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In a few Words

Verifying functional correctness is not enough!

We have to take resources into account.

We want to prevent the Dreaded Memory Leak!

This work:

• A program logic to verify heap space bounds...
• ...for a high-level language...
• ...equipped with a garbage collector.
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Formal Verification of Heap Space Bounds

Without a GC:

• alloc consumes space • free produces space

With a GC:

• There is no syntax for deallocation.
• The GC can run at any time to deallocates blocks.
• The GC can deallocate only unreachable blocks.

To formally prove that some space is reclaimable by the GC

• one has to prove that a block is unreachable,
• from the roots,
• following heap paths.
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A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

• If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

• If xs is reachable from the evaluation context: O(length xs)

3/21



A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

• If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

• If xs is reachable from the evaluation context: O(length xs)

3/21



A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

• If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

• If xs is reachable from the evaluation context: O(length xs)

3/21



A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

• If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

• If xs is reachable from the evaluation context: O(length xs)

3/21



A Motivating Example: mapsucc

let rec mapsucc (xs : int list) : int list =
match xs with
| [] -> []
| y::ys -> (y+1)::(mapsucc ys)

In the presence of a GC, how much heap space does mapsucc need?

It depends on the evaluation context!

• If xs is unreachable from the evaluation context: O(1)
The GC can claim the front cell of xs at each step.

• If xs is reachable from the evaluation context: O(length xs)

3/21



Good ol’ POPL’22

SpaceLang, a low-level language by Madiot and Pottier [2022]. They

• Use space credits to account for free (reclaimable) space

⋄1

• Adapt pointed-by assertions to track predecessors

ℓ←[1 A

• Introduce a logical deallocation rule

ℓ 7→1 [v1, ..., vn] ∗ ℓ←[1 ∅ ⇛ ⋄n ∗ † ℓ

• Target an assembly-like language, with explicit roots
• Trivializes the identification of roots
• Non-standard syntax and semantics

• Polluted reasoning rules
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Contributions

Building on the work of Madiot and Pottier, we present a logic for

• a high-level, ML-style, language,
• with closures.

Key solved challenges:

• Reasoning about roots in a garbage collected λ-calculus
• Reasoning about closures and the heap paths they introduce

Solved technical challenges:

• Modularity of specifications
• Theory and examples are fully mechanized in Coq on top of Iris
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The Roots of the Problem

What are the roots considered by real-life GCs?

The Free Variable Rule (FVR)

In a substitution-based semantics, the roots are the locations occur-
ring in the term that remains to be evaluated.

Term Heap
let a = (ref 4) in let b = (ref 2) in !a + !b ∅

−→ let a = ℓa in let b = (ref 2) in !a + !b {ℓa := 4}
−→ let b = (ref 2) in !ℓa + !b {ℓa := 4}
−→ let b = ℓb in !ℓa + !b {ℓa := 4, ℓb := 2}
−→ !ℓa + !ℓb {ℓa := 4, ℓb := 2}
−→ 4 + !ℓb {����ℓa := 4 , ℓb := 2}
−→ ∗ 6 {����ℓa := 4 ,����ℓb := 2}
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I am Root

Term Heap
let b = (ref 2) in !ℓa + !b {ℓa := 4}

While reasoning about (ref 2)

• The location ℓa is a root of the evaluation context!
• The GC cannot reclaim the space of ℓa.

From a formal verification point of view:

• Roots may occur in the evaluation context.
• We need to prevent the logical deallocation of such invisible roots.
• Other visible roots may be found by inspecting the term under focus.
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Free as a Ghost Update

Introducing the Stackable ℓ p assertion to track invisible roots (p ∈ (0, 1]).

Main property of the Stackable assertion

Stackable ℓ 1 asserts that ℓ is not an invisible root.

We refine the Free rule of Madiot and Pottier.

