec assertion
Spec EPf

Definition of the Counter predicate

¢ [n] *
Counterign = 3. Spec [(¢, %)] (B ) =
Spec [(¢,3)] (Pget ) &

The specification predicate P abstracts away the closure code.

Phoar & Av.Vn Al [n]} u{ . l— [n+1]}
Pget £ Au.Vn {—[n]} u{Am."m=n" x £ [n]}

1> 11>
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Closure Creation

Closure creation is subtle to reason about

= the semantics is substitution-based,
= hence, the environment is substituted

= hence, we need to specify a substitution of the environment!
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Closure Creation

Closure creation is subtle to reason about

= the semantics is substitution-based,
= hence, the environment is substituted

= hence, we need to specify a substitution of the environment!

v(t)={r} E=I[(t,p)] P ([¢/r]t)
{<>2 * £ <p @} [¢/r] (Aeio ()- 1) {/\f. Spec EPf x f < @}
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The Call of a Closure

Reasoning about a call:

term describing the call

I
(Vu.Pu — {d}u{V}

{Spec E P f «®} (f ())cio {Av. Spec E P f x W v}
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The Call of a Closure

Reasoning about a call:

term describing the call

I
(Vu.Pu — {d}u{V}

{Spec E P f «®} (f ())cio {Av. Spec E P f x W v}

The general case is challenging, as a closure may:

= Call itself.

= Become unreachable just after a call,
and self-destruct.




Read the Paper

= Recursive and self-destructive closures

= Simplified handling of Stackable assertions

= Simplified mode without logical free

= CPS-style example with append

= Amortized analysis with rational space credits (list of arrays)
= |llustration of modularity with stacks

= Fun technical contributions: fraction zero and signed multisets
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Conclusion

We present a logic targeting

= a high-level language,

= with closures,

= equipped with a garbage collector,
= that obeys the free variable rule,

= and is fully mechanized in Coq on top of Iris.
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Conclusion

We present a logic targeting

= a high-level language,

= with closures,

= equipped with a garbage collector,
= that obeys the free variable rule,

= and is fully mechanized in Coq on top of Iris.

Future work:

= Concurrency, lock-free data structures (ongoing)
= Weak pointers and ephemerons

= Links with the formal cost semantics of CakeML
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Thank you for your attention!

alexandre.moine [at] inria.fr
arthur.chargueraud [at] inria.fr
francois.pottier [at] inria.fr




Logical Deallocation of Lists

List L x "0 ¢ locs(t)? x £<+>1 0 = o3 xlength L)
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Stackable assertions are easy to manage in practice.

Introducing triples with souvenir (R) {®} t {V}
“Give a Stackable assertion once and that’s it”

LETADDSOUVENIR
locs(ty) = {¢}
(RU{£}){®} t1 {V'} Vv. (R) {Stackable ¢ p « V' v} [v/x]t2 {V}

(R) {Stackable £ px ®}let x =ty in tp {V}

LETINSOUVENIR
locs(ty) = {¢} lteR

(R {e}u{V}  v.(R{V v}v/xt2 {¥}
(R){®}let x =ty in tr {V}




The NoFree Mode

= Stackable assertions are needed to prevent logical deallocation.

= |f the user pledges to not deallocate, no tracking is needed.

LETNOFREE
(L {ou{V} Vv (R){V v} [v/x]t {V}
(R)y {®}let x =ty in tp {V}




A new consequence rule

New ghost update parameterized by the visible roots.

@ 3locs(t) @’ {cbl} t {W}
{¢} t{V}

Our logical FREE rule.

31 [V, ey V] % €410 % "0 & V7 x Stackable {1 =\ on x {/
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