ℓ 7→1 [v1, ..., vn] ∗ ℓ←[1 ∅ ∗ ⌜ℓ /∈ locs(t)⌝ ∗ Stackable ℓ 1 ⇛ ⋄n ∗ † ℓ

ℓ is not an invisible rootℓ is not a visible root

ℓ is not pointed-by any reachable block
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Handling Invisible Roots

The Stackable assertion is splittable

Stackable ℓ (p + q) ≡ Stackable ℓ p ∗ Stackable ℓ q

The construction let x = t1 in t2 may create invisible roots.

While reasoning about t1, we withhold the Stackable assertions of locs(t2).

The Let rule for a context with only one location:

locs(t2) = {ℓ}
{Φ} t1 {Ψ′} ∀v . {

Stackable ℓ p ∗

Ψ′ v} [v/x ]t2 {Ψ}
{

Stackable ℓ p ∗

Φ} let x = t1 in t2 {Ψ}
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What is left?

In the rest of this talk

1. Other reasoning rules
2. Back to mapsucc

3. The Soundness Theorem
4. Closures

10/21



Allocation and Load

Pointed-by and Stackable assertions are created by Alloc.

{
⋄n

}
alloc n

{
λℓ.

ℓ 7→1 ()n

ℓ←[1 ∅ ∗ Stackable ℓ 1

}

Load is the standard Separation Logic rule.

0 ≤ i < |w⃗ |{
ℓ 7→p w⃗

}
ℓ[i ]

{
λv .

⌜v = w⃗(i)⌝
ℓ 7→p w⃗

}
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Store

Store is more complex: it modifies heap antecedents.

0 ≤ i < |w⃗ | w⃗(i) = v
ℓ 7→1 w⃗
v ′ ←[p A

 ℓ[i ]←v ′

λ .

ℓ 7→1 [i := v ′]w⃗
v ′ ←[p A ⊎ {+ℓ}

v ←[0 {−ℓ}


Proof Pearl
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Two specifications for mapsucc

Pointed-by and Stackable assertions often go together

ℓ←↩p A ≜ ℓ←[p A ∗ Stackable ℓ p

Split rule: ℓ←↩(p1+p2) (A1 ⊎ A2) ≡ ℓ←↩p1 A1 ∗ ℓ←↩p2 A2

If ℓ is unreachable from the evaluation context:{
List L ℓ ∗ ℓ←↩1 ∅

}
mapsucc ℓ

{
λℓ′. List (map (+1) L) ℓ′ ∗ ℓ′ ←↩1 ∅

}
If ℓ may be reachable:{

List L ℓ ∗ ℓ←↩p A
⋄(3× length L)

}
mapsucc ℓ

{
λℓ′.

List L ℓ ∗ ℓ←↩p A
List (map (+1) L) ℓ′ ∗ ℓ′ ←↩1 ∅

}
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The Soundness Theorem

Our semantics

• is parameterized by a maximal heap size S
• interleaves reduction steps and GC steps

An allocation is stuck if, after a full GC, there is not enough free space.

Soundness Theorem

If {⋄S} t {Ψ} holds, then t cannot reach a stuck configuration.

Reformulation: the live heap space of any execution of t cannot exceed S.
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Closures

We encode closures as derived constructions using closure conversion

• closure creation and call are not in the syntax,
• but we provide macros implementing them,
• and provide reasoning rules about those macros!

A closure is Allocating a closure
a heap allocated block consumes space credits
pointing to its environment updates pointed-by assertions

I will show you very simple closures

• non-recursive
• no argument

• environment of size 1
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Playing with Closures: Counter Objects

let counter () =
let r = ref 0 in
((fun () -> incr r) , (fun () -> !r))

{
Counter i g n

}
(i ())clo

{
λ . Counter i g (n + 1)

}
{

Counter i g n
}

(g ())clo
{

λm. ⌜m = n⌝ ∗ Counter i g n
}

{
⋄7

}
(counter ())ptr

λℓ.

∃i , g . ℓ 7→ [i ; g ] ∗ ℓ←↩1 ∅
i ←↩1 {ℓ} ∗ g ←↩1 {ℓ}

Counter i g 0
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Specifying Closures

We introduce the Spec assertion

Spec E P f

Definition of the Counter predicate

Counter i g n ≜ ∃ℓ.


ℓ 7→ [n] ∗

Spec [(ℓ, 1
2)] (Pincr ℓ) i ∗

Spec [(ℓ, 1
2)] (Pget ℓ) g

The specification predicate P abstracts away the closure code.

Pincr ℓ ≜ λu. ∀ n. {ℓ 7→ [n]} u {λ . ℓ 7→ [n + 1]}
Pget ℓ ≜ λu. ∀ n. {ℓ 7→ [n]} u {λm. ⌜m = n⌝ ∗ ℓ 7→ [n]}
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Closure Creation

Closure creation is subtle to reason about

• the semantics is substitution-based,
• hence, the environment is substituted
• hence, we need to specify a substitution of the environment!

fv(t) = {r} E = [(ℓ, p)] P ([ℓ/r ]t){
⋄2 ∗ ℓ←[p ∅

}
[ℓ/r ] (λclo (). t)

{
λf . Spec E P f ∗ f ←↩1 ∅

}
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The Call of a Closure

Reasoning about a call:

(∀ u . P u −∗ {Φ} u {Ψ})

{Spec E P f ∗ Φ} (f ())clo {λv . Spec E P f ∗Ψ v}

term describing the call

The general case is challenging, as a closure may:

• Call itself.
• Become unreachable just after a call,

and self-destruct.
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Read the Paper

• Recursive and self-destructive closures
• Simplified handling of Stackable assertions
• Simplified mode without logical free
• CPS-style example with append

• Amortized analysis with rational space credits (list of arrays)
• Illustration of modularity with stacks
• Fun technical contributions: fraction zero and signed multisets
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Conclusion

We present a logic targeting

• a high-level language,
• with closures,
• equipped with a garbage collector,
• that obeys the free variable rule,
• and is fully mechanized in Coq on top of Iris.

Future work:

• Concurrency, lock-free data structures (ongoing)
• Weak pointers and ephemerons
• Links with the formal cost semantics of CakeML
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Thank you for your attention!

alexandre.moine [at] inria.fr
arthur.chargueraud [at] inria.fr

francois.pottier [at] inria.fr



Logical Deallocation of Lists

List L ℓ ∗ ⌜ℓ /∈ locs(t)⌝ ∗ ℓ←↩1 ∅ ⇛ ⋄(3× length L)



Triples with Souvenir

Stackable assertions are easy to manage in practice.

Introducing triples with souvenir ⟨R⟩ {Φ} t {Ψ}
“Give a Stackable assertion once and that’s it”

LetAddSouvenir
locs(t2) = {ℓ}

⟨R ∪ {ℓ}⟩ {Φ} t1 {Ψ′} ∀v . ⟨R⟩ {Stackable ℓ p ∗Ψ′ v} [v/x ]t2 {Ψ}
⟨R⟩ {Stackable ℓ p ∗ Φ} let x = t1 in t2 {Ψ}

LetInSouvenir
locs(t2) = {ℓ} ℓ ∈ R

⟨R⟩ {Φ} t1 {Ψ′} ∀v . ⟨R⟩ {Ψ′ v} [v/x ]t2 {Ψ}
⟨R⟩ {Φ} let x = t1 in t2 {Ψ}
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The NoFree Mode

• Stackable assertions are needed to prevent logical deallocation.
• If the user pledges to not deallocate, no tracking is needed.

LetNoFree
⟨⊥⟩ {Φ} t1 {Ψ′} ∀v . ⟨R⟩ {Ψ′ v} [v/x ]t2 {Ψ}

⟨R⟩ {Φ} let x = t1 in t2 {Ψ}



A new consequence rule

New ghost update parameterized by the visible roots.

Φ ⇛locs(t) Φ′ {Φ′} t {Ψ}
{Φ} t {Ψ}

Our logical Free rule.

ℓ 7→1 [v1, ..., vn] ∗ ℓ←[1 ∅ ∗ ⌜ℓ /∈ V ⌝ ∗ Stackable ℓ 1 ⇛V ⋄n ∗ † ℓ
